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INTRODUCTION
The following facts are well known for the Laplace equation
Au=0 B (0.1)
in R%:

l) when n = 2, any positive superharmonic function equals a constant, but
this is not the case when n > 3;

2) for any n, any bounded solution of Eq. (0.1) equals a constant, as does

any solution of (0.1l) with a finite Dirichlet ingegral D(uz)= I|vu|’dx<oo:
e
3) when n = 2, the solution of the exterior Dirichlet boundary value prob-
lem for Eq. (0.1) is unique in the class of bounded functions, as well as in

the class D(u) < =, but 'this is not the case for n 2 3;

4) for any n, the solution of the above exterior problem with the additional
condition that the flow equal 0 is unique in the class of bounded functions, as
well as in the class D(u) < =,.

The present paper considers Eq. (0.1l) on an arbitrary Riemannian manifold;
in this case, A 1s the Laplace-Beltrami operator. Kondrat'ev called our atten-
tion to the following problem: for what manifolds are properties 3) and 4) satis-
fied, i.e., when nothing need be required for single-valued solvability of the
exterior Dirichlet problem in the class sup|u|< oo of D(u) < = and when is the
2dditional requirement that the solution flow across the boundary equal zero
Needed? We will establish for arbitrary manifolds the connection between the
Validity of Liouville theorems of type 1), 2) and single-valued solvability of
®xterior boundary value problems. The exact formulations are given in §§1, 2,
and 4, we will not touch upon the geometric conditions under which the Liouville
theOrems are satisfied, as quite a large number of publications have dealt with

this topic (see, e.g., [1=-5]).
© 1987 by Allerton Press, Inc.
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The following decomposition princ;ple follows from the fact that validity
of a Liouville theorem 1s equivalent to unique solvabllity of some exterior
boundary value problem: i1f the Riemannian metric or topology of a manifold is
altered on some compact, the validity of the Liouville theorem does not break
down (the manifolds under consideration are assumed to be connected).

Most of this paper will consider the following equation with small terms,
which is more general than (0.1):

Lu = Au + (b (x), vu) + ¢ (x)u=0, : (0.2)

where b(x) is a smooth vector field and c(x) is a smooth function, c(x) < 0.
The aforementioned decomposition principle i1s also valid for Eq. (0.2): local
changes in the coefficients b(x) and c(x) have no influence on the Liouville
theorems, except for the case where a nonzero coefficient of c(x) is converted
to one identical to zero (these two cases differ in the fact that the Liouville

theorems are formulated differently for them).

As is well known (see [6]), existence of a nonzero bounded solution of the
equation Ag—lu=0, A=const>0, 15 equivalent to stochastic incompleteness of the
manifold under consideration (a manifold i1s stochastically complete if a Wiener
process on 1t 1s unique, which 1s equivalent to stating that the soclution of
the Cauchy problem for the thermal conductivity equation gdu/df—Auz=0 is unique
in the class of bounded functions, e.g., R? 1s stochastically complete and the
open ball in R™ is not). The decomposition principle is thus also valid for
stochastic completeness.

The following notation will be employed throughout the paper: M is a Rieman=-
nian manifold and 3M is the edge of manifold M (possibly empty); if the edge is
nonempty, then we will consider only those solutions of (0.2) that are smooth
up to the edge and satisfy the Neumann condition gu/d+v=0 on 3M, where v 1is a
normal to 3M, Further, A, V are the Laplacian and gradient on M and {ﬂk} is an
increasing sequence of precompact open subsets of M having smooth boundaries

(1f 9M is nonempty, then ank and 9M are assumed to be transversal) and exhaust-

1“3 Mc
§1. LIOUVILLE THEOREM FOR SUPERSOLUTIONS

A function a€C'(M) 1s called superharmonic if Au < 0 (as well as du/év>0 on
BM, where v 1s an interior normal to 3M). Manifolds on which any superharmonic
function bounded from below equals a constant are called parabolic manifolds.
For example, R2 is parabolic and R3 is not. For more on geometric conditions
for parabolicity, see [1,2]. Manifold M is known (see [7]) to be parabolic
when and only when the Laplace equation has no positive fundamental solution,
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which 1is in turn equivalent to the statement that the Wiener capacity of any
compact in M equals zero (see [2]). Hence it readily follows that two manifolds
isometric outside of compacts are simultaneously both parabolic or both not

parabolic, i.e., the decomposition principle for parabolicity.

