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Abstract

We prove an abstract form of Hardy’s inequality for local and non-local regular Dirichlet
forms on metric measure spaces, using the Green operator of the Dirichlet form in question. Un-
der additional assumptions such as the volume doubling, the reverse volume doubling, and certain
natural estimates of the Green function, we obtain the “classical” form of Hardy's inequality con-
taining distance to a reference point or set.
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1 Introduction

1.1 A historical overview: Hardy’s inequality on R" and manifolds

The classical Hardy’s inequality was first proved by Hard§][in order to find an elementary
proof of a double series inequality of Hilbert. For its prehistory development (in both discrete and
continuous forms) over the decade 1906-1928, we refer the interested rea@&fsAohodern form
of Hardy’s inequality inR", n > 2, is as follows (cf. 49]):

(n-2P [ 1f(¥)P?
4 ro X2

dxsf IVE(x)|2dx forall f € CL(R"), (1.1)
Rn

whereCL(R") denotes the class of continuouslyfdrentiable functions oR" with compact support.
Hardy’s inequality has found numerous applications in various areas of mathematics such as partial
differential equations, geometric analysis, probability theory and etc. We refer the rea8le2lp [

58, 64, 21] and the references therein for more information about Hardy’s inequality in Euclidean
spaces and related historical reviews.

Generalizations ofl(.1) to Riemannian manifolds can be found iy L4, 20, 34, 56]. Let M be a
Riemannian manifoldA be the Laplace-Beltrami operator dh andu be the Riemannian measure.
Then, for any positive superharmonic functigion M, the following version of Hardy’s inequality is
true:

fﬂfzdugfwﬂzdy for all f € C3(M). (1.2)
M@ M

The following short proof of 1.2) was given in B3, Section 4.4] and34, p. 258] (see also4p)]).
Consider the weighted manifoldl /i) with di = ¢ du. An easy calculation shows that the weighted
Laplacian

Azu = ¢~2 div(p?Vu)

satisfies the following identities: the product rule

- ¢Aﬁ(¢_1f) =-Af + %f (1.3)
and the Green formula
- f uAzudi = f IVul?dii > 0 for allu € C3(M). (1.4)
M M

Applying (1.4) with u = ¢~ f and using {.3), we obtain {.2).



Note that (.2) is sharp in the sense that it recovetslf whenM = R", n > 2, because, for the
functiong(x) = |x|‘”;22, we have
~A(x) _ (n-2P 1
$(X) 4 |2

1.2 Abstract Hardy’s inequality on metric measure spaces

Motivated by (.1) and (L.2), our main aim in this paper is to establish Hardy’s inequality on
metric measure spacéM, d, 1), including manifolds and fractal spaces. We say tihatd, 1) is a
metric measure space i d) is a separable metric space such that all the metric balld @re
precompact, ang is a Radon measure dvi with full support. We assume that a regular Dirichlet
form (&, 7) is defined orL? (M, ») . Then, instead of the energy integrg) [V f|?du in (1.2) we use
& (f, f), and instead of the functiopwe use a functioishwhereG is the Green operator ¢&, 7).
Hence, for a certain class of positive functidngn M, (1.2) transforms to

fﬂfzduga(f,f) forall f € 7. (1.5)
v Gh

Hardy’s inequality in the form4.5) is proved in this paper in Theore®l for strongly local regular
Dirichlet forms and in Theorem.5— for general (non-local) regular Dirichlet forms.

Given a Radon measuseon M, one can ask under which conditions the following even more
general form of Hardy's inequality is valid:

f f2dv < &(f, 1).
M

This question was studied il], 27, 65 where the answer was given in terms of a certain testing
inequality expressed via the Dirichlet form and the measuf@ur versions of Hardy’s inequality in
Theorems3.1and4.5are much more explicit and do not follow from the resultsf, [27, 65].

1.3 *“Classical” versions of Hardy’s inequalities

Let us describe some applications and consequences of The®reamgl4.5. We use the follow-
ing notation

V(% 1) = u(B(xr)) and V(x,y) = u(B(x,d(x,y)))
for all x,y € M andr > 0, and consider the following conditions.

> Volume doubling conditiofiVD): there existp € (1, ) such that
V(x, 2r) < CpV(xr) forall xe M andr > 0. (VD)
Condition(VD) is equivalent to

V(R _ C(B) " forallxe Mand 0<r < R< oo,
V(xr)

r
for some positiveC, a,.. The exponend, is called theupper volume dimensiaof (M, d, u).
> Reverse volume doubling conditi(RVD): there existx > 0 such that

V(x,R) S
V(xr) —

C(?R) ~ forallxe Mand O<r < R< co. (RVD)

The exponent_ is called thdower volume dimensioof (M, d, u).



> Condition(G)s with 8 > 0: the Dirichlet form(&, 7) admits a Green functioB(x, y), which is
jointly continuous inM x M \ diag and satisfies the estimate

d(x, y)*

V(x.y)

where diag= {(X,y) e M x M : x=y}.

G(xy) = for all distinctx,y € M, (G)p

Let us remark that botfiVD) and(RVD) are satisfied ifM, d, i) is Ahlfors a-regular, that is, if
V(xr)=r®

forallr > 0 andx € M. In this caser = a, = «@_ is the Hausddf dimension of(M, d), and the
measureg: is comparable with the HausdbmeasureH* (cf. [39)).

The parametegs from (G); is called thewalk dimensiomf (€, ) . The reason of this terminology
will be clear from Example.5below as3 is the exponent of the spdtiene scaling for the Markov
process associated wiB, 7).

Under the hypothesd¥ D), (RVD) and(G); with 8 < a_, we apply Theorerd.5and establish
in Theoremb.6a “classical” form of Hardy’s inequality: for akt, € M andf € ¥,

f(x)?
M d(Xo, XY

Note thatR" satisfies the hypotheses of Theorbré providedn > 2 andg = 2. Theorenb.6 applies
also on many fractals spaces whe&, with g > 2 is satisfied — see Exampiel2in Section5.3.

Due to the fact that the conditioi©); contains implicit constants, the constahin (1.6) can
not be determined explicitly. However, in specific settings like Euclidean spaces or graphs, one can
obtain explicit constants in Hardy's inequality by applying direcily§ for suitable function& as in
Theoremb.1land Examplé.11

Let us emphasize that in Theoresr6 the Dirichlet form does not have to be local. In the case
when the Dirichlet form &, ) is strongly local an@@ = 2, we apply Theoren3.1 and obtain in
Corollary 5.8 the estimate 1.6) under the weaker hypotheses wh&). is replaced by the upper

bound
d(x, y)?
V(xy)

du(x) < C&(f, f). (1.6)

G(xy)<C (G9)2

1.4 Weighted Hardy’s inequality

For further applications of Theorem3sl and4.5 (or, Corollary5.8and Theoren®.6), we obtain
weightedHardy’s inequalities for strongly local Dirichlet forms. It is known thatRA with n > 2
also the following weighted Hardy inequality holds:

(n—U—Z)Zf f(X)ZdX< IVf(X)I2OIX
R

4 n X2 T Jrn X7

foranyo € [0,n - 2) andf € CZ(R") (see, for example 80, p. 657, (7)], L2, Corollary 4] or P2,
Theorem 13]). Under some mild conditions of the strongly Dirichlet fo&8yH/) (see Proposition
7.1), any weight functionrw : M — (0, o] that is continuous and locally integrable can induce
a strongly local regular Dirichlet form&{", #W) on L%(M, p,,), wheredy,, = wdu. Applying
Theorenm3.1for (6™, #W), we obtain in in Corollary’.2 an abstract version of the weighted Hardy
inequality.

From that we deduce in Propositian3 the following new type of Hardy’s inequality: for any
convex domair©2 c R", for anyo € (0, 1) and for allf € Lipc (R")

f ()2 IV (x)?
— > dx<C | —=2_d
fRn X2 d(x, 0Q)” g d(X, 0Q)7 X

.7)



where the constai@ depends only on ando- and hence, is independent®@f Although for bounded
convex domains there are already various weighted Hardy’s inequalitie2&é&8] 2, 62)), they do
not cover Propositiofi.3 (see Remark.4for more details).

In Theorem7.12we have developed a systematic way for obtaining weighted Hardy’s inequality
in the form

2
fMd(];()go)zw(x)dy(x)gcjl;lwdl“(f,f), (1.8)

whereI'(f, f) is the energy measure of the Dirichlet form and the weigh$ determined by the
distance function to a certain closed null 8éh M (see Definitior7.9).

In Proposition7.15 we apply Theoren.12in the case whehl is a closed subset of a hyperplane
in R" and obtain that, for alf € W2 N C. (R"),

f(9? IV f[?
J;wxﬁd(xzﬁodxs Rnd(KED”dX
where the range af is determined by the Assouad dimensiorxdtf. (7.32), (7.32 and (7.36)). For
instance, in Exampl@.17X is subspace dk" and in Exampl€’.19% is a Sierpinski carpet.
Our weighted Hardy inequalityl(8) seems to be entirely new in the setting of Dirichlet forms, and

its proof is quite involved. We use a weighted Dirichlet for@{, 7)), where&W (f, f) is defined

by the right hand side of1(8), and prove that&™), ¥ ) satisfies the conditioG),. The latter

is highly non-trivial because by hypothesis we kn@@), only for (&, ), and the weight function

w should not be bounded or separated from zero. To explain the strategy of the proof, consider the
following conditions:

> Upper bound estimat@JE);: the heat kernepy(x, y) of (&, ) exists, is Hlder continuous in
X,y € M, and satisfies

£
Pr(xy) < m GXP{—C(dg’ﬁy))/i } (UE)g

for all x,y € M and allt € (0, ), whereC andc are positive constants.

> Near-diagonal lower bound estimadLE ). the heat kernep(x, y) exists, is Hlder contin-
uous inx,y € M, and satisfies

-1

1/p
V(x 07F) whend(x,y) < et (NLE)g

(X, y) >
for all x,y € M and allt € (0, =), whereC ande are positive constants.
We use the following two highly nontrivial results:

> the equivalence
(G)p & (UE)g + (NLE g, (1.9)

established in Theoref1;

> the stability of UE)2 + (NLE), under certain non-uniform changes of weight in the Dirichlet
form (see §2], [70, Theorem 1.0.1]).

Combining these results, we dedu@&, for (W, #W) from (G), for (&, F).



1.5 Organization of the paper

This paper is organized as follows.

In Section2 we describe our basic setup and recall some basic facts about Dirichlet forms, their
Green functions and heat kernels.

In Section3 we prove Hardy's inequality for strongly local regular Dirichlet forms (Theogih
In Sectiord we prove Hardy's inequality for general (non-local) regular Dirichlet forms (Theorem

4.5).

In Section5 we apply Theoremd.5 to obtain Hardy’s inequality in the explicit fornil(6) in
various settings. In particular, we obtain in TheorBrt a discrete version of Hardy’s inequality
onZ". We prove also the aforementioned Theorgand Corollary5.8 as well as Theorers.10
containing Hardy’s inequality for a subordinated Dirichlet form.

In Section6 we prove the equivalencé.Q) for strongly local Dirichlet forms (Theore®1). This
equivalence is interesting on its own merit, but we need it for the proof of Thed@régas it was
explained above. Previously.Q) was known in the setting of random walks on graphs — dég |
Different ways of characterization of the heat kernel upper and lower estimates have been considered
in many papers; see for exampl8, 45, 46, 32, 36, 37, 40, 38| and references therein. In particular, it
was proved in37] that (UE)g and (NLE)g are equivalent to certain estimates of the restricted Green
functionsGB in balls B providedGB are jointly continuous f the diagonal. However, we do not
apply this result here since the proof of joint continuityGit would have required at least as much
work as a direct proof ofl(.9).

The main ingredients of the proof of Theordirl are the mean exit time estimaté)g and the
elliptic Harnack inequalityl) that are explained in Sectidh Our strategy for the proof oH) is
based on the argument i&7, Lemma 8.2], but a crucial point here is to gain upper and lower bounds
for a positive harmonic function via an integral of the Green function with respect to a certain Riesz
measure (see the proof of Proposit@g).

In Section7, we prove weighted Hardy’s inequalities of Corollafy2 and Theorenv.12, and
give explicit examples using the distance function to the boundary of a convex set, a single point or a
non-empty closed subset of a hyperplane ( Proposifiod)s.13 and7.15).

Notation. Throughout the paper we use the following notation.

For anyp € [1, o] and any open s&2 c M, denote as usual By’(Q, i) or LP (Q2) the real-valued
Lebesgue space @& WhenQ = M we writeLP = LP(M, u). We use { -) to denote the inner product
in L2. Set

LP ={f: f e LP(Q) for any precompact open st c M}.

loc —

For any seE c M, E denotes the closure &, andE¢ = M \ E.

For any functionf : M — R, its support supp is the complement of the largest open set where
f =0u-a.e..

For any open se®@ c M, C(Q) is the space of all continuous functions Qrwith sup-norm, and
Cc(Q) is the subspace @f(Q) consisting of functions with compact supports. In the case M we
write C = C (M) andC; = C. (M).

The lettersC andc are used to denote positive constants that are independent of the variables in
guestion, but may vary at each occurrence.

The relationu < v (resp.,u > v) between functions andv means thati < Cv (resp.,u > Cv) for
a positive constant and for a specified range of the variables. We wuiitevif u > v > u.



2 Basic setup

2.1 Volume doubling

Let (M, d, u) be a metric measure space such that all the metric baNé ame precompact and
is a Radon measure dvl with full support. It is known that if i, d) is connected andvD) holds
then

(RVD) & diamM =0 < u(M) = oo;

see B8, Corollary 5.3], B0, Theorem 1.1] or18, Propositions 2.1 and 2.2]. Clearly, if bof¥iD) and
(RVD) are satisfied then & a_ < a,. If (M, d, u) satisfies RVD) thenu({x}) = 0 for all x € M, so
that (M, d, u) is non-atomic.

The conditions YD) and RVD) are known to hold on many families of metric measure spaces.
For example, YD) and RVD) are satisfied for the Euclidean spa® convex unbounded domains
in R", Riemannian manifolds of non-negative Ricci curvature, nilpotent Lie groups, and on many
fractal-like spaces; se&,[7, 17, 18, 32, 37, 38, 45, 54, 67, 72].

2.2 Dirichlet forms

Let (M, d,u) be a metric measure space ad@ %) be a Dirichlet form onlL?, that is,& is a
symmetric, non-negative definite, closed, Markovian bilinear form4rwith domain# that is a
dense subspace bf. The domairnF is a Hilbert space endowed with the following norm:

2 2
Ul = &(u, u) + Ul

The Dirichlet form €, ) is calledregular if ¥ N C. is dense both iF (with respect to the norm
I - llF) and inCe (with respect to the supremum norm). For more information of Dirichlet forms, we
refer the reader td2g.

