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INTRODUCTION 

The following facts are well known for the Laplace equation 

"_0 
i n Rn: 

(0;1) 

1) when n - 2, any positive superharmonic function equals a constant, but 

this is not the case when n 2 3;· 

2) for any n, any bounded solution of Eq. (0.1) equals a constant, as does 

any solution of (D.l) with a t'inite Dirichlet ingegral l?(lZ)- . JIVlZl'.u:<oo; .. -
3) when n • 2, the solution of the exterior Dirichlet boundary value prob­

lem for Eq. (0.1) is unique in the class of bounded functions, as well as in 

the class D(u) < -, but "this is not the case for n 2 3; 

4) for any n, the solution of the above exterior problem with the additional 
condition that the flow equal 0 is unique 1n the class of bounded functions, as 

well as 1n the class D(u) < - •• 

The present paper considers Eq. (0.1) on an arbitrary R1emann1an man1fold; 
in this case , 6 is the Laplace-Beltrami operator. Kondrat'ev called our atten­

tion to the following problem: for what manifolds are properties 3) and 4) satis­
tied, i.e., when nothing need be required for single-valued solvability of the 
exterior Dirichlet problem in the class lupl"l<oo of"D(u) < .. and when is the 

addi tional requirement that the solution flow across the boundary equal zero 
needed? We will establish for arbitrary manifolds the connection between the 
.alidity ot Liouville theorems of type 1), 2) and single-valued solvability of 
ext erior boundary value prOblems. The exact formulat10ns are given 1n §§l, 2, 
and 4. We will not touch upon the geometric conditions under whi~h the Liouv1l1e 

theorems are satisfied, as quite a large number of publications have dealt with 
this tOPiC (see. e.g., [1-5]). 
0"87 by AI1.rton Pr ... , lnc. 
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The following decomposition prlnc~ple follows from. the fact that valid1ty 

of a Llouvl11e theorem 1s equivalent to unique solvability of some exterior 

boundary value problem: if the Riemannlan metric or topology of a manifold Is 

altered on · some compact~ the validi ty of the Llouvl11e theorem does not break 

down (the manifolds under consideration are assumed to be connected). 

Most of this paper will consider the following equation with small terms, 
which is more general than (0.1): 

Lu-llu + (b (x), ,u) + c(ot) u - 0, (0.2) 

where b(x) !s a smooth vector field and c(x) Is a smooth function, c(x) ~ O. 
The aforementioned decomposition principle Is also valid for Eq. (0.2): local 

chariges In the coefficients b(x) and c(x) have no influence on the Liouville 

theorems, except for the case where a nonzero coefficient of c(x) is converted 
to one identical to zero (these two cases differ in the fact that the Liouville 

theorems are formulated differently for them"). 

As 1s well known (see [6]), existence of a nonz ero bounded solution of the 
equation c14-lu_O:J:_const>O. is equivalent to stochastic incompleteness of the 

man1fbld under consideration (a manifold 1s stochast1cally complete if a W1ener 

process on it is un1que, wh1ch 1s equivalent to stating that the solution of 

the Cauchy problem for the thermal conduct1vity equation tJaltJl-.t.Jz-O 1s unique 

1n the class of bounded funct10ns. e.g., Rn is stochastically complete and the 

open ball in Rn 1s not). The decomposition principle is thus also valid for 

stochastic completeness. 

The following notation will be employed throughout the paper: M is a Rieman­

nian manifold and aM is the edge ·of manitold M ( poss1bly empty); if the edge 1s 

nonempty. then we will consider only those solutions of (0 .2) that are SMooth 

up to the edge and satisfy the Neumann condition tJa./u.-O on aM, where v 1s a 

normal to aM. Further.~, · V are the Laplacian and gradient on M and· {Ok} is an 

increasing sequence of precompact . open subsets of M hav1ng smooth boundaries 
(if aM is nonempty, then aO

k 
and aM are assumed to be transversal) and exhaust­

ing M. 