In this section, we will prove the decomposition principle for existernce
of positive nontrivial supersolutions of the equation

Lo v At 4 (B (x), ya) = 0. (1.1)
The reason why we willl not consider the complete operator (0.2) here is as fol-
lows: Eq. (0.2) always has a positive solution (see [8,9]) and, if c(x) Z O,

this solution obviously does not equal a constant. The exterior Dirichlet prob-
lem for Eq. (0.2) will be considered in §2.

Any function z€C*(M) such that Lu < 0 (and du/v>0 in the case of a nonempty
edge 9M) will be called a supersolution of Eg. 2 B i

We denote by gelx,y) the Green function of operator L in an apen precompact

domain 2cM, having the smooth boundary 3Q (transversal to 3M). By definition
we have for each fixed y€SQ

Lgg(x, y) = '_a;(x)- £ (x, y”;eﬂ-o' 6&,{&1!‘65‘-0-

The function gq» considered as a function of y, satisfies the conjugate equation
L'g,=—13,(y)and the conjugate boundary conditions 8q = 0 when yg€dQ, dg./v*=0 when
yEoM, where Lou=Au—y®(zb), d/d'=3d/dv—(b,v). It 1s also known that g,>0. As follows
from the maximum principle, when domain Q 1is enlarged, the function gg increases.
If @, is the exhaustion of manifold M (see Introduction), then the Green func-
tion in domain nk 1s denoted by B+ The increasing sequence of functions {gk}
either tends to = for all x or is bounded for some x. By the known properties
of elliptic equations, sequence {Ek} then has a limit for all x # y. This limit
will be called the Green function of operator L on manifold M and denoted by
g(x, y). In precisely the same manner, its existence for all y # x follows

from the existence of 1lim gk(x, y) at some one y. It isreadily seen that

Lgm —3,(x), L'g=—3:(y) 98/0v|,gop =0 98/ |,gpp =00

It follows from the maximum principle that g(x, y) exists when and only
when a positive fundamental sclution of Eq. (1.1) exists and the Green func-
tion 1s the least positive fundamental solution.

Theorem 1.1, Let Q be an arbitrary precompact domain in M with a smooth
boundary (transversal to 3M). The following conditions are equivalent:

a) there exists on M a positive supersolution of Eq. (1.l) that does not
equal a constant;

33




b) there exists in M\ & a solution to the exterior boundary value problem
Lo =0, v)p=0 30/dv|; =0, satisfying the restrictions 0g<v<l, vo0;

c) there exists a Green function g(x, ¥).

Proof. a) = b). Let {2}, £=1, 2,..., be the exhaustion of manifold M. It
can be assumed that 9,:;§. We solve the foilowing boundary value problem in

2N\8:
Loy =0, w|e=1, m,[,,,‘—o, w0 |y = 0.

By the maximum principle, we have 0L ®w, <1, Wy, ;> W,- As k + =, sequence wy has
the limit w satisfying the conditions: Lw = 0 outside 2, ®[g=1, dw/dv |, =0, 0<D<]I.
If we prove that w # 1, then we take 1 - w as the function v sought. In order
to.prove w £ 1, we utilize the condition for exlstence on M of a positive super-
solution u Z const., Displacing function u by a constant, it can be-assumed that
inf u = 0. By the strict maximum pr‘inciplel for supersolutions, we have u > 0.
-For some constant C, we therefore have Cu|,>1.” Then, by the maximum principle

Cu > w, , whence Cu > w. Consequently Infw==0, ws 1.

k

b) =+ c). We denote by vy the solution of the following boundary wvalue
prblem: ka =0 in 9, e,ln._'o. a-u,.fdv[m—o. Utilizing integral representation of
the solution and Green's formula, we have

g - dd
u@= (o) ay= [ Lgdy-

a0, wyoRyy ont
- [ e %ay+ [ (Lo-t—Loao)ay.
aajon 2,8

Here V everywhere denotes a normal directed inward into domain 2,\ Q. Re-
marking that only Jg?‘-g,dy.or the boundary integrals does not equal zero and also

that Lo=0, —L'g,=13,(y), we obtain
%@ =) +J‘?—;g.dy
(it would be more accurate to delete a neighborhood of point x and then pass to

the limit, but this procedure is standard and the detalls are omitted). It spe-
cifically follows from o(x)>0, 7,(x)<1 that

h \
; J;g,dya:l. (1.2)

since dv/dv>0 on 3R, it follows from (1.2) that Ilm & (x, y) exists.
¢c) = a). For an arbitrary function QEG-(M) >0, p0, set u(x)_Jg(x.y)?(y)dJ'-

