On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds

Alexander Grigor'yan University of Bielefeld

University of Minnesota, February 2018

Setup and problem statement

Let (M, g) be a connected Riemannian manifold, Δ – the Laplace-Beltrami operator on M. In local coordinates $x_1, ..., x_n$ it has the form

$$\Delta = \frac{1}{D} \sum_{i,j=1}^{n} \partial_{x_i} \left(a_{ij} \left(x \right) \partial_{x_j} \right),$$

where $D = \sqrt{\det(g_{ij})}$ and $(a_{ij}) = D(g_{ij})^{-1}$.

Consider the equation (or inequality)

$$-\Delta u + \Phi(x) u^{\sigma} = f$$
 (or $-\Delta u + \Phi(x) u^{\sigma} \ge f$)

where $\Phi, f \in C(M), f \geq 0, \sigma > 0$. Solution u should be non-negative and in $C^{2}(M)$.

Our goal is obtaining pointwise estimates of u.

Assume that Δ has a positive Green function G(x,y) on M. Set $Gf(x) = \int_M G(x,y) f(y) d\mu(y)$.

It is known that if Gf is finite then $\Delta(Gf) = -f$.

Linear case $\sigma = 1$

W. Hansen-Z.Ma 1990, AG-W.Hansen 2008: if

$$-\Delta u + \Phi(x) u \ge f$$
 on M

where $\Phi \geq 0$ and the function h = Gf is positive and finite, then

$$u \ge h \exp\left(-\frac{1}{h}G(h\Phi)\right).$$

This implies the lower bound for the Green function G_{Φ} of $-\Delta + \Phi$:

$$G_{\Phi}(x,y) \ge G(x,y) \exp\left(-\frac{\int_{M} G(x,z) G(z,y) \Phi(z) d\mu(z)}{G(x,y)}\right).$$

In the case $\Phi \leq 0$ a similar estimate under additional assumptions was obtained by N.Kalton–I.Verbitsky 1999.

Main result

Theorem 1 (AG-I.Verbitsky, 2015) Let $u \ge 0$ solve $-\Delta u + \Phi u^{\sigma} \ge f$ in M. Set h = Gf and assume that $0 < h < \infty$. Assume also that $G(h^{\sigma}\Phi)$ be well defined.

(i) If
$$\sigma = 1$$
 then

$$u \ge h \exp\left(-\frac{1}{h}G\left(h\Phi\right)\right). \tag{1}$$

(ii) If $\sigma > 1$ then

$$u \ge \frac{h}{\left[1 + (\sigma - 1)\frac{1}{h}G(h^{\sigma}\Phi)\right]^{\frac{1}{\sigma - 1}}},\tag{2}$$

where the expression in square brackets is necessarily positive, that is,

$$-(\sigma - 1)G(h^{\sigma}\Phi) < h. \tag{3}$$

(iii) If $0 < \sigma < 1$ then

$$u \ge h \left[1 - (1 - \sigma) \frac{1}{h} G \left(1_{\{u > 0\}} h^{\sigma} \Phi \right) \right]_{\perp}^{\frac{1}{1 - \sigma}}.$$
 (4)

Estimates with boundary condition

Let Ω be a relatively compact domain in M with smooth boundary. Let $G_{\Omega}(x,y)$ be the Green function of Δ in Ω with the Dirichlet boundary condition.

It suffices to prove (1)-(4) in Ω with G_{Ω} instead of G and with $h = G_{\Omega}f$ instead of Gf.

Consider the following problem. Let $h \in C^2(\Omega) \cap C(\overline{\Omega})$ be positive and superharmonic in Ω . Set $f := -\Delta h \geq 0$. Assume that $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $u \geq 0$, satisfies

$$\begin{cases}
-\Delta u + \Phi u^{\sigma} \ge f & \text{in } \Omega \\
u \ge h & \text{on } \partial\Omega
\end{cases}$$
(5)

Theorem 2 (i) If $\sigma = 1$ then $u \ge h \exp\left(-\frac{1}{h}G_{\Omega}(h\Phi)\right)$.

