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Blatt 0. Keine Abgabe

1. Let M be any topological space. Let K be a compact subset of M and F be a closed
subset of M . Prove that if F ⊂ K then F is compact.

Solution. Let {Uα} be an open covering of F . We need to prove that it has a finite
subcover. The set V = F c is open. Then the family {Uα, V } covers the entire space
M and, in particular, K. Therefore, it has a finite subcover: {Uαi

, V }. It follows that
F is covered by the union of all Uαi

and V . Since F and V are disjoint, we obtain that
F ⊂

⋃
Uαi

, which finishes the proof.

2. A topological space M is called Hausdorff if, for any two disjoint points x, y ∈ M ,
there exist two disjoint open sets U, V ⊂ M such that x ∈ U and y ∈ V . Prove the
following properties of a compact subset K of a Hausdorff topological space M.

(a) For any x ∈ Kc there exists an open set Wx containing x and disjoint from K.

(b) K is a closed subset of M .

Solution. (a) Fix x ∈ Kc. For any y ∈ K there are disjoint open sets Uy and Vy

containing x and y, respectively. All sets Vy, y ∈ K, form an open covering of K.

Choose a finite subcover {Vyi
}N

i=1 and set

Wx =
n⋂

i=1

Uyi
.

Then Wx is an open set containing x and disjoint from all Vyi
. It follows that Wx is

disjoint from K, which was to be proved.

(b) Since Kc =
⋃

x∈Kc Wx, it follows that Kc is open. Hence, K is closed.

3. Let X,Y be two topological spaces and f : X → Y be a continuous mapping. Prove
that if K is a compact subset of X then f(K) is a compact subset of Y.

Solution. Let {Uα} be an open covering of f(K). Then the preimages {f−1(Ua)}
form an open covering of K (the sets f−1(Uα) are open by definition of a continuous

mapping). Therefore, there is a finite subcover {f−1(Uαi
)}N

i=1 of K, which implies that

{Uαi
}N

i=1 is a finite subcover of K, thus proving the compactness of K.

4. Prove that, on any C-manifold M , there exists a countable sequence {Ωk} of relatively
compact open sets such that Ωk b Ωk+1 (that is, Ωk is relatively compact and Ωk ⊂
Ωk+1) and the union of all Ωk is M . Prove also that if M is connected then the sets
Ωk can also be taken connected.

Remark. An increasing sequence {Ωk} of open subsets of M whose union is M , is called
an exhaustion sequence. If in addition Ωk b Ωk+1 then the sequence {Ωk} is called a
compact exhaustion sequence.
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Solution. By a lemma from lectures, there exists a countable family {Ui}
∞
i=1 of rela-

tively compact charts covering all M . Set

Ωk =
k⋃

j=1

Uj (1)

so that {Ωk}
∞
k=1 is an increasing sequence of relatively compact open sets covering M .

However, we may not have yet the inclusion Ωk ⊂ Ωk+1. To achieve that, we will select
a subsequence of {Ωk}. The first term to be selected is Ω1. If we have already selected
Ωi then observe that Ωi is a compact set and, hence is covered by a finitely many of
sets {Ωk}. Since this family is increasing, Ωi is covered by one of Ωk. Hence, select
this Ωk as the next term in the subsequence.

Let M be connected. The sets Uj considered above are always connected as they are
constructed as small balls in charts. All we need is to renumber the sequence {Uj}
in an appropriate order so that each set Ωk defined by (1) is connected. We will do
this by means of an inductive construction. At each step, some of the sets {Uj} will
be declared selected and denoted by V1, V2, .... Set V1 = U1 and declare U1 selected.
Choose a non-selected set Uj with the minimal j that intersects V1, denote it by V2

and declare selected, etc. If V1, ..., Vi are already defined then choose a non-selected
set Uj with minimal j that intersects V1 ∪ V2... ∪ Vi, denote it by Vi+1 and declare
selected. The process stops if we cannot choose Vi+1, and continues countably many
times otherwise. By construction, all the unions V1 ∪ V2... ∪ Vi are connected, so we
need only to verify that the sequence {Vi} covers all M .

Assume first that the sequence {Vi} is finite. Then, at some step i, any non-selected
Uj is disjoint with V := V1 ∪ V2... ∪ Vi. Let U be the union of all non-selected Uj . All
selected Uj are contained in V1, ..., Vi and, hence, their union is V . Since U and V are
two disjoint open sets covering M , one of them must be empty, which can be only U ,
whence V = M .

Assume now that the sequence {Vi} is infinite, and show that it covers M . If this is
not the case then there exists Uj which is not covered by V =

⋃
i Vi. If Uj intersects

V then it should have been selected at some step because there are selected sets Uj′

with j′ > j. Hence, any Uj that is not covered by V is actually disjoint with V . Let
U be the union of all such sets Uj. Clearly, U and V cover M and are disjoint, which
implies by the connectedness of M that U = ∅ and, hence, V = M .
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5. Let M be a C-manifold of dimension n. Let V be a chart on M and E be a subset of
V . The compact inclusion E b V can be understood in two ways: in the sense of the
topology of M as well as in the sense of the topology of Rn, when identifying V with
a subset of Rn. Prove that these two meanings of E b V are equivalent.

Solution. Let E be the closure of E in the topology of M and Ẽ be the closure of E in
the topology of Rn. We need to prove that the following two conditions are equivalent:

(a) Ẽ is compact in Rn and Ẽ ⊂ V

(b) E is compact in M and E ⊂ V,

Let us prove that (a) ⇒ (b). By Exercise 3, the set Ẽ is also compact in M (as

a continuous image of a compact subset of Rn). Since M is Hausdorff, Ẽ is also

closed in M (Exercise 2). Since E ⊂ Ẽ ⊂ V , it follows that E ⊂ Ẽ and, hence,
E is compact in M as a closed subset of a compact set (Exercise 1). Since also
E ⊂ V , we obtain (b) . The converse implication (b) ⇒ (a) is proved in the same
way.

6. Prove that, on any C-manifold M , there is a countable locally finite family of relatively
compact charts covering M .

Remark. A family F of subsets of M is called locally finite if any compact subset of
M intersects only finitely many sets from F .

Solution. By a lemma from lectures, there exists countable family {Ui} of locally
compact charts covering M . Let {Ωk} be a sequence from Exercise 4. Let us construct
inductively a locally finite family F of relatively compact charts which will also cover
M . At step 0, set F = ∅. At step k ≥ 1, consider the compact set Ωk \ Ωk−1 (where
Ω0 := ∅). This set is covered by a finite number of charts from the family {Ui}; say
U1, ..., Um. Then add to F the charts Ui \ Ωk−1, i = 1, ...,m. Clearly, the newly added
charts cover Ωk \ Ωk−1 and do not intersect Ωk−1.

The family of charts F obtained in this way covers all sets Ωk \ Ωk−1 and hence M .
Let us verify that it is locally finite. Indeed, any compact set K is contained in one
of the sets Ωk. Up to the step k of the above construction, family F contains a finite
number of chart. From step k + 1 onwards, each added chart does not intersect Ωk.
Hence, there is only a finite number of charts in F intersecting Ωk and hence K, which
finishes the proof.

