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Abstract. We obtain sharp pointwise estimates for positive solutions to the equation
−Lu+V uq = f , where L is an elliptic operator in divergence form, q ∈ R\{0}, f ≥ 0 and
V is a function that may change sign, in a domain Ω in Rn, or in a weighted Riemannian
manifold.
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1. Introduction

Consider the following elliptic differential equation

− Lu + V (x) uq = f (1.1)

in an open connected set Ω ⊆ Rn, where q is a non-zero real number,

L =
n∑

i,j=1

∂xi

(
aij (x) ∂xj

)
(1.2)

is a divergence form elliptic operator with smooth coefficients aij = aji, V and f are
continuous functions in Ω, and f ≥ 0, f 6≡ 0. Note that V (x) can be signed and we do
not impose any explicit boundary condition on V .

Assuming that u is a nonnegative (or positive in the case q < 0) solution, our purpose is
to obtain pointwise estimates of u in terms of the function h that is the minimal positive
solution in Ω of the equation −Lh = f. It is not obvious at all, that u should satisfy any
bound via h, but nevertheless the following is true.
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Assume that the Dirichlet Green function of L in Ω exists and denote it by GΩ (x, y).
Set

h (x) =
∫

Ω
GΩ (x, y) f (y) dy,

and assume that h (x) < ∞ for all x ∈ Ω (note also that h (x) > 0 in Ω), and that the
integral ∫

Ω
GΩ (x, y) hq (y) V (y) dy (1.3)

is well-defined. Our main Theorem 3.1 states that the following estimates hold for all
x ∈ Ω.

(i) If q = 1 then

u (x) ≥ h (x) exp

(

−
1

h(x)

∫

Ω
GΩ (x, y) h (y) V (y) dy

)

. (1.4)

(ii) If q > 1 then

u(x) ≥
h(x)

[
1 + (q − 1) 1

h(x)

∫
Ω GΩ (x, y) hq (y) V (y) dy

] 1
q−1

, (1.5)

where the expression in square brackets is necessarily positive, that is,

− (q − 1)GΩ(hqV )(x) < h(x). (1.6)

(iii) If 0 < q < 1 then

u(x) ≥ h(x)

[

1 − (1 − q)
1

h(x)

∫

Ω+

GΩ (x, y) hq (y) V (y) dy

] 1
1−q

+

, (1.7)

where
Ω+ = {x ∈ Ω : u(x) > 0}.

In this case we assume that the integral in (1.7) is well-defined instead of (1.3).
(iv) If q < 0, u > 0 in Ω, and in addition u (y) → 0 as y → ∂Ω or |y| → ∞, then (1.6)

holds and

u(x) ≤ h(x)

[

1 − (1 − q)
1

h(x)

∫

Ω
GΩ (x, y) hq (y) V (y) dy

] 1
1−q

. (1.8)

Let us emphasize that in the case (iv) we obtain an upper bound for u in contrast to
the lower bound in the cases (i)-(iii).

In fact, Theorem 3.1 holds in much higher generality, when Ω is any open subset of
any weighted Riemannian manifold, L is the associated weighted Laplace operator, and
equation (1.1) can be replaced by an inequality.

Equation (1.1) and its generalizations have attracted attention of many authors, in-
vestigating various aspects from the existence of positive solutions to pointwise estimates
(see, for example, [1], [2], [7], [8], [26], [22], [24], [29], [28], [30], [31], etc). There is no
possibility to give a detailed overview of the literature on this subject, which would have
required a full size survey. We restrict our attention here to those earlier results that are
most closely related to ours.

In the case q = 1 estimate (1.4) was known before and is included here for the sake of
completeness. For V ≥ 0 (1.4) was proved by Hansen and Ma [23, Prop. 1.9] using the
tools of potential theory (see also [20]). For V ≤ 0 in domains Ω with boundary Harnack
principle estimate (1.4) as well a matching upper estimate for u were obtained in [14], [15]
using a completely different method (but without sharp constants).
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For a general signed V in a relatively compact Ω estimate (1.4) can be obtained using
the Feynman-Kac formula for Brownian motion and Jensen’s inequality. This type of
argument was implicit in [2], [8], [25, Prop. 2.5]. In the form (1.4) it was stated in [21].
However, neither the Feynman-Kac formula nor any of the cited above previous methods
allows to treat the nonlinear case q 6= 1.

In the case q > 1 and V ≤ 0 Kalton and the second author obtained in [27] the necessary
condition (1.6), although without a sharp constant, and gave also a sufficient condition

− GΩ(hqV )(x) ≤

(

1 −
1
q

)q 1
q − 1

h(x) (1.9)

for the existence of a positive solution. Moreover, under (1.9) they obtained a two-sided
estimate u ' h for the minimal positive solution u of (1.1) in any domain Ω with the
boundary Harnack principle (the sign ' means that the ratio of both sides is bounded
from above and below by positive constants).

In the case q > 1, V ≤ 0, and L = Δ, Brezis and Cabré [5] obtained the sharp
necessary condition (1.6) for the existence of a positive solution in an arbitrary bounded
domain Ω ⊂ Rn, as well as the estimate u ' h under (1.9). The proof of the necessary
condition (1.6) in [5, Lemma 5.3] is based on a direct computation using the explicit form
Δ =

∑n
i=1 ∂2

xi
of the Laplace operator. A much more expanded version of this computation

will appear in our proof in Section 4 below.
The case q > 1, V ≡ 1, f ≡ 0 has been extensively studied, and we do not touch it

here; we refer the reader to [12] and [28] as well as to the references therein.
In the case 0 < q < 1, V ≤ 0, and L = Δ, Brezis and Kamin [6] obtained necessary

and sufficient conditions for the existence of a bounded, positive solution of (1.1) in Rn

and obtained certain pointwise bounds. Their lower bound is covered by our Theorem 3.3
below (see also [9], [10]).

In the case q < 0 [13], [17] obtained a sharp sufficient condition for the existence of
a positive solution of (1.1) in the specific case where V (x) depends only on the distance
from x to ∂Ω and has a constant sign.

In the present paper we give a unified approach for treating all the values of q ∈ R\{0}, a
general signed potential V , and a general divergence form operator L, not only in arbitrary
domains of Rn, but also on an arbitrary Riemannian manifold. Our estimates (i)-(iv) are
new in this generality. In many cases these estimates happen to be sharp as one can see
in examples in Section 9.

Let us briefly describe the idea of our proof. Assume for simplicity L = Δ. Let {Ωk}
∞
k=1

be an exhaustion of Ω by relatively compact open sets Ωk ⊂ Ω with smooth boundaries.
We obtain first appropriate estimates for u in each Ωk and then pass to the limit as k → ∞.
Define in Ωk a new function h as the solution of the following boundary value problem

{
−Δh = f, in Ωk,
h = u, on ∂Ωk.

The following argument is used in the proof of Theorem 3.2 that treats (1.1) in relatively
compact domains with the Dirichlet boundary condition. Assume first that h ≡ 1 (and
then f = 0 in Ωk). Fix a C2 function φ on R (or on an interval in R) with φ′ > 0 and
consider the substitution

v = φ−1 (u) .

By the chain rule we have

Δu = Δφ (v) = φ′(v)Δv + φ′′(v)|∇v|2,
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which implies

−Δv + V
φ(v)q

φ′(v)
= −

Δu − φ′′ |∇v|2

φ′ + V
φ(v)q

φ′(v)

= −
V φ (v)q − φ′′ |∇v|2

φ′ + V
φ(v)q

φ′(v)

=
φ′′

φ′ |∇v|2 . (1.10)

Now we choose φ to solve the initial value problem

φ′ (s) = φq (s) , φ (0) = 1,

and obtain:

φ (s) =

{
es, q = 1,

[(1 − q)s + 1]
1

1−q , q 6= 1,

in the appropriate domains. In the case q > 0 the function φ is convex, and we obtain
from (1.10)

− Δv + V ≥ 0. (1.11)

Since on ∂Ωk we have v = φ−1 (u) = φ−1 (1) = 0, we obtain from (1.11) by the maximum
principle that

v (x) ≥ −
∫

Ωk

GΩk (x, y) V (y) dy.

Applying φ to both sides of this inequality gives an appropriate inequality for u = φ (v)
in Ωk.

In the case q < 0 the function φ is concave, which leads to the opposite inequality for
v and, hence, for u.

In the case of a general function h, consider a so-called h-transform (or Doob’s transform
[11]) of Δ:

Δh =
1
h
◦ Δ ◦ h =

1
h2

div
(
h2∇

)
+

Δh

h
,

and the function ũ = u
h . Then ũ solves the equation

−Δhũ + hq−1V ũq = −
Δh

h
with the boundary value ũ = 1 on ∂Ωk. Effectively the h-transform provides a reduction
to the previous case, but for the operator Δh in place of Δ. The part 1

h2 div
(
h2∇

)
of this

operator is a weighted Laplace operator, for which the same computation (1.10) using the
chain rule works as for Δ. The part Δh

h gives in the end an additional term

Δh

h

(
φ(v) − 1

φ′(v)
− v

)

on the right hand side of (1.11) (cf. Lemma 4.2). In the case q > 1 we obtain by the
convexity of φ that the expression in parentheses is non-positive. Since Δh = −f ≤ 0, the
above term is non-negative which allows us to use the same argument as above. In the
case q < 1 this term is non-positive, which gives again a correct sign in the corresponding
inequality.

The actual proof goes a bit differently as we have to overcome one more difficulty – a
possibility of h vanishing on the boundary, which we have ignored in the above sketch (see
Sections 5, 6).

The above argument allows a version that treats the case f = 0 in (1.1) – see Theorem
3.3.
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In Theorem 3.4 we provide complementary results: sufficient conditions for the existence
of a positive solution u and two-sided estimates of u. Finally, Theorem 3.5 is an abstract
version of Theorem 3.4 for solutions of integral equations.

The structure of the paper is as follows. In Section 2 we briefly describe the notion
of the weighted manifold and the associated Laplace operator. In Section 3 we state our
main results: Theorems 3.1, 3.2, 3.3, 3.4 and 3.5. In Section 4 we prove some Lemmas,
in particular containing the aforementioned computation (1.10) in the general case. In
Section 5-8 we prove the above mentioned theorems. In Section 9 we give some examples.