(ii) If $\sigma > 1$ then

$$u \ge \frac{h}{\left[1 + (\sigma - 1)\frac{1}{h}G_{\Omega}(h^{\sigma}\Phi)\right]^{\frac{1}{\sigma - 1}}},$$

where necessarily $-(\sigma - 1)G_{\Omega}(h^{\sigma}\Phi) < h$.

(iii) If
$$0 < \sigma < 1$$
 then $u \ge h \left[1 - (1 - \sigma) \frac{1}{h} G_{\Omega} \left(1_{\{u > 0\}} h^{\sigma} \Phi \right) \right]_{+}^{\frac{1}{1 - \sigma}}$.

Approach to the proof of Theorem 2

Assume for simplicity that u > 0 and h > 0 in $\overline{\Omega}$. Assume first $h \equiv 1$. Then $f = -\Delta h = 0$ and (5) becomes

$$\begin{cases} -\Delta u + \Phi u^{\sigma} \ge 0 & \text{in } \Omega \\ u \ge 1 & \text{on } \partial \Omega \end{cases}$$

Fix a C^2 function φ on (a interval of) \mathbb{R} with $\varphi' > 0$ and make the following change:

$$v = \varphi^{-1}\left(u\right).$$

By the chain rule we have

$$\Delta u = \Delta \varphi(v) = \varphi'(v)\Delta v + \varphi''(v)|\nabla v|^2,$$

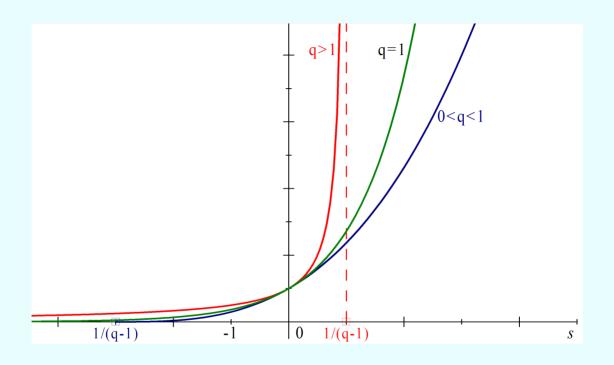
whence

$$-\Delta v = \frac{\varphi'' \left| \nabla v \right|^2}{\varphi'} - \frac{\Delta u}{\varphi'} \ge \frac{\varphi''}{\varphi'} \left| \nabla v \right|^2 - \Phi \frac{\varphi(v)^{\sigma}}{\varphi'(v)}. \tag{6}$$

Choose φ to solve the following initial value problem

$$\varphi'(s) = \varphi^{\sigma}(s), \quad \varphi(0) = 1.$$

If $\sigma = 1$ then $\varphi(s) = e^s$. If $\sigma \neq 1$ then $\varphi(s) = [(1 - \sigma)s + 1]^{\frac{1}{1 - \sigma}}$.



The inverse function φ^{-1} is always defined on $(0, +\infty)$.

The function φ is convex, and we obtain from (6)

$$-\Delta v \ge -\Phi \quad \text{in } \Omega. \tag{7}$$

Since on $\partial\Omega$ we have $v=\varphi^{-1}(u)\geq\varphi^{-1}(1)=0$, it follows that

$$v \ge -G_{\Omega} \Phi$$
 in Ω

and, hence,

$$u \geq \varphi(-G_{\Omega}\Phi)$$
 in Ω .

This yields the cases (i) - (iii) of Theorem 2 in the case h = 1.

Indeed, in the case $\sigma = 1$ we have $\varphi(s) = e^s$ and, hence,

$$u \ge \exp\left(-G_{\Omega}\Phi\right)$$
.

In the case $\sigma > 1$ we have $\varphi(s) = [(1 - \sigma)s + 1]^{-\frac{1}{\sigma - 1}}$, which gives the estimate of (ii)

$$u \ge \frac{1}{[1 + (\sigma - 1)G_{\Omega}\Phi]^{\frac{1}{\sigma - 1}}}.$$

Similarly one treats the case $0 < \sigma < 1$.

