Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 0. Keine Abgabe

1. Let M be any topological space. Let K be a compact subset of M and F' be a closed
subset of M. Prove that if F' C K then F' is compact.

Solution. Let {U,} be an open covering of F'. We need to prove that it has a finite
subcover. The set V' = F* is open. Then the family {U,,V'} covers the entire space
M and, in particular, K. Therefore, it has a finite subcover: {U,,,V'}. It follows that
F' is covered by the union of all U,, and V. Since F' and V are disjoint, we obtain that
F c |JU,,, which finishes the proof.

2. A topological space M is called Hausdorff if, for any two disjoint points x,y € M,
there exist two disjoint open sets U,V C M such that x € U and y € V. Prove the
following properties of a compact subset K of a Hausdorff topological space M.

(a) For any x € K¢ there exists an open set W, containing x and disjoint from K.
(b) K is a closed subset of M.

Solution. (a) Fix x € K¢. For any y € K there are disjoint open sets U, and V,
containing x and y, respectively. All sets V,,, y € K, form an open covering of K.
Choose a finite subcover {Vyz}i\; and set

W, = U,
=1

Then W, is an open set containing « and disjoint from all V. It follows that W, is
disjoint from K, which was to be proved.

(b) Since K¢ = J, e Wh, it follows that K¢ is open. Hence, K is closed.

3. Let XY be two topological spaces and f : X — Y be a continuous mapping. Prove
that if K is a compact subset of X then f(K) is a compact subset of Y.

Solution. Let {U,} be an open covering of f(K). Then the preimages {f*(U,)}
form an open covering of K (the sets f~1(U,) are open by definition of a continuous

mapping). Therefore, there is a finite subcover { f _1(Uai)}fi1 of K, which implies that
{Uai}fil is a finite subcover of K, thus proving the compactness of K.

4. Prove that, on any C-manifold M, there exists a countable sequence {24} of relatively
compact open sets such that Qj € Q41 (that is, 2 is relatively compact and Q. C
Qk11) and the union of all € is M. Prove also that if M is connected then the sets
Q. can also be taken connected.

Remark. An increasing sequence {{2;} of open subsets of M whose union is M, is called
an erhaustion sequence. If in addition Q; € ;1 then the sequence {2} is called a
compact exhaustion sequence.



Solution. By a lemma from lectures, there exists a countable family {U;};°, of rela-
tively compact charts covering all M. Set

= U, )

Jj=1

so that {Q},—, is an increasing sequence of relatively compact open sets covering M.
However, we may not have yet the inclusion €, C Q4. To achieve that, we will select
a subsequence of {Q;}. The first term to be selected is Q1. If we have already selected
Q,; then observe that €; is a compact set and, hence is covered by a finitely many of
sets {Qx}. Since this family is increasing, Q; is covered by one of Q. Hence, select
this €2, as the next term in the subsequence.

Let M be connected. The sets U; considered above are always connected as they are
constructed as small balls in charts. All we need is to renumber the sequence {U,}
in an appropriate order so that each set € defined by (1) is connected. We will do
this by means of an inductive construction. At each step, some of the sets {U;} will
be declared selected and denoted by Vi, V5, .... Set Vi = U; and declare U; selected.
Choose a non-selected set U; with the minimal j that intersects Vi, denote it by V5
and declare selected, etc. If Vi,...,V; are already defined then choose a non-selected
set U; with minimal j that intersects Vi U V... UV, denote it by V;y; and declare
selected. The process stops if we cannot choose V.1, and continues countably many
times otherwise. By construction, all the unions V; U V5... U V; are connected, so we
need only to verify that the sequence {V;} covers all M.

Assume first that the sequence {V;} is finite. Then, at some step i, any non-selected
U; is disjoint with V := V; U V5... U V;. Let U be the union of all non-selected U;. All
selected U; are contained in Vi, ..., V; and, hence, their union is V. Since U and V' are

two disjoint open sets covering M, one of them must be empty, which can be only U,
whence V' = M.

Assume now that the sequence {V;} is infinite, and show that it covers M. If this is
not the case then there exists U; which is not covered by V = J, Vi. If U; intersects
V' then it should have been selected at some step because there are selected sets Uy
with j° > j. Hence, any U, that is not covered by V is actually disjoint with V. Let
U be the union of all such sets U;. Clearly, U and V' cover M and are disjoint, which
implies by the connectedness of M that U = () and, hence, V = M.
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. Let M be a C-manifold of dimension n. Let V' be a chart on M and E be a subset of
V. The compact inclusion £ € V' can be understood in two ways: in the sense of the
topology of M as well as in the sense of the topology of R”, when identifying V' with
a subset of R™. Prove that these two meanings of ' € V' are equivalent.

Solution. Let E be the closure of E in the topology of M and E be the closure of E in
the topology of R™. We need to prove that the following two conditions are equivalent:

(a) E is compact in R" and E C V

(b) E is compact in M and E C V,
Let us prove that (a) = (b). By Exercise 3, the set E is also compact in M (as
a continuous image of a compact subset of R"™). Since M is Hausdorff, E is also
closed in M (Exercise 2). Since E C EC V, it follows that E C E and, hence,
E is compact in M as a closed subset of a compact set (Exercise 1). Since also

E C V, we obtain (b). The converse implication (b) = (a) is proved in the same
way.

. Prove that, on any C-manifold M, there is a countable locally finite family of relatively
compact charts covering M.

Remark. A family F of subsets of M is called locally finite if any compact subset of
M intersects only finitely many sets from F.

Solution. By a lemma from lectures, there exists countable family {U;} of locally
compact charts covering M. Let {€.} be a sequence from Exercise 4. Let us construct
inductively a locally finite family F of relatively compact charts which will also cover
M. At step 0, set F = (. At step k > 1, consider the compact set Q; \ Qz_1 (where
Qo := 0). This set is covered by a finite number of charts from the family {U;}; say
Ui, ...;Un. Then add to F the charts U; \ Qx_1, i = 1,...,m. Clearly, the newly added
charts cover Q \ﬁk_l and do not intersect Q.

The family of charts F obtained in this way covers all sets \ﬁk_l and hence M.
Let us verify that it is locally finite. Indeed, any compact set K is contained in one
of the sets 2. Up to the step k of the above construction, family F contains a finite
number of chart. From step k& + 1 onwards, each added chart does not intersect 2.
Hence, there is only a finite number of charts in F intersecting €25 and hence K, which
finishes the proof.

. Fix some positive integers n,m, let F' : R*™™ — R™ be a C*-function. Consider the
null set of F', that is, the set

M ={z e R"™: F(z) =0},



and assume that, for any point € M, the Jacobi matrix F”’ (x) has the rank m. Prove
that M is a C'-manifold of dimension n.

Hint. Use the implicit function theorem.

Solution. The topology of M is induced from that of R"™, that is, open sets in M
are intersections of open sets in R"*™ with M. Since R"*™ has a countable base, it
follows that M also has countable base. Since R™*™ is Hausdorff, the same is true also
for M.

Fix a point z € M and show that there is a chart in M that covers z. The Jacobi
matrix F”(z) is as follows:

O Fv .. Oy, F1 Op F1 . Oy Y
00 Fn . OuFy oo Fo o Our Fon

It has n + m columns and m rows. Since the rank of F’(z) is equal to m, there are
m linearly independent columns. Without loss of generality, assume that the last m
columns are linearly independent. Then, by the implicit function theorem, there exist
open sets U C R™ and V' C R™ such that z € U x V' and that the equation F'(z) =0
in U x V can be resolved with respect to the last m coordinates z"*1, ..., 2"™™: that

is, in U x V' the equation F'(z) = 0 is equivalent
(a:”“, ....,x"+m) = f(z',..2")

where f : U — V is of the class C'. In other words, M N (U x V) is a graph of a
continuous function f: U — R™™ which implies that M N (U x V) is a chart. Since
any point z € M is covered by such a chart, we conclude that M is a C-manifold.

. Let K be a compact subset of a smooth manifold M and {U; }le be a finite family
of open sets covering K. Prove that there exist non-negative functions ¢, € Cg° (U;)

such that Z?Zl ¢; =1 in an open neighbourhood of K and Z?=1 ¢; < 1in M.

Remark. The family {goj} is called a partition of unity at K subordinate to {U;}. If
all U; are charts then the existence of the partition of unity was proved in lectures.

Hint. Choose first a finite family {W;} of charts covering K and such that each W; is
contained in one of the sets U;. By a theorem from lectures, there exists a partition of
unity {1;} of K subordinate to {W;}. Use functions 1; to construct functions ¢;.

Solution. For any point z € K, there is a chart W, containing x. Since x is also
covered by one of the sets U;, by reducing W, we can assume that W, C U; for
some j. Since the family {W,},_, covers K, there exists a finite subfamily {W;};",
also covering K. Since each W; is a chart, by a theorem from lectures there exists a

partition of unity {¢;};", at K subordinate to {W;}. Now define the sequence {¢; }le

as follows:
Y1 = Z Vi,

{i:supp v, CU1 }

P2 = Z Vi,

{#:supp p;CUa, supp; U1}

4



Pr = Z V;-

{izsupp ¢, CUy, supp ¢, ¢U; VI<k.}

Clearly, each ¢, is non-negative and belongs to Cg° (U;). Since W; is covered by some
Uj, each v; is supported in some U; and, hence, each ¢; has been used in the above
construction exactly once. It follows that

Z‘Pj = Z¢za

which implies that {(pj} is a partition of unity at K subordinate to {U;}.
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In all exercises, M is a smooth manifold of dimension n.

. A path on M is any smooth mapping v : [0,a] — M, where a > 0. Set = = v(0). For
any function f € C° (M), define the derivative of f along the path v at the point x
by

of d

_— = — t

- L0)

t=0

(a) Prove that (% is an R-differentiation at x, that is, 8—87 eT, M.

(b) Prove that any tangent vector £ € T, M can be represented in the form £ = aﬂ

™
for some path ~.

4

Solution. (a) The operation = is linear and satisfies the product rule because

5 U9 = GO o)
= G OOOW)| +rEw) Feh)|
— o)+ @)

Hence, a% eT,.M.
(b) Let x',...,2™ be a local coordinate system near the point z. Fix some & € T, M

and find a path v such that £ = 8%. If £ = 0 then define v just by v (t) = z. Let

¢ # 0. Assuming that the Euclidean ball B, (z) is contained in this chart, define in
this coordinate system the path v by

V() =z +1t§

where t € [0,a] and a = r/ ||, where |£| is the Euclidean length of £ = (51, ...,5”).
Indeed, for any ¢ € [0, a], we have

tigl <algl<r

so that v (t) € B, (x). Hence, v : [0,a] — M is well-defined and is obviously smooth
in . We have
of

d d ;
ST =g =2le
Since also of  of
we conclude that < f (y(t)) = £ (f) and, hence, a% =¢.



10. A smooth vector field on M is a mapping X : C* (M) — C*(M) such that, for any

11.

x € M, the mapping

C*(M)—R
f=X(f)(x)

is a R-differentiation at x. Prove that, in any chart U with the local coordinates
x!, ..., 2", there are functions a!,...,a" € C* (U) such that

X(f)= gai% for any f € C*(M).

Hint. Use the fact that any R-differentiation £ can be represented in the form

fzzsaﬂ

for some ¢ € R.

Solution. Since any R-differentiation & at x is given by
P
: x
=1

for some reals £, it follows that, for any 2 € U there are reals a'(z), ..., a™(x) such that

n A 8f
X(f)(x) =) a(z)5,
; ox
that is,
N Of
X(f) = - a %

Since X (f) is smooth for any smooth f, it follows that also a’(x) must be smooth
functions. Indeed, there exists a function f € C°°(M) such that f(x) = 2’ in a
neighborhood of some point xy € U. Then, in this neighborhood, we have X (f) = d’,
which implies that a’ is smooth in this neighborhood and, hence, in U.

Let X and Y be two smooth vector fields on M (as in Exercise 5). Define the Lie
bracket [X,Y] of X, Y as a mapping of C* (M) into itself by

[X,Y]:= XY — VX,

that is, [X, Y] (f) = X(Y(f)) = Y(X(f)) for any f € C°(M).
Prove that [X,Y] is a smooth vector field on M.

Hint. In the local coordinates, X (f) is a combination of the first partial derivatives
gg{i (by Exercise 5). Hence, XY (f) and Y X(f) contain the second derivatives of f.
The point of the present claim is that the difference XY (f) — Y X (f) depends on the

first derivatives of f only, that is, the second derivatives cancel out.

7



Solution. We need to prove that, for any = € M, the mapping [X, Y] is R-differentiation

at z. Fix a chart U around z. Then, by Exercise 5, there are smooth functions a', ..., a"

and b',...,b" in U such that

_ . zaf 7
—;a% and Y (f ZbaxZ

It follows that

B " O u 8b of
B Z : a’b 0xIdxt +Z121 079 O’

Similarly, we have

oL Bai Of
;Zw“axﬂaﬁzz 0w Dt

=1 ]_ =1

By interchanging of ¢ and j, we see that

ZZ b Z@xﬂawl ZZ 8;538:15’

]111 ]_ =1

Hence,

;o Of da' Of
XY (f) ZZ o1 O ZZ 8238132

]17,1

B Z axz

where

; - Ob’ - 0a’
c zz< d Haxj). @)
<

Therefore, [X,Y] = XY — Y X is R-differentiation at =, which was to be proved.

. (The Jacobi identity) Prove the following identity for three smooth vector fields X, Y, Z
on a smooth manifold M:

[X’ [Y7ZH+[Z> [X>YH+[Y7[27XH:O7 (3)

where |-, -] is the Lie bracket defined in Exercise 5,



Hint. By linearity, it suffices to consider the case when X,Y, 7 are given in the local

coordinates z!, ..., 2" by

0 0 0
X=a—, Y=b—, Z=c—7p,
ox’ 0xJ Oxk
where a, b, ¢ are smooth functions of x!, ..., 2™ and 1, j, k are some indices from 1,...,n

Solution. If ¢ # j then we have by (?7?)

0 0 -0 0
_ R R i
X, Y] = { oz’ b@xﬂ} Cow T 0w
where
- O 0" Oa
¢= ZZ < dal ’ 8xl> B baxﬂ
and

If i = j then by (77?)

g 0 0
X, Y] = [ D’ baxi]

where

, , O da’ 0b da
C' = V=) =a=— —b—.
; ( ox! 81’1) Yot Vort
Hence, in the both cases we obtain that

IS R T R R
a(‘?xi’ ord| Oxd Oxt a(‘?xi oxd “ or? ’

Similarly, we have

;0 o 01  ,0c 0 aC* 9
[270 ax’} B {c%,(] 890’} =-¢ 0z ok | CoxF oz
0 . dc 0 aCc? 9
J — J
{Z o J} 923 0F  Cork oz’
and, hence,
. i , J
[Z,[X,Y]]:—C”ac 0 ac* o jOc 0 oCT 9

or ot Corrar T om o T Cor o
_yPede 9 9 (daN o o d 9 (b D
= V0w 0 0F ~ Coxk \ oz ) 9xr ori 0w 0k oxk \ "oz ) oxi

0 (PO 0 (Y D onde o oc 0
oxk \ 0xi ) Ox oxk \  0x' ) Oz’ OxJ Ox' Ozt 0xd ) Oxk
By cycling permutation of a, b, ¢ we obtain that
0 ob\ 0 0 dc\ 0 0b 0Oa dc da\ 0O
XY, 2] = —ag s (a_> 90 o (ba_) 9ok (a oo Cow aw) oo

9




and

0 dc\ 0 0 Ja\ 0O dc 0b da Ob\ O
Y, 12, X]] = b5 5 (%) e (a) P (a_ ot a%) P
It follows that, in the sum [ X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] , the coefficient in front

a o
of 575 18

_Ci(b@>+<cab 6@_680 8a>+b8 (Caa)
oxk \ OxI Oxk OxJ Oxd Oxk oxi \ Oxk

ob Oa &a ob Oa dc Oa dc Oa &a
ok ow  Carkaw T (Caxk 90 Vow axk) b9wi ok T Y aiaa

=0.

Similarly, the coefficients in front of 3% and 32 are 0, whence (2) follows.

10



13.

14.

15.
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Let {V,} be a family of charts covering a smooth manifold M. Prove that if a function
f M — R belongs to C* (V) for any « then f € C>(M).

Remark. By definition, f € C*> (M) if f € C* (U) for any chart U in M.

Solution. Fix a chart U C M with coordinates z', .., 2" and prove that f € C> (U).
It suffices to prove that f is C* in a neighborhood of any point p € U. Let V be a
chart from the family {V,} that contains p, let y',...,y™ be coordinates in V. Since
f € C>(V), the function f is smooth in the coordinates y', ...,y™. Since the change
of coordinates y* = y (z!,...,2") is given by smooth functions, we conclude that f is
also smooth in the coordinates x!, ..., 2" that are defined in U N V. Hence, f is C™ in
the chart U in a neighborhood of p, which was to be proved.

Prove that a smooth hypersurface in R"*! is a smooth n-dimensional manifold.

Remark. Recall that a smooth hypersurface is a subset M of R™*! that is locally a
graph of a smooth function. Each graph gives rise to a chart on M. You need to prove
that the change of coordinates between any two of such charts is given by smooth
functions.

Solution. Assume that a point p on a smooth hypersurface M in R™*! belongs to two
charts: the first chart where M is the graph of the function

vt = f(2? ..., 2"
and the second chart where M is the graph of a function
=g (ml, ...,x”_l) )

We need to show that the local coordinates x!, ..., 2”71 in the second chart are expressed
n

as smooth functions of the local coordinates of the first chart, that is, of 2?2, ..., 2"
Indeed, this change is given by

! = f(l’Z, . ’xn)
2 _ $2
xnfl — xnfl

which is clearly a smooth change of coordinates.

(a) Let U be an open set in R” and ¥ : U — R™ be a smooth mapping. Let I" be the
graph of W, that is,
= {(z,¥(z)) eR"™: 2 €R"}.