7. Fix some positive integers n,m, let F : Rn+m → Rm be a C1-function. Consider the
null set of F , that is, the set

M =
{
x ∈ Rn+m : F (x) = 0

}
,
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and assume that, for any point x ∈ M , the Jacobi matrix F ′ (x) has the rank m. Prove
that M is a C-manifold of dimension n.

Hint. Use the implicit function theorem.

Solution. The topology of M is induced from that of Rn+m, that is, open sets in M
are intersections of open sets in Rn+m with M . Since Rn+m has a countable base, it
follows that M also has countable base. Since Rn+m is Hausdorff, the same is true also
for M .

Fix a point z ∈ M and show that there is a chart in M that covers z. The Jacobi
matrix F ′ (z) is as follows:

F ′(z) =




∂x1F1 ... ∂xnF1 ∂xn+1F1 ... ∂xn+mF1

. . . . . . . . . . . . . . . . . .
∂x1Fm ... ∂xnFm ∂xn+11Fm ... ∂xn+mFm



 .

It has n + m columns and m rows. Since the rank of F ′ (z) is equal to m, there are
m linearly independent columns. Without loss of generality, assume that the last m
columns are linearly independent. Then, by the implicit function theorem, there exist
open sets U ⊂ Rn and V ⊂ Rm such that z ∈ U × V and that the equation F (x) = 0
in U × V can be resolved with respect to the last m coordinates xn+1, ..., xn+m; that
is, in U × V the equation F (x) = 0 is equivalent

(
xn+1, ...., xn+m

)
= f(x1, ...xn)

where f : U → V is of the class C1. In other words, M ∩ (U × V ) is a graph of a
continuous function f : U → Rn+m, which implies that M ∩ (U × V ) is a chart. Since
any point z ∈ M is covered by such a chart, we conclude that M is a C-manifold.

8. Let K be a compact subset of a smooth manifold M and {Uj}
k
j=1 be a finite family

of open sets covering K. Prove that there exist non-negative functions ϕj ∈ C∞
0 (Uj)

such that
∑k

j=1 ϕj ≡ 1 in an open neighbourhood of K and
∑k

j=1 ϕj ≤ 1 in M .

Remark. The family
{
ϕj

}
is called a partition of unity at K subordinate to {Uj}. If

all Uj are charts then the existence of the partition of unity was proved in lectures.

Hint. Choose first a finite family {Wi} of charts covering K and such that each Wi is
contained in one of the sets Uj . By a theorem from lectures, there exists a partition of
unity {ψi} of K subordinate to {Wi}. Use functions ψi to construct functions ϕj .

Solution. For any point x ∈ K, there is a chart Wx containing x. Since x is also
covered by one of the sets Uj, by reducing Wx we can assume that Wx ⊂ Uj for
some j. Since the family {Wx}x∈K covers K, there exists a finite subfamily {Wi}

m
i=1

also covering K. Since each Wi is a chart, by a theorem from lectures there exists a

partition of unity {ψi}
m
i=1 at K subordinate to {Wi}. Now define the sequence

{
ϕj

}k

j=1

as follows:
ϕ1 =

∑

{i:supp ψi⊂U1}

ψi,

ϕ2 =
∑

{i:supp ψi⊂U2, supp ψi 6⊂U1}

ψi,
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...

ϕk =
∑

{i:supp ψi⊂Uk, supp ψi 6⊂Ul ∀l<k.}

ψi.

Clearly, each ϕj is non-negative and belongs to C∞
0 (Uj). Since Wi is covered by some

Uj , each ψi is supported in some Uj and, hence, each ψi has been used in the above
construction exactly once. It follows that

∑

j

ϕj ≡
∑

i

ψi,

which implies that
{
ϕj

}
is a partition of unity at K subordinate to {Uj}.
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In all exercises, M is a smooth manifold of dimension n.

9. A path on M is any smooth mapping γ : [0, a] → M , where a > 0. Set x = γ(0). For
any function f ∈ C∞ (M), define the derivative of f along the path γ at the point x
by

∂f

∂γ
:=

d

dt
f (γ (t))

∣
∣
∣
∣
t=0

.

(a) Prove that ∂
∂γ

is an R-differentiation at x, that is, ∂
∂γ

∈ TxM .

(b) Prove that any tangent vector ξ ∈ TxM can be represented in the form ξ = ∂
∂γ

for some path γ.

Solution. (a) The operation d
dγ

is linear and satisfies the product rule because

∂

∂γ
(fg) =

d

dt
(f (γ (t)) g (γ (t)))

∣
∣
∣
∣
t=0

=
d

dt
f (γ (t)) g (γ (t))

∣
∣
∣
∣
t=0

+ f (γ (t))
d

dt
g (γ (t))

∣
∣
∣
∣
t=0

=
∂f

∂γ
g (x) +

∂g

∂γ
f (x) .

Hence, ∂
∂γ

∈ TxM .

(b) Let x1, ..., xn be a local coordinate system near the point x. Fix some ξ ∈ TxM
and find a path γ such that ξ = ∂

∂γ
. If ξ = 0 then define γ just by γ (t) ≡ x. Let

ξ 6= 0. Assuming that the Euclidean ball Br (x) is contained in this chart, define in
this coordinate system the path γ by

γ (t) = x + tξ

where t ∈ [0, a] and a = r/ |ξ|, where |ξ| is the Euclidean length of ξ =
(
ξ1, ..., ξn

)
.

Indeed, for any t ∈ [0, a], we have

t |ξ| ≤ a |ξ| ≤ r

so that γ (t) ∈ Br (x). Hence, γ : [0, a] → M is well-defined and is obviously smooth
in t. We have

d

dt
f (γ (t)) =

d

dt
f (x + tξ) =

∂f

∂xi
ξi.

Since also

ξ (f) =
∂f

∂ξ
=

∂f

∂xi
ξi,

we conclude that d
dt

f (γ (t)) = ξ (f) and, hence, ∂
∂γ

= ξ.
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10. A smooth vector field on M is a mapping X : C∞ (M) → C∞(M) such that, for any
x ∈ M , the mapping

C∞(M) → R

f 7→ X(f)(x)

is a R-differentiation at x. Prove that, in any chart U with the local coordinates
x1, ..., xn, there are functions a1, ..., an ∈ C∞ (U) such that

X(f) =
n∑

i=1

ai ∂f

∂xi
for any f ∈ C∞(M).

Hint. Use the fact that any R-differentiation ξ can be represented in the form

ξ =
n∑

i=1

ξi ∂

∂xi

for some ξi ∈ R.

Solution. Since any R-differentiation ξ at x is given by

n∑

i=1

ξi ∂

∂xi

for some reals ξi, it follows that, for any x ∈ U there are reals a1(x), ..., an(x) such that

X(f)(x) =
n∑

i=1

ai(x)
∂f

∂xi
,

that is,

X(f) =
n∑

i=1

ai ∂f

∂xi
.