For a general h > 0, we use the h-transform of Δ in Ω : $\Delta^h := \frac{1}{h} \circ \Delta \circ h$. That is,

$$\Delta^{h}u = \frac{1}{h}\left(\Delta\left(hu\right)\right) = \frac{1}{h}\left(h\Delta u + 2\nabla h \cdot \nabla h + \left(\Delta h\right)u\right) = \frac{1}{h^{2}}\operatorname{div}\left(h^{2}\nabla u\right) + \frac{\Delta h}{h}u = Lu + \frac{\Delta h}{h}u$$

where

$$L = \frac{1}{h^2} \operatorname{div} \left(h^2 \nabla \right)$$

is the weighted Laplacian associated with measure $d\tilde{\mu} = h^2 d\mu$.

For function $\tilde{u} = \frac{u}{h}$ we have

$$-\Delta^h \tilde{u} = -\frac{1}{h} \Delta u \ge \frac{1}{h} \left(-\Phi u^{\sigma} + f \right) = -h^{\sigma - 1} \Phi \tilde{u}^{\sigma} - \frac{\Delta h}{h}.$$

Setting $\tilde{\Phi} = h^{\sigma-1}\Phi$, we obtain that \tilde{u} satisfies

$$-\Delta^h \tilde{u} + \tilde{\Phi} \tilde{u}^\sigma \ge -\frac{\Delta h}{h}$$
 in Ω , $\tilde{u} \ge 1$ on $\partial \Omega$.

Now we use the same approach as in the case h = 1, but for operator Δ^h in place of Δ .

Set $v = \varphi^{-1}(\tilde{u}) = \varphi^{-1}(u/h)$ and compute $\Delta^h v$ as in (6). For the part $L = \frac{1}{h^2} \operatorname{div}(h^2 \nabla)$ of the operator Δ^h , computation is the same as for Δ .

The part $\frac{\Delta h}{h}$ gives in the end an additional term so that instead of (7) we obtain

$$-\Delta^h v \ge -\tilde{\Phi} + \left(\frac{\varphi(v) - 1}{\varphi'(v)} - v\right) \frac{\Delta h}{h}.$$

Multiplying by h, we obtain

$$-\Delta (hv) \ge -h^{\sigma} \Phi + \left(\frac{\varphi(v) - 1}{\varphi'(v)} - v\right) \Delta h. \tag{8}$$

The convexity of φ implies

$$\frac{\varphi(s) - 1}{\varphi'(s)} - s \le 0,\tag{9}$$

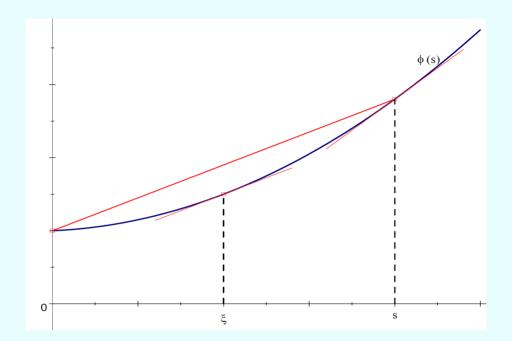
for any s in the domain of φ . Indeed, if s > 0 then $\exists \xi \in [0, s]$ such that

$$\varphi'(\xi) = \frac{\varphi(s) - \varphi(0)}{s}.$$

It follows that

$$\varphi'(s) \ge \varphi'(\xi) = \frac{\varphi(s) - 1}{s},$$

which yields (9).



If s < 0 then $\exists \xi \in [s, 0]$ such that

$$\frac{\varphi(s) - 1}{s} = \frac{\varphi(s) - \varphi(0)}{s} = \varphi'(\xi) \ge \varphi'(s),$$

which again implies (9) since s < 0.