Acknowledgement. The authors are grateful to Alexander Bendikov, Haim Brezis, and
Wolfhard Hansen for stimulating conversations on the subject of this paper.

The second author would like to thank the Mathematics Department at Bielefeld Uni-
versity for its hospitality and support.

2. Weighted manifolds

Let M be a smooth Riemannian manifold with the Riemannian metric tensor g = (gij).
The associated Laplace-Beltrami operator L0 acts on C2 functions u on M and is given
in any chart x1, ..., xn by the formula

L0u =
1

√
det g

n∑

i,j=1

∂xi

(√
det ggij∂xju

)

where det g is the determinant of the matrix g = (gij), and
(
gij
)

is the inverse matrix of
(gij). The Riemannian measure m0 is given in the same chart by

dm0 =
√

det gdx1...dxn,

so that L0 is symmetric with respect to m0. Using the gradient operator ∇ defined by

(∇u)i =
n∑

j=1

gij∂xju

and the divergence div on vector fields F i

div F =
1

√
det g

n∑

i=1

∂xi

(√
det gF i

)
,

one represents L0 in the form
L0 = div ◦∇.

Let ω be a smooth positive function on M and consider the measure m on M given by

dm = ωdm0.

The couple (M,m) is called a weighted manifold or a manifold with density, and ω in this
context is called a weight. The following operator L

Lu :=
1
ω

div (ω∇u) =
1

ω
√

det g

n∑

i,j=1

∂xi

(
ω
√

det ggij∂xju
)

(2.1)

acting on C2 functions u on M , is called the (weighted) Laplace operator of (M,m). It is
easy to see that L is symmetric with respect to measure m.

Of course, for ω = 1 we have L = L0. For a general weight ω, define the weighted
divergence by

divω =
1
ω
◦ div ◦ω
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and obtain
L = divω ◦∇.

Note that ∇ remains the Riemannian gradient and does not depend on the weight ω.
It is easy to show that the weighted Laplace operator L satisfies the same product and

chain rules as the classical Laplace operator (cf. [19, Section 3.6]). Namely, for two C2

functions u, v on M we have

L (uv) = uLv + 2〈∇u,∇v〉 + vLu (2.2)

where 〈∇u,∇v〉 is the inner product of the Riemannian gradients, which is independent
of the weight ω. Also, for any C2 function φ defined on u (M) we have

Lφ (u) = φ′ (u)Lu + φ′′ (u) |∇u|2 . (2.3)

As an example, consider in an open set Ω ⊆ Rn the following operator

Lu = b (x)
n∑

i,j=1

∂xi

(
aij (x) ∂xju

)
, (2.4)

where b, aij are smooth functions, b > 0 and aij = aji. Assume that L is elliptic, that is,
the matrix (aij (x)) is positive definite for any x (the uniform ellipticity is not assumed).
Then L coincides with the weighted Laplace operator L of Rn with the Riemannian metric
g and weight ω given by

(
gij
)

= b (aij) , ω = b
n
2
−1

√
det a,

where a =
(
aij

)
. Indeed, it follows that

det g = det (gij) =
1

bn det a
,

and substitution into (2.1) yields

Lu =

√
bn det a

b
n
2
−1

√
det a

n∑

i,j=1

∂xi

(

b
n
2
−1

√
det a

1
√

bn det a
baij∂xju

)

= b
n∑

i,j=1

∂xi

(
aij (x) ∂xju

)
= Lu.

The measure m associated with L is given by

dm = ω
√

det g = b
n
2
−1

√
det a

1
√

bn det a
=

1
b
dx, (2.5)

where dx is Lebesgue measure.
Therefore, all the results that we obtain for a general weighted manifold (M,m), apply

to the operator (2.4) in a domain of Rn with the measure m from (2.5). In particular, if
b ≡ 1 as was assumed in the Introduction, then L is given by (1.2) and m is Lebesgue
measure.

3. Statements of the main results

For any open connected set Ω ⊆ M denote by GΩ (x, y) the infimum of all positive
fundamental solutions of L in Ω. The following dichotomy is true: either GΩ (x, y) ≡ ∞
or GΩ (x, y) < ∞ for all x 6= y. In the latter case we say that GΩ is finite. If GΩ is finite
then GΩ is the symmetric positive Green function of L in Ω (see [18] and [19, Ch.13]). If
Ω is relatively compact then GΩ is finite and satisfies the Dirichlet boundary condition on
the regular part of ∂Ω.
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If GΩ is finite then, for any function f ∈ L1
loc (Ω,m), set

GΩf (x) =
∫

Ω
GΩ (x, y) f (y) dm (y) ,

where in the case f ≥ 0 the integral is understood in the sense of Lebesgue; for a signed
f the integral is understood as follows:

GΩf (x) = GΩf+ (x) − GΩf− (x)

(where f+ = max (f, 0) and f− = max (−f, 0)), assuming that at least one of the values
GΩf+ (x), GΩf− (x) is finite. In this case we say that GΩf (x) is well-defined.

Note that if f ≥ 0 in Ω and f > 0 on a set of positive measure then GΩf > 0 in Ω.
If Ω is relatively compact then GΩ (x, ∙) ∈ L1 (Ω), which implies that GΩf is finite for

any f ∈ L∞ (Ω). For arbitrary Ω it is still true that GΩ(x, ∙) ∈ L1
loc(Ω) for every x ∈ Ω.

Denote by ∂∞M the infinity point of the one-point compactification of M (see for
example [19, Sec. 5.4.3]). For any open subset Ω ⊆ M denote by ∂∞Ω the union of ∂Ω
and ∂∞M , if Ω is not relatively compact, and set ∂∞Ω = ∂Ω if Ω is relatively compact.

Definition. For a function u defined in Ω ⊆ M let us write

lim
y→∂∞Ω

u (y) = 0, (3.1)

if limk→∞ u (yk) = 0 for any sequence {yk} in Ω that converges to a point of ∂∞Ω; the
latter means, that either {yk} converges to a point on ∂Ω or diverges to ∂∞M . In the
same way we understand similar equalities and inequalities involving lim sup and lim inf .

For example, if Ω is relatively compact, then (3.1) means that lim u (yk) = 0 for any
sequence {yk} converging to a point on ∂Ω. If Ω = M then ∂Ω = ∅ and (3.1) means that
lim u (yk) = 0 for any sequence yk → ∂∞M , that is, for any sequence {yk} that leaves
any compact subset of M . In particular, for M = Rn (3.1) is equivalent to u (y) → 0 as
|y| → 0.

We will use the notation

χu (x) =

{
1, u (x) > 0,
0, u (x) ≤ 0.

Theorem 3.1. Let M be an arbitrary weighted manifold, and let Ω ⊆ M be a connected
open subset of M with a finite Green function GΩ. Suppose V, f ∈ C(Ω) and assume
f ≥ 0, f 6≡ 0 in Ω. Let u ∈ C2(Ω) satisfy

in the case q > 0 : − Lu + V uq ≥ f in Ω, u ≥ 0, (3.2)

or,

in the case q < 0 :

{
−Lu + V uq ≤ f in Ω,
limy→∂∞Ω u (y) = 0,

u > 0. (3.3)

Set h = GΩf and assume that h < ∞ in Ω. Assume also that GΩ(hqV )(x) (respectively
GΩ(χuhqV )(x) in the case 0 < q < 1) is well-defined for all x ∈ Ω. Then the following
statements hold for all x ∈ Ω.

(i) If q = 1, then

u(x) ≥ h(x)e−
1

h(x)
GΩ(hV )(x)

. (3.4)

(ii) If q > 1, then necessarily

− (q − 1)GΩ(hqV )(x) < h(x), (3.5)



8 ALEXANDER GRIGOR’YAN AND IGOR VERBITSKY

and the following estimate holds:

u(x) ≥
h(x)

[
1 + (q − 1)GΩ(hqV )(x)

h(x)

] 1
q−1

. (3.6)

(iii) If 0 < q < 1, then

u(x) ≥ h(x)

[

1 − (1 − q)
GΩ(χuhqV )(x)

h(x)

] 1
1−q

+

. (3.7)

(iv) If q < 0 then necessarily (3.5) holds, and

u(x) ≤ h(x)

[

1 − (1 − q)
GΩ(hqV )(x)

h(x)

] 1
1−q

. (3.8)

Note that the condition f 6≡ 0 implies h > 0 in Ω. Note also that without loss of
generality the open set Ω in Theorem 3.1 can be taken to be M . However, we have
preferred the present formulation for the sake of convenience in applications.

Remark. In the case q ≥ 1, it follows from (3.4) and (3.6) that the condition

GΩ (hqV ) (x) < +∞

implies u (x) > 0. Moreover, if for some C > 0 and all x ∈ Ω

GΩ (hqV ) (x) ≤ Ch (x) ,

then u ≥ ch in Ω with some constant c = c (C) > 0.
In the case 0 < q < 1 the function u can vanish in Ω, but the estimate of u cannot

depend on the values of V on the set {u = 0}. This explains the appearance of the factor
χu and the subscript + on the right-hand side of (3.7).

In the case q < 0, the boundary condition limy→∂∞Ω u (y) = 0 is needed as without
this condition, for positive V , the function u + C would also be a solution to (3.3) for any
C > 0, so that u could not admit any upper bound.

Remark. The lower estimates of Theorem 3.1 (i) , (ii) , (iii) remain valid even if the
expression GΩ(hqV ) is not well-defined in the above sense, provided it is understood as
follows

GΩ(hqV )(x) := lim inf
n→∞

∫

Ωn

GΩn(x, y)hq(y)V (y)dy, (3.9)

where {Ωn} is any exhaustion of Ω by relatively compact subsets with smooth boundaries.
The same is true for the upper estimate of (iv) where one can use lim sup in place of
lim inf.

In the case q = 1 and h = GΩf , this means

GΩ(hV )(x) = GΩ
2 f(x) = lim inf

n→∞

∫

Ωn

GΩn
2 (x, y)f(y)dy, x ∈ Ω, (3.10)

where GΩ
2 stands for the second iteration of the Green kernel with respect to V (y)dy:

GΩ
2 (x, y) =

∫

Ω
GΩ(x, z)GΩ(z, y)V (z)dz, x, y ∈ Ω. (3.11)

In some cases GΩ
2 (x, y) in (3.11) can be understood as an improper integral. (See Example

1 in Section 9 below.)