Prove that I' is a submanifold of R**™ of dimension n.

(b) Prove that any smooth hypersurface in R"*! in a submanifold of R™! of dimension
n.

11



16.

Hint. Use the definition of a submanifold.

Solution. (a) Let x',..,2™ be the coordinates in R™, y!,..,y™ be the coordinates in
R™. Set N = n +m. We introduce new coordinates z!,..z"V in U x R™ such that I' is
given by the equations 2"*! = ... = 2" = 0, which will imply by definition that I is a
submanifold of RY of dimension n (with a single chart). Set

1 1

2= x
Zn — x/n/

=yt =l (22"

R T A CAN

First of all, the mapping (x,y) — z is a diffeomorphism because this mapping is smooth
and there is the smooth inverse mapping

l’l:Zl

" = 2"
yt = vl (zl,...,z")

y" o= M gm (zl, - z”) :
The equation y = ¥ (z) in the coordinates z is equivalent to 2" = ... = 2V = 0,
which finishes the proof.

(b) If M is a hypersurface in R"*! then locally it is a graph of a function f:U — R
where U is an open subset of U. By (a) there is a local coordinate system z', ..., 2"
in U x R such that M N (U x R) is given by the equation 2" = 0. Since the entire
M is covered by the charts like U x R™, we conclude that M is a submanifold of R™*!
of dimension n.

Let M be a smooth manifold of dimension n and S be its submanifold of dimension m.
Let 2!, ..., 2™ be local coordinates in a chart U in M and 9!, ..., 4™ be local coordinates
in a chart V on S. Assume that V' C U. Then, for any point in V, its x-coordinates
can be expressed as functions of its y-coordinates:

o= fy Y™, i=1,.m,

where f* are some real-valued functions on V. Prove that f* € C>®(V).
Hint. Use the definition of a submanifold.

Solution. It suffices to prove that f* are C*° in a neighborhood of any point p € V.
By definition of a submanifold, for any point p € S there is a chart W in M containing

p such that in its local coordinates z', ..., 2",

ceSNW e = =2"=0.

12



17.

In this case SN W is a chart on S with the local coordinates z!, ..., 2™.

It follows that in the intersection of the domains of the local coordinates y', .., y™ and

2%, ..., 2™, the change of coordinates is given by C* functions:

)

2=y y™), i=1,...,m. (4)

1

Similarly, in the intersection of the domains of the local coordinates z',...,x™ and

2%, ..., 2", the change of coordinates is also given by smooth functions:

In particular, on S we have

Substituting here the smooth functions (3), we express z° as a smooth function of
y!,...,y™, which was to be proved.

*Let X and Y be smooth manifolds of dimensions n and m, respectively, with n > m.
A mapping ® : Y — X is called smooth if in local coordinates z?!,...,2" in X and
y',...,y™in Y it is given by equations

vt =d (Y. y™), i=1,...,n,
where ®° are smooth functions. Let ® be a smooth mapping as above satisfying the
following three properties:
(1) the mapping ® : Y — X is injective;
(2) the rank of the Jacobi matrix J = (%) of ® is maximal at all points, that is, it
is equal to m;
(3) @ is a homeomorphism of Y onto its image S := @ (Y) C X.
Prove that S is a submanifold of X of dimension m.
Solution. Fix a point p € S. We need to show that there is a local coordinate system
2t ..., 2" on X around point p such that in a neighborhood of p

S:{z:zmH:...:z":O}.

Set ¢ = @1 (p) € Y and let y',...,y™ be local coordinates in some chart V' on Y
containing ¢. By (1) and (3), the mapping ® ! : S — Y is well-defined and continuous.
Hence, there is an open set U’ in S containing p such that ®~! (U’) C V’. The set
U’ is an intersection of an open set U C X with S, which implies that the preimage
®~! (U) is contained in V’. By shrinking U, we can assume that U is a chart around
p with coordinates z!,...,2". Now setting V := &~ (U) C V',

In the local coordinates in U and V', the mapping ® is given by the system of equations
= P! (yl,...,ym)
™ = o™ (yl,...,ym)

13



= " (y . y")

that is, (z!,...,2") € S if and only of there is (¢*,...,y™) € V such that these equations
are satisfied.

Since by (2) the Jacobi matrix J = (%) at ¢ has the rank m, this matrix has m
linearly independent rows, suppose, these are the rows ¢ = 1,...,m. Then the same is
true in a neighborhood of ¢q. By the inverse function theorem, the the first m equations
of the above system can be solved with respect to y!,...,y™ in a neighborhood of p, as
follows:

y =1 (a:l, ,xm) ,1=1,...,m.
Consider the following new coordinates in a neighborhood of ¢:
2=y (xl, ...,xm) ,1=1,....m
2= gt — @ (yl, ...,ym) ,i=m+1,....m

Then in a neighborhood of p the condition that (2!,...,2") € S is equivalent to 2™+ =
... = 2" = 0, which finishes the proof.

18. * Give examples to show that any of the above conditions (1), (2), (3) is essential for
the statement of Exercise 5.

Solution. For counterexamples, consider the following mappings ® : I — R? where I
is an interval. In all examples S is not a a submanifold near (0, 0).

(1) I = (—4,4), ®(t) = (sint, cos 2t) is not injective, self-intersection point (0,0).

1.0 T

y

(2) I =(1,1), ®(t) = (t*,¢*). The Jacobi matrix vanishes at ¢ = 0.

10T
y
05T

0.0

05T




(3) I = (—2,7), ®(t) = (sint, cos2t) is injective but the inverse mapping ® ! is not
continuous at (0,0).

15



19.

20.
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Let M be a smooth manifold of dimension n, F' € C*°(M) and S be a non-singular
null set of F, that is,

S={xreM:F(x)=0} and VF #0on S.

Consequently, S is a submanifold of M of dimension n — 1. Fix zq € S. Every tangent
vector £ € T,,5 can be regarded as an element of 7T,,, M by using the identity

§(f) =& (fls) forany feC™(M),

as the restriction f|g on S is a smooth function on S. Hence, the tangent space T, S is
a subspace of T, M. Prove that 1,5 as a subspace of T}, M is given by the equation

T.,S ={§ €T, M : (dF,&) =0}. (5)
Hint. Verify first that every £ € T,,S satisfies as an element of 7T,,M the equation
(dF.§) = 0.

Solution. Note that dF' is a non-zero covector, that is, a linear functional in 7, M,
and the equation (dF,{) = 0, indeed, determines an (n — 1)-dimensional subspace of
T,,M. Since dim 7,,,S = n — 1, it suffices to verify that every vector from 7S satisfies
equation (4). Indeed, if ¢ € T,,S then we have by definition of dF

(dF,§) = E(F) = £ (Fls) = £(0) =0,
where we have used that F|g = 0.

* In the setting of Exercise 5, let M = R". Let us identify the tangent space T, M
with R” by using the isomorphism [ : 7, M — R" defined by

1650

where {e;};, is the canonical basis in R™. Prove that the set

Zo + I(TIOS)

= €4,

is the hyperplane H,, in R” that goes through z, and has the normal VF(z,), where
VF = (8F ) 8F)

Oxlr " 9xn )

16



Remark. This result means that the tangent space 7,5 can be naturally identified
with the tangent hyperplane H,, in R" to the hypersurface S at the point xy.

Solution. The image (7},S) is an n— 1-dimensional subspace of R", and z+1(71%,S)
is a hyperplane that goes through xy. It remains to verify that

I(T,,S) L VF(xq)
Since oF
F = —dz*
d pys dx’,

the equation (dF,¢) = 0 of (a) for the tangent vector ¢ = &2 becomes

.—1:7:

OF

=0

e =0

that is,
oF or ..
%f +...—|—axn€ = 0.

For any tangent vector & = fi% € T,,M, we have I(£) = &'e;. Since ngi are the

components of the gradient VF' as a vector in R™, we obtain that /(£) LV F, which was
to be proved.

21. Let M be a Riemannian manifold.

(a) Prove the product rule for the operators d and V on M:
d (uv) = udv + vdu (6)

and
V (uv) = uVv + vVu, (7)

where © and v are smooth function on M.

(b) Prove the chain rule for the operators d and V on M:
df (u) = f' (u) du

and
Vf(u) = f"(u) Vu,

where u and f are smooth functions on M and R, respectively.
Solution. (a) In local coordinates z?, ..., 2", we have
du = (0,,u) dx’ (8)
which implies

d (uv) = 0, (uv) dz" = (9,,u) vdz" + u (0,,v) da’

i

= vdu + vdu.

17



22.

Since

Vu =g 'du, 9)
we obtain from (5)
V (w) =g 'd (w) = g~ (udv + vdu) = ug™'dv +vg 'du
= uVv +ovVu.

(b)Using (7) and the chain rule for 0,,, we obtain
df (u) = O, (f () da’ = f' (u) (Op,u) da’ = f' (u) du.
Using also (8), we obtain

Vf(u) =g df (u) =g ' f' (u) du = " (u) g~ du = f' (u) Vu.

Let (M, g) be a Riemannian manifold. Let U and V' be charts on M with the local
coordinates !, ..., 2™ and 3, ..., y", respectively. Denote by ¢* and ¢¥ the matrices of
the metric g in U and V, respectively. Let J = (Jf):izl be the Jacobian matrix of

the change y = y (z) defined in U NV by

(10)

where k is the row index and ¢ is the column index. Prove the following identity in
unv:

g =J"g"J, (11)
where JT denotes the transposed matrix.
Solution. By the chain rule, we have for any smooth function fin UNV
of _ oy of _ ,0f
oxt Ozt oyk Tt Oyk’

whence
0 _Jki
oxi T Oyk
and, hence,
- g 0 0 0
9i; = <%7 @ﬁ = ( z’a—yka ja_yl>g
g 0
= Jzk‘]jl<a_yk78_yl>g

:ﬁ%ﬁ

Noticing that
k oy 7l T
J; glgl‘]j = (J gyJ)Z-j )
we obtain
9ij = (JTgyJ)ij
whence (10) follows.

18



23. Let g, g be two Riemannian metrics on a smooth manifold M and let ¢g* and ¢ be
the matrices of g and g, respectively, in some local coordinate system z!, ..., 2". Prove
that the ratio _

det g*

det g*
does not depend on the choice of the coordinate system (although separately det g*
and det g* do depend on the coordinate system).

Hint. Use the formula (10) from Exercise 5.

Solution. Let x!,...,2™ and 3, ...,y be two coordinate systems and let ¢g* and g be
the matrices of g in these systems, respectively. By Exercise 5, we have

g’ =J"g"J
where J is the Jacobian matrix of the change y = y (). It follows that
det g¥ = (det J)* det g°. (12)
The same identity holds for the metric g:
det ¥ = (det J)* det §°.
Dividing it by (??) and noticing that (det.J)* cancels out, we obtain

detg¥  detg”
detgv  detg®’

which was to be proved.
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24.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 5. Abgabe bis 21.11.2025

Let M be a smooth manifold, S be a submanifold, and x € S. Prove that, for any
fe=(M),

d(fls) = (df)|z.s, (13)
where d in the left hand side is differential on S, while d in the right hand side is
differential on M, and (df) |1,s means the restriction of df to the tangent space 7,.S.

Solution. Fix ro € S. By definition, df is an element of T, M such that, for any
R-differentiation ¢ € T,,, M,
(df, &) = &(f).

For any ¢ € 1,5, we have

where in the second identity we consider ¢ as an element of T, M as T,,S C T,,M.
On the other hand, by the definition of the restriction (df) |s we have

((df) |z,5,8) = (df, ) = £(f)-

Comparing the two above equation, we obtain

(d(fls),&) = ((df) |5, ) VE € Tiy S,

whence (11) follows.

Second solution. Let z', ..., 2™ be local coordinates in a neighborhood of z, € S such
that S is given by equations

gt =2 = =" = 0.

Then we have for differential in M
df = ——d !
4 ; Bt "
Since the basis in 7,5 is given by {%};n:l and
0 of
d - ) = =

we obtain that

e~ Ozt
1=1

(df)|s = dx’.

In the other hand,
fls(@', ..., 2™) = f(2',...,2™,0,...,0),

whence

d(fls) =) o rda,
i=1
and (11) follows.
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25. For any submanifold S of R", denote by gg the Riemannian metric on S that is induced
by the canonical Euclidean metric

gpn = (dz")? + .+ (da™)’. (14)

(a) Let S* be the unit circle in R2.

Y
Express the induced metric gg: /

using the polar angle ¢ on S!

as a local coordinate.

(b) Let S? be the unit sphere in R?.
Express the induced metric gs2 on S?
in terms of the local coordinates 6, ¢
where 6 is the longitude on S? and ¢
is the latitude.

Hint. Express the Cartesian coordinates in terms of the polar coordinates and use the
representation (12) of the metric in the Cartesian coordinates.

Solution. (a) The Cartesian coordinates z,y on S' can be expressed via the polar
coordinate © on S! as follows:
x =cosp and y = sin .
Hence,
ger = da? + dy* = sin? pdp? + sin® pdp? = dp?.

(b) The Cartesian coordinates x,y, z on S* are expressed via ¢ and @ as follows:

x = cos pcosf
Yy = cos psin 6

z = sine
Hence, we have
dxr = —sin @ cosf dyp — cos psin 0 df

dy = —sin @ sin 0 dy + cos @ cos 0 df
dz = cos pdy

whence
dz? 4+ dy? + dz* = (—sin p cos 0 dp — cos @ sin 0 d6)?
+ (— sin g sin 0 d 4 cos @ cos 0 df)?
+ cos? p dp?
= sin? ¢ cos? 0 dp?® + cos® psin® 0 dh* + 2 sin @ cos 6 cos @ sin O dpdf
+ sin? @ sin” 0 dp? + cos® p cos? @ dh* — 2sin @ sin O cos @ cos O dpdh
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26.

+ cos? p dp?
= sin? pdp? + cos® p df* + cos® p dp?
= dp? + cos® pdb?.

Hence,
g2 = dp* + cos? pdb?.

Let I" be the graph of a smooth function f : U — R, where U C R*! is an open set.
Let g be the canonical metric in R™. Denote @
by gr the induced Riemannian metric on I' R
considering I' as a submanifold of R".

Let y',...,y" ! be the Cartesian coordinates

in U; consider them as local coordinates in I'. U T

Prove that the components of the metric gr Yoy

in the coordinates y',...,y" ! are as follows:

of of

(gF)zJ J + ayz 8y]
where 6,; =1if i = j and §,; =0 if 7 # j.

Hint. Use the following result from lectures: if S is a submanifold of a Riemannian

manifold (M, g) then the induced metric gg is given in the local coordinates z!, ..., 2"

on M and y',...,y™ on S by the formula

ort 00
oyt Oyi”

(QS)zj = 9kl (16)

Solution. Denote the Cartesian coordinates in R™ by z!, ..., 2. The Euclidean metric
is given by
g = (dxl)2 o (dz™)?.
By (14) we have
Oz* Ox!
(gr)ij = gklﬁ_yia_yj’

where x = z (y) is the change of the coordinates that is given by

Loy
22
gl = gyl
e =f(y' ey
Hence, we have
oxk [ 8, k<n-1
dyt { i k=n



Since gy = 0y, we obtain

"L 9xk ok A ek Of Of of of
(gF)z’j - kz:; ayl a_y] = kz:;éiéj + a—yza—y] = 5z'j + ayla_yj

Alternatively, we can use the relations

dzt = dy*
dz? = dy?

dl‘n_l _ dyn—l

of
oy’

dz" =

dyi

that imply

that is,

x! = coshpcosf, 2% =coshpsind, 3=,

where p € R and 0 € (—m, 7).

Express the induced Riemannian metric on

Cat in terms of the coordinates p, 6.

Catenoid

Remark. The catenoid Cat is the image of the mapping Rx (—m,7) — R? given by the
above equations. By using Exercise 5, it is possible to show that Cat is a submanifold
of R3 of dimension 2.

Solution. We have

dz* = sinh p cos @dp — cosh psin Od6
dz* = sinh psin §dp + cosh p cos 0d6
de® = dp
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whence

(dz')? + (d2?)? + (dz*)® = (sinh p cos Bdp — cosh psin 6df)*
sinh psin fdp + cosh p cos 9d0)2

(dp)*
sinh? p cos? 6 (dp)” + cosh? psin® 0 (d6)* — 2sinh p cos 6 cosh p sin Odpdf

+ sinh? psin® 0 (dp)® + cosh? p cos? 0 (df)* + 2sinh psin 0 cosh p cos Odpdf

+ (dp)*

= sinh? p (dp)* + cosh? p (d6)” + (dp)”

= (1 +sinh? p) (dp)* + cosh? p (df)”

= cosh?p (dp2 + d92) :

- -

Hence,the induced Riemannian metric is

gcar = cosh? p (dp2 + d92) .
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28.

29.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 6. Abgabe bis 28.11.2025

(Product rule for divergence) Let (M, g) be a Riemannian manifold. Let V = Vg
and div = divg be the gradient and divergence associated with g, respectively. Let u
be any smooth function on M and v be any smooth vector field on M.

(a) Prove the identity div (uv) = (Vu,v) + udiv v.
Hint. Use the divergence theorem and the gradient product rule of Exercise 5a.

(b) Let (M, g, 1) be a weighted manifold. Prove that the weighted divergence divg ,
satisfies the identity divg , (vv) = (Vu,v) + udivg , v.

Solution. (a) For any ¢ € C§° (M), we obtain using the divergence theorem and the
product rule (6) of gradient of Exercise ba:

/Mdiv (uwv) pdp = —/M<uv,V<p>du: —/M<v,uV<p)du
[ .V wp) - pvudn

—— [ @V oldn+ [ @i

M

_ /M (div o) ug dyi + / (v, V) od

M

— /M ((divo) u + (v, Vu)) pdp

whence (?7) follows.