Since $\Delta h \leq 0$ and

$$\frac{\varphi(v) - 1}{\varphi'(v)} - v \le 0,$$

we obtain

$$\left(\frac{\varphi(v) - 1}{\varphi'(v)} - v\right) \Delta h \ge 0$$

and therefore by (8)

$$-\Delta (hv) \ge -h^{\sigma} \Phi \text{ in } \Omega.$$

On $\partial\Omega$ we have $v=\varphi^{-1}\left(u/h\right)\geq\varphi^{-1}\left(1\right)=0$, which implies

$$hv \ge -G_{\Omega}(h^{\sigma}\Phi)$$
 in Ω .

Dividing by h and applying φ , we conclude that

$$\frac{u}{h} \ge \varphi \left(-\frac{1}{h} G_{\Omega} \left(h^{\sigma} \Phi \right) \right) \text{ in } \Omega.$$

Existence of positive solutions

Let us ask for which values $\sigma > 1$ the inequality

$$\Delta u + u^{\sigma} \le 0 \tag{10}$$

has a positive solution u on M (the case of $\Phi \equiv -1$). For example, in \mathbb{R}^n with $n \leq 2$ any non-negative solution of (10) is 0 while in the case n > 2, the inequality (10) has a positive solution in \mathbb{R}^n if and only if

$$\sigma > \frac{n}{n-2}$$

(Mitidieri and Pohozaev, 1998). Hence, $\sigma_{crit} = \frac{n}{n-2}$.

Let d(x, y) be a distance function on M, not necessarily geodesic, but such that the metric balls

$$B(x,r) = \{ y \in M : d(x,y) < r \}.$$

are precompact open subsets of M. Set

$$V(x,r) = \mu(B(x,r))$$
.

Theorem 3 (AG – Yuhua Sun, 2017) Assume that, for some $x_0 \in M$,

$$V(x_0, r) \simeq r^{\alpha} \quad for \ large \ r$$
 (V)

and

$$G(x,y) \simeq d(x,y)^{-\gamma} \text{ for large } d(x,y),$$
 (G)

where $\alpha > \gamma > 0$. Then, for any σ satisfying

$$1 < \sigma \le \frac{\alpha}{\gamma},$$

the inequality

$$\Delta u + u^{\sigma} \le 0 \tag{11}$$

has no positive solution in any exterior domain of M.

If in addition d is the geodesic distance, M has bounded geometry, and (V) holds for all $x_0 \in M$, then, for any

$$\sigma > \frac{\alpha}{\gamma},$$

the inequality (11) has a positive solution on M.

Hence, $\sigma_{crit} = \frac{\alpha}{\gamma}$.

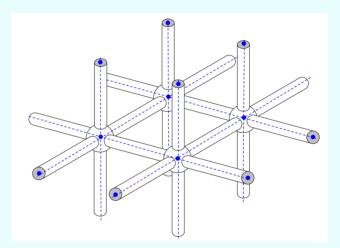
Example 1

Let Γ be an infinite connected graph with a uniformly bounded degree. Let d(x,y) be the graph distance on Γ and V(x,r) – the volume function.

Assume that the discrete Laplace operator on Γ has a positive Green function G(x,y).

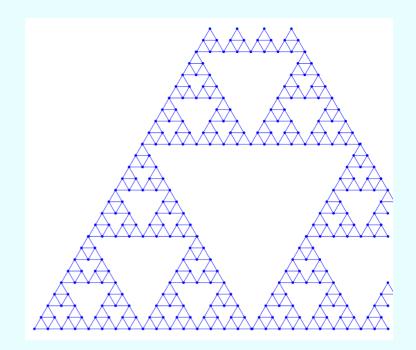
If Γ satisfies conditions (V) and (G) for some α and γ then we construct a manifold M satisfying (V) and (G) inflating the edges of Γ into 2-dim tubes.

Since M has bounded geometry, both parts of Theorem 3 apply in this case.



M.Barlow constructed in 2004 a family of fractal-like graphs such that each graph satsfies (V) with some α and has the walk dimension β , where α, β can be any real numbers satisfying $2 \le \beta \le \alpha + 1$.

For the graphical Sierpinski gasket we have $\alpha = \log_2 3$ and $\beta = \log_2 5$ so that $\beta > \alpha$.



However, for higher dimensional constructions one can achieve $\beta < \alpha$. In this case the graph has a positive Green function satysying (G) with $\gamma = \alpha - \beta$.