Since Lu=—9 <0, then u is a positive superharmonic function, u Z const.
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We will say, by analogy with the definition of a parabolic mainfold, that
the pair (M, b) (where b(x) 1s a smooth vector field on M) is parabolic if any
positive supersolution of Eq. (1.1) equals a constant. '

Corollary 1.1. The following conditions are equivalent: a) the pair (M, b)
is parabolic; b) the exterior boundary problem in M\ @ Lu=0, u)=0, du/dv=0 on
3M, has the unique bounded solution u = 0.

Actually, according to clause b_} of theorem 1.1, if is sufficient to verify
that, 1f there exists a nonzero bounded solution u of this exterior boundary
problem, then there also exists a bounded solution v > 0, v # 0 of the problem.
Put u®* =(1/2) (2 +|#]). It can be assumed that ut Z 0 (otherwise v = -u”™). Con-
struct the segquence {vk} of solutions of the following bor_.mdary problems: ka =
= 0 in 2\ g, 7,]pe=0, U log, =8, 00J|y=0. We successively deduce from the maximum
principle that 7,50, >4, o>ut, 1,,,>v, %<supua, so that the sequence {vk} has
the limit u-lll:iw,, whi:_:h is a solution of the exterior boundary problem and
satisfies the conditions z* < ov<supa.

Corollary 1.2. Let (M,,5,) and (M,, b,) be two pairs such that there exists
the isometry i:M\K,—M;\K; of the exteriors of compacts Ky K2 that sends
field bl into b2'. These palrs are then simultaneously both parabolic or both

not parabolic.
§2. LIOUVILLE THEOREMS FOR BOUNDED SOLUTIONS

T_heor'em' 2.1. Let L be operator (0.2) with e(x)<0, c(x)50; K is a compact
in M. The following conditions are . equivalent:

a) there exists on M a nonzero bounded solution u(x) of Eq. (0.2) (with
the Neumann condition on 3M)

b) there exists in M\ K a bounded solution v(x) of Eq. (0.2) (with the
Neumann condition on 3M) that satisfies the following conditions for some pre-
compact domains @,,G,, K<=G, C(C 0y,

M, (v) < My(v)*, m,(0) > my(0)~, (2.1)
where M, (o) =supv, m|v)=Info, a*=(1/2)(a £|al]).
%, o,
Proof. a) = b). This is obvious: set ve=u and condition (2.19) is then
satisfied by the maximum principle for (0.2).

b) = a). Continue function v by some smooth image on the entire M (it is
permissible to change v in the neighborhood of K). Let Lv = f, where suppfCQG,.
Let [Qk} be the exhaustion of manifold M. It can be assumed that 2,2G,. Solve
in rzk the boundary value problems: Lu,=0(, n.l,,.-u. duydv=0 on 3M. Since sup|a,|
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<sup|v|, sequence {uk}‘is compact. Let u(x) be the limiting function. It is

sufficient to show that u Z 0. Assume that u = 0, Set wy=v—u,. Then
Lwy=f, B3| =0, d0)/dv|py=0 (2.2)

and Wy *¥ when k + « ., Therefore, with sufficiently large k,

M, () < My(m)*, my () > my(wy)~. (2.3)

Applying the maximum principle to function Wy in the domain g,\ G, (in which
Lw, = 0), we obtain M,(w)* > M,(w,), which together with (2.3) gives M,(m,)<0,

< 0. In precisely the same manner, we obtain my(w,) > 0, which is not possible
simultaneously with M, (=) <0.

