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Abstract

We prove an abstract form of Hardy’s inequality for local and non-local regular Dirichlet
forms on metric measure spaces, using the Green operator of the Dirichlet form in question. Un-
der additional assumptions such as the volume doubling, the reverse volume doubling, and certain
natural estimates of the Green function, we obtain the “classical” form of Hardy’s inequality con-
taining distance to a reference point or set.
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1 Introduction

1.1 A historical overview: Hardy’s inequality on Rn and manifolds

The classical Hardy’s inequality was first proved by Hardy [48] in order to find an elementary
proof of a double series inequality of Hilbert. For its prehistory development (in both discrete and
continuous forms) over the decade 1906-1928, we refer the interested readers to [57]. A modern form
of Hardy’s inequality inRn, n > 2, is as follows (cf. [49]):

(n− 2)2

4

∫

Rn

| f (x)|2

|x|2
dx≤

∫

Rn
|∇ f (x)|2 dx for all f ∈ C1

c(Rn), (1.1)

whereC1
c(Rn) denotes the class of continuously differentiable functions onRn with compact support.

Hardy’s inequality has found numerous applications in various areas of mathematics such as partial
differential equations, geometric analysis, probability theory and etc. We refer the reader to [3, 21,
58, 64, 21] and the references therein for more information about Hardy’s inequality in Euclidean
spaces and related historical reviews.

Generalizations of (1.1) to Riemannian manifolds can be found in [1, 14, 20, 34, 56]. Let M be a
Riemannian manifold,Δ be the Laplace-Beltrami operator onM, andμ be the Riemannian measure.
Then, for any positive superharmonic functionφ on M, the following version of Hardy’s inequality is
true: ∫

M

−Δφ
φ

f 2 dμ ≤
∫

M
|∇ f |2 dμ for all f ∈ C2

c(M). (1.2)

The following short proof of (1.2) was given in [33, Section 4.4] and [34, p. 258] (see also [42]).
Consider the weighted manifold (M, μ̃) with dμ̃ = φ2 dμ. An easy calculation shows that the weighted
Laplacian

Δμ̃u := φ−2 div(φ2∇u)

satisfies the following identities: the product rule

− φΔμ̃(φ
−1 f ) = −Δ f +

Δφ

φ
f (1.3)

and the Green formula

−
∫

M
uΔμ̃u dμ̃ =

∫

M
|∇u|2dμ̃ ≥ 0 for all u ∈ C2

c(M). (1.4)

Applying (1.4) with u = φ−1 f and using (1.3), we obtain (1.2).
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Note that (1.2) is sharp in the sense that it recovers (1.1) whenM = Rn, n > 2, because, for the
functionφ(x) = |x|−

n−2
2 , we have

−Δφ(x)
φ(x)

=
(n− 2)2

4
1
|x|2

.

1.2 Abstract Hardy’s inequality on metric measure spaces

Motivated by (1.1) and (1.2), our main aim in this paper is to establish Hardy’s inequality on
metric measure spaces(M,d, μ), including manifolds and fractal spaces. We say that (M,d, μ) is a
metric measure space if (M,d) is a separable metric space such that all the metric balls inM are
precompact, andμ is a Radon measure onM with full support. We assume that a regular Dirichlet
form (E,F ) is defined onL2 (M, μ) . Then, instead of the energy integral

∫
M
|∇ f |2 dμ in (1.2) we use

E ( f , f ), and instead of the functionφ we use a functionGh whereG is the Green operator of(E,F ).
Hence, for a certain class of positive functionsh on M, (1.2) transforms to

∫

M

h
Gh

f 2 dμ ≤ E( f , f ) for all f ∈ F . (1.5)

Hardy’s inequality in the form (1.5) is proved in this paper in Theorem3.1 for strongly local regular
Dirichlet forms and in Theorem4.5– for general (non-local) regular Dirichlet forms.

Given a Radon measureν on M, one can ask under which conditions the following even more
general form of Hardy’s inequality is valid:

∫

M
f 2 dν ≤ E( f , f ).

This question was studied in [11, 27, 65] where the answer was given in terms of a certain testing
inequality expressed via the Dirichlet form and the measureν. Our versions of Hardy’s inequality in
Theorems3.1and4.5are much more explicit and do not follow from the results of [11, 27, 65].

1.3 “Classical” versions of Hardy’s inequalities

Let us describe some applications and consequences of Theorems3.1and4.5. We use the follow-
ing notation

V(x, r) = μ(B(x, r)) and V(x, y) = μ(B(x,d(x, y)))

for all x, y ∈ M andr > 0, and consider the following conditions.

� Volume doubling condition(VD): there existsCD ∈ (1,∞) such that

V(x,2r) ≤ CDV(x, r) for all x ∈ M andr > 0. (VD)

Condition(VD) is equivalent to

V(x,R)
V(x, r)

≤ C
(R

r

)α+
for all x ∈ M and 0< r ≤ R< ∞,

for some positiveC, α+. The exponentα+ is called theupper volume dimensionof (M,d, μ).

� Reverse volume doubling condition(RVD): there existsc > 0 such that

V(x,R)
V(x, r)

≥ c
(R

r

)α−
for all x ∈ M and 0< r ≤ R< ∞. (RVD)

The exponentα− is called thelower volume dimensionof (M,d, μ).
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� Condition(G)β with β > 0: the Dirichlet form(E,F ) admits a Green functionG(x, y), which is
jointly continuous inM × M \ diag and satisfies the estimate

G(x, y) '
d(x, y)β

V(x, y)
for all distinctx, y ∈ M, (G)β

where diag= {(x, y) ∈ M × M : x = y}.

Let us remark that both(VD) and(RVD) are satisfied if(M,d, μ) is Ahlforsα-regular, that is, if

V (x, r) ' rα

for all r > 0 andx ∈ M. In this caseα = α+ = α− is the Hausdorff dimension of(M,d), and the
measureμ is comparable with the Hausdorff measureHα (cf. [39]).

The parameterβ from (G)β is called thewalk dimensionof (E,F ) . The reason of this terminology
will be clear from Example2.5 below asβ is the exponent of the space/time scaling for the Markov
process associated with(E,F ) .

Under the hypotheses(VD) , (RVD) and(G)β with β < α−, we apply Theorem4.5and establish
in Theorem5.6a “classical” form of Hardy’s inequality: for allxo ∈ M and f ∈ F ,

∫

M

f (x)2

d(xo, x)β
dμ(x) ≤ CE( f , f ). (1.6)

Note thatRn satisfies the hypotheses of Theorem5.6providedn > 2 andβ = 2. Theorem5.6applies
also on many fractals spaces where(G)β with β > 2 is satisfied – see Example5.12in Section5.3.

Due to the fact that the condition(G)β contains implicit constants, the constantC in (1.6) can
not be determined explicitly. However, in specific settings like Euclidean spaces or graphs, one can
obtain explicit constants in Hardy’s inequality by applying directly (1.5) for suitable functionsh as in
Theorem5.1and Example5.11.

Let us emphasize that in Theorem5.6 the Dirichlet form does not have to be local. In the case
when the Dirichlet form (E,F ) is strongly local andβ = 2, we apply Theorem3.1 and obtain in
Corollary 5.8 the estimate (1.6) under the weaker hypotheses when(G)2 is replaced by the upper
bound

G(x, y) ≤ C
d(x, y)2

V(x, y)
. (G≤)2

1.4 Weighted Hardy’s inequality

For further applications of Theorems3.1and4.5 (or, Corollary5.8and Theorem5.6), we obtain
weightedHardy’s inequalities for strongly local Dirichlet forms. It is known that inRn with n > 2
also the following weighted Hardy inequality holds:

(n− σ − 2)2

4

∫

Rn

f (x)2

|x|σ+2
dx≤

∫

Rn

|∇ f (x)|2

|x|σ
dx (1.7)

for anyσ ∈ [0,n − 2) and f ∈ C∞c (Rn) (see, for example, [60, p. 657, (7)], [12, Corollary 4] or [22,
Theorem 13]). Under some mild conditions of the strongly Dirichlet form (E,F ) (see Proposition
7.1), any weight functionw : M → (0,∞] that is continuous and locally integrable can induce
a strongly local regular Dirichlet form (E(w),F (w)) on L2(M, μw), wheredμw = w dμ. Applying
Theorem3.1for (E(w),F (w)), we obtain in in Corollary7.2an abstract version of the weighted Hardy
inequality.

From that we deduce in Proposition7.3 the following new type of Hardy’s inequality: for any
convex domainΩ ⊂ Rn, for anyσ ∈ (0,1) and for all f ∈ Lipc (Rn)

∫

Rn

f (x)2

|x|2 d(x, ∂Ω)σ
dx≤ C

∫

Rn

|∇ f (x)|2

d(x, ∂Ω)σ
dx,
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where the constantC depends only onn andσ and hence, is independent ofΩ. Although for bounded
convex domains there are already various weighted Hardy’s inequalities (see [25, 59, 2, 62]), they do
not cover Proposition7.3(see Remark7.4for more details).

In Theorem7.12we have developed a systematic way for obtaining weighted Hardy’s inequality
in the form ∫

M

f (x)2

d(x, xo)2
w(x) dμ(x) ≤ C

∫

M
w dΓ( f , f ), (1.8)

whereΓ( f , f ) is the energy measure of the Dirichlet form and the weightw is determined by the
distance function to a certain closed null setΣ in M (see Definition7.9).

In Proposition7.15, we apply Theorem7.12in the case whenΣ is a closed subset of a hyperplane
in Rn and obtain that, for allf ∈W1,2 ∩ Cc (Rn),

∫

Rn

f (x)2

|x|2 d (x,Σ)σ
dx≤ C

∫

Rn

|∇ f |2

d (x,Σ)σ
dx

where the range ofσ is determined by the Assouad dimension ofΣ (cf. (7.31), (7.32) and (7.36)). For
instance, in Example7.17Σ is subspace ofRn and in Example7.19Σ is a Sierpinski carpet.

Our weighted Hardy inequality (1.8) seems to be entirely new in the setting of Dirichlet forms, and
its proof is quite involved. We use a weighted Dirichlet form (E(w),F (w)), whereE(w) ( f , f ) is defined
by the right hand side of (1.8), and prove that (E(w),F (w)) satisfies the condition(G)2. The latter
is highly non-trivial because by hypothesis we know(G)2 only for (E,F ), and the weight function
w should not be bounded or separated from zero. To explain the strategy of the proof, consider the
following conditions:

� Upper bound estimate(UE)β: the heat kernelpt(x, y) of (E,F ) exists, is Ḧolder continuous in
x, y ∈ M, and satisfies

pt(x, y) ≤
C

V(x, t1/β)
exp




−c

(
d(x, y)

t1/β

) β
β−1





(UE)β

for all x, y ∈ M and allt ∈ (0,∞), whereC andc are positive constants.

� Near-diagonal lower bound estimate(NLE )β: the heat kernelpt(x, y) exists, is Ḧolder contin-
uous inx, y ∈ M, and satisfies

pt(x, y) ≥
C−1

V(x, t1/β)
whend(x, y) < εt1/β (NLE )β

for all x, y ∈ M and allt ∈ (0,∞), whereC andε are positive constants.

We use the following two highly nontrivial results:

� the equivalence
(G)β ⇔ (UE)β + (NLE )β, (1.9)

established in Theorem6.1;

� the stability of (UE)2 + (NLE )2 under certain non-uniform changes of weight in the Dirichlet
form (see [42], [70, Theorem 1.0.1]).

Combining these results, we deduce(G)2 for (E(w),F (w)) from (G)2 for (E,F ) .
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1.5 Organization of the paper

This paper is organized as follows.

In Section2 we describe our basic setup and recall some basic facts about Dirichlet forms, their
Green functions and heat kernels.

In Section3 we prove Hardy’s inequality for strongly local regular Dirichlet forms (Theorem3.1).

In Section4 we prove Hardy’s inequality for general (non-local) regular Dirichlet forms (Theorem
4.5).

In Section5 we apply Theorem4.5 to obtain Hardy’s inequality in the explicit form (1.6) in
various settings. In particular, we obtain in Theorem5.1 a discrete version of Hardy’s inequality
on Zn. We prove also the aforementioned Theorem5.6 and Corollary5.8 as well as Theorem5.10
containing Hardy’s inequality for a subordinated Dirichlet form.

In Section6 we prove the equivalence (1.9) for strongly local Dirichlet forms (Theorem6.1). This
equivalence is interesting on its own merit, but we need it for the proof of Theorem7.12as it was
explained above. Previously (1.9) was known in the setting of random walks on graphs – see [45].
Different ways of characterization of the heat kernel upper and lower estimates have been considered
in many papers; see for example, [8, 45, 46, 32, 36, 37, 40, 38] and references therein. In particular, it
was proved in [37] that (UE)β and (NLE )β are equivalent to certain estimates of the restricted Green
functionsGB in balls B providedGB are jointly continuous off the diagonal. However, we do not
apply this result here since the proof of joint continuity ofGB would have required at least as much
work as a direct proof of (1.9).

The main ingredients of the proof of Theorem6.1 are the mean exit time estimate (E)β and the
elliptic Harnack inequality (H) that are explained in Section6. Our strategy for the proof of (H) is
based on the argument in [37, Lemma 8.2], but a crucial point here is to gain upper and lower bounds
for a positive harmonic function via an integral of the Green function with respect to a certain Riesz
measure (see the proof of Proposition6.8).

In Section7, we prove weighted Hardy’s inequalities of Corollary7.2 and Theorem7.12, and
give explicit examples using the distance function to the boundary of a convex set, a single point or a
non-empty closed subset of a hyperplane ( Propositions7.3, 7.13, and7.15).

Notation. Throughout the paper we use the following notation.

For anyp ∈ [1,∞] and any open setΩ ⊂ M, denote as usual byLp(Ω, μ) or Lp (Ω) the real-valued
Lebesgue space onΩ. WhenΩ = M we writeLp = Lp(M, μ). We use (∙, ∙) to denote the inner product
in L2. Set

Lp
loc = { f : f ∈ Lp(Ω) for any precompact open setΩ ⊂ M}.

For any setE ⊂ M, E denotes the closure ofE, andEc = M \ E.

For any functionf : M → R, its support suppf is the complement of the largest open set where
f = 0 μ-a.e..

For any open setΩ ⊂ M, C(Ω) is the space of all continuous functions onΩ with sup-norm, and
Cc(Ω) is the subspace ofC(Ω) consisting of functions with compact supports. In the caseΩ = M we
writeC = C (M) andCc = Cc (M).

The lettersC andc are used to denote positive constants that are independent of the variables in
question, but may vary at each occurrence.

The relationu . v (resp.,u & v) between functionsu andv means thatu ≤ Cv (resp.,u ≥ Cv) for
a positive constantC and for a specified range of the variables. We writeu ' v if u & v & u.
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2 Basic setup

2.1 Volume doubling

Let (M,d, μ) be a metric measure space such that all the metric balls inM are precompact andμ
is a Radon measure onM with full support. It is known that if (M,d) is connected and (VD) holds
then

(RVD) ⇔ diamM = ∞ ⇔ μ (M) = ∞;

see [38, Corollary 5.3], [30, Theorem 1.1] or [18, Propositions 2.1 and 2.2]. Clearly, if both(VD) and
(RVD) are satisfied then 0< α− ≤ α+. If ( M,d, μ) satisfies (RVD) thenμ({x}) = 0 for all x ∈ M, so
that (M,d, μ) is non-atomic.

The conditions (VD) and (RVD) are known to hold on many families of metric measure spaces.
For example, (VD) and (RVD) are satisfied for the Euclidean spaceRn, convex unbounded domains
in Rn, Riemannian manifolds of non-negative Ricci curvature, nilpotent Lie groups, and on many
fractal-like spaces; see [5, 7, 17, 18, 32, 37, 38, 45, 54, 67, 72].

2.2 Dirichlet forms

Let (M,d, μ) be a metric measure space and (E,F ) be a Dirichlet form onL2, that is,E is a
symmetric, non-negative definite, closed, Markovian bilinear form inL2 with domainF that is a
dense subspace ofL2. The domainF is a Hilbert space endowed with the following norm:

‖u‖2F = E(u,u) + ‖u‖2L2.

The Dirichlet form (E,F ) is calledregular if F ∩ Cc is dense both inF (with respect to the norm
‖ ∙ ‖F ) and inCc (with respect to the supremum norm). For more information of Dirichlet forms, we
refer the reader to [28].

Definition 2.1. For any open setΩ ⊂ M and a setA b Ω, a cutoff functionφ of the pair (A,Ω) is a
functionφ ∈ F ∩ Cc(Ω) such that 0≤ φ ≤ 1 in M andφ = 1 in an open neighborhood ofA.

It is known that if (E,F ) is regular then, for any open setΩ ⊂ M and anyA b Ω, there exists
always a cutoff function of (A,Ω); see [28, p.27].

A Dirichlet form (E,F ) is calledstrongly localif E(u, v) = 0 for any two functionsu, v ∈ F with
compact supports such thatu = const in some open neighborhood of suppv.

Any Dirichlet form (E,F ) has the generator – a non-negative definite self-adjoint operatorL in
L2 such that dom(L) ⊂ F and

E (u, v) = (Lu, v) for all u ∈ dom(L) andv ∈ F .

For anyt ≥ 0 setPt = e−tL so thatPt is a bounded, self-adjoint, positivity preserving operator inL2.
The family {Pt}t≥0 is called theheat semigroupof (E,F ). If Pt for t > 0 has an integral kernel then
the latter is called the heat kernel and is denoted bypt (x, y) so that for allf ∈ L2 andt > 0,

Pt f (x) =
∫

M
pt (x, y) f (y) dμ (y) for μ-a.a.x ∈ M.

Let (E,F ) be a regular Dirichlet form inL2 (M, μ). For any non-empty open setΩ ⊂ M, define
F (Ω) as the closure ofF ∩ Cc (Ω) in F . ThenF (Ω) is dense inL2 (Ω) and(E,F (Ω)) is a regular
Dirichlet from in L2 (Ω), that is called the part of(E,F ) on Ω. Denote byLΩ the generator of
(E,F (Ω)) and by{PΩ

t } the corresponding heat semigroup. It is known that, for any 0≤ f ∈ L2 (Ω)
andt ≥ 0,

PΩ
t f ≤ Pt f .
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Set also
λmin (Ω) = inf specLΩ.