Remark. Suppose q > 1 in Theorem 3.1. The necessary condition (3.5) for the existence
of a positive solution of (3.2) in the case V ≤ 0 was proved in [27], without the sharp
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constant 1
q−1 , but for general quasi-metric kernels, including a wide variety of differential

and integral operators. It was also shown in [27] that the stronger condition

− GΩ(hqV )(x) ≤

(

1 −
1
q

)q 1
q − 1

h(x), x ∈ Ω, (3.12)

is sufficient for the existence of a solution u such that

h ≤ u ≤ C(q) h

Brezis and Cabré [5] subsequently proved the necessity of (3.5) with the sharp constant
1

q−1 in the case of L = Δ in bounded domains of Rn (see also Theorem 3.5 below).

In the proof of Theorem 3.1, we use Theorem 3.2 below that deals with relatively
compact sets Ω ⊂ M . Fix a function h ∈ C2 (Ω) ∩ C

(
Ω
)

such that

h > 0 in Ω and − Lh ≥ 0 in Ω. (3.13)

Consider in Ω the following boundary value inequalities:





−Lu + V uq ≥ −Lh in Ω

u ≥ h on ∂Ω

u ≥ 0 in Ω

in the case q > 0, (3.14)

and 




−Lu + V uq ≤ −Lh in Ω

u ≤ h on ∂Ω

u > 0 in Ω

in the case q < 0, (3.15)

where V ∈ C(Ω) and u ∈ C2(Ω) ∩ C
(
Ω
)
. In the next theorem we compare u and h as

follows.

Theorem 3.2. Let (M,m) be an arbitrary weighted manifold, and let Ω ⊂ M be a rel-
atively compact connected open subset of M . Let a function h ∈ C2 (Ω) ∩ C

(
Ω
)

satisfy
(3.13).

Let V ∈ C(Ω) and suppose that u ∈ C2(Ω) ∩ C
(
Ω
)

is a solution to either (3.14) or
(3.15). Assume also that GΩ(hqV )(x) (respectively GΩ(χuhqV )(x) in the case 0 < q < 1)
is well-defined for all x ∈ Ω. Then statements (i)-(iv) of Theorem 3.1 hold.

Remark. In the linear case q = 1, we obtain a simple proof of the well-known lower
estimate of solutions to the Schrödinger equation:

u(x) ≥ h(x)e−
1

h(x)
GΩ(hV )(x)

, for all x ∈ Ω. (3.16)

This estimate in the special case h = 1 is usually deduced via the Feynman-Kac formalism
(see [2], [8]) using Jensen’s inequality. In the case V ≥ 0, alternative proofs based on
potential theory methods in a very general setting are given in [18], [20]. In the case V ≤ 0,
a similar lower estimate and a matching upper estimate (but without sharp constants) are
obtained in [14], [15] for general quasi-metric kernels.

An interesting special case is when h is the solution of the Dirichlet problem:
{
−Lh = 1 in Ω,

h = 0 on ∂Ω.
(3.17)

In other words, h(x) = Ex[τΩ], where τΩ = inf{t : Xt 6∈ Ω} is the first exit time from Ω
of the (rescaled) Brownian motion Xt, and x ∈ Ω is a starting point. For bounded C1,1

domains, h(x) ' dΩ(x), where

dΩ(x) = dist(x, ∂Ω). (3.18)
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This gives sharp estimates:

u(x) ≥ c dΩ(x) e
− c

dΩ(x)
GΩ(dΩV )(x)

, for all x ∈ Ω. (3.19)

if q = 1, as well as the corresponding estimates for other values of q.
For bounded Lipschitz domains with sufficiently small Lipschitz constant (less than

(n − 1)1/2, which is sharp), it is known that (see [4])

h(x) ' ρ(x) = min(1, GΩ(x, x0)),

where x0 is a fixed pole in Ω, and so (3.19) holds with ρ in place of dΩ. The corresponding
estimates hold for other values of q ∈ R as well.

Returning again to the case of an arbitrary (not necessarily relatively compact) Ω, in
the next theorem we give estimates of solutions u of (3.2)-(3.3) with f = 0. They are
applicable to the so-called gauge (q = 1), “large” solutions (q > 1), or “ground state”
solutions (−∞ < q < 1) to the corresponding equations in unbounded domains in Rn or
non-compact manifolds.

Theorem 3.3. Let M be an arbitrary weighted manifold, and let Ω ⊆ M be an open
connected set with a finite Green function GΩ. Suppose V ∈ C(Ω). Let u ∈ C2(Ω) satisfy
either the inequality

− Lu + V uq ≥ 0, u ≥ 0 in Ω, if q > 0, (3.20)

or
− Lu + V uq ≤ 0, u > 0 in Ω, if q < 0. (3.21)

Assume also that GΩV (x) (respectively GΩ(χuV )(x) in the case 0 < q < 1) is well-defined
for all x ∈ Ω. Then the following statements hold for all x ∈ Ω.

(i) If q = 1 and
lim inf
y→∂∞Ω

u (y) ≥ 1 (3.22)

then
u(x) ≥ e− GΩV (x). (3.23)

(ii) If q > 1 and
lim

y→∂∞Ω
u (y) = +∞ , (3.24)

then necessarily GΩV (x) > 0, and

u(x) ≥
[
(q − 1) GΩV (x)

]− 1
q−1 . (3.25)

(iii) If 0 < q < 1, then

u(x) ≥
[
−(1 − q) GΩ(χuV )(x)

] 1
1−q

+
. (3.26)

(iv) If q < 0, and
lim

y→∂∞Ω
u (y) = 0, (3.27)

then necessarily GΩV (x) < 0, and

u(x) ≤
[
−(1 − q) GΩV (x)

] 1
1−q . (3.28)

In the next theorem we provide criteria for the existence of positive solutions for the
equation

− Lu + uqV = f in Ω (3.29)

under some additional assumptions and give two-sided pointwise estimates for these solu-
tions.
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Theorem 3.4. Let M be a weighted manifold and Ω ⊂ M be a connected relatively compact
open set with smooth boundary. Let f ≥ 0 and V be locally Hölder continuous functions
in Ω and in addition f ∈ C

(
Ω
)
. Set h = GΩf . Then the following statements hold.

(i) For q > 1 and V ≤ 0, suppose that for all x ∈ Ω

− GΩ (hqV ) (x) ≤

(

1 −
1
q

)q 1
q − 1

h(x). (3.30)

Then (3.29) has a nonnegative solution u ∈ C2 (Ω) ∩ C
(
Ω
)
, and it satisfies for all x ∈ Ω

h(x)
[
1 + (q − 1)GΩ(hqV )(x)

h(x)

] 1
q−1

≤ u (x) ≤
q

q − 1
h(x). (3.31)

(ii) For q < 0 and V ≥ 0, suppose that for all x ∈ Ω

GΩ(hqV )(x) ≤

(

1 −
1
q

)q 1
1 − q

h(x). (3.32)

Then (3.29) has a nonnegative solution u ∈ C2 (Ω) ∩ C
(
Ω
)
, and it satisfies for all x ∈ Ω

1

1 − 1
q

h(x) ≤ u(x) ≤

[

1 − (1 − q)
GΩ(hqV )(x)

h(x)

] 1
1−q

h(x). (3.33)

Note that the terms in square brackets in both (3.31) and (3.33) are positive and < 1;
it follows that in both cases (i) and (ii) u ' h in Ω. Since h (x) ' dΩ (x) := dist (x, ∂Ω),
we obtain u(x) ' dΩ(x).

In the next theorem we give an abstract version of Theorem 3.4 that provides an ex-
istence result together with pointwise estimates of solutions u for the following integral
equation with q ∈ R \ {0}:

u(x) +
∫

Ω
K(x, y) u(y)q V (y) dm(y) = h(x) dm − a.e. in Ω. (3.34)

Here (Ω,m) is a measure space with σ-finite nonnegative measure m, 0 < u < ∞ dm-a.e.,
and K : Ω × Ω → R̄+ ∪ {+∞} is a nonnegative measurable kernel.

The coefficient V is assumed to be a measurable function in Ω with a definite sign
(either V ≥ 0, or V ≤ 0). In fact, we can use dω in place of V dm, with an arbitrary
σ-finite measure ω (either nonnegative, or nonpositive) in Ω, where 0 < u < +∞ dω-a.e.,
and the integral equation holds dω-a.e.

For a nonnegative Borel measure μ in Ω, we will write

Kμ(x) =
∫

Ω
K(x, y) dμ(y),

and Kf(x) = K(fdm)(x) for a nonnegative measurable function f .

Theorem 3.5. Let (Ω,m) be a measure space with σ-finite measure m, and let K be a
nonnegative kernel on Ω × Ω. Let h be a measurable function such that

0 < h < +∞ dm−a.e. in Ω. (3.35)

Let V be a measurable function in Ω. Then the following statements hold.
(i) For q > 1, and V ≤ 0, suppose that the following condition holds,

− K(hqV )(x) ≤

(

1 −
1
q

)q 1
q − 1

h(x) dm−a.e. in Ω. (3.36)
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Then (3.34) has a minimal positive solution u, and it satisfies

h(x) ≤ u(x) ≤
q

q − 1
h(x) in Ω. (3.37)

(ii) For q < 0 and V ≥ 0, suppose that the following condition holds,

K(hqV )(x) ≤

(

1 −
1
q

)q 1
1 − q

h(x) dm − a.e. in Ω. (3.38)

Then (3.34) has a maximal positive solution u, and it satisfies

1

1 − 1
q

h(x) ≤ u(x) ≤ h(x) dm − a.e. in Ω. (3.39)

Remark. Statement (i) of Theorem 3.5 is essentially known, and we include it here only
for the sake of completeness. It holds under a less restrictive assumption

− K(HqV )(x) ≤

(

1 −
1
q

)q2

1
(q − 1)q

H(x) dm−a.e. in Ω, (3.40)

where H = −K(hqV ); in this case, u ' h + H (see [27]).

4. Some auxiliary material

In this section we prove some lemmas needed for the proofs of Theorems 3.1, 3.2.
Everywhere M stands for an arbitrary weighted manifold.