Theorem 2.2. Let L be the operator (1.1). The following conditions are
equivalent (see the preceding theorem for notation: '

a) there exists on M a bounded (positive) solution u(x) of Eq. (l.1l) that
does not equal a constant (with the Neumann condition on 3M);

b) there exists in M\ K a bounded (positive) solution v(x) of Eq. (1.1)
(with the Neumann condition on 3M) that satisfies the conditions

M, (v) < M, (), m,(v) > my(v). - ) (2.4)

Proof. a) = b) is obvious. b) = a). Retaining the notation used In
the proof of theorem 2.1, we will show that u # const (still considering the
case of bounded solutions). If u = const, then for the function w = v - u,
condition (2.4) and also condition (2.3) are satisfied, which leads to a con-

tradiction.

Now let the function v be positive; we have to construct a positive solu-
tion u on M. The entire preceding proof holds wlth one exception: it is not
¢lear why sequence {uk} should have a limiting function (no boundedness). We
utilize the Green function from §1 to prove convergence of {uk}. It follows
from (2.2) that w,(x)= j'g.(x.y)ﬂ_y)dy. Therefore, if El_:ﬂg,(x,y) exists, then limw,

exists and thereby .l_l_:.:.rz also exists. By virtue of theorem 1.1 it is sufficient
to prove that for some domain Q there exists a solution to the exterior boundary
value problem LW = 0 in M\ & W|,=1, dW/dv=0 on 3M with 0<KW<1, Ws1l. We first
find solutions H’k to the following problems: ka = 0 in 9\ § Wila=1, W.L,.-O,
oWyjovemOon M and we set W = Lim Wk. We will prove that W 2 1. Choose domain
Q such that G, CC2CCG,;. The function v from condition b) can be assumed to sat=-
isfy the condition 1&!11-1. By the maximum principle, we have o9>W,,v>W. The
function v(x) in the layer G,\G, attains its minimum on 3G, by (2.4). It fol-
lows from l:tv-sl and the maximum principle that !gfo(l. Therefore l‘.gfﬂ?(l. Wl
The theorem has been proved.
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Corollary 2.1, If manifolds My and M, are 1sometric outslde some compact,

then they both simultaneously are or are not stochastically complete.

Corollary 2.2. Let Q be a precompact cpen submanifold of M with smooth

boundary 32 not intersecting 3M and M\&@ be connected. Let L be operator (0.2)

c(x) < 0; either c(x) Z 0 in M\\Z or c¢(x) = 0 in M. The following conditions
are equivalent:

a) there exists on M a bounded (positive®) solution of Eq. (0.2) that does
not equal a constant (with the Neumann condition on 3M);

b) there exists in M\ & a bounded (positive*) solution of the exterior
Neumann problem s

Lo =0, 30/dv|,g =0, 30/dv|,, = 0.

Actually, we consider the set M\ Q to be a manifold with edge d2|JaM. Since
the neighborhoods of = for manifolds M and M\'Q coincide, as a consequence of

theorems 2.1 and 2.2, the Liouville theorems are simultaneously satisfied or
not satisfied on M and M\ Q.

Corollary 2.3. Let Q be a precompact open set with smooth boundary 3aQ

transversal to 9M and let L=A4(d,v). The following conditlions are equivalent:

a) any bounded solution of the equation Lu =
on 3M) equals a constant;

0 (with the Neumann condition

b) the exterior problem in M\ﬁ Lo=0, v]|e=0, dv/dv=0 on 3M, has a unique
solution v = 0. In the class of bounhded functions with zero flow p(u1'=,§a~u;ov=o.

Proof. a) = b). Let v be a nonzero bounded solution of the problem in
clause b), with p(v) = 0. Then function v satisfies condition (2.4) for arbi-
trary precompact domains Gy, G, such that G:33G,2>2. Actually, if, e.g., M;(v)
<M (v), then, since function v attains its maximum at the boundary in the domain
a;\n, we have Mz(v) < 0. We then have v £ 0 everywhere in G,\ & and, from the
lemma on the normal derivative, do/dv<0 on 23Q (where v is an exterior normal to
9Q), which contradicts p(v) = 0, |

b) = a). Let u be a nontrivial bounded solution of the equation Lu = 0

on M (with the Neumann condition on 3M). We will show how to construct a bounded
solution different from u for the exterior boundary problem: Lw = 0 in M\g, Wy =

=a, gw/ov=0 on oM, p(w)=p(u). Then the difference v =
Sought.

u - w 1s the function

Consider the sequence of boundary value problems in 2\ &

T—

%Positive solutions are considered only in the case c¢(x) = 0.