It is known that

λmin(Ω) = inf
u∈F (Ω)\{0}

E(u,u)

‖u‖2
L2

= inf
u∈(F∩Cc(Ω))\{0}

E(u,u)

‖u‖2
L2

(2.1)

2.3 Green function

The positivity preserving property of the heat semigroups allows to extendPt f from f ∈ L2 to all
non-negative measurable functionsu on M (of course, the value+∞ for Pt f is allowed in this case).
It is easy to verify that the semigroup propertyPt+s f = Pt (Psf ) holds also in this extended setting.

Define theGreen operator Gfor all non-negative measurable functionsf on M by

G f =
∫ ∞

0
Pt f dt.

Of course, the value+∞ is allowed forG f.
A functionG (x, y) on M × M is called theGreen function(or the Green kernel) if it takes values

in [0,+∞], is jointly measurable, non-negative, and satisfies for any non-negativef the identity

G f(x) =
∫

M
G(x, y) f (y) dμ(y) for μ-a.a.x ∈ M.

For instance, if the heat semigroup{Pt} has the heat kernelpt(x, y) then

G(x, y) =
∫ ∞

0
pt(x, y) dt

(although the integral here may diverge). Note that the Green function is always symmetric inx, y
which follows from the symmetry ofPt.

Let Ω be a non-empty open subset ofM. Denote byPΩ
t the heat semigroup of(E,F (Ω)) and by

GΩ the Green operator. It is known that, for any non-negativef ,

0 ≤ PΩ
t f ≤ Pt f for all t > 0,

whence also 0≤ GΩ f ≤ G f.

Remark 2.2. Assume thatλmin(Ω) > 0. Then the operatorLΩ has a bounded inverse inL2(Ω),
and (LΩ)−1 = GΩ|L2(Ω). In this caseGΩ has the following property: for anyf ∈ L2(Ω), we have
GΩ f ∈ F (Ω) and

E(GΩ f , φ) = ( f , φ) for all φ ∈ F (Ω); (2.2)

see [37, Lemma 5.1].

The following two-sided estimate (G)β for the Green functionG(x, y) are fundamental for us to
derive Hardy’s inequalities.

Definition 2.3. Given β > 0, we say that condition (G)β is satisfied if the Green functionG(x, y)
exists, is jointly continuous in (M × M) \ diag, and

G(x, y) '
d(x, y)β

V(x, y)
for all distinctx, y ∈ M. (G)β

Note that the estimate (G)β can be obtained from certain heat kernel bounds as follows.



9

Lemma 2.4. Assume that(M,d, μ) satisfies(VD) and that the heat kernel of(E,F ) exists. If the heat
kernel pt satisfies for all t> 0 andμ-a.a. x, y ∈ M the following inequality

pt (x, y) .
1

V
(
x, t1/β

) ∧
1

V (x, y)
, (2.3)

then

G(x, y) .
∫ ∞

d(x,y)

rβ−1

V(x, r)
dr, (2.4)

for μ-a.a. x, y ∈ M. If, for any t> 0 andμ-a.a. x, y ∈ M,

pt (x, y) &
1

V
(
x, t1/β

) provided d(x, y)β ≤ t, (2.5)

then

G(x, y) &
∫ ∞

d(x,y)

rβ−1

V(x, r)
dr (2.6)

for μ-a.a. x, y ∈ M.
Consequently, if both(2.3) and (2.5) are satisfied then

G(x, y) '
∫ ∞

d(x,y)

rβ−1

V(x, r)
dr, (2.7)

for μ-a.a. x, y ∈ M. Furthermore, if in addition(RVD) holds withα− > β then the Green function
satisfies(G)β.

Proof. Set for simplicityρ = d (x, y) . It follows from (2.5) that

G (x, y) &
∫ ∞

ρβ

dt

V
(
x, t1/β

) '
∫ ∞

ρ

βrβ−1dr
V (x, r)

,

which proves (2.6). It follows from (2.3) that

G (x, y).
∫ ∞

ρβ

dt

V
(
x, t1/β

) +
∫ ρβ

0

dt
V (x, ρ)

'
∫ ∞

ρ

βrβ−1dr
V (x, r)

+
ρβ

V (x, ρ)
.

It remains to observe that, by(VD),
∫ ∞

ρ

rβ−1dr
V (x, r)

≥
∫ 2ρ

ρ

rβ−1dr
V (x, r)

≥
ρβ

V (x,2ρ)
&

ρβ

V (x, ρ)
, (2.8)

whence (2.4) follows. Combining (2.6) and (2.4) gives (2.7).
If (RVD) is satisfied withα− > β then

∫ ∞

ρ

rβ−1

V(x, r)
dr =

ρβ

V (x, ρ)

∫ ∞

ρ

V (x, ρ) rβ

V(x, r)ρβ
dr
r

.
ρβ

V (x, ρ)

∫ ∞

ρ

(
ρ

r

)α−
(
r
ρ

)β dr
r

'
ρβ

V (x, ρ)

∫ ∞

1
s−(α−−β) ds

s

.
ρβ

V (x, ρ)
,

which together with (2.7) and (2.8) implies

G (x, y) '
∫ ∞

ρ

rβ−1

V(x, r)
dr '

ρβ

V (x, ρ)
,

that is (G)β. �
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Example 2.5. Assume that the heat kernelpt(x, y) on (M,d, μ) exists and satisfies the following sub-
Gaussian estimate: for allt > 0 andμ-a.a.x, y ∈ M,

pt(x, y) �
C

V(x, t1/β)
exp


−c

(
d(x, y)

t1/β

) β
β−1


 , (2.9)

whereβ > 1 is thewalk dimensionand the symbol� means that both inequalities with≤ and≥ are
satisfied but with different values of positive constantsC andc. For example, (2.9) is satisfied with
β = 2 on any Riemannian manifold of non-negative Ricci curvature (see [61]) as well as withβ > 2
on many fractal spaces (see Example5.12below).

Clearly, (2.9) implies both (2.3) and (2.5). Indeed, (2.3) and (2.5) are trivial in the caset ≥
d (x, y)β , while in the caset < d (x, y)β we have, settingr = d (x, y) ,

V (x, r) pt (x, y) .
V (x, r)

V
(
x, t1/β

) exp


−c

( r

t1/β

) β
β−1


 .

( r

t1/β

)α+
exp


−c

( r

t1/β

) β
β−1


 ≤ C

so that

pt (x, y) ≤
C

V (x, r)
,

which proves (2.3).

Example 2.6. For certain jump processes on fractal spaces the heat kernel satisfies the following
stable-like estimate

pt (x, y) '
1

V
(
x, t1/β

) ∧
t

V (x, y) d (x, y)β
; (2.10)

see [16]. For example, ifV (x, r) ' rα then (2.10) becomes

pt (x, y) '
1

tα/β
∧

t

d (x, y)α+β
'

1

tα/β

(

1+
d (x, y)

t1/β

)−(α+β)

.

This estimate is satisfied withα = n for a symmetric stable process inRn of indexβ.
If t ≥ d (x, y)β then (2.10) becomes

pt (x, y) '
1

V
(
x, t1/β

) ,

while in the caset < d (x, y)β inequality (2.10) implies

pt (x, y) '
t

V (x, y) d (x, y)β
≤

1
V (x, y)

.

Hence, in both cases the estimates (2.3) and (2.5) are satisfied, and by Lemma2.4the Green function
satisfies (G)β.

3 Hardy’s inequality for strongly local regular Dirichlet forms

In the setting of strongly local regular Dirichlet forms, in order to prove an abstract version of
Hardy’s inequality, we adopt the method of changing measures explained in introduction. The fol-
lowing theorem is the main result of this section.
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Theorem 3.1. Let (E,F ) be a strongly local regular Dirichlet form in L2 (M, μ). Assume that
λmin (Ω) > 0 for all precompact open setsΩ ⊂ M. Let h be a non-negative measurable function
on M such that

G (h∧ a) ∈ L∞loc (3.1)

for any positive constant a. Then, for any f∈ F ,
∫

M

h
Gh

f 2 dμ ≤ E( f , f ). (3.2)

Remark 3.2. If h andGh vanish simultaneously at some points then at these points we seth
Gh = 0.

Before the proof, let us recall some necessary notions from the theory of strongly local Dirichlet
forms. According to [28, Section 3.2] or [15, Section 4.3], for anyu ∈ F ∩ L∞, there exists a unique
positive Radon measureΓ(u,u) on M such that

∫

M
f dΓ(u,u) = E(u f,u) −

1
2
E(u2, f ) for all f ∈ F ∩ Cc.

This measureΓ(u,u) is called theenergy measureof u. For anyu, v ∈ F ∩ L∞, define a signed energy
measureΓ(u, v) by

∫

M
f dΓ(u, v) =

1
2

(
E(u f, v) + E(u, v f) − E(uv, f )

)
for all f ∈ F ∩ Cc.

Note thatΓ(u, v) is symmetric and bilinear, and it can be extended to allu, v ∈ F . It is known that

E(u, v) =
∫

M
dΓ(u, v) for all u, v ∈ F ; (3.3)

see, for example, [13] or [28, Lemma 3.2.3].
Let Floc be the space of allμ-measurable functionsu on M satisfying the following property: for

every precompact open subsetΩ ⊂ M there exists a functionu′ ∈ F such thatu = u′ μ-a.e. onΩ. The
locality of (E,F ) allows to extendE (u, v) to all u ∈ Floc andv ∈ Fc, whereFc denotes a subspace
of F consisting of functions with compact support. Indeed, there existsu′ ∈ F such thatu = u′ in
a neighborhood of suppv, andE (u′, v) is obviously independent of the choice ofu′, so that we set
E (u, v) := E (u′, v) . It follows that the identity (3.3) holds also foru ∈ Floc andv ∈ Fc.

It is known that the spaceF ∩ L∞ is closed under multiplication of functions; see, for example,
[28, Theorem 1.4.2(ii)]. This implies thatFloc ∩ L∞loc is closed under multiplication1.

For strongly local Dirichlet forms,Γ (u, v) can be extended to allu, v ∈ Floc; see [15, Theorem
4.3.11] and [68, p.189]. Moreover, by [68, p.190], we know thatΓ (u, v) satisfies the following Leibniz
product rule

dΓ(uv,w) = u dΓ(v,w) + v dΓ(u,w) for all u, v ∈ Floc ∩ L∞loc andw ∈ Floc. (3.4)

The following lemma is a key ingredient for the proof of Theorem3.1.

Lemma 3.3. Let (E,F ) be a strongly local regular Dirichlet form on L2(M, μ). If φ is a positive
measurable function on M such that

bothφ andφ−1 belong toFloc ∩ L∞loc, (3.5)

1Indeed, if f ,g ∈ Floc ∩ L∞loc then, for any precompact open setΩ, there existf ′,g′ ∈ F such thatf = f ′ andg = g′

in Ω. Both f ′ andg′ can be chosen to be bounded onM because otherwisef ′ can be replaced by( f ′ ∧C) ∨ (−C) for any
C > ‖ f ‖L∞(Ω), and the same is valid forg′. Hence,f ′g′ ∈ F ∩ L∞. Since f g = f ′g′ in Ω, we conclude thatf g ∈ Floc ∩ L∞loc.
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then

E( f , f ) − E(φ, φ−1 f 2) =
∫

M
φ2 dΓ(φ−1 f , φ−1 f ) ≥ 0 for all f ∈ Fc ∩ L∞. (3.6)

Consequently, we have
E(φ, φ−1 f 2) ≤ E( f , f ) for all f ∈ Fc ∩ L∞. (3.7)

Proof. Sinceφ−1 ∈ Floc ∩ L∞loc and both functionsf and f 2 lie in Fc ∩ L∞, we obtain

φ−1 f andφ−1 f 2 ∈ Fc ∩ L∞ (3.8)

(indeed, bothφ−1 f andφ−1 f 2 belong toFloc ∩ L∞loc and have compact supports). By (3.3) we have

E( f , f ) − E(φ, φ−1 f 2) =
∫

M
dΓ( f , f ) −

∫

M
dΓ(φ, φ−1 f 2).

Applying the Leibniz rule (3.4), we obtain

dΓ( f , f ) − dΓ(φ, φ−1 f 2) = dΓ
((
φ−1 f

)
φ, f

)
− dΓ

(
φ,

(
φ−1 f

)
f
)

=
(
φ−1 f dΓ(φ, f ) + φ dΓ(φ−1 f , f )

)
−

(
φ−1 f dΓ(φ, f ) + f dΓ(φ, φ−1 f )

)

= φ dΓ(φ−1 f , φφ−1 f ) − f dΓ(φ, φ−1 f )

=
(
φ2 dΓ(φ−1 f , φ−1 f ) + f dΓ(φ−1 f , φ)

)
− f dΓ(φ, φ−1 f )

= φ2 dΓ(φ−1 f , φ−1 f ),

whence it follows that

E( f , f ) − E(φ, φ−1 f 2) =
∫

M
φ2 dΓ(φ−1 f , φ−1 f ) ≥ 0.

This proves (3.6) and, hence, (3.7). �

Remark 3.4. If in addition to (3.5) assume thatφ ∈ dom(L) then

E(φ, φ−1 f 2) =
(
Lφ, φ−1 f 2

)
=

∫

M

Lφ
φ

f 2 dμ.

Hence, (3.7) becomes ∫

M

Lφ
φ

f 2 dμ ≤ E( f , f ),

which coincides with (1.2) when (M,d, μ) is a Riemannian manifold andL = −Δ. Moreover, by
the Leibniz rule (3.4), one can verify that the identity (3.6) coincides with [71, (3.2)] provided that
f satisfies additional conditions in terms ofφ and the generalized Laplace operator (that is defined
based on the energy measure).

Proof of Theorem3.1. It suffices to prove (3.2) for all f ∈ F ∩ Cc since for anyf ∈ F there exists a
sequence{ fn} from F ∩ Cc converging tof in F . Applying (3.2) to eachfn, passing to the limit as
n→ ∞ and using Fatou’s lemma in the left hand side, we obtain (3.2) for f .

Hence, we assume further thatf ∈ F ∩ Cc. LetΩ be a precompact open subset ofM containing
suppf so thatf ∈ F (Ω). Let a, ε be positive constants. Set

ha = h∧ a

and consider inΩ the function
φ = GΩha + ε.
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By (3.1), φ is bounded inΩ. Sinceλmin (Ω) > 0 andha ∈ L2 (Ω), we haveGΩha ∈ F (Ω) and,
hence,φ ∈ Floc (Ω) . Sinceφ ≥ ε, it follows thatφ−1 ∈ Floc ∩ L∞ (Ω) (indeed,φ−1 = F ◦ φ where
F (t) := ε−1 ∧ t−1 is Lipschitz; see [28, Theorem 1.4.2(v)]). Therefore,φ satisfies the hypotheses of
Lemma3.3 in Ω, and we conclude that

E(φ, φ−1 f 2) ≤ E( f , f ).

By (3.8) we haveφ−1 f 2 ∈ Fc (Ω), and by (2.2) and the strong locality

E(φ, φ−1 f 2)=E(GΩha + ε, φ
−1 f 2) = E(GΩha, φ

−1 f 2)

=
(
ha, φ

−1 f 2
)
=

∫

Ω

ha

GΩha + ε
f 2dμ

≥
∫

Ω

ha

Gh+ ε
f 2dμ

whence ∫

Ω

ha

Gh+ ε
f 2dμ ≤ E( f , f ).

Lettinga→ ∞, ε→ 0, andΩ→ M, we obtain (3.2). �

A non-negative measurable functionu on M is calledexcessiveif Ptu ≤ u for all t ≥ 0. Conse-
quently, ifu is excessive, thenPtu ≤ Psu for all t ≥ s≥ 0.

Corollary 3.5. Let (E,F ) be a strongly local regular Dirichlet form on L2 (M, μ). Assume that
λmin (Ω) > 0 for all precompact open setsΩ ⊂ M. Let u ∈ L∞loc be a positive excessive function
on M. Then, for any f∈ F ,

−
∫

M
f 2∂t log(Ptu) dμ ≤ E( f , f ). (3.9)

Proof. Fix t > 0 and set
h = −∂tPtu

so thath is a non-negative measurable function onM. We have

Gh=
∫ ∞

0
Psh ds= −

∫ ∞

0
Ps (∂tPtu) ds

=−
∫ ∞

0
∂t (Pt+su) ds= −

∫ ∞

0
∂s (Pt+su) ds

=−
∫ ∞

t
∂s (Psu) ds≤ Ptu.

Hence,
Gh≤ Ptu ≤ u

which implies thatGh ∈ L∞loc. By Theorem3.1we conclude that

∫

M

h
Gh

f 2dμ ≤ E ( f , f ) .

Observing that
h

Gh
≥
−∂tPtu

Ptu
= −∂t log(Ptu) ,

we obtain (3.9). �
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4 Hardy’s inequality for regular Dirichlet forms

In this section, we prove an analogue of Theorem3.1 for general (non-local) regular Dirichlet
forms. The main result is Theorem4.5below.

4.1 Extended Dirichlet forms

Given a regular Dirichlet form (E,F ) onL2, denote byFe the family of allμ-measurable functions
u on M such thatu is finiteμ-a.e. onM and there exists a sequence{un} ⊂ F such that

lim
n→∞

un = u μ-a.e. onM and lim
n,m→∞

E(un − um,un − um) = 0.

For anyu ∈ Fe, by [28, Theorem 1.5.2(i)], the limit

E(u,u) = lim
n→∞
E(un,un)

exists and does not depend on the choice of the sequence{un}. Moreover, by [28, Theorem 1.5.2(iii)],

F = Fe∩ L2.

The pair(E,Fe) is called anextended Dirichlet form.
As was discussed in the previous section, bothF ∩ L∞ andFloc ∩ L∞loc are closed under multipli-

cation of functions. The following lemma extends this property toFe.

Lemma 4.1. Assume that(E,F ) is a regular Dirichlet form on the metric measure space(M,d, μ).
Then, for any u∈ Fe∩ L∞loc and anyψ ∈ Fc ∩ L∞, we have

uψ ∈ F ∩ L∞. (4.1)

Consequently,
Fe∩ L∞loc ⊂ Floc. (4.2)

Proof. Let us first show that (4.1) implies (4.2). Indeed, given a functionu ∈ Fe∩ L∞loc and a precom-
pact open subsetΩ ⊂ M, we need to find a functiong ∈ F such thatu = g μ-a.e. onΩ. Let ψ be a
cutoff function ofΩ in M. By (4.1) we haveg := uψ ∈ F . Sinceg = u in Ω, we obtain (4.2).