(b) If D is the density of p then we have
: L.
divg , u = ) divg (Du) .
Using the product rule (??) for divg = div we obtain

1
divg , (uv) = =

div (Duw)

olile

((Vu, Dv) + udiv (Dv))

D 1 .
(Vu, Bv> tug div (Dv)
{

Vu,v) + udivg, v,

which finishes the proof.

Recall that the Laplace-Beltrami operator A = A, on a Riemannian manifold (M, g)
is defined for any function u € C*°(M) by Au = div (Vu).
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30.

(a) (Product rule for the Laplacian) Prove that, for smooth functions v and v on M,
A (uwv) = uAv + 2(Vu, Vv) + (Au) v.

(b) (Chain rule for the Laplacian) Prove that, for functions u € C*°(M) and f €
C>(R),
Af () = £ (u) [Vul? + 1 (u) A

Solution. (a) Using the identity A = div V and the product rules for V and div (cf.
Exercises ba and 5), we obtain

A (uv) = div (V (w)) = div (uVv + vVu)
= (Vu, Vu) + uAv + (Vu, Vu)g + vAu
= ulAv + 2(Vu, Vv) + (Au) v.

(b) Using Exercises 5bb and 5, we obtain

Af(u)=div(Vf (u)) =div (f (u) Vu) = (V[ (u),Vu) + f' (u)div (Vu)
= " (u) (Vu, Vu) + f' (u) Au.

Let (M, g, i) be a weighted manifold. Prove the following identities.

(a) (The divergence theorem) If u is a smooth function on M and v is a smooth vector
field, such that either u or v has a compact support then

/M(divg#t v) udp = —/M<U,Vu> dj. (17)

(b) (The Green formula) If u,v are smooth functions on M and one of them has a
compact support then

/uAg,uvd,u:—/ (Vu, Vv) d,u:/ v Ag udp. (18)
M M

M

Solution. (a) Let D be the density function, that is, du = Ddv where v is the
Riemannian metric. Then we have

1
divg , v = 5 div, (Dv)
whence

1
/ divg , vudp = / D divg (Dv) u Ddv = / divg (Dv) udv.
M M M

Using the divergence theorem on the Riemannian manifold (M, g), we obtain

/Mdivg (Dv) wdv = —/M<Dv,Vu> du:—/M<v,Vu> Dyt = —/ (v, V) dv,

M
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which finishes the proof of (15).
(b) Since Ag,, = divg, oV, we obtain from (15)

/uAg,#vdu:/ divg,quudu:—/ (Vo, Vu) du,
M M M

whence (16) follows.

31. (Change of metric and measure) Let (M, g, p) be a weighted manifold.

(a)

Let a(x), b(x) be smooth positive functions on M. Define new metric g and
measure [ by
g=ag and du="bdu,

where the first identity means that (§,n)z = a(z) (§, n), for all {,n € T, M. Prove
that the Laplace operator Agj of the weighted manifold (M, g, 1) is given by the
formula

1
Agpu = 3 divg (gvgu) for any u € C*°(M).

Hint. Use the Green formula (16).

Consider the following operator L
Lu = Ag u+ (Vv, Vu)g,

acting on functions u € C*°(M), where v € C*(M) is a given fixed function.
Prove that L = Ag ; for some measure i, and determine this measure.

Solution. (a) By definition, we have

Vef =g 'df,

which implies that

1
véf = avgf'

Using the Green formula (16) and the identity

(Vef, &)y = (df€) (19)

for all tangent vectors £, we obtain, for all u,v € C§° (M),

/ vAg pudp = —/ (Vgv, Vgu)gdii = —/ (dv, Vgu) bdp
M M M

b
= —/M<dv,avgu) du

b b
= —/M<ng,avgu>gdu: /Mvdivu <5Vu) du
1. b ~
= /J\/[U (5 le;U« <avu)> d,LL,
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32.

33.

whence the claim follows.

(b) If djz = bdy then, by (a) and the product rule for weighted divergence of Exercise
5, we have

1 1
5 divg,, (bVu) = divg , (Vu) + E<Vb’ Vu)g

= Agu+ (Viogh, Vu),.

Agpu =

Hence, L = Agj provided logb = v that is, b = e”.

* Consider in R™ the following differential operator

where (a% (z)) is a symmetric positive definite matrix smoothly depending on = € R",
and b (z) is a smooth positive function. Find in R™ a Riemannian metric g and a
measure j such that the weighted Laplace operator Ag , coincides with L.

10 0
Be p Ox’ (pg oxJ )

where p = D+/det g and D is the density of u with respect to the Riemannian measure
v, that is, du = Ddv. Since dv = /det gd\ where ) is the Lebesgue measure, we see
that

Solution. We have

dp = pdA.
Clearly, the identity L = Ag, holds if p = b and a" = pg", that is,
g = b 1ql,
In other words, the Riemannian metric is given by

1

(9i) = b(a”) ",

and the measure p is given by

dp = bd.

* Fix n reals aq, ..., a,, and consider the matrix

1+a? ajas ajaz ... aia,

ara; 1+ a% AoQ3 ... Q90

B = asaq asas 1+ ag ... asan,
2
anaq ;a9 anaz ... l+a;

that is, B = (b;;) where b;; = 1+ af and b;; = a;a; for @ # j. The purpose of this
question is to prove the identity

det B=1+aj+..+a2. (20)
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(a) Consider an auxiliary (n+ 1) x (n + 1) matrix

1 —a; —ay ... ... -—a,
aq 1
a9 1 0
A - . )
0
an, 1

where all the entries of the matrix outside the first column, the first row and the
main diagonal are zeros. Prove that det A =1+ a? + ... + a2.

(b) Prove the identity (17).

Hint. Prove first that the matrix AAT has the block diagonal form

0
AAT:<C )
0 [B]

where B is the above matrix and ¢ =1+ a2 + ... + a2.

Remark. The identity (17) will be used in one of the problems in the next problem
sheet in order to compute Riemannian measure on certain submanifolds.

Solution. (a) Let us expand the determinant in the first row. We obtain

1 aq 0O ... 0
1 a9
det A = 1-det ) + ap - det _
1 an, 1
ay 1 ay 1
as; 0 0 a 1
—as - det + ...+ (—1)n+1 Qn, .2
an 1 a, 0 0

= 14ay-a;-detid—ay - (—ay) - detid+... + (—=1)" a, - (=1)" " a, detid
= l+al+a;+..+a’.

(b) Denote by «; the i-th row of the matrix A, where for convenience i = 0,1, ..., n.
Then the elements of the product AAT are the scalar products (o, a;). Since «y is
orthogonal to all other a; and

(g, a0) =14+a? + ... +a2 = c
we see that the zero row of AA” has the form
c,0,....,0.

Since AAT is a symmetric matrix, then the zero column has the same form. If i,j > 1
then
(vi,a;) =a;+1 and (o4, ;) = a;a;.
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Hence, we obtain that
0
AAT — ( ¢ )
0
with the above value of c¢. It follows that

(det A)* = cdet B,

whence

det B = - (det A)*> = — = ¢,

1 2
c c

which was to be proved.
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34.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 7. Abgabe bis 05.12.2025

(Continuation of Exercise 5). A catenoid Cat is a surface in R? that is given by the
parametric equations

! = coshpcosf, x?=coshpsinf, 3= p,
where p € (—o0,+00) and 0 € (—m, 7).

By Exercise 5, the Riemannian metric of Cat

is given by

Catenoid

gcat = cosh® p (dp? + db?) .

Evaluate the integral

1
/ —dv,
Cat COSh™ p

where v is the induced Riemannian measure on Cat.

cosh? p 0
9= 2
0 cosh” p

det g = cosh* p.

Solution. Since

we have

Hence, the Riemannian measure is given by

dv = +/det g dpdf = cosh? pdp db.

Since p € (—o0,00) and 0 € (—m, 7), we obtain

1 R |
/ dl/:/ / v/det gdf dp
C —oo J —m

ot cosh? p cosh® p

o ™ 1
:/ / 5—db dp
—o0J_n cosh®p
<1

=27 d
/Oo cosh? p p

=4,

where we have used that

< 1
/ - pdp = [tanh p] 72 = 2.
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35. Consider the unit circle S* C R? and set U = S' \ {¢} where ¢ = (0, —1) € S'.
For any point x € U define T,

its stereographic projection
onto R! as the point y € R!
such that (y,0) € R? lies on
the straight line that goes

through x and q.
q

(a) Prove that the stereographic projection is a homeomorphism between U and R,
and that it is given by

2y 1—y?

NIRRT

where (z1,7) € U and y € R'. Hence, U is a chart on S' with the coordinate y.

(b) Prove that the canonical spherical metric gs:1 := gge|q: has in the coordinate y
the form A
g = ——dy’.
(1+y2)°

(c) Evaluate o (S'), where o the Riemannian measure of (S, gg1).

Solution. (a) It follows from the definition of the stereographic projection that

Ty
1+l‘2

y —=
(note that x5 > —1 on U). Since also
o+ a3 =1,

it follows that

= x? _ 1— a3 :1—:c2
(1—|—CE2)2 (1+ZB2)2 1+,
whence
1+y* =
* Y 1+ i)
and
2 1—9?
L2 ; 1= 2
14y 1+y
It follows that
(14 z9) 2y
T = = )
1=Y 2 1+ 42

Hence, stereographic projection is a bijection between U and R! that is continuous and
its inverse is also continuous, which implies that it is homeomorphism.
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36.

(b) The metric gsi in the coordinate y has the form

8s1 = (981)11 dyz

where , - ) , ) )
T 0T X1 %)
(g:), g::l 922 )1 y 9y (5’_y) i (5’_y)
Since
On, _d 2y 2(1+y%) — 4y? . 11—
oy dyl+y? (1+y2)° (1+y2)?
and

%_i( 2 _1)_ —4y
dy  dy \1+y? (1+y2)*

4(1—y%)? + 16y 4t —2y% + y* + 4y

it follows that

(9s1)1 =

L+t (1+y2)!
G vy 4
(L+y2)" (L+y?)
() We have det gs1 = m, whence

dy = 2 [arctan y|~ = 2.

o (S') = /mdy—/

Of course, 27 is the length of the unit circle.

1+ y?

Consider in R? a semi-hyperbola
H:={(z1,25) e R*: 2] — 27 =1, x>0}
that is a submanifold of R? of dimension 1.

For any point x € H, define
its stereographic projection
onto R! as the point y € R!
such that (y,0) € R? lies on
the straight line that goes
through z and ¢ = (0, —1).

(a) Prove that the stereographic projection is a homeomorphism between H and the
unit interval I = {y € R': —1 < y < 1}, and that it is given by

2y 1+ 92

1——y2’ To = 1——3427 (21)

I =

where (z1,22) € H and y € I. Hence, H itself is a chart with the coordinate y.

33



(b) Consider in R? the Minkowski metric tensor
SMink ‘— d{E% — dl?%
Prove that its restriction gy = gurink|y 1S given in the coordinate y by

%dzﬂ
(1—92)

(c¢) Denoting by v the Riemannian measure of (H, gy ), evaluate the integral

g =

1
—dv,

H T2

where w5 is the second coordinate in R? of a point x € H (as in (18)).

Solution. (a) It follows from the definition of the stereographic projection that

T
1—|—[L’2

y:

(note that x5 > —1 on U). Since also

2 2 __

it follows that

o @ ai—1 w1 2
Y (1 +IL‘2)2 (1—|—£132)2 1 + X9 1 + Zo
whence
2 1+ y?
T —_ =
2T y? 1—y?
It follows that
(1+a) = —Y
T = = .
1=Y 2 1— 2

Hence, stereographic projection is a bijection between H and I that is continuous and
its inverse is also continuous, which implies that it is homeomorphism.

(b) The metric gy in the coordinate y has the form

gr = (gu),, dy’

where
i ” Oz Oy (81’1)2 <8x2)2
Mmk kl =\ a3 —\ 7
= 0y Iy dy Ay
Since
Ory d 2y 2(1—y2)—|—4y2_2 1+ 92
T (e ok
and




it follows that
404y — 16" (1420 +yt) — 4
(1-y2)" (1-y2)"
S 4
(1—y2)"  (1—92)?

(gu)y =

(¢) Since det gy = —5=, we obtain

4

(1-9?)
21—

—dl/—/ v/ det gg— dy—/ dey

1—y?1+4y
1 dy

1 L4 y?

=2 = 2 [arctany]", = 7.

37. Let I be the graph in R"! of a smooth function f : U — R, where U is an open
subset of R™. Let gr be the Riemannian metric on I' that is induced by the canonical
Euclidean metric in R"*!. Let ¢!, ..., 4" be the Cartesian coordinates in U that can be
regarded as local coordinates on I'. Denote by vr the Riemannian measure of (I, gr).

n

(a) Prove that in the coordinates y', ...,y

2
= (2 () )

Hint. Use the result of Exercise 5 that

of of
(gl")ij 5 + 5 ay ayj

and then the formula (17) of Exercise 5.

(23)

(b) Using (19), evaluate the area (=the Riemannian measure) of the paraboloid that
is the graph in R3 of the function

fl,y) = 5 (@® +9?)
in a disc
U={(z,y) e R? : 2® +y? < 1}.

Hint. Compute vr(I') using integration

in the polar coordinates in R?.

the baraboloid

Solution. (a) By the definition of the Riemannian measure, we have

dvy = +/det grdy

where gr is the matrix of gr. Since gr is given by (??), we obtain by Exercise 5 that




whence (19) follows.
(b) In the case

flzy) =5 (2" +97)

N | —

we have

dvr = \/1 + (%)2 + (%)Qdazdy = /1 + 22 + y2dzdy.
Hence, the area of the paraboloid I is
A=vr () = /U V1 + 22 + y2dedy.
This integral can be computed in the polar coordinates (r,#) as follows: as

U={r<1,0€l0,2r)} and dxdy = rdrdf

we obtain
1 27
VF(F):/ (/ v1+r2d9)rdr
0 0
1
:27r/ V14 r2rdr
0
1
:7T/ md(TQ—l—l)
0
2 3/2]1
1 2
1+

(2\/5 - 1) ~ 3.83.

w| ¥ sl

38. * Let ¢ be the south pole of the unit sphere S* C R"*!, that is,

q=1(0,..,0,—1). (24)

n Zeros

For any point x € U := S™\ {¢}, its stereographic projection is the point y € R"™ such
that the point (y,0) € R™! belongs to the straight line that goes through z and g.

(a) Prove the following relations between = € U and y € R™:

vi=014zp1)y, i=1,...n (25)
and 5
= 1. (26)
1 +$n+1

Show that the stereographic projection is a homeomorphism between U and R™.
Hence, U is a chart on S™ with coordinates yi, ..., yn.
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(b) Prove that the canonical spherical metric gsn := ggn+1|g. has in the coordinates
Y1, -, Yn the form

4

Hint. Express the Euclidean metric ggnv1 = dz? + ...da2 + da? ., via dy; using the
relations (21) and (22).

Solution. (a) Let us simplify the notation by renaming x, . to t. Then the equation
of the sphere S™ is
i it =1, (27)

The point y = (y1, ..., yn) is obtained from (z1,...,2,) by scaling by the factor 1 + ¢,
which arises from comparison of the segments [—1,¢] and [—1,0] of the axis x,;.
Hence, we obtain

ri=1+ty, i=1,..,n. (28)

Substituting into (23), we obtain
(L+8)° Jy* + 2 =1

whence

2= 11—t 1-t 2
1+t 14t L+t

which proves (22). Consequently, we obtain

ly

Y

2 L—Jyl”
Tpp1 =t =—"-——1= .
R
From (24) we obtain
2y; )
T =——=, i=1,..,n.
1+ y]
Also, from (24) we have
ZT; ZT;
Yi

B I+t B 1+xn+1‘
Hence, we see that the relation between x € U and y € R" is bijective and continuous
in the both direction so that U and R™ are homeomorphic.

(b) The metric gs» is obtained by restricting to S™ of the Euclidean metric
gt = das + ... + da? + dt’.

Considering z;,y; and ¢ as functions on U, we obtain from (24), for any i = 1,...,n,
that

whence
de? = (1+ )2 dy? + (1 +t) y; (dydt + dtdy;) + y2dt>.

Therefore,

grntilg, = dt* + Z dx?

i=1
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n

=d® + ) (1+1) dy} + Z (1+ ) y; (dysdt + dtdy;) + Zdetz

=1 =1 =1

=d® + (1+1)*) dy}

i=1 i=1
+ |y|* at?.
Since by (22)
2
— =1
Z =l =g
it follows by differentiation of thls identity that

Z J dt
YidYi = 1—|—t (1+t)2'

It follows that

= dt?
grrilse = (L4 [yf) d® + (1+6)*) " dy} —2(1+1) .
— (1+1)
_ 2 aeg (1+1)? Xn:dy? _ g
1+t — B
-
Z 78
(1 +| %)

39. * Define the n-dimensional hyperboloid H" as the following submanifold of R™*!:

1 2 2
={zeR"™ 2, —ai—..—2,=1, x4 >0}.

For any point x € H", its stereographic projection is the point y € R™ such that the
point (y,0) € R™"! belongs to the straight line that goes through z and ¢ (where ¢ is

given by (20)).

(a) Prove that the stereographic projection is a homeomorphism of H" onto the unit
ball B" = {y € R" : Jy| < 1}. Prove also the following relations between z € H"

and y € B™
vi=04Tp1)y, i=1,...,n
and
| |2 - _L
Y 1+xn+1'

38



(b) Define the Minkowski metric tensor gasini in R™*! by
gvink = Az} + ...+ dal — da’ .
The induced metric gun = arink |- 1S called the hyperbolic metric on H". Prove
that the hyperbolic metric has in the coordinates yq, ..., v, the form

gHn = (dy; + ... + dy2) . (31)

(1= 1yl*)’
Remark. Observe that the metric gy~ is positive definite and, hence, is Rieman-
nian, although the Minkowski metric in R"™! is not positive definite (it is called
pseudo-Riemannian). The Riemannian manifold (H", gg~) is called the hyper-
bolic space. The ball B™ with the metric (27) is called the Poincaré model of the
hyperbolic space.