Since X(f) is smooth for any smooth f , it follows that also ai(x) must be smooth
functions. Indeed, there exists a function f ∈ C∞(M) such that f(x) = xi in a
neighborhood of some point x0 ∈ U. Then, in this neighborhood, we have X(f) = ai,
which implies that ai is smooth in this neighborhood and, hence, in U .

11. Let X and Y be two smooth vector fields on M (as in Exercise 5). Define the Lie
bracket [X,Y ] of X,Y as a mapping of C∞ (M) into itself by

[X,Y ] := XY − Y X,

that is, [X,Y ] (f) = X(Y (f)) − Y (X(f)) for any f ∈ C∞(M).

Prove that [X,Y ] is a smooth vector field on M .

Hint. In the local coordinates, X(f) is a combination of the first partial derivatives
∂f
∂xi (by Exercise 5). Hence, XY (f) and Y X(f) contain the second derivatives of f .
The point of the present claim is that the difference XY (f) − Y X(f) depends on the
first derivatives of f only, that is, the second derivatives cancel out.
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Solution. We need to prove that, for any x ∈ M , the mapping [X,Y ] is R-differentiation
at x. Fix a chart U around x. Then, by Exercise 5, there are smooth functions a1, ..., an

and b1, ..., bn in U such that

X(f) =
n∑

i=1

ai ∂f

∂xi
and Y (f) =

n∑

i=1

bi ∂f

∂xi
.

It follows that

XY (f) = X(Y (f)) = X

(
n∑

i=1

bi ∂f

∂xi

)

=
n∑

j=1

aj ∂

∂xj

(
n∑

i=1

bi ∂f

∂xi

)

=
n∑

j=1

n∑

i=1

ajbi ∂2f

∂xj∂xi
+

n∑

j=1

n∑

i=1

aj ∂bi

∂xj

∂f

∂xi
.

Similarly, we have

Y X(f) =
n∑

j=1

n∑

i=1

bjai ∂2f

∂xj∂xi
+

n∑

j=1

n∑

i=1

bj ∂ai

∂xj

∂f

∂xi
.

By interchanging of i and j, we see that

n∑

j=1

n∑

i=1

ajbi ∂2f

∂xj∂xi
=

n∑

j=1

n∑

i=1

bjai ∂2f

∂xj∂xi
.

Hence,

XY (f) − Y X(f) =
n∑

j=1

n∑

i=1

aj ∂bi

∂xj

∂f

∂xi
−

n∑

j=1

n∑

i=1

bj ∂ai

∂xj

∂f

∂xi

=
n∑

i=1

C i ∂f

∂xi
,

where

C i =
n∑

j=1

(

aj ∂bi

∂xj
− bj ∂ai

∂xj

)

. (2)

Therefore, [X,Y ] = XY − Y X is R-differentiation at x, which was to be proved.

12. (The Jacobi identity) Prove the following identity for three smooth vector fields X,Y, Z
on a smooth manifold M :

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X ]] = 0, (3)

where [∙, ∙] is the Lie bracket defined in Exercise 5,
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Hint. By linearity, it suffices to consider the case when X,Y, Z are given in the local
coordinates x1, ..., xn by

X = a
∂

∂xi
, Y = b

∂

∂xj
, Z = c

∂

∂xk
,

where a, b, c are smooth functions of x1, ..., xn and i, j, k are some indices from 1, ..., n.

Solution. If i 6= j then we have by (??)

[X,Y ] =

[

a
∂

∂xi
, b

∂

∂xj

]

= C i ∂

∂xi
+ Cj ∂

∂xj

where

C i =
n∑

l=1

(

al ∂bi

∂xl
− bl ∂ai

∂xl

)

= −b
∂a

∂xj

and

Cj =
n∑

l=1

(

al ∂bj

∂xl
− bl ∂aj

∂xl

)

= a
∂b

∂xi
.

If i = j then by (??)

[X,Y ] =

[

a
∂

∂xi
, b

∂

∂xi

]

= C i ∂

∂xi
,

where

C i =
n∑

l=1

(

al ∂bi

∂xl
− bl ∂ai

∂xl

)

= a
∂b

∂xi
− b

∂a

∂xi
.

Hence, in the both cases we obtain that
[

a
∂

∂xi
, b

∂

∂xj

]

= −b
∂a

∂xj

∂

∂xi
+ a

∂b

∂xi

∂

∂xj
= −Y (a)

∂

∂xi
+ X(b)

∂

∂xj
.

Similarly, we have
[

Z,C i ∂

∂xi

]

=

[

c
∂

∂xk
, C i ∂

∂xi

]

= −C i ∂c

∂xi

∂

∂xk
+ c

∂C i

∂xk

∂

∂xi
,

[

Z,Cj ∂

∂xj

]

= −Cj ∂c

∂xj

∂

∂xk
+ c

∂Cj

∂xk

∂

∂xj
,

and, hence,

[Z, [X,Y ]] = −C i ∂c

∂xi

∂

∂xk
+ c

∂C i

∂xk

∂

∂xi
+ −Cj ∂c

∂xj

∂

∂xk
+ c

∂Cj

∂xk

∂

∂xj

= b
∂a

∂xj

∂c

∂xi

∂

∂xk
− c

∂

∂xk

(

b
∂a

∂xj

)
∂

∂xi
− a

∂b

∂xi

∂c

∂xj

∂

∂xk
+ c

∂

∂xk

(

a
∂b

∂xi

)
∂

∂xj

= −c
∂

∂xk

(

b
∂a

∂xj

)
∂

∂xi
+ c

∂

∂xk

(

a
∂b

∂xi

)
∂

∂xj
+

(

b
∂a

∂xj

∂c

∂xi
− a

∂b

∂xi

∂c

∂xj

)
∂

∂xk
.

By cycling permutation of a, b, c we obtain that

[X, [Y, Z]] = −a
∂

∂xi

(

c
∂b

∂xk

)
∂

∂xj
+ a

∂

∂xi

(

b
∂c

∂xj

)
∂

∂xk
+

(

c
∂b

∂xk

∂a

∂xj
− b

∂c

∂xj

∂a

∂xk

)
∂

∂xi
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and

[Y, [Z,X ]] = −b
∂

∂xj

(

a
∂c

∂xi

)
∂

∂xk
+ b

∂

∂xj

(

c
∂a

∂xk

)
∂

∂xi
+

(

a
∂c

∂xi

∂b

∂xk
− c

∂a

∂xk

∂b

∂xi

)
∂

∂xj
.

It follows that, in the sum [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X ]] , the coefficient in front
of ∂

∂xi is

− c
∂

∂xk

(

b
∂a

∂xj

)

+

(

c
∂b

∂xk

∂a

∂xj
− b

∂c

∂xj

∂a

∂xk

)

+ b
∂

∂xj

(

c
∂a

∂xk

)

= −c
∂b

∂xk

∂a

∂xj
− cb

∂ja

∂xk∂xj
+

(

c
∂b

∂xk

∂a

∂xj
− b

∂c

∂xj

∂a

∂xk

)

+ b
∂c

∂xj

∂a

∂xk
+ bc

∂ja

∂xj∂xk

= 0.