Lemma 4.1. Let v, h be C2-functions in Ω ⊆ M , and φ be a C2-function on an interval
I ⊂ R such that v (Ω) ⊂ I. Then the following identity is true:

L (hφ (v)) = φ′(v)L (hv) + φ′′(v)|∇v|2h +
(
φ(v) − vφ′(v)

)
Lh. (4.1)

Consequently, if φ′ 6= 0 then

− L (hv) = −
L (hφ(v))

φ′ (v)
+

φ′′(v)
φ′ (v)

|∇v|2h +

(
φ(v)
φ′ (v)

− v

)

Lh. (4.2)

Proof. For functions u ∈ C2 (Ω), consider the following operator

L̃u =
1
h2

divω(h2∇u) =
1

ωh2
div(ωh2∇u),

that is, the weighted Laplace operator of the weighted manifold
(
Ω, h2dm

)
=
(
Ω, ωh2dm0

)
.

Using the product rule for divω, we obtain

L̃u = Lu + 2〈
∇h

h
,∇u〉.

On the other hand, by the product rule (2.2) for L we have

L (hu) = hLu + 2〈∇h,∇u〉 + uLh,

which implies the identity
L (hu) = hL̃u + uLh. (4.3)

Using (4.3) with u = φ (v) and applying the chain rule (2.3) for L̃, we obtain

L (hφ(v)) = hL̃φ(v) + φ(v)Lh

= h
(
φ′(v)L̃v + φ′′(v)|∇v|2

)
+ φ(v)Lh

= φ′(v)(hL̃v + vLh) + φ′′(v)|∇v|2h +
(
φ(v) − vφ′(v)

)
Lh

= φ′(v)L (hv) + φ′′(v)|∇v|2h +
(
φ(v) − vφ′(v)

)
Lh,
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which proves (4.1). Then (4.2) follows immediately from (4.1). �

Lemma 4.2. Let φ be a C2 function on an interval I ⊂ R such that φ > 0 and φ′ > 0 in
I. For two functions v, h ∈ C2 (Ω), h > 0, set

u = hφ (v)

assuming that φ (v) is well-defined, that is, v (Ω) ⊂ I.
If the function u satisfies the inequality

− Lu + V uq ≥ −Lh (4.4)

in Ω, where V ∈ C (Ω), q ∈ R \ {0}, then the function v satisfies in Ω the inequality

− L (hv) + hqV
φ(v)q

φ′(v)
≥

(
φ(v) − 1

φ′(v)
− v

)

Lh +
φ′′(v)
φ′(v)

|∇v|2h. (4.5)

If instead u satisfies
− Lu + V uq ≤ −Lh, (4.6)

then (4.5) holds with ≤ instead of ≥.

Proof. It follows from u = hφ(v) and (4.4) that

L (hφ (v)) ≤ hqV φ (u)q + Lh. (4.7)

Substituting this into (4.2) we obtain

−L (hv) ≥ −
hqV φ (u)q + Lh

φ′ (v)
+

φ′′(v)
φ′ (v)

|∇v|2h +

(
φ(v)
φ′ (v)

− v

)

Lh,

whence (4.5) follows. The second claim is proved in the same way. �

Lemma 4.3. Under the hypotheses of Lemma 4.2, assume in addition that Lh ≤ 0 in Ω
and 0 ∈ I. If in I

φ(0) = 1, φ′ > 0, φ′′ ≥ 0, (4.8)

then the function v satisfies the following differential inequality in Ω

− L (hv) + hqV
φ(v)q

φ′(v)
≥ 0. (4.9)

If instead of (4.8) we have

φ(0) = 1, φ′ > 0, φ′′ ≤ 0, (4.10)

then v satisfies in Ω

− L (hv) + hqV
φ(v)q

φ′(v)
≤ 0. (4.11)

Proof. Consider the case (4.8). By the mean value theorem, for any v ∈ I there exists
ξ ∈ [0, v] such that

φ (v) − 1
v

=
φ (v) − φ (0)

v
= φ′ (ξ) .

By the convexity of φ we obtain φ′ (ξ) ≤ φ′ (v) provided v > 0, that is

φ (v) − 1
v

≤ φ′ (v) for v > 0,

and the opposite inequality in the case v < 0. It follows that, for all v ∈ I,

φ(v) − 1
φ′(v)

− v ≤ 0.

Substituting into (4.5) and using also Lh ≤ 0 and (4.8), we obtain (4.9). The proof in the
case (4.10) is similar. �
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Remark. Note that in the case Lh ≡ 0 the condition φ (0) = 1 in (4.8) and (4.10) is not
required as in this case the term

(
φ(v) − 1

φ′(v)
− v

)

Lh

vanishes identically.

Lemma 4.4. Suppose Ω is an open subset of M and F is a l.s.c. L-superharmonic
function in Ω. Suppose F = F1 + F2, where

lim inf
x→∂∞Ω

F1(x) ≥ 0 and F2 ≥ −P, (4.12)

where P = GΩμ is a Green potential of a positive measure μ in Ω so that P 6≡ +∞ on
every component of Ω. Then F ≥ 0 in Ω.

Proof. Indeed, the function F + P is obviously superharmonic, and F + P ≥ F1. Hence
lim infx→∂∞Ω(F+P )(x) ≥ 0, and by the standard form of the maximum principle F+P ≥ 0
on Ω (cf. [3], [19, Sec. 5.4.3]). Hence F is a superharmonic majorant of −P , whose least
superharmonic majorant must be zero (with the same proof as in the classical case [3,
Theorem 4.2.6]), which yields F ≥ 0. �

The following version of the maximum principle will be frequently used.

Lemma 4.5. Let Ω be an open subset of M and let v ∈ C2 (Ω) satisfy
{

−Lv ≥ f in Ω,
lim infx→∂∞Ω v (x) ≥ 0,

where f ∈ C (Ω) such that GΩf is well defined in Ω. Then for all x ∈ Ω

v (x) ≥ GΩf (x) . (4.13)

Proof. If GΩf− = +∞ then (4.13) is trivially satisfied. Hence, assume in the sequel that
GΩf− < ∞. Let us approximate f from below by a sequence {fn} of C1 functions in Ω
such that fn ↑ f as n → ∞ and GΩf−

n < ∞ (where f±
n := (fn)±). Moreover, we can also

assume that f+
n is compactly supported in Ω.

Fix n and consider in Ω two functions

F1 = v + GΩf−
n and F2 = −GΩf+

n .

The hypotheses (4.12) of Lemma 4.4 are obviously satisfied. The function

F = v + GΩf−
n − GΩf+

n

is superharmonic in Ω since

−LF = −Lv + f−
n − f+

n = f − fn ≥ 0.

By Lemma 4.4 we conclude that F ≥ 0 in Ω and, hence,

v ≥ GΩf+
n − GΩf−

n .

Letting n → ∞ and using the convergence theorems we obtain (4.13) �
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5. Proof of Theorem 3.2

We start the proof with a particular case of Theorem 3.2 where the idea of the proof is
most transparent and not buried in technical complications.

Proof of Theorem 3.2 in the special case h > 0, u > 0 in Ω, and V ∈ C(Ω). In this case the
function GΩ(hqV ) (x) is finite for all x ∈ Ω.

Choose a function φ (to be used in Lemma 4.3) to solve the initial value problem

φ′(s) = φ(s)q, φ (0) = 1. (5.1)

For q = 1 this gives

φ(s) = es, s ∈ R, (5.2)

while for q 6= 1 we obtain

φ(s) = [(1 − q)s + 1]
1

1−q , s ∈ Iq, (5.3)

where the domain Iq of φ is given by:

Iq =






(−∞, 1
q−1) if q > 1,

(−∞, +∞) if q = 1,

(− 1
1−q , +∞) if q < 1

(5.4)

(see Fig. 1).

s0-1

q<0

0<q<1

q>1

1/(q-1)

Figure 1. Examples of the function φ in three cases q > 1, 0 < q < 1,
q < 0. The boxed points have the abscissa 1

q−1 .

Note that in all cases φ (Iq) = (0,∞). Also we have

φ′(s) = [(1 − q)s + 1]
q

1−q , φ′′(s) = q[(1 − q)s + 1]
2q−1
1−q . (5.5)

In particular, φ′ > 0 in Iq, whereas φ′′ > 0 for q > 0 and φ′′ < 0 for q < 0. Consequently,
the inverse function φ−1 is well-defined on (0,∞).
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In the case 0 < q < 1 it will be convenient for us to extend the domain of φ to all
s ≤ − 1

1−q by setting φ (s) = 0 so that in this case we have for all s ∈ (−∞,∞)

φ (s) = [(1 − q)s + 1]
1

1−q

+ . (5.6)

Observe that all the estimates (3.4), (3.6), (3.7) that we need to prove in the case q > 0
can be written in the unified form

u(x)
h(x)

≥ φ

(

−
1

h(x)
GΩ(hqV )(x)

)

, (5.7)

for all x ∈ Ω. Similarly, estimate (3.8) in the case q < 0 is equivalent to the opposite
inequality

u(x)
h(x)

≤ φ

(

−
1

h(x)
GΩ(hqV )(x)

)

. (5.8)

Since by hypothesis the functions h and u are positive in Ω, the function

v = φ−1
(u

h

)
(5.9)

is well-defined in Ω and belongs to the class C2 (Ω) ∩ C
(
Ω
)
.

Consider first the case q > 0. In this case we will deduce (5.7) from the following
inequality for v:

v (x) ≥ −
1

h (x)
GΩ(hqV ) (x) , (5.10)

for all x ∈ Ω. Indeed, if (5.10) holds then applying φ to both sides of (5.10) and observing
that φ (v) = u

h , we obtain (5.7). However, we should first verify that the both sides of (5.10)
are in the domain of φ. In the cases q = 1 and 0 < q < 1 the (extended) domain of φ is
(−∞, +∞), so that there is no problem. In the case q > 1 we have v (x) ∈ Iq = (−∞, 1

q−1)
by (5.9), which implies that the right hand side of (5.10), being bounded by v (x), is also
in Iq. This argument also shows that in Ω

1
q − 1

> −
1

h (x)
GΩ(hqV ) (x) ,

which proves (3.5).
To prove (5.10) observe that the function u = hφ (v) satisfies

−Lu + V uq ≥ −Lh ≥ 0

in Ω as required by Lemma 4.3. In the case q > 0 the function φ satisfies (4.8), and we
obtain by inequality (4.9) of Lemma 4.3 and by (5.1) that in Ω

− L (hv) + hqV ≥ 0. (5.11)

Since u ≥ h on ∂Ω, it follows that on ∂Ω

hv = hφ−1
(u

h

)
≥ hφ−1 (1) = 0.