Solution. (a) Let us simplify the notation by renaming x,; to t. Then the equation
of the hyperboloid H" is
-2t — . -2l =1 (32)

n

The point y = (y1, ..., yn) is obtained from by scaling (z1, ..., z,) by the factor 1 + ¢,
which arises from comparison of the segments [—1,¢] and [—1,0] of the axis x,;.
Hence, we have

ri=04+t)y, i=1,..n, (33)

which is equivalent to (25). Substituting into (28), we obtain
=L+l =1
whence
|2_t2-—1_t—1_1 2
Tt t+l 1+t

ly

which proves (26). In particular, we see that |y| < 1 so that y € B".

Consequently, for any y € B™ we obtain from the above equation

2 1+
1— |y 1—y)?

Tn41 = L

From (29) we obtain
Qs
=Y i=1,..n
1—ly|
Hence, we see that the relation between x € H and y € B" is bijective and continuous
in the both direction so that H and B" are homeomorphic.

Z;

(b) The metric gy is obtained by restricting to H of the Minkowski metric
Erink = —dt® +da} + .. + dz.

Considering z;,y; and ¢ as functions on H, we obtain from (29), for any i = 1,...,n,
that
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whence
da? = (1+t)* dy? + (1 +t) y; (dy,dt + dtdy;) + y2dt>.

Therefore,
= —dt* + ) (L+ 1) dy} + ) (1 t) g (dyidt + didy;) + ) yidt?
i=1 i=1 i=1
= —dt® + (1+1)*) dy}
i=1 i=1
+ |y|* dt?.
Since by (26)

n 2
2 2
2 _ S

it follows by differentiation of this identity that

- 1 dt
Zyzdyz:_dl t: 2
— + (1+1)

It follows that

- dt?
guinklg = — (1= [y[*) dt® + (1+8)° > dy? +2(1 +1) 50
i=1

2 n
= A+ (1+1)? dy? +
1+¢ ( ) ;:1 Yi

=<1+t>2idy3
Z vl

2

(1 - |y|

40



40.

41.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 8. Abgabe bis 12.12.2025

Die mit *markierten Aufgaben sind zusatzlich und werden korrigiert
Die mit **markierten Aufgaben sind zusétzlich und werden nicht korrigiert.

Prove that if a Riemannian manifold (M, g) is connected then d(x,y) < oo for all
x,y € M, where d is the geodesic distance function.

Hint: Show that, for any x € M, the set N := {y € M : d(z,y) < oo} is open and
closed.

Solution. Fix a point x € M and consider the set
N={yeM:d(z,y) < co}.

We need to show that N = M. It suffices to prove that the set N is open and closed.
Then, by the connectedness of M we will conclude that either N = or N = M. Since
N contains x, then we obtain N = M, which finishes the proof.

Observe that, by definition of IV,
N = B(z,k),
k=1

where
B(z,r)={ye M :d(z,y) <r}

is geodesic ball of radius r. Since the topology of the smooth manifold M coincides
with the topology of the metric space (M, d), all geodesic balls are open sets, which
implies that NV is also open.

Let us show that N is closed. For that, we need to verify that the complement
N={yeM:d(z,y) = oo}

is open. This will follows if we show that for, any y € N¢ and any € > 0, the ball
B (y,¢) is a subset of N¢. Indeed, for any z € B (y, ) we have by the triangle inequality

d(z,y) <d(z,z)+d(z,x)

that is,
oo <e+d(xzz2),

whence d (z,z) = 0o and z € N¢. Therefore, B (y,c) C N°.

Let (M,g) be a Riemannian model, and let 2/, z” be two points in M \ {o} with the
polar coordinates (7/,6") and (r”,0"), respectively.

(a) Prove that, for any piecewise C! path v on M connecting the points 2’ and z”,
g (y) = |r" =1"|.

Deduce that d (z/, ") > |r' — r"|, where d is the geodesic distance on (M, g).
Hint. Use the metric g in the polar coordinates on M.
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(b) Prove that if ' = 0" then d (2/,2") = |’ —1"|.

(c) Prove that, for any point z = (r, ), we have d (o,x) = r.

(d) Conclude that in (R™, ggn) the geodesic distance d (z,y) is equal to |z — y| for all
z,y € R"

Solution. (a) Denoting §° = r and using that the metric g has the form

n—1 n—1
g = Z 921916] = (d60)2 + Z gijﬁiej,
i,j=0 tj=1

we obtain, for any piecewise C! path v : [a,b] — M,

n—1 n—1
g =D 9t =111+ X gty 2 |

1,7=0 1,j=1

whence it follows that

b b
€g<v>=/ wlgdtz/ 4°] dt >

If v connects ' and z” then 7 (a) = 7" and ~° (b) = r”, which implies

/ vadt\ (B~ ().

by (y) > |r" —1"].
Minimizing in all 7 connecting 2’ and z”, we obtain d (z/, ") > |’ —r"|.
(b) If ¢ = 6" =: § then the path
v(8) = (" (A=t)+r"t,6), te01],

connects 2’ and z”, because v (0) = 2’ and v (1) = 2”. Since ¥ (t) = (r" —1’,0) and
[¥]g = |r" — 7’|, we obtain

b
()= [ lgdt=r"—r

(¢) Let us show that if 7 is a piecewise C'! path connecting the points o0 and x = (r, ),
then

ly (v) >
Fix any " € (0,7). Then ~ interests the sphere S, = {y € R": |y| = '}, say, at a
point z’. By (b), the length of a part of v between 2’ and x is > r — r/, which implies
bg (v) > r —1.

Since 7’ is arbitrary, it follows that (g () > r and, hence, d (0, x) > 7.

On the other hand, the path « (t) = (¢r,0) defined for ¢ € [0, 1], connects o and z, and
it is easy to see that {g () = r. Hence, d (0, ) = r, which was to be proved.

(d) In R™, the above argument proves that d (0, z) = |z|. Since the origin o of the polar
coordinates in R™ may be at any point, setting it to y we obtain that d (z,y) = |z — y|.
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42. Let v (t) : (a,b) — M be a parametric C' curve on a Riemannian manifold (M, g).

(a) Consider a time change 7 : (o, ) — (a,b) where the function 7 is bijective and

C! smooth. Then 7 determines a new parametric curve
7 (a,
T (s)=7((s))-

Prove that (g (7) = {5 (7).

Remark. This identity means that the length of the parametric curve does not

depend on a specific parametrization.

(b) Assume in addition that 7 is C' smooth, injective, ¥ (t) # 0 for all ¢t € (a,b)

and that v is a homeomorphism of (a,b) onto the image S = ~y (a.b). Then, by
Exercise 5, S is a submanifold of dimension 1. Let vg be the induced metric on

S. Prove that
lg (7) = vs(9).

Hint. Write down the induced metric gg using the local coordinate t on S.

Solution. (a) We have

d : dr

SHE) =)

and 5 ;
) = [ e |E b

Since 7 is bijective and C', it must be either monotone increasing or monotone de-
9

creasing, that is, either 7/ > 0 on («, 3) or 7/ < 0 on (v, 3). Indeed, assume from the
contrary that 7/ (s;) < 0 and 7/ (s3) > 0. Suppose s; < sa. Let sg € [s1,52] be the
point of minimum of 7 on [sq, s5]. Then the function 7 on [s, s¢] takes all the values

from 7 (sg) to 7 (s1), and on the interval [sg, 5] it takes all values from 7 (s¢) to 7 (s2).

Hence, some value 7 (sg) + ¢ is taken twice, which contradicts the hypothesis that 7 is

bijective.

Suppose that 7 is monotone increasing. Then necessarily 7 (a) = a and 7 () = b, and

we obtain by change t = 7 (s) that

B . b
@)= [ e s = [ ol =t0),

which was to be proved.

(b) By a formula from lectures, if z',...,z™ are local coordinates on M and y',...,y
are local coordinates on submanifold S then the induced metric gg is given by

_ Oahod
(gS)ij = gkla_yia_yj

where 7,7 = 1,...,m and 2° (y!, ..., y™) is the coordinate in M of the point y!,...,4™ on

S.
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43.

In our case m = 1, y* =t and 2% (t) = 7* () . Hence,

(98)1, = gy = |'7|2'

dvs = \/det gsdt = || dt

It follows that

and )
vs(8) = [ hlgdt =t ).
which was to be proved.

Let I be an open interval in R and S be a surface of revolution in R"*! around I that
is given by the equation

|LL‘,‘ — (p(az”“), vt c L
where 7’ = (2!, ...,2™) and ¢(t) is a smooth

positive function on I.

Here is an example of a surface of revolution:

(a) Prove that S is a submanifold of R"! of dimension n.

(b) Let us introduce on S the prepolar coordinates (t,6) as follows: for any point
(2, 2"t1) € S, set

/
T

t:ZL'TH—IEI and szegn_l‘
X

Prove that in the coordinates (¢, ) the induced metric gg := ggn+1|g has the form
gs = (L+¢ (t)°) dt? + ¢* (1) gon-r.

Hint. Express all 2° in terms of ¢ and the Cartesian coordinates f* () of 6.

(c) Define the polar coordinates (r,0) on S as follows: 6 is as above, while r = r(¢) is

defined by t
r= [ Ve @ (34)

where % is any fixed point from I. Prove that the metric gg has in the coordinates
(r,0) the model form

gs = dr’ +¢* (r) ggn1, (35)
where the function ¢ is defined by the identity ¢ (r(t)) = ¢ ().
Hint. Use (30) to express dr via dt.

Remark. The manifold (5, gg) is called a cylindrical model, which refers the fact
that S is homeomorphic to a cylinder I x S"~! (rather than to a ball).

(d) Represent in the model form (31) the induced metric of the cone
Cone = {x cR"™:|2/| = ax"t + B, 2" > O} ,

where a > 0 and 3 > 0.
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Solution. (a) The set S is given as a subset of R"*! by the equation F' (z) = 0, where
F(z)=|2]" = ¢° (z"h) e C*.
Clearly, we have
oF
ox?
Since ¢ > 0 on I, it follows that on S we have |2/| > 0 and, hence, at least one of the
gfi does not vanish. It follows that dF' # 0 on S and, hence, S is a

submanifold.

(b) Let the Cartesian coordinates in R™ of a point § € S*™! be f1(0),..., f* (). For
any point (¢,0) € S, we have

=216 = (t)0,
which implies that the Cartesian coordinates of (¢, 6) are as follows:

=) f0),i=1..n
=y

Therefore, the metric gg is given by
gs = an+1|5 = (dx1)2 + o (™) + (ala:"“)2
= Z d(y ? + dt?
i=1
= Z [ )2 dt? + pdt (fidf') + (Fldf?) p'dt + (dfi)z] + dt?.

Using that

n

ST() =oF=1

=1
> fdff=0
1=1

and
n

S (Af7)” = gens

=1

(see lectures), we obtain that
gS:(1+( ))dt +(pggnl.
(¢) The change r = fti 1+ ¢ (5)2d§ obviously implies
er:( +(¢) )dt2
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whence

gs = dr’ + ¢” () gen1 = dr + 9% (1) gon1,
where 1 is defined by ¢ (1) = ¢ (t).
(d) For the cone we have ¢ (t) = at + (f on I = (0,00) and

r:/t\/lJr(go’({))zdf:/tmdgzmt

and, hence,

It follows that
Econe = dTQ + (

. * The purpose of this question is to compute the induced metric gg on surfaces of
revolution given in parametric form.

(a) Assume that a surface of revolution S in R"*! is given by the parametric equations
2" =a(s) and |2/|=0b(s),

where a, b are smooth functions of s on some interval and a(s) > 0. Prove that
the polar radius r on S (see (30)) can be computed as a function of s by

1= [ Vw©rweore

and the function ¢ in (31) is determined by the equation ¢ (r(s)) = b (s) .
(b) The pseudo-sphere PS in R™*! is given by the parametric equations

1
cosh s’

2" = s —tanhs and |2| =

s> 0.

Prove that the induced metric on P.S has in the polar coordinates the form

gps = dr? 4+ e "ggn 1.

0.0
0.0 0.5 1.0 X

A tractriv v = 5, y = s — tanhs A pseudosphere in R3

Remark. The pseudo-sphere is the surface of revolution of a tractriz.
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Solution. (b) The surface S is represented in the form

|ZE,| =0 (In—&-l)

where ¢ (t) = b (a™! (t)) (the condition a’ > 0 ensures that ! exists). Making change

t = a(s), we obtain

b/ S )
1 dt 1 ! + (V' (s))7ds.
+ / + ) / \/a (s))"ds
=0

The function 9 (t) is defined by condition 1) (r = b(a"t(t)) = b(s), which

finishes the proof
(¢) For PS, we have
a(s) =s—tanhs

1
coshs’

b(s) =
Note that the function a (s) has the derivative

1 B sinh? s

cosh?s  cosh®s

a' = (s—tanhs) =1 — = tanh®s > 0.

Using also

Y 1 /_ sinhs  tanhs
~ \coshs)  cosh’s  coshs’

we obtain

s t h2 s 1 : h2
r:/ an28—|—tanh4sds:/ tan25( 5 + 2= 28>ds
0 cosh” s 0 cosh®s  cosh”s

= / tanh sds = In cosh s.
0

The function v is determined by

Y (r) =0b(s) = =e

cosh s

where 7 € (0,00). Hence, the metric of PSS in the polar coordinates is

gpsg = dr* + e ggn 1.

45. * Let a surface S in R? be given in a parametric form as follows:

S={zeR:z=20(y), ye U},
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where U is an open subset R3

of R2and ®: U - R3is a » )

smooth injective mapping. U

Assume that the Jacobi

matrix J of ® has rank 2 i X
R2

v
v

at all points.

X1

Assume also that ® is a homeomorphism of U onto S. Then by Exercise 5 S is a
2-dimensional submanifold of R3.

Let the components of ® be ®, i = 1,2, 3. Denoting by !, y? the Cartesian coordinates
in U, consider at any point of U the following two 3-dimensional vectors:

. [0 092 093 . [o2 892 0993
U = (ay178y178y1) and V= <8y27ay273y2>'

(a) Prove that the induced metric gg = grn|s is given in the local coordinates !, 3>

by the matrix
(u-u u-v
5=\ u-v v

where “” denotes the scalar product of vectors in R3. Prove also that
det gg = |u x v|?, (36)

where “x”denotes the cross product of vectors in R3.

(b) Using (32), compute the induced measure vg for the surface S that is given by
the parametric equations

' =sinpcosf, 2* =sinpsind, 2> = cosy,
where ¢ € (0,7) and 0 € (—m, 7).

Solution. (a) Let z',z% x3 be the Cartesian coordinates in R®. Then the relation
between 2 and y’ are given by

a' =0y, yY).

The Jacobi matrix of the change of coordinates coincides with the Jacobi matrix of ®:

sl 9s! oe! B!
oyl  oy? oyl  0y?
g | a2 e | | be2 o2
- oyl 0y - oyl oy?
or3 o’ SRS
oyl  oy? oyl  0y?

Since gr» = id, we have by a lemma from lectures that the matrix g of gg is given by

g=J gend = JJ.
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Since

and, hence,

J' =

Ty _ u T T\ _ u-u uU-vU
g=1J J—(U)(u U)_<u-v v-v)'

detg = (u-u)(v-v) — (u-v)>.

we obtain

It follows that

Denoting u = (u1, ug, u3) and v = (vq, v2, v3), we obtain

2,2 0 2\ (12 2 2 2
detg = (uj+u+u3) (v + v +v5) — (wvy + ugvs + ugvs)
2 2 2
(U1U2 — U2U1) + (Ug’Ul — U1U3) + (U2U3 — U3122)
2
= |ux v
because
u X v = ((ugv3 — ugve), (uzvy —urv3), (Ugvy — Ugvy)).
(b) Since
' =sinpcosf, x®=sinpsinf, 2= cosy,
we have
_ 9zt 9x2 923\ _ . .
u = (W’ P %> = (cos @ cos b, cos psinf, —sin )
and
. [0zt 922 923\ _ : : :
vi= (W? S W) = (—sin psin 6, sin p cos d,0)
whence
UXV= (cos 6 sin? p, sin @ sin? o, (COS2 0 + sin® 9) Cos  sin gp)
= (cos 6 sin? p, sin O sin? v, cos @ sin cp)
and
2 . . . .
det gg = |u x v|* = cos® @ sin® p + sin? § sin* ¢ + cos® psin® p
= sin® p + cos? psin? ¢
= sin” .
Hence,

dvs = +/det gs dp df = sin o dy db.
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46 ** Prove that, fOI' any n > ]_,

where w, is the surface area of S*~! and I is the gamma function.

s
In:/ sin” rdr
0

and, using integration by parts, prove that

Hint. Consider the integrals

In:n—l

I, ».
By induction obtain that

T+ /)
b=V v 2 2

Then prove (33) by means of the inductive relation w,, 1 = w, I, from lectures.

Remark. The gamma function is defined for all x > 0 by

[ (z) :/ t" e L.
0

It is known that I' (z) = (z — 1)! for a positive integer z. The following identities are
satisfied for all x > —1:

F(x+1)=2al(z), T'(1)=1and ['(1/2) = /7.
Solution. Let us first evaluate the integral

™
1A
In:/ sin” rdr,
0

where n is a non-negative integer. Assuming n > 2 and integrating by parts as
sin” ! rd cos r, we obtain

I, = —/ sin” !'rdcosr
0
= — [sin" "' r cos r]g +(n—1) / cos® rsin™ % rdr
0
=(n—1) / (1 —sin®r) sin"?rdr
0
=mn—-1)I,2—(n—1)1,,

whence

Let us prove by induction that, for all n > 0,

VA ((n+1)/2)
I'((n+2)/2)

I
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For n = 0 we have [y = m, which matches the right hand side of (35) because I' (1/2) =
vmand I' (1) = 1. For n = 1 we have I; = 2, which again matches the right hand side
of (35) because I' (3/2) = 1/m. For n > 2 we obtain, using the inductive hypothesis
for 1,5, (34), and the identity 2I'(z) =I' (2 + 1), that

n—1 T (n-1)/2)

-  T(n+1)/2)
b= VTt V(w12 2

which proves (35).