Definition 2.1. For any open se® ¢ M and a sefA € Q, acutgf function¢ of the pair &, Q) is a
functiong € ¥ N C(Q) such that < ¢ < 1in M and¢ = 1 in an open neighborhood éf

It is known that if €, ) is regular then, for any open s@t c M and anyA € Q, there exists
always a cutfi function of (A, Q); see R8, p.27].

A Dirichlet form (&, ) is calledstrongly localif &(u,v) = 0 for any two functionss, v € ¥ with
compact supports such that const in some open neighborhood of supp

Any Dirichlet form (&, ) has the generator — a non-negative definite self-adjoint opefaior
L2 such that donf£) c ¥ and

E(U,v) = (Lu,v) forallue dom(L£) andve F.

For anyt > 0 setP, = e £ so thatP, is a bounded, self-adjoint, positivity preserving operatdrin
The family {Pt}-0 is called theheat semigroupf (&, 7). If P; for t > 0 has an integral kernel then
the latter is called the heat kernel and is denoteg{y, y) so that for allf € L% andt > 0,

Ptf(x):j;lpt(x,y)f(y)du(y) for u-a.a.x € M.

Let (&, F) be a regular Dirichlet form in.? (M, z). For any non-empty open s@tc M, define
F (Q) as the closure of N Cc(Q) in F. ThenF (Q) is dense in_? (Q) and(&, ¥ (Q)) is a regular
Dirichlet from in L2 (Q), that is called the part of&, ¥) on Q. Denote byL® the generator of
(&, F (Q)) and by{P{} the corresponding heat semigroup. It is known that, for ary De L2 (Q)
andt > 0,
Pth < Pf.



Set also
Amin (Q) = inf specL®.

It is known that
E(u,u) inf &(u, u)

ueF @O} [|ullZ,  ueFnce@)or [lul?,

/lmin(Q) = (2-1)
2.3 Green function

The positivity preserving property of the heat semigroups allows to ex@ghftfom f e L2 to all
non-negative measurable functiamsn M (of course, the value o for P;f is allowed in this case).
It is easy to verify that the semigroup propeRy sf = P; (Psf) holds also in this extended setting.

Define theGreen operator Gor all non-negative measurable functiohsen M by

Gf:f P.f dt.
0

Of course, the value« is allowed forG f.
A functionG (x,y) on M x M is called theGreen functior{or the Green kernel) if it takes values
in [0, +o0], is jointly measurable, non-negative, and satisfies for any non-nedatineidentity

Gf(X) = fM G(x, y) f(y) du(y) for u-a.a.x e M.

For instance, if the heat semigrotp} has the heat kerngk(x, y) then

G(xy) = fo " k)t

(although the integral here may diverge). Note that the Green function is always symmegnc in
which follows from the symmetry d®;.

Let Q be a non-empty open subsetMf Denote byP{® the heat semigroup ¢&, 7 (Q)) and by
G® the Green operator. It is known that, for any non-negative

0< PPf < Pf forallt>0,
whence also & Gf < Gf.

Remark 2.2. Assume thatlmin(©2) > 0. Then the operato® has a bounded inverse Irf(Q),
and (L) = G zq). In this caseG* has the following property: for any € L*(Q), we have
G%f € F(Q) and

E(GR1,¢) = (f,¢) forall g € F(Q); (2.2)

see B7, Lemma 5.1].

The following two-sided estimate3)g for the Green functioits(x, y) are fundamental for us to
derive Hardy's inequalities.

Definition 2.3. Giveng > 0, we say that conditiond)g is satisfied if the Green functioG(x, y)
exists, is jointly continuous inM x M) \ diag and

d(x, y)*
V(%)

Note that the estimat&3)z can be obtained from certain heat kernel bounds as follows.

G(xy) =

for all distinctx,y € M. (G)g



Lemma 2.4. Assume thafM, d, ) satisfieqVD) and that the heat kernel ¢&, F) exists. If the heat
kernel p satisfies for all t>~ 0 andu-a.a. Xy € M the following inequality

1 1
Pe(xy) < Voo Vxy) (2.3)
then
G( )<f°° " (2.4)
XY) < , )
y dixy) V(X.T)
for u-a.a. xy € M. If, forany t> O andu-a.a. Xy € M,
p(XY) 2 Vo P provided d(x,y)’ <t, (2.5)
then
a( )>f°° " (2.6)
XYy) = .
Y d(xy) V(X, I’)
for u-a.a. xy € M.
Consequently, if bot(R2.3) and (2.5) are satisfied then
00 ,B 1
coy= [ oo 2.7)
d(xy) V(X I')

for u-a.a. xy € M. Furthermore, if in addition(RVD) holds witha_ > g8 then the Green function
satisfieqG)g.

Proof. Set for simplicityo = d (x,y) . It follows from (2.5) that
© dt * gré-tdr
G2 | == | T
() fpa Vxt¥8) J, V(xr)
which proves 2.6). It follows from (2.3) that

00 dt /76 dt Ooﬂrﬂ_ldr Pﬁ
G(x,y)sL WJFIO V (X, p) _fp VN V()

It remains to observe that, {yD),
0o f-1 2p B-1
frdrzfrdrzpﬁzpﬁ’ 2.8)
b V(xr) ~J, V(xr) V(X2 " V(xp)

whence 2.4) follows. Combining 2.6) and @.4) gives @.7).
If (RVD) is satisfied withw_ > 8 then

o0 rﬂ1 o V(X p)rP dr
fp V(X, r) V(Xp)f V(x Ned

( )ﬁ dr

V(X p) Jp

__ —(m—ﬁ)d_s
V(x,p)fl > %

< pB ,

“V(x.p)

which together with2.7) and @.8) implies
rA-1 o°
G(x, :f )
O =] Vexn™ = Vxn
that is G)g. m|
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Example 2.5. Assume that the heat kernglx, y) on (M, d, 1) exists and satisfies the following sub-
Gaussian estimate: for dlb- 0 andu-a.a.x,y € M,

B
d 51
(X, y) = W exp[—c(%)ﬁ ] (2.9)

whereg > 1 is thewalk dimensiorand the symbok means that both inequalities withand> are
satisfied but with dferent values of positive constarisandc. For example, 2.9) is satisfied with
B = 2 on any Riemannian manifold of non-negative Ricci curvature @&¢ &s well as withs > 2
on many fractal spaces (see Examplé2below).

Clearly, .9 implies both 2.3) and @.5. Indeed, 2.3) and @.5) are trivial in the case >
d(x,y)?, while in the case < d(x, y)’ we have, setting = d(x,y),

V(1) Y= r\* ry
V(x,r)pt(x,y)smexp[—c(tl—/ﬁ) }s(tl—/ﬁ) exp(—c(tl—/ﬁ) <C

so that

C
pr(X,y) < V)

which proves 2.3).

Example 2.6. For certain jump processes on fractal spaces the heat kernel satisfies the following

stable-like estimate
t

1 _
Vo) "V xy) d(x v

see [L6]. For example, itV (x,r) = r® then .10 becomes

P (x.y) = (2.10)

1 t 1 d(xy)\ P
Pr(Xy) = 108 ( ) .

Moy ti/e

This estimate is satisfied with = n for a symmetric stable processif of indexg.
If t > d(x,y)’ then .10 becomes

PeOY) > Gy

while in the case < d(x, y)? inequality .10 implies

t 1
Vo dxy - VoY)

Pt (X,y) =

Hence, in both cases the estimate$)and @.5) are satisfied, and by Lemn2ad the Green function
satisfies G)g.

3 Hardy’s inequality for strongly local regular Dirichlet forms
In the setting of strongly local regular Dirichlet forms, in order to prove an abstract version of

Hardy’s inequality, we adopt the method of changing measures explained in introduction. The fol-
lowing theorem is the main result of this section.
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Theorem 3.1. Let (&, %) be a strongly local regular Dirichlet form in 4(M, ). Assume that
Amin () > 0 for all precompact open se® c M. Let h be a non-negative measurable function
on M such that

Ghnraely (3.1)

loc

for any positive constant a. Then, for any fF,
fﬂfzd < &(f, 1) (3.2)
yGh HEO '

Remark 3.2. If handGhvanish simultaneously at some points then at these points v&seo.

Before the proof, let us recall some necessary notions from the theory of strongly local Dirichlet
forms. According to 28, Section 3.2] or15, Section 4.3], for any € F N L*, there exists a unique
positive Radon measuigu, u) on M such that

f f dr(u,u) = Euf,u) - %S(UZ, f) forall f e ¥ NCe.
M

This measur&(u, u) is called theenergy measuref u. For anyu, v e ¥ N L*, define a signed energy
measurd (u, v) by

1
f fdI'(u,v) = é(a(uf,v) +&(uvf) - &y, f)) forall f e FnCe.
M
Note thatl’(u, v) is symmetric and bilinear, and it can be extended to,alle . It is known that
&(u,v) = f dr(u,v) forallu,ve F; (3.3)
M

see, for example 1] or [28, Lemma 3.2.3].

Let Fioc be the space of gll-measurable functionson M satisfying the following property: for
every precompact open subset M there exists a functioo’ € ¥ such that = U’ y-a.e. onQ. The
locality of (&, ) allows to extendE (u, V) to all u € Fioc andv € F¢, where¥. denotes a subspace
of F consisting of functions with compact support. Indeed, there eMists¥ such thatu = U’ in
a neighborhood of supp and& (U, v) is obviously independent of the choice wf so that we set
E(u,v) :=&E(U,V). It follows that the identity 8.3) holds also fou € Foc andv € 7.

It is known that the spacg& N L* is closed under multiplication of functions; see, for example,
[28, Theorem 1.4.2(ii)]. This implies thafiec N L5, is closed under multiplicatidn

For strongly local Dirichlet forms]" (u, v) can be extended to all v € Fioc; see [L5, Theorem
4.3.11] and $8, p.189]. Moreover, byg8, p.190], we know thaf (u, v) satisfies the following Leibniz
product rule

dr’(uv,w) = udr'(v,w) +vdr(u,w) forallu,ve Fioc N L, andw € Fioc. (3.4)
The following lemma is a key ingredient for the proof of Theorgrh

Lemma 3.3. Let (&, F) be a strongly local regular Dirichlet form on3(M, u). If ¢ is a positive
measurable function on M such that

both¢ and¢™* belong toFioc N Ly, (3.5)

YIndeed, iff,g € Fioc N L3, then, for any precompact open $etthere existf’,g’ € ¥ such thatf = f’ andg = ¢
in Q. Both f” andg’ can be chosen to be bounded Mrbecause otherwis& can be replaced b§f’ A C) v (-C) for any

C > ||fllL~(q), and the same is valid faf. Hence,f’'g’ € # N L*. Sincefg = f’g’ in Q, we conclude thafg € Fioc N Lj;

loc*
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then
&(f, f)—8(¢,¢‘1f2):f¢2d1"(¢‘1f,¢‘1f)20 forall f e FonL™. (3.6)
M

Consequently, we have
E(p, ¢ %) < &(f, f) forall f e Fen L™, (3.7)

Proof. Sinceg™ € Fioc N Li5. and both functiong and f2 lie in = N L™, we obtain

¢~ 1f andgif2e FonL® (3.8)

(indeed, botly~1f and¢~1f2 belong toFjoc N L

e @nd have compact supports). B33 we have

&t )-8 oMY = [ dr(tn)- [ et
M M
Applying the Leibniz rule 8.4), we obtain

dr(f, f) - dr(g, ¢ %) = dr ((¢7*f) ¢, f) — dr' (¢, (¢7 1) )
= (¢7Hf dr(g, f) + ¢dr(g71, 1)) = (472 d[(g, T) + f dT(p, 7" 1))
= ¢dl(¢p~'f,¢p ' f) - fdI(g,¢7)
= (¢7dr(¢7f,¢7Hf) + fd[ (¢ 1.9)) - T (g, ¢7*f)
= ¢?dl(¢71f,¢711),

whence it follows that
&(1. 1) - &(6.7212) = f #dr(¢ 1,671 > 0.
M

This proves 8.6) and, hence 3.7). m|

Remark 3.4. If in addition to 3.5 assume thap € dom(£) then
E(p. ¢ %) = (Lo, ¢ 1) = f %fzd,u.
M

Hence, 8.7) becomes
f @fzdﬂ < &(f, ),
M @
which coincides with 1.2) when (M, d, ) is a Riemannian manifold and = —A. Moreover, by
the Leibniz rule 8.4), one can verify that the identityd(6) coincides with ¥1, (3.2)] provided that
f satisfies additional conditions in terms @fand the generalized Laplace operator (that is defined
based on the energy measure).

Proof of Theoren8.1 It suffices to proved.2) for all f € ¥ N C¢ since for anyf € ¥ there exists a
sequencéf,} from & N C. converging tof in . Applying (3.2) to eachf,, passing to the limit as
n — oo and using Fatou’s lemma in the left hand side, we obtaig) for f.

Hence, we assume further thiat ¥ N C.. LetQ be a precompact open subset\dicontaining
suppf so thatf € ¥ (Q2). Leta, ¢ be positive constants. Set

hazh/\a

and consider if2 the function
¢ = Ggha + £.
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By (3.1), ¢ is bounded inQ. Sinceimin (Q) > 0 andh, € L?(Q), we haveG®h, € F (Q) and,
hencey € Fioc (). Sinceg > &, it follows thatg™ € Fioc N L™ (Q) (indeed,p* = F o ¢ where
F(t) := 1 AtLis Lipschitz; see28, Theorem 1.4.2(v)]). Therefore, satisfies the hypotheses of
Lemma3.3in Q, and we conclude that

&, 971 %) < &(f, ).
By (3.8) we havey1f2 € . (Q), and by @.2) and the strong locality

E(p, ¢ 112) = E(Ghy + £, ¢ 1 2) = §(G2h,, ¢ 71 12)
h
— h, —1f2 :f—afz
(a¢ ) QGQha+8 d/l

Zjg;Gh—ksf du

whence n
—2 2 f, f).
Lettinga — o, £ — 0, andQ — M, we obtain 8.2). m|

A non-negative measurable functiaron M is calledexcessivéf P;u < ufor allt > 0. Conse-
quently, ifu is excessive, theRiu < Psuforallt > s> 0.