Now let us prove (4.1). We use the following result [28, (1.3.18) and (1.4.8)]: for any Borel
measurable functionf on M,

f ∈ F ⇔ f ∈ L2 and lim
τ→∞
E(τ)( f , f ) < ∞, (4.3)

where

E(τ)( f , f ) =
τ

2

∫

M×M
( f (x) − f (y))2 dστ(x, y) + τ

∫

M
f 2sτ dμ (4.4)

for some positive symmetric Radon measureστ(∙, ∙) on M × M satisfyingστ(M, E) ≤ μ(E) for any
Borel measurable setE, andsτ is a function such that 0≤ sτ ≤ 1 onM. It is also known thatE(τ)( f , f )
is non-decreasing asτ → ∞ so that the limit in (4.3) always exists, finite or infinite. Moreover, by
[28, Theorem 1.5.2(i)-(ii)] if f ∈ Fe then

lim
τ→∞
E(τ)( f , f ) = E( f , f ) < ∞.

Let u ∈ Fe∩ L∞loc andψ ∈ Fc ∩ L∞. Without loss of generality we can assume thatu andψ are Borel
measurable. Clearly, we haveuψ ∈ L∞ ∩ L2 so that, by (4.3), in order to prove thatuψ ∈ F , it suffices
to verify that

lim
τ→∞
E(τ)(uψ, uψ) < ∞.
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Without loss of generality, we can assume that‖ψ‖L∞ = 1. The set{x ∈ M : |ψ (x)| > 1} is a Borel set
of μ-measure zero. Modifyingψ on this set by settingψ = 0 we can assume without loss of generality
that

|ψ (x)| ≤ 1 for all x ∈ M.

Let Ω be a precompact open set containing suppψ. Similarly, after modifyingψ on a Borel set of
μ-measure zero, we can assume thatψ (x) = 0 for all x ∈ Ωc.

Without loss of generality, we can also assume that‖u‖L∞(Ω) = 1. Modifying u on the Borel null
set{x ∈ Ω : u (x) > 1}, we can assume that

|u (x)| ≤ 1 for all x ∈ Ω.

Let us verify that, for allx, y ∈ M,

|u(x)ψ(x) − u(y)ψ(y)| ≤ |ψ(x) − ψ(y)| + |u(x) − u(y)| . (4.5)

Indeed, ifx, y ∈ Ω then

|u(x)ψ(x) − u(y)ψ(y)| ≤ |u(x)| |ψ(x) − ψ(y)| + |ψ(y)| |u(x) − u(y)|

≤ |ψ(x) − ψ(y)| + |u(x) − u(y)| .

If x ∈ Ωc andy ∈ Ω thenψ (x) = 0 and

|u(x)ψ(x) − u(y)ψ(y)| = |u(y)| |ψ(y)| = |u(y)| |ψ (x) − ψ(y)| ≤ |ψ(x) − ψ(y)| ,

and if x, y ∈ Ωc then|u(x)ψ(x) − u(y)ψ(y)| = 0.
It follows from (4.5) that

∫

M×M
((uψ)(x) − (uψ)(y))2 dστ(x, y)≤ 2

∫

M×M
(ψ(x) − ψ(y))2 dστ(x, y)

+2
∫

M×M
(u(x) − u(y))2 dστ(x, y).

Since|uψ| ≤ |u|, we have also ∫

M
(uψ)2 sτ dμ ≤

∫

M
u2sτ dμ.

From this and (4.4), it follows that

E(τ)(uψ, uψ) ≤ 2E(τ)(ψ, ψ) + 2E(τ)(u,u)

and, hence,
lim
τ→∞
E(τ)(uψ, uψ) ≤ 2 lim

τ→∞
E(τ)(ψ, ψ) + 2 lim

τ→∞
E(τ)(u,u) < ∞,

which finishes the proof. �

4.2 Transience of Dirichlet forms

According to [28, Section 1.5], a Dirichlet form (E,F ) is calledtransientif there exists a bounded
μ-measurable functiong that is strictly positiveμ-a.e. onM and such that

∫

M
|u|g dμ ≤

√
E(u,u) for all u ∈ F .
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By [28, Lemma 1.5.5], if(E,F ) is transient thenE (u, v) is an inner product inFe andFe with this
inner product is a Hilbert space. By [28, Theorem 1.5.4], if (E,F ) is transient, then, for any non-
negativeμ-measurable functionf on M satisfying

∫

M
fG f dμ < ∞,

we have thatG f ∈ Fe and

E(G f, φ) =
∫

M
fφ dμ for all φ ∈ Fe. (4.6)

As it follows from [28, Lemma 1.5.1], in order to show that (E,F ) is transient, it suffices to find a
μ-a.e. strictly positive functiong ∈ L1 such that

Gg(x) < ∞ for μ-a.a.x ∈ M. (4.7)

Lemma 4.2. If the Green function G(x, y) exists and belongs to L1
loc (M × M) then(E,F ) is transient.

Proof. It suffices to construct a strictly positive functiong ∈ L1 such that

Gg ∈ L1
loc,

which will imply (4.7). Observe first that ifA andB are precompact subsets ofM then

∫

B
G1Adμ =

∫

B

(∫

A
G (x, y) dμ (y)

)

dμ (x) = ‖G‖L1(B×A) < ∞. (4.8)

Fix a pointxo ∈ M, setBk = B(xo,2k),

A0 = B0, Ak = Bk \ Bk−1 for k ≥ 1,

and defineg by

g =

∞∑

k=0

ck1Ak,

where{ck}∞k=0 is sequence of positive reals yet to be determined. Clearly,g > 0 on M. By (4.8) we
have, for all indicesk,n, ∫

Bn

G1Akdμ = ‖G‖L1(Bn×Ak)

and, hence,
∫

Bn

Ggdμ =

∞∑

k=0

ck ‖G‖L1(Bn×Ak) . (4.9)

Chooseck for all k = 0,1, ... so thatck ‖G‖L1(Bk×Ak) ≤ 2−k. Then the series in (4.9) converges for any
n, whenceGg ∈ L1

loc follows. �

Corollary 4.3. If (M,d, μ) satisfies(VD) and, for someβ > 0.

G (x, y) .
d (x, y)β

V (x, y)
for μ-a.a. distinct x, y ∈ M,

then(E,F ) is transient. In particular,(VD) + (G)β imply the transience.
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Proof. Indeed, by (VD), we have, for allx ∈ M andR ∈ (0,∞),

∫

B(x,R)

d(x, y)β

V(x, y)
dμ(y) =

∞∑

j=0

∫

B(x,2− jR)\B(x,2−( j+1)R)

d(x, y)β

V(x, y)
dμ(y)

≤
∞∑

j=0

(2− jR)β
V(x,2− jR)

V(x,2−( j+1)R)

≤ CD

∞∑

j=0

(2− jR)β

' Rβ. (4.10)

Now, for any ballB (xo,R), we obtain, using (4.10),

∫

B(xo,R)

∫

B(xo,R)
G (x, y) dμ (y) dμ (x).

∫

B(xo,R)

(∫

B(xo,R)

d(x, y)β

V(x, y)
dμ(y)

)

dμ (x)

≤
∫

B(xo,R)

(∫

B(x,2R)

d(x, y)β

V(x, y)
dμ(y)

)

dμ (x)

.
∫

B(xo,R)
Rβdμ (x) < ∞,

which impliesG ∈ L1
loc (M × M). Hence,(E,F ) is transient by Lemma4.2. �

4.3 Admissible functions and Hardy’s inequality

Definition 4.4. Let G be the Green operator of a Dirichlet form. A positiveμ-measurable functionh
on M is called(μ,G)-admissible if it satisfies the following three conditions:

(i) Gh ∈ L∞loc;

(ii ) (Gh)−1 ∈ L∞loc;

(iii )
∫

M
hGh dμ < ∞.

The next theorem is our main result about Hardy’s inequality for general regular Dirichlet forms.

Theorem 4.5. Let (E,F ) be a regular Dirichlet form on(M,d, μ) and G be its Green operator. If h is
a (μ,G)-admissible function on M, then the following Hardy’s inequality holds:

∫

M

h
Gh

f 2dμ ≤ E( f , f ) for all f ∈ F . (4.11)

Remark 4.6. If (E,F ) is strongly local then Theorem3.1 gives the same Hardy’s inequality (4.11)
under a weaker hypothesis (3.1) instead of(μ,G)-admissibility.

Proof. Due to the regularity of the Dirichlet form (E,F ), it suffices to show (4.11) for all f ∈ F ∩Cc

(see the proof of Theorem3.1).
Let us first verify that if a (μ,G)-admissible functionh exists then(E,F ) is transient. Indeed, it

suffices to construct a positive functiong ∈ L1 such thatg ≤ h (then (4.7) is satisfied byGh ∈ L∞loc).
Indeed, define a sequence{Ak}∞k=0 of subsets ofM as in Lemma4.2, choose positiveck so that

ckμ (Ak) ≤ 2−k,
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and set
g (x) = min {ck,h (x)} if x ∈ Ak.

Clearly, 0< g ≤ h and ∫

Ak

g dμ ≤ ckμ (Ak) ≤ 2−k

whenceg ∈ L1 follows.
By [28, Theorem 1.5.4], the condition (iii ) of Definition 4.4 and the transience of (E,F ) imply

that
w := Gh ∈ Fe. (4.12)

The condition (i) of Definition4.4, that is,w ∈ L∞loc, and (4.12) imply by Lemma4.1that

w ∈ Floc.

By condition (ii ) of Definition 4.4, for any ballB ⊂ M there isε > 0 such thatw ≥ ε in B. By
using [28, Theorem 1.4.2(v)], we conclude thatw−1 ∈ Floc (indeed, we havew−1 = F ◦ w, where
F(t) := ε−1∧ t−1 is a Lipschitz function). Hence,w−1 ∈ Floc∩L∞loc. It follows that, for anyf ∈ F ∩Cc,

w−1 f 2 ∈ F ⊂ Fe. (4.13)

By the transience of (E,F ) and (4.6), we obtain

∫

M

h
Gh

f 2 dμ =

∫

M
h
(
w−1 f 2

)
dμ = E(Gh,w−1 f 2) = E(w,w−1 f 2).

Hence, the proof of (4.11) amounts to verifying that

E(w,w−1 f 2) ≤ E( f , f ) for all f ∈ F ∩ Cc. (4.14)

According to [28, Lemma 4.5.4, Theorem 4.5.2] and [28, Theorem 7.2.1], a regular Dirichlet formE
admits a Beurling-Deny and LeJan decomposition: for allu, v ∈ Fe,

E(u, v) = E(c)(u, v) +
∫

M×M
(ũ(x) − ũ(y)) (ṽ(x) − ṽ(y)) dJ(x, y) +

∫

M
ũ(x)ṽ(x) dk(x), (4.15)

whereE(c) is a strongly local symmetric form with domainFe, ũ and ṽ denote quasi continuous
versions ofu and v, J is a symmetric positive Radon measure on (M × M) \ diag (the jumping
measure) andk is a positive Radon measure onM (the killing measure).

Let noww be a quasi continuous version ofGh. Thenw−1 f 2 andw−1 f are also quasi continuous.
By (4.12), (4.13) and (4.15), we have

E(w,w−1 f 2) = E(c)(w,w−1 f 2) (4.16)

+

∫

(M×M)\diag
(w(x) − w(y))

(
w(x)−1 f (x)2 − w(y)−1 f (y)2

)
dJ(x, y)

+

∫

M
w(x)w(x)−1 f (x)2 dk(x).

By f ∈ F ∩ Cc and (4.15), we have

E( f , f ) = E(c)( f , f ) +
∫

(M×M)\diag
( f (x) − f (y))2 dJ(x, y) +

∫

M
f (x)2dk(x) . (4.17)
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In order to prove (4.14), we compare the corresponding terms in the right hand sides of (4.16) and
(4.17). Clearly, the third terms in the the right hand sides of (4.16) and (4.17) are equal to each other.
Since bothw andw−1 are inFloc ∩ L∞loc, the argument in Lemma3.3shows that

E(c)(w,w−1 f 2) ≤ E(c)( f , f ).

Finally, in order to compare the middle terms, observe that, for allx, y ∈ M,

(w(x) − w(y))
(
w(x)−1 f (x)2 − w(y)−1 f (y)2

)

= f (x)2 + f (y)2 − w(x)w(y)−1 f (y)2 − w(y)w(x)−1 f (x)2

=
(
f (x) − f (y)

)2
+ 2 f (x) f (y) − w(x)w(y)

(
w(y)−1 f (y)

)2
− w(y)w(x)

(
w(x)−1 f (x)

)2

=
(
f (x) − f (y)

)2
+ w(x)w(y)

[
2w(x)−1 f (x)w(y)−1 f (y) −

(
w(y)−1 f (y)

)2
−

(
w(x)−1 f (x)

)2
]

=
(
f (x) − f (y)

)2
− w(x)w(y)

(
w(x)−1 f (x) − w(y)−1 f (y)

)2

≤
(
f (x) − f (y)

)2
.

This proves (4.14) and, hence, (4.11). �

Remark 4.7. As we see from the proof, the positivity of the functionh was used only in the first part
in order to prove that(E,F ) is transient. If it is known a priori that(E,F ) is transient then we can
allow h to be non-positive provided all the conditions (i)-(iii ) of Definition4.4are satisfied.

We conclude this section with the following corollary.

Corollary 4.8. Let (E,F ) be a regular Dirichlet form on(M,d, μ), andL be its generator. If a
positive functionφ ∈ dom(L) satisfiesφ, φ−1 ∈ L∞loc and

∫
M
φLφ dμ < ∞, then

∫

M

Lφ
φ

f 2 dμ ≤ E( f , f ) for all f ∈ F . (4.18)

Proof. Indeed, applying Theorem4.5with h = Lφ and observing thatφ = Gh, we obtain (4.18) from
(4.11). �

5 Some “classical” versions of Hardy’s inequality

In this section, we mainly apply Theorem4.5to obtain various versions of Hardy’s inequality on
metric measure spaces, which are generalizations of classical/discrete/fractional Hardy’s inequality.

5.1 Discrete Hardy’s inequality

We show here how Theorem4.5yields a discrete Hardy’s inequality inZn, wheren ∈ N. For any
k = (k1, . . . , kn) ∈ Zn, we set

‖k‖ = |k1| + ∙ ∙ ∙ + |kn|

and define the graph structure inZn as follows: fork,m ∈ Zn we say thatk andm are neighbors and
write k ∼ m if ‖k−m‖ = 1.

Define for alls≥ 1 the function

ω (s) =
∞∑

i=1

(
4i
2i

)
1

24i−1(4i − 1)
1
s2i

=
1

4s2
+

5
64s4

+
21

512s6
+ ∙ ∙ ∙ .

Denote
Γ =

{
k = (k1, . . . , kn) ∈ Zn : ki = 0 for somei = 1, ..., n

}
.
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Theorem 5.1. For any function f: Zn → R such that f∈ l2 (Zn) and f|Γ = 0, the following discrete
Hardy’s inequality holds:

2n
∑

k∈Zn\{0}

ω(‖k‖) f (k)2 ≤
∑

{k,m∈Zn:m∼k}

| f (m) − f (k)|2. (5.1)

Sinceω (s) ≥ 1
4s2 , the inequality (5.1) implies

n
2

∑

k∈Zn\{0}

f (k)2

‖k‖2
≤

∑

{k,m∈Zn:m∼k}

| f (m) − f (k)|2.

If n = 1 and a functionf : Z→ R vanishes fork ≤ 0, we derive from (5.1) that

∞∑

k=1

ω (k) f (k)2 ≤
∞∑

k=1

( f (k) − f (k− 1))2 . (5.2)

This inequality was proved in [52, 53] and shown there to be optimal. Of course, (5.2) implies the
classical discrete Hardy’s inequality

1
4

∞∑

k=1

f (k)2

k2
≤
∞∑

k=1

( f (k) − f (k− 1))2 ,

where the constant 1/4 is the best possible; see [49, p. 239].
Let us compare (5.1) with the result of [53, Theorems 0.2 and 7.2] that says the following: if

n ≥ 3 then, for any finitely supported functionϕ onZn,

2
∑

k∈Zn\{0}

w(‖k‖)ϕ(k)2 ≤
∑

{k,m∈Zn:m∼k}

|ϕ(m) − ϕ(k)|2, (5.3)

wherew is an optimal Hardy weight that has the following asymptotic behaviour:

w (s) =
(n− 2)2

4s2
+ O

(
1
s3

)

ass→ ∞.

The corresponding weight in (5.1) is

nω (s) =
n

4s2
+ O

(
1
s3

)

ass→ ∞.

For n ≥ 5 the weightw is obviously better, forn = 4 the weights are equivalent:w (s) ∼ nω (s) as
s → ∞, while for n = 3 the weightnω (s) is better thanw (s) by a factor 3. This is not surprising
because the class of functionsf in (5.1) has a restrictionf |Γ = 0 while functionsϕ in (5.3) must
only be finitely supported. For the same reason, (5.1) holds also forn = 1,2 while for (5.3) n ≥ 3 is
required.

Proof of Theorem5.1. Define the distance onZn by d(k,m) = ‖k−m‖ and letμ be the degree measure,
that is,μ (k) = 2n for all k ∈ Zn. The Dirichlet form (E,F ) onZn is given by

E( f , f ) =
1
2

∑

{k.m∈Zn:m∼k}

| f (m) − f (k)|2,

whereF = l2 (Zn) . The discrete LaplacianΔ is defined on all functionsf : Zn→ R by

Δ f (k) =
1
2n

∑

m∼k

( f (m) − f (k)) , k ∈ Zn.
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It is known that the generatorL of (E,F ) coincides with−Δ|l2; see [51].
Consider the setΩ = Zn \ Γ and the function space

F (Ω) = { f ∈ F : f |Γ = 0}

so that(E,F (Ω)) is the part of(E,F ) onΩ. For anyN ∈ N, consider the following function onZn:

φN(k) =




‖k‖

1
2 = (|k1| + ∙ ∙ ∙ + |kn|)

1
2 if 0 ≤ ‖k‖ ≤ N

N
1
2 if ‖k‖ > N.

Clearly, if ‖k‖ > N then

ΔφN (k) = 0.

For anyk ∈ Ω with 0 < ‖k‖ ≤ N − 1, there existn verticesm ∼ k satisfyingφN(m) = (‖k‖ + 1)
1
2 , and

anothern verticesm∼ k satisfyingφN(m) = (‖k‖ − 1)
1
2 , which implies that

−
ΔφN(k)
φN(k)

=
1
2n

∑

m∼k

φN(k) − φN(m)
φN(k)

=
2‖k‖

1
2 − (‖k‖ + 1)

1
2 − (‖k‖ − 1)

1
2

2‖k‖
1
2

=
1
2


2−

(

1+
1
‖k‖

) 1
2

−

(

1−
1
‖k‖

) 1
2

 .