Similarly, the coefficients in front of ∂
∂xj and ∂

∂xk are 0, whence (2) follows.
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13. Let {Vα} be a family of charts covering a smooth manifold M . Prove that if a function
f : M → R belongs to C∞ (Vα) for any α then f ∈ C∞ (M) .

Remark. By definition, f ∈ C∞ (M) if f ∈ C∞ (U) for any chart U in M .

Solution. Fix a chart U ⊂ M with coordinates x1, .., xn and prove that f ∈ C∞ (U).
It suffices to prove that f is C∞ in a neighborhood of any point p ∈ U . Let V be a
chart from the family {Vα} that contains p, let y1, ..., yn be coordinates in V . Since
f ∈ C∞ (V ), the function f is smooth in the coordinates y1, ..., yn. Since the change
of coordinates yi = yi (x1, ..., xn) is given by smooth functions, we conclude that f is
also smooth in the coordinates x1, ..., xn that are defined in U ∩ V . Hence, f is C∞ in
the chart U in a neighborhood of p, which was to be proved.

14. Prove that a smooth hypersurface in Rn+1 is a smooth n-dimensional manifold.

Remark. Recall that a smooth hypersurface is a subset M of Rn+1 that is locally a
graph of a smooth function. Each graph gives rise to a chart on M . You need to prove
that the change of coordinates between any two of such charts is given by smooth
functions.

Solution. Assume that a point p on a smooth hypersurface M in Rn+1 belongs to two
charts: the first chart where M is the graph of the function

x1 = f(x2, ..., xn)

and the second chart where M is the graph of a function

xn = g
(
x1, ..., xn−1

)
.

We need to show that the local coordinates x1, ..., xn−1 in the second chart are expressed
as smooth functions of the local coordinates of the first chart, that is, of x2, ..., xn.
Indeed, this change is given by

x1 = f(x2, ..., xn)

x2 = x2

...

xn−1 = xn−1

which is clearly a smooth change of coordinates.

15. (a) Let U be an open set in Rn and Ψ : U → Rm be a smooth mapping. Let Γ be the
graph of Ψ, that is,

Γ =
{
(x, Ψ(x)) ∈ Rn+m : x ∈ Rn

}
.

Prove that Γ is a submanifold of Rn+m of dimension n.

(b) Prove that any smooth hypersurface in Rn+1 in a submanifold of Rn+1 of dimension
n.
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Hint. Use the definition of a submanifold.

Solution. (a) Let x1, .., xn be the coordinates in Rn, y1, .., ym be the coordinates in
Rm. Set N = n + m. We introduce new coordinates z1, ..zN in U ×Rm such that Γ is
given by the equations zn+1 = ... = zN = 0, which will imply by definition that Γ is a
submanifold of RN of dimension n (with a single chart). Set

z1 = x1

...

zn = xn

zn+1 = y1 − Ψ1
(
x1, ..., xn

)

...

zn+m = ym − Ψm
(
x1, ..., xn

)
.

First of all, the mapping (x, y) 7→ z is a diffeomorphism because this mapping is smooth
and there is the smooth inverse mapping

x1 = z1

...

xn = zn

y1 = zn+1 + Ψ1
(
z1, ..., zn

)

...

ym = zn+m + Ψm
(
z1, ..., zn

)
.

The equation y = Ψ (x) in the coordinates z is equivalent to zn+1 = ... = zN = 0,
which finishes the proof.

(b) If M is a hypersurface in Rn+1 then locally it is a graph of a function f : U → R
where U is an open subset of U . By (a) there is a local coordinate system z1, ..., zn+1

in U × R such that M ∩ (U × R) is given by the equation zn+1 = 0. Since the entire
M is covered by the charts like U ×Rn, we conclude that M is a submanifold of Rn+1

of dimension n.

16. Let M be a smooth manifold of dimension n and S be its submanifold of dimension m.
Let x1, ..., xn be local coordinates in a chart U in M and y1, ..., ym be local coordinates
in a chart V on S. Assume that V ⊂ U . Then, for any point in V , its x-coordinates
can be expressed as functions of its y-coordinates:

xi = f i(y1, ..., ym), i = 1, ..., n,

where f i are some real-valued functions on V . Prove that f i ∈ C∞(V ).

Hint. Use the definition of a submanifold.

Solution. It suffices to prove that f i are C∞ in a neighborhood of any point p ∈ V .
By definition of a submanifold, for any point p ∈ S there is a chart W in M containing
p such that in its local coordinates z1, ..., zn,

z ∈ S ∩ W ⇔ zm+1 = ... = zn = 0.

12



In this case S ∩ W is a chart on S with the local coordinates z1, ..., zm.

It follows that in the intersection of the domains of the local coordinates y1, .., ym and
z1, ..., zm, the change of coordinates is given by C∞ functions:

zi = zi(y1, ..., ym), i = 1, ...,m. (4)

Similarly, in the intersection of the domains of the local coordinates x1, ..., xn and
z1, ..., zn, the change of coordinates is also given by smooth functions:

xi = xi(z1, ..., zn).

In particular, on S we have

xi = xi(z1, ..., zm, 0, ..., 0).

Substituting here the smooth functions (3), we express xi as a smooth function of
y1, ..., ym, which was to be proved.

17. ∗ Let X and Y be smooth manifolds of dimensions n and m, respectively, with n ≥ m.
A mapping Φ : Y → X is called smooth if in local coordinates x1, ..., xn in X and
y1, ..., ym in Y it is given by equations

xi = Φi(y1, ..., ym), i = 1, ..., n,

where Φi are smooth functions. Let Φ be a smooth mapping as above satisfying the
following three properties:

(1) the mapping Φ : Y → X is injective;

(2) the rank of the Jacobi matrix J =
(

∂Φi

∂yj

)
of Φ is maximal at all points, that is, it

is equal to m;

(3) Φ is a homeomorphism of Y onto its image S := Φ (Y ) ⊂ X.

Prove that S is a submanifold of X of dimension m.

Solution. Fix a point p ∈ S. We need to show that there is a local coordinate system
z1, ..., zn on X around point p such that in a neighborhood of p

S =
{
z : zm+1 = ... = zn = 0

}
.

Set q = Φ−1 (p) ∈ Y and let y1, ..., ym be local coordinates in some chart V ′ on Y
containing q. By (1) and (3), the mapping Φ−1 : S → Y is well-defined and continuous.
Hence, there is an open set U ′ in S containing p such that Φ−1 (U ′) ⊂ V ′. The set
U ′ is an intersection of an open set U ⊂ X with S, which implies that the preimage
Φ−1 (U) is contained in V ′. By shrinking U , we can assume that U is a chart around
p with coordinates x1, ..., xn. Now setting V := Φ−1 (U) ⊂ V ′.