Corollary 3.5. Let (&, %) be a strongly local regular Dirichlet form on4(M,x). Assume that
Amin (Q) > 0 for all precompact open se@ c M. Let u € L5 be a positive excessive function
on M. Then, for any £ ¥,

ifﬂmmmmwganw (3.9)
M

Proof. Fixt > 0 and set
h= —8t PtU

so thath is a non-negative measurable functiondnWe have

0 0
__ fo 3 (Prst) ds = — fo 9 (Prsst) ds
=—f 0s(Psu) ds < Pru.
t

Hence,
Gh<Pwu<u

which implies thatGh e L® . By Theorem3.1we conclude that

loc*
fifzd <&(f, f)
v Gh H=e

L > —0tPu
Gh ™~ Piu

we obtain 8.9). m|

Observing that

= —dlog (Pru),
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4 Hardy’s inequality for regular Dirichlet forms

In this section, we prove an analogue of Theor@mfor general (non-local) regular Dirichlet
forms. The main result is Theoredn5 below.
4.1 Extended Dirichlet forms

Given aregular Dirichlet form&, 7) on L2, denote byFe the family of allu-measurable functions
uon M such thau is finite u-a.e. onM and there exists a sequer{cg} C F such that

limuy,=u pg-a.e.onM and |lim &(U, — Up, Uy — Uy) = 0.
n,m—oo

N—o0
For anyu € Fe, by [28, Theorem 1.5.2(i)], the limit
&(u,u) = Amo &E(Un, Un)
exists and does not depend on the choice of the seqyexjcdloreover, by £8, Theorem 1.5.2(ijii)],
F = Fen L%

The pair(&, Fe) is called arextended Dirichlet form.

As was discussed in the previous section, 6th L™ andFioc N L5,

cation of functions. The following lemma extends this propert§io

are closed under multipli-

Lemma 4.1. Assume tha(&, ) is a regular Dirichlet form on the metric measure spgd4 d, u).

Then, for any Lt Fe N Live and anyy € ¥, N L*, we have

W e F L. (4.1)

Consequently,
Fe N Lige € Floc- (4.2)

Proof. Let us first show that4.1) implies @.2). Indeed, given a function € FeN L5 and a precom-
pact open subs& c M, we need to find a functiog € ¥ such thatu = g u-a.e. onQ. Lety be a
cutdf function of Q in M. By (4.1) we haveg := uy € . Sinceg = uin Q, we obtain 4.2).

Now let us prove 4.1). We use the following resul2B, (1.3.18) and (1.4.8)]: for any Borel

measurable functiof on M,
feFofel?and lImED(f, f) < oo, (4.3)

where
(T) = I - 2 g T 2
E7(f,f) = 2fMXm(f(X) f(y))* do-(x, y) + fo S du (4.4)

for some positive symmetric Radon measaté, ) on M x M satisfyingo. (M, E) < u(E) for any
Borel measurable s&, ands; is a function such that& s, < 1 onM. Itis also known tha&((f, )
is non-decreasing as— oo so that the limit in 4.3) always exists, finite or infinite. Moreover, by
[28, Theorem 1.5.2(i)-(ii)] iff € e then
lim ED(f, f) = &(f, f) < 0.

Letu e FeN L5, andy € Fc N L™. Without loss of generality we can assume thaindy are Borel
measurable. Clearly, we haug € L* N L2 so that, by 4.3), in order to prove thaty € 7, it suffices
to verify that

lim & (uy, wp) < .

T—00
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Without loss of generality, we can assume théf, . = 1. The setfxe M : |y (X)| > 1} is a Borel set
of u-measure zero. Modifying on this set by setting = 0 we can assume without loss of generality
that

v (X)| <1 forallxe M.

Let Q be a precompact open set containing supsimilarly, after modifyingy on a Borel set of
{-measure zero, we can assume thét) = 0 for all x € QF.

Without loss of generality, we can also assume oty = 1. Modifying u on the Borel null
set{x € Q : u(x) > 1}, we can assume that

u(x)] <1 forallx e Q.
Let us verify that, for allx,y € M,

UG (X) — U Y)l < 1(X) = gyl + [u(x) — uy)l- (4.5)

Indeed, ifx,y € Q then

U (X) — U)Wl < U (X) = gyl + [ W)1HuX) — u(y)l
< @ (X) = w(y)l + [u(x) — u(y)l.

If x e Q°andy € Q theny (x) = 0 and

U (X) = u) ) = U)W = u)l g (X) = @yl < (X)) = wy)l,

and if x, y € Q€ then|u(X)¥(x) — u(y)¥(y)| = O.
It follows from (4.5) that

f (W)X - (W))? dors(x, y) <2 f
MxM

Mx

W09 =) dor(x. )
2 f (U(X) — UY))? dors (X, Y).
MxM

Sincejuy| < |ul, we have also

f (up)? s, du < f u’s: du.
M M
From this and4.4), it follows that

EN(uy, uy) < 280y, ¥) + 267(u, u)

and, hence,
lim EX(uy, uy) < 2 lim EQ(y, ¥) + 2 lim ED(u, u) < oo,

which finishes the proof. O

4.2 Transience of Dirichlet forms

According to P8, Section 1.5], a Dirichlet form&, ¥) is calledtransientif there exists a bounded
u-measurable functiog that is strictly positiveu-a.e. onM and such that

f lugdu < y&(u,u) forallue F.
M
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By [28, Lemma 1.5.5], if(E, ) is transient thei& (u, v) is an inner product iffe and ¥ with this
inner product is a Hilbert space. B2§, Theorem 1.5.4], if§, ¥) is transient, then, for any non-
negativeu-measurable functiof on M satisfying

ffodp<oo,
M

we have thaG f € ¢ and
E(GT,¢) = f fodu forall ¢ € Fe. (4.6)
M

As it follows from [28, Lemma 1.5.1], in order to show tha%,(F) is transient, it sffices to find a
u-a.e. strictly positive functiog € L such that

Gg(X) < 0 forpu-a.a.xe M. 4.7)
Lemma 4.2. If the Green function @x, y) exists and belongs tql(Jt (M x M) then(&, ¥) is transient.
Proof. It suffices to construct a strictly positive functigre L such that
Gge Llloc,

which will imply (4.7). Observe first that iA and B are precompact subsetsidfthen

[ ot = [[( [ 603 de00) b (00 = 16l pem < . (4.8)

Fix a pointx, € M, setBy = B(xo, 2),
Ao = By, Ax=Bg\Bfor k>1,
and defingy by

g= i CklAc
k=0

where{cy},, is sequence of positive reals yet to be determined. Clegrly,0 on M. By (4.8) we
have, for all indice, n,

f Gladu = [IGllL1(B,xA

n

and, hence,

| Gadi= Y Gl (4.9)
n k=0

Chooseck for all k = 0,1, ... so thatcy (G| 1g,xa) < 27K Then the series ir9) converges for any
n, whenceGg e LE _ follows. o

Corollary 4.3. If (M, d, u) satisfieqVD) and, for somgs > 0.

d(x y)
V(x,y)

then(&, 7) is transient. In particular(VD) + (G)z imply the transience.

G(xy) s for u-a.a. distinct xy € M,
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Proof. Indeed, by ¥D), we have, for alk € M andR € (0, =),

Aoy N d(x, vy
fB(x,R) V(x.y) ) = Z fB(xziR)\B(xz(Jﬂ)R) V(x.y) )

_ V(x,27IR)
: Z(Z R 2 IR

<Cp Z(z—iR)ﬂ
j=0
~ RP. (4.10)

Now, for any ballB (x,, R), we obtain, using4.10),

d(x,y)y?

fB(XO’R) fB(XO’R)G(X’ it fB(Xo,R) (fs(xo,R) V(X,Y) dﬂ(y))d# (X)
d(x. yy’ )

- fB(xo,R) (fB(x,zR) V(X,Y) du(y) | du (x)

< Rgd,u (X) < o0,
B(%o,R)

which impliesG € L (M x M). Hence(§, F) is transient by Lemma&.2 O

4.3 Admissible functions and Hardy’s inequality

Definition 4.4. Let G be the Green operator of a Dirichlet form. A positivgneasurable functioh
on M is called(u, G)-admissible if it satisfies the following three conditions:

(i) Ghe L

loc?

(i) (Gh™teL®;

loc’
(i) fM hGhdu < .
The next theorem is our main result about Hardy’s inequality for general regular Dirichlet forms.

Theorem 4.5. Let (&, ¥) be a regular Dirichlet form or{M, d, i) and G be its Green operator. If h is
a (u, G)-admissible function on M, then the following Hardy’s inequality holds:

f (;hfzd/.l <&(f, f) forall f eF. (4.11)

Remark 4.6. If (&, F) is strongly local then Theore®.1 gives the same Hardy’s inequalit.(2)
under a weaker hypothesi3.{) instead of(u, G)-admissibility.

Proof. Due to the regularity of the Dirichlet forn&( ¥), it suffices to show4.11) for all f € ¥ N C¢
(see the proof of Theoref1).

Let us first verify that if a g, G)-admissible functiorh exists then&, ) is transient. Indeed, it
suffices to construct a positive functigne L* such thag < h (then @.7) is satisfied byGh e L
Indeed, define a sequen&},’, of subsets oM as in Lemmat.2, choose positive so that

Ioc)

e (A) < 27K,
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and set
g(x) = min{cg, h(x)} if xe Ax.

Clearly, 0O< g< hand
fAkgdu < o (A) < 27

whenceg € L follows.
By [28, Theorem 1.5.4], the conditiorii() of Definition 4.4 and the transience o&E(F) imply
that

w:=Ghe ¥ (4.12)
The condition {) of Definition4.4, thatis,w € L° , and @.12) imply by Lemma4.1that

loc?

W € Floc.

By condition {i) of Definition 4.4, for any ballB c M there ise > 0 such thatv > £ in B. By
using P8, Theorem 1.4.2(v)], we conclude that® € 7o (indeed, we havev! = F o w, where

F(t) := et At is a Lipschitz function). Hencey* € FiocNL}... It follows that, for anyf € 7 NCe,

wlf?eF c Fe (4.13)

By the transience off, ) and @.6), we obtain

fszdu:fh(w‘lfz)d,u:S(Gh,w‘lfz):S(W,W‘lfz).
m Gh M

Hence, the proof 0f4.11) amounts to verifying that
Ew,wtf?) < g(f, f) forall f e FNCe. (4.14)

According to P8, Lemma 4.5.4, Theorem 4.5.2] ar@B] Theorem 7.2.1], a regular Dirichlet foré
admits a Beurling-Deny and LeJan decomposition: foualle Fe,

E(u,v) = 9, v) + f

Mx

(G(x) — U(y)) (U(x) - Uy)) dI(x.y) + f A()¥(x) dk(x), (4.15)
M M

where&© is a strongly local symmetric form with domaife, i andV denote quasi continuous
versions ofu andv, J is a symmetric positive Radon measure &n x M) \ diag (the jumping
measure) anll is a positive Radon measure dh(the killing measure).

Let noww be a quasi continuous version®h. Thenw 12 andwf are also quasi continuous.
By (4.12, (4.13 and @.15, we have

Ew, wf?) = EO(w, w2 (4.16)
+ f (W09 = W) (W) (07 = wy) T ()%) dI(x.y)
(MxM)\diag
+ f wIW(X) L (X)2 dk(X).
M

By f e F nCcand @.15, we have

&(f, f) = EO(F, f) +f

(MxM)\diag

(F(X) = f(y))?>dIxy) + fM f(x)2dk(X) . (4.17)
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In order to prove 4.14), we compare the corresponding terms in the right hand side$ 1) (and
(4.17). Clearly, the third terms in the the right hand sidesbi§ and @.17) are equal to each other.
Since bothw andw! are inFipc N Lo the argument in Lemma 3 shows that

EOw, wf?) < 8O(f, f).
Finally, in order to compare the middle terms, observe that, for, gl M,
W0 = wy))(WO) ()2 - wiy)H()?)
= £(0% + T¥)2 — wW(y) () - wiyW) ™ (%)
= (109 = 1) + 260 F(y) ~wIWR) (W) ) — wIWOIWE) ()
= (F00 = F0))" + Woowly) | 20092 F W) 1) - (W) F) = (wEd 2 £00)'|

)
= (109 = 1) = wWOIWR) (WO (%) - w(y) ()
< (100 - f))"

This proves4.14) and, hence 4.11). m]

Remark 4.7. As we see from the proof, the positivity of the functibmvas used only in the first part
in order to prove that&, ) is transient. If it is known a priori tha€, ¥) is transient then we can
allow h to be non-positive provided all the condition} (iii ) of Definition 4.4 are satisfied.

We conclude this section with the following corollary.

Corollary 4.8. Let (&,F) be a regular Dirichlet form on(M, d, u), and £ be its generator. If a
positive functions € dom(L) satisfiesp, ¢~ € LS. and [, ¢ L¢ du < oo, then

loc
f%fzd,usa(f,f) forall f € 7. (4.18)
M

Proof. Indeed, applying Theores5with h = L¢ and observing that = Gh, we obtain 4.18 from
(4.11). m|

5 Some “classical” versions of Hardy’s inequality

In this section, we mainly apply Theorefxbto obtain various versions of Hardy’s inequality on
metric measure spaces, which are generalizations of clasiicaétéfractional Hardy's inequality.

5.1 Discrete Hardy’s inequality

We show here how Theoremb5yields a discrete Hardy’s inequality #I', wheren € N. For any
k=(kg,...,ky) € Z", we set
lIKIl = Ikl + - - - + [Knl

and define the graph structureZf as follows: fork, m € Z" we say thak andm are neighbors and
writek ~ mif |[k—m|| = 1.
Define for alls > 1 the function

(9 = i(m) 1 1 1 5 21

Li\2| 3@ —1)F a9 " 6as' 51

Denote
I=lk=(k,....kn) €Z": k,=0forsome =1,..,n}.
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Theorem 5.1. For any function f: Z" — R such that fe 12(Z") and flr = 0, the following discrete
Hardy’s inequality holds:

2n > wlkfRZ< > Ifm) - fP (5.1)

kezZn\{0} {k,meZ":m~k}

Sincew () > 7. the inequality §.1) implies

2
Y S S i - 1

5 =
kezZ™\{0} Hk” {k,meZ:m~k}

If n=1 and a functiorf : Z — R vanishes fok < 0, we derive from$.1) that
INACHCEDNACERIE) (5.2)
k=1 k=1

This inequality was proved irbp, 53] and shown there to be optimal. Of coursg,2 implies the
classical discrete Hardy’s inequality

(o) 2 (o]
Py S w - k-1,
k=1 k=1

k2

where the constant/4 is the best possible; se¢d p. 239].
Let us compareH.1) with the result of §3, Theorems 0.2 and 7.2] that says the following: if
n > 3 then, for any finitely supported functignonZ",

2 >, wike®? < > le(m) - e(KP, (5.3)

kezZM\{0} {k,meZ":m~k}

wherew is an optimal Hardy weight that has the following asymptotic behaviour:

w(s) = (n4—822)2 + O(é) ass — co.

The corresponding weight ib (1) is

1
s

Forn > 5 the weightw is obviously better, fon = 4 the weights are equivalentv(s) ~ nw (s) as

s — oo, While for n = 3 the weightnw () is better tharw (s) by a factor 3 This is not surprising
because the class of functioisn (5.1) has a restrictiorf|r = 0 while functionsy in (5.3) must
only be finitely supported. For the same reaséiil)(holds also fom = 1,2 while for 6.3 n > 3 is

required.

Nw (S) = l+O(

12 ) ass — oo.