Using the Taylor expansions of the functionst 7→ (1+ t)
1
2 andt 7→ (1− t)

1
2 that converge in[−1,1],

we obtain

2− (1+ t)
1
2 − (1− t)

1
2 = 2−

∞∑

j=0

1
2(1

2 − 1) ∙ ∙ ∙ (1
2 − j + 1)

j!
t j

−
∞∑

j=0

1
2(1

2 − 1) ∙ ∙ ∙ (1
2 − j + 1)

j!
(−t) j

=−2
∞∑

i=1

1
2(1

2 − 1) ∙ ∙ ∙ (1
2 − 2i + 1)

(2i)!
t2i

= 2
∞∑

i=1

1 ∙ 3 ∙ 5 ∙ ∙ ∙ ∙ ∙ (4i − 3)
22i(2i)!

t2i

=

∞∑

i=1

(
4i
2i

)
t2i

24i−1(4i − 1)
= ω

(
1
t

)

It follows that

−
ΔφN(k)
φN(k)

=
1
2
ω (‖k‖) for all k ∈ Ω with 0 < ‖k‖ ≤ N − 1.

If k ∈ Ω and‖k‖ = N, then there existn verticesm∼ k satisfyingφN(m) = (‖k‖ − 1)
1
2 = (N − 1)

1
2 , and

anothern verticesm∼ k satisfyingφN(m) = N
1
2 , which implies that

−
ΔφN(k)
φN(k)

=
1
2



N

1
2 − (N − 1)

1
2

N
1
2


 .
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Hence, we obtain that, for allk ∈ Ω,

−
ΔφN (k)

φN (k)
= ηN (k) :=

1
2





ω (‖k‖) if 0 < ‖k‖ ≤ N − 1
N

1
2−(N−1)

1
2

N
1
2

if ‖k‖ = N

0 if ‖k‖ ≥ N.

(5.4)

SethN = φNηN so that
− ΔφN = hN in Ω. (5.5)

Note thatφN ≥ 0 andhN ≥ 0 in Ω. In particular, the functionφN is non-negative and superharmonic
in Ω (let us mention that outsideΩ it may happen that−ΔφN < 0, for example,−ΔφN (0) < 0). Since
φN is non-constant, it follows that that(E,F (Ω)) is transient. In particular, the Green functionGΩ

exists. It follows from (5.5) by the comparison principle that

φN ≥ GΩhN in Ω. (5.6)

It is easy to see that the functionh = hN satisfies inΩ all the conditions (i)-(iii ) of Definition 4.4.
Indeed, (i) holds by (5.6), (ii ) holds becauseGΩhN > 0 by the strong minimum principle for super-
harmonic functions on graphs, and (iii ) holds becausehN has finite support.

By Remark4.7, we can apply Theorem4.5with h = hN and conclude that, for allf ∈ F (Ω),
∫

Ω

hN

GΩhN
f 2 dμ ≤ E( f , f ). (5.7)

The left-hand side here can be estimated by (5.6) and (5.4) as follows:
∫

Ω

hN

GΩhN
f 2 dμ ≥

∫

Ω

hN

φN
f 2 dμ =

∫

Ω

ηN f 2 dμ ≥
∑

0<‖k‖<N

1
2
ω (‖k‖) f (k)22n.

Combining with (5.7) and lettingN→ ∞, we obtain (5.1). �

5.2 Hardy’s inequality and distance function

In this subsection we obtain an explicit form of Hardy’s inequality under the hypotheses(VD) , (RVD)
and(G)β . For that, we construct explicitly (μ,G)-admissible functions that can be used in Theorem
4.5. The main result is stated in Theorem5.6below.

Let us begin with the following Selberg-type integral formula on (M,d, μ).

Lemma 5.2. Assume that(M,d, μ) satisfies(VD) and (RVD) with lower volume dimensionα−. If β
andε are positive reals such thatβ + ε < α−, then the following estimate

∫

M

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) '

d(x, y)β+ε

V(x, y)
(5.8)

holds uniformly for all distinct x, y∈ M.

Proof. By condition (RVD), there exists a large constantK > 2 such that for allx ∈ M andR> 0,

V (x,KR)
V (x,R)

≥ 2. (5.9)

Setr = d (x, y) . In order to prove the lower bound in (5.8), observe first that

d(x, z) <
r
2
⇒ d(y, z) ' r, (5.10)
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whence
∫

M

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z)≥

∫

B(x,r/2)\B(x,r/2K)

d(x, z)β

V(x, z)
d(y, z)ε

V(y, z)
dμ(z)

'
rβ+ε

V(x, r)2
(V (x, r/2) − V (x, r/2K)) .

Using further (5.9), we obtain

∫

M

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) &

rβ+ε

V(x, r)2

1
2

V (x, r/2) '
rβ+ε

V(x, r)
.

Before we prove the upper bound in (5.8), observe that, by (4.10), for anyσ ∈ (0,∞) andR ∈ (0,∞),
∫

B(x,R)

d(x, z)σ

V(x, z)
dμ(z) . Rσ. (5.11)

Let us prove that, if 0< θ < α−, then

∫

B(x,R)c

d(x, z)θ

V(x, z)2
dμ(z) .

Rθ

V(x,R)
(5.12)

uniformly in x ∈ M andR ∈ (0,∞). Indeed, applying (RVD) andθ < α−, we obtain

∫

B(x,R)c

d(x, z)θ

V(x, z)2
dμ(z) ≤

∞∑

j=0

∫

B(x,2 j+1R)\B(x,2 jR)

d(x, z)θ

V(x, z)2
dμ(z)

.
∞∑

j=0

(2 j+1R)θ

V(x,2 jR)

.
Rθ

V(x,R)

∞∑

j=0

2 jθ V(x,R)
V(x,2 jR)

.
Rθ

V(x,R)

∞∑

j=0

2 j(θ−α−) '
Rθ

V(x,R)
,

which proves (5.12).
Now, we use (5.11) and (5.12) to verify the upper bound in (5.8). Using (5.10) and (5.11), we

obtain
∫

B(x,r/2)

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) '

rε

V(x, r)

∫

B(x,r/2)

d(x, z)β

V(x, z)
dμ(z) .

rβ+ε

V(x, r)
. (5.13)

Similarly, if r/2 ≤ d(z, x) < 2r, then

d(z, y) ≤ d(z, x) + d(x, y) < 3r and V(x, z) ' V(x, r),

which, together with (5.11) implies

∫

B(x.2r)\B(x,r/2)

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) '

rβ

V(x, r)

∫

B(y,3r)

d(z, y)ε

V(z, y)
dμ(z) .

rβ+ε

V(x, r)
. (5.14)

For anyz ∈ M satisfyingd(z, x) ≥ 2r, we have by (VD) that

d(z, y) ' d(x, z) and V(z, y) ' V(x, z),
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which yields by (5.12) andβ + ε < α− that

∫

B(x,2r)c

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) '

∫

B(x,2r)c

d(x, z)β+ε

V(x, z)2
dμ(z) .

rβ+ε

V(x, r)
. (5.15)

Adding up (5.13), (5.14) and (5.15), we conclude that

∫

M

d(x, z)β

V(x, z)
d(z, y)ε

V(z, y)
dμ(z) .

rβ+ε

V(x, r)
,

which finishes the proof of (5.8). �

Remark 5.3. The Selberg integral formula [66, p. 118, (6)] inRn says that, ifa1,a2 are positive reals
satisfyinga1 + a2 > n, then for all distinctx, y ∈ Rn,

∫

Rn
|x− z|−a1 |z− y|−a2 dz= Cn,a1,a2 |x− y|n−a1−a2, (5.16)

where

Cn,a1,a2 = π
n
2
Γ(n−a1

2 )Γ(n−a2
2 )Γ(a1+a2−n

2 )

Γ(a1
2 )Γ(a2

2 )Γ(2n−a1−a2
2 )

.

The inequality (5.8) can be regarded as a generalization of the identity (5.16).

We use Lemma5.2 in order to construct a functionh that is admissible in the sense of Definition
4.4.

Lemma 5.4. Assume that(M,d, μ) satisfies(VD) and (RVD) with lower volume dimensionα−. Let
β andε be positive reals such thatβ + ε < α− and let the Green function G(x, y) satisfy(G)β. Fix an
arbitrary point xo ∈ M, a realρ > 0 and define

h(x) =





ρε

V(xo,ρ) if d(xo, x) < ρ
d(xo,x)ε

V(xo,x) if d(xo, x) ≥ ρ.
(5.17)

Then, the Green potential of h satisfies

inf
B(xo,R)

Gh> 0 for all R ∈ (0,∞) (5.18)

and

Gh(x) ≤ C





ρβ+ε

V(xo,ρ) if d(xo, x) < 2ρ
d(xo,x)β+ε

V(xo,x) if d(xo, x) ≥ 2ρ
(5.19)

where C is a positive constant independent of x, xo andρ.

Proof. The inequality (5.18) follows from infB(xo,R) h > 0 and

inf
x,y∈B(xo,R)

G (x, y) ' inf
x,y∈B(xo,R)

d (x, y)β

V (x, y)
&

Rβ

V (xo,R)
> 0. (5.20)

Indeed, for anyx, y ∈ B(xo,R), settingr = d (x, y), we obtain thatr < 2Rand

Rβ

V (xo,R)
�

rβ

V (x, r)
=

V (x, r)
V (xo,R)

(R
r

)β
'

V (x, r)
V (x,2R)

(R
r

)β
.

( r
2R

)α− (R
r

)β
=

( r
R

)α−−β
. 1,

which proves (5.20) and, hence, (5.18).
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In order to prove (5.19), we apply (G)β, (5.17) and split the integral in the definition ofGh into
two parts as follows:

Gh(x) '
∫

M

d(x, y)β

V(x, y)
h(y) dμ(y)

'
∫

B(xo,ρ)

d(x, y)β

V(x, y)
ρε

V(xo, ρ)
dμ(y) +

∫

B(xo,ρ)c

d(x, y)β

V(x, y)
d(xo, y)ε

V(xo, y)
dμ(y)

=: I1 + I2. (5.21)

Setr = d (xo, x). We estimateI1 andI2 in (5.21) by considering two cases:r ≥ 2ρ andr < 2ρ.
Case r ≥ 2ρ. If y ∈ B (xo, ρ) then

d (x, y) ≤ d (xo, x) + d (xo, y) < r + ρ < 2r

and
d (x, y) ≥ d (xo, x) − d (xo, y) > r − ρ > r/2

so that
d(x, y) ' r and V(x, y) ' V(xo, r).

It follows that

I1 '
∫

B(xo,ρ)

rβ

V(xo, r)
ρε

V(xo, ρ)
dμ(y) '

rβρε

V(xo, r)
.

rβ+ε

V(xo, r)
.

By Lemma5.2, we have

I2 .
rβ+ε

V(xo, r)
.

Combining the last two estimates and (5.21), we obtain

Gh(x) .
rβ+ε

V(xo, r)
provided r ≥ 2ρ.

Caser < 2ρ. In this case, applying (5.11) gives

I1 '
ρε

V(xo, ρ)

∫

B(xo,ρ)

d(x, y)β

V(x, y)
dμ(y) .

ρβ+ε

V(xo, ρ)
.

So, it remains to estimateI2. By (VD) and (5.11) we obtain

∫

B(xo,4ρ)\B(xo,ρ)

d(x, y)β

V(x, y)
d(xo, y)ε

V(xo, y)
dμ(y)'

ρε

V(xo, ρ)

∫

B(xo,4ρ)\B(xo,ρ)

d(x, y)β

V(x, y)
dμ(y)

.
ρβ+ε

V(xo, ρ)
. (5.22)

If y ∈ B (xo,4ρ)c, thenr < 1
2d (xo, y) and

d (x, y) ≤ d (xo, y) + d (xo, x) < 2d (xo, y)

and

d (x, y) ≥ d (xo, y) − d (xo, x) >
1
2

d (xo, y) ,

whence
V(x, y) ' V (xo, y) .
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Using also (5.12), we obtain

∫

B(xo,4ρ)c

d(x, y)β

V(x, y)
d(xo, y)ε

V(xo, y)
dμ(y) '

∫

B(xo,4ρ)c

d(xo, y)β+ε

V(xo, y)2
dμ(y) .

ρβ+ε

V(xo, ρ)
. (5.23)

Combining (5.22) and (5.23) yields

I2 .
ρβ+ε

V(xo, ρ)
.

Substituting the estimates ofI1 andI2 into (5.21), we obtain

Gh(x) .
ρβ+ε

V(xo, ρ)
provided r < 2ρ,

which finishes the proof of (5.19). �

Corollary 5.5. Under the hypotheses of Lemma5.4, assume thatβ + 2ε < α−. Then the function h in
(5.17) is (μ,G)-admissible.

Proof. Note that (5.18) and (5.19) imply thath satisfies the conditions (i) and (ii ) of Definition 4.4.
Let us verify the remaining condition (iii ) in Definition4.4. By (5.19), (5.11), (5.12) andβ+2ε < α−,
we obtain

∫

M
h Gh dμ =

(∫

B(xo,ρ)
+

∫

B(xo,2ρ)\B(xo,ρ)
+

∫

B(xo,2ρ)c

)

h Gh dμ

.
∫

B(xo,ρ)

ρε

V(xo, ρ)
ρβ+ε

V(xo, ρ)
dμ(x)

+

∫

B(xo,2ρ)\B(xo,ρ)

d(xo, x)ε

V(xo, x)
ρβ+ε

V(xo, ρ)
dμ(x)

+

∫

B(xo,2ρ)c

d(xo, x)ε

V(xo, x)
d(xo, x)β+ε

V(xo, x)
dμ(x)

.
ρβ+2ε

V(xo, ρ)
< ∞,

which finishes the proof. �

Applying Theorem4.5with the admissible functionh as in (5.17), we derive Hardy’s inequality
(1.6).

Theorem 5.6. Assume that(M,d, μ) satisfies(VD) and(RVD) with lower volume dimensionα−. Let
(E,F ) be a regular Dirichlet form on M that satisfies(G)β with 0 < β < α−. Then there exists a
positive constant C depending only on the constants in the hypotheses, such that, for all xo ∈ M and
f ∈ F ,

∫

M

f (x)2

d(xo, x)β
dμ(x) ≤ CE( f , f ). (5.24)

Proof. Choose a numberε such that 0< 2ε < α−−β. For thisε andρ ∈ (0,∞), we define the function
h as in (5.17) and adopt all other notation from Lemma5.4. By Corollary5.5, h is (μ,G)-admissible.
By Theorem4.5we conclude that, for allf ∈ F ,

∫

M
f 2 h

Gh
dμ ≤ E( f , f ). (5.25)
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Applying (5.17) and (5.19), we obtain

∫

M
f 2 h

Gh
dμ ≥

∫

B(xo,2ρ)c
f 2 h

Gh
dμ &

∫

B(xo,2ρ)c

f (x)2

d(xo, x)β
dμ(x)

with implicit constant independent ofxo andρ. Substituting the last estimate into (5.25) and letting
ρ→ 0, we obtain

∫

M

f (x)2

d(xo, x)β
dμ(x) = lim

ρ→0

∫

B(xo,2ρ)c

f (x)2

d(xo, x)β
dμ(x) . E( f , f ),

which concludes the proof. �

As an example of application, we apply Theorem5.6to deduce the following estimate ofλmin (Ω).

Corollary 5.7. Under the assumptions of Theorem5.6, for any non-empty open boundedΩ ⊂ M, we
have

λmin(Ω) &
(
diam(Ω)

)−β
. (5.26)

Proof. SetD = diamΩ, fix a pointxo ∈ Ω and letu ∈ F ∩ Cc(Ω). We have suppu ⊂ Ω and

‖u‖2L2 =

∫

B(xo,D)
|u(x)|2 dμ(x) ≤

∫

M

(
D

d(x, xo)

)β
|u(x)|2 dμ(x).

By Theorem5.6, we have ∫

M

u(x)2

d(xo, x)β
dμ(x) . E(u,u).

Combining the last two inequalities yields

‖u‖2L2 . DβE(u,u),

which implies (5.26) by (2.1). �

If (E,F ) is strongly local then the proof of Theorem5.6 simplifies as in this case we can apply
Theorem3.1 instead of Theorem4.5and, hence, do not need Corollary5.5.

Corollary 5.8. Assume that(M,d, μ) satisfies(VD) and(RVD) with lower volume dimensionα− > 2.
Let (E,F ) be a strongly local regular Dirichlet form in L2 (M, μ) such that the Green function G(x, y)
is jointly continuous in M× M \ diagand

G(x, y) ≤ C
d(x, y)2

V(x, y)
for all distinct x, y ∈ M. (G≤)2

Assume thatλmin (Ω) > 0 for all precompact open setsΩ ⊂ M. Then there exists a positive constant
C such that for all xo ∈ M and f ∈ F ,

∫

M

f (x)2

d(xo, x)2
dμ(x) ≤ CE( f , f ). (5.27)

Proof. Following the lines in Lemma5.4(takeβ = 2 therein), we obtain by (G≤)2 that the functionh
in (5.17) still satisfies (5.19), so that

h(x)
Gh(x)

& d(xo, x)2 if d(xo, x) ≥ 2ρ
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with implicit constants independent ofxo ∈ M andρ ∈ (0,∞). For the functionh in (5.17), it is
obvious that (G≤)2 implies

G (h∧ a) ∈ L∞loc

for any positive constanta. Thus, by (3.2) in Theorem3.1, we obtain
∫

M

f (x)2

d(xo, x)2
dμ(x) . E( f , f ) for all f ∈ F .

�

Remark 5.9. Let M be a complete non-compact Riemannian manifold,d the geodesic distance and
μ the Riemannian volume. Let(E,F ) be the canonical Dirichlet form onM that is,

E ( f , f ) =
∫

M
|∇ f |2 dμ, (5.28)

where f ∈ F = W1,2 (M) . Assume thatM satisfies therelative Faber-Krahn inequality: for all balls
B (x,R) in M and for all open setsΩ ⊂ B (x,R),

λmin (Ω) ≥
c

R2

(
V (x,R)
μ (Ω)

)ε
, (5.29)

wherec, ε are positive constants. By [31, Proposition 5.2], (5.29) implies that the heat kernel onM
satisfies the Gaussian upper bound (UE)2 which further implies (G≤)2 by Lemma2.4. Besides, (5.29)
implies also(VD), and the latter implies(RVD) provided that diamM = ∞. Assuming in addition
thatα− > 2, we can then apply Corollary5.8and obtain Hardy’s inequality (5.27).