In the local coordinates in U and V , the mapping Φ is given by the system of equations

x1 = Φ1
(
y1, ..., ym

)

...

xm = Φm
(
y1, ..., ym

)

13



....

xn = Φn
(
y1, ..., ym

)

that is, (x1, ..., xn) ∈ S if and only of there is (y1, ..., ym) ∈ V such that these equations
are satisfied.

Since by (2) the Jacobi matrix J =
(

∂Φi

∂yj

)
at q has the rank m, this matrix has m

linearly independent rows, suppose, these are the rows i = 1, ...,m. Then the same is
true in a neighborhood of q. By the inverse function theorem, the the first m equations
of the above system can be solved with respect to y1, ..., ym in a neighborhood of p, as
follows:

yi = yi
(
x1, ..., xm

)
, i = 1, ...,m.

Consider the following new coordinates in a neighborhood of q:

zi = yi
(
x1, ..., xm

)
, i = 1, ...,m

zi = xi − Φi
(
y1, ..., ym

)
, i = m + 1, ...,m

Then in a neighborhood of p the condition that (z1, ..., zn) ∈ S is equivalent to zm+1 =
... = zn = 0, which finishes the proof.

18. ∗ Give examples to show that any of the above conditions (1) , (2) , (3) is essential for
the statement of Exercise 5.

Solution. For counterexamples, consider the following mappings Φ : I → R2 where I
is an interval. In all examples S is not a a submanifold near (0, 0).

(1) I = (−4, 4) , Φ (t) = (sin t, cos 2t) is not injective, self-intersection point (0, 0).

(2) I = (1, 1), Φ (t) = (t2, t3). The Jacobi matrix vanishes at t = 0.

14



(3) I = (−2, π), Φ (t) = (sin t, cos 2t) is injective but the inverse mapping Φ−1 is not
continuous at (0, 0).

15
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19. Let M be a smooth manifold of dimension n, F ∈ C∞(M) and S be a non-singular
null set of F , that is,

S = {x ∈ M : F (x) = 0} and ∇F 6= 0 on S.

Consequently, S is a submanifold of M of dimension n− 1. Fix x0 ∈ S. Every tangent
vector ξ ∈ Tx0S can be regarded as an element of Tx0M by using the identity

ξ (f) := ξ (f |S) for any f ∈ C∞ (M) ,

as the restriction f |S on S is a smooth function on S. Hence, the tangent space Tx0S is
a subspace of Tx0M . Prove that Tx0S as a subspace of Tx0M is given by the equation

Tx0S = {ξ ∈ Tx0M : 〈dF, ξ〉 = 0} . (5)

Hint. Verify first that every ξ ∈ Tx0S satisfies as an element of Tx0M the equation
〈dF, ξ〉 = 0.

Solution. Note that dF is a non-zero covector, that is, a linear functional in Tx0M ,
and the equation 〈dF, ξ〉 = 0, indeed, determines an (n − 1)-dimensional subspace of
Tx0M . Since dim Tx0S = n− 1, it suffices to verify that every vector from TxS satisfies
equation (4). Indeed, if ξ ∈ Tx0S then we have by definition of dF

〈dF, ξ〉 = ξ (F ) = ξ (F |S) = ξ (0) = 0,

where we have used that F |S ≡ 0.

20. ∗ In the setting of Exercise 5, let M = Rn. Let us identify the tangent space Tx0M
with Rn by using the isomorphism I : Tx0M → Rn defined by

I(
∂

∂xi
) = ei,

where {ei}
n
i=1 is the canonical basis in Rn. Prove that the set

x0 + I(Tx0S)

is the hyperplane Hx0 in Rn that goes through x0 and has the normal ∇F (x0), where
∇F =

(
∂F
∂x1 , ...,

∂F
∂xn

)
.

16



Remark. This result means that the tangent space Tx0S can be naturally identified
with the tangent hyperplane Hx0 in Rn to the hypersurface S at the point x0.

Solution. The image I(Tx0S) is an n−1-dimensional subspace of Rn, and x0+I(Tx0S)
is a hyperplane that goes through x0. It remains to verify that

I(Tx0S)⊥∇F (x0)

Since

dF =
∂F

∂xi
dxi,

the equation 〈dF, ξ〉 = 0 of (a) for the tangent vector ξ = ξi ∂
∂xi becomes

∂F

∂xi
ξi = 0,

that is,
∂F

∂x1
ξ1 + ... +

∂F

∂xn
ξn = 0.

For any tangent vector ξ = ξi ∂
∂xi ∈ Tx0M , we have I(ξ) = ξiei. Since ∂F

∂xi are the
components of the gradient ∇F as a vector in Rn, we obtain that I(ξ)⊥∇F, which was
to be proved.

21. Let M be a Riemannian manifold.

(a) Prove the product rule for the operators d and ∇ on M :

d (uv) = udv + vdu (6)

and
∇ (uv) = u∇v + v∇u, (7)

where u and v are smooth function on M .

(b) Prove the chain rule for the operators d and ∇ on M :

df (u) = f ′ (u) du

and
∇f (u) = f ′ (u)∇u,

where u and f are smooth functions on M and R, respectively.

Solution. (a) In local coordinates x1, ..., xn, we have

du = (∂xi
u) dxi (8)

which implies

d (uv) = ∂xi
(uv) dxi = (∂xi

u) vdxi + u (∂xi
v) dxi

= vdu + vdu.
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Since
∇u = g−1du, (9)

we obtain from (5)

∇ (uv) = g−1d (uv) = g−1 (udv + vdu) = ug−1dv + vg−1du

= u∇v + v∇u.

(b)Using (7) and the chain rule for ∂xi
, we obtain

df (u) = ∂xi
(f (u)) dxi = f ′ (u) (∂xi

u) dxi = f ′ (u) du.

Using also (8), we obtain

∇f (u) = g−1df (u) = g−1f ′ (u) du = f ′ (u) g−1du = f ′ (u)∇u.

22. Let (M, g) be a Riemannian manifold. Let U and V be charts on M with the local
coordinates x1, ..., xn and y1, ..., yn, respectively. Denote by gx and gy the matrices of
the metric g in U and V , respectively. Let J =

(
Jk

i

)n
k,i=1

be the Jacobian matrix of

the change y = y (x) defined in U ∩ V by

Jk
i =

∂yk

∂xi
, (10)

where k is the row index and i is the column index. Prove the following identity in
U ∩ V :

gx = JT gyJ, (11)

where JT denotes the transposed matrix.

Solution. By the chain rule, we have for any smooth function f in U ∩ V

∂f

∂xi
=

∂yk

∂xi

∂f

∂yk
= Jk

i

∂f

∂yk
,

whence
∂

∂xi
= Jk

i

∂

∂yk

and, hence,

gx
ij = 〈

∂

∂xi
,

∂

∂xj
〉g = 〈Jk

i

∂

∂yk
, J l

j

∂

∂yl
〉g

= Jk
i J l

j〈
∂

∂yk
,

∂

∂yl
〉g

= Jk
i gy

klJ
l
j .