Since γ can be arbitrarily small, the critical value $\sigma_{crit} = \frac{\alpha}{\gamma}$ can be arbitrarily large, unlike the Euclidean critical value $\frac{n}{n-2}$.

Example 2

Assume that G(x,y) satisfies the following 3G-inequality

$$\frac{1}{G(x,y)} \le C\left(\frac{1}{G(x,z)} + \frac{1}{G(z,y)}\right)$$

for all $x, y, z \in M$ and some C > 1. Then the function $\rho(x, y) = \frac{1}{G(x, y)}$ is a quasi-metric on M. For any quasi-metric ρ , there exists $\gamma > 0$ and a distance function d(x, y) such that $\rho(x, y) \simeq d(x, y)^{\gamma}$.

Hence, $G(x,y) \simeq d(x,y)^{-\gamma}$, that is, M satisfies (G). Assume that (M,ρ) satisfies (V), that is, for ρ -balls centered at x_0 ,

$$\mu\left(B_{\rho}\left(x_{0},r\right)\right)\simeq r^{\alpha}.$$

Then, for d-balls, we obtain

$$\mu(B_d(x_0,r)) \simeq r^{\alpha\gamma}$$
.

Hence, (M, d) satisfies (V) with $\tilde{\alpha} := \alpha \gamma$. Assuming in addition that all balls are precompact, we obtain by Theorem 3 that, for any $\sigma \leq \frac{\tilde{\alpha}}{\gamma} = \alpha$, the inequality $\Delta u + u^{\sigma} \leq 0$ has no positive solution in any exterior domain of M.

Idea of the proof of Theorem 3

Assume that u is a positive solution in $M \setminus K$ of

$$\Delta u + u^{\sigma} \le 0.$$

It follows that, for any precompact open set $U \supset K$, we have $u \geq G_{\overline{U}^c} u^{\sigma}$ in U^c .

Since $\inf_{\partial U} u > 0$ and u is superharmonic, it follows that

$$u(y) \ge cG(y, x_0)$$
 for $y \in U^c$,

for some c > 0. Hence, for any $x \in U^c$,

$$u\left(x\right) \ge c^{\sigma} \int_{U^{c}} G_{\overline{U}^{c}}\left(x, y\right) G^{\sigma}\left(y, x_{0}\right) d\mu\left(y\right). \tag{12}$$

On the other hand, one can prove that, for any precompact open set $\Omega \subset M$,

$$\sup_{\Omega} (\Delta u + \lambda_1(\Omega)u) \ge 0,$$

where $\lambda_1(\Omega)$ is the first Dirichlet eigenvalue of Δ in Ω . It follows that

$$\lambda_1\left(\Omega\right) \ge \inf_{\Omega} u^{\sigma-1}.\tag{13}$$

Assuming $\Omega \subset U^c$ and combining (13) with (12) we obtain

$$\lambda_{1}\left(\Omega\right)^{\frac{1}{\sigma-1}} \geq c^{\sigma} \inf_{x \in \Omega} \int_{U^{c}} G_{\overline{U}^{c}}\left(x, y\right) G^{\sigma}\left(y, x_{0}\right) d\mu\left(y\right).$$

If $\sigma \leq \frac{\alpha}{\gamma}$ then we bring this inequality to contradiction by choosing Ω large enough and by applying the hypotheses (V), (G) to estimate all the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive solution of the equation

$$\Delta u + u^{\sigma} + \lambda^{\sigma} f^{\sigma} = 0$$
 in M ,

where f is a specifically chosen decreasing function and $\lambda > 0$ is small enough. This differential equation amounts to the integral equation

$$u(x) = \int_{M} G(x, y) \left(u^{\sigma}(y) + \lambda^{\sigma} f(y)^{\sigma} \right) d\mu(y),$$

and the latter is solved in a certain closed subset of $L^{\infty}(M)$ by observing that the operator in the right hand side is a contraction for small enough λ . Next, we improve the regularity properties of u in two steps: first show that u is Hölder and then that $u \in C^2$.