Proof of Theorenb.1 Define the distance ¢’ by d(k, m) = ||k—m|| and letu be the degree measure,
that is,u (k) = 2nfor all k € Z". The Dirichlet form €, ) onZ" is given by

=3 > Ifm- 1K

{k.meZ":m~k}

whereF = 1% (Z") . The discrete Laplacian is defined on all function$ : Z" — R by

Af(K) = 2—1n (M) - f(K), kez".

m~k
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It is known that the generataf of (&, F) coincides with-A|;2; see p1].
Consider the se® = Z" \ I" and the function space

FQ)=({feF:flr=0
so that(&, F (Q)) is the part of &, ¥) on Q. For anyN € N, consider the following function oB":

IKIZ = (Kal + -+ ka)2  ifO < Ikl <N

Ink) = { if ||k|| > N.

Clearly, if||kl] > N then
Agy (k) = 0.

For anyk € Q with 0 < [[k|| < N — 1, there exist verticesm ~ k satisfyingsy(m) = (/Ikl| + 1)%, and
anothem verticesm ~ k satisfyinggy(m) = (JIK| — 1)%, which implies that

_Agy(k) Z Pn(K) — (M)
on) — 2n on(K)

=mmbww+nwwwvn%
2|l
j

Sefem) o)

Using the Taylor expansions of the functians> (1 + t)% andt — (1 - t)% that converge iffi—1, 1],
we obtain

NI

o 1l _qy...(1_;
2-(1+0)E-(1-t)2=2— 222(2 D Gi+ D,

B 1-3.5-.-.. (4i - 3)
_22 221(2i)! t

=1
2 la)ss (i

It follows that
Agn(K)
PN (k)

If k e Q and| k|| = N, then there exist verticesm ~ k satisfyinggy(m) = (JIKI| - 1)% =(N- 1)%, and
anothem verticesm ~ k satisfyingegy(m) = Nz, which implies that

:%wmm)fmmmegwm0<mmsN—L

Apn(K) 1[N2-—(N 1y]

k) 2 N3
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Hence, we obtain that, for dtle Q,

w (IIKII) ifO<|kl<N-1
Agy (K) 1) NEone)? .
- =y (k) = S O g g = N 5.4
o - MO=3) I (5-4)
0 if kil > N.
Sethy = ¢pny SO that
— Agy = hy inQ. (5.5)

Note thatpy, > 0 andhy > 0 in Q. In particular, the functiom, is non-negative and superharmonic
in Q (let us mention that outside it may happen thatA¢y < 0, for example;-Agy, (0) < 0). Since
¢y is non-constant, it follows that th&E, 7 (Q)) is transient. In particular, the Green functiG®
exists. It follows from 6.5) by the comparison principle that

¢y = GPhy in Q. (5.6)

It is easy to see that the functitn= hy satisfies inQ all the conditionsi{-(iii) of Definition 4.4.
Indeed, {) holds by 6.6), (i) holds becaus&®hy > 0 by the strong minimum principle for super-
harmonic functions on graphs, ariidl)(holds becausbky has finite support.

By Remark4.7, we can apply Theored.5with h = hy and conclude that, for afi € 7 (),

—fdu < &(f, ). 5.7
fQGQhN < &(F, 1) (5.7)

The left-hand side here can be estimatedd®g)(and 6.4) as follows:

hy 2 f hy 2 f 2 1 2
f du > —f du = f du > —w ([IKl)) f(k)=2n.
fg Gsth Q ¢ Q IN Z 2 (” ”) ( ) n

N 0<|IKlI<N

Combining with 6.7) and lettingN — oo, we obtain 6.1). ]

5.2 Hardy’s inequality and distance function

In this subsection we obtain an explicit form of Hardy’s inequality under the hypot¢Bgs (RVD)
and(G); . For that, we construct explicitly.( G)-admissible functions that can be used in Theorem
4.5 The main result is stated in Theorént below.

Let us begin with the following Selberg-type integral formula & ¢, w).

Lemma 5.2. Assume thafM, d, i) satisfieqVD) and (RVD) with lower volume dimensiom_. If 8
ande are positive reals such th@t+ £ < a_, then the following estimate

d(x, 2/ d(z y)® Cd(x Y
fm V(x,2 V(zy) @ = V(X Y) (5.8)

holds uniformly for all distinct x, ¥ M.
Proof. By condition RVD), there exists a large constadtt> 2 such that for alk € M andR > 0,

V(XKR)

VaR 22 (5.9)

Setr = d(x,y) . In order to prove the lower bound iB.g), observe first that

d(x 2) < % S dy,2) ~r, (5.10)
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whence
d(x, 2 d(z y)* d(x, 2’ d(y, 2°
fM V(x,2) V(zy) d/J(Z)ZL(x,r/Z)\B(X,r/ZK) V(x,2) V(y.2 %
(V(xr/2) =V (xr/2K)).

rﬂ+s

“V(x )2

Using further 6.9), we obtain
Bre B+e

d(x, 2 d(z y)® 1 T
f,\,, V(x,2) V(zY) du(?) 2 V(x,1)2 EV(X’r/Z) V()

Before we prove the upper bound #.8), observe that, by4(10, for anyo € (0, ) andR € (0, o)

d(x, 2”
\LmvmaW@$W (5.11)

Let us prove that, if 6 8 < a_, then

d(x,2” 2)9
j;,(x Re V(% 22 () < V(xR

uniformly in x e M andR € (0, ). Indeed, applyingRVD) and6 < «_, we obtain

d(x 2" N d(x, 2)°
jl;(x,R)° V(x,2)? W) < ;o fB(x,sz)\B(x,zJ r) V(X 2)? @

(5.12)

(2j+lR)9
< -
~§vmm®

which proves %.12).
Now, we use %.11) and 6.12) to verify the upper bound in5(8). Using 6.10 and 6.11), we

obtain
d(x, 2 d(z y)® ré d(x, 2 rpre
du(2) ~ du(2) < . 5.13
fB(x,r/Z) V) Vay) YOV Jeern Vixg ¥P Sy G

Similarly, if r/2 < d(z X) < 2r, then

dizy) <d(zx)+d(x,y) <3r and V(x,2) = V(xr),

which, together withg.11) implies
d(x, 2% d(z y)¢ rB d(z y)® rB+e
Box2n\B(xr/2) V(X2 V(ZY) T V(1) Jeyan V@ Y) Y) V(X r’

For anyz € M satisfyingd(z x) > 2r, we have by YD) that
d(zy) ~d(x,2 and V(zy) ~ V(X 2,
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which yields by 6.12 andp + ¢ < a_ that

d(x, 2’ d(z y)° N d(x, 25+ (B
fB(x,zr)C V(x,2) V(zy) du(z) ~ fB(x,zr)c V(x, 2)2 du(@ = V(x,r) (5.15)

Adding up 6.13, (5.14 and 6.15, we conclude that

d(x, 2 d(z y)® rpte
xﬁvmavaww®svmw

which finishes the proof ofy(9). m]

Remark 5.3. The Selberg integral formul®6, p. 118, (6)] inR" says that, ifa;, a; are positive reals
satisfyinga; + a > n, then for all distinctx,y € R",

f X=Z"®|z- Y7 dz= CnayalX -y "%, (5.16)
Rn

Where n—-a n—-a; ai+ax—n
g TN ()

Cn’al’az =72 n—ar— .
F(Er(ErEg=)

The inequality 5.8) can be regarded as a generalization of the iderBiti/g.

We use Lemm&.2in order to construct a functiomthat is admissible in the sense of Definition
4.4

Lemma 5.4. Assume thatM, d, 1) satisfiegVD) and (RVD) with lower volume dimensiom_. Let
B ande be positive reals such thgt+ ¢ < o and let the Green function @, y) satisfy(G)g. Fix an
arbitrary point x, € M, a realp > 0 and define

Jod ;
h(X) — V(XOJ))‘q If d(XO, X) <p (517)
d06.) if d(Xo,%) >
V(Xo,X) %) =P

Then, the Green potential of h satisfies

inf Gh>0 forall R € (0, ) (5.18)
B(X.R)
and o
Gh(x) < C {X(‘Xng)%w a0, x) < 2 (5.19)
el i dOo.) =20
where C is a positive constant independent,of,>andp.
Proof. The inequality .18 follows from infg(x, r h > 0 and
. d(xy) R
inf G(xy)~ in > > 0. 5.20
X,YeB(Xo,R) ( y) X,YeB(%o0,R) Vv (X, y) V (XO, R) ( )

Indeed, for any, y € B(xo, R), settingr = d (x,y), we obtain that < 2Rand

=1 T R E R

Voo R Vixn ViR 1) “vxm\r) =/ v
which proves .20 and, hence H.18).
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In order to prove §.19, we apply G)g, (5.17) and split the integral in the definition @h into
two parts as follows:

Gh(x) ~ fM Y ) duy)

V(Xy)
dix.yy p° d(x, v d(xo,y)*
~ d d
fs(xo,p) Voy) Vo) YO o YOy Vi) Y
=11+ Iy (5.21)

Setr = d (X%, X). We estimatd, andl, in (5.21) by considering two cases:> 2p andr < 2p.
Caser > 2p. If y € B(Xo,p) then

d(xy) <d (X, X) +d (X0, y) <r+p<2r
and
d(xy) > d(X, X) —d(X,y) >r—p>r/2

so that
d(x,y) ~r and V(x,y) = V(Xo,r).

17 Jeen V0o ) Vo0p) T " Vo) ~ V(X 1)’

It follows that

By Lemma5.2, we have
rﬂ+s

V(Xo, 1)’
Combining the last two estimates arid41), we obtain

I2 <

rﬁ+€
V (%o, )
Caser < 2p. In this case, applyingb(1l) gives

. d(x,y)°
V(Xo0, ) JB(xop) V(X.Y)

Gh(x) < provided r > 2p.

pﬁ+s
V(X0,0)’

1 du(y) <

So, it remains to estimate. By (VD) and 6.11) we obtain

d(x y)’ d(x0,y)* 4 =L dixyyY | V)
Vixy) VoY) Y Vixep) Vixy) Y
B(%0,40)\ B(Xo.0) Y. )Y 2P) JB(%0,40)\B(Xo,p) Y.
pB+£

If y € B (X0, 40)¢, thenr < 3d (xo,y) and

d(xy) < d(Xo.y) +d (X, X) < 2d (X0, Y)

and 1
d(xy) = d(Xo,y) — d(Xo, X) > éd(XO’Y),

whence
V(XY) =V (X,Y).
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Using also .12, we obtain

d(x y) d(x,¥)* N d(x, y)’*®
fB = [ S

pB+s
oot VOOY) V0o, Y) Boede V(% Y)2

V(Xo,0)

du(y) < (5.23)

Combining 6.22 and 6.23 yields

+&

V(Xo,0)
Substituting the estimates bf andl, into (5.21), we obtain

PIS

pﬁ+8
Gh(x) < rovidedr < 2p,
Y= Voo i

which finishes the proof o5 19). O

Corollary 5.5. Under the hypotheses of Lemi®md, assume thag + 2¢ < a_. Then the function h in
(5.17 is (u, G)-admissible.

Proof. Note that 6.18 and 6.19 imply thath satisfies the conditions)(and (i) of Definition 4.4.
Let us verify the remaining conditiomii() in Definition4.4. By (5.19, (5.11), (5.12 andB+ 2¢ < a-_,

we obtain
thhcp:(f +f +f )hthu
M B(Xo.0) B(%0,20)\B(Xo.0) B(X%0.20)°

S f o P 80

Blxp) Y (X0, 0) V(Xo, )

+ f d(xo, X)*  pF**
B(%0,20)\B(op) ¥ (%0: X) V(Xo, p)

+f d(%o. X)° d(%o, X)*
B(xe20)® V(X0: X)  V(Xo, X)

p6+2£

V(Xo, 0)

which finishes the proof. O

dpu(x)

du(x)

<

< 00,

Applying Theoremd.5with the admissible functioh as in 6.17), we derive Hardy’s inequality
(1.9).

Theorem 5.6. Assume thafM, d, i) satisfieVD) and (RVD) with lower volume dimensiom_. Let
(&, %) be a regular Dirichlet form on M that satisfi§€&)g with 0 < 8 < a_. Then there exists a
positive constant C depending only on the constants in the hypotheses, such that, fear ®lland
feF,

f 0 400 < ceCt. ) (5.24)
v A0, P 7 S o '
Proof. Choose a numbersuch that O< 2¢ < @_—p. For thise andp € (0, o), we define the function

hasin 6.17) and adopt all other notation from LemrBal. By Corollary5.5, his (u, G)-admissible.
By Theoremd.5we conclude that, for alf € ¥,

h
2
ﬁﬂ f Ghdﬂ < &(f, ). (5.25)
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Applying (5.17) and 6.19, we obtain

h h £(x)2
f2—d zf f2—d zf du(x
fM Gh = ooz ON "~ Japozer A0k XP »

with implicit constant independent of, andp. Substituting the last estimate int6.25 and letting
p — 0, we obtain

f(x)? L £(%)2
S g 0= [ e 0 < 6L

which concludes the proof. m|
As an example of application, we apply Theorgréto deduce the following estimate of,n (Q).

Corollary 5.7. Under the assumptions of Theoré&m, for any non-empty open bound@dc M, we
have

Amin(©) 2 (diam@)) " (5.26)

Proof. SetD = diamQ, fix a pointx, € Q and letu € ¥ N C¢(2). We have supp c Q and

2 _ 2 D g 2
o = [ o000 = [ (i) 14007 dut

By Theorenb.6, we have
u(x)>
m d(Xo, X)P
Combining the last two inequalities yields

du(x) < &(u, u).

lull?, < DP&(u, u),
which implies 6.26) by (2.1). m|

If (&, F) is strongly local then the proof of Theore®nb simplifies as in this case we can apply
Theorem3.linstead of Theorem.5and, hence, do not need Corolldiyb.

Corollary 5.8. Assume thatM, d, ) satisfiegVD) and(RVD) with lower volume dimensian_ > 2.
Let (&, ) be a strongly local regular Dirichlet form in4(M, 1) such that the Green function(& y)
is jointly continuous in Mx M \ diagand

d(x, y)?
V(X.y)

Assume thalmin () > 0 for all precompact open sef3 c M. Then there exists a positive constant
C suchthatforallye Mand fe F,

G(xy)<C for all distinct x y € M. (Gs)2

f(x)?
m d(Xo, X)?

du(x) < C&(F, ). (5.27)

Proof. Following the lines in Lemma&.4 (takeB = 2 therein), we obtain byG.), that the functiorh
in (5.17) still satisfies §.19, so that

é‘ﬁ& > d(% )2 if d(¥0.X) > 20
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with implicit constants independent af € M andp € (0, ). For the functiorh in (5.17), it is
obvious that G<), implies
G(haa) el

loc

for any positive constarg. Thus, by 8.2) in Theorem3.1, we obtain

f(x)?
m d(Xo, X)?

du(x) < &(f, f) forall feF.
i

Remark 5.9. Let M be a complete non-compact Riemannian manifdithe geodesic distance and
u the Riemannian volume. LéE, ¥) be the canonical Dirichlet form okl that is,

E(f, )= fM IV 1% du, (5.28)

wheref € ¥ = W32 (M) . Assume thatVl satisfies theelative Faber-Krahn inequalityfor all balls
B(x,R) in M and for all open set® c B(x, R),

Ao () > i(V(x, R))s,

1) (5.29)
wherec, ¢ are positive constants. B8], Proposition 5.2],%.29 implies that the heat kernel dvi
satisfies the Gaussian upper boub@&}, which further implies G<), by Lemma2.4. Besides,%.29
implies also(VD), and the latter implie§RVD) provided that dianM = co. Assuming in addition
thata_ > 2, we can then apply Corolla.8 and obtain Hardy's inequalityb(27).