Since hv satisfies (5.11) and the boundary condition hv ≥ 0 on ∂Ω, we obtain by the
maximum principle that in Ω

hv ≥ −GΩ (hqV ) , (5.12)

which is equivalent to (5.10).
Consider now the case q < 0. Then we have

−Lu + V uq ≤ −Lh

and, hence, obtain by inequality (4.11) of Lemma 4.3 and (5.1) that in Ω,

− L (hv) + hqV ≤ 0. (5.13)
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In this case we have u ≤ h on ∂Ω, which implies hv ≤ 0 on ∂Ω. Using (5.13) with this
boundary condition, we obtain that in Ω

hv ≤ −GΩ(hqV )

and, hence,

v ≤ −
1
h

GΩ(hqV ). (5.14)

Since v (x) ∈ Iq = (− 1
1−q , +∞), it follows that both sides of (5.14) belong to Iq. Conse-

quently, we have

−
1

1 − q
< −

1
h

GΩ(hqV ),

which proves (3.5). Applying φ to both sides of (5.14), we obtain (5.8) and, hence, (3.8).
�

Proof of Theorem 3.2 in the general case. We will use the same function φ as defined
above by (5.2)-(5.3), but it will be convenient to extend the domain Iq of φ to the end-
points of the interval Iq by taking the limits of φ at the endpoints. The extended domain
of φ is therefore the interval

Iq :=






[−∞, 1
q−1 ] if q > 1,

[−∞, +∞] if q = 1,

[− 1
1−q , +∞] if q < 1.

Moreover, in the case 0 < q < 1 we extend φ (s) further to all s ∈ [−∞, +∞] by using
(5.6).

With these extensions the required estimates (3.4), (3.6) and (3.7) in the case q > 0
can be written in the unified form (5.7), and the estimate (3.8) – in the form (5.8).

Consider first the case q > 0. For any ε > 0, set

uε = u + ε

and define the function vε in Ω via

vε = φ−1
(uε

h

)
,

where φ is the same as above. Since uε and h are positive in Ω, the function vε is well-
defined in Ω and belongs to C2(Ω). Note also that vε (Ω) ⊂ Iq.

Applying identity (4.2) to functions h, vε ∈ C2 (Ω), we obtain

−L (hvε) = −
L (hφ(vε))

φ′ (v)
+

φ′′(vε)
φ′ (vε)

|∇vε|
2h +

(
φ(vε)
φ′ (vε)

− vε

)

Lh.

Since
−L (hφ(vε)) = −Luε = −Lu,

it follows

− L(hvε) =
−Lu

φ′(vε)
+

φ′′(vε)
φ′ (vε)

|∇vε|
2h +

(
φ(vε)
φ′ (vε)

− vε

)

Lh. (5.15)

Observe also that by (5.1)

φ′(vε) = φ(vε)
q =

(uε

h

)q
. (5.16)

Since q > 0, we have by (3.14)

−Lu ≥ −V uq − Lh.
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Substituting this and (5.16) into (5.15), we obtain

−L(hvε) ≥ −hq

(
u

uε

)q

V +
φ′′(vε)
φ′ (vε)

|∇vε|
2h +

(
φ(vε) − 1
φ′ (vε)

− vε

)

Lh.

Since φ satisfies (4.8) and, hence, the last two terms on the right-hand side of the preceding
inequality are nonnegative (cf. the proof of Lemma 4.3), we arrive at

− L(hvε) ≥ −hq

(
u

uε

)q

V in Ω. (5.17)

In the case q 6= 1, q > 0 we have by (5.3)

φ−1 (s) =
s1−q − 1

1 − q
, s > 0,

and, hence, in Ω

hvε = hφ−1
(uε

h

)
=

1
1 − q

(
hqu1−q

ε − h
)
.

It follows that, for all y ∈ ∂Ω,

lim
x→y, x∈Ω

h(x)vε(x) =
1

1 − q

(
hq(y)uε(y)1−q − h(y)

)
≥ 0,

since uε(y) ≥ h(y) + ε > h(y).
For q = 1 we have φ−1 (s) = ln s and, hence, in Ω

hvε = h ln
(uε

h

)
. (5.18)

For any y ∈ ∂Ω such that h(y) > 0, we obtain

lim
x→y, x∈Ω

h(x)vε(x) = h(y) ln

(
uε(y)
h(y)

)

> 0,

and if h(y) = 0, then, using uε ≥ ε, we obtain from (5.18)

lim
x→y, x∈Ω

h(x)vε(x) = 0. (5.19)

Hence, in the case q > 0, we can extend hvε by continuity to Ω so that hvε ∈ C(Ω)∩C2(Ω)
and

hvε ≥ 0 on ∂Ω.

Note that hq
(

u
uε

)q
V ∈ C(Ω) and GΩ

(
hq
(

u
uε

)q
V
)

is well-defined in Ω, since

GΩ

(

hq

(
u

uε

)q

V±

)

≤ GΩ (hqV±) ,

and GΩ (hqV ) is well-defined by hypothesis. Hence, by the maximum principle of Lemma
4.5, we conclude from (5.17) and (5.19) that

hvε ≥ −GΩ

(

hq

(
u

uε

)q

V

)

and, hence,

vε ≥ −
1
h

GΩ

(

hq

(
u

uε

)q

V

)

in Ω. (5.20)

Assume now q ≥ 1. Assume also that GΩ (hqV+) 6≡ +∞ in Ω, because otherwise,
(3.4), (3.5) and (3.6) are trivially satisfied, and so there is nothing to prove. Let us
first show that under these assumptions u > 0 in Ω. Observe that if GΩ (hqV+) 6≡ +∞
in Ω, then GΩ (hqV+) (x) < +∞ for every x ∈ Ω. Indeed, for an open set Ω′ b Ω
with smooth boundary, fix a function η ∈ C∞

0 (Ω) such that η = 1 in Ω′. Then the
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function GΩ (hqV+) − GΩ (ηhqV+) is harmonic in Ω′, and GΩ (ηhqV+) is bounded in Ω
since ηhqV+ ∈ C(Ω). Consequently, GΩ (hqV+) is finite in Ω′, and hence in Ω.

It follows from (5.20) and u ≤ uε, that

vε ≥ −
1
h

GΩ (hqV+) . (5.21)

Since the value vε = φ−1
(

uε
h

)
belongs to Iq and the value of the right hand side of (5.21)

lies in [−∞, 0], which, in the present case q ≥ 1, is contained in Iq, we can apply φ to both
sides of this inequality and obtain

uε ≥ hφ

(

−
GΩ (hqV+)

h

)

. (5.22)

Letting ε → 0 we obtain

u ≥ hφ

(

−
GΩ (hqV+)

h

)

in Ω.

Since GΩ (hqV+) < ∞, it follows that u > 0 in Ω as was claimed.
Let us return to (5.20). Since vε ∈ Iq and, hence, the right hand side of (5.20) lies in

Iq, we can apply φ to the both sides of this inequality and obtain

uε ≥ hφ



−
GΩ
(
hq
(

u
uε

)q
V
)

h



 in Ω, (5.23)

The positivity of u in Ω implies u
uε

↑ 1 in Ω as ε → 0, whence by the monotone convergence
theorem,

GΩ

(

hq

(
u

uε

)q

V

)

→ GΩ (hqV ) as ε → 0 (5.24)

pointwise in Ω. In particular, we have, for any x ∈ Ω,

−
GΩ (hqV ) (x)

h (x)
∈ Iq. (5.25)

Letting ε → 0 in (5.23), we deduce, for q ≥ 1,

u ≥ hφ

(

−
GΩ (hqV )

h

)

in Ω,

which proves (3.4) and (3.6). In the case q > 1, it follows that

φ

(

−
GΩ (hqV )

h

)

≤
u

h
< ∞

and, hence,

−
GΩ (hqV )

h
<

1
q − 1

,

which proves (3.5).
Assume now 0 < q < 1. We employ the same argument up to (5.20). The extended

function φ is defined in this case on [−∞, +∞] by (5.6). Applying φ to the both sides of
(5.20) we obtain

uε ≥ hφ

(

−
1
h

GΩ

(

hq

(
u

uε

)q

V

))

. (5.26)
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In this case u can actually vanish inside Ω. Letting ε → 0, we see that u
uε

(x) ↑ 1 if u (x) > 0
and u

uε
= 0 if u (x) = 0, that is

u

uε
↑ χu pointwise in Ω.

Passing to the limit in (5.26) as ε → 0 and using the monotone convergence theorem gives

u ≥ hφ

(

−
1
h

GΩ (χuhqV )

)

in Ω. (5.27)

which is equivalent to (3.7).
Consider the last case q < 0. We define for any ε > 0 the function vε in a slightly

different way as follows:

vε = φ−1

(
u

hε

)

,

where hε = h + ε. Since u
hε

> 0 in Ω, we obtain vε ∈ C2 (Ω). The function

φ−1 (s) =
s1−q − 1

1 − q
, (5.28)

initially defined for s > 0, extends continuously to s = 0 by setting φ−1 (0) = − 1
1−q . Since

u
hε

is continuous and nonnegative in Ω, we obtain vε ∈ C
(
Ω
)
. Moreover, since on the

boundary ∂Ω we have u ≤ h < hε, it follows that vε ≤ φ−1 (1) = 0 and, hence,

hεvε ≤ 0 on ∂Ω. (5.29)

Since Lhε ≤ 0 and u = hεφ (vε) satisfies by (3.15)

−Lu + V uq ≤ −Lhε,

we obtain by inequality (4.11) of Lemma 4.3 and (5.1) that

− L(hεvε) + hq
ε V ≤ 0 in Ω. (5.30)

Since q < 0 and
GΩ(hq

εV±) ≤ GΩ(hqV±),

it follows that GΩ(hq
εV ) is well-defined. Hence, we obtain from (5.30) and (5.29) by the

maximum principle of Lemma 4.5, that

hεvε ≤ −GΩ(hq
εV ) in Ω,

that is,

vε ≤ −
GΩ(hq

εV )
hε

in Ω. (5.31)

Since vε (Ω) ⊂ Iq = (− 1
1−q ,∞), it follows that

−
GΩ(hq

εV )
hε

∈ (−
1

1 − q
, +∞] ⊂ Iq. (5.32)

Applying φ to both sides of (5.31), we obtain

φ (vε) ≤ φ

(

−
GΩ(hq

εV )
hε

)

in Ω,

which is equivalent to

u ≤ hε

[

1 − (1 − q)
GΩ(hq

εV )
hε

] 1
1−q

in Ω
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and, hence, to

u ≤ hε

[

1 − (1 − q)
GΩ(hq

εV+)
hε

+ (1 − q)
GΩ(hq

εV−)
hε

] 1
1−q

. (5.33)

Note that the expression in the square brackets here belongs to (0, +∞] by (5.32). In
particular, we have GΩ(hq

εV+) < ∞. Since 0 < h < hε in Ω and q < 0, we see that in Ω

GΩ(hq
εV−)

hε
≤

GΩ(hqV−)
h

. (5.34)

Since hq
ε ↑ hq as ε → 0, we obtain by the monotone convergence theorem, that

GΩ(hq
εV+) → GΩ(hqV+) pointwise in Ω. (5.35)

Since by hypothesis GΩ(hqV ) is well-defined, we obtain as ε → 0 from (5.33), (5.34) and
(5.35) that

u ≤ h

[

1 − (1 − q)
GΩ(hqV )

h

] 1
1−q

in Ω.