For example, consider a manifold with endsM = Rn#Rn with n > 2 where # stands for a con-
nected sum. Note that onRn#Rn the Faber-Krahn inequality (5.29) holds by [44]. It is easy to see
that (VD) and(RVD) hold onRn#Rn with α− = α+ = n. Hence, Corollary5.8 yields the Hardy’s
inequality (5.27) onRn#Rn.

Note that (G)2 does not hold onRn#Rn (cf. [43]), so that Theorem5.6 is not applicable in the
caseM = Rn#Rn. For further results on manifolds with ends see also [41].

5.3 Subordinated Green function and fractional Hardy’s inequality

For anyδ ∈ (0,1) the operatorLδ generates thesubordinatedheat semigroup{e−tLδ}t≥0 and the
associated Dirichlet form (E(δ),F (δ)). It is well known that (cf. [73] and [32, Section 5.4])

e−tLδ =

∫ ∞

0
η(δ)

t (s)e−sL ds for all t ≥ 0,

where{η(δ)
t (s)}t≥0 is a family of non-negative continuous functions on [0,∞) that is called asubor-

dinator. Moreover, if (E,F ) is regular, then (E(δ),F (δ)) is also regular; see [63, Proposition 3.1]. If
{e−tL}t≥0 has the heat kernelpt (x, y) then{e−tLδ}t≥0 has the heat kernel

p(δ)
t (x, y) =

∫ ∞

0
η(δ)

t (s)ps(x, y) ds for all x, y ∈ M.

Using the following identity from [63, (6)]
∫ ∞

0
η(δ)

t (s) dt =
sδ−1

Γ(δ)
for all s> 0,

we obtain the following expression for the subordinated Green functionG(δ):

G(δ)(x, y) =
∫ ∞

0
p(δ)

t (x, y) dt =
∫ ∞

0

∫ ∞

0
η(δ)

t (s)ps(x, y) ds dt= cδ

∫ ∞

0
sδ−1ps(x, y) ds. (5.30)
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Theorem 5.10. Assume that(M,d, μ) satisfies(VD) and (RVD) with lower volume dimensionα−.
Let (E,F ) be a regular Dirichlet form on M. Assume that the heat kernel of(E,F ) exists and satisfies
(2.3) and (2.5) for someβ ∈ (0, α−). Then, for anyδ ∈ (0,1), the subordinated Green kernel G(δ)

satisfies

G(δ)(x, y) '
d(x, y)δβ

V(x, y)
for distinct x, y ∈ M. (G(δ))β

Consequently, there exists a constant C> 0 such that, for all f∈ F (δ),

∫

M

f (x)2

d(xo, x)βδ
dμ(x) ≤ CE(δ)( f , f ). (5.31)

Proof. The inequality (5.31) follows directly from Theorem5.6 and (G(δ))β. Let us verify that the
subordinated Green kernelG(δ) satisfies (G(δ))β. By (5.30), (2.5) and (VD), we obtain the lower bound
of G(δ):

G(δ)(x, y) ≥ cδ

∫ 2d(x,y)β

d(x,y)β
sδ−1ps(x, y) ds&

∫ 2d(x,y)β

d(x,y)β

sδ−1

V
(
x, s1/β) ds'

d(x, y)δβ

V(x, y)
.

Recall that, by Lemma2.4, (2.3) and (2.5) imply (G)β. Applying (5.30), (2.3) and (G)β, we obtain
the upper bound ofG(δ):

G(δ)(x, y) = cδ




∫ d(x,y)β

0
+

∫ ∞

d(x,y)β


 sδ−1ps(x, y) ds

.
∫ d(x,y)β

0

sδ−1

V(x, y)
ds+ d(x, y)β(δ−1)

∫ ∞

d(x,y)β
ps(x, y) ds

.
d(x, y)δβ

V(x, y)
+ d(x, y)β(δ−1)G(x, y) '

d(x, y)δβ

V(x, y)
,

which finishes the proof. �

Example 5.11. In Rn (n ≥ 3) the following fractional version of Hardy’s inequality is known: if
δ ∈ (0,1) then

cn,δ

∫

Rn

f (x)2

|x|2δ
dx≤

∫

Rn

∣∣∣∣(−Δ)
δ
2 f (x)

∣∣∣∣
2

dx for all f ∈ C∞c (Rn), (5.32)

where the constantcn,δ :=
(

2δΓ( n+2δ
4 )

Γ( n−2δ
4 )

)2
is the best possible (see [10, p. 1873, Corollary 1]). Observe

that (1.1) can be viewed as the limiting case of (5.32) asδ→ 1:

cn,1

∫

Rn

f (x)2

|x|2
dx≤

∫

Rn
|∇ f (x)|2 dx for all f ∈ C∞c (Rn), (5.33)

wherecn,1 =

(
2Γ( n+2

4 )

Γ( n−2
4 )

)2
=

(
n−2

2

)2
is also best possible.

Consider inRn (n ≥ 3) the Dirichlet form (E,F ) where

E( f , f ) =
∫

Rn
|∇ f |2 dx (5.34)

and
f ∈ F = W1,2 = { f ∈ L2(Rn) : ∇ f ∈ L2(Rn)}. (5.35)
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The generator of (E,F ) is the Laplacian−Δ = −
∑n

j=1 ∂
2
xj
, the heat kernel{pt}t>0 of the heat semigroup

{etΔ}t≥0 is the Gauss-Weierstrass function

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

,

and the Green function is given by

G(x, y) =
∫ ∞

0
pt(x, y) dt =

Γ(n−2
2 )

4πn/2
|x− y|2−n. (5.36)

For the subordinated Dirichlet form (E(δ),F (δ)) we have

F (δ) =

{

f ∈ L2 (
Rn) :

∫

Rn

∫

Rn

| f (x) − f (y)|2

|x− y|n+2δ
dx dy< ∞

}

and

E(δ)( f , f ) =
(
(−Δ)δ f , f

)
=

∫

Rn

∣∣∣∣(−Δ)
δ
2 f (x)

∣∣∣∣
2

dx for f ∈ F (δ);

see [32, Theorem 5.2]. Hence, by Theorem5.10(resp., Theorem5.6) with β = 2 we obtain (5.32)
(resp., (5.33)) with someconstantcn,δ > 0.

Let us show how Theorem4.5yields (5.32) and (5.33) with the sharp constantcn,δ. To unify the
notation, denote by (E(1),F (1)) the Dirichlet form (E,F ), whereE andF are as in (5.34) and (5.35).
Moreover, denote byG(1) the Green functionG in (5.36). From [66, p. 117] it follows that

G(δ)(x, y) =
Γ(n−2δ

2 )

4δπn/2Γ(δ)
|x− y|2δ−n.

Applying Theorem4.5 to (E(δ),F (δ)) andG(δ), we have Hardy’s inequality (4.11), where we choose
the admissible functionh to be

hr (x) =




rε−n, |x| ≤ r

|x|ε−n, |x| > r,

wherer > 0 and 0< ε < n− 2δ. Now let in (4.11) r → 0. By the Selberg integral formula in (5.16)
(see also [66, p. 118, (6)]), we obtain

lim
r→0

hr (x)
G(δ)hr (x)

=
|x|ε−n

Γ( n−2δ
2 )

4δπn/2Γ(δ)

∫
Rn |x− y|2δ−n|y|ε−n dy

=
22δΓ(2δ+ε

2 )Γ(n−ε
2 )

Γ( ε2)Γ(n−2δ−ε
2 )

1
|x|2δ

.

Taking hereε = n−2δ
2 , we obtain

lim
r→0

hr (x)
G(δ)hr (x)

=



2δΓ(n+2δ

4 )

Γ(n−2δ
4 )




2
1
|x|2δ

=
cn,δ

|x|2δ
,

which implies (5.32) and (5.33).

Example 5.12. Let us show how Theorem5.6 can be applied on fractal spaces. Most fractals can
be regarded as a metric measure space(M,d, μ) that isα-regular for someα > 0. On large families
of fractals it was possible to construct a strongly local Dirichlet form(E,F ) that is self-similar with
respect to the fractal structure and, moreover, the corresponding heat kernel satisfies the following
sub-Gaussian bounds

pt (x, y) �
C

tα/β
exp


−c

(
dβ(x, y)

t

) 1
β−1


 (5.37)
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with someβ ≥ 2. For the Sierpinski gasket this was done by Barlow and Perkins [9], for p.c.f.
fractals by Kigami [54] and for generalized Sierpinski carpets – by Barlow and Bass [7] (see also
[5, 32, 55, 67] for the further development of this subject). Moreover, it follows from [6] that, for any
pair of realsα, β satisfying

2 ≤ β ≤ α + 1,

there exists anα-regular metric measure space(M,d, μ) and a strongly local regular Dirichlet form
(E,F ) on L2 (M, μ) such that the heat kernel of(E,F ) satisfies (5.37).

If α > β in (5.37) then, integrating this estimate int, we obtain by Lemma2.4 the following
estimate for the Green function:

G (x, y) ' d (x, y)β−α

that is equivalent to(G)β. Hence, by Theorem5.6we obtain Hardy’s inequality (5.24). In this setting
the parametersα, β can take arbitrary values within the restriction

2 ≤ β < α.

Fix now someδ ∈ (0,1) and consider the subordinated Dirichlet form
(
E(δ),F (δ)

)
on L2 (M, μ) .

Then the heat kernelp(δ)
t of

(
E(δ),F (δ)

)
satisfies the following estimate

p(δ)
t (x, y) '

1

tα/β
′

(

1+
d (x, y)

t1/β
′

)−(α+β′)

whereβ′ = βδ (see [32] or [35]). If δ is small enough so thatα > β′ then, integrating this estimate in
t, we obtain the following estimate for the Green function:

G(δ) (x, y) ' d (x, y)β
′−α .

Hence, by Theorem5.6, we obtain the following Hardy’s inequality
∫

M

f (x)2

d(xo, x)β′
dμ(x) ≤ CE(δ)( f , f ).

Note thatα andβ′ can take here arbitrary values with the only restriction

0 < β′ < α.

The Sierpinski gasket and carpet satisfy (5.37) but with β > α. A bounded Sierpinski carper is
shown on Fig.1. In this case we haveα =

log 8
log 3 andβ ≈ 2.09> α. Nevertheless, we still have Hardy’s

inequality forE(δ) providedδ < α/β.
In order to get explicit examples withβ < α, consider ageneralized Sierpinski carpet SC(a,b, k)

constructed in [7]. Herea,b, k are integers such thatk ≥ 2, a > b ≥ 1 anda = bmod 2. Divide the
unit cube[0,1]k ⊂ Rk into ak equal cubes of sidea−1 and take out the central block ofbk such cubes.
Then repeat this procedures with each of the remaining cubes of sidea−1, etc. In the end one obtains
a compact subset of[0,1]k that is calledSC(a,b, k) . For example, the Sierpinski carpet on Fig.1 is
SC(3,1,2) .

We need an unbounded version ofSC(a,b, k) that is obtained by gluing together countably many
appropriately scaled compact versions. The resulting unbounded fractal isα-regular with

α =
logN
loga

,

whereN = ak − bk, and admits a strongly local Dirichlet form with the heat kernel bound (5.37) for
someβ > 2. The exact value of the walk dimensionβ is unknown but it is known that

β <
log(Ns)

loga
,
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Figure 1: The bounded Sierpinski carpet.

wheres = a
ak−1−bk−1 . Clearly, if s < 1 then we obtain the desired conditionβ < α. In particular, we

haves< 1 providedk ≥ 3 because in this case

ak−1 − bk−1 > (a− b) ak−2 = a (a− b) ak−3 ≥ a.

Therefore, Theorem5.6applies on any generalized Sierpinski carpetSC(a,b, k) with k ≥ 3.

6 Green functions and heat kernels

The main goal of this section is to show the equivalence between the Green function estimate
(G)β and the upper/lower bound of the heat kernel. This equivalence will be used in Section7 in
order to obtain a weighted Hardy’s inequality.

6.1 Statement of Theorem6.1

The following theorem is the main result of this section.

Theorem 6.1. Assume that(E,F ) is a strongly local regular Dirichlet form on the metric measure
space(M,d, μ) that satisfies(VD) and (RVD) with lower volume dimensionα−. Then, for any0 <

β < α−, the following two statements are equivalent:

(i) the Green function G(x, y) exists, is jointly continuous off-diagonal, and satisfies(G)β;

(ii) the heat kernel pt(x, y) exists, is Hölder continuous in x, y ∈ M, and satisfies the following
upper bound estimate

pt(x, y) ≤
C

V(x, t1/β)
exp




−c

(
d(x, y)

t1/β

) β
β−1





(UE)β

as well as the near-diagonal lower bound estimate

pt(x, y) ≥
C−1

V(x, t1/β)
when d(x, y) < εt1/β (NLE )β

for all x, y ∈ M and all t ∈ (0,∞), where C and c, ε are positive constants.

Combining Theorems6.1and5.10, we have the following fractional version of Hardy’s inequality
for strongly local Dirichlet forms.
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Corollary 6.2. Assume that(M,d, μ) satisfies(VD) and(RVD) with lower volume dimensionα−. Let
(E,F ) be a strongly local regular Dirichlet form on M and satisfies(G)β for someβ ∈ (0, α−). Then,
given anyδ ∈ (0,1), the subordinated Green kernel G(δ) satisfies(G(δ))β. Moreover, there exists a
constant C> 0 such that, for all f∈ F (δ),

∫

M

f (x)2

d(xo, x)βδ
dμ(x) ≤ CE(δ)( f , f ).

6.2 Overview of the proof of Theorem6.1

The detailed proof of Theorem6.1 is presented in the subsections below. Here we give an
overview of the proof. In Section6.3 we prove the implication (ii ) ⇒ (i). The estimates and the
continuity of the Green functions follow from similar properties of the heat kernel upon integration
in time.

The proof of the implication (i) ⇒ (ii ) is much more involved. For that we need the following
definitions.

Definition 6.3. LetΩ ⊂ M be an open subset. A functionu ∈ F is said to beharmonicin Ω if

E(u, φ) = 0 for all φ ∈ F (Ω).

A functionu ∈ F is said to besuperharmonic(resp.,subharmonic) in Ω if

E(u, φ) ≥ 0 ( resp.,E(u, φ) ≤ 0) for all 0≤ φ ∈ F (Ω).

Definition 6.4. We say that theelliptic Harnack inequality(H) holds if there exist constantsC ∈
(1,∞) andδ ∈ (0,1) such that, for any ballB ⊂ M and for any functionu ∈ F that is harmonic and
non-negative inB,

esssup
x∈δB

u(x) ≤ C essinf
x∈δB

u(x). (H)

Definition 6.5. We say that the mean exit time estimate (E)β holds if there exist constantsC ∈ (1,∞)
andδ ∈ (0,1) such that, for any ballB ⊂ M of radiusr > 0, the restricted Green operatorGB exists
and satisfies

C−1rβ ≤ essinf
x∈δB

GB1(x) ≤ esssup
x∈B

GB1(x) ≤ Crβ. (E)β

It is known that (UE)β + (NLE )β ⇔ (E)β + (H); see [46, Theorem 7.4]. We show in Sections6.5
and6.6that (G)β ⇒ (E)β and (G)β ⇒ (H), thus yielding (i)⇒ (ii ).

6.3 Proof of (UE)β + (NLE )β ⇒ (G)β

Proof of Theorem6.1 (ii )⇒ (i). Since the heat kernel is Ḧolder continuous inx, y ∈ M, the Green
function can be then defined pointwise by the identity

G (x, y) =
∫ ∞

0
pt (x, y) dt. (6.1)

The estimate (G)β of the Green function has been already proved in Lemma2.4; see also Example
2.5.

Let us now prove the continuity ofG (x, y) off-diagonal. By (6.1) we have

|G (x, y) −G (xo, y)| ≤
∫ ∞

0
|pt (x, y) − pt (xo, y)| dt. (6.2)
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Next, we will use the following elementary estimate: if 0≤ a < 1 then for allx ∈ M andR ∈ (0,∞),
∫ ∞

0
t−a

(
1

V
(
x, t1/β

) ∧
1

V (x,R)

)

dt .
R(1−a)β

V (x,R)
. (6.3)

Indeed, using(RVD) andaβ + α− > β, we obtain
∫ ∞

Rβ
t−a 1

V
(
x, t1/β

)dt =
1

V (x,R)

∫ ∞

Rβ
t−a V (x,R)

V
(
x, t1/β

)dt

.
1

V (x,R)

∫ ∞

Rβ
t−a

( R

t1/β

)α−
dt

'
1

V (x,R)

∫ 1

0

( s
R

)aβ
sα−βRβs−(β+1)ds

'
βR(1−a)β

V (x,R)

∫ 1

0
saβ+α−−β−1ds'

R(1−a)β

V (x,R)
.

By a < 1 we have also
∫ Rβ

0
t−a 1

V (x,R)
dt '

R(1−a)β

V (x,R)
,

whence (6.3) follows.
For anyx ∈ M and positivet,R, consider the cylinder

D ((t, x) ,R) = B (x,R) × (t − Rβ, t].

It was proved in [8, Corollary 4.2] that(UE)β + (NLE )β imply the following property: there exist
θ, δ ∈ (0,1) such that, for any continuous caloric functionu in D ((t, xo) ,R) and for allx ∈ B (xo, δR)

|u (t, x) − u (t, xo)| .

(
d (x, xo)

R

)θ
osc

(s,z)∈D((t,xo),R)
u (s, z) .

Fix y ∈ M so thatu (t, x) = pt (x, y) is a non-negative continuous caloric function onM × (0,∞). Fix
also distinct pointsx, xo ∈ M and setr = d (x, xo). For anyt > T := 2(r/δ)β, if we takeR = (t/2)1/β

(this implies thatd(x, xo) < δR), then the functionu is caloric in the cylinderD ((t, xo) ,R), which
implies that

|pt (x, y) − pt (xo, y)| .
( r
R

)θ
sup

t/2≤s≤t
sup

z∈B(xo,R)
ps (y, z) . (6.4)

For s ∈ [t/2, t] we have by(UE)β that

ps (y, z) .
1

V
(
y, t1/β

) exp


−c

(
d (y, z)

t1/β

) β
β−1


 .

Since
d (y, z) ≥ d (y, xo) − d (xo, z) ≥ d (y, xo) − R= d (y, xo) − (t/2)1/β ,

it follows that

ps (y, z) .
1

V
(
y, t1/β

) exp


−c

(
d (y, xo)

t1/β

) β
β−1


 .