Sl. LIOUVILLE THEOREM FOR SUPERSOLUTIONS 

A function IIfc'(M} 1s called superharmonic if ~u L 0 (as well as tJalu.·:,O on 

aM, where v is an interior normal to aM). Manifolds on wh1ch any superharmonic 

function bounded from below equals a constant are called parabolic manifolds. 
Por example, R2 i s parabolic and R3 is not. For more on geomet riC conditions 

for parabol1city, see [1,2]. Manifold M 1s known ( see [7]) to be parabol1c 

when and only when the Laplace equation has no positive fundamental solution, 
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which is in turn equivalent to the statement that the Wiener capac ity of any 
compac t in M equals zero (see [2]). Hence ~t readily follows that two manifolds 
isometric outside of compacts ar~ simultaneously both parabolic or both not 

parabolic, i.e., the decomposition principle for parabolicity. 

In this section. we will prove the decomposition principle for existence 
of positive nontrivial supersolutions of the eq~tion 

IJI.-4.a+(b(x).vu)_O. (1 .1 ) 

The reason why we will nnt consider the complete operator (0.2) here is as fol­

lows! Eq. (0.2) always has a positive solution (see ( 8,9] ) and, if c(x) t 0, 

this solution obviously does not equal a constant. The exterior Dirichlet prob­
lem for Eq .· (0 . 2) will be considered in §2. 

Any function uEC'(M} such tha~ Lu ;S. 0 (and.pulu.>O in the case of a nonempty 

edge aM) w111 be called a supersolution, of Eq. (1.1). 

We denote by I.(.t', y) the Green function of operator L in an open precompact 
domain geM. having the smooth boundary ao (transversal to aM) . By definition 
we have for each fixed 'yEg 

4. (x. y) - - B.,(x). I. (x. Y)~EIII -0. DIJu,LE'.w-O. 

The function go' considered as a function of y. satisfies the conjugate equation 
L·,.--& .. (y)and the conjugate boundary cond1tions go • 0 when yEaQ. rJg.,u,·-O when 

yErJM" where L-u-IW-v"' (ub). rJlu.·_rJlu,_(b.~). It is also kno~ that '11>0. As follows 
from the maximum principle. when domain n is enlarged, the function go increases. 

If Ok is the exhausti6~ of manifold M (see Introduction), then the Green func­
tion in domain Ok is denoted by gk" The increasing sequence of functions (gk) 
either tends to - for all x or is bounded for some x. By the known properties 

of elliptic equations, sequence {gk} then has a limit for all x # y. This limit 
w111 be called the Greeg. function of operator L on manifold M and denoted by 

gex , y). In preCisely the same manner, its existence for all y ~ x f o llows 
trom the existence of -lim gk(x, y) at some one y. It is readily seen that 

Lt--,.,(x). L-e--& .. (J). rJi/u.l. .... - O. di/H ~t'.- o. 

It follows from the maximum principle that g{x. y) exists when and only 

when a positive fundamental solution of Eq. (1.1) exists and the Green func­
tion is the least positive fundamental solution. 

Theo rem 1.1: Let 0 be an arbitrary precompact domain in M with a smooth 

boundary (transversal to aM). The following conditions are equivalent: 

a) there exists on M a positive supersolution of Eq. (1 .1) that does not 
equal a cons tant; 
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b) there exists in M ...... a a solution to the exterior boundary value problem 

Lv-a, ~I.ra-o. tTolcN~M-a. satisfying the restrictions a<v<l. v+a: 

c) there exists a Green ~unc~~on g{x, y). 

Proof. a) .... b). Let jSllll. 1-1. 2 •...• be the exhaustion of manifold M. It 

can be assumed that Sl.::;)Il:. 

"lI ...... D : 

We solve the following boundary value problem in 

L'II1~-o. ~ .. L.a-l, 1I7.1n.-a, O1IrJa-.~-a. 