By construction the expression in the square brackets here belongs to [0 , +∞]. Since by
hypothesis u > 0 in Ω, we obtain that this expression cannot vanish, which proves (3.5)
in this case. �

6. Proof of Theorem 3.1

Consider first the case q > 0. By hypothesis, the function f is continuous and non-
negative in Ω. In the proof we need f to be locally Hölder continuous because in this case
the function GUf is of the class C2 for any relatively compact domain U ⊂ Ω.

Let us approximate a given continuous function f in Ω from below by a sequence {fk}
∞
k=1

of C1 functions fk so that
fk ↑ f as k → ∞ (6.1)

pointwise. Replacing each fk by (fk)+, we obtain a sequence {fk} of nonnegative locally
Lipschitz functions satisfying (6.1).

Set hk = GΩfk and observe that hk ≤ h < ∞ and hk ↑ h pointwise in Ω as k → ∞.
Since

GΩ
(
hq

kV±
)
≤ GΩ (hqV±) ,

we see that one of the values GΩ
(
hq

kV±
)

is finite and, hence, GΩ
(
hq

kV
)

is well-defined.
Since

GΩ
(
hq

kV±
)
→ GΩ (hqV±) ,

we obtain that
GΩ
(
hq

kV
)
→ GΩ (hqV ) (6.2)

pointwise in Ω. The same is true for GΩ
(
χuhq

kV
)

in the case (iii).
Since fk ≤ f , we obtain that u satisfies −Lu + V uq ≥ fk in Ω. Therefore, if statements

(i) , (ii) , (iii) are already proved for locally Lipschitz functions f , then we obtain the
corresponding lower bounds (3.4), (3.6), (3.7) of u with hk in place of h. Letting k → ∞
and using (6.2), we obtain the same estimates of u via h as claimed.

In the case (ii) we still need to prove (3.5) for h assuming that it is true with hk in
place of h. Passing to the limit as k → ∞, we obtain a non-strict inequality

− (q − 1)GΩ(hqV )(x) ≤ h(x). (6.3)

However, estimate (3.6) implies that the expression in the square brackets in (3.6) cannot
vanish, which yields a strict inequality in (6.3), that is, (3.5).
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Continuing the proof in the case q > 0, we can assume now that f is locally Hölder
(even Lipschitz) continuous. Let {Ωn}

∞
n=1 be an exhaustion of Ω by relatively compact,

connected, open sets Ωn b Ω with smooth boundaries. Set hn = GΩnf . Since f is locally
Hölder continuous and ∂Ωn is regular, we have hn ∈ C2 (Ωn) ∩ C

(
Ωn

)
and

{
−Lhn = f in Ωn,

hn = 0 on ∂Ωn.

We can always take n large enough so that f 6≡ 0 in Ωn and, hence, 0 < hn < ∞ in Ωn.
Observe that by the monotone convergence theorem

hn ↑ h := GΩf as n → ∞.

Fix a point x ∈ Ω and let n be so large that x ∈ Ωn. Since u satisfies (3.2) in Ω, it follows
that {

−Lu + V uq ≥ f = −Lhn in Ωn,

u ≥ 0 = hn on ∂Ωn.

Applying Theorem 3.2 in Ωn we obtain

u(x) ≥






hn(x)e−
GΩn (hnV )(x)

hn(x) , if q = 1,

hn(x)
[
1 + (q − 1)GΩn (hq

nV )(x)
hn(x)

]− 1
q−1

, if q > 1,

hn(x)
[
1 + (q − 1)GΩn (χnhq

nV )(x)
hn(x)

]− 1
q−1

+
, if 0 < q < 1,

(6.4)

where χn := χu|Ωn
. Since hq

n ↑ hq as n → ∞, we obtain by the monotone convergence
theorem,

lim
n→∞

GΩn(hq
nV±)(x) = GΩ(hqV±)(x) (6.5)

(and a similar identity for the term with χnhq
nV ). Passing to the limit in (6.4) as n → ∞,

we arrive at

u(x) ≥






h(x)e−
GΩ(hV )(x)

h(x) , if q = 1,

h(x)
[
1 + (q − 1)GΩ(hqV )(x)

h(x)

]− 1
q−1

, if q > 1,

h(x)
[
1 + (q − 1)GΩ(χuhqV )(x)

h(x)

]− 1
q−1

+
, if 0 < q < 1,

(6.6)

which proves estimates (3.6), (3.7), (3.8).
In the case q > 1 the expression in square brackets in (6.6) is non-negative as the limit

of that of (6.4). However, since the exponent − 1
q−1 is in this case negative and u(x)

h(x) < ∞,
it actually has to be positive, which proves (3.5).

Consider now the case q < 0. In this case we approximate f from above by a sequence
of C1 functions fk such that fk ↓ f and set hk = GΩfk. The function f1 should be chosen
so close to f that h1 < ∞. Then hk ↓ h pointwise in Ω, and, since q < 0, we have hq

k ↑ hq

as k → ∞. The same argument as in the case q > 0 shows that GΩ
(
hq

kV
)

is well-defined
and (6.2) holds. Since fk ≥ f , the function u satisfies in Ω the inequality −Lu+V uq ≤ fk.
If (iv) is already proved for locally Hölder continuous f , then we conclude that (3.8) holds
with hk instead of h. Letting k → ∞, we complete the proof (condition (3.5) is proved in
the same way as in the case q > 0).

Hence, we assume in what follows that f is locally Hölder continuous. In this case the
proof goes the same way as in Theorem 3.2. Observe first that GΩf ∈ C2 (Ω). Indeed,
for any relatively compact open set Ω′ ⊂ Ω with smooth boundary it is known that
GΩ′

f ∈ C2 (Ω′). Since the difference GΩf − GΩ′
f is harmonic in Ω′, it follows that it is
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smooth in Ω′, which implies that GΩf ∈ C2 (Ω′). By exhausting Ω with relatively compact
open subsets, we obtain GΩf ∈ C2 (Ω) as claimed.

For any ε > 0 set hε = ε + GΩf, so that −Lhε = f . Since u, hε > 0 in Ω, the function

vε = φ−1
(

u
hε

)
belongs to C2 (Ω) and, similarly to the proof of Theorem 3.2 (cf. (5.30)),

we obtain the following inequality in Ω

−L (hεvε) + hq
εV ≤ 0.

Note that in this case we have by (5.28)

hεvε = hεφ
−1

(
u

hε

)

= hq
ε

u1−q − h1−q
ε

1 − q
.

Using the boundary condition in (3.3) and hε ≥ ε, we obtain

lim sup
y→∂∞Ω

(hεvε) (y) ≤ 0.

Applying Lemma 4.5 to −hεvε we obtain

−hεvε ≥ GΩ (hq
εV ) .

Letting ε → 0 and arguing as in the proof of Theorem 3.2, we finish the proof.

Remark. Note that (6.4) implies immediately the lower bounds of Theorem 3.1(i), (ii),
(iii) by passing to the limit as n → ∞, provided we use a relaxed definition of the
expression GΩ (hqV ) given by (3.9). A similar observation holds also for the upper estimate
of (iv).

7. Proof of Theorem 3.3

The proof is similar to that of Theorem 3.2, but simpler. Let {Ωn} be an exhaustion of
Ω as above.

Assume first q ≥ 1 and define for any n a function hn ∈ C2 (Ωn)∩C
(
Ω
)

as the solution
of {

Lhn = 0 in Ωn,
hn = u on ∂Ωn.

In cases (i) , (ii), we have hn > 0 in Ωn for large enough n by (3.22) and (3.24) respectively.
By Theorem 3.2 it follows that u(x) > 0 for all x ∈ Ωn. Consequently, u(x) > 0 for all
x ∈ Ω.

In the case q = 1, set h ≡ 1, v = ln u. As in the proof of Theorem 3.2 (cf. (5.11)), we
obtain

−Lv + V ≥ 0.

Since by (3.22) we have lim infy→∂∞Ω v (y) ≥ 0, we conclude by Lemma 4.5 that

ln u(x) = v(x) ≥ −GΩV (x), (7.1)

which proves (3.23).
In the case q > 1, we set νn = inf∂Ωn u, where by (3.24) we can assume limn→∞ νn =

+∞. Then by Theorem 3.2 with h ≡ νn, we obtain in Ωn

u ≥ νn

[
1 + (q − 1)νq−1

n GΩnV
]− 1

q−1

=
[
ν−(q−1)

n + (q − 1)GΩnV
]− 1

q−1
(7.2)

where
− (q − 1)GΩnV < ν−(q−1)

n in Ωn. (7.3)
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It follows from (7.3) that GΩV−(x) 6= +∞, since otherwise both GΩV±(x) = +∞. Hence,
by letting n → +∞ in (7.3), we see that GΩV (x) ≥ 0, and consequently by the monotone
convergence theorem (7.2) yields

u (x) ≥
[
(q − 1)GΩV (x)

]− 1
q−1 .