1

V
(
y, t1/β

) ∧
1

V (y, xo)
.

See Example2.5 for the last formula. Substituting into (6.4), we conclude that, for allt > T :=
2(r/δ)β,

|pt (x, y) − pt (xo, y)| .
( r

t1/β

)θ ( 1

V
(
y, t1/β

) ∧
1

V (y, xo)

)

.
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Applying (6.3) with a = θ/β (here we may as well assume thatθ is small enough satisfyingθ < β),
we obtain

∫ ∞

T
|pt (x, y) − pt (xo, y)| dt .

∫ ∞

T

( r

t1/β

)θ ( 1

V
(
y, t1/β

) ∧
1

V (y, xo)

)

dt . rθ
d (xo, y)β−θ

V (xo, y)
.

Similarly, we obtain

∫ T

0
pt (x, y) dt ≤

∫ T

0

(T
t

)θ/β
pt (x, y) dt .

∫ ∞

0

(
rβ

t

)θ/β ( 1

V
(
y, t1/β

) ∧
1

V (y, x)

)

dt . rθ
d (x, y)β−θ

V (x, y)

and ∫ T

0
pt (xo, y) dt . rθ

d (xo, y)β−θ

V (xo, y)
.

Substituting the above three estimates into (6.2), we obtain

|G (x, y) −G (xo, y)| . rθ
d (xo, y)β−θ

V (xo, y)
+ rθ

d (x, y)β−θ

V (x, y)
,

which proves the locally uniform Ḧolder continuity ofG (∙, y) in M \ {y} with the Hölder exponentθ.
SinceG (x, y) is symmetric, this implies a joint continuity ofG (x, y) in (x, y) ∈ (M × M) \ diag. �

6.4 Existence of the restricted Green function

Lemma 6.6. Let (VD), (RVD) and(G)β be satisfied with0 < β < α−. Then the following are true.

(i) For any ball B ⊂ M, there exists a non-negative symmetric function GB(x, y) that is jointly
measurable in x, y ∈ B and satisfies

GB f (x) =
∫

B
GB(x, y) f (y) dμ(y) for all f ∈ L2(B) andμ-a.a. x∈ B. (6.5)

(ii) There exist constantsε ∈ (0,1) and C > 0 such that, for any ball B, the restricted Green
function GB(x, y) satisfies

GB(x, y) ≤ C
d (x, y)β

V (x, y)
for μ-a.a. x, y ∈ B (6.6)

and

GB(x, y) ≥ C−1d (x, y)β

V (x, y)
for μ-a.a. x, y ∈ εB. (6.7)

Proof. By Corollary5.7we have, for any ballB = B (xo,R),

λmin (B) & (diam(B))−β > 0.

By Remark2.2, the operatorLB has a bounded inverse inL2 (B), and the latter is exactly the restricted
Green operatorGB. Besides, we have

0 ≤ GB f ≤ G f for all 0 ≤ f ∈ L2(B).

Let us now prove the existence of the integral kernel ofGB. For that, we will prove that, for any
0 < δ < 1, the operatorG −GB acting fromL2 (δB) to L2 (B), has an integral kernel. By [38, Lemma
3.3], for the existence of the integral kernel, it suffices to prove that

∥∥∥G −GB
∥∥∥

L2(δB)→L∞(B) < ∞,
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that is, ∥∥∥G f −GB f
∥∥∥

L∞(B) . ‖ f ‖L2 for any 0≤ f ∈ L2 (δB) . (6.8)

The functionG f −GB f is harmonic inB. Due toλmin(B) > 0, we can apply the maximum principle
for harmonic functions (see [37, Lemma 4.1]) and obtain, for anyλ ∈ (δ, 1)

0 ≤ esssup
B

(
G f −GB f

)
≤ esssup

B\λB

(
G f −GB f

)

≤ esssup
x∈B\(λB)

G f (x) . sup
x∈B\(λB)

∫

δB

d (x, y)β

V (x, y)
f (y) dμ(y).

Since for allx, y in the above expression

(λ − δ) R< d (x, y) < 2R,

it follows that

d (x, y)β

V (x, y)
≤

(2R)β

V (x, (λ − δ) R)
. (λ − δ)α+

Rβ

V (x,R)
. (λ − δ)α+

Rβ

V (xo,R)
.

Therefore, we have
∥∥∥G f −GB f

∥∥∥
L∞(B) . (λ − δ)α+

Rβ

V (xo,R)
‖ f ‖L1 , (6.9)

whence (6.8) follows. Hence, the operatorG − GB has an integral kernel, sayKδ (x, y) that is a
non-negative jointly measurable function inB× δB.

Clearly, the family{Kδ}δ∈(0,1) of kernels is consistent in the sense that, for all 0< δ′ < δ′′ < 1,

Kδ′(x, y) = Kδ′′(x, y) for μ-a.a.x ∈ B andy ∈ δ′B.

Choose a sequenceδk ↗ 1 and define inB× B the kernel

K(x, y) = Kδk(x, y) for μ-a.a.x ∈ B and y ∈ δkB.

Finally, we define the Green functionGB by

GB (x, y) = G (x, y) − K (x, y) .

Similarly to the proof of [37, (5.8)], one shows thatGB satisfies (6.5).
Because the operatorGB is positivity preserving, it follows from [38, Lemma 3.2] that

GB(x, y) ≥ 0 for μ-a.a.x, y ∈ B.

Moreover, by the symmetry ofE, we have, for allf ,g ∈ F (B),

( f ,GBg) = E(GB f ,GBg) = E(GBg,GB f ) = (g,GB f ),

which implies that
GB(x, y) = GB(y, x) for μ-a.a.x, y ∈ B.

By constructionGB (x, y) ≤ G (x, y) so that the upper bound (6.6) of GB (x, y) follows from (G)β.
In order to prove the lower bound (6.7) of GB (x, y), it suffices to verify that, for all 0≤ f ∈ L2 (εB),

essinf
εB

GB f (x) &
∫

εB

d (x, y)β

V (x, y)
f (y) dμ (y) ,
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whereε > 0 is yet to be determined. Fix the parametersδ andλ from the previous part of the proof,
for example, setδ = 1

2 andλ = 3
4. Assuming thatε < 1

2, we obtain by (6.9)

∥∥∥G f −GB f
∥∥∥

L∞(B) ≤ C
Rβ

V (xo,R)
‖ f ‖L1

so that, forμ-a.a.x ∈ εB,

GB f (x) ≥
∫

εB
G (x, y) f (y) dμ −C

Rβ

V (xo,R)

∫

εB
f dμ. (6.10)

Let us show that the second term in the right hand side of (6.10) is a small fraction of the first one.
Since

G (x, y) &
d (x, y)β

V (x, y)
,

so it suffices to verify that, for allx, y ∈ εB,

Rβ

V (xo,R)
≤ c (ε)

d (x, y)β

V (x, y)
, (6.11)

wherec (ε)→ 0 asε→ 0. Indeed, settingr = d (x, y), we obtain

Rβ

V (xo,R)
�

rβ

V (x, r)
=

V (x, r)
V (xo,R)

(R
r

)β
≤

V (x, r)
V (x,R/2)

(R
r

)β
.

( r
R

)α− (R
r

)β
=

(R
r

)β−α−
. εα−−β.

Sinceα− > β, this proves (6.11) with c (ε) = Cεα−−β. It follows that

GB f (x) ≥ (1−Cc(ε)) G f (x)

and, hence,
GB (x, y) ≥ (1−Cc(ε)) G (x, y) for μ-a.a.x, y ∈ εB. (6.12)

By choosingε small enough we obtain (6.7). �

6.5 (G)β implies (E)β

Proposition 6.7. Let (VD), (RVD) and(G)β be satisfied and0 < β < α−. Then

(G)β ⇒ (E)β.

Proof. Fix a ballB = B(xo,R) ⊂ M. Then we obtain from (4.10) that

esssup
B

GB1 ≤ esssup
B

G1B . Rβ.

Chooseδ = ε whereε is the constant from (6.7). Then, forμ-a.a.x ∈ δB,

GB1(x) ≥
∫

δB
GB (x, y) dμ (y) &

∫

δB

d (x, y)β

V (x, y)
dμ (y) .

Using (6.11), we conclude

GB1(x) &
Rβ

V (xo,R)
V (xo, δR) & Rβ,

which finishes the proof of (E)β. �
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6.6 (G)β implies (H)

Proposition 6.8. Let (VD), (RVD) and(G)β be satisfied and0 < β < α−. Then

(G)β ⇒ (H).

Proof. If the restricted Green functionsGB are continuous off-diagonal then this was proved in [37,
Theorem 3.12 and Lemma 8.2]. Without the continuity ofGB, the key ingredient of the proof – [37,
Lemma 6.2(ii)], breaks down2. To overcome this difficulty, we have developed here a new approach.

Let u ∈ F be non-negative and harmonic in a ballB = B(xo,R) ⊂ M. We need to prove that

esssup
δB

u ≤ C essinf
δB

u (6.13)

for some constantsC ∈ (1,∞) andδ ∈ (0,1) independent ofB. Without loss of generality, we can
assume thatu ∈ L∞; see [46, p. 1280, Theorem 7.4] for how to remove this additional assumption.
Also, by replacingu by u+, we can assume without loss of generality thatu ≥ 0 onM.

By (6.12), there exists a smallε ∈ (0, 1
4) so that for any ballB

1
2

G(x, y) ≤ GB(x, y) ≤ G(x, y) for μ-a.a.x, y ∈ εB. (6.14)

Let us fix thisε and use it in what follows. The further proof will be split into three steps.
Step 1. Riesz measure and a reduced function.Fix B = B (xo,R) and consider also the ball

B1 =
ε

2
B.

By [37, Lemma 6.4], there exists thereduced function̂u of u with respect to (B1, B) such that
• û ∈ F (B);
• û = u in B1 and 0≤ û ≤ u in M;
• û is harmonic inB \ B1 and superharmonic inB.

See Fig.2 below.

Figure 2: Functionsu andû.

By [37, Lemma 6.2(i)], there exists a regular non-negative Borel measureσ in B such that
∫

B
ϕ dσ = E(û, ϕ) for all ϕ ∈ F ∩ Cc(B). (6.15)

The measureσ is called theRiesz measureof the superharmonic function ˆu. Moreover, the proof
of [37, Lemma 6.2(i)] shows thatσ does not charge any open set where ˆu is harmonic. Since ˆu is

2Note that a posterioriGB is still continuous off-diagonal which follows from (H).
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harmonic in the both setsB1 andB\B1, we obtain that suppσ ⊂ ∂B1 =: S. Consequently, the domain
of integration in (6.15) can be reduced toS.

Step 2.LetΩ be an open neighborhood ofS = ∂B1, such thatΩ ⊂ B, for example,

Ω = (1+ τ) B1 \ (1− τ) B1

with a smallτ ∈
(
0, 1

2

)
. Consider also the ball

B2 :=
1
2

B1 =
ε

4
B

so thatB2 andΩ are disjoint; see Fig.3.

B B1

Ω
S

B2

xo

Figure 3: The setsB, B1, B2, Ω, S.

Fix a cutoff functionψ of (S,Ω). The aim of this step is to show that, for any function

0 ≤ φ ∈ F ∩ Cc(B2), (6.16)

the following inequality holds:

1
2
E(û, ψGφ) ≤ (u, φ) ≤ E(û, ψGφ); (6.17)

see Fig.4.
By Remark2.2, both functionsGBφ and (1− ψ)GBφ belong toF (B). Since (1− ψ)GBφ vanishes

in an open neighbourhood ofS, we conclude by [37, Proposition A.3] that

(1− ψ)GBφ ∈ F (B \ S).

Sinceû is harmonicB \ S we have

E(û, (1− ψ)GBφ) = 0. (6.18)

Sinceu = û in B1, φ is supported inB1, andû ∈ F (B), we obtain, using Remark2.2and (6.18) that

(u, φ) = (û, φ) = E(û,GBφ)

= E(û, ψGBφ) + E(û, (1− ψ)GBφ)
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Figure 4: Functionsφ andψ.

= E(û, ψGBφ). (6.19)

By (6.14) we have
1
2

Gφ ≤ GBφ ≤ Gφ μ-a.a. inεB.

Since suppψ ⊂ 2B1 = εB, it follows that

1
2
ψGφ ≤ ψGBφ ≤ ψGφ μ-a.a. inB.

Since both functionsψGφ andψGBφ belong toF (B) andû is superharmonic inB, we obtain

1
2
E(û, ψGφ) ≤ E(û, ψGBφ) ≤ E(û, ψGφ).

This inequality together with (6.19) yields (6.17).
Step 3. Now we can prove the Harnack inequality (6.13). As before, letψ be a fixed cutoff

function of(S,Ω) andφ be any function satisfying (6.16). Since suppψ ∩ suppφ = ∅ and the Green
functionG (x, y) is jointly continuous off-diagonal, the functionψ(x)G(x, y)φ(y) is jointly continuous
in (x, y) ∈ M × M. Clearly, we also haveψGφ ∈ F ∩ Cc (B). Applying (6.15) with ϕ = ψGφ and the
Fubini theorem, we obtain

E(û, ψGφ) =
∫

S
ψ(x)Gφ(x) dσ(x)

=

∫

S
ψ (x)

(∫

B2

G(x, y)φ(y) dμ(y)

)

dσ(x)

=

∫

B2

(∫

S
ψ (x) G(x, y) dσ(x)

)

φ(y) dμ(y)

=

∫

B2

(∫

S
G(x, y) dσ(x)

)

φ(y) dμ(y),

where in the last step we have used thatψ = 1 onS. Combining with (6.17), we obtain

1
2

∫

B2

(∫

S
G(x, y) dσ(x)

)

φ(y) dμ(y) ≤ (u, φ) ≤
∫

B2

(∫

S
G(x, y) dσ(x)

)

φ(y) dμ(y).

Since this is true for any non-negativeφ ∈ F ∩Cc(B2) andF ∩Cc(B2) is dense inL2(B2), we conclude
that

1
2

∫

S
G(x, y) dσ(x) ≤ u(y) ≤

∫

S
G(x, y) dσ(x) for μ-a.a.y ∈ B2.
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Since(G)β implies

G(x, y) '
Rβ

V(xo,R)
for all x ∈ S andy ∈ B2,

we deduce that

u(y) '
Rβ

V(xo,R)
σ(S) for μ-a.a.y ∈ B2.

Hence, the Harnack inequality (6.13) holds withδ = 1
4ε. �

7 Weighted Hardy’s inequality for strongly local Dirichlet forms

Let (M,d, μ) be a metric measure space and(E,F ) be a strongly local Dirichlet form onL2 (M, μ).
The main aim of this section is to obtain a weighted version of Hardy’s inequality for strongly local
Dirichlet forms.

7.1 Weighted Dirichlet form and weighted Hardy’s inequality

For all x, y ∈ M, define

di(x, y) = sup{u(x) − u(y) : u ∈ F ∩ Cc, dΓ(u,u) ≤ dμ} .

The functiondi (x, y) is called theintrinsic metricof (E,F ) . In generaldi (x, y) is a pseudo-distance.
Let us introduce the following hypotheses(H1)-(H3) that will be used in what follows.

(H1) For anyu ∈ F , the energy measureΓ(u,u) is absolutely continuous with respect toμ.

(H2) The intrinsic metricdi coincides with the original metricd.

(H3) The metric space(M,d) is complete.

It is known that, under these assumptions, the metric space (M,d) is geodesic. Besides, for any
non-empty subsetE of M, the functionf (x) = d (x,E) belongs toFloc and satisfiesdΓ ( f , f ) ≤ dμ;
see [50].

For example,(H1)-(H3) are satisfied ifM is a geodesically complete Riemannian manifold,d is
the geodesic distance,μ is the Riemannian measure, and(E,F ) is given (5.28).

Let w : M → (0,∞] be a continuous, locally integrable function, where “continuous” in this
context means thatw is continuous on{w < ∞} and lower semi-continuous onM. Define a weighted
bilinear formE(w) by

E(w)(u, v) =
∫

M
w dΓ(u, v) for all u, v ∈ F ∩ Cc

and set
C(w) =

{
u ∈ F ∩ Cc : E(w)(u,u) < ∞

}
.

We will use the following result from [70, Corollary 6.1.6].

Proposition 7.1. Let (E,F ) satisfy(H1)-(H3) and let w : M → (0,∞] be a continuous, locally
integrable function. Define

dμw = wdμ.

Then the symmetric bilinear form(E(w),C(w)) is closable and its closure(E(w),F (w)) is a strongly local
regular Dirichlet form on L2(M, μw) that also satisfies(H1)-(H3).

Combining Proposition7.1and Theorem3.1, we deduce a weighted version of Theorem3.1.
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Corollary 7.2. Let all the assumptions of Proposition7.1be satisfied. Assume that

λ(w)
min (Ω) := inf

u∈(F (w)∩Cc(Ω))\{0}

E(w)(u,u)

‖u‖2
L2(M,μw)

> 0

for all precompact open setsΩ ⊂ M. Let G(w) be the Green function of(E(w),F (w)) and h be a non-
negative measurable function on M such that

G(w) (h∧ a) ∈ L∞loc

for any positive constant a. Then, for any f∈ F (w),
∫

M

h

G(w)h
f 2w dμ ≤ E(w)( f , f ).

7.2 Example:Σ is the boundary of a convex domain

In this subsection we apply Corollary7.2 in order to prove the following statement.

Proposition 7.3. LetΩ ⊂ Rn (n ≥ 3) be a non-empty convex domain and letσ ∈ (0,1) . Then, for all
f ∈ Lipc(Rn), the following inequality holds:

∫

Rn

f (x)2

|x|2 d(x, ∂Ω)σ
dx≤ C

∫

Rn

|∇ f (x)|2

d(x, ∂Ω)σ
dx, (7.1)

where the constant C depends only on n andσ (and does not depend onΩ).

HereLipc (Rn) denotes the class of Lipschitz functions inRn with compact support. In particular,
(7.1) holds for anyf ∈ Lipc(Ω) with f |∂Ω = 0 as this function extends to that inLipc (Rn) by setting
f = 0 inΩ

c
.