By the maximum principle, we have a<'II1.<I. 'Il'hl>'tV .. • As k + GO, sequence wk has 

the limit w satisfying the conditions : Lw"" 0 outside n,. -in":,,, 1. ~/u, ~M-O. 0<_<1. 

If we prove that w ~ 1, then we take 1 - w as the function v so~ght. In order 

to prove w t 1, we utilize the condition for existe~ce on M of a positive super_ 

solution u ~ const. Displacing function u by a constant, it can b~·assumed that 

inf u - O. By the strict maximum principle for supersolutions, we have u > O. 

For some constant C, we therefore have ·C",!"e>t.· Then, by the maximum principle 

Cu > wk ' whence Cu .:a w.. Consequently lofU/-D, _",I. 

b) .... c). We denote by vk ,tile solution of the following boundary value 

prblem: LVk • 0 in ·gll. '0111,.. -v. O-OJU,"'N-a. Utilizing integral representation of 

the solution and Green's formula, we have 

S ' 1 '" ~ .. {x)_ v(y)~dy_ . :. 8 .. dy-
M.. ..U .. U'M 

- S. V(y)~dY + S (Lv·a.-L-g •. v)dy. 

"UIM' ',,". 

Here v everywhere denotes a normal directed inward into domain "a ...... St Re-

J
" .. 

marking that .only ;;g .. dy. of the .boundary integrals does not equal zero and also 

that Lv _ a, _ L-8, _ '.(y), we obtain 

v .. (.:c)-v(x) + J~glldY. 

(it would be more accurate to delete a neighborhood of point x and then 

the limit, but this procedure is standard and the details are omitted). 

cif1cally follows from v(x»O. v .. (x).< 1 that 

pass to 

It spe-

J l~g,dY" 1. (1. 2) 

since 4v1q.,> 0 on an, it follows from (l.2) that lImgll (x,y) exists. 
~-

c) .... a). For an arbitrary function ,Ea-(M). ,>0. , .. 0. set /lex) _.j8(X.y),(Y)dY. 

Since Lu--,<O. then u is a positive superharmonic function, u ~ const. 
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We wi·ll say, by analogy with the definition of a parabolic mainfold, that 

the pair (M. b ) (where b(x) Is a smooth vector field on M) Is p~rabollc If any 

positive supersolution of Eq. (l.l) equals a constant. 

Corollary 1.1. The following conditions are equivalent: a) the pair (M, b ) 

Is parabolic; b) the exterior boundary problem in M,a Ut-a. ul"c.-a. aufiTI-a on 

aM, has the unique bounded solution u = a. 

Actually, according to clause b) of the.orem 1.1. it is sufficient to verify 

that, if there exists a nonzero bounded solution u of this exterior boundary 

prgblem . then there also exists a bounded solution v ~ a. v ; a of the problem . 

Put u~-(l/2)(u±lul), It can be assumed that u+ t a (otherwise v • -u-). Con­

st ruct the sequence {vk } of solutions of the following boundary problems: LVk • 

• 0 in g.,D, 'tI .. ;k.-O. 'tit \H. -u+, ~Jq.,~M-O, We successively d~duce from the maximum 

princ iple that '0.>0. ~a>u, 'tI,>u+, 'tI •• 1 >va. 'Ela<supu. so that the sequence {vk } has 

the limit 'tI-lIm'Elk' which 1s a solution of the exterior boundary problem and - , satisfies the conditions ,,+ < '0 < sup'" 

Corol lary 1.2 . Let (M1,bL) and (Mt ,b1) be t· ... o pairs such t~t there exists 

the isometry l:M"KL-Mt'Kt of the exteriors of compacts KI , KZ that sends 

field bl into bi' These pairs are then simultaneously both .parabolic or both 

not parabolic. 