Combining (35) with w, 11 = w,I,_1, we obtain, for all n > 1,

VAl (n/2)

Wnal = Wp—=——————~ (40)

I'((n+1)/2)

which easily implies (33) by induction in n. Sometimes the following consequence of
(??) is useful:

2
Wpto = Wp—.
n
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47. Denote by o, the canonical Riemannian measure on the sphere S™ and by 7, the
canonical Riemannian measure on the hyperbolic space H".

(a) Let (p,0) be the polar coordinates on S?, where ¢ € (0, 7) is the polar radius

and 6 € (0,27) is the polar angle.
Compute o3(A) for the following
subset A of S%

A={(p,0):0<p<a, 0<6<f},

where a € (0,7) and 3 € (0,27) are given.

(b) Let (r,p,0) the spherical coordinates on S®, where r € (0,7) is the polar radius
and (p,0) are the polar coordinates on S* as in (a). Compute o3(B) for the
following subset B of S

B={(r,p,0):0<r<R, 0<p<a, 0<60<p},
and 0 < R<m, a€(0,7), 5 € (0,2m) are given.

(c) Let (r,8) be the polar coordinates in H?. Compute n,(C') for the following subset
C of H%:
C={(r0):0<r<R, 0<8<p},

where R > 0 and (3 € (0,27) are given.

(d) Let (r,¢,0) be the spherical coordinates on H?, where r > 0 is the polar radius
and (p,0) are the polar coordinates on S* as in (a). Compute n4(D) for the
following subset D of H?:

D={(r,p,0):0<r <R, 0<p<a, 0<0<p},
where R > 0, a € (0,7), 5 € (0,27) are given.

Solution. Let (M,g) be an n-dimensional model manifold with a profile function
W(r), that is,
g — d?“2 + wQ(T>gSnfl. (41)

Recall that the Riemannian measure v in (M, g) is given by

dv =" (r)dr do,_,, (42)
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where o,_; is the Riemannian measure on S**.

Since on S™ we have ¢ (r) = sinr, it follows from (19) that
do,, = sin" trdrdo,_;

In the case n = 1, using an angle # on S!, we have

2
go = dO?, doy =df, Ag = 8_

i (43)

In H" we have v (r) = sinh r whence

dn,, = sinh" ' rdrdo,_;.

(a) On S? we obtain in the polar coordinates (¢, 6)

doy = sin pdp doy = sin pdp df

UQ(A):/AdaQ:/OB (/Oasingpdgo) d9 = (1 — cosa) .

(b) On S* we obtain the spherical coordinates (r, ¢, 0)

We have

dos = sin® r dr doy = sin® r sin pdrdpdd.

o3(B) = /Adag = /OB (/Oa (/OR sin? rdr) sincpdcp) do

= i (2R —sin2R) (1 — cos a) .

We have

¢) In H? we have
(c)
dn, = sinhrdr doy = sinh r dr df,

8/ (R
ny(C) = /Aan = /o (/0 sinhrdr) df = (cosh R — 1) 3.

(d) In H? we have

whence

dns = sinh? 7 dr doy = sinh? r sin @ dr dy df

B a R
174(D):/dn3:/ / (/ sinhQTdr> sin @ dp db
A o Jo 0
1

=1 (sinh2R — 2R) (1 — cos @) f3.

whence
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48. Let (M, g) be a Riemannian manifold. A smooth function w in an open set Q C M is
called harmonic in € if Agu = 0 in Q. Suppose that M is a model manifold of radius
ro with the area function S (7). A function w in M \ {0} is called radial if it depends
only on the polar radius  (and does not depend on the polar angle 6).

(a) Prove that a smooth radial function u in M \ {o}is harmonic if and only if

Todt
u(r) = Cy / e, (44)

S (t)
where C, Cy are arbitrary real constants and r; € (0,7¢) is arbitrary.
Hint. Use the representation of the Laplace-Beltrami operator Ay in polar coor-
dinates using the area function.

(b) With help of (38) find all radial harmonic functions in R", §" H" for n = 2, 3.

Solution. (a) Recall that

> 50 1
Ng=—=+ =+ —5—Agn1. 4
Bl Or2 * S or * Y2 (r) s (45)

Since u does not depend on the polar angle, we obtain Ag.—1u = 0 and the equation
Ag ,u = 0 becomes

S/
u’ + U= 0
This equation equivalent to
(Su') =0,
that is, to
S’LL, = 01
u o= G
<

Fix some r; € (0,79) and consider the function

"odt
v(r):C'l/T1 S0}

Then v/ = £, and we obtain that u/ = v/, whence

S7
u—v=Cs,
that is,
u(r)—C’/Ti—I—C (46)
s

(b) In R™ we have S (r) = w,r"! and (40) yields

Inr, in R
r~!, in R3,

um:@+q{
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49.

where we have used that

d
a =lnr+C
-

and p )
Z- 10
r r

1

Since in S™ we have S (1) = w, sin" " r, we obtain from (40)

Intan 3, in s?,

um:@+q{

cotr, in S3,
where we have used that
dr r
- =Intan -+ C
sinr 2
and p
,
/ —— = —cotr +C
sin®r

Similarly, using that

/ dr zlntanhg +C

sinh r
and p
,
——5— = —cothr + C,|
/ sinh? r
we obtain

Intanh 5, in H?2,
cothr, in H3.

u (7“ ) = 02 + Cl {
Everywhere the value r; is absorbed into Cj.

(Continuation of Exercises 5 and 5). A catenoid Clat is a surface in R? that is given
by the parametric equations

' =coshpcosf, x°=coshpsing, z°=p,

where p € R and 0 € (—m, 7).

(a) Write down the Laplace-Beltrami operator Ag

on Clat in the coordinates p, 6.

(b) Considering the Cartesian coordinates z!, 2, z*

as functions on the catenoid, prove that they are

harmonic, that is,

Agr! = Aga? = Ngz® = 0.

Catenoid

Hint. Use the Riemannian metric on Cat stated in Exercise 5.
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50.

Solution. The Riemannian metric on Clat has in the coordinates p, 6 the form
g = cosh? p (alp2 + d92) :

(a) Tt follows from that

\/det g = cosh? p

1
(99) =gt ={ =3 v
cosh? p

1 0 ( — .0
p— ZJ_
Be detg@yi( detgg 3yj)

and

Using that

with y! = p, y?> = 0, we obtain
1 0? 0?
A, = A
& cosh?p (8/)2 892)

(b) Since x' = cosh pcos ), it follows by (a) that

Agr' = ——— (cosh pcos @ — cosh pcos ) = 0.

cosh” p

In the same way, for 2% = cosh psin 6, we obtain

Agn® = cosh? (cosh psin — cosh psinf) =0

and for 3 = p we obtain Aga® = Agp = 0.

A non-zero smooth function v on a Riemannian manifold (M,g) is called an eigen-
function of the Laplace-Beltrami operator Ag if, for some constant A,

Agv + v =0,

where the constant A is called an eigenvalue of Ag. The multiplicity of the eigenvalue
A is defined as the dimension of the eigenspace

Ey={veC™®(M): Agv+ Iv=0}.

Prove that all the eigenvalues of the Laplace-Beltrami operator Ag: on the unit circle
St are given by the sequence {mQ}f;:O, where the eigenvalue 0 has the multiplicity 1,
and each eigenvalue m? with m > 1 has the multiplicity 2.

Hint. Write down the equation Agiv + Av = 0 using the angle § € (—m,7) as a local
coordinate on S!, and find solutions v (#) that are 27-periodic in 6.

Solution. (a) Using the polar angle # € (—7,7) on S', we have gg1 = df* (see Exercise

5) and Agt = % (cf. solution of Exercise 5(f)vO). The eigenvalue problem becomes

d2
d—(;; =0, (47)
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where v is any smooth function on S* (we know that any eigenfunction must be smooth,
while any smooth function on a compact manifold belongs to D and, hence, to W).
Since v (A) has to be defined and smooth not only on the interval (—m,7) but on the
entire S', the function v (#) must be 27-periodic, in particular, it must satisfy

v(—m)=v(r) and v (—7) =" (7). (48)

If A = 0 then we obtain a solution v = C16 + C5 of (??) that satisfies (??) only if
C7 = 0. Hence, A = 0 is an eigenvalue with the eigenfunction v = const.

Assume A > 0. Then all solutions of (??) are given by
v = (] cos <\/X9) + (5 8in (\/X@) ,
where C1, Cy are arbitrary constants. The boundary conditions (7?) become
C cos (\/Xﬂ'> — (5 sin (\/Xﬂ'> = (' cos (\/Xﬂ'> + (5 sin (\/Xw>
and
—C1V A sin <\/X7T> + Cyv/ A cos <\/X7r> = 1V \sin <\/X7T> + Cyv/ A cos <\/X7r>
that are equivalent to
sin <\/X7T> =0

(because either Cy or Cy must be non-zero). The latter condition is satisfied if and only
if VA = m where m is a positive integer. Hence, we obtain that the sequence of the
eigenvalues of S is given by {m?},~_,. The eigenvalue 0 is simple with the eigenfunction
v = const, while m? with m > 1 is double, with independent eigenfunctions cos mf
and sin m#@.

51. * Consider in H? a function u given in the polar coordinates (r,6) by

r

U= — )
sinh r

(a) Prove that, away from the pole of H?, the function u satisfies the equation
Apsu+u = 0. (49)

Hint. Use the representation of Ags in the polar coordinates.

(b) Prove that the function u extends to a smooth function on the entire space H?
and, hence, satisfies (41) on H?®.

Hint. Show first that the function v = r? is a smooth function on H? (as well as
on any model manifold). Then represent u as a smooth function of 72.

Solution. (a) Let (r,0) be the polar coordinates in H?, where r > 0 is the polar radius
and 0 € S?. Then we have
0? 0 1

Apgs = — + 2cothr— +

———Ag2.
or? Or  sinh?r s
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52.

Since the function v depends only on r, we obtain
Agsu = u" + 2 (cothr)u'.

A direct computation yields

r ! 1 .
<sinh r> e (sinh7 — rcoshr)
r " 1 .
(sinhr) = Semie (3r — 2sinh 2r 4 r cosh 2r) |
whence
1
u" + 2 (cothr) ' = ———— (3r — 2sinh 27 + r cosh 2r)
2sinh” r
coshr 1

——————— (sinh7 — rcoshr)
sinh 7 sinh? r
r

sinhr’
that is, v’ 4 2 (cothr) v’ = —u, whence (41) follows.
(b) As a model manifold, H? can be identified with R? with the metric

gin = dr? + sinh? rggn
where (r,6) are the polar coordinates not only in H? but also in R?. In R3 the function
r? = (x1)2 + (:1:'2)2 + (:133)2

is clearly C°°, whence the same follows for H? (and in the same way for any other
model manifold).

We have
- el — T +T3+T5+
sinhr=——=7r+ — + — 4+ ...
2 3! 5l
whence
T 1

U= — = :
sinh r 1+§+%+...

Obviously, the right hand side is a smooth function of 72, which implies that u is a
smooth function on the entire H?.

* Consider the Riemannian manifold (M, g), where
M =R} = {(a:l,...,x”) eR": 2" > O}

and

(da')* + .. + (")

(an)*

g:

Consider on R”} the following function
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where s is any real parameter. Prove that Agu = Au, where A =s(s —n+1).

Solution. For the Laplace-Beltrami operator we have

1 0 0
e — 1)
= may(vdeﬁgy axa')'

Here

(gij )=

which implies

and

Hence,

For u (z) = (z")° we obtain

n O m2-n Ou
Agu = (") %((ﬁ )2 %)

which was to be proved.

** A function P : RY — R is called a polynomial if P (z) is a finite R-linear combination
of the monomials z1" ... where m, ..., my are non-negative integers. The sum m;+
... + my is called the degree of the monomial. A polynomial P is called homogeneous
of degree m if all non-zero monomials of P have the same degree m.

(a) Let P be a homogeneous polynomial of degree m on R"*! where m is a non-
negative integer. Assume that P is harmonic, that is, P satisfies the equation

Agnt1P =0 in R

Prove that the function v = Pls» is an eigenfunction of the Laplace-Beltrami
operator Agr with the eigenvalue A = m (m +n — 1), that is,

Agnv + v =0 in S".
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Hint. Use the identity P (z) = o™P (£) for all & € R\ {0} and all z € R"*! that
follows from the homogeneity of P, and represent Ag»+1 in the polar coordinates.

(b) Prove that a polynomial in R?
P (55) = 0133?%2903 + 02331963373 + nglxgxg

is harmonic for some non-zero coefficients C}, Cs, C5. Hence, prove that A = 30 is
an eigenvalue of the Laplace-Beltrami operator Age.
Remark. 1t is possible to prove that all the eigenvalues of Agn are given by the
sequence {m (m +n—1)}>_. and the eigenvalue m (m + n — 1) has the multi-
plicity
(n+m—2)(n+2m—1)
(n—1)lm!

ifm>1,and 1 if m = 0.

Solution. (a) Let (r,0) be the polar coordinates on R"*!. For any x = (r,0) we have
by the homogeneity of P that

Xz

P(z) = r"P ( ) — P (0) = 1™ (6).

r

By the formula for the Laplace operator in R**! in the polar coordinates, we have

0’P noP 1
A n P = - e _A nP.
Rt 8r2+rﬁr+r2 S
Since Agn+1 P = 0, we obtain that in R™™!\ {0}
PP noP 1
—+——— + —AxwP =0.
or? + r Or * r2=S

Substituting here P = r™v (), we obtain

m(m —1)r" v () + D=1y (0) + %TmASnU (0)=0
r r

whence after cancelling by ™2

—Agnv = (m(m — 1)+ nm)v = .

Hence, )\ is an eigenvalue of Ag» with the eigenfunction v, which was to be proved.
(b) We have

2 2 2
Aps (x?xng) = ( 0 0 0

@) " (02 (07

) (x?@xg) = 6212273,

whence it follows that
AR3P = (601 + 602 + 603) T1X2X3.

Choosing €y = (5 = 1 and C5 = —2, we obtain Ags P = 0. Hence, P is a harmonic
homogeneous polynomial of degree m = 5. Therefore, by (a), Asz has an eigenvalue
A=m(m+n—-1)=5-(5+2—-1)=30.
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54.

99.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 10. Abgabe bis 09.01.2026

Die mit *markierten Aufgaben sind zusétzlich und werden korrigiert
Die mit **markierten Aufgaben sind zusétzlich und werden nicht korrigiert.

Let (M,g) be a Riemannian manifold of dimension n. Let F': M — R be a smooth
function on M such that F is non-singular! on the null set S = {x € M : F (z) =0}.
In particular, S is a submanifold of dimension n — 1.

(a) Prove that, at any point p € S, the gradient VF' (p) is orthogonal to 7,,S in the
tangent space 1, M.

Hint. Use Exercise 5.
(b) Consider the set
Q:={zeM:F(x)<0} (50)
and prove that S = 9.

Remark. An open set Q C M is called a region if it can be represented in the
form (42), where F' is a smooth function on M that is non-singular on its null set.

Solution. (a) Since 7S C T,M and VF (p) € T,M, we need to prove that, for any
§ € T,S,
(VF,€), =0

that is,
(dF,€) = 0.

The latter holds by Exercise 5. Or, we have
(dF.§) =& (F) =& (Fls) = £(0) =0.

(b) By definition, the condition € 99 holds if in any neighborhood of z there are
points from €2 and Q°. If x € 91 then in any neighborhood of x there are points where
F <0 and F > 0, which implies by continuity that F' () =0 and « € S. Conversely,
let € S that is, F'(x) = 0. Then we need to verify that in any neighborhood of z
there are points with F' < 0. If this is not the case then in some neighborhood of =
we have F' > 0, which implies that x is a point of local minimum of F, which implies
dF (z) = 0. However, this contradicts to the fact that dF is non-singular on S.

Let H be the semi-hyperbola
H={(z1,20) ER*: 25—z} =1, 35>0}.
For any s > 0, consider the following subset of H:

Hy={(z1,29) e H: 0 <11 < s}.

'Recall that F' is non-singular on a set S if dF () # 0 at any point z € S.
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Let v be the Riemannian measure of (H,gy), where gy is the hyperbolic metric on

H. Prove that
v(Hs) =1In (s+ Vs?+ 1) .

Remark. Note that the function In (8 + Vs + 1) is the inverse to sinh.

Hint. Use the chart on H with the coordinate y from Exercise 5.

Solution. By Exercise 5 and (18), there is a chart on H with the coordinate y € (—1,1)
such that, for the point (z1,x9) € H,

2y 1+y?
= — €To =
1_y27 2

x

Besides the hyperbolic metric on H is given by
Ay
(1—y?)°

The condition {0 < z; < s} is equivalent to

gy =

2
0< i 5 <,
L—y
which is equivalent to
O<y<r
where r is determined by the equation
2r
s = .
1—1r2

Solving this equation in r, we obtain

V14+s2 -1

S

Since det g = ﬁ, we obtain

2 J _lnl—i-r

V(HS)Z/ \/detngyZ/ T =h—.
0 0 Y L—r

Note that

L+r  s—1++1+s?

l—r  s+1—1+s?
Set u = s + /1 + s2 and observe that

1
—=V14+s2—35

u

because

<&+V1+§>(¢L+§—s>:(1+s%—62zl
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Hence,

whence it follows that

v(H) =Inu=1n(s+VI+s).