Remark 7.4. Let us compare Hardy’s inequality (7.1) with previously known results. The following
weighted Hardy’s inequality was proved in [59, Theorems 1.2 and 3.4]: ifd (x) a distance function in
Rn such that, for some realα andσ , α − 2,

(α − 2− σ)

(

Δd (x) −
α − 1
d (x)

)

≥ 0 in U := {d (x) > 0} , (7.2)

then, for anyf ∈ C∞c (U), ∫

Rn

f (x)2

d (x)σ+2
dx≤ c

∫

Rn

|∇ f |2

d (x)σ
dx, (7.3)

wherec = 4/ (α − 2− σ)2 . For example, ifd (x) is the distance to a subspaceRl of Rn then

Δd (x) =
n− l − 1

d (x)
,

and (7.2) is satisfied withα = n− l and anyσ , n− l − 2.
Let d (x) be the distance toB whereB = B (0,R) . Then inU = Rn \ B we haved (x) = |x| − R so

that

Δd(x) =
n− 1
|x|
≤

n− 1
d (x)

.

Hence, (7.2) is satisfied withα = n andσ > n− 2, which yields

∫

U

f (x)2

(|x| − R)σ+2
dx≤ c

∫

U

|∇ f (x)|2

(|x| − R)σ
dx (7.4)
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for all f ∈ C∞c (U). For comparison, our Proposition7.3gives in the caseΩ = B (0,R)

∫

Rn

f (x)2

|x|2 ||x| − R|σ
dx≤ C

∫

Rn

|∇ f (x)|2

||x| − R|σ
dx, (7.5)

for anyσ ∈ (0,1) all f ∈ Lipc(Rn). Of course, neither of (7.4), (7.5) covers the other because the
ranges ofσ are disjoint. Besides, the range of functionsf in (7.5) is wider and includes functions not
vanishing onB.

Let nowd (x) be the distance toBc. In B we haved (x) = R− |x| and

Δd (x) = −
n− 1
|x|
≤ 0

so that (7.2) is satisfied withα = 1 andσ > −1. Therefore, (7.3) yields in this case

∫

B

f (x)2

(R− |x|)σ+2
dx≤ c

∫

B

|∇ f (x)|2

(R− |x|)σ
dx (7.6)

for any f ∈ C∞c (B) . Although the range ofσ in (7.6) is wider than that in (7.5), still the inequality
(7.5) gives a better result forf ∈ C∞c (1

2B).
We see that the results in [59] do not cover Proposition7.3 for convex domains and even for

balls. Although for bounded convex domains there are already weighted Hardy’s inequalities (see
[2, 59, 25]), they do not cover Proposition7.3 either because the Hardy constant in (7.1) does not
depend onΩ.

To prove Proposition7.3, we need several lemmas.

Lemma 7.5. Let n≥ 2 and V be a convex subset of a bounded open set U⊂ Rn. Then

Hn−1 (∂V) ≤ Hn−1 (∂U) , (7.7)

where Hn−1 denotes the(n− 1)-dimensional Hausdorff measure.

Proof. Let us define a mappingΦ : ∂U → ∂V as follows: for anyx ∈ ∂U letΦ (x) be the nearest tox
point ofV. Let us prove that

|Φ (x) − Φ (y)| ≤ |x− y| . (7.8)

Denote for simplicityX = Φ (x) andY = Φ (y) and first observe that

(Y− X) ∙ (X − x) ≥ 0. (7.9)

Indeed, by the convexity ofV, the pointX + t (Y− X) lies in V for anyt ∈ (0,1) , whence

|X − x| ≤ |(X + t (Y− X)) − x| ,

that is,

|X − x|2 ≤ |(X + t (Y− X)) − x|2 = |X − x|2 + 2t (Y− X) ∙ (X − x) + t2 |Y− X|2 ,

or, equivalently,
0 ≤ 2(Y− X) ∙ (X − x) + t |Y− X|2 ,

which implies (7.9) by letting t → 0. Similarly, we have

(X − Y) ∙ (Y− y) ≥ 0. (7.10)
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Adding up (7.9) and (7.10), we obtain

(X − Y) ∙ (Y− X + x− y) ≥ 0

whence
|X − Y|2 ≤ (X − Y) ∙ (x− y)

and, hence, (7.8). It follows from (7.8) that the mappingΦ reduces Hausdorff measures of all dimen-
sions (cf. [26, p. 75]), whence (7.7) follows. �

Lemma 7.6. Let n ≥ 2 andΩ ⊂ Rn be a non-empty convex domain. Then, for any xo ∈ Rn and
R, s ∈ (0,∞),

|{x ∈ B(xo,R) : d(x, ∂Ω) < s}| ≤ ωnRn−1 min{2s,n−1R}, (7.11)

whereωn is the surface area of a unit sphere inRn.

Dividing by |B (xo,R)| = ωn
n Rn, we obtain from (7.11)

|{x ∈ B(xo,R) : d(x, ∂Ω) < s}|
|B (xo,R)|

≤ min
{
2n

s
R
,1

}
.

Proof. Note that (7.11) holds trivially if 2ns≥ R or if {x ∈ B(xo,R) : d(x, ∂Ω) < s} = ∅. Hence, we
assume in what follows that

0 < 2ns< R and {x ∈ B(xo,R) : d(x, ∂Ω) < s} , ∅.

Consider the followingsigned distance functionδ (x) to ∂Ω that is defined by

δ(x) =




−d(x, ∂Ω) if x ∈ Ω,

d(x, ∂Ω) if x ∈ Rn \ Ω.

Note thatδ is Lipschitz and, hence, differentiable almost everywhere onRn. It follows from [24,
Theorem 5.1.5] that|∇δ(x)| = 1 for almost allx ∈ Rn.

Consider for allt ∈ R the set
Ωt = {x ∈ R

n : δ(x) < t}.

We claim thatΩt is a convex set for allt ∈ R. Indeed, fort < 0 this was proved in [47, p. 17, the
remark after Fig. 4]. Let us prove the convexity ofΩt for t > 0. Note that, fort > 0, we have

Ωt =
{
x ∈ Rn : d

(
x,Ω

)
< t

}
.

Fix two pointsx, y ∈ Ωt and prove that the line segment [x, y] is contained inΩt. To this end, we
choose points ˜x, ỹ ∈ Ω such that

|x− x̃| < t and |y− ỹ| < t.

Any point z ∈ [x, y] can be written asz = λx+ (1− λ)y for someλ ∈ [0,1]. Sincex̃, ỹ ∈ Ω andΩ is
convex, it follows that

z̃= λx̃+ (1− λ)ỹ ∈ Ω.

Since
|z− z̃| =

∣∣∣∣
(
λx+ (1− λ)y

)
−

(
λx̃+ (1− λ)ỹ

)∣∣∣∣ ≤ λ |x− x̃| + (1− λ) |y− ỹ| < t,

we conclude thatz ∈ Ωt and, hence,
[
x, y

]
⊂ Ωt.
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By the coarea formula in [26, p. 112], for any Lipschitz functionf : Rn → R and any Lebesgue
measurable setA ⊂ Rn,

∫

A
|∇ f | dx=

∫

R
Hn−1(A∩ {x ∈ Rn : f (x) = t}) dt.

Applying this formula withf = δ and using that|∇δ| = 1 a.e., we obtain

|{x ∈ B(xo,R) : d(x, ∂Ω) < s}| = |{x ∈ B(xo,R) : |δ(x)| < s}|

=

∫

{x∈B(xo,R): |δ(x)|<s}
|∇δ(x)| dx

=

∫ s

−s
Hn−1({x ∈ B(xo,R) : δ(x) = t}) dt. (7.12)

Clearly, we have

{x ∈ B(xo,R) : δ(x) = t} = ∂Ωt ∩ B(xo,R) ⊂ ∂(Ωt ∩ B(xo,R))

and, hence,
Hn−1({x ∈ B(xo,R) : δ(x) = t}) ≤ Hn−1(∂(Ωt ∩ B(xo,R))). (7.13)

See Fig.5 for the caset ∈ (−∞,0).

xo

R

Ω
Ωt

Ωt ∩ B(xo,R)

Figure 5: The setsB(xo,R), Ω andΩt for t ∈ (−∞,0).

Since everyΩt is convex, the setΩt ∩ B(xo,R) is also convex. It follows from (7.7) that

Hn−1(∂(Ωt ∩ B(xo,R))) ≤ Hn−1 (∂ (B(xo,R))) = ωnRn−1. (7.14)

Combining (7.12), (7.13) and (7.14), we obtain

|{x ∈ B(xo,R) : d(x, ∂Ω) < s}| ≤ 2ωnRn−1s,

which was to be proved. �

Let vn denote the volume of a unit ball inRn, that is,νn = ωn/n.
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Lemma 7.7. LetΩ ⊂ Rn be a non-empty convex domain. Then, for anyσ ∈ (0,1) , the weight function

w(x) = d(x, ∂Ω)−σ for all x ∈ Rn

satisfies the relation

νnrn(r + d(xo, ∂Ω))−σ ≤ μw(B(xo, r)) ≤
(6n)σ

1− σ
νnrn(r + d(xo, ∂Ω))−σ (7.15)

uniformly in xo ∈ Rn and r> 0.

Proof. Obviously, for anyy ∈ B(xo, r), we have

d(y, ∂Ω) ≤ d(y, xo) + d(xo, ∂Ω) < r + d(xo, ∂Ω),

which implies

μw(B(xo, r)) =
∫

B(xo,r)
d(y, ∂Ω)−σ dy≥ (r + d(xo, ∂Ω))−σ|B(xo, r)| = νnrn(r + d(xo, ∂Ω))−σ.

In order to prove the upper bound ofμw(B(xo, r)), consider the following two cases.
Case 1: let d(xo, ∂Ω) ≥ 2r. In this case, for anyy ∈ B(xo, r), we have

d(y, ∂Ω) ≥ d(xo, ∂Ω) − d(xo, y) > d(xo, ∂Ω)/2,

which implies

μw(B(xo, r)) =
∫

B(xo,r)
d(y, ∂Ω)−σ dy≤ νn2σrnd(xo, ∂Ω)−σ ≤ νn3σrn(r + d(xo, ∂Ω))−σ.

Case 2: let d(xo, ∂Ω) < 2r. By the Fubini theorem and Lemma7.6, we obtain

μw(B(xo, r)) =
∫

B(xo,r)
d(y, ∂Ω)−σ dy= σ

∫

B(xo,r)

(∫ ∞

d(y,∂Ω)
s−σ−1 ds

)

dy

= σ

∫ ∞

0

(∫

{y∈B(xo,r): d(y,∂Ω)<s}
dy

)

s−σ−1 ds

≤ σrn−1
∫ ∞

0
ωn min{2s,n−1r}s−σ−1 ds

= ωnσrn−1


2

∫ (2n)−1r

0
s−σ ds+ n−1r

∫ ∞

(2n)−1r
s−σ−1 ds




=
(2n)σ

1− σ
νnrn−σ ≤

(6n)σ

1− σ
νnrn(r + d(xo, ∂Ω))−σ,

which finishes the proof. �

Now we can prove Proposition7.3.

Proof of Proposition7.3. The estimate (7.15) of Lemma7.7implies that, for anyx ∈ Rn andR≥ r >
0,

c
(R

r

)n−σ

≤
μw(B(x,R))
μw(B(x, r))

≤ C
(R

r

)n

,

where the positive constantsc,C depend only onn andσ. Consequently, the metric measure space
(Rn, μw) (with the Euclidean distance) satisfies (VD) and (RVD) with the upper volume dimensionn
and the lower volume dimensionn− σ > 2.
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The weight functionw(x) = d(x, ∂Ω)−σ with σ ∈ (0,1) is locally integrable in (Rn,dx). Hence,
by Proposition7.1, the quadratic form

E(w)(u, v) =
∫

Rn
(∇u ∙ ∇v) w dx

is a strongly local regular Dirichlet form inL2 (
Rn, μw

)
, and the domainF (w) of this Dirichlet form

has a core
C(w) =

{
u ∈W1,2 ∩ Cc : E(w)(u,u) < ∞

}
.

Next, observe that the functionw (x) = d (x, ∂Ω)−σ belongs to Muckenhoupt weight classA2, that is,

[w]A2 := sup
Bball inRn

(
1
|B|

∫

B
w(x) dx

) (
1
|B|

∫

B
w(x)−1 dx

)

< ∞.

This follows from [23, Theorem 1.1], but we need also to know that [w]A2 admits an upper bound
depending only onn andσ. Indeed, by Lemma7.7, we have, for any ballB = B (xo, r),

1
|B|

∫

B
w (x) dx=

μw (B)

|B|
≤

(6n)σ

1− σ
(r + d (xo, ∂Ω))−σ

while by the triangle inequality

1
|B|

∫

B
w (x)−1 dx=

1
|B|

∫

B
d (x, ∂Ω)σ dx≤ (r + d (xo, ∂Ω))σ .

Hence, it follows that (
1
|B|

∫

B
w (x) dx

) (
1
|B|

∫

B
w (x)−1 dx

)

≤
(6n)σ

1− σ

and

[w]A2 ≤
(6n)σ

1− σ
.

Applying [19, Theorem 1], we obtain that the heat kernelp(w)
t of e−tLw satisfies

p(w)
t (x, y) ≤

C
√
μw(B(x,

√
t))

√
μw(B(y,

√
t))

exp

(

−c
|x− y|2

t

)

(7.16)

for all t ∈ (0,∞) andx, y ∈ Rn, with the positive constantsC andc depending only onn and [w]A2,
that is, only onn andσ.

By [38, Theorem 2.1], the heat kernel bound (7.16) implies the Faber-Krahn inequality (5.29),
whenceλ(w)

min (U) > 0 for any precompact domainsU.
Using (7.16) and the reverse volume doubling property ofμw with the lower volume dimension

n− σ > 2, we obtain by the argument in the proof of Lemma2.4that, for distinctx, y ∈ Rn,

G(w)(x, y) ≤ C
|x− y|2

μw(B(x, |x− y|))
. (7.17)

Next, we fix real numbersε ∈ (0,1), ρ > 0 and defineh as in (5.17), that is,

h(x) =





ρε

μw(B(0,ρ)) if |x| < ρ
|x|ε

μw(B(0,|x|)) if |x| ≥ ρ.
(7.18)

Due to (7.15) and (7.17), we follow the proof of (5.19) and derive that

G(w)h(x) ≤ C





ρ2+ε

μw(B(0,ρ)) if |x| < 2ρ
|x|2+ε

μw(B(0,|x|)) if |x| ≥ 2ρ
(7.19)
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whereC is a constant depending only onn andσ.
Hence, we see that all the hypotheses of Corollary7.2 are satisfied. Therefore, for anyf ∈

Lipc(Rn) ⊂W1,2 ∩ Cc, we obtain
∫

Rn

h

G(w)h
f 2 dμw ≤ E

(w)( f , f ) =
∫

Rn
|∇ f (x)|2w(x) dx.

Further, applying (7.18) and (7.19), and lettingρ→ 0, we finally obtain
∫

Rn

1
|x|2

f 2(x)w(x) dx≤ C
∫

Rn
|∇ f (x)|2w(x) dx,

where the constantC depends only onn andσ, which finishes the proof. �

7.3 Admissible weights

Motivated by [42, 70], we introduce the following definitions. Given a setΣ ⊂ M andρ ∈ (0,1],
define for anyxo ∈ Σ ands≥ 0 the set

Σρ(xo, s) := {x ∈ M : d(x, xo) ≤ s andd(x,Σ) ≥ ρs} .

Set also
Σ̂ρ(xo, r) =

⋃

0≤s≤r

Σρ(xo, s).

Indeed, it is easy to see that

Σ̂ρ(xo, r)= {x ∈ M : ρd(x, xo) ≤ d(x,Σ) ≤ d(x, xo) ≤ r}

= {x ∈ B(xo, r) : ρd(x, xo) ≤ d(x,Σ)}.

For example, ifΣ = {xo} thenΣρ(xo, s) is the annulusB (xo, s)\B (xo, ρs), and̂Σρ(xo, r) coincides with
the closed ballB (xo, r) .

Definition 7.8. Let Σ be a non-empty subset ofM. Fix ρ ∈ (0,1). The setΣ is calledρ-accessibleif
the following conditions are satisfied:

(i) Σ is closed andμ(Σ) = 0;

(ii ) there existsρ′ ∈ (ρ, 1] such that, for anyxo ∈ Σ ands ∈ (0,∞), the setΣρ′ (xo, s) is non-empty;

(iii ) for anyxo ∈ Σ andr ∈ (0,∞), the set̂Σρ(xo, r) is path connected.

For example, if(M,d) is a non-compact complete geodesic space andΣ = {x0} then all these
conditions are satisfied so that a singleton isρ-accessible for anyρ ∈ (0,1) .

Other examples ofρ-accessible sets will be shown in Section7.4below.

Definition 7.9. A function w : M → (0,∞] is called anadmissible weightif there exist a setΣ ⊂ M
and a functiona : [0,∞)→ (0,∞] such that

w(x) = a(d(x,Σ)) for all x ∈ M

and the following conditions are satisfied:

(i) the setΣ is ρ-accessible for someρ ∈ (0,1);
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(ii ) the functiona is continuous, non-increasing,a(r) < ∞ for r > 0, and there exists a constant
c ∈ (0,1) such that, for anyr > 0,

a(2r) ≥ ca(r) ;

(iii ) there exists a positive constantC such that, for anyxo ∈ Σ and anyr > 0,

μw(B(xo, r)) ≤ Ca(r)μ(B(xo, r)), (7.20)

wheredμw = w dμ.

It follows that any admissible functionw is continuous and locally integrable with respect toμ.
For example, the functiona (r) = r−σ satisfies (ii ) for anyσ > 0. If μ (B (xo, r)) ' rα for all r > 0

andxo ∈ Σ thena (r) = r−σ satisfies (iii ) if and only if 0< σ < α; see [42, Sec. 4.3] and Proposition
7.13below.

Lemma 7.10. Assume that the measureμ satisfies(VD). Let w be an admissible weight as inDefini-
tion 7.9. Then the measureμw also satisfies(VD) and, for all x∈ M and r> 0,

μw (B (x, r)) ' μ (B (x, r)) a (ξ (x) + r) (7.21)

whereξ (x) = d (x,Σ) .

Proof. The fact thatμw satisfies(VD) was proved in [70, Thm 1.0.1, Prop. 4.2.2]. Note, the condition
(iii ) of Definition7.8 is not needed for that, while the condition (7.20) is very essential.