§2. LIOUVILLE THEOREMS FOR BOUNDEO SOLUTIONS 

Theorem 2.1. Let L be operator (O.2) with C(z)<O, C(z)"O; K is a compact 

in M. The following conditions are . eq~valent: 

a) there exists on M a nonzero bounded solution u(x) af Eq. (0 .2 ) (with 

the Neumann condition on aM) 

b} there exists in M,K a bounded solution vex) of Eq. (0.2) (with the 

Neumann condition on a~) : that satisfies the following conditions for some pre­

compact domains OI.Ot' KeO, CC at. 
M 1 ('O) < Ms (v)+, mt<'tI}>m,;('II)-. 

where MI('II) _ sup", M,t'O) _Inf '11, a~ -(1/2)(a ± 141). 
110, «11 

(2.1 ) 

Proof. a) ~ b). This is obvious: s@t ~ • u and condition (2.19) is then 

satisfied by the maximum principle for (0.2). 

b) ~ a). Continue function v by some smooth image on the entire M (it is 

permissible to change v in the neighborhood of K). Let Lv - f, where supp/eO L • 

Let {nk } be the exhaustion of manifold M. It can be assumed that g.~ lit. Solve 

in nk the boundary value problems: Ut.-O. ".1.,.._'0, aIlJq.,:"o on aM. Since slIp l".1 
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<supl"' l. sequence {uk} . is compact. Let u(xJ be the limiting function . It is 

sufficient to show that u t O. Assume that u :; O. Set c.-tl-u.. Then 

Lcl-f • • 1\.1..-0. ",Jq..~M-O 

and wk + v when k + -. Therefore, with sufficiently large k, 

M, (1II',) < M, ( .... )., ml('III.»nrs(cJ-. 

(2 .2 ) 

(2.3) 

Applying the Claximum principle to function wk in the domain g. '01 (in which 

LWk • 0), we obtain Md'lllJ·;>M, (.,J, which together with (2.3) gives M, ('III.) <0, 

< O. In precisely the same manner, we obta.in ml(wk ) > 0, which is not possible 

simultaneously with Md'lll.) < O. 

Theo rem 2.2. Let L be the operator (1.1). The following conditions are 

equivalent (see the preceding theorem for notation: 

a) there ~x1sts on M a bounded "(positive) solution u{x) of Eq. (1.1) that . 

does not equal a constant (with the Neumann condition on aM); 

b) there exists in M'K a bounded (.pos i t ive ) solution vex) of Eq. (1.1) 

( with the Neumann condition on aM) that satisfies the conditions 

(2.4) 

Proof. a) -+ b) is obvious. b) -+ a). Retaining the notation used tn 

the proof of theorem 2.1, we will show that u t const (still considering the 

case of bounded solutions). If u = const, then for the function w - v - u, 

condition (2 .4 ) and also condition (2.3) are satisfied, which leads to a con­

tradiction. 

Now let the function v be positive; we have to construct a positive solu­

tion u on M. The entire preceding proof holds with one exception: it 15 not 

clear why sequence {uk } should have a limiting function (no boundedness). We 

utilize the Grtien function from §l to prove convergence of {uk }. It follows 

from (2.2) that _.(x)_ $ta(X,yl/(y)dy. Therefore, if ~!.L{X.Y) eXiSts, then !I.~ •• .. 
exists and thereby lJm-~ also exists. By virtue of theorem 1.1 it is sufficient -to prove that for some domain n there exists a solution to the exterior boundary 

value problem LW· 0 in M,a, WI.-l, ~Wlq.. -O on aM with O<W<I. W"l. We first 

find sol utions W'k to the" following problems: LW'k - 0 in g.,D, W.I--l, IV.I.a.-o. 
tJW,J~-Oon M and we s et W - Hm W,,: We will prove that W t · l. Choose domain 

Q such that 0, C"~((O*·. The function v from condit i on b ) can be assumed to sat ­

isfy the condition Inl ",-I. By the maximum principle, we have ",;>W • • ",>W. The 
H 

function vex) in the layer 0.,,01 attains its minimum on aG2 by (2.4) . It fol-

lows from 1nl'" _1 and the maximum. principle that 1nl", < 1. Therefore 1nl W < I, W ..,1 . . 
.. lIlO, lIlO, 

The theorem has been proved. 
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Coro llary 2.1. rf manifolds Ml and M2 are isometric outside some compact, 
then they both simultaneously are or are not stochastlcally complete. 