Noticing that
Jk

i gy
klJ

l
j =

(
JT gyJ

)
ij

,

we obtain
gx

ij =
(
JT gyJ

)
ij

whence (10) follows.
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23. Let g, g̃ be two Riemannian metrics on a smooth manifold M and let gx and g̃x be
the matrices of g and g̃, respectively, in some local coordinate system x1, ..., xn. Prove
that the ratio

det g̃x

det gx

does not depend on the choice of the coordinate system (although separately det gx

and det g̃x do depend on the coordinate system).

Hint. Use the formula (10) from Exercise 5.

Solution. Let x1, ..., xn and y1, ..., yn be two coordinate systems and let gx and gy be
the matrices of g in these systems, respectively. By Exercise 5, we have

gy = JT gxJ

where J is the Jacobian matrix of the change y = y (x). It follows that

det gy = (det J)2 det gx. (12)

The same identity holds for the metric g̃:

det g̃y = (det J)2 det g̃x.

Dividing it by (??) and noticing that (det J)2 cancels out, we obtain

det g̃y

det gy
=

det g̃x

det gx
,

which was to be proved.
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24. Let M be a smooth manifold, S be a submanifold, and x ∈ S. Prove that, for any
f ∈ C∞(M),

d (f |S) = (df) |TxS, (13)

where d in the left hand side is differential on S, while d in the right hand side is
differential on M , and (df) |TsS means the restriction of df to the tangent space TxS.

Solution. Fix x0 ∈ S. By definition, df is an element of T ∗
x0

M such that, for any
R-differentiation ξ ∈ Tx0M ,

〈df, ξ〉 = ξ(f).

For any ξ ∈ Tx0S, we have

〈d (f |S) , ξ〉 = ξ(f |S) = ξ(f),

where in the second identity we consider ξ as an element of Tx0M as Tx0S ⊂ Tx0M .
On the other hand, by the definition of the restriction (df) |S we have

〈(df) |TxS, ξ〉 = 〈df, ξ〉 = ξ(f).

Comparing the two above equation, we obtain

〈d (f |S) , ξ〉 = 〈(df) |TxS, ξ〉 ∀ξ ∈ Tx0S,

whence (11) follows.

Second solution. Let x1, ..., xn be local coordinates in a neighborhood of x0 ∈ S such
that S is given by equations

xm+1 = xm+2 = ... = xn = 0.

Then we have for differential in M

df =
n∑

i=1

∂f

∂xi
dxi.

Since the basis in Tx0S is given by
{

∂
∂xj

}m

j=1
and

〈df,
∂

∂xj
〉 =

∂f

∂xj
,

we obtain that

(df) |S =
m∑

i=1

∂f

∂xi
dxi.

In the other hand,
f |S(x1, ..., xm) = f(x1, ..., xm, 0, ..., 0),

whence

d (f |S) =
m∑

i=1

∂f

∂xi
dxi,

and (11) follows.
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25. For any submanifold S of Rn, denote by gS the Riemannian metric on S that is induced
by the canonical Euclidean metric

gRn =
(
dx1
)2

+ ... + (dxn)2 . (14)

(a) Let S1 be the unit circle in R2.

Express the induced metric gS1

using the polar angle ϕ on S1

as a local coordinate.

(b) Let S2 be the unit sphere in R3.

Express the induced metric gS2 on S2

in terms of the local coordinates θ, ϕ

where θ is the longitude on S2 and ϕ

is the latitude.

Hint. Express the Cartesian coordinates in terms of the polar coordinates and use the
representation (12) of the metric in the Cartesian coordinates.

Solution. (a) The Cartesian coordinates x, y on S1 can be expressed via the polar
coordinate Θ on S1 as follows:

x = cos ϕ and y = sin ϕ.

Hence,
gS1 = dx2 + dy2 = sin2 ϕdϕ2 + sin2 ϕdϕ2 = dϕ2.

(b) The Cartesian coordinates x, y, z on S2 are expressed via ϕ and θ as follows:

x = cos ϕ cos θ

y = cos ϕ sin θ

z = sin ϕ

Hence, we have

dx = − sin ϕ cos θ dϕ − cos ϕ sin θ dθ

dy = − sin ϕ sin θ dϕ + cos ϕ cos θ dθ

dz = cos ϕdϕ

whence

dx2 + dy2 + dz2 = (− sin ϕ cos θ dϕ − cos ϕ sin θ dθ)2

+ (− sin ϕ sin θ dϕ + cos ϕ cos θ dθ)2

+ cos2 ϕdϕ2

= sin2 ϕ cos2 θ dϕ2 + cos2 ϕ sin2 θ dθ2 + 2 sin ϕ cos θ cos ϕ sin θ dϕdθ

+ sin2 ϕ sin2 θ dϕ2 + cos2 ϕ cos2 θ dθ2 − 2 sin ϕ sin θ cos ϕ cos θ dϕdθ
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+ cos2 ϕdϕ2

= sin2 ϕdϕ2 + cos2 ϕdθ2 + cos2 ϕdϕ2

= dϕ2 + cos2 ϕdθ2.

Hence,
gS2 = dϕ2 + cos2 ϕdθ2.

26. Let Γ be the graph of a smooth function f : U → R, where U ⊂ Rn−1 is an open set.

Let g be the canonical metric in Rn. Denote

by gΓ the induced Riemannian metric on Γ

considering Γ as a submanifold of Rn.

Let y1, ..., yn−1 be the Cartesian coordinates

in U ; consider them as local coordinates in Γ.

Prove that the components of the metric gΓ

in the coordinates y1, ..., yn−1 are as follows:

(gΓ)ij = δij +
∂f

∂yi

∂f

∂yj
, (15)

where δij = 1 if i = j and δij = 0 if i 6= j.

Hint. Use the following result from lectures: if S is a submanifold of a Riemannian
manifold (M, g) then the induced metric gS is given in the local coordinates x1, ..., xn

on M and y1, ..., ym on S by the formula

(gS)ij = gkl
∂xk

∂yi

∂xl

∂yj
. (16)

Solution. Denote the Cartesian coordinates in Rn by x1, ..., xn. The Euclidean metric
is given by

g =
(
dx1
)2

+ ... + (dxn)2 .

By (14) we have

(gΓ)ij = gkl
∂xk

∂yi

∂xl

∂yj
,

where x = x (y) is the change of the coordinates that is given by

x1 = y1

x2 = y2

. . .

xn−1 = yn−1

xn = f
(
y1, ..., yn−1

)
.

Hence, we have
∂xk

∂yi
=

{
δk

i , k ≤ n − 1
∂f
∂yi , k = n

.
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Since gkl = δkl, we obtain

(gΓ)ij =
n∑

k=1

∂xk

∂yi

∂xk

∂yj
=

n−1∑

k=1

δk
i δ

k
j +

∂f

∂yi

∂f

∂yj
= δij +

∂f

∂yi

∂f

∂yj
.