In order to prove (7.21), let us first assume thatx ∈ Σ, that is,ξ (x) = 0. Then the upper bound in
(7.21) follows from (7.20) while the lower bound holds by

μw(B(x, r)) =
∫

B(x,r)
a (ξ (y)) dμ (y) ≥ a (r) μ (B (x, r))

becauseξ (y) ≤ d (x, y) ≤ r anda is monotone decreasing.
Assume now thatξ (x) ≥ 2r. Then, for anyy ∈ B (x, r), we haveξ (y) ' ξ (x), whence

μw(B(x, r)) =
∫

B(x,r)
a (ξ (y)) dμ (y) ' a (ξ (x)) μ (B (x, r)) ' a (ξ (x) + r) μ (B (x, r)) .

Finally, let ξ (x) < 2r. Let x′ be a point onΣ so thatd (x, x′) < 2r. Since the measuresμw andμ are
doubling, we obtain

μw (B (x, r)) ' μw
(
B

(
x′, r

))
' a (r) μ

(
B

(
x′, r

))
' a (ξ (x) + r) μ (B (x, r)) .

This proves (7.21) for generalx ∈ M.
One can also derive thatμw satisfies(VD) by terms of (7.21) and the monotone decreasing prop-

erty of the functiona. �

The notion of an admissible weight was used in [70, Prop. 4.2.2] to prove the following result.

Theorem 7.11. Let a strongly local Dirichlet form(E,F ) on (M,d, μ) satisfy(H1)-(H3) as well as
the uniform parabolic Harnack inequality. Let w be an admissible weight on M. Then the weighted
Dirichlet form (E(w),F (w)) on (M,d, μw) also satisfies the uniform parabolic Harnack inequality.

We use Theorem7.11 in order to prove our main result in this section that is the following
weighted Hardy’s inequality for admissible weightsw.
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Theorem 7.12. Assume that(M,d, μ) satisfies(VD) and (RVD) with lower volume dimensionα−.
Let (E,F ) be a strongly local regular Dirichlet form on L2(M, μ) that satisfies(H1)-(H3) as well as
(G)2 . Let w be an admissible weight on M as inDefinition 7.9, and assume that the function a(r)
satisfies for all R> r > 0

a (R)
a (r)

&
(R

r

)−σ
(7.22)

for someσ such that
0 ≤ σ < α− − 2.

Then the Green function G(w) of (E(w),F (w)) satisfies(G)2 with respect toμw, and the following
weighted Hardy’s inequality holds: for all xo ∈ M and f ∈ F ∩ Cc,

∫

M

f (x)2

d(x, xo)2
w(x) dμ(x) ≤ C

∫

M
w dΓ( f , f ), (7.23)

where the constant C depends only on the constants in the hypotheses, but is independent of xo and f .

Proof. By Theorem6.1, the hypothesis (G)2 implies that the heat kernelpt of (E,F ) satisfies (UE)2

and (NLE )2. Further, by [8, Theorems 3.1 and 3.2] (see also [69]), the conditions (UE)2 and (NLE )2

are equivalent to the parabolic Harnack inequality for(E,F ) . Sincew admissible, we conclude by
Theorem7.11that the parabolic Harnack inequality for(E,F ) implies the parabolic Harnack inequal-
ity for (E(w),F (w)). Hence, the heat kernelp(w)

t of (E(w),F (w)) also satisfies the Gaussian estimates
(UE)2 and (NLE )2, with respect to the measureμw.

Next, we need to make sure that the Green functionG(w) of (E(w),F (w)) satisfies(G)2 with respect
to the measureμw. By Lemma7.10, the measureμw is doubling. By (7.21), (7.22) and(RVD) for μ,
we obtain, for allR> r > 0

μw (B (x,R))

μw (B (x, r))
'

a (ξ (x) + R)
a (ξ (x) + r)

μ (B (x,R))
μ (B (x, r))

&

(
a (ξ (x) + R)
a (ξ (x) + r)

)−σ (R
r

)α−
&

(R
r

)α−−σ

so thatμw satisfies(RVD) with lower volume dimension

α(w)
− = α− − σ > 2.

Applying Lemma2.4 in the space
(
M,d, μw

)
we obtain thatG(w) satisfies (G)2, with respect to the

measureμw.

By Theorem5.6, we conclude that, for anyf ∈ F (w),
∫

M

f (x)2

d(xo, x)2
dμ(x) . E(w)( f , f ). (7.24)

It remains to verify that (7.23) holds for all f ∈ F ∩ Cc. If the right hand side of (7.23) is∞, then
(7.23) is trivially satisfied. If the right hand side of (7.23) is finite thenf ∈ C(w) ⊂ F (w) and

∫

M
w dΓ( f , f ) = E(w)( f , f ),

so that (7.23) follows from (7.24). �

Let us illustrate Theorem7.12in the case whenΣ is a singleton.

Proposition 7.13. Assume that(M,d, μ) satisfies(VD) and (RVD) with lower volume dimension
α− ∈ (2,∞). Let(E,F ) be a strongly local regular Dirichlet form on L2(M, μ) that satisfies(H1)-(H3)
and admits the Green function G(x, y) satisfying(G)2. Then, for anyσ satisfying

0 ≤ σ < α− − 2,
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the following weighted Hardy’s inequality
∫

M

f (x)2

d(xo, x)σ+2
dμ(x) ≤ C

∫

M

1
d(xo, x)σ

dΓ( f , f ) (7.25)

holds for all xo ∈ M and f ∈ F ∩ Cc, where C depends only on the constants in the hypotheses.

Proof. We will apply Theorem7.12with Σ = {xo} and the weight

w(x) = d(x, xo)−σ for all x ∈ M.

Let us verify that the weightw is admissible. The conditions (i) and (ii ) of Definition7.9are obviously
satisfied witha (r) = r−σ. Let us verify the condition (iii ) of Definition 7.9. Settingr = r2−k, we
obtain, using(RVD) that

μw (B(xo, r))=
∫

B(xo,r)

dμ (x)
d (xo, x)σ

=

∞∑

k=0

∫

B(xo,rk)\B(xo,rk+1)

dμ (x)
d (xo, x)σ

≤
∞∑

k=0

r−σk+1μ (B (xo, rk)) ≤ C
∞∑

k=0

r−σk

( rk

r

)α−
μ (B (xo, r))

=Cr−σμ (B (xo, r))
∞∑

k=0

(
2−k

)α−−σ
= C′r−σμ (B (xo, r)) ,

which proves (7.20). By Theorem7.12we obtain (7.23), which is equivalent to (7.25). �

SinceLipc (Rn) ⊂W1,2 (Rn)∩Cc (Rn), it follows from Proposition7.13that, for anyf ∈ Lipc (Rn)
and 0≤ σ < n− 2, ∫

Rn

f (x)2

|x|σ+2
dx.

∫

Rn

|∇ f (x)|2

|x|σ
dx,

which matches (1.7).

7.4 Example:Σ is a subset of a hyperplane

Here we apply Theorem7.12in the case whenΣ is a closed subset of a hyperplane inRn. Let us
start with the following observation.

Lemma 7.14. LetΣ be a non-empty closed subset of a hyperplane inRn. ThenΣ is ρ-accessible for
anyρ ∈ (0,1) .

Proof. Condition(i) of Definition7.8 is trivially satisfied.
Let us verify thatΣρ (xo, r) is non-empty for anyρ ∈ (0,1), xo ∈ Σ andr > 0, which will imply

the condition(ii ) of Definition 7.8. Without loss of generality, we can assume thatxo = 0 and thatΣ
is a subset of the hyperplane{xn = 0} . ThenΣρ (0, r) contains the interval

[
−r,−ρr

]
∪ [ρr, r] on the

axisxn and, hence, is non-empty.
Let us now verify the condition(iii ) of Definition 7.8, that is,Σ̂ρ(0, r) is path connected for any

ρ ∈ (0,1) andr > 0. The intersection of̂Σρ(0, r) with the axisxn is the intervalIr := [−r, r]. Let us
verify that any pointz ∈ Σ̂ρ(0, r) can be connected by a continuous path inΣ̂ρ(0, r) to a point inIr ,
which will imply the path connectedness ofΣ̂ρ(0, r).

By the definition of̂Σρ(0, r), we have

z ∈ Σ̂ρ(0, r)⇔ |z| ≤ r and d (z,Σ) ≥ ρ |z| .
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Fix somez ∈ Σ̂ρ(0, r) and chooseu, v ∈ Rn so thatu lies in the subspace{xn = 0}, v lies on the axis
xn, |u| = |v| = |z|, and

z= usinφ + vcosφ

for someφ ∈ [0, π/2] (see Fig.6).

Figure 6: A path in̂Σρ(0, r) that connectsz ∈ Σ̂ρ(0, r) andv ∈ Ir .

In fact,v is obtained by rotatingz towards the axisxn by an angleφ, andu is obtained by rotating
z in the opposite direction by the angleπ/2 − φ. Since|v| = |z| ≤ r, we obtain thatv ∈ Ir . For any
t ∈

[
0, φ

]
set

zt = usint + vcost

so thatz0 = v andzφ = z (see Fig.6). Let us verify thatzt ∈ Σ̂ρ(0, r) for any t ∈
[
0, φ

]
. Firstly, we

have
|zt |

2 = |u|2 sin2 t + 2u ∙ vsint cost + |v|2 cos2 t = |z|2 ≤ r2

so that|zt| ≤ r. Secondly, we need to verify thatd (zt,Σ) ≥ ρ |zt | , which is equivalent to

d (zt,a) ≥ ρ |z| for all a ∈ Σ. (7.26)

To show (7.26), for anya ∈ Σ, we have

d (zt,a)2 = |usint + vcost − a|2

= |u|2 sin2 t + 2u ∙ vsint cost + |v|2 cos2 t − 2a ∙ usint − 2a ∙ vcost + |a|2

= |z|2 + |a|2 − 2a ∙ usint.

If a ∙ u ≤ 0, then the last formula impliesd (zt,a)2 ≥ |z|2 ≥ ρ2 |z|2. If a ∙ u > 0, then

d (zt,a)2 ≥ |z|2 + |a|2 − 2a ∙ usinφ = d (z,a)2 ≥ d (z,Σ)2 ≥ ρ2 |z|2 ,

whence (7.26) follows. Hence,{zt} is a continuous path in̂Σρ(0, r) that connects the pointsz= zφ and
v = z0 ∈ Ir . �

For any setΣ ⊂ Rn and anyt > 0 denote

Σt =
{
x ∈ Rn : d (x,Σ) < t

}
.

Here is our main result in this section.
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Proposition 7.15. Let Σ be a non-empty closed subset of a hyperplane inRn. Assume that, for any
xo ∈ Σ and r≥ t > 0,

μ (Σt ∩ B (xo, r)) ≤ crαtn−α, (7.27)

for some c> 0 andα ∈ (0,n) . Then the weight w(x) = d (x,Σ)−σ is admissible wheneverσ satisfying

0 ≤ σ < n− α. (7.28)

Consequently, if
0 ≤ σ < n−max{α, 2} , (7.29)

then the following weighted Hardy’s inequality

∫

Rn

f (x)2

|x|2 d (x,Σ)σ
dx≤ C

∫

Rn

|∇ f |2

d (x,Σ)σ
dx (7.30)

holds for all f ∈W1,2 ∩ Cc (Rn), where the constant C depends only on c,n, α andσ.

Proof. By Lemma7.14, Σ isρ-accessible for anyρ ∈ (0,1) , so that conditions(i) and(ii ) of Definition
7.9are satisfied witha (r) = r−σ. Let us verify the condition(iii ) of this definition, that is, (7.20).

For anyxo ∈ Σ andr > 0, we setrk = r2−k and obtain

μw (B (xo, r))=
∫

B(xo,r)

dx
d (x,Σ)σ

=

∫

B(xo,r)∩Σr

dx
d (x,Σ)σ

=

∞∑

k=0

∫

B(xo,r)∩(Σrk\Σrk+1)

dx
d (x,Σ)σ

≤
∞∑

k=0

μ
(
B (xo, r) ∩ Σrk

)
r−σk+1

≤
∞∑

k=0

crαrn−α
k r−σk+1 =

∞∑

k=0

2σcrn−σ
(
2−k

)n−α−σ
= Cr−σ|B (xo, r) |,

whereC = C (c,n, α, σ) and we have used (7.28), that is,n− α − σ > 0. Hence, (7.20) is verified.
SinceRn satisfies(RVD) with the lower volume dimensionn, we see that under the condition

(7.29) all the hypotheses of Theorem7.12are satisfied, and we obtain (7.23), which is equivalent to
(7.30) for xo = 0. �

Remark 7.16. It is easy to see that (7.27) holds provided thatΣ satisfies the following condition:

Σ ∩ B (xo, r) can be covered by at mostc
( r
t

)α
Euclidean balls of radiust, (7.31)

for someα, c > 0 and for allxo ∈ Σ andr ≥ t > 0. The infimum of allα for which (7.31) is satisfied
is called theAssouad dimensionof Σ and is denoted by dimAΣ. Hence, the condition (7.31) implies
dimAΣ ≤ α, and the condition (7.29) can be restated as follows:

0 ≤ σ < n−max{dimAΣ,2} . (7.32)

For example, ifΣ is a Lipschitz curve inRn then (7.31) is satisfied withα = 1.

Example 7.17.LetΣ be a non-empty closed subset ofRl ⊂ Rn with 2 ≤ l < n. Then (7.31) is satisfied
with α = l. Hence, Hardy’s inequality (7.30) is satisfied provided

σ < n− l. (7.33)
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Let Σ = Rl be a subspace ofRn. For anyx ∈ Rn, setx = x′ + x′′, wherex′ ∈ Rl andx′′ ∈ Rn−l . Then
d (x,Σ) = |x′′|, and (7.30) becomes

∫

Rn

f (x)2

|x|2 |x′′|σ
dx≤ C

∫

Rn

|∇ f |2

|x′′|σ
dx. (7.34)

Let us compare (7.34) with the result of [59, Theorem 3.4] mentioned in Example7.4: for any real
σ , n− l − 2 and anyf ∈ C∞c ({ |x′′| > 0}) the following weighted Hardy’s inequality holds:

∫

Rn

f (x)2

|x′′|σ+2
dx≤ c

∫

Rn

|∇ f |2

|x′′|σ
dx, (7.35)

wherec = 4/ (n− l − 2− σ)2 (cf. (7.3). The inequality (7.35) is obviously sharper than (7.34).
However, the range off in (7.35) is smaller, and (7.35) fails for σ = n− l − 2, while (7.34) is valid
for thisσ.

There is a number of previously known Hardy’s inequalities involving distance to a surfaceΣ ⊂ Rn

(see, for example, [2, 4, 29, 62]), but none of them works with an arbitrary closed setΣ ⊂ Rn−1 as in
Proposition7.15(see also Example7.19below).

Remark 7.18. Assume now thatΣ satisfies the following condition:

Σ ∩ B (xo, r) can be covered by≤ N Euclidean balls of radiusr/M centered atΣ, (7.36)

for someN,M ≥ 1 and for allxo ∈ Σ andr > 0. By iterating this condition, we obtain (7.31) and,
hence, (7.27) with

α =
logN
log M

.

Example 7.19.Let Σ = SC(a,b, k) be a generalized Sierpinski carpet from Example5.12(bounded
or unbounded) that is based on a unit cube inRk, k ≥ 2. It suffices to have (7.36) for the constituent
cubes ofSC(a,b, k) instead of ballsB (xo, r) . If Q is such a cube of sider = a−m thenQ ∩ Σ it is
covered byN cubes of sidet = a−(m+1) whereN = ak − bk. It follows that (7.31) is satisfied with
α =

logN
loga that is the Hausdorff dimension ofSC(a,b, k). Therefore, consideringΣ = SC(a,b, k) as a

subset ofRn with n > k, we obtain the Hardy’s inequality (7.30) for all

0 < σ < n−max{α, 2} .

Sinceα < k, this range ofσ is larger than that of (7.33) wheneverk ≥ 3.

Remark 7.20. In the setting of Proposition7.15, we have by Lemma7.10

μw (B (x, r)) ' rn (d (x,Σ) + r)−σ .

By Theorem7.12, the Green functionG(w) (x, y) of the Dirichlet form (E(w),F (w)) exists and satisfies
(G)2 with respect to the measureμw, which yields forr = |x− y|

G(w)(x, y) '
r2

μw(B(x, r))
' r2−n(d (x,Σ) + r)−σ.
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2012. [7, 31]

[68] K.-T. Sturm. Analysis on local Dirichlet spaces. I. Recurrence, conservativeness andLp-Liouville properties.J. Reine
Angew. Math., 456: 173–196, 1994. [11]

[69] K.-T. Sturm. Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality.J. Math. Pures Appl. (9),
75(3): 273–297, 1996. [50]

[70] S. Tasena.Heat kernel analysis on weighted Dirichlet spaces. ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.),
Cornell University. [5, 41, 48, 49]

[71] K. A. Utub and Z. Sobol. DIY: A Hardy type inequality with residual term.preprint, 2021. [12, 54]

[72] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon.Analysis and geometry on groups, volume 100 ofCambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 1992. [7]

[73] V. M. Zolotarev.One-dimensional stable distributions.Transl. Math. Monographs 65, Amer. Math. Soc., 1986. [28]

Jun Cao
Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, People’s Repub-
lic of China

E-mail: caojun1860@zjut.edu.cn

Alexander Grigor’yan

Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany

E-mail: grigor@math.uni-bielefeld.de

Liguang Liu

School of Mathematics, Renmin University of China, Beijing 100872, People’s Republic of China

E-mail: liuliguang@ruc.edu.cn


	Introduction
	A historical overview: Hardy's inequality on Rn and manifolds
	Abstract Hardy's inequality on metric measure spaces
	``Classical" versions of Hardy's inequalities
	Weighted Hardy's inequality
	Organization of the paper

	Basic setup
	Volume doubling
	Dirichlet forms
	Green function

	Hardy's inequality for strongly local regular Dirichlet forms
	Hardy's inequality for regular Dirichlet forms
	Extended Dirichlet forms
	Transience of Dirichlet forms
	Admissible functions and Hardy's inequality

	Some �classical" versions of Hardy's inequality
	Discrete Hardy's inequality
	Hardy's inequality and distance function
	Subordinated Green function and fractional Hardy's inequality

	Green functions and heat kernels
	Statement of Theorem 6.1
	Overview of the proof of Theorem 6.1
	Proof of (UE)0=x"010C+(NLE)0=x"010C(G)0=x"010C
	Existence of the restricted Green function
	(G)0=x"010C implies ( E) 0=x"010C
	( G) 0=x"010C implies ( H)

	Weighted Hardy's inequality for strongly local Dirichlet forms
	 Weighted Dirichlet form and weighted Hardy's inequality
	Example:  is the boundary of a convex domain
	Admissible weights
	Example:  is a subset of a hyperplane