Corollary 2.2. Let 0 be a preco~pact open submanlfold of M with smooth 
boundary ao not intersecting aM and ftf~g be connected. Let L be operator (0 .2) 
c(x) ~ 0; either c '(x) t. 0 In M,a; or cb:) :;; 0 In M. The following conditions 

are equivalent: 

a) there exists on M a bounded (po sitive. ) ~olutlon of Eq. (0 . 2) that does 

no t equal a constant (with the Neumann condition on aM); 

b) there ex!sts In At",1l a bounded (positive.) solution of the exterior 

Heumann problem 

Actually. we c onsIder the set M,g to be a manifold with edge agUilM. Sinc e 

the neighborhoods of '" for "manifolds M and M,g coincide. a s "a consequence of 

theorems 2.1 and 2.2. the Liouville theorems are s1multaneously satisfied or 

not satisfied o n M and M"'\.g. 

Corollary 2.3. Let n be a precompact open set with smooth boundary ao 
transversal to aM and let L-4+(b.v). The following conditions are equivalent: 

a) any bounded solution of the equation Lu : 0 (with the Neumann cond1tion 

on aM) equals a con~tantj 

b) the exterior problem in M,il L,,-O. "L,..-O. o-o/u.-O on aM. has a unique 

solution it :;; O. In the class of bounded functions with zero flow P{v}"-jO-O/V.-o. 

Proof. a) ... b). Let v be a nonzero bounded solution of the problem in 

clause b ) , with p(v ) • O. Then function v satisfies condition (2.4) for arbi­

trary precompact domains Gl • 02 such thilt G1 ) )OI))Q. Actually.; if. e.g., M,; (v) 

<M1(tr). then, since function v attains its maximum at the boundary in the domain 

Gl"g, we have M2 (v) ~ O. We then have v ~ 0 everywhere in ol,a and, from the 

lemma on the normal derivative. 1hJ/u.<O on an (where v is an exterior normal to 

30). which contradicts p(v) • o . 
b) ~ a). 

on M (with the 

Let u be a nontrivial bounded solution of the equation 

Neumann condition" on aM). We will show how to construct 

SOlution different trom u for the exterior boundary problem: Lw • 0 in 

Lu .. 0 

a bounded 

!r1"a, -.,.,.. 
-11, dfll/v.-O on dM. p(fII)-pta). Then the difference v • u - w 1s the function 

sought. 

Consider the sequence o f boundary value problems in Q_" a; 

·Positive sol utions are considered only in the case c{x) :;; O. 

J; 



(2.5) 

where c k 1s a constant that can be determined from the condItion p(w
k ) • p(u), 

It ean be assumed that ".E[~Iu., s~ul. Actually, if c.> sW'" and wk > u and, since 

wk • u on an, p(c,» ·p(u). Analogously, 1f c.<lat", then p(.J<p(a). For some ", Ellof", .. . 
s~aJ, we therefo::-e have "p(_,J-p(Il). By virtue of the above restrictions on Ck • 

the sequence {wk } Is bounded and therefore compact. Let w be its lImiting func ­
tion. We wIll prove that w 1:. u. rf· G Is a precompact domain, a ))Q, then by 

the maximum prInCiple we have swu>s,::.pu. for the function u In G, For the func-

tion wk ' we have sUP_.<SUD'III'.<SlIpu. As k ...... , we obtain SUDlII<'UDU. Thus. w t U. 
«J • _0'\.- la «J K 

Co r oll ary 2.4. Let L_b.+(b(x).v)+c(.x). wher.e c(.x) < 0, c(x) "0. The following 

condi tIons are equivalent: 

a) any bounded solution of the equation Lu - 0 on M (with the Neumann con­
dit ion on aM) equals ze ro ; 

b) the exterior problem Lv .. 0 in M'§. vL,. -0. iiv/q,,-O on aM has the unique 

bounded solution v _ 0 (here 0 is the same as in corollary 2.3 ) . 