Since u(x) < ∞, we actually have a strict inequality GΩV (x) > 0.
Consider now the case 0 < q < 1. We set

φ(v) = [(1 − q)v]
1

1−q , v ∈ Iq = (0, +∞).

Then clearly

φ′(v) = [(1 − q)v]
q

1−q > 0, φ′′(v) = q [(1 − q)v]
2q−1
1−q > 0,

and (5.1) holds. For a sequence εn ↓ 0, we set un = u + εn, and define vn by

vn = φ−1(un), n = 1, 2, . . . .

Using Lemma 4.3 in the case h ≡ 1 so that Lh = 0 (in this case the condition φ(0) = 1 in
(4.8) is not required, see Remark after the proof of Lemma 4.3), we obtain as in the proof
of Theorem 3.2,

−Lvn +

(
u

un

)q

V ≥ 0.

Since vn > 0 on ∂Ωn, it follows from the maximum principle

vn ≥ −GΩn

((
u

un

)q

V

)

in Ωn. (7.4)

As n → ∞ we obtain vn → φ−1(u), and

lim
n→∞

GΩn

((
u

un

)q

V±

)

= GΩ (χΩ+V±)

by the monotone convergence theorem. Passing to the limit in (7.4) as n → ∞ gives

φ−1(u) ≥ −GΩ (χΩ+V ) ,

which is equivalent to (3.25).
Finally, let q < 0. We argue as in the case q > 1, setting νn = inf∂Ωn u where in view

of (3.27) we can assume limn→∞ νn = 0. Then by Theorem 3.2 with h ≡ νn,

u(x) ≤
[
ν1−q

n − (1 − q)GΩnV (x)
] 1

1−q in Ωn, (7.5)

where
(1 − q) GΩnV (x) < ν1−q

n in Ωn.

It follows as in the case q > 1 that GV+(x) 6= +∞, and GV+(x) ≤ GV−(x). Letting
n → +∞ in (7.5), we deduce (3.28), which yields the strict inequality GV+(x) < GV−(x),
since u(x) > 0.

8. Proof of Theorems 3.4 and 3.5

Proof of Theorem 3.4. We prove only statement (ii) (for q < 0) since statement (i) (for
q > 1) is proved in a similar but simpler way. We use the method of sub- and super-
solutions, understood in the classical sense: if there exist u, u ∈ C(Ω) ∩ C2(Ω) such that
0 < u ≤ u in Ω, u = u = 0 on ∂Ω, and

−Lu + V uq ≤ f, −Lu + V uq ≥ f in Ω,
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then there exists a solution u ∈ C(Ω) ∩ C2(Ω) to (3.29) such that u ≤ u ≤ u. (See [13],
Theorem 1.2.3, in the case M = Rn and L = Δ; the same proof which relies on standard
interior regularity estimates works in the general case.)

Clearly, setting u = h = GΩf ∈ C(Ω) ∩ C2(Ω) gives a supersolution since V ≥ 0, and
consequently

−Lu + V uq ≥ −Lu = f, u = 0 on ∂Ω.

The main problem is to find a subsolution which we define by

u = h − λq GΩ(hqV ),

where λ > 0 is a constant to be determined later. Using (3.32) we see that u > 0 provided
(

1 −
1
q

)q 1
1 − q

< λ−q. (8.1)

Under the assumptions imposed on f it follows that h ∈ C(Ω) ∩ C2(Ω). We need to
show that u ∈ C(Ω) ∩ C2(Ω). As in the proof of Theorem 3.1 (iv), let Ω′ be an arbitrary
relatively compact subset of Ω with smooth boundary. Then GΩ(hqV ) − GΩ′

(hqV ) is a
harmonic function in Ω′. Since h > 0 in Ω′, it follows that hqV ∈ C(Ω) and is locally
Hölder-continuous. Hence, GΩ′

(hqV ) ∈ C2(Ω′), and consequently GΩ(hqV ) ∈ C2(Ω′) as
well. To show that GΩ(hqV ) ∈ C(Ω), notice that h vanishes continuously on ∂Ω. Using
(3.32), we deduce that the same is true for GΩ(hqV ).

It remains to show that −Lu + V uq ≤ f . Since q < 0 and hence uq ≥ hq, it follows

−Lu + V uq = f − λq hqV + uqV ≤ f,

provided
λh ≤ u = h − λq GΩ(hqV ),

or equivalently,
GΩ(hqV ) ≤ λ−q(1 − λ)h.

Optimizing over all λ ∈ (0, 1), we obtain that the maximum of the right-hand side is
obtained for λ = 1

1− 1
q

, which coincides with condition (3.32),

GΩ(hqV ) ≤
(
1 −

1
q

)q 1
1 − q

h.

Notice that (8.1) obviously holds with this choice of λ as well. Thus, u is a classical
subsolution which is positive in Ω, and u ≤ u as desired. Consequently, there exists a
classical solution u such that u ≤ u ≤ u. Moreover,

u ≥ u = h − λqGΩ(hqV ) = h −
(
1 −

1
q

)−q
GΩ(hqV ) ≥

1

1 − 1
q

h,

which proves the lower bound for u in (3.33).
The upper bound was obtained above in Theorem 3.1(iv). �

Proof of Theorem 3.5. The case q > 1, V ≤ 0 is considered in [27] and [5] (see also [31]),
so we give a proof only in the case q < 0, V ≥ 0. Let us assume that

K(hqV )(x) ≤ a h(x) dm − a.e. in Ω, (8.2)

for some constant a > 0, where h satisfies (3.35).
Set u0 = h, and construct a sequence of consecutive iterations uk by

uk+1 + K(uq
kV ) = h, k = 0, 1, 2, . . . .

Clearly, by (8.2),

(1 − a)h(x) ≤ u1(x) = h(x) − K(hqV )(x) ≤ h(x) = u0(x).
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We set b0 = 1, b1 = 1 − a, and continue the argument by induction. Suppose that for
some k = 1, 2, . . .

bk h(x) ≤ uk(x) ≤ uk−1(x) in Ω. (8.3)

Since q < 0 and V ≥ 0, we deduce using estimates (8.2) and (8.3),

(1 − a bq
k) h(x) ≤ h(x) − bq

k K(hqV )(x) ≤ h(x) − K(uq
kV )(x) = uk+1(x).

On the other hand,

uk+1(x) = h(x) − K(uq
kV )(x) ≤ h(x) − K(uq

k−1V )(x) = uk(x).

Hence,
bk+1 h(x) ≤ uk+1(x) ≤ uk(x), where bk+1 = 1 − a bq

k.

We need to pick a > 0 small enough, so that bk ↓ b, where b > 0, and b = 1 − a bq.
In other words, we are solving the equation

1 − x

a
= xq (8.4)

by consecutive iterations bk+1 = 1 − abq
k starting from the initial value b0 = 1. Clearly,

this equation has a solution 0 < x < 1 if and only if 0 < a ≤ a∗, where y = 1−x
a∗

is the
tangent line to the convex curve y = xq. Here the optimal value a∗ is found by equating
the derivatives, and solving the system of equations

xq
∗ =

1 − x∗

a
, qxq−1

∗ = −
1
a∗

,

which gives

a∗ =
(
1 −

1
q

)q 1
1 − q

, x∗ =
1

1 − 1
q

.

Letting a = a∗, we see that by the convexity of y = xq, (8.4) has a unique solution
x∗ = 1

1− 1
q

, and by induction, x∗ < bk+1 < bk < 1, so that

bk ↓ b = x∗ =
1

1 − 1
q

> 0.

From this it follows that (8.3) holds for all k = 1, 2, . . .. Passing to the limit as k → ∞,
and using the monotone convergence theorem shows that u = limk→∞ uk is a solution of
(3.34) such that

b h(x) ≤ u(x) ≤ u0(x) = h(x).

Moreover, it is easy to see by construction that u is a maximal solution, that is, if
ũ is another nonnegative solution to (3.34), then ũ ≤ uk for every k = 0, 1, 2, . . ., and
consequently ũ ≤ u in Ω. �

9. Examples

In this section, we consider several examples which demonstrate various phenomena
that may affect behavior of solutions to the equations considered above. In the liner case
q = 1 (Schrödinger equations), many examples concerning possible behavior of Green’s
functions on domains and manifolds for V ≥ 0 are given in [20]; the case V ≤ 0 is con-
sidered in [14] and [15] (see also [8], [21], [29], [30]). In the superlinear case for q > 1
and V ≥ 0 we refer to [5] and [27] for existence results as well as pointwise estimates of
solutions, and many examples. The case q > 1 and V ≤ 0 (equations with absorption)
is studied in [28]. In the sublinear case 0 < q < 1, existence of bounded positive solu-
tions, along with uniqueness, and pointwise estimates of bounded solutions on Rn were
obtained in [6]. Recently, sharp existence results and matching two-sided estimates for
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weak positive solutions (not necessarily bounded) in Rn were given in [9]; see also [10] for
a characterization of finite energy solutions.

Here we give an example involving a rapidly oscillating V in the case q = 1, and also
illustrate various phenomena with regards to pointwise behavior of solutions in the less
studied case q < 0, for both V ≥ 0 and V < 0. (Related results for q < 0 where obtained
in [4], [13], [16] and [17].)
Example 1. We consider first the linear case q = 1 in Theorem 3.1:

− u′′ + V u = f in Ω, (9.1)

for Ω = (0, 1), M = R1. Let f = 1, and h = Gf = 1
2x(1 − x). The corresponding Green

function is G(x, y) = min(x(1 − y), y(1 − x)).
We start with a positive solution with zero boundary values to (9.1),

u(x) = x(1 − x)
(
1 + x sin

( π

xα

))
, x ∈ (0, 1), α > 0. (9.2)

Then

u′(x) = x(1 − x)
(
1 + x sin

( π

xα

))
, x ∈ (0, 1), α > 0. (9.3)

The corresponding V = u′′+1
u is found from (9.1),

V = V1 + V2 + V3, (9.4)

where

V1(x) = −
α2π2x−2α−1 sin( π

xα )

1 + x sin( π
xα )

,

V2(x) =
α(α − 1)(1 − 2x)πx−α−1 cos( π

xα ) − απ(1 − 2x)x−α cos( π
xα )

1 + x sin( π
xα )

,

V3(x) =
(1 − 2x) sin( π

xα )

1 + x sin( π
xα )

−
2 sin( π

xα )

(1 − x)(1 + x sin( π
xα ))

.