56. For any two-dimensional Riemannian manifold (M, g), the Gauss curvature Kg () is
defined in a certain way as a function on M. It is known that if the metric g has in
coordinates ', 2% the form

dz') + (dz?)”
f? (@)
where f is a smooth positive function, then the Gauss curvature can be computed in
this chart as follows

Ky = f*Aln f, (52)

where A = % + % is the Euclidean two-dimensional Laplace operator in the
coordinates z!, z2.

(a) Compute the Gauss curvature of R? and the catenoid Cat (see Exercise 5).

(b) Let (M, g) be a two-dimensional model manifold with the profile function v, so
that in the polar coordinates (r, )

g =dr® +¢*(r) db®. (53)
Prove that o ()
,
Ky = — . o4
== 700 o
Hint. Find other coordinates (p,#) on M where the metric (45) has the form
_ dp? +dp?
)

and then use (44).

(c) Using (46), compute the Gauss curvature of the sphere S?, the hyperbolic plane
H?, and the two-dimensional pseudosphere PS from Exercise 5(f)vJ.

Solution. (a) The metric of R is given by (43) with f = 1 whence
Kgn = 0.
The metric of Cat in Exercise 5 is given by
ECat = cosh? p (dp2 + d@z)

which matches (43) with
1

coshp’

fp)=
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. 2 2
Since A = f?_p? + %7 we have

1 1
Aln f = (In ) = sinh?p —1=—
f=]) cosh? p P cosh? p
whence ]
Kog = [PAln f = — )
Cat f f COSh4 P

(b) Let us change the variable
dr

S I

so that dp = %. Since dp = ﬁdr and, hence, dr? = ¢? (1) dp?®, the metric g has in
the coordinates p, 6 the form

g = v* (r) (dp* + db?),

which matches (43) with f (p) = ﬁ (hence, ' = p, #* = ). Since in this case

A = g—; - 5—622 and 1 does not depend on 6, we obtain by (44)
1 d?
Kg = —?d—pQ In 1/)
We have p 1 drd
—Int) = ldrdy =
dp Wdp dr
and » p p
_1 - / — _T " — "
= v = T =
whence Y ,
g WV
(G (G

(¢) Since in S?
g = dr? + sin’ r d6?

then (s )”
sinr
Kgp = —— =1.
sinr
Since in H?
g = dr? + sinh® r d#?,
we have ,
K (sinhr) )
HZ2 — ———V——  — .
sinh r
Since on PS
.2 —2r 112
g =dr"+e db”,
we obtain .
e— T
Kps = —(6—2,,) =—4
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57.

98.

Let g be the metric (43) on a two-dimensional manifold M. Consider the metric
g = h—12 g where h is a smooth positive function on M. Prove that

Kz = (Kg + Aglog h) h?,

where Ag is the Laplace-Beltrami operator of the metric g.

Solution. (a) Let us write down the Laplace operator Ag in the coordinates z!, z?
using the fact that the matrix g = (g;;) of the metric g has the form

(70
g_( 0 f—2)‘
2
g_lz(f(l) ]92)7
we obtain

1 0 0 1 0 0
A — 9 (i S 22 9
& det g 0z ( det g9 (9901) * V/det g 0z? ( det g9 8x2)
2

Since det g = f~* and

0 0?
_ 42 L of2
Py Gy

= f?A,

that is
Ag = 2A.
Since ) )
5 (dzh)” + (da?)

(fh)®

the formula (44) gives for this metric

Kug = (fh)>Aln(fh) =0 (fAln f + f2PAInh) = h* (Kug + Aglnh),
which was to be proved.
(b)

* Let g, g be two Riemannian metric tensors on a smooth n-dimensional manifold M.
Assume that, for some constant C,

g < Cg, (55)
that is, for all x € M and ¢ € T, M,
g(7)(£¢) < Cg(x)(§¢). (56)
(a) Prove that if v and v are the Riemannian measures of g and g, respectively, then
dv
= < on?
dv —
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(b) Prove that, for any smooth function f on M,
2 2
VIl < CIVSlg.

Hint. Fix zp € M and consider T,,M as a Euclidean space with the inner product g.

Since g is a symmetric bilinear form in this space, there exists a g-orthonormal basis

{e1,...,e,} in T, ;M in which g has a diagonal form, that is, (g;;) = diag {ou, ..., a,}

with some reals o;. By a linear change of coordinates in a neighborhood of zg, you can

assume that -2 = e;. For (a) note also that, by Exercise 5, the ratio jﬁig—(wo) does not
g9(zo)

depend on the choice of local coordinates.

Solution. (a) Since in any chart

dv = +/det gdA, (57)

where A is the Lebesgue measure in this chart, it suffices to verify that, for any z¢o € M,

det g (o) <

oGy SO (58)

By Exercise 5, this ratio does not depend on the choice of the local coordinates. Fix a
point xy € M and choose an orthonormal basis e = {ey, ...,e,} in T, M with respect
to the inner product (,)g where the quadratic form g (x) is diagonal, say g; = a; and
gi; = 0if ¢ # j. By linear change of coordinates in a neighborhood of z, we can always
assume that % =e;.

Then we have in the basis { 8‘21.}

det g (zg) = 1 and det g (xg) = M.\,
On the other hand, by (48)
Ni = Gii = (i, ei)g < Cles,ei)g = Cgiy = C,
whence
det g (zg) < C" = C"det g (xo),

which proves (50).

(b) It follows from (47) that

g'l>0C"g,
where g~! is the metric tensor on covectors, whose matrix in the local coordinates is
(9"). Indeed, in the basis {2 } as in part (a), the matrix of g~ is the identity matrix,
while that of g~! is the diagonal matrix with the diagonal entries o; ' > C~!, whence
the claim follows. Using the identity

<Vf, Vh>g = <df> dh’)g_17 (59)

we obtain
IVfI2 = (df.df)g1 < Cdf.df )z = C |V ]2,
which finishes the proof.
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59. * Consider two Riemannian manifolds (X, gx) and (Y, gy ). Let us define a Riemannian
metric tensor g on the product manifold M = X x Y as follows

g =gx + ¢’ (z)gy, (60)

where 1 is a smooth positive function on X. The Riemannian manifold (M, g) with
this metric is called a warped product of (X, gx) and (Y, gy ) with profile 1.

(a) Prove that the Riemannian measure vg of the metric (51) is given by
dvg = Y™ (z) dvxdvy, (61)
where vy and vy are the Riemannian measures of (X, gx) and (Y, gy), respec-

tively, and m = dim Y.

(b) Prove that the Laplace-Beltrami operator Ag of the metric (51) is given by

1
v?(x)
where Vx is gradient on X and Ay, Ay are the Laplace-Beltrami operators on
X and Y, respectively.

Agf = AXf+m(VX 1n¢,va>gX + Ayf, (62)

Solution. Fix a chart U on X with coordinates z', ..., 2" and a chart V on Y with co-
ordinates y', ..., y™. Then U xV is the chart on M with coordinates z!, ..., 2", y*, ..., y™.
The matrix of the metric g in this chart has the form

gx () 0

g(w.y) = (63)
0 v* ()| gv ()

where gx and gy are the matrices of gx and gy in U and V, respectively.
(a) It follows from (52) that

det g (x,y) = ¢*"(x) det gx (x) det gy (y) -

Denoting by dx and dy the Lebesgue measures on U and V', respectively, we obtain
dvg = \/det gdady = ™ () /det gx (x)dz+/det gy (y)dy = ™ () dvxdvy.

(b) It also follows from (52) that

0 ¢ % (z)| g
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that is

ou
_ 1|27
Vol =g |5
where [-] denotes a column-vector and the right hand side is the product of the matrix
g~ ! with the column-vector.

Using (?77), we see that the gradient V, for the metric (51) is given by the column-

vector v
_ xXu
[VgU] = |: w_szU, 1 .

Ux

Consider a vector field v = [
Vy

} on M. By the definition of divergence

dive = ! i (\/M’UZ) : (66)
we obtain the following formula for the divergence div on M
div v = ! divy (@Z)m (x) \/MUX>
+ ! divy (wm (x) \/MUY)

== diVX Vx + —m<V)(¢m, Ux> + diVy Vy.

(8
Finally, applying this to v = Vgu we obtain
1
Ay = divVu = divy (Vxu) + ) (Vx™ Vxu) + divy (¥ 2 (z) Vyu)
1
= Axu+ (VX 1n¢m,vXU>+ Ayu.
V* (x)

“* Let X,Y be smooth manifolds of the same dimension n and let ® : ¥ — X be a
diffecomorphism. Let S be a submanifold of Y, and set R = ®(.5).

(a) Prove that R is a submanifold of X and that ¥ := ®|g is a diffeomorphism of S
onto R.

(b) Prove that, for any y € 5,
dD|r, s = dv

(that is, for any & € TS, we have d®¢ = dW¢).

(c) Let g(x) be a bilinear form on any space T, X (for example, a Riemannian metric)
and consider the induced form gr := g|g. Prove that

(©.8)s = V. (8R)-

(d) Prove that if X and Y are Riemannian manifolds and ® is a Riemannian isometry
of Y and X then V¥ is a Riemannian isometry of the Riemannian manifolds S and
R with the induced metrics.
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Solution. (a) Let dimS = m. Let (U, ) be a chart in a neighborhood of a point
p € S with coordinates y', ..., y" where

SﬂU:{yEU:ymH:...:y":O}.
Set V =¢(U) CR", W =®(U) C X and consider the mapping
Yi=po® W =V

that is a diffeomorphism. Hence, (W, %) is a chart in X, denote the coordinates in this

n

chart (that come from V) by 2!, ..., 2"
Any point y € U has the image ¢(y) in V, and the point x = ®(y) has the image in V

(x) = P(B(y) = (@1 (D(y))) = ¢(y).

S

¢ N
\ V ]
P()=y(x)
XL xr=yl g
]Rn

Hence, the points y € U and x = ®(y) € W have the same coordinates from V', whence
=y foralli=1,.. n
Since RNW = ®(SNU), it follows that
RNW = {mGW:me:.‘.:x”:O}

so that R is a submanifold of X.

Note that we have constructed the local coordinates {z',..,.2™} on R and {y*,...,y™}

on S.

The mapping ¥ : S — R is clearly bijective. It is given in the above local coordinates
{z',..,.2™} on S and {y',...,y™} on R by

which implies that it is smooth and its inverse is also smooth, so that ¥ is a diffeo-
morphism.
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61.

(b) Fix y € S and £ € T,,S. Set x = ®(y) € R and observe that d®¢ € T, X and
dv¢ € T,R C T, X. Hence, we consider d®¢ and dW¥¢ as elements of the same space
T.X. For any f € C*(Y), we have

dPE (f) = E(fo®) =& (fodls) =E(fo¥).

Since f oW = f|go V¥, it follows that

d®E (f) = & (fls o W) = WE(fls) = WE(S),

whence d®& = dW¢ follows.
(¢) By definition, for all £, € T,Y,

D.g (&,n) = g(dPE, ddn),

where d®¢ and dPn € T, X, x = ®(y). If {,n € T,,S then by (b)

g(d®g, ddn) = g(dVE, d¥n) = gr(dVE, d¥n)
= \I’*gR(fﬂ])’

which proves that

q)*g (57 77) = \I[*gR(é.)n) for all 577] € Tysa

that is,
(P.8)s = V. (8R)
which was to be proved.
(d) Let g be the Riemannian metric on X and ¢’ — on Y. Since ® is a Riemannian
isometry then
g =d.g
It follows from (a) that
g5 = (®.8)g = V. (8r),
that is, ¥ is a Riemannian isometry of (S, g%) and (R, gr) .

* Fix a point a on a Riemannian manifold (M, g) and consider on M the function
p(x) = d(x,a). Assume that p is finite and smooth in a neighborhood of a point
b€ M\ {a}. The purpose of this Exercise is to prove that

Vo (D)l < 1. (67)

(a) Let v :[0,e] — M be a smooth path on M such that v(0) = b and 4 (0) = ¢ €

TyM. Prove that
Coao)| <l (68)

t=0
Hint. Use the definition of the geodesic distance d and the triangle inequality.
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(b) Prove (53).
Hint. 1t suffices to prove that, for any & € T, M,
(Vo (b),8g < [€lg- (69)
Use (54) to prove (55).

Solution. (a) Using the definition of the geodesic distance and the triangle inequality,
we obtain, for any ¢ € [0,¢],

p(y(8)—p(y(0) =d(y(t),a) —d(y(0),a) <d(y(t),7(0) <L (ylpg). (70)

¢ (Vo) = / 5 ()] ds.

dividing (56) by ¢ and letting t — 0, we obtain (54).
(b) It suffices to prove that
<vp (b) >£>g S |£’g )

for any tangent vector ¢ € T, M. By the definition of Vp, we have

(Vp(b),8§)g = (dp,§) =& (p),

so that we need to prove that

Consider any smooth path v : [0,e] — M for some € > 0 such that v(0) = b and
4 (0) = &. Then

dp - dp d
= L= - = t .
€)= Ge =gk = T
By (a) we conclude that £ (p) < |[€],, which finishes the proof.

** Consider the Riemannian manifold (Ri, g) where

(dz')* + ...+ (daz”)z'

(an)’

Prove that (Ri, g) is isometric to the hyperbolic space H".

Remark. This manifold (Ri, g) is called the Poincaré half-space model of the hyper-
bolic space.

Hint. By Exercise 5f, H" is isometric to the Poincaré ball, that is, the unit ball
B"={yeR":[y[ <1}

with the metric
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Set p = (0,...,0,1) € R™ and consider the mapping ® : R” \ {—p} — R" given by

_2(+p)

ly +pl”

(in fact, ® is the inversion in the sphere of radius 2 centered at —p). Prove that &
is a diffeomorphism of R™ \ {—p} onto itself, and that y € B" & = = ¢ (y) € R%.

Conclude that @ is a diffeomorphism of B™ onto R?. Then prove that ® is isometry,
that is, ,g = ggn.

Solution. The mapping

c=d(y) =W (71)

ly+pf
is invertible in R™\ {—p} because it can be solved with respect to y as follows. Firstly,
it follows from (57) that

_|._
v p=2W 1;)
ly + pl
in particular, x # —p, that is, the image of ® is in R™ \ {—p}. Next, we have
ol =
r+pl=—0,
v+ pl
y+p =
b+l |z + pl
and . 2 )
T+p
y=5@+p)ly+p’—p="—5—p
2 |+ pl

In particular, the inverse ® ! coincides with ®. Since ® € C*, we obtain that ® is
diffeomorphism of R™ \ {—p} onto itself.

Let us show that € R if and only if y € B", where z and y are related by (57).
Indeed, setting y = (y/,y"), where v/ = (y!,...,y" 1), we obtain

w2yt L 20"+

ly+pl° "+ (yr +1)*

2+ ) () )
ly+p|°
=) -l
ly+pl”
2

I |y|2 (72)

|y + pl

whence we see that 2" > 0 is equivalent to |y| < 1 that is, € R is equivalent to
y € B". Hence, ® is a diffeomorphism of B" onto R7}. 1

In order to prove that ®,g = gg», we need to compute the Jacobi matrix J = <‘g§; >
and then verify that

JTg] =g,..
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Note that
4 . L.
———id and g=-—=id.
(1 =1yl (™)
Since ¢ is a diagonal matrix, it commutes with any other matrix, and we need to prove
that

Ign =

JTJg = Gun>
that is,

L 4

3 = ——id
(™) (1— 1y

Substituting here (?7), we see that we need to prove that

JTJ = id .

4
ly + pl

Changing variables y + p =: z and rewriting ® in the form

2z

P (Z) = T35 D
2|
we need to prove that, for J = (gg >7
4
z
Using that
8 2 ; 8zl i
py |z|” =227 and 927 o5,
we obtain . . - o
0P’ d 220 205 |z]" — 42 2 4
- = —— = = —0; — —2'2.
0zi 0z ’2‘2 ‘2‘4 ‘2]2 j |Z’4

Denote Z = (z',...,2") and consider Z as an 1 x n matrix. Then we have

1

z
717 = : (zl, ...,z") = (zizj)i’jzl
Zn
and, hence,
2 4 2 2
J=—id——27"Z2 == (id——zZTZ) :
2| 2| || 2|

It follows that JT = J and

4 4 4
J'T = — (id ——72"7 + —ZTZZTZ) :

1 1
2] 2] 2]
Noticing that ZZ7 is an 1 x 1 matrix
7277 = (zl, ,z”) (zl, ...,z”)T = |z|21d,
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we obtain

4 4
J'] = —; (1d—WZTZ+ WZT 2| Z)

4
= ( d ——ZTZ + —ZTZ>
ER Els Els

and, hence,

JTT = —id,
\z!
which finishes the proof.

63. ** Fix a real a and consider the mapping =z = @ (y) of R"™! onto itself given by
=y

" = y" cosh o + ¢y sinh o
2" = y"sinh a + y"** cosh a.

The mapping Q is called a hyperbolic rotation or the Lorentz transformation?.

(a) Prove that Q is an isometry of R"™! with respect to the Minkowski metric
BMink = (dx1)2 + ...+ (de)Z — (dxn-‘rl)Q

(b) Prove that @ maps H™ onto itself. Prove that the restriction of @ to H" is a
Riemannian isometry of (H", ggn).

Hint. Recall that the hyperbolic space H" is defined as the hyperboloid

(y1)2 + ..+ (y")2 — (y"“)2 =—1, y""t>0,

with the metric tensor gun = Garink g -

Solution. (a) It is obvious that the mapping @ is a linear bijection of R"*! and, hence,
a diffeomorphism. We need to prove that the metric tensor g = gnsink is preserved by
Q, that is,

Q.g=g.