Proof. a) . ... b). Theorem 2.1 Is applied directly. 

b) ... a ). Let u be a nonzero bounded so lut ion of the equation Lu • 0 (wit h 

the Newnann condition on aM). If A"",_O. then we set v .. u. It can otherwise 

be assumed that IUpU. > 1. We solve the sequence of boundary value problems (2.5), • 
putting ck - t. The inequality IUP''';; '~P" is then sat i sfied for lim.1ting func-

tion w. Since IUpU.<suou. then w 1. u and the function v .. u - w is what is . "" sought . 

As folloW5 from theorems 2.1 anQ 2.2, the bilateral Liouville theore~ . do 

not break down when there is a local change in the metric or topology of mani ­

fold M or in the coefficients b(x), c(x), albe1t with the following restr1ction 

on the change in the coefficient .c(x): the relations c :: 0, c 1. 0 should not be 

vlolated (these cases are handled by different theorems). Actually, let c .. O. 

cE CO (M). Validlty of the bilateral L10xvllle theorem for the operator L_A+t{x) 

is then equivalent to parabollclty of M (see corollaries 2.4 and 1.1). If there 
is a local change in the coefficient c that makes lt ldentlcal to zero, operator 

L Is converted to 4 and the bllateral L1ouvIl1e theorem for 4 ls n~t equivalent 

• to parabolicIty of M (e.g. , if M-R'). 

The unilateral Liouvllle theorem for the operator .1 + (b(xl. v) does not break 

down under any local changes in the manifold or the coeffIcient b(x), 
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§3. LIOUVILLE THEOREMS UNOER CHANGE IN ABSORPTION COEFFICIENT 

Let L-d+(b(x),V). We will here consider the question of the existence of 

nonzero bounded solutions of the equation Lu-c(xju_O with different coefficients 

c (x), c (x) :> O. c (x) .. O. 

Theorem 3.1. Let O<cs(x)<Ac,(x). where A_const>O. c,"",O, Then, if the bilateral 

Liouville theorem is satisfied for the equation Lv-cs(x)v-O. it Is also satisfied 

for the · equation La": c,(x)u.-O. 

Comment. The boundedness condition c 2/c l is essential. For example, if 

in R' Cl (x) has a compact carrier and cl ,. const > O. then the Liouvllle theorem 

is not :!!Iatisfied for the operator .:1-c,(x) (see the end of §2) but is satisfied 

for !J. -- cl (sinece R3 is stochastically complete; see the Introc.uction). 

Proof. Let there exist a bounded solution u 1. ° of the equation u-c,(x)u-O 

( with the Neurnann condition on aM). Initially let C,(.t)<c1(x). We will prove 

that there exists a positive bounded solution of the equation L11-C,{X)v-O (with 

the Neumann condition on aM), It is const ructed as the limit of the solutions 

of the following boundary value problems in 12 .. : L11.-C,'t"', - O, v. ~.-u"', DflJd't-O on 

aM. We can asswne without loss of generality that u ...... O. Obviously.O <v.<supu. 

Since Lv.- c,"fJ.<L"fJ.-c1"fJ.-o, "fJI I.- >u. then by the maximum principle 'O .. >u. "fJ.>mu.{O,u)-
, . 

- u+, The limiting function of the sequence {vk } is therefore bounded and posi -

tive. 

Now let c,(x)<Ac\lx),·A>l. By virtue of the preceding argument, the r~nction 

u can be considered positive. We will assume that there exists a positive 

bounded :!!Iolution of the equation L"fJ-Ac.(x}"fJ_O. Then, by what has been proved 

above. the equation i"fJ-ct (x)-O.wlll also have such a :!!Iolution. 

Let vk be the solution of the boundary value problem 1n Ok: 

L"fJa - Ac, (x) tI, - 0. · tI.l.a .. - u. U1JJq., ~AC ~ O. 