Alternatively, we can use the relations

dx1 = dy1

dx2 = dy2

...

dxn−1 = dyn−1

dxn =
∂f

∂yi
dyi

that imply

gΓ =
(
dx1
)2

+ ... + (dxn)2

=
(
dy1
)2

+ ... +
(
dyn−1

)2
+

∂f

∂yi

∂f

∂yj
dyidyj

that is,

(gΓ)ii = 1 +

(
∂f

∂yi

)2

(gΓ)ij =
∂f

∂yi

∂f

∂yj
, i 6= j.

27. A catenoid Cat is a surface in R3 that is given by the parametric equations

x1 = cosh ρ cos θ, x2 = cosh ρ sin θ, x3 = ρ,

where ρ ∈ R and θ ∈ (−π, π) .

Express the induced Riemannian metric on

Cat in terms of the coordinates ρ, θ.

Catenoid

Remark. The catenoid Cat is the image of the mapping R× (−π, π) → R3 given by the
above equations. By using Exercise 5, it is possible to show that Cat is a submanifold
of R3 of dimension 2.

Solution. We have

dx1 = sinh ρ cos θdρ − cosh ρ sin θdθ

dx2 = sinh ρ sin θdρ + cosh ρ cos θdθ

dx3 = dρ
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whence

(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

= (sinh ρ cos θdρ − cosh ρ sin θdθ)2

+ (sinh ρ sin θdρ + cosh ρ cos θdθ)2

+ (dρ)2

= sinh2 ρ cos2 θ (dρ)2 + cosh2 ρ sin2 θ (dθ)2 − 2 sinh ρ cos θ cosh ρ sin θdρdθ

+ sinh2 ρ sin2 θ (dρ)2 + cosh2 ρ cos2 θ (dθ)2 + 2 sinh ρ sin θ cosh ρ cos θdρdθ

+ (dρ)2

= sinh2 ρ (dρ)2 + cosh2 ρ (dθ)2 + (dρ)2

=
(
1 + sinh2 ρ

)
(dρ)2 + cosh2 ρ (dθ)2

= cosh2 ρ
(
dρ2 + dθ2

)
.

Hence,the induced Riemannian metric is

gCat = cosh2 ρ
(
dρ2 + dθ2

)
.
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28. (Product rule for divergence) Let (M, g) be a Riemannian manifold. Let ∇ = ∇g

and div = divg be the gradient and divergence associated with g, respectively. Let u
be any smooth function on M and v be any smooth vector field on M .

(a) Prove the identity div (uv) = 〈∇u, v〉 + u div v.

Hint. Use the divergence theorem and the gradient product rule of Exercise 5a.

(b) Let (M, g, μ) be a weighted manifold. Prove that the weighted divergence divg,μ

satisfies the identity divg,μ (uv) = 〈∇u, v〉 + u divg,μ v.

Solution. (a) For any ϕ ∈ C∞
0 (M), we obtain using the divergence theorem and the

product rule (6) of gradient of Exercise 5a:
∫

M

div (uv) ϕdμ = −
∫

M

〈uv,∇ϕ〉dμ = −
∫

M

〈v, u∇ϕ〉dμ

= −
∫

M

〈v,∇ (uϕ) − ϕ∇u〉dμ

= −
∫

M

〈v,∇ (uϕ)〉dμ +

∫

M

〈v, ϕ∇u〉dμ

=

∫

M

(div v) uϕ dμ +

∫

M

〈v,∇u〉ϕdμ

=

∫

M

((div v) u + 〈v,∇u〉) ϕdμ

whence (??) follows.

(b) If D is the density of μ then we have

divg,μ u =
1

D
divg (Du) .

Using the product rule (??) for divg = div we obtain

divg,μ (uv) =
1

D
div (Duv)

=
1

D
(〈∇u,Dv〉 + u div (Dv))

= 〈∇u,
D

D
v〉 + u

1

D
div (Dv)

= 〈∇u, v〉 + u divg,μ v,

which finishes the proof.

29. Recall that the Laplace-Beltrami operator Δ = Δg on a Riemannian manifold (M, g)
is defined for any function u ∈ C∞(M) by Δu = div (∇u) .
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(a) (Product rule for the Laplacian) Prove that, for smooth functions u and v on M ,

Δ (uv) = uΔv + 2〈∇u,∇v〉 + (Δu) v.

(b) (Chain rule for the Laplacian) Prove that, for functions u ∈ C∞(M) and f ∈
C∞(R),

Δf (u) = f ′′ (u) |∇u|2 + f ′ (u) Δu.

Solution. (a) Using the identity Δ = div ∇ and the product rules for ∇ and div (cf.
Exercises 5a and 5), we obtain

Δ (uv) = div (∇ (uv)) = div (u∇v + v∇u)

= 〈∇u,∇v〉 + uΔv + 〈∇v,∇u〉g + vΔu

= uΔv + 2〈∇u,∇v〉 + (Δu) v.

(b) Using Exercises 5b and 5, we obtain

Δf (u) = div (∇f (u)) = div (f ′ (u)∇u) = 〈∇f ′ (u) ,∇u〉 + f ′ (u) div (∇u)

= f ′′ (u) 〈∇u,∇u〉 + f ′ (u) Δu.

30. Let (M, g, μ) be a weighted manifold. Prove the following identities.

(a) (The divergence theorem) If u is a smooth function on M and v is a smooth vector
field, such that either u or v has a compact support then

∫

M

(divg,μ v) u dμ = −
∫

M

〈v,∇u〉 dμ. (17)

(b) (The Green formula) If u, v are smooth functions on M and one of them has a
compact support then

∫

M

u Δg,μv dμ = −
∫

M

〈∇u,∇v〉 dμ =

∫

M

v Δg,μu dμ. (18)

Solution. (a) Let D be the density function, that is, dμ = Ddν where ν is the
Riemannian metric. Then we have

divg,μ v =
1

D
divg (Dv)

whence
∫

M

divg,μ v u dμ =

∫

M

1

D
divg (Dv) uDdν =

∫

M

divg (Dv) u dν.

Using the divergence theorem on the Riemannian manifold (M, g), we obtain

∫

M

divg (Dv) u dν = −
∫

M

〈Dv,∇u〉 dμ = −
∫

M

〈v,∇u〉Ddμ = −
∫

M

〈v,∇u〉 dν,
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which finishes the proof of (15).

(b) Since Δg,μ = divg,μ ◦∇, we obtain from (15)

∫

M

u Δg,μv dμ =

∫

M

divg,μ ∇v u dμ = −
∫

M

〈∇v,∇u〉 dμ,

whence (16) follows.

31. (Change of metric and measure) Let (M, g, μ) be a weighted manifold.

(a) Let a (x), b (x) be smooth positive functions on M. Define new metric g̃ and
measure μ̃ by

g̃ = ag and dμ̃ = b dμ,

where the first identity means that 〈ξ, η〉g̃ = a(x) 〈ξ, η〉g for all ξ, η ∈ TxM . Prove
that the Laplace operator Δg̃,μ̃ of the weighted manifold (M, g̃, μ̃) is given by the
formula

Δg̃,μ̃u =
1

b
divg,μ

(
b

a
∇gu

)

for any u ∈ C∞(M).

Hint. Use the Green formula (16).