Lwy =0, Wy|og =1, Balg, = 4y OWYOY]5 =0, (2.5)

where i is a constant that can be determined from the condition p(wk) = p(u).

It can be assumed that ‘HG[LE““ sggul. Actually, 1if €4 >supi and w, > u and, since
W = U on 32, p(w)>p(s). Analogously, if c.<l§£u, then p(w,) < p(4). For some :.E[]gfg'
syu], we therefore have p(w,)=p(s). By virtue of the above restrictions on Crs
the sequence {wk} is bounded and therefore compact. Let w be 1ts limiting func-
tion. We will prove that w 2 u. If G 1s a precompact domain, G))2 then by
the maximum principle we have sgpu)sgpu(for' the function u in G. For the func-
tion Wy, we have agpw,iggw.(s:pu. As k = =, we obtain syw(sgpn. Thus, w Z u.

Corollary 2.4. Let L=A+(b(x),v)+¢c(x), where c(x)<0. c(x)$.0. The following
conditions are equivalent:

a) any bounded solution of the equation Lu = 0 on M (with the Neumann con-
dition on 3M) equals zero;

b) the exterior problem Lv = 0 in M\ & U)se =0, dv/dv=0 on 3M has the unique
bounded solution v = 0 (here Q is the same as in corollary 2.3).

Proof. a) = b). Theorem 2.1 is applied directly.

b) = a). Let u be a nonzero bounded solution of the equation Lu = 0 (with
the Neumann condition on 3M). If uz|,=0, then we set v = u. It can otherwise
be assumed that s‘u'pu>1. We solve the sequence of boundary value problems (2.5),
putting ¢, = 1. The inequality suwpw< s:‘pn is then satisfiled for limiting func-
tion w. Since agpu(:&m, then w Z u and the function v = u - w is what 1is
sought.

As follows from theorems 2.1 and 2.2, the bilateral Liouville theorems do
not break down when there is a local change in the metric or topology of mani-
fold M or in the coefficients b(x), c(x), albeit with the following restriction
on the change in the coefficient c(x): the relations ¢ = 0, ¢ 2 0 should not be _
violated (these cases are handled by different theorems). Actually, let e¢=0,
cEG(M). Validity of the bilateral Lioxville theorem for the operator L=A+4¢(x)
is then equivalent to parabolicity of M (see corollaries 2.4 and 1.1). If there
is a local change in the coefficient ¢ that makes it identical to zero, operator
L is converted to A and the bilateral Liouville theorem for A is ngt equivalent
to parabolicity of M (e.g., if M=R"),

The unilateral Liouville theorem for the operator A4 (&(x),y) does not break
down under any local changes in the manifold or the coefficient b(x).

38



func-

w Z u.

wing
n o= 3

unique

2ms do
mani-
riction
not be
¢ 4
= A 4 ¢ (x)
If there
operator
ivalent

break

§3. LIQUVILLE THEOREMS UNDER CHANGE IN ABSORPTION COEFFICIENT

Let L=Aa+(b(x), V).
nonzero bounded solutions of the equation Lu—c(x)u=0 with different coefficients
c(x), €(x)>0, e(x)#0.

We will here consider the question of the existence of

Theorem 3.1. Let 0<cy(x)<Ac(x), where A=const>0, c;¥0. Then, if the bilateral
Liouville theorem 1s satisfied for the equation Lv—c,(x)v=0, 1t 1s .also satisfied
for the equation [y—¢(x)u=0.

Comment. The boundedness condition c2/cl is essential.
in R* ¢(x) has a compact carrier and c

For example, 1f
1 = const > 0, then the Liouville theorem
is not satisfied for the operator A—c,(x) (see the end of §2) but is satisfied

for A - c¢; (sinece R3 is stochastically complete; see the Introduction).