Since O<'Oa<sup". there exists a limiting function 'Cl, O<:"fJ<supu. We will prove 

that v > O. Consider the following functions wk ' uk ' Vk • wh1ch are solutions 

to the boundary value problems in the domain R,: L1O,-O.1O .. I19 -.u., LUa--c\ (x) ", i.!- "" • • 
-o.L-o.--Act't' •• v. ·~ -0 (the Neumann condition on aM is also assumed). Obviously. • 
1O.-M. - u. .... - v. - 'd.. The following 1.nequalit1es arise from the maximum princ1ple: 

M,>O. ;.>0, 'a-u+i.>u. We will prove that ;.<.A.4"a' Let us first remark that 
Vk..i u, s1nce A>l. L"fJt-ct{x)'OI>O. Hence 1t follows that L(AU.) _ _ Ac,,,<_Ac,'CIa_ 

.. itJ ... and, since the boundary conditions for the functions AUk and Vk are 1den­

tical. then Ai.>; ... 

Let xo be a point at whichu(xo}>supu- •• Then _ .. (x,,»'UP"-I. ;.(xo}-1O.(.x.)-
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As k • ~J we there_ 

fore obtain v(A'.»sup,,-(A+l)', which is greater than zero at sufficiently small 
E. The theorem has been proved. 

Theorem 3.l.can be employed to lnve.stigate .L1ouville theorems on the Rieman_ 

nian product M x N, where N is a compact manifold (in this case either aM or aN 
1s empty). For example, if the bilateral (unilateral) Liouville theorem for 

the eq~ation Lu • 0 and the bilateral Liouville theorem .for the equation Lu M 

- U • 0 are satisfied on M, then by theorem 3.1, the Liouville theorem is sat_ 
isfied for the equation Lu-~-O, where). is any number 20. Utilizing this fact 

for A • Ak , i.e, the eigenvalues of the Laplace operator ~N on manifold N, the 

validity of the bilateral (unilateral) Liouville theorem for the operator L + 6N 
on manifold M x N is easily proved. 

§4. O-l!OUVIllE THEOREM 

We will consider in this section solutions of the Laplacian 6u • 0 with 
D(")-SIVIlI'dA'<oo. The assertion that any harmonic function on M (with the 

Ne~n condition on aM ) with a finite Dirichlet integral equals a cons t ant w1l1 

be called the D-Liouville theorem. 

Theorem 4.1. Let n be a precompact domain with smooth boundary an trans­

versal to aM. The following conditions are equivalent: 

a) the D-Liouvtlle "theorem is valid on M; 

b) the exterior boundary value prob"lem v · 0 1n M,a, vLa -0, Oll/(Jy-O on M 

has the unique solution v = 0 in the class of fun~tions satisfying the condi­
tions D(v) <00, p(v)-O. 

Proof. 

b) with the 

a) ... b). Let vex) be a nonzero solution of the problem in clause 

restrictions indicated. 
zero solution v of thh problem that 
to the proof of a theorem of Ahlfors 

We will prove that there then exists a non­

is still bounded. Our argument is similar 
(see [7]). As follows from v!,e-O. p(v)-O, 

the function v takes both positive and negative values on aG, where G is an 
arbitrary precompact domain. O))Q. Let N be a number so large that S Ivvrdz< 

hl>N 

< E, where E is chosen smaller. We denote the N-slice of function v as V and 

solve the folloWing boundary value problems in Q. ,£I: "*-0, ".1--,0, u:.~ - V·, 4111.-0, . . _.1-_ 0, -.j".. - V- (uk and Wk also satisfy the Neumann condition on aM). · 

The sequence {uk } is positive and bounded, so that there exists for it a 

limiting function u satisfying 1n M'...Il the eonditions 4Il-O, "1--0. olllq,~ .... _O, 