For example, consider a manifold with enlls= R"#R" with n > 2 where # stands for a con-
nected sum. Note that dR"#R" the Faber-Krahn inequalityp(29 holds by B4]. It is easy to see
that (VD) and (RVD) hold onR"#R" with - = @, = n. Hence, Corollanb.8yields the Hardy’s
inequality 6.27) on R"#R".

Note that 3), does not hold oiR"#R" (cf. [43]), so that Theoren®.6 is not applicable in the
caseM = R"#R". For further results on manifolds with ends see at&h.|

5.3 Subordinated Green function and fractional Hardy’s inequality

For anyé € (0, 1) the operator£® generates theubordinatecheat semigroupe‘tﬁ}tzo and the
associated Dirichlet form&(®, #©)). It is well known that (cf. f'3] and [32, Section 5.4])

e—w":f ,7§5)(s)e—5£ds forall't > 0,
0

where{nt(‘” (9)}=0 is a family of non-negative continuous functions ond) that is called asubor-
dinator. Moreover, if €, F) is regular, then&®, 7)) is also regular; seep, Proposition 3.1]. If
{e'L}150 has the heat kerngk (x, y) then{et£’}i.o has the heat kernel

pg‘s)(x,y):f 7(s)ps(x.y) ds forall x,y € M.
0

Using the following identity from§3, (6)]

fm 7(s) dt = il for all s> 0,
0 I'(6)

we obtain the following expression for the subordinated Green fun&itn

GO (x y) = fo oO(x.y) dt = fo fo 1S ps(x y) dsdt= ¢, fo $py(xy)ds  (5.30)
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Theorem 5.10. Assume thafM, d, 1) satisfies(VD) and (RVD) with lower volume dimensioa_.
Let(&, F) be a regular Dirichlet form on M. Assume that the heat kerné€of) exists and satisfies
(2.3) and (2.5) for someB € (0,a_). Then, for any € (0, 1), the subordinated Green kernel®s
satisfies

d(x )
V(xy)

Consequently, there exists a constant © such that, for all fe #©),

GO(x,y) ~ for distinct xy € M. (G@),

f d(f(x)z du(x) < CEO(F, f). (5.31)

Proof. The inequality $.31) follows directly from Theorenb.6 and G(‘”)ﬂ. Let us verify that the
subordinated Green kerr@{? satisfies G®)z. By (5.30, (2.5 and (D), we obtain the lower bound
of G©):

2d(x.y)*

GO(x,y) > cs f

2d(x.y)? -1 B
S ipxydsz [ i dixy) ®
d(xyy

— ds~ —=~
dxyy V(X sP) V(xy)

Recall that, by Lemma&.4, (2.3) and @.5) imply (G)g. Applying (5.30, (2.3 and G)g, we obtain
the upper bound aB©):

d(xyy? 00
GO(xy) = ¢, ( f " f )s‘“ps(x, y)ds
0 d(x.y)y?

s g d d )B(é 1) ” d
< ———ds X, - X, S
fo V<) +d(x,y f Ps(X. Y)

d(x.y)?
d(x,y)% _ d(x.y)*
< +d(x, YV DG(x,y) ~ ,
V(x.y) Oy by V(x.y)
which finishes the proof. O

Example 5.11.In R" (n > 3) the following fractional version of Hardy’s inequality is known: if
6 € (0,1) then

2 2
Cn,&f 1;)((;25 x_f ’(—A)%f(x)‘ dx forall f € CZR"), (5.32)
R R

ST ( N+20 2
where the constart, s := (% is the best possible (se&(, p. 1873, Corollary 1]). Observe
4

that (L.1) can be viewed as the limiting case 6{32 ass — 1:

2
C”’lf |(|3 dx<f IVE(x)|? dx forall f e CX(RM), (5.33)
Rn
n2y\2
wherecy = (er((n;“z))) = (”;22)2 is also best possible.
4
Consider inR" (n > 3) the Dirichlet form £, ¥) where
&(f, f):f IV f?dx (5.34)
Rn
and

feF =W ={f e L2(R") : Vf e L2(R"). (5.35)
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The generator off, F) is the Laplaciar-A = — Z?:l aﬁj , the heat kerndlpt}t-o of the heat semigroup
{€")1=0 is the Gauss-Weierstrass function

L [ XY
@ty P\ ")

pr(xy) =

and the Green function is given by

) n-2
Gy = [ poxyt= Sy (5.36)

For the subordinated Dirichlet forng@®, ¥©) we have

1f() - )P

@ =Jfel?2®"):
d { L (ED ro Jrn X -y

dxdy< oo}

and
g9(f, f)=((—A)‘5f,f)=f |(—A)%f(x)|2dx for f e 7O,
Rn

see B2, Theorem 5.2]. Hence, by Theoresnl0 (resp., Theorend.6) with 3 = 2 we obtain 5.32
(resp., 6.33) with someconstantys > 0.

Let us show how Theored.5yields .32 and 6.33 with the sharp constart, ;. To unify the
notation, denote byg®, # @) the Dirichlet form €, ¥), where& and¥ are as in%.34 and 6.35.
Moreover, denote b the Green functioi® in (5.36). From [66, p. 117] it follows that

—26
F(nT) |25 n

0 _
GO(x,y) = WZF@| -y

Applying Theoremd.5to (9, 7)) andG©), we have Hardy’s inequalityd(11), where we choose
the admissible functioh to be
-n
re, X <r
hr(x) = {

XX >
wherer > 0 and O< € < n—26. Now letin @.11) r — 0. By the Selberg integral formula irb(16
(see also66, p. 118, (6)]), we obtain
() _ X _ 2R 1

| :
T Go) G SIN(=Z=<) |x2
OO (g 4o,fn/zr()a)f[}< - yo-nlyjendy  TEIESZ=) X

Taking heres = =2, we obtain

2
hd _(ZTCP)) 1 cns
|X|26 |X|2(5’

—0GOh () | T(=Z) -
which implies 6.32 and 6.33.

Example 5.12. Let us show how Theorerd.6 can be applied on fractal spaces. Most fractals can
be regarded as a metric measure sfddal, 1) that isa-regular for somer > 0. On large families
of fractals it was possible to construct a strongly local Dirichlet fé&y1F) that is self-similar with
respect to the fractal structure and, moreover, the corresponding heat kernel satisfies the following
sub-Gaussian bounds .
Fx, y))ﬂ)
t

pr (X y)v c exp{ ( (5.37)
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with somegB > 2. For the Sierpinski gasket this was done by Barlow and Perl@hsf¢r p.c.f.
fractals by Kigami 54] and for generalized Sierpinski carpets — by Barlow and BZk¢sge also
[5, 32, 55, 67] for the further development of this subject). Moreover, it follows frd@jthat, for any
pair of realsa, B satisfying

2<f<a+l,

there exists am-regular metric measure spa@é, d, ) and a strongly local regular Dirichlet form
(&, F) onL? (M, u) such that the heat kernel (8, ¥) satisfies $.37).
If @ > Bin (5.37) then, integrating this estimate tnwe obtain by Lemma&.4 the following
estimate for the Green function:
G(xy) =d(xyy™

that is equivalent t¢G),;. Hence, by Theorer.6we obtain Hardy’s inequality5(24). In this setting
the parameters, 8 can take arbitrary values within the restriction

2<f<a.
Fix now somes ¢ (0, 1) and consider the subordinated Dirichlet fof&?), 7)) on L2 (M, ).
Then the heat kerngl®) of (8(‘5), 7—”(5)) satisfies the following estimate

d(xy) —(a+p’)
ta/p’ g

o (x,y) =

wherep’ = 36 (see B2] or [35]). If § is small enough so that > 8’ then, integrating this estimate in
t, we obtain the following estimate for the Green function:

G (x,y) = d(xy) ™.

Hence, by Theorerf.6, we obtain the following Hardy’s inequality

f(x)? ©)
T 00 =GB )

Note thate andg’ can take here arbitrary values with the only restriction
0<p <a.

The Sierpinski gasket and carpet satishy3({) but with3 > «. A bounded Sierpinski carper is
shown on Figl. In this case we have = :8%2 andg ~ 2.09 > a. Nevertheless, we still have Hardy'’s
inequality for&®) provideds < «/B.

In order to get explicit examples wiph< «, consider ajeneralized Sierpinski carpet S& b, k)
constructed inT]. Herea, b, k are integers such th&t> 2,a > b > 1 anda = bmod 2 Divide the
unit cube[0, 1]¢ c R¥ into a equal cubes of sida™! and take out the central block bf such cubes.
Then repeat this procedures with each of the remaining cubes aiSidetc. In the end one obtains
a compact subset ¢6, 1]% that is calledS C(a, b, k) . For example, the Sierpinski carpet on Figis
SC(3,12).

We need an unbounded versionX€(a, b, k) that is obtained by gluing together countably many
appropriately scaled compact versions. The resulting unbounded fragtadggilar with

logN
a = R
loga

whereN = a — b¥, and admits a strongly local Dirichlet form with the heat kernel botma? for

someB > 2. The exact value of the walk dimensiBtis unknown but it is known that

log(N9g)
loga

B <

’
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Figure 1: The bounded Sierpinski carpet.

wheres = m. Clearly, if s < 1 then we obtain the desired conditi6ne «a. In particular, we
haves < 1 providedk > 3 because in this case

al-pls(@a-ba?2=a@-has3za

Therefore, Theorer.6 applies on any generalized Sierpinski carp€l(a, b, k) with k > 3.

6 Green functions and heat kernels

The main goal of this section is to show the equivalence between the Green function estimate
(G)g and the uppeglower bound of the heat kernel. This equivalence will be used in Se€tion
order to obtain a weighted Hardy’s inequality.

6.1 Statement of Theorenb.1

The following theorem is the main result of this section.

Theorem 6.1. Assume tha&, ) is a strongly local regular Dirichlet form on the metric measure
space(M, d, i) that satisfie{VD) and (RVD) with lower volume dimensiom_. Then, for any0 <
B < a_, the following two statements are equivalent:

(i) the Green function (X, y) exists, is jointly continuousfdiagonal, and satisfie&s)g;

(i) the heat kernel gx,y) exists, is Holder continuous in X € M, and satisfies the following
upper bound estimate

B
d A1
pu(X, y) < W exp{_c(%)/f } (UE)g

as well as the near-diagonal lower bound estimate
-1

pe(Xy) > m

when dx,y) < et/ (NLE)g
forall x,y € M and all t € (0, ), where C and e are positive constants.

Combining Theorem6&.1and5.10 we have the following fractional version of Hardy’s inequality
for strongly local Dirichlet forms.
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Corollary 6.2. Assume thafM, d, ) satisfieqVD) and(RVD) with lower volume dimensiam_. Let
(&, F) be a strongly local regular Dirichlet form on M and satisfig3)z for somegs € (0,a-). Then,
given anys € (0,1), the subordinated Green kernel®Gsatisfies(G(®)s. Moreover, there exists a
constant C> 0 such that, for all fe #©,

f(x)2 ©)

6.2 Overview of the proof of Theorem6.1

The detailed proof of Theorer.1 is presented in the subsections below. Here we give an
overview of the proof. In Sectiof.3 we prove the implicationii) = (i). The estimates and the
continuity of the Green functions follow from similar properties of the heat kernel upon integration
in time.

The proof of the implicationi] = (ii) is much more involved. For that we need the following
definitions.

Definition 6.3. Let Q c M be an open subset. A functierne ¥ is said to béharmonicin Q if
Eu,¢) =0 forallg € F(Q).
A functionu € ¥ is said to besuperharmonigresp.,subharmonigtin Q if
EU,¢) >0 (resp.&(u,¢) <0) forall0< ¢ € F(Q).

Definition 6.4. We say that theslliptic Harnack inequality(H) holds if there exist constant@ €
(1, 0) andé € (0, 1) such that, for any baB c M and for any functioru € ¥ that is harmonic and
non-negative irB,
esssupi(x) < Cessinfu(x). (H)
Xe5B xe6B
Definition 6.5. We say that the mean exit time estimafgg holds if there exist constan@e (1, o)
ands € (0,1) such that, for any baB c M of radiusr > 0, the restricted Green operateF exists
and satisfies
Crf < essinfGB1(x) < esssuBB1(x) < Crh. (E)p
xeéB xeB
It is known that UE)g + (NLE)g < (E)g + (H); see 6, Theorem 7.4]. We show in SectiofH
and6.6that G)g = (E)g and G)g = (H), thus yielding () = (ii).

6.3 Proof of (UE)s; + (NLE)z = (G)4

Proof of Theoren6.1(ii) = (i). Since the heat kernel isdtler continuous irx,y € M, the Green
function can be then defined pointwise by the identity

GOy = [ eyt 6.1)
The estimateG)g of the Green function has been already proved in Ler@masee also Example

2.5
Let us now prove the continuity @ (x, y) off-diagonal. By 6.1) we have

G(xY) - G (XYl < fo 1P oY) - pr (oY)l 6.2)
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Next, we will use the following elementary estimate: ik(a < 1 then for allx e M andR € (0, ),

0 1-a)B
f t‘a( 1 A 1 dt < R(— (6.3)
0 V(xtY8)  V(x,R) V(x,R)
Indeed, usindRVD) andaB + @ > 8, we obtain
foo t—a 1 f —a V(X R) dt
R V(X tl/ﬁ) V(x R) V(x tl/ﬁ)
_a R
<o e ) @

1 Ls\3 B
o — —_— - 3 +1)
~ V(xR j; ( ) st ,BRBS ds

N ﬁR(l—a),B 1Saﬂ+(lfﬂ*1ds~ R(l—a),B
" V(xR Jo " V(xR

R 1 R(l—a)ﬂ
f t @ dt ~ .
o V&R V(R
whence 6.3) follows.

For anyx € M and positivet, R, consider the cylinder

By a < 1 we have also

D((t,x),R) = B(x,R) x (t - R, t].