Proof. Let there exist a bounded solution u Z 0 of the equation Log—¢,(x)u=0
(with the Neumann condition on 3M). Initially let ¢ (x)<c;(x).
that there exists a positive bounded solution of the equation Lv—g(x)v=0 (with
the Neumann condition on 3M). It is constructed as the 1imit of the solutions
of the following boundary value problems in 2,: Ly,—er=0, 1:.|(,,.-=u". doy/dv=0 on
aM. We can assume without loss of generality that u*s0. Obviously, 0< 7, <supu.

then by the maximum principle 7,3 &, v, > max(0, &)=

We will prove

Since [v,— an< Lo, — ¢c,u, =0, 7, |“‘ >u,
= ut, The limiting function of the sequence {vk} is therefore bounded and posi-
tive. '

Now let cy(x)<Ac(x), A> 1.
u can be considered positive.

By virtue of the preceding argument, the fqnction
We will assume that there exists a positive

bounded solutlion of the equation Lv— Ac (x)v=0.
above, the equation Lv—¢(x)=0.will alsc have such a solution.

Then, by what has been proved

Let Vie be the solution of the boundary value problem in Qk:
Loy — Ac,(x) 7y =0, v,[“‘_u, 00y/0Y |y == 0.

Since 0< 7, <supu, there exists a limlting function o, 0<v<supu.
that v > 0. Consider the following functions Wies Ek, Vk, which are solutions
to the boundary value problems in the domain 2,: [w,=0, w.],,’-u.. Li:—-—cltx)u. -B.I.,¢*=

We wlll prove

=0, L7, = — Ac;7,, é'.],,‘-o (the Neumann condition on 3M is also assumed). Obviously,
W, —Uy=1u, wy—7=v,., The following inequalities arise from the maximum principle:
4,>0, 7,50, w,=u+u>u We will prove that v,<Az,. Let us first remark that

Ve < u, since A>1, Lyy—¢(x)5,>0. Hence it follows that L(AL) = — Acyu < — Aoy =

= [7,,and, since the boundary conditions for the functlons Aﬁk and ¥,

K are iden-
tical, then Au>7,.

Let x, be a point at whichu(t)>supu—e. Then m,(x)>supa—rs, 22, (%g) = w0, () —
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- u(x) < supu—iu(x,) <, (%) <AL U, (%) =W, (%) — Ty () >supz— (A + 1. AS k + =, we there-
fore obtain wv(x)>supa—(A+1)s, which is greater than zero at sufficiently small
€. The theorem has been proved.

Theorem 3.l.c.an be employed to investigate Liouville theorems on the Rieman-
nian product M x N, where N is a compact manifold (in this case either 3M or N
is empty). For example, if the bilateral (unilateral) Liouville theorem for
the equation Lu = 0 and the bilateral Liouville theorem for the equation Lu =
- u =0 are satisfied on M, then by theorem 3.1, the Liouville theorem is sat-
isfied for the equation [u—lu=0, where A 1s any number 20. Utilizing this fact
for A = A}c’ i.e, the eigenvalues of the Laplace operator :‘.\.N on manifold N, the
validity of the bilateral (unilateral) Liouville theorem for the operator L + By
on manifold M x N is easily proved.

§4. D-LIQUVILLE THEOREM

We will consider in this section solutions of the Laplacian Au = 0 with
D(a)= {Iyuffdx<co. The assertion that any harmonic function on M (with the
Neuma.r‘:.'n condition on 3M) with a finite Dirichlet integral equals a constant will
be called the D-Liouville theorem. N

Theorem 4.1, Let Q be a precompact domain with smooth boundary 3Q trans-
versal to 3M. The following conditions are equivalent:

a) the D=Liouville theorem is valid on M;

b) the exterior boundary value problem Vv = 0 in M\, v| =0, du/dv=0o0n M
has the unique solution v = 0 in the class of functions satisfying the condi-
tions D(v)< oo, plv)=0.