O<Il<N. We will prove that ut O. For this purpose, consider the d1fferences 

U.-v-"., U_V_I!.. The function Uk is the solution of the boundary value prob-
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lern in gill ,D: W a-O. U11".-0. UI~I-"- V·, aUJv.~.w-O. Since v - V+ also satisfies 

the boundary: condit1ons i ndicated. by the varlatio"nal property of the Dlrlchlet 

problem, we have 

D(UJ< r 1.(. - V·)f""<ll .. -I·""+ S I .. I'''''<D(.-)+ •. 
. '1Il(' IlDffl 

Therefore D(U)<D(o-)+" If £ < D(v+) I thence D(U) <D(-o). U",,11, " ""D. 

In exactly the same manner, if .. < D l-o-), th~n the sequence {wk } has a limit­
ing function w t 0 such that t:ow • 0 1n M,D, cLt,-O, o1ll/chl.,w- O. 0:> 1lI' > -N. Obvi­

ously P (4) >..0. p(.)<O. We will find a constant c >" 0 such that p(u: + C1D)-O. and prove 

that the function ~_Il+n, 1s the one sought. In order to do 50, we must ver1fy 

that ;-"'0. D(;) < 00. It can be assumed without loss of generality that c .s. l. 
The f unction v is limit ing tor the sequence {vk } determined from the conditions 

&17.-0 in 2~,a. tr_La-O . . trlln.-V++cv-. J.oJ'"~M-O. For the difference v - vk ' we 
have 

D(fl- tr.l -< .J,IV(lI- V+ - cv-) [t tix -< (1-: C)tllvv- lt tix +, -< D(tr-) ~ I . 

There f or e D(fl-;,<;O(tr-)+I < D(lI). ; .. 0. It also follows from the variat ional prop­

erties ot the Dirichlet problem that D(vJ-<D(V+ .+cV-)-<D(v). whence D(;) <00. 

According to corollary 2.3. there exists on M a nontrivial bounded harmonic 
function u. We will verify that D(u) < ~. Actually, this function is con­

structed as the limit ot the solutions of the f o llowing problems: dIt.-O in 

IO! •• "."'~ _ v, aUJVt~ .. -0. Since D("J -< D(~. thence DC u) < ~. 

b) .... a ). If u is a nontrivial harmonic funct ion with D(u) < ~J then it 

can be assumed to be bounded ( a s in the preceding proof). The balance of the 

argument duplicates the proof of corQllary 2.3, except that. instead of (2.5) , 

it is necessary to solve the following boundary value problem: I1m. _O in g., ~. 

-.I,.-w. ".10-.1-. -0. nJa-.I, .. -O. We have from variational cons i derations O('II'.)<O(u). 

so that we also obtain D(w) < ~ for the limiting function w. 

Corollary 4.1. If manifolds Ml • M2 are isometric out side compacts , then 
the D-Liouville theorems are simultaneously satisfied or not sat isfied on them • 

Corollary 4.2. Let the boundary of domain n not intersect edge aM. The 
D-Liouville theorem 1s then satisfied on M when and only whe n the exterior bound­
ary value problem 6.u .. 0 in M,a, c71t/tttLa -O. dU/d'lL, .. -O has the unique solut i on 
It.O (M'\", a- i s connected) 1n the class D(u) < .... 

Corollary 4.3. Manifold M is parabolic when and only when the exterior 
boundary value problem in M,a 4#-0, w~-O, du/d'lL, .. -O has the unique solution 
u = 0 in the class O(u) < .... 
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Actually. if there exists a nonzero solution of this problem, then. as 
can be seen from the proof of theorem 4.1. it can be assumed to be bounded. By 
corollary 1.1, manifold M is not parabolic. Conver sely. if M i s not parabolic. 
then D(1:I,J-P(",J. i s obviously satisfied for functions vk detennined from the con­

ditions .b.v.,-O in ~a ,a. 1:I. t,. -0. v.~. -1. DvJq.,~M:-O. so ,that we have D(v) <p(,,) <00 for 
the limiting function v. 
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