It was proved in 8, Corollary 4.2] that(UE); + (NLE ), imply the following property: there exist
0,6 € (0, 1) such that, for any continuous caloric functiom D ((t, Xo) , R) and for allx € B (X, 6R)

d(x %)\’

UL X) — Ut x| < 0Ssc
lu(t, x) — u(t, Xo)| ( R ) (s2D((t.%0).R)

u(s 2.

Fix y € M so thatu(t, X) = p; (X, y) is a non-negative continuous caloric functionMnx (0, o). Fix
also distinct pointx, X, € M and set = d(x, o). For anyt > T := 2(r/s)?, if we takeR = (t/2)%/#
(this implies thatd(x, X;) < 6R), then the functioru is caloric in the cylindeD ((t, Xo) , R), which
implies that

r\?
MY - RIS () sup sup ps(.2). (6.4)
R/ t/2<s<t 2eB(x0,R)

Fors e [t/2,t] we have by(UE),; that

5
1 d(y.2\"
ps(y,Z)SWeXp[—C( TUB ) ]

Since
d(y,2) > d(y, %) — d(X, 2) > d(y, %) - R=d(y, %) — (t/2)*7,
it follows that

1 (¥, %) |71 1 1
Ps(y:2) V (. 08 exp[ C( t1/B ) ¥V (y, tYB) "V

See Example.5 for the last formula. Substituting intd{4), we conclude that, for al > T :=
2(r /o),

1Pt (%, Y) = Pt (X0, )| < (tl/ﬁ)O(V(y,ltl/ﬁ) 4 V(yl,xo))'
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Applying (6.3) with a = /8 (here we may as well assume tl#ais small enough satisfying < g),
we obtain

o ] r 0 1 1 d(XO’y)ﬁ_e
jT‘ |pt(X,Y)—pt(Xo,Y)|dt$j; (tl_/ﬁ) (V(y,tl/ﬁ)/\v(y,xo))dtsrg V(%,Y)

Similarly, we obtain

T T T \0/B < (AP 1 pd Oy
Jy moenas [ (7] poyats [ (T) (v<y,t1/ﬂ)AV(y,x))O'tsr V(x)

and

T d (X0, y?
y)dt < rf=22e Y
fo P (%0.Y) V (Xo,Y)

Substituting the above three estimates ift@), we obtain
4 (Xo, y)B_H + I’Hd (% y)ﬂ_e
V (%, Y) V(xy)

which proves the locally uniform élder continuity ofG (-, y) in M \ {y} with the Holder exponené.
SinceG (%, y) is symmetric, this implies a joint continuity & (x,y) in (x,y) € (M x M)\ diag. O

IG(XY) -G (XYl sT

6.4 Existence of the restricted Green function

Lemma 6.6. Let(VD), (RVD) and(G),; be satisfied witld < 8 < a—. Then the following are true.

(i) For any ball B c M, there exists a non-negative symmetric functidt()@y) that is jointly
measurable in ¥ € B and satisfies

GBf(x) = f GB(x,y)f(y)du(y) forall f € L?(B) andu-a.a. xe B. (6.5)
B

(i) There exist constants € (0,1) and C > 0 such that, for any ball B, the restricted Green
function G(x, y) satisfies

d(x yy
GB(x,y)<C foru-a.a. xye B 6.6
(%) V(<) 7 y (6.6)
and (g
_d(xy
GB(xy) >Cct1—>2 for u-a.a. xy € £B. 6.7
(xy) 2 CHyE=0 forpeaa Xy (6.7)

Proof. By Corollary5.7we have, for any baB = B (X, R),
Amin (B) = (diam(B))? > 0.

By Remark2.2, the operatoZB has a bounded inverselif (B), and the latter is exactly the restricted
Green operatoB®B. Besides, we have

0<GBf <Gf forallO< felL?B).

Let us now prove the existence of the integral kerneG8f For that, we will prove that, for any
0 < 6 < 1, the operatos — GB acting fromL? (6B) to L? (B), has an integral kernel. BBg, Lemma
3.3], for the existence of the integral kernel, itistes to prove that

”G - GB||L2(6B)—>L°°(B) < 0,
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that is,
|Gf —GPf|| g s Ifle forany O< f € L?(6B). (6.8)

The functionG f — GBf is harmonic inB. Due toAmin(B) > 0, we can apply the maximum principle
for harmonic functions (se@Y, Lemma 4.1]) and obtain, for anye (6, 1)

_ B B
OseszsuéGf G f)sesssu;éGf G f)

B\1B
d(xy)

< esssusf(xX) s sup
XeB\(1B) xeB\(1B) JsB V (X.Y)

fy) du(y).

Since for allx, y in the above expression
(A-0)R<d(xy) < 2R
it follows that

doeyf @R
Vicy SVi@-oRr S

s (/1 _ é‘)(l+

V (x,R) V (X0, R)’

Therefore, we have

|G- GBf|| o S (A—0)"

(B) ~ ”ﬂlLl > (69)

V (%, R)

whence 6.8) follows. Hence, the operatd® — GB has an integral kernel, sa§’ (x,y) that is a
non-negative jointly measurable functionBx §B.
Clearly, the family{ K‘S}(;e(o,l) of kernels is consistent in the sense that, foral @ < §” < 1,

KY(x,y) = K (xy) foru-a.a.xe Bandye §B.
Choose a sequenég ” 1 and define irB x B the kernel
K(x,y) = K(x,y) foru-a.a.xe Bandy e §cB.
Finally, we define the Green functi@Ff by
G®(xY) = G(xy) —K(%).

Similarly to the proof of 87, (5.8)], one shows th&? satisfies §.5).
Because the operat@® is positivity preserving, it follows from38, Lemma 3.2] that

GB(x,y) >0 foru-a.a.x,ye B.
Moreover, by the symmetry &, we have, for allf, g € ¥(B),
(f.GPg) = &(GPf,GPg) = &GPy, G®f) = (9, G®f),

which implies that
GB(x,y) = GB(y,x) foru-a.a.x,ye B.

By constructiorGE (x,y) < G (x,y) so that the upper bouné.¢) of GB (x, y) follows from (G)g.
In order to prove the lower bouné.) of GB (x,y), it suffices to verify that, for all & f € L? (¢B),

. d(x yy
essinfGBf (x zf
B ( ) B V(X’ y)

f(y)du(y),
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wheree > 0 is yet to be determined. Fix the paramei@endA from the previous part of the proof,
for example, sef = 1 anda = 3. Assuming that < 3, we obtain by 6.9)

R
B
I6f-G®ll e < Cyrim o il
so that, foru-a.a.x € B,
GBf(x)>f G (x y)f(y)du—le f du. (6.10)
B B ' \ (XO’ R) B
Let us show that the second term in the right hand sidé&df]) is a small fraction of the first one.
Since v
d(xy
G(xy) 2 ,
"2 Vey
so it sufices to verify that, for alk,y € ¢B,
R d(xyy
<c(e , 6.11
V (%,R) ()V(x,y) (6.11)

wherec () — 0 ase — 0. Indeed, setting = d (x,y), we obtain

r

o Vi voer (1) <vaam ) <@ (=) e

V(xo,R)/V(x,r)_V(xo,R) ) T VR/2)\r R r

~

Sincea_ > B, this proves§.11) with c(g) = Ce* 2. It follows that
GBf (x) > (1-Cc(e)) Gf ()

and, hence,
GB(xy) > (1-Cc(e))G(x,y) foru-a.a.xy e &B. (6.12)

By choosings small enough we obtair6(7). o
6.5 (G)gimplies (E)q
Proposition 6.7. Let(VD), (RVD) and(G); be satisfied an@ < 8 < @_. Then

(G)g = (B
Proof. Fix a ballB = B(Xy, R) ¢ M. Then we obtain from4.10 that

esssui®1 < esssuils < R.
B B

Chooses = ¢ wheree is the constant fromg.7). Then, foru-a.a.x € §B,

B B d(x.y)’
c*100 > [ Gtz [ GeEsdi®).
Using 6.11), we conclude
B
G°1(¥) 2 Vi R)V(xo,éF%) > R,

which finishes the proof of)g. m|



38

6.6 (G)gimplies (H)
Proposition 6.8. Let(VD), (RVD) and(G); be satisfied an@ < 8 < @-. Then

(G)s = (H).

Proof. If the restricted Green functior@® are continuous f6-diagonal then this was proved i1,

Theorem 3.12 and Lemma 8.2]. Without the continuitya, the key ingredient of the proof 37,

Lemma 6.2(ii)], breaks dowhn To overcome this diiculty, we have developed here a new approach.
Letu € F be non-negative and harmonic in a bRl B(X,, R) € M. We need to prove that

esssup < Cessinfu (6.13)
6B 0B
for some constant€ € (1, ) ands € (0, 1) independent oB. Without loss of generality, we can
assume thatl € L*; see {6, p. 1280, Theorem 7.4] for how to remove this additional assumption.
Also, by replacingu by u,, we can assume without loss of generality that 0 on M.
By (6.12), there exists a smadl € (0O, ;11) so that for any balB

%G(x, y) < GB(x,y) < G(x,Y) for u-a.a.x,y € eB. (6.14)

Let us fix thise and use it in what follows. The further proof will be split into three steps.
Step 1. Riesz measure and a reduced functibix B = B (X, R) and consider also the ball

E
B; = EB'
By [37, Lemma 6.4], there exists theduced functior of u with respect to By, B) such that
o 0 e 7(B);
e(l=uin B; and 0< {0 <uin M;
e (1 is harmonic inB \ B; and superharmonic iB.
See Fig.2 below.

Figure 2: Functionsi andu.

By [37, Lemma 6.2(i)], there exists a regular non-negative Borel measineéB such that
fgodO' =&(0,¢) forall g € ¥ N Cc(B). (6.15)
B

The measurer is called theRiesz measuref the superharmonic functiom Moreover, the proof
of [37, Lemma 6.2(i)] shows that does not charge any open set wharis harmonic. Since is

°Note that a posteriof®® is still continuous &-diagonal which follows fromH).
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harmonic in the both seB; andB\ B, we obtain that supp c dB; =: S. Consequently, the domain
of integration in 6.15 can be reduced t8. _
Step 2.Let Q be an open neighborhood 8f= 9B, such that) c B, for example,

Q=01+7)B1\(1-7)B;
with a smallr € (0, %) Consider also the ball

1 £
B,:==-B;=-B
2= 5B1=7

so thatB, andQ are disjoint; see Fig3.

Figure 3: The setB, By, By, Q, S.

Fix a cutdt functiony of (S, Q). The aim of this step is to show that, for any function
0<¢eF NCc(B2), (6.16)

the following inequality holds:

1. N
5E(0.YGY) < (u.¢) < &0, yGe); (6.17)

see Fig 4.
By Remark2.2, both functionsGB¢ and (1- ¢)GB¢ belong toF (B). Since (1- ¢)GB¢ vanishes
in an open neighbourhood &f we conclude by37, Proposition A.3] that

(1-¢)G°¢ € 7(B\ S).
Sinceu’is harmonicB \ S we have
E(0, (1 - y¢)GB) = 0. (6.18)
Sinceu = Gin By, ¢ is supported irB;, andu € 7 (B), we obtain, using Remark2and 6.18) that

(U, ¢) = (0, ¢) = E(0, G®9)
= &(0,yGP¢) + &0, (1 - v)GP¢)
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Figure 4: Functiong andy.

= &(0,yGB9). (6.19)
By (6.14) we have
%Gqﬁ <GBp <Gy p-a.a. ineB.
Since supp c 2B; = ¢B, it follows that

%wcs(p <yGB¢p < yG¢ u-a.a. inB.
Since both functiongG¢ andyGB¢ belong toF (B) andu'is superharmonic i, we obtain
26(0,0G) < £(0,UG%9) < (0. UGH).

This inequality together withg(19 yields 6.17).

Step 3. Now we can prove the Harnack inequaliy.13. As before, lety be a fixed cuté
function of (S, Q) and¢ be any function satisfyings(16). Since supg N suppyp = 0 and the Green
functionG (x, y) is jointly continuous €f-diagonal, the functiog(X)G(x, y)#(y) is jointly continuous
in (x,y) € M x M. Clearly, we also haveGg¢ € ¥ N C¢ (B). Applying (6.15 with ¢ = yG¢ and the
Fubini theorem, we obtain

E(0,yG) = fs J)GH(X) dor(x)
- [woo( ] G0t du(y)) do ()
- [ ( [ w(x)G(x,y)d(r(x))¢(y)du(y)

By

- fB 2 ( fs G(x,Y) dcr(X))¢(Y) du(y),

where in the last step we have used that 1 onS. Combining with 6.17), we obtain

% fB 2 ( L G(x,y)da-(x))fp(y)dy(y)S(U,¢)S fB 2 ( fs G(x,y)da(X))rb(y)du(y)-

Since this is true for any non-negatiwes ¥ NCc(B,) and# NCc(B,) is dense ir_?(By), we conclude
that

%LG(x,y) do(X) < u(y)sfSG(x,y) do(x) forpu-a.ay e By.
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Since(G); implies

G(X,Y) = forall x e S andy € B,,

V(% R)
we deduce that
= for u-a.a.y € B,.
u(y) Vire, R)o-(S) oru-a.a.y € By
Hence, the Harnack inequalit@.(3 holds withé = ‘—115. O

7 Weighted Hardy’s inequality for strongly local Dirichlet forms

Let (M, d, 1) be a metric measure space 46d7) be a strongly local Dirichlet form obh? (M, p).
The main aim of this section is to obtain a weighted version of Hardy’s inequality for strongly local
Dirichlet forms.

7.1 Weighted Dirichlet form and weighted Hardy'’s inequality

For allx,y € M, define
di(x,y) = sup{u(x) —u(y) : ue F NCg, dI'(u,u) < du}.

The functiond; (x, y) is called thentrinsic metricof (&, F) . In generald; (x,y) is a pseudo-distance.
Let us introduce the following hypothesg$1)-(H3) that will be used in what follows.

(H1) For anyu € 7, the energy measui&u, u) is absolutely continuous with respecto
(H2) The intrinsic metria; coincides with the original metrid.

(H3) The metric spac@M, d) is complete.

It is known that, under these assumptions, the metric sgdcd)(is geodesic. Besides, for any
non-empty subsef of M, the functionf (x) = d(x, E) belongs tafjoc and satisfiesll" (f, f) < dy;
see p(Q].

For example(H1)-(H3) are satisfied iM is a geodesically complete Riemannian manifalds
the geodesic distancg,is the Riemannian measure, a& ¥) is given £6.28.

Letw: M — (0, o0] be a continuous, locally integrable function, where “continuous” in this
context means that is continuous ojw < oo} and lower semi-continuous dvl. Define a weighted
bilinear form&W by

EW(,v) = f wdr(u,v) forallu,ve F nCe
M
and set
CW ={ueF nCe: EM(u,u) < oo}

We will use the following result from70, Corollary 6.1.6].