2Assuming n = 1 and denoting z = 2!, t = 22, 2’ = y',# = y2, we obtain from (58)

where v = tanh «. These are classical Lorentz transformations in the 2-dimensional space-time that describe
in the Relativity Theory the change of coordinates in the inertial frame (2’,¢) moving at a speed v with
respect to the frame (z,¢). Note that v < 1 where 1 is the speed of light.
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Note that the Jacobi matrix J = (8“”7) of @) is equal to

oy*
1 0
J =
1
cosha sinha
0 sinh o cosh o
Since e
. )
“(dx?) = —dy*
Q ( ZE) ay’L Y
we obtain

Qug = Q. ((do")" 4+ o+ (") 4 (da")? — (da™)?)
= (dy") + .. + (dy" 1)
+ cosh® a (dy”)2 + sinh? o (cly/”“l)2 + cosh asinh «v (dy"dy”Jr1 + dy”“dy”)
—sinh? a (dy™)® — cosh o« (dy”+1)2 — cosh asinh «v (dy”dy”+1 + dy"“dy”)
= (dy")* + .+ (dy™ ™) + (dy")* — (dy™*)7,
which finishes the proof.

Alternatively, one can directly verify that

J'gJ =g,
where
1 0
g = 1
0 —1

is the matrix of g.

(b) Recall that H" is a hyperboloid in R™*!, given by the equation

(91)2 ot () - (y"“)2 =1, y"'>0.
Similarly to the computation in (a), we obtain, for x defined by (58),
($1)2 ++ (Zlfn)Q N ($n+1>2
= ()’ + o+ (Y
+cosh?a (y")* + sinh® & (y*1)” + cosh asinh a (2y"y"*)

n+1)2

— sinh? o (y™)* — cosh o2« (y nyn

— cosh assinh «v (2y Y

=)+ @) ) - )
=1

I6)



64.

Hence, Q maps H" into itself, and the same holds for Q~*. Hence, Q (H") = H". By
the same argument as in Exercise 5(f)v(d), Q|g» preserves the induced metric of H",
that is ggn.

** We are concerned here with Riemannian isometries of H".

(a) Prove that, for any point a € H", there exists a Riemannian isometry
é . H" — H"
such that @ (a) = p where p = (0,..,0,1) € R™"! is the pole of H".
(b) Prove that, for any four points a,b,a’,t’ € H" such that
d(a, V) =d(a,b), (74)

there exists a Riemannian isometry ® of H" such that ® (a’) = a and @ (V') = b.

Hint. Use the hyperbolic rotation of Exercise 5(f)v.

Solution. (a) By rotation in the subspace
R" = {x e R gt = 0}
we can assume that the projection of a onto R™ lies on the axis x™, that is,
a = (0, e 0,@”,@”“) :
Since a € H", we have
(an+l)2 o (an)2 -1
Then there exists real o such that

a"t! = cosha and " = —sinh .

Let ® be the hyperbolic rotation (58) of Exercise 5(f)v with this parameter a. Then
we obtain from (58)

P (a)" = —sinacosha+ coshasina =0

®(a)"™ = —sinhasina+ coshacosha =1,

and (®a)’ = 0 for i < n. Hence, ® (a) = p.

(b) Consider first the case a = ' = p. If b, b’ € H" are two points such that d (p,b) =
d (p,b') then, in the polar coordinates on H", the points b and ¢ have the same polar
radius (cf. Exercise 5(f)ivD). Therefore, for a suitable rotation ® of the polar angle,
we obtain ® (b) = ¥, while ® (p) = p, that is, ¢ (a) = '

Consider now the general case, when points a, b, a’, b’ € H" satisfy (59). Let ® be an
isometry of H" such that ® (a) = p and ' be an isometry such that ¢’ (a’) = p. Then

d(p, @' () = d(¥(a),®(V)) =d(d,V)
= d(a,b) = d(®(p),® (b)) = d(p,® (b))
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Hence, there exists an isometry ¥ such that
(P () = @ (5) and V(p) = p.
Since p = ¢ (a) = 9’ (a), we obtain
U (®'(a') =P (a).

It follows that
P (d) =a

and
Oy (") =10,

so that ®~1W®’ is the required isometry.

** Consider the weighted manifold (R, g, i) where g = ggn is the canonical Euclidean
metric and dy = e~*dz. Consider also the corresponding weighted Laplace operator
Ag . Prove that the Hermite polynomial

hi () = €” %e’x

of degree k (where k is a non-negative integer) satisfies the equation
Ag phy + 2khy, = 0.

That is, hy is an eigenfunction of Ag .

Hint. Show first that the function g (z) = e~*" satisfies the equation

dF+2 dF+1 k
Solution. If £ = 0 then (60) becomes
g"+2xg + 29 = 0. (76)

Indeed, we have
= —2z¢"

g = dx?e™ —2e7%
whence (?77) follows. If (60) is proved for some k, then differentiating of (60) in x gives

dk+3 k+2 dk—i—l k+1

a0

that is,
k43 k42 k41

(2% + 4) 0,

e

which finishes the inductive step.
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The weighted Laplace operator in given by

2d ([ _2d
Ag f=ce a(e d:vf>

For i "
2 a2 22
e
we obtain
d x dk+1 —x T i —z2
%hk =e d:zc"?ﬂe + 2xe 7 €
and

dx \ drk+l dxk
. dk+2 dk+1 dk
= ¢ <dxk+29+2xdxk+1g+2dxkg>

Using (60) we see that the value of the bracket is

2k d 2ke " h
i b
whence it follows that
Ag i = —2khy,

which was to be proved.
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Blatt 11. Abgabe bis 16.01.2026

Die mit *markierten Aufgaben sind zuséatzlich und werden korrigiert
Die mit **markierten Aufgaben sind zusétzlich und werden nicht korrigiert.

In all questions, (M, g, i) is a weighted manifold, A = Ag ,, and § is an open subset
of M. The quantity \(Q2) is defined in Ezercise 5(f)v.

66. Let R, be the resolvent operator in . Prove that, for any o > 0 and f € L* (), the
function u = aR, f is a unique minimizer of the functional

E (v) = ||Vol%, + oo — f]72
in the domain v € W (Q).
Hint. Show that E (u+ ¢) > E (u) for any ¢ € W ().
Solution. The function u = aR,f = R, (af) satisfies the identity
(vu7 VSO)EQ + o (uv 90>L2 - (Oéf, 90)L2
for all o € W. Hence, for any ¢ € W, we have (all norms are in L? (Q)):
E(u+¢) =Vt +alute—f|*
= [IVul® +2(Vu, Vo) + [Vell® + aflu— fII* + 20 (u — f,9) +afo||”
= (IVull® + allu = fIP) + IVel® + o [|[€*]] +2 ((Vu, Vi) + a (u, ) = ()
= E (u) + |[Ve|” + ool
It follows that E (u + ¢) > F (u) unless ¢ = 0, which was to be proved.
67. For any open subset 2 C M, define A\; (Q2) by

. Jo IV fIP dp
M(Q) = f oYL
(@)= ) I, f2du (77)

Prove the following properties of A; (€2) .
(a) If @y C Qy are two open sets then

A (1) > A (Q2).

(b) If {Q},o, is an increasing sequence of open sets (that is, Q) C Q1) and Q =
U, 2% then

k—oo

Remark. For any non-zero function f € D (M), define its Rayleigh quotient by

V12,
R = L=
U=,
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Then (61) can be rewritten in the form

A (Q) = inf .
() fa%mmRU>

Solution. (a) Since
M(Q)=  inf R
V= e W)
and D () C D (Qy), we obtain A; (1) > A (Q2) .

(b) By part (a), the sequence {\; (%)} decreases and
A (%) > A (Q).

It follows that
klim A () = i%f A () > A (). (78)

To prove the opposite inequality, observe that, for any f € D (), the support of f
is covered by {€}. Hence, by the compactness of supp f, there is a finite sequence
Qkyy oo, Q,, that covers supp f. Assuming that ky < ky < ... < k,, and using the
monotonicity of {Q}, we see that Q,, covers supp f. Hence, f € D (€, ) and,
therefore,

A (%) SR(f).

It follows that
i%f A () <R(S).

Taking infimum over f € D (2), we obtain

which together with (62) proves the claim.

68. Assume that A; (©2) > 0.

(a) Prove that the weak Dirichlet problem in (2

{ Au = —f weakly in €, (79)

ue Wi (Q),

has exactly one solution u for any f € L? ().

Hint. Set [u,v] := (Vu, Vv)z, for all u,v € Wy () and prove that [-, ] is an inner
product in Wy (£2). For that, use the hypothesis A;(Q) > 0.

(b) Prove that, for the solution u of (63),

lullze < A ()7 IF 1122 (80)

and
IVullz2 < A ()2 | F 2 (81)
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69.

Solution. (a) By definition of A; = \; (Q), we have, for any f € W, (Q2)

IVAIE > Ml fIl7e (82)
It follows that
IV £z = IVl 7+ 172 = I

which implies that
[u,v] :== (Vu, V),

is an inner product in W (Q2), and its norm is equivalent to the standard norm in
Wi (). Hence, W () with the inner product [+, -] is a Hilbert space.

The weak Dirichlet problem has the following formulation:

(Vu, Vo) = (F.9)ys Vo € Wi ()
{uve(m e (83)

which can be rewritten in the form
[u,v] = 1(p) Ve e Wy (Q)

where [ (¢) = (f,¢);2 is a continuous linear functional in Wy (£2). Hence, the above
problem has a unique solution by the Riesz representation theorem.

(b) Substituting into (65) ¢ = u, we obtain

IVullze = (fw)ge < I lge ul e (84)
Since by (64)
2 2
IVullz = A lullz2

it follows that
2
A lullze <1l pe [Jwll g

whence
Jull 2 < AT fLe

Substituting into (??), we obtain
2 - 2
IVullz. < Atz

and
—1/2
IVl 72 < A2 F e

Consider the following version of the weak Dirichlet problem in 2: given a real constant
« and functions f € L? (Q2), g € W' (Q), find a function v € W' (Q) such that

{ Au—au = —f weakly in €, (85)

u—geWs(Q).

Prove that if o > —\; (€2) then the problem (66) has exactly one solution.
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Solution. The weak equation Au — au = —f means that
(Vu, Vo) o+ (u,0) 12 = (f, )2 for any p € Wy (Q).

Setting v = u — ¢ and replacing u in the above equation by u = v 4+ g, we obtain the
following equation for v € W

(Vo, V) +a(v,9) =—(Vg, Vo) + (f —ag,¢) for any p € Wy, (86)

where the brackets mean the inner product in L? or L2,

Let us show that the bilinear form

[v, 0], = (Vv, V) +a(v,p)

defines an inner product in Wy, which is equivalent to the standard inner product
[v,¢];. If e > 0 then this is trivial and was already in lectures. We need to prove the
same in under the weaker hypothesis o > —\;.
It suffices to show that

[o,¢lo = ele, ey (87)

for some ¢ € (0,1) and all ¢ € W, which is equivalent to

et
IVellz> > 1—_€||90||%2- (88)

By Exercise 5(f)v we have
IVell7z > MllollZ..

Hence, define ¢ from the equation

eta
1—¢

which yields

)\1 + o
= > 0.
c 1+ X\
Hence, the Riesz representation theorem yields that (67) has a unique solution v € W
because the right hand side of (67) is a bounded linear functional of ¢ in W1,

* Let f € L*(Q2) and assume that u is a solution of the following weak Dirichlet
problem:

{ Au = —f weakly in €,

ue Wi (Q).
Prove that
lullfr < e (lullZ2 + 1£172) , (89)
where ¢ = ”2*/5.
Sollution. By the definition of a weak solution of Au = —f, we have, for any v €
Wy (),

(Vu, Vo) gz = (f,0) 12
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Setting here v = u, we obtain
IVullZ = (Vu, Vi) pa = (F,0) 2
Using the inequality

1
b < b2,
a 2a +23

which holds for all real a,b and s > 0, we obtain

(fruw) = /fudu</(u+ f)

= 5 lullz: + 2—5 IF17: -

Therefore,
s 1
lullfys = ke + I V0lZ < (14 2) llullf + 5113

Therefore, (70) holds with
1
p— ]_ -
¢ = max < + % _23)

The minimum value of ¢ is attained if

which leads to s =2 — 1 and ¢ = 1+2ﬁ'

(Cheeger’s inequality) The Cheeger constant of Q is defined by
V| d
h(Q):= in M (90)
peD O} [, || dp
Prove that 1
AL (Q) > th Q).

Hint. Substitute in the right hand side of (71) ¢? in place of ¢ and use the definition
of )\1 (Q)

Solution. By (71) we have, for any ¢ € D (), that

[1veldnzb [ fol du
Q Q

Let us apply this inequality to 2 in place of . Since V? = 20V, we obtain

/2!sol !VsOIgduzh/sozdu-
Q Q
/Q ol Vel dyt < ( / 2du> ( / Vol du) |
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it follows that

h2
/valzduz Z/deu-
Q Q

By definition of A; (€2), we conclude that

Vol2 Voladu — h?
A (Q) = inf | QOQLQ = inf Jo [Vl di i'g S
P€D\{0} ||| 72 peD()\{0} fQSO dp 4

** Let d be the geodesic distance on a connected Riemannian manifold (M,g). A
function f : M — R is called Lipschitz if there exists a constant L such that

1f(z)— f(y)| < Ld(z,y) forall z,y € M.

The number L is called the Lipschitz constant of f. Prove that if f is Lipschitz with
the Lipschitz constant L then the weak gradient V f exists and

IV fllg~ < L. (91)

Hint. In R™ this statement can be taken as known. In order to reduce the general case
to that in R", prove first the following claim: for any point p € M and for any C' > 1,
there exists a chart U 3 p such that, for all z € U and £ € T, M,

O ((€1) 4+ (€77) S g (1) €6 < C* (€))7 + -+ (€77)
This inequality was proved in lectures, however, with some constant C'. Show that the
constant C' can be chosen arbitrarily close to 1.

Solution. Let us first prove the following claim.

Claim. For any point p € M and for any C' > 1, there exists a chart U > p such that
forallz e U, £ e T,M

o= ((51)2 Yot (g“)Q) < gi; () €18 < C? ((51)2 Yot (g“)Q) L (92)

Let V be any chart containing p, with coordinates z!,...,2". Let ¢® be the matrix of
the metric tensor g in the coordinates ', ..., 2™ and ¢¥ be the matrix of g in another
coordinate system y!,...,y™ in U (yet to be defined).We know that

g'=J"g"J,

where J = (g%) is the Jacobi matrix. It is well known from linear algebra that any
quadratic form can be brought to a diagonal form by a linear change of the variables.
The quadratic form & +— gf; (p) £'¢’ is positive definite and, hence, can be transform
to the diagonal form ()% + ... + (#")? by a linear change &' = A%/, where A is a

numerical non-singular matrix. This implies that

ATg" (p) A =id.
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Defining the new coordinates y’ by the linear equations z* = A%y’, we obtain that
J (p) = A and, hence, ¢¥ (p) = id. By continuity, the matrix ¢¥ is close enough to id
in a small enough neighborhood U of p. More precisely, by choosing U small enough,
we can ensure that the matrix gj; satisfies the conditions (73). We are left to rename

yt, ..., y" back to x!, ... 2"

Note that the conditions (73) mean that all the eigenvalues of the matrix g;; () are
located in the interval [C~2, C?]. Then the same is true for the eigenvalues of the
inverse matrix g” (z). Hence, the inequalities (73) hold also for g% in place of g;;.

Hence, let U be a chart as in the above Claim. By shrinking further U, we can assume
that U is a ball in the coordinates x!,...,2™ centered at p. Then, for any two points

x,y € U, the straight line segment between z,y is also contained in U. By (73), the
Riemannian length of this segment is bounded by C'|x — y|, which implies that

d(z,y) < Cle—yl. (93)

Let now f be a Lipschitz function on M with the Lipschitz constant L. In a chart U
as above, we have

|f(x) = f(y)| < Ld(x,y) < CL|x -y,

so that f is Lipschitz with a Lipschitz constant C'L in the Euclidean metric in U. Hence,
we conclude that f has the weak gradient Vof = (%, o %) in the Euclidean metric
e = ggr» and

|Vef| < CL ae.. (94)

The Riemannian weak gradient Vg f is given then by

ki OF

(ng)k ) Oz’

and of of
2_ ;91 9]

Using the above Claim for ¢¥ we obtain

v f\2<02i(ﬁ)2<02(6@)2 a.e
g — axz > ..

=1

that is, in U,
|Vef] < C?L ae.. (95)

Since M can be covered by a countable family of such charts U, (??) holds also in M.
Finally, since C' > 1 was arbitrary, we obtain |Vgf| < L a.e., which finishes the proof.
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73.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 12. Abgabe bis 23.01.2026

Die mit *markierten Aufgaben sind zusétzlich und werden korrigiert
Die mit **markierten Aufgaben sind zusétzlich und werden nicht korrigiert.

In all questions, (M,g, p) is a weighted manifold, 2 is a precompact open subset of
M, {M}oe, is the sequence of the Dirichlet eigenvalues of A = Ag, in 0 in the
increasing order, and {vy} is the sequence of the corresponding eigenfunctions that
forms an orthonormal basis in L (2).

Recall that any function u € L? (Q) admits an eigenfunction expansion

oo

u = Z arVg , (96)

k=1

where a; € R and the series converges in L? (12).

(a) Prove that if u € W, () then the series (74) converges also in W*'() and

o0

lulli = > O + 1) a. (97)

k=1

Hint. Use the Parseval identity in L? (Q) and in Wy ().
(b) Prove that if u € Wy (Q) and Au € L?(Q) then

Ay = — Z )\kakvk, (98)
k=1

where the series converges in L? ().