Proof. a) = b). Let v(x) be a nonzero solution of the problem in clause
b) with the restrictions indicated. We will prove that there then exists a non=-
zero solution Vv of this problem that is still bounded. Our argument is similar
to the proof of a theorem of Ahlfors (see [T]). As follows from ole,=0, p(v)=0,
the function v takes both positive and negative values on 3G, where G 1is an

arbitrary precompact domain, @))2. Let N be a number so large that I Iyolfde<
Iei>N

< €, where € 1s chosen smaller. We denote the N-slice of function v as V and

solve the following boundary value problems in @,\8: du, =0, 4y)q=0, | = V*, dw, =0,

Tila =0 Tplpg = V™ (uk and w, also satisfy the Neumann condition on 3M).-

The sequence [uk} 1s positive and bounded, so that there exlsts for 1t a
limiting function u satisfying in M\ 8@ the conditions Au=0, &|,=0, du/dv],\ =0,
0<u<N. We will prove that u £ 0. For this purpose, consider the differences
Uy=v—uy, Ump—u. The function Uk 1s the solution of the boundary value prob-
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lem in ©\8: &Uy=0, Upla=0, Uslg, =v—V*, dUJdv|,x=0. Since v - V' also satisfies
the boundary conditions indicated, by the variational property of the Dirichlet
problem, we have

DW)< | |v(w—v+n=ax<ljlw-l’dx+ [ Ivoffdx<D () +e
- B\a te>M

Therefore D(U)<D(v)+¢ If € < D(v'), thence D(U)<D(v), Uskv, uw0.

In exactly the same manner, i1f < D(?v”), then the sequence {wk] has a limit=-
ing function w # 0 such that Aw = 0 in M\S, w|,=0, dw/d¥|,, =0,0>w>—N. Obvi-
ously p(a)>0, p(w)<0. We will find a constant ¢ > 0 such that p(e+cw)=0, and prove
that the function v=u+cw is the one sought. In order to do so, we must verify
that 20, D(v)< co. t can be assumed without loss of generality that ¢ £ 1.

The function Vv is limiting for the sequence {vk} determined from the conditions
Ap,=0 in 2,\ &, o,[.=0, o,L,,)-V"‘-}-cV“. du/dv|,,=0. For the difference v - Vs We
have

D(v—m) < J.Iv(v—-V*—fV'Jl’dx<(l—G)’lev'l’dx+t<9(ﬂ“}+=-
N8 :

Therefore D(v—7)<D(v")+e¢<D(v), v50. It also follows from the variational prop-

erties of the Dirichlet problem that D(v)<D(V*+¢V-)<D(v), whence D(7)< co.

According to corollary 2.3, there exists on M a nontrivial bounded harmonic
. function u., We will verify that D(u) < =. Actually, this function is con-
structed as the limit of the solutions of the following problems: Ag,=(0 in
2,, u,],.,"—t_r, Ouy/ 09| ,p = 0. Since D{u‘)-(D(i'}. thence D(u) < =,

:lause °

a non- b) = a). If u is a nontrivial harmonic function with D(u) < =, then it
milar o can be assumed to be bounded (as in 'the preceding proof). The balance of the
)=0, { argument duplicates the proof of corallary 2.3, except that, instead of (2.5),
% ¢ S it 1s necessary to solve the following boundary value problem: Aw,=0 in 2,\ §,
WF‘—';‘< : Wy lpg = 1ty GW/0¥|yq =0, 0w/ 0|,y = 0. We have from variational considerations D(w,) < D(u),
= : so that we also obtain D(w) < « for the limiting function w.
Aw, =0, Corollary 4.1. If manifolds M;, M, are isometric outside compacts, then

: the D-Liouville theorems are simultaneously satisfied or not satisfied on them.
't a Corollary 4.2. Let the boundary of domain 2 not intersect edge 3M. The
=0, D-Liouville theorem is then satisfied on M when and only when the exterior bound-
*ences ! ary value problem Au = 0 in M\ &, du/dv|,=0, du/dv|,, =0 has the unique solution
prob- um0 (M\ 2 1s connected) in the class D(u) < =,

Corollary 4.3. Manifold M is parabolic when and only when the exterior
boundary value problem in M\ 8 Au=0, u|,=0, du/dv|,,=0 has the unique solution
u = 0 in the class D(u) < =,
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Actually, if there exlists 2 nonzero solution of this problem, then, as
can be seen from the proof of theorem 4.1, it can be assumed to be bounded. By
corollary 1.1, manifold M is not parabolic. Conversely, if M is not paraboliec,
then D(my) = p(t), 1s obviously satisfied for functions Vi determined from the cone-
ditions ag,=0 in \Z, 0e=0 Tle, =1, do¥ov|,, =0, so that we have D(v)<p(v)< for
the limiting function v.
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