Proposition 7.1. Let (&, ¥) satisfy(H1)-(H3) and let w: M — (0, ] be a continuous, locally
integrable function. Define

duy, = wdu.

Then the symmetric bilinear for(6™, C™) is closable and its closug™, W) is a strongly local
regular Dirichlet form on I2(M, u,,) that also satisfiegH1)-(H3).

Combining Propositior7.1and Theoren3.1, we deduce a weighted version of Theorgrh
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Corollary 7.2. Let all the assumptions of Propositiginl be satisfied. Assume that

EW(u, u
,12;"’)” Q) = #
ue(FWNC(Q))\{0} ||U|||_2(M# )

for all precompact open sef2 ¢ M. Let G be the Green function €™, #W) and h be a non-
negative measurable function on M such that
G"(haa)elL®

loc

for any positive constant a. Then, for any fF ",

f G(?V)hfzwdy < W1, f).
M

7.2 Example:X is the boundary of a convex domain
In this subsection we apply Corollai/2in order to prove the following statement.

Proposition 7.3. LetQ c R" (n > 3) be a non-empty convex domain andde¢ (0, 1) . Then, for all
f € Lipc(R"), the following inequality holds:

f(¥)? IVE(x)P?
—————dx<C | ————d 7.1

fRn X2 d(x, Q)" o d(X, 0Q)” . (v.1)
where the constant C depends only on n an@nd does not depend @p).

HereLipc (R") denotes the class of Lipschitz functionskifh with compact support. In particular,
(7.9 hoId_sC for anyf € Lipc(Q) with f|so = 0 as this function extends to thatlimp. (R") by setting
f=0inQ.

Remark 7.4. Let us compare Hardy’s inequality.(l) with previously known results. The following
weighted Hardy'’s inequality was proved B9, Theorems 1.2 and 3.4]: if(x) a distance function in
R" such that, for some realando # a — 2,

(a—Z—U)(Ad(x)—C(;T_X)l)zoinU::{d(x)>0}, (7.2)
then, for anyf € C7 (U),
2 2
LS AP V1] (7.3)

X<c
rn d (X)7+? g d(X)7
wherec = 4/ (o — 2 - 0°)?. For example, ifl (x) is the distance to a subspakkof R" then
n-1-1
d(x) ’

and (7.2) is satisfied withw = n—land anyo- #n—1-2. _
Letd(x) be the distance tB whereB = B(0,R). Then inU =R"\ B we haved (x) = [x — Rso
that

Ad(X) =

n-1 n-1
Ad(X):WSm

Hence, {.2) is satisfied withx = nando > n— 2, which yields

2 V(X
fu (X - R)7*2 dx< Cfu (X - R dx (7.4)
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forall f € CZ (U). For comparison, our Propositigh3gives in the cas€ = B(0,R)

f(x)? IV (%)2
—————dx<C dx 75
fRn 21X - R” I —R” (7.5)

foranyo € (0,1) all f € Lipc(R"). Of course, neither of7(4), (7.5 covers the other because the
ranges ofr are disjoint. Besides, the range of functidnim (7.5) is wider and includes functions not
vanishing orB.

Let nowd (x) be the distance tB°. In Bwe haved (x) = R- |x| and

Aol(x):-”l;xl1 <0

so that 7.2) is satisfied withh = 1 ando- > —1. Therefore, 7.3 yields in this case

f(x)? f IVF(x)P?
—————dx<c | -———dX 7.6
fs (R-Ix|)7+2 B (R—IX)~ (79
for any f € CZ (B). Although the range of in (7.6) is wider than that in7.5), still the inequality
(7.5) gives a better result fof € CF(2B).
We see that the results iB59] do not cover Propositiof7.3 for convex domains and even for
balls. Although for bounded convex domains there are already weighted Hardy’s inequalities (see

[2, 59, 25]), they do not cover Proposition.3 either because the Hardy constant Talf does not
depend o2.

To prove Propositiof7.3, we need several lemmas.
Lemma 7.5. Let n> 2 and V be a convex subset of a bounded open sefR). Then
H™ (@V) < H™ (V). (7.7)
where H"! denotes thén — 1)-dimensional Hausdgfmeasure.

Proof. Let us define a mapping : U — 4V as follows: for anyx € dU let @ (x) be the nearest t®
point of V. Let us prove that

@ () - DY) < IX-YI. (7.8)
Denote for simplicityX = @ (x) andY = ® (y) and first observe that

(Y=X)-(X=x)>0. (7.9)
Indeed, by the convexity &f, the pointX + t (Y — X) lies inV for anyt € (0, 1), whence
X=X <|(X+t(Y-X)) -,
that is,
IX= X2 <|(X+t(Y=X) = X2 = X=x2+2t(Y-X)- (X=X +t2]Y - X]?,

or, equivalently,
0<2(Y-X) - (X=x) +t]Y =X,

which implies .9 by lettingt — 0. Similarly, we have

(X-Y)-(Y-y)>0. (7.10)
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Adding up (7.9) and (7.10, we obtain
X-Y)-(Y-X+Xx-y)>0
whence
X=YP < (X=Y)- (x~)

and, hence,1.8). It follows from (7.8) that the mapping reduces Hausdirmeasures of all dimen-
sions (cf. p6, p. 75]), whence{.7) follows. m]

Lemma 7.6. Let n > 2 and Q c R" be a non-empty convex domain. Then, for apyexR" and
R, s€ (0, ),
(X € B(Xo, R) : d(x, Q) < s}| < waR™ I min{2s,n"!R}, (7.11)

wherewy, is the surface area of a unit spherelif.
Dividing by |B (%o, R)| = S*R", we obtain from 7.11)

{x € B(Xo, R) : d(x,0Q) < s}|
1B (%o, R)|

Proof. Note that .11 holds trivially if 2ns> Ror if {x € B(xo, R) : d(x,0Q) < s} = 0. Hence, we
assume in what follows that

S
<mi 2—,1}.
mln{ nR

O<2ns<R and {xeB(X,R): d(x,0Q) < s} #0.

Consider the followingigned distance functiof(x) to dQ that is defined by

50) = —d(x,0Q) ifxeQ,
| d(x, 69) if xeR"\ Q.

Note thats is Lipschitz and, hence, fierentiable almost everywhere &*. It follows from [24,
Theorem 5.1.5] tha¥s(x)| = 1 for almost allx € R".
Consider for alk € R the set
Q= {xeR": §(x) < t}.

We claim thatQ); is a convex set for all € R. Indeed, fort < O this was proved in47, p. 17, the
remark after Fig. 4]. Let us prove the convexity@ffor t > 0. Note that, foit > 0, we have

Qt:{xeR”:d(x,§)<t}.

Fix two pointsx,y € Q and prove that the line segment ¥] is contained inQ;. To this end, we
choose pointx,y € Q such that

Xx—X <t and |y-¥y <t

Any pointz € [x,y] can be written ag = Ax + (1 — 1)y for someA € [0, 1]. SincexX;§ € Q andQ is
convex, it follows that
Z2=AX+(1- D)y e Q.

Since
z- 9 = |(/lx+(1—/l)y)—(/l>~<+(1—/l)§/)| <AX=K+@L=Dly- <t,

we conclude that € Q; and, hencelx,y] c Q.
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By the coarea formula ir26, p. 112], for any Lipschitz functiori : R" — R and any Lebesgue

measurable set c R",

f|Vf|dx: f H™(An{xeR": f(X) =t} dt
A R
Applying this formula withf = § and using thafivs| = 1 a.e., we obtain

l{x € B(X, R) : d(x,0Q) < s}| = [{x € B(X, R) : [6(X)| < s|

= f [VS(x)| dx
{xeB(X0,R): [6(X)|<S}

_ f HY((x € B(xo. R) © 609 = 1)) dlt.

S
Clearly, we have
{X € B(X, R) 1 6(X) =t} = 0 N B(Xo, R) € 9(2 N B(X%o, R))

and, hence,
H™({x € B(Xo, R) : 6(x) = t}) < H™}(3(Q N B(Xo, R))).

See Fig.5for the casd € (—o0, 0).

Q" B(Xo, R)

Figure 5: The setB(Xo, R), Q andQ; for t € (—o0, 0).

Since eveny); is convex, the se®; N B(X,, R) is also convex. It follows from4.7) that

H™1(8(Qt N B(Xo, R))) < H" (3 (B(%, R))) = wnR™ .
Combining .12, (7.13 and (7.14), we obtain
(X € B(Xo, R) : d(x, Q) < s}| < 2w,R" s,
which was to be proved.

Let v, denote the volume of a unit ball R", that is,v, = wn/N.

(7.12)

(7.13)

(7.14)
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Lemma7.7.LetQ c R" be a non-empty convex domain. Then, forany (0, 1) , the weight function
w(X) = d(x,0Q)™7 forall x e R"
satisfies the relation

(6n)”

Yn
1-o0

vl (1 + d(%o, 0Q)) ™ < 11 (B(Xo. 1)) <

r(r + d(xo, 0Q))™ (7.15)
uniformly in % € R"and r > 0.
Proof. Obviously, for anyy € B(Xo, ), we have

d(y, 0Q) < d(Y, Xo) + d(Xo, 02) < 1 + d(Xo, 09Q),

which implies

1o/ (BorT)) = fB o G597y (1 o, 000) 1Bk, = e + Al )

In order to prove the upper bound @f(B(xo, ), consider the following two cases.
Case 1: let dx,, 0Q2) > 2r. In this case, for any € B(Xo, '), we have

d(y, 0Q) > d(xo, Q) — d(Xo,y) > d(X%o, 0Q)/2,

which implies

1B, 1) = f d(y. 9Q) dy < vn27I"d(X, AQ) < va3T1(r + d(Xo, Q).
B(%o.r)

Case 2: let @xo,0Q) < 2r. By the Fubini theorem and LemnTa6, we obtain

ilBoo) = [ dy.o0 v dy=o [ ( [ s‘”‘lds) dy
B(Xo.r) B(Xo,1) \/d(y,09)

= (rf (f dy) s’ lds
0 {yeB(Xo,r): d(y,0Q)<s}

< ar”‘lf wnmin2s,ntris1ds
0

@n)~r i~
= wpot"? Zf s7ds+ n‘lrf s’ lds
0 (2n)~1r

(2n)” (6n)”

1-0 1-0

n—-o S

vl

vl (r + d(Xo, 0Q)) 77,

which finishes the proof. ]
Now we can prove Proposition3.

Proof of Propositior7.3. The estimateq.15 of Lemma7.7implies that, for anyx € R"andR > r >
0,

r

n-o n
C(B) < Hu(BXR) C(R) ’
r Hw(B(X, 1))

where the positive constantsC depend only om ando. Consequently, the metric measure space

(R", i) (with the Euclidean distance) satisfi@dY) and RVD) with the upper volume dimensian
and the lower volume dimension- o > 2.



47

The weight functionw(x) = d(x,dQ)~ with o € (0,1) is locally integrable inR", dx). Hence,
by Proposition/.1, the quadratic form

EW(u,v) = f (Vu- Vv)wdx
Rn

is a strongly local regular Dirichlet form ib? (R", ,,) , and the domairFr ™ of this Dirichlet form
has a core
CW ={ueW?nCe: M (u,u) < .

Next, observe that the functiom(x) = d (x, Q)™ belongs to Muckenhoupt weight class, that is,

. 1
[Wla, := BbZﬁ‘.ﬁRn(BJ W(X)dx)(|B|f w9 dx)<°°

This follows from 3, Theorem 1.1], but we need also to know that{, admits an upper bound
depending only om ando. Indeed, by Lemma&.7, we have, for any baB = B (o, I),

3 oo 52 O oy

while by the triangle inequality

i -1 —i o o
IBIfBW(x) dx_lBlde(x,BQ) dx < (r + d(Xo, 0Q))7 .

(IBIIW(X)dX)(BJW(X) 1d><) (6”)”

(6n)”

< .
[W] Ay = 1-o

Applying [19, Theorem 1], we obtain that the heat kerp[éﬂ) of e"Lw satisfies

Hence, it follows that

and

C
VHa(BOx VD) \a(BLY. VD)

forall t € (0,) andx,y € R", with the positive constan8 andc depending only om and ] a,,
that is, only om ando.

By [38 Theorem 2.1], the heat kernel bounti16 implies the Faber-Krahn inequalit$.@9),
whence/l i (U) > 0 for any precompact domaitus.

Usmg (7 16 and the reverse volume doubling propertyugfwith the lower volume dimension
n- o > 2, we obtain by the argument in the proof of Lemtdathat, for distinctx,y € R",

P (xy) <

exp(—c'x_th) (7.16)

GW(xy) < (7.17)
pw(B(X X = Y1)
Next, we fix real numbers € (0, 1), p > 0 and defindr as in 6.17), that is,
h(X) = {/W(E%P)) ?f X <p (7.18)
B0 if X > p.
Due to (/.15 and (7.17), we follow the proof of .19 and derive that

if |x
GWh(x) < C {ﬂwwg ) M <2 (7.19)

mEow) =2
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whereC is a constant depending only arando.
Hence, we see that all the hypotheses of Corolla@/are satisfied. Therefore, for arfy €
Lipe(R") ¢ W2 N C¢, we obtain

h 2 (w) _ 2
fRn gwn | dw=&R(L N = fR IV (3)PW(x) dx

Further, applying7.18 and (.19, and lettingo — 0, we finally obtain

f 1 f2(xw(x)dx < C f IV £ (X)Pw(x) dx,
Rn Rn

X2

where the constai@ depends only on ando, which finishes the proof. m]

7.3 Admissible weights

Motivated by j2, 70], we introduce the following definitions. Given a st M andp € (0, 1],
define for anyx, € ¥ ands > 0 the set

Zo(X%, 9) == {xe M : d(x %) < sandd(x,X) > ps}.

Set also
S0 = | Zo(%,9).

O<s<r

Indeed, it is easy to see that

T, (%, 1) ={xe M : pd(x %) < d(x ) < d(x, %) < r}
={x € B(Xo, ) : pd(X, Xo) < d(x,Z)}.

For example, i = {Xo} thenZ, (X, ) is the annulus (X, ) \ B (X, 05), andz, (X, r) coincides with
the closed balB (o, 1) .

Definition 7.8. Let £ be a non-empty subset M. Fix p € (0,1). The sek is calledp-accessiblaf
the following conditions are satisfied:

(i) Xis closed angi(X) = 0;
(if) there existp’ € (o, 1] such that, for any, € £ ands € (0, ), the se&,, (Xo, S) is non-empty;
(iii) foranyX, € £ andr € (0, =), the seﬁp(xo, r) is path connected.

For example, if(M, d) is a non-compact complete geodesic spaceXnd {Xp} then all these
conditions are satisfied so that a singletop-&ccessible for any € (0,1).
Other examples gf-accessible sets will be shown in Sectiod below.