Solution. (a) For any u € L? (2) we have an expansion
u = Z QU (99)
k=1

where ay = (u,vy) and the series converges in L? (Q). We know that {v.} is also an
orthogonal basis in Wy (Q2). If u € W () then u can be expanded as

00
u = E bkvk
k=1

where the series converges in Wy (€). In particular, this series converges in L? (2),
which implies that b, = a;. Hence, if u € W (Q) then the series (76) converges also
in Wy (Q). Tt follows by the Parseval identity in L?

o0 o0
lall7e =) ai lloel7 =) ai
k=1 k=1
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74.

and in W

o
lullfr = af foelli -
k=1
Since
o ll32 = [IVvellzs + okl 72 = X + 1,
we obtain
(o)
fullfr =Y e+ 1) ap.
k=1

(b) Let f = —Au € L* (). Then f allows an L? expansion

=Y b
P

where
by = (f,v8) 2 = (Vu, Vog) gz

where we have used the definition of the weak A and v, € W, (). Since vy is an
eigenfunction and u € W (2), we have

(Vl)k, VU)EQ == )\k (Uk, U)Lg = )\kak

which implies that
br = Aay,

which finishes the proof.

(Variational property of the bottom eigenvalue) For any non-zero function u € W1 (Q),
consider its Rayleigh quotient:

Vul2,
o I

— s
[Jul| 72
Prove that the bottom Dirichlet eigenvalue A; (2) satisfies the following identity:

AL (Q) = min  R(u) = inf R(u). 100
1(8) ueWl(2)\{0} () ueD(M\{0} (W) (100)
Hint. Use Exercise 5(f)v.

Remark. The notation A (2) for any open set  was defined in Exercise 5(f)v as

A () = Di(?zf\{ }R (u) . The identity (77) shows that, for precompact €2, this notation
ue 0
is consistent with the notation A; (Q2) for the bottom Dirichlet eigenvalue.

Solution. Using notation of Exercise (5(f)v), we have

[e.9]

lulZ2 = ai

k=1
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and, by (?77?),
I9ulZ = el — Juls = 3 A,
k=1
Hence, for any u € W3 () \ {0},

2
lull7- D ke G,

On the other hand, for u = v; we obtain

> A

_ Vel _

= 2
||U1||L2

R (v1)

1,

which implies that
min R (u) = A
ueWg (2)\{0}
Hence, we have proved the first equality in (77).
The second equality follows from the fact that R (u) is a continuous functional in
W (Q)\ {0} and that D (Q) is dense in W, (£2).

75. Let a function f € L? (2) have an eigenfunction expansion

o0
f = Z A V-
k=1

(a) Prove that, for any « > 0,

= 1
=3 , 101
R f £ a+/\kakvk ( 0 )

Hint. Use Exercise 5(f)v.
(b) Using (78), prove the following resolvent identity for all «, 5 > 0:

Ro — Rs = (8 — a) RuRy. (102)
Solution. (a) For the function u = R, f we know that u € W () and
Au=oau—feL*). (103)
Let

00
u = E bkvk
k=1

where the series converges in L? (2). By Exercise 5(f)v, we have
Au = — Z /\kbkvk
k=1
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Substituting into (79), we obtain

oo oo 00
— E )\kbkvk = E bkvk — E AU,
k=1 k=1 k=1

whence we obtain the identity for any k:
—Akbk = ozbk — Qg

and
Qg

b, =
F Oé—l-)\k’

which was to be proved.
(b) By (78) we have

- 1 1
(o= 1) £ =3 (5~ 5 ) o

k=1
and
e (B —a)
(6 - Oé) RaRﬂ = kz; (Oé n /\k) (ﬁ n )\k)akvk.

The right hand sides of these equalities are identically equal because

11 (B-q)
a+A BN (a+N(B+N)

whence (77?) follows.

76. * Let f € L2(9).

(a) Prove that aR,f =z, fasa— 4o0.
Hint. Use Exercise 5(f)v.

(b) Prove that if in addition f € W3 (2) and Af € L?(2) then, for all a > 0,
1
loRaf = fllz <~ A2z

Hint. Use Exercise 5(f)v.
Solution. Let

o0
f= Z V.
k=1

Then by Exercise 5(f)v(a)

0o a
Ra - y
f ;aﬂkvk
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where the both series converge in L?. Hence,

> aa =\
OéRaf—f:Z(a—i_];\k —ak> vk:—za_i_k)\kakvk.
k=1 =1

By the Parseval identity, we have

00 )\k 2
Rof — f|I?. = 2 104
ot = =3 (5245,) (10)

Clearly, we have for any k

2
Ak
— 0 as a — oo.
(a+>\k)

We need to prove that the whole sum (?7?) goes to 0 as & — oo. For that, fix € > 0
and find N such that

Then

laRaf — fl3 :i A 2a2+i A 2a2
« L2 a+X /) a+N/) ¥

IA
[]=
N
o
T
>
ko
~——
no
S
N
_|_
i)

2
because <a’\+—’i\> < 1. Now letting & — oo and noticing that the finite sum goes to 0,
k

we obtain that
limsup [|aRaf — fl32 <.

a—00

Since € > 0 is arbitrary, it follows that
lim fJaRaf — f|7. =0,

which was to be proved.
If feW;(Q) and Af € L?(Q) then by Exercise 5(f)v

Af = - Z AkL Vg,
k=1

and, hence,
o0
2
IAFI5 = ) M.
k=1

Since A\; > 0 and, hence,
MM

a+ N\, T o«

9
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77.

78.

it follows from (?7) that

laRaf = fll7 < ZA IAf||L27

which finishes the proof.

Prove that there exists a positive constant ¢, such that, for any ball Br of radius R in
R™,

Cn

)\1 (BR) = ﬁ

Hint. Using the variational property (77) of Exercise 5(f)v, prove first that
M\ (Br) = R\ (By) .

You can assume without loss of generality that the ball By is centered at the origin of
R™.

Remark. Letting R — oo and using Exercise 5(f)v we conclude that \; (R") = 0.
Solution. Observe the following:

(i) ¢:= A1 (B1) > 0 by a Theorem from lectures.

(i) A\ (Bg) = R™2\; (By) . Indeed, let f € D (Bg). Then the function f (z) = f (Rz)
belongs to D (B;), and we have

—/ f(Rz)dx= [ f(y)>R™"dy=R™"|fl|3
Br By

and B
Vf(z)=RVf(Rz)
whence

V7], = 5 [ 1901 ey e = R 1

It follows that

2

= RR(f).

-1

Taking infimum in all f € D(Bg), we obtain A\, (Bg) = R™?)\; (B;). Hence, we
conclude that A\, (Bg) = ¢/R? where ¢ = \; (B;) > 0 depends only on n.

** Prove that, for any geodesic ball Bg = B (z¢, R) on an arbitrary connected weighted
manifold M,
1 (Br)

4
A1 (BR) E—(BRM) .

Solution. Consider the distance function
p(z) = d(z,z0)
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79.

and set
fx)=(R—p(x),.
Since p is the Lipschitz function with the Lipschitz constant 1, f is also a Lipschitz

function on M with the Lipschitz constant 1. Since f (x) = 0 on 0Bg, it follows that
f € W} (Bg). We have

S, VST dp
J5, [2du

Since |Vf| <1 and f > % in B (xo, %), we obtain

11(Br)
(5)" 1 (Bryo)

R(f)

R(f) <

whence the claim follows.

“* Let M be connected. Fix a point o € M and consider the function p () = d (x, o) .

(a) Prove that p € Wl (M) and ||Vp||7- < 1.
Hint. Use Exercise 5(f)v.

(b) Assume p has in ) the weak Laplacian Ap, and that Ap satisfies in €2 the in-
equality Ap > a, where a is a positive constant. Prove that

2
A (Q) > “Z.

Hint. First prove that h (2) > a where h (Q2) is the Cheeger constant from Exercise
5(f)v, and then use the Cheeger inequality.

Solution. (a) Function p is continuous and, hence, in L? (M). The function p is

Lipschitz with the Lipschitz constant 1 because by the triangle inequality

o () = p ()] = d (2, 20) — d (y,20)| < d (z,y).

Hence, by Exercise 5(f)v, Vp exists weakly and satisfies ||Vp||z < 1. Hence, Vp €
Li,. (M) and p € W, (M).
(b) For any non-negative ¢ € D (2), we have

/Apsodu > a/s&du.
Q Q

By the definition of the weak Laplacian, we have

/Apsoduz —/ (Vp, Vo) dpu,
Q Q

whence

—/ <Vp,V90>duZa/sodu
Q Q

92



80.

81.

Since

- /Q (V. V) dp < /Q Vol [Vl dit < [Vl o /Q Vel di < /Q Vel du,

/valduz a/sodu-
Q Q

By the definition of the Cheeger constant, we conclude that A (£2) > a. By the Cheeger
inequality, we obtain that Ay () > %.

we obtain

Remark. Although in the definition of the Cheeger constant one uses also signed
functions ¢ € D (), one can see from the solution of Exercise 5(f)v that it is enough
to restrict the definition (71) of h to non-negative ¢, which is needed for the present
solution.

** Prove that )
(n—1)

AL (H?) > 1

Hint. Use Exercise 5(f)v and the polar coordinates in H".

Solution. By Exercise 5(f)v, it suffices to prove that, for any precompact open set
QC H",
(n—1)

YR

By the translation invariance of H" (see Exercise 5(f)v), we can assume that the origin
o lies outside €2. Then (2 is contained in the domain of the polar coordinates. In the
polar coordinate system, we have

A () >

0? 0 1
Aprn = — -1 hr— + ———Agn-1.
H 8r2+(n ) cot T8r+sinh2r °

Applying this to the function p = r = d (z,0) (note that r is smooth in 2), we obtain

Ar=(n—1)cothr >n—1,

Solution. By Exercise 5(f)v we conclude that A\ (2) > (”_41)2, which finishes the
proof.

** Prove that )
(n—1)

A (H) = 1

Hint. Tt suffices to find for any £ > 0 a function f € W (H") such that

R(f)g%ﬂ.

Look for f in the form f (z) = e~ where r is the polar radius. You may use without
proof the fact that if f € W' (M) and f (z) — 0 as # — oo then f € W3 (M).
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Solution. In the view of Exercise 5(f)v, we need to prove that A\, (H") < ("_41)2. For
that, it suffices to find for any € > 0 a function f € W, (H") such that

R(f)<@+g.

Recall that the area function on H" is S (r) = w,, sinh™ ! r. Since sinhr < e, it follows
that
S (r) < wpe

Using r as a polar radius, consider on H" the function f (z) = e~3r, Assuming that
a >n — 1, we obtain

||f||iz = ; fPdu = /0 fr)? 8 (r)ydr < wn/ e e dr < o0,
n 0

whence f € L? (M). Since function r has weak derivative bounded by 1, we have
1 1
Vf=Ve 2 = EafVT,

whence

[ 108 - / PV dp < & / 2n (105)
Hence, we see that f € W' (M) and R (f) < a?/4. Since f(x) — 0 as z — 00, we
conclude that f € W, (M).
By (??) we obtain R (f) < %
> n — 1, we conclude that \; (H") < @, which finishes the proof.

® whence also A\; (H") < aff. Since a was any number
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82.

83.

Prof. A. Grigoryan Analysis on Manifolds WS 2025/26

Blatt 13. Abgabe bis 30.01.2026

Die mit *markierten Aufgaben sind zusétzlich und werden korrigiert

In all questions, (M,g, p) is a weighted manifold, 2 is a precompact open subset of
M, {\: (Q)},, is the sequence of the Dirichlet eigenvalues of A = Ag,, in § in the
increasing order, and {vy} is the sequence of the corresponding eigenfunctions that
forms an orthonormal basis in L (2).

Let M be a compact connected manifold. Set 2 = M. Prove that A\ () = 0 and
A2 (£2) > 0. In other words, 0 is a simple eigenvalue of A in €.

Hint. You need to prove that if v is an eigenfunction of A in €2 with the eigenvalue 0
then v = const .

Solution. Since function v(z) = 1 belongs to C°(M) = C°(M) and Av = 0, it
follows that the constant function is an eigenfunction of A in € with the eigenvalue
0. Hence, A\ () = 0. Let us verify that the eigenvalue A; = 0 is simple. Indeed,
if v € W3() is another eigenfunction with the eigenvalue 0, that is, Av = 0 then
we obtain that HVUHQE2 = M\ |[v]|32 = 0 whence Vo = 0. Since Q is connected and
v € C*(9), it follows that v = const. Hence, only constant is the eigenfunction of
A1 = 0, that is, \; = 0 is a simple eigenvalue, which implies that Ay (©2) > 0.

Recall that the Rayleigh quotient of a non-zero function u € W1 () is defined by
v,
el 72

Assume that, for a function f € Wy (Q2) \ {0},

R (u)

R(f) =M (). (106)

Prove that f is the eigenfunction of A in © with the eigenvalue A\; (§2).

Remark. We know that if v is an eigenfunction of A in €2 with the eigenvalue A then
R (v) = A. The above claim says that the converse statement is also true provided
A =X\ () (but it is not true for higher eigenvalues).

Hint. Set A = A1 (2) and recall that by Exercise 5(f)v,

A= inf  R(u).
ueWg ()\{0}

Hence, for any ¢ € W () and any ¢ € R, we have
R(f+tp) > A=R(f).

Use this inequality with ¢ — 0 to deduce that (Vf, V) — A(f,¢) = 0, which will
imply the claim.

Solution. Denote for simplicity A = A; () and observe that, for any ¢ € Wy (Q2) and
real t, we have
R(f+1tp) =2 A=R(f),
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84.

that is ) )
IV +t) 17, _ IVS

If+tel> =7 NP

which implies

IV (f + ) I* = Allf + toll* = 0= [V FII* = AlLAII”

We have
IVf+tVel* = IVFI* + 2t (Vf, Vo) + [ Vel
and
Lf +tell® = [FII” + 2 (f, ) + el
whence

IV (f +to) 1P = A f +toll* =26 (V£ V) = A (f,0) + £ (I Vel = Ap?) .

Since the left hand side is non-negative for all real ¢, the linear in ¢ term in the right
hand side must vanish, that is

(VI,Ve) = A(f,9) = 0.
This equality means that f is the eigenfunction of A in € with the eigenvalue .

Let M be a compact connected manifold and 2 = M. Let u be a solution of the mixed
problem for the heat equation in R, X  with the initial function f € L*(f2). Prove

that, for any t > 0,
/U(t, dp = / fdp. (107)
Q Q

Hint. Use Exercise 5(f)v and expansions of f and u(¢,-) in the eigenfunction basis
{vehp -

Solution. By Exercise 5(f)v we know that \; (2) =0, Ay () > 0 and v; = const . We
would like to have all eigenfunctions {v;} normalized in L?(Q), in particular, we have

1
vy (z) = :
p Q)
Observe that since 1 () < oo, we have L*(Q) C L'(Q) so that [, fdpu is well defined.
Let -
f= Z AgVk-
k=1
Then

/Qfdu = (f71)L2 = Zak(vk, 1)L2-
k=1

Since vg Ly for k > 1, we obtain that (vg, 1) =0 for & > 1, and
(01.1) = [ vade = /@D,
Q

96



85.

86.

Hence,
/Qfdu = a1/ ().
Since

o0
u(t,-) = Ze_AktakUk,
=1

we obtain in the same way that

/Qu (t, ) dp = e May/ ().

Since A\; = 0, we obtain (81).

(Product rule for L*-derivatives) Let I be an interval in R and u (¢),v () : I — L*(Q2)
be differentiable paths. Prove that

d dv du

E (U,U) - (ua %) + (%7 U),
where (+,-) denotes the inner product in L? (£2).
Solution. We have

(u(t+e),v(t+e)) — (u(t),v(t))

When ¢ — 0, we have u (t +¢) — u (t) and

v(t+e)—v(t) Lo (1) and u(t+¢e)—ul(t)

u (1),
£ £ —uw(t)

where all the convergencies are in L?-norm . Since the inner product is a continuous
functional of the both arguments, we obtain

(u(t+e),v(t+e))— (u(t),v(t))

= (u(t) v (@) + (W (t),v (1),
which was to be proved.

* (Chain rule for L*-derivatives) Let w(t) : I — L*(Q2) be a differentiable path.
Consider a function ¢ € C' (R) such that

¥ (0) =0 and sup [¢'] < oo. (108)
Prove that the path v (u (t)) is also differentiable in ¢t € I and

d(u) | du
T —@D(U)%-
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Solution. The condition (82) implies that [¢ ()] < C'|t| whence it follows that
¥ (u(t)) is also in L? (). Fix t € I. Denoting

u(t+s)—ul(t)

r(s) =

s
and u' = dt, we have by hypothesis
r(s) 2 "(t) as s — 0. (109)
We need to prove that
t — t 2

S

It suffices to show that for any sequence s, — 0, there is a subsequence along which

(??) holds.

By the mean value theorem, we have

Plu(t+s) =y ) = ¢)+sr(s) —¢(ud)

where £ = ¢ (s,x) € (0,1). Therefore,
Y (ut+s) = ud)

S

— ¢ () = [ (u(t) +Esr(s)) — o' (u ()] (1)
¢ (u(t) + Esr (s)) [r (s) — ' (1)]

and, hence,

H@D t+8)) ¥ (u(t))

=¥ (u)

L2
1/2

(/Iw t)+&sr(s)) — w’(U(t))I2IU’(t)|2du> +sup [¢] [ (s) = u (£)(134)

When s — 0, the second term in (83) tends to 0 by (??). Let us show that, for any
sequence s, — 0, there is a subsequence along which the first term in (83) tends to 0.
The sequence of functions sgr (s;,) tends to 0 in  L? because the norms ||7 (s) || 2 remain
bounded as s — 0. Therefore, there is a subsequence sj,, which will be renumbered
by {sk}, along which s;r (sg, ) — 0 a.e. Since &, := £ (s) is bounded, we also have
.5k (sg) — 0 a.e., and by the continuity of ¢,

Y (u(t) 4+ Esir (s) — ¢ (u (1)) ae.

Hence, the function under the integral sign in (83) tends to 0 almost everywhere. Since
this function is bounded for all s by the integrable function 4C? |/ |2, we conclude by
the dominated convergence theorem that the integral in (83) tends to 0, which finishes
the proof.

98



	   ... To be continued