Thus, V has a highly oscillatory behavior at the end-point x = 0, where V1 is the leading
term. Nevertheless, due to the cancellation phenomenon, we have u ' h.

For 0 < α < 1, G(hV ) is well-defined, and Theorem 3.1 gives the lower bound

u ≥ h e−
G(hV )

h , (9.5)

which is sharp since G(hV )
h is a bounded function on Ω. Indeed, it is easy to see that

the term G(hV3) is harmless since hV3 is bounded in Ω, and hence G(hV3) ' h at the
endpoints. To estimate G(hV2), notice that |V2(x)| ≤ Cx−α−1, and consequently by direct
estimates

G(h|V2|)(x) = O(x) as x → 0+. (9.6)

It remains to notice that due to cancellation, for 0 < α < 1,

G(hV1)(x) = O(x) as x → 0+ (9.7)

as well. This can be verified by looking at the asymptotics of the integrals in the expression

G(hV1)(x) = (1 − x)
∫ x

0

y2(1 − y)
2

V1(y)dy + x

∫ 1

x

y(1 − y)2

2
V1(y)dy. (9.8)

Clearly, G(hV1)(x) ' 1 − x as x → 1−. For 0 < α < 1, it is not difficult to see using
integration by parts that G(hV1)(x) ' x as x → 0+; we omit the details here.
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If α = 1, then G(hV ) is not well-defined, and the first term on the right-hand side of
(9.8) has to be understood as an improper integral which asymptotically behaves like x
as x → 0+. However, the second term actually has an extra logarithmic factor, so that

G(hV ) ' x log
(1

x

)
as x → 0+.

This shows that the lower bound u(x) ≥ h e−
G(hV )

h is not sharp in this case.

Example 2. Let q < 0, and let Ω be a bounded domain with smooth boundary in Rn.
Consider inequality (3.3) with L = Δ, f ≡ 1, and

V (x) =
λ

dΩ(x)β
, x ∈ Ω, λ > 0, β > 0,

and the corresponding equation

− Δu +
λ

dΩ(x)β
uq = 1, u > 0 in Ω. (9.9)

We set
h(x) = GΩf(x) ' dΩ(x), x ∈ Ω. (9.10)

Theorem 3.1 (iv) gives the following necessary condition,

(1 − q)
GΩ(hqV )(x)

h(x)
< 1, (9.11)

for the existence of a positive solution u to (3.3) with zero boundary values.
It is easy to see via direct estimates of the Green kernel that, for β ≥ 2 + q, we have

GΩ(hqV ) ≡ +∞. For 1 + q < β < 2 + q,

GΩ(hqV )(x)
h(x)

' dΩ(x)1+q−β , x ∈ Ω,

For β = 1 + q, we have

GΩ(hqV )(x)
h(x)

' log
A

dΩ(x)
, x ∈ Ω,

where A = 2diam(Ω). Hence, for β ≥ 1 + q, condition (9.11) fails, and (3.3) has no
positive solutions u ∈ C2(Ω)∩C(Ω) with zero boundary values. This non-existence result
was proved earlier in [13], Theorem 2.1.

In the case 0 < β < 1 + q, direct estimates give

(1 − q)
GΩ(hqV )(x)

h(x)
≤ c λ, (9.12)

where c = c(Ω, q, β) is a positive constant.
Theorem 3.1 (iv) implies that if (3.3) has a solution u with zero boundary values, then

actually (9.12) holds with cλ < 1, and

u(x) ≤ h(x)
[
1 − (1 − q)

GΩ(hqV )(x)
h(x)

] 1
1−q

, x ∈ Ω,

by estimate (3.8).

Moreover, if (9.12) holds with c λ ≤
(
1 − 1

q

)q
, then by Theorem 3.4 there exists a

solution ũ to (9.9) with zero boundary values which satisfies the lower bound

ũ(x) ≥
1

1 − 1
q

h(x), x ∈ Ω.
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Hence, ũ(x) ' dΩ(x), and our general upper bound (3.8) is sharp in this case as well.
In Example 4, we will demonstrate that due to a non-uniqueness phenomenon, equations

of the type (9.9) may have other solutions which violate the lower bound u(x) ≥ c dΩ(x).

Example 3. Let q < 0, and let Ω be a bounded smooth domain in Rn. We consider (3.3)
with f ≡ 1, and

V (x) = −
1

dΩ(x)β
, β > 0,

where dΩ(x) = dist(x, ∂Ω), together with the corresponding equation

− Δu −
1

dΩ(x)β
uq = 1, u > 0 in Ω. (9.13)

As in the previous example, set

h(x) = GΩf(x) ' dΩ(x), x ∈ Ω, (9.14)

and A = 2diam(Ω).
Theorem 3.1 (iv) gives the following upper bounds for all positive solutions u ∈ C2(Ω)∩

C(Ω) to (3.3) with zero boundary values: for all x ∈ Ω,

(a) u(x) ≤ C dΩ(x) if 0 < β < 1 + q;

(b) u(x) ≤ C dΩ(x) log
1

1−q

(
A

dΩ(x)

)
if β = 1 + q;

(c) u(x) ≤ C dΩ(x)
2−β
1−q if 1 + q < β < 2 + q.

The corresponding lower bounds for positive super-solutions, not necessarily with zero
boundary values, were established in [16], Proposition 2.6 (see also [13], Theorem 3.5): if
u ∈ C2(Ω) ∩ C(Ω), and

− Δu −
1

dβ
Ω

uq ≥ 0, u > 0 in Ω, (9.15)

then, for all x ∈ Ω,

(a′) u(x) ≥ c dΩ(x) if 0 < β < 1 + q;

(b′) u(x) ≥ c dΩ(x) log
1

1−q

(
A

dΩ(x)

)
if β = 1 + q;

(c′) u(x) ≥ c dΩ(x)
2−β
1−q if 1 + q < β < 2.

There are no positive solutions u to (9.15) in the case β ≥ 2. For 0 < β < 2, there
exists a solution u ∈ C2(Ω) ∩ C(Ω) with zero boundary values to equation (9.13) which
satisfies both the upper and lower bounds given above.

Thus, our general upper bound (3.8) in Theorem 3.1 (iv) is sharp in all cases, except
for 2 + q ≤ β < 2, where G(hqV ) ≡ −∞, so that (3.8) becomes trivial.

Example 4. In this example, we encounter the non-uniqueness phenomenon for classical
solutions with zero boundary conditions to semilinear equations with negative exponents
q < 0, where obviously our estimates are not expected to be sharp for all solutions. For
simplicity, we consider the one-dimensional case, although similar examples are easy to
construct in higher dimensions, with coefficients V depending only on dΩ(x).

Consider the following semilinear equation:

− u′′ + V uq = f in Ω, (9.16)

for q < 0, Ω = (−1, 1), with zero boundary conditions u(±1) = 0. Set f ≡ 1 and

h = Gf =
1
2
(1 − x2).
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The corresponding Green function is

G(x, y) = min
(
(x + 1)(1 − y), (y + 1)(1 − x)

)
.

Consider a positive solution with zero boundary values to (9.16) given by

u(x) = λ (1 − x2)γ , x ∈ (0, 1), λ > 0, γ > 0. (9.17)

Then the corresponding V = u′′+1
uq is found from (9.16),

V = V1 + V2 + V3,

where
V1(x) = 4λ1−q γ(γ − 1)(1 − x2)γ−2−γq,

V2(x) = −2λ1−q γ(2γ − 1)(1 − x2)γ−1−γq,

V3(x) = λ−q(1 − x2)−γq.

In the case γ = 1, clearly, V1 ≡ 0, and

V (x) = λ−q(1 − 2λ)(1 − x2)−q.

Then
G(hqV )(x)

h(x)
= (2λ)−q(1 − 2λ), x ∈ Ω.

Our estimate (3.8) is sharp in both cases, V ≤ 0 (λ ≥ 1
2), and V ≥ 0 (0 < λ < 1

2):

u(x) ≤
1 − x2

2

[
1 − (1 − q)(2λ)−q(1 − 2λ)

] 1
1−q

,

where the constant in square brackets is positive for any choice of λ > 0, q < 0.
In the case γ 6= 1 the situation is more complicated. Clearly, V1 is now the most singular

term.
For γ > 1, the behavior of the solution u given by (9.17) at the end-points x = ±1 is

too good to be captured by the upper estimate (3.8); obviously, it is not sharp for this
particular u. On the other hand, notice that V > 0 if 2λγ < 1; for γ > 1, it is easy to see
by direct estimates that

G(hqV )(x)
h(x)

≤ Cλ−q, x ∈ Ω. (9.18)

Since there exists a positive solution, Theorem 3.1 (iv) implies that actually (9.18) holds
with Cλ−q < 1

1−q .

For 1 < γ < 1
2λ , which ensures that V > 0, every positive solution u with zero boundary

values obviously satisfies the upper bound

u ≤ h in Ω.

Moreover, if (9.18) holds with Cλ−q ≤
(
1 − 1

q

)q
1

1−q , then by Theorem 3.4 equation (9.16)

has a solution ũ such that ũ ' h, for which the upper bound (3.8) is indeed sharp.
If 0 < γ ≤ − q

1−q , then V is too singular at the end-points, so that G(hqV ) ≡ +∞, and
(3.8) trivializes.

In the remaining case − q
1−q < γ < 1, it is easy to see that

G(hqV )(x)
h(x)

' (1 − x2)−q+γ−γq−1, x ∈ Ω,

which blows up as x → ±1. In this case, (3.8) gives u(x) ≤ c(1 − x2)γ , which is again
sharp.
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[28] M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De

Gruyter Ser. Nonlin. Analysis Appl. 21, Berlin-Boston, 2014.
[29] M. Murata, Structure of positive solutions to (−Δ + V ) u = 0 in Rn, Duke Math. J. 53 (1986)

869–943.



32 ALEXANDER GRIGOR’YAN AND IGOR VERBITSKY

[30] Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial
differential equations, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry
Simon’s 60th Birthday, Eds. F. Gesztesy et al., Proc. Symp. Pure Math. 76, AMS, Providence, RI,
2007, 329–356.
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