Definition 7.9. A functionw : M — (0, oo] is called anadmissible weighif there exist a seL ¢ M
and a functiora : [0, «0) — (0, 0] such that

w(X) = a(d(x, X)) forall xe M
and the following conditions are satisfied:

(i) the setz is p-accessible for somee (0, 1);
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(ii) the functiona is continuous, non-increasing(r) < o forr > 0, and there exists a constant
c € (0, 1) such that, for any > 0,
a(2r) > ca(r);

(iii) there exists a positive constabtsuch that, for any, € £ and anyr > 0,

Hw(B(Xo, 1)) < Ca(r)u(B(Xo. 1)), (7.20)

wheredy,, = wdu.

It follows that any admissible functionw is continuous and locally integrable with respect:to

For example, the functioa(r) = r~7 satisfiesif) for anyo > 0. If (B (Xo,r)) ~r* forallr >0
andxg € X thena(r) = r~7 satisfiesifi) if and only if 0 < o < «; see f12, Sec. 4.3] and Proposition
7.13below.

Lemma 7.10. Assume that the measuwresatisfieqVD). Let w be an admissible weight ashfini-
tion 7.9. Then the measuye, also satisfie§VD) and, for all xe M and r > 0,

pw (B 1)) = p(B(x,r))a(¢(x) +r) (7.21)
whereé (xX) = d(x,X).

Proof. The fact thaj,, satisfie{VD) was proved inT0, Thm 1.0.1, Prop. 4.2.2]. Note, the condition
(iii ) of Definition 7.8is not needed for that, while the condition20 is very essential.

In order to prove 1.21), let us first assume thate X, that is,& (X) = 0. Then the upper bound in
(7.2 follows from (7.20 while the lower bound holds by

1 (B(X, 1)) = fB FRGOLAVEEOMCIen)

becausé (y) < d(x,y) < r andais monotone decreasing.
Assume now thaf (x) > 2r. Then, for anyy € B(x,r), we havef (y) ~ £ (x), whence

pw(B(X. 1)) =f r aEW)duy) =a@()uBxr)=aE()+ruB(xr).

B(x,r)

Finally, leté (x) < 2r. Let X’ be a point orZ so thatd (x, X’) < 2r. Since the measureg, andu are
doubling, we obtain

pw (B 1)) = py (B(X, 1)) = a(r) u(B(X, 1)) = a(& (x) + ) u (B(x.1)).

This proves 7.21) for generalx € M.
One can also derive that, satisfieqVD) by terms of {.21) and the monotone decreasing prop-
erty of the functiora. |

The notion of an admissible weight was usedi0,[Prop. 4.2.2] to prove the following result.

Theorem 7.11. Let a strongly local Dirichlet form{(&, ) on (M, d, u) satisfy(H1)-(H3) as well as
the uniform parabolic Harnack inequality. Let w be an admissible weight on M. Then the weighted
Dirichlet form (E™, #) on (M, d, i) also satisfies the uniform parabolic Harnack inequality.

We use Theoren?.11in order to prove our main result in this section that is the following
weighted Hardy's inequality for admissible weights
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Theorem 7.12. Assume thafM, d, u) satisfies(VD) and (RVD) with lower volume dimensioa_.
Let (&, ) be a strongly local regular Dirichlet form on(M, ) that satisfie{H1)-(H3) as well as
(G),. Let w be an admissible weight on M asDrfinition 7.9, and assume that the functior(ra

satisfiesforall R>r > 0
a(R) R)“’
— > = 7.22
afr) ~ (r ( )
for someos such that
O<o<a.-2

Then the Green function @ of (W), W) satisfies(G), with respect tau,, and the following
weighted Hardy’s inequality holds: for all)e M and fe # N Cy,

2
fM d(];()go)zw(x)du(x)sC fM wdr(f, f), (7.23)

where the constant C depends only on the constants in the hypotheses, but is indepedant 6f x

Proof. By Theorem6.1, the hypothesisG), implies that the heat kerngl of (&, ) satisfies (JE),
and (NLE),. Further, by 8, Theorems 3.1 and 3.2] (see al&éd]), the conditions JE), and (NLE)>
are equivalent to the parabolic Harnack inequality (®y7") . Sincew admissible, we conclude by
Theoremv.11that the parabolic Harnack inequality @, ¥) implies the parabolic Harnack inequal-
ity for (8, W), Hence, the heat kerngf") of (€™, ™) also satisfies the Gaussian estimates
(UE)2 and (NLE ), with respect to the measuge,.

Next, we need to make sure that the Green fundB8 of (W), FW) satisfiedG), with respect
to the measurg,,. By Lemma7.10 the measurg,, is doubling. By .21), (7.22 and(RVD) for g,
we obtain, foralR>r >0

pw(BOGR)  a()+Ru(BXR) (a(f () + R))“’ (B)“* . (B)“’”
uy (B(x,1)) aE(x)+r) u(B(xr) ~\a((x)+r) r;. -

p
so thaty,, satisfieSRVD) with lower volume dimension

a(_w)za_—o'>2.

Applying Lemma2.4 in the spacéM, d, ) we obtain thaG™ satisfies G)2, with respect to the
measureu,,.
By Theorems5.6, we conclude that, for anf € F W,

f(9? W)
f,\,,d(xo,x)zdﬂ(x)ss (f, ). (7.24)

It remains to verify that{.23 holds for allf € ¥ n C¢. If the right hand side of{.23 is oo, then
(7.23 is trivially satisfied. If the right hand side of (23 is finite thenf € CW) ¢ #W and

fwdl"(f, f) = 8W({, f),
M

so that .23 follows from (7.24). i
Let us illustrate Theorerm.12in the case wheR is a singleton.

Proposition 7.13. Assume thafM, d, ) satisfies(VD) and (RVD) with lower volume dimension
a_ € (2, ). Let(&, F) be a strongly local regular Dirichlet form on(M, ) that satisfie§H1)-(H3)
and admits the Green function(§y) satisfying(G),. Then, for anyr satisfying

O<o< a--2,
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the following weighted Hardy’s inequality

d(x];( X))Zﬁz du(x) < Cf 0. 9 dr(f, f) (7.25)
holds for all , € M and f € ¥ N Cc, where C depends only on the constants in the hypotheses.
Proof. We will apply Theorenv.12with X = {X,} and the weight

W(X) = d(X, Xo)"7 forall xe M.

Let us verify that the weighw is admissible. The conditiong @nd (i) of Definition7.9are obviously
satisfied witha(r) = r=7. Let us verify the conditioniif) of Definition 7.9. Settingr = r27, we
obtain, using RVD) that

du (X)

B(Xo. 1)) = —

_ i f du (X)
4 JB(x,110\BOo rier) A (%0, )7

< Z reZuit (B (%o, 1)) < C i e (%)m u (B (Xo,1))

(l’ -

p (B (o, r))z = C'ru(B(%, 1)),

which proves 7.20. By Theorem/.12we obtain {.23), which is equivalent to4.25. m|

SinceLipc (R™) ¢ W2 (R")NC¢ (R"), it follows from Propositiory.13that, for anyf € Lipc (R")
and0< o <n-2,

2 2
[ s [T,

RN |X|(T+2
which matches.7).

7.4 Example:X is a subset of a hyperplane

Here we apply Theorem.12in the case whei is a closed subset of a hyperplanerih Let us
start with the following observation.

Lemma 7.14. LetX be a non-empty closed subset of a hyperplan"inThenX is p-accessible for
anyp € (0,1).

Proof. Condition(i) of Definition 7.8is trivially satisfied.

Let us verify thats, (Xo, ) is non-empty for any € (0, 1), X, € X andr > 0, which will imply
the condition(ii) of Definition 7.8. Without loss of generality, we can assume that 0 and that
is a subset of the hyperplarig, = 0}. ThenZ, (0,r) contains the intervel-r, —or| U [pr,r] on the
axisxp and, hence, is non-empty.

Let us now verify the conditiofiii) of Definition 7.8, that is,fp(o, r) is path connected for any
p € (0,1) andr > 0. The intersection ofp(o, r) with the axisx, is the intervall, := [-r,r]. Let us
verify that any pointz € fp(o, r) can be connected by a continuous patlf,i(ﬂ, r) to a point inly,
which will imply the path connectednessi;;(O, r.

By the definition offp(o, r), we have

ze3,(0r) e ld<r andd(zZ) > pld.
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Fix somez € fp(o, r) and choosel, v € R" so thatu lies in the subspacgg, = 0}, v lies on the axis
Xn, Ul = M = |2, and
Z=Using + vCcosg

for someg € [0, /2] (see Fig.6).

2=V~

Hyperplane {z,=0}

z,=0 “u

Figure 6: A path irZ,(0, r) that connectg € %,(0,r) andv € ;.

In fact, v is obtained by rotating towards the axix, by an anglep, andu is obtained by rotating
Zin the opposite direction by the angté2 — ¢. Sincelv| = |2 < r, we obtain thaw € I,. For any
t € [0, ¢] set

Z = usint + vcost

so thatzp = v andz; = z (see Fig.6). Let us verify thatz € fp(o, r) for anyt € [0, ¢]. Firstly, we

have
2

1z = |u? sirft + 2u - vsintcost + [vZcogt = [Z22 < r
so thatz| < r. Secondly, we need to verify thdi(z, X) > p|z|, which is equivalent to
d(z,a) > pl7 forallaeX. (7.26)

To show {7.26), for anya € X, we have

d (z, a)% = |usint + vcost — a?
=|ul®sirft + 2u - vsint cost + [vV|> cogt — 2a - usint — 2a- vcost + |a?
=|2% + |aj® - 2a- usint.

If a- u < 0, then the last formula implies(z, a)? > |22 > p?|Z°. If a- u> 0, then
d(z.8)* > [2* + 8 - 2a- using = d(z a)* > d (z £)* = p°|7°,

whence 7.26) follows. Hence{z} is a continuous path iﬁ,,(o, r) that connects the points= z, and
Vv=275€ ;. m|

For any sek c R" and anyt > O denote
T ={xeR":d(xX) <t}.

Here is our main result in this section.
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Proposition 7.15. LetX be a non-empty closed subset of a hyperplank"inAssume that, for any
Xo€Xandr>t >0,

w1 (Zt N B (X, 1)) <crot", (7.27)

for some ¢ Oanda € (0,n). Then the weight \ix) = d (x, X)™ is admissible whenever satisfying
O<o<n-ea (7.28)

Consequently, if
0 <o <n-max{a,?2}, (7.29)

then the following weighted Hardy’s inequality

2 2
f Zfidxs Cf Vil =dx (7.30)
R X2 d (X, Z)7 o d (X, X)

holds for all f € W2 N C¢ (R"), where the constant C depends only on,e ando-.

Proof. By Lemma7.14 X is p-accessible for any € (0, 1) , so that condition§) and(ii) of Definition
7.9are satisfied witla (r) = r 7. Let us verify the conditioriii ) of this definition, that is,{.20).
For anyx, € £ andr > 0, we sety = r2-X and obtain

dx dx
O i
Hu (B ) B(Xo.r) d(x, ) B(Xo,F )Ny d(x, )

_i f dx
3 JBxoNN(E\2,) 4 (6 2)7

< > (BN NI RG
k=0

<> ermpren = 27 (2" =CroiB (%,
k0 Py

whereC = C(c, n, a, o) and we have used 28, thatis,n— @ — o > 0. Hence, {.20 is verified.
SinceR" satisfies(RVD) with the lower volume dimension, we see that under the condition

(7.29 all the hypotheses of Theorefml2are satisfied, and we obtaii.23, which is equivalent to

(7.30 for xo = 0. o

Remark 7.16. It is easy to see tha?(27) holds provided thak satisfies the following condition:
>N B(x,r) can be covered by at mos(%) Euclidean balls of radius (7.32)

for someqa, ¢ > 0 and for allx, € X andr >t > 0. The infimum of alle for which (7.31) is satisfied
is called theAssouad dimensioof X and is denoted by digx. Hence, the condition7(31) implies
dima X < a, and the conditiond.29 can be restated as follows:

O0<o<n—-max{dimpZ,?2}. (7.32)
For example, it is a Lipschitz curve iR" then (7.31) is satisfied withy = 1.

Example 7.17.LetX be a non-empty closed subsefdfc R"with 2 < | < n. Then {7.31) is satisfied
with @ = |. Hence, Hardy's inequality7(30) is satisfied provided

o<n-l. (7.33)
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Let= = R' be a subspace &". For anyx € R", setx = X' + xX”, wherex’' e R' andx” € R™'. Then
d(x,X) =|x’|, and .30 becomes

2 2
f T0” gxcc [ Mg (7.34)
R

n X% x| r X717

Let us compare®.34) with the result of 9, Theorem 3.4] mentioned in Example4: for any real
o #n-1-2andanyf € CZ({|x”’| > 0}) the following weighted Hardy’s inequality holds:

f(%)? f VF?
dx<c dx 7.35
fRn x|+ rn [X7|7 (=)
wherec = 4/(n-1-2-0)? (cf. (7.3. The inequality 7.35 is obviously sharper tharv(34).
However, the range of in (7.35 is smaller, and{.39 fails for o = n -1 — 2, while (7.34) is valid

for thiso.

There is a number of previously known Hardy'’s inequalities involving distance to a sirfa@®"
(see, for example 2] 4, 29, 62]), but none of them works with an arbitrary closed Set R"! as in
Proposition7.15(see also Examplé.19below).

Remark 7.18. Assume now that satisfies the following condition:
> N B(Xy,r) can be covered by N Euclidean balls of radius/M centered ak, (7.36)

for someN, M > 1 and for allx, € ¥ andr > 0. By iterating this condition, we obtair7 (31) and,
hence, 7.27) with
_ logN
Y= logM"

Example 7.19.LetX = SC(a, b, k) be a generalized Sierpinski carpet from Exantple2 (bounded
or unbounded) that is based on a unit cub&'ink > 2. It suffices to haveq.36) for the constituent
cubes ofSC(a, b, k) instead of ballBB (xo,r). If Q is such a cube of side=a™thenQNZXitis

covered byN cubes of side = a (™1 whereN = ak — b¥. It follows that (7.31) is satisfied with
a = ‘9N that is the Hausddi dimension ofS C(a, b, k). Therefore, considering = SC(a, b, k) as a

loga
subset ofR" with n > k, we obtain the Hardy’s inequality’ (30 for all

O0<o <n-max{a,?2}.
Sincea < k, this range otr is larger than that of4.33 whenevek > 3.

Remark 7.20. In the setting of Propositiod.15 we have by Lemm&.10
o (B 1)) =1 (d(xZ) +1)77 .

By Theorem7.12 the Green functio®™ (x, y) of the Dirichlet form €M, W) exists and satisfies
(G), with respect to the measugg,, which yields forr =[x —y]|
(w) I’2 2-n
GYM(Xy) 2 ———— >r"(d(XZ)+r)“.
Hw(B(X.T))
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