(b) Consider the following operator L

Lu = Δg,μu + 〈∇v,∇u〉g,

acting on functions u ∈ C∞(M), where v ∈ C∞(M) is a given fixed function.
Prove that L = Δg,μ̃ for some measure μ̃, and determine this measure.

Solution. (a) By definition, we have

∇gf = g−1df,

which implies that

∇g̃f =
1

a
∇gf.

Using the Green formula (16) and the identity

〈∇gf, ξ〉g = 〈df, ξ〉 (19)

for all tangent vectors ξ, we obtain, for all u, v ∈ C∞
0 (M),

∫

M

vΔg̃,μ̃u dμ̃ = −
∫

M

〈∇g̃v,∇g̃u〉g̃dμ̃ = −
∫

M

〈dv,∇g̃u〉 bdμ

= −
∫

M

〈dv,
b

a
∇gu〉 dμ

= −
∫

M

〈∇gv,
b

a
∇gu〉g dμ =

∫

M

v divμ

(
b

a
∇u

)

dμ

=

∫

M

v

(
1

b
divμ

(
b

a
∇u

))

dμ̃,
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whence the claim follows.

(b) If dμ̃ = bdμ then, by (a) and the product rule for weighted divergence of Exercise
5, we have

Δg,μ̃u =
1

b
divg,μ (b∇u) = divg,μ (∇u) +

1

b
〈∇b,∇u〉g

= Δg,μu + 〈∇ log b,∇u〉g.

Hence, L = Δg,μ̃ provided log b = v that is, b = ev.

32. ∗ Consider in Rn the following differential operator

L =
1

b (x)

∂

∂xi

(

aij (x)
∂

∂xj

)

,

where (aij (x)) is a symmetric positive definite matrix smoothly depending on x ∈ Rn,
and b (x) is a smooth positive function. Find in Rn a Riemannian metric g and a
measure μ such that the weighted Laplace operator Δg,μ coincides with L.

Solution. We have

Δg,μ =
1

ρ

∂

∂xi

(

ρgij ∂

∂xj

)

where ρ = D
√

det g and D is the density of μ with respect to the Riemannian measure
ν, that is, dμ = Ddν. Since dν =

√
det gdλ where λ is the Lebesgue measure, we see

that
dμ = ρdλ.

Clearly, the identity L = Δg,μ holds if ρ = b and aij = ρgij , that is,

gij = b−1aij .

In other words, the Riemannian metric is given by

(gij) = b
(
aij
)−1

,

and the measure μ is given by
dμ = bdλ.

33. ∗ Fix n reals a1, ..., an and consider the matrix

B =










1 + a2
1 a1a2 a1a3 ... a1an

a2a1 1 + a2
2 a2a3 ... a2an

a3a1 a3a2 1 + a2
3 ... a3an

...
...

...
. . .

...
ana1 ana2 ana3 ... 1 + a2

n










that is, B = (bij) where bii = 1 + a2
i and bij = aiaj for i 6= j. The purpose of this

question is to prove the identity

det B = 1 + a2
1 + ... + a2

n. (20)
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(a) Consider an auxiliary (n + 1) × (n + 1) matrix

A =












1 −a1 −a2 ... ... −an

a1 1
a2 1 0
...

. . .
... 0

. . .

an 1












,

where all the entries of the matrix outside the first column, the first row and the
main diagonal are zeros. Prove that det A = 1 + a2

1 + ... + a2
n.

(b) Prove the identity (17).

Hint. Prove first that the matrix AAT has the block diagonal form

AAT =

(
c 0

0 B

)

,

where B is the above matrix and c = 1 + a2
1 + ... + a2

n.

Remark. The identity (17) will be used in one of the problems in the next problem
sheet in order to compute Riemannian measure on certain submanifolds.

Solution. (a) Let us expand the determinant in the first row. We obtain

det A = 1 ∙ det








1
1

. . .

1








+ a1 ∙ det








a1 0 ... 0
a2 1
...

. . .

an 1








−a2 ∙ det








a1 1
a2 0 ... 0
...

. . .

an 1








+ ... + (−1)n+1 an ∙








a1 1
a2 1
...

. . .

an 0 ... 0








= 1 + a1 ∙ a1 ∙ det id−a2 ∙ (−a2) ∙ det id +... + (−1)n+1 an ∙ (−1)n−1 an det id

= 1 + a2
1 + a2

2 + ... + a2
n.

(b) Denote by αi the i-th row of the matrix A, where for convenience i = 0, 1, ..., n.
Then the elements of the product AAT are the scalar products (αi, αj). Since α0 is
orthogonal to all other αj and

(α0, α0) = 1 + a2
1 + ... + a2

n =: c,

we see that the zero row of AAT has the form

c, 0, ...., 0.

Since AAT is a symmetric matrix, then the zero column has the same form. If i, j ≥ 1
then

(αi, αi) = a2
i + 1 and (αi, αj) = aiaj .
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Hence, we obtain that

AAT =

(
c 0

0 B

)

with the above value of c. It follows that

(det A)2 = c det B,

whence

det B =
1

c
(det A)2 =

c2

c
= c,

which was to be proved.
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34. (Continuation of Exercise 5). A catenoid Cat is a surface in R3 that is given by the
parametric equations

x1 = cosh ρ cos θ, x2 = cosh ρ sin θ, x3 = ρ,

where ρ ∈ (−∞, +∞) and θ ∈ (−π, π) .

By Exercise 5, the Riemannian metric of Cat

is given by

gCat = cosh2 ρ
(
dρ2 + dθ2

)
.

Catenoid

Evaluate the integral ∫

Cat

1

cosh4 ρ
dν,

where ν is the induced Riemannian measure on Cat.

Solution. Since

g =

(
cosh2 ρ 0

0 cosh2 ρ

)

we have
det g = cosh4 ρ.

Hence, the Riemannian measure is given by

dν =
√

det g dρdθ = cosh2 ρ dρ dθ.

Since ρ ∈ (−∞,∞) and θ ∈ (−π, π), we obtain

∫

Cat

1

cosh4 ρ
dν =

∫ ∞

−∞

∫ π

−π

1

cosh4 ρ

√
det g dθ dρ

=

∫ ∞

−∞

∫ π

−π

1

cosh2 ρ
dθ dρ

= 2π

∫ ∞

−∞

1

cosh2 ρ
dρ

= 4π,

where we have used that
∫ ∞

−∞

1

cosh2 ρ
dρ = [tanh ρ]+∞

−∞ = 2.
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35. Consider the unit circle S1 ⊂ R2 and set U = S1 \ {q} where q = (0,−1) ∈ S1.

For any point x ∈ U define

its stereographic projection

onto R1 as the point y ∈ R1

such that (y, 0) ∈ R2 lies on

the straight line that goes

through x and q.

(a) Prove that the stereographic projection is a homeomorphism between U and R1,
and that it is given by

x1 =
2y

1 + y2
, x2 =

1 − y2

1 + y2
,

where (x1, x2) ∈ U and y ∈ R1. Hence, U is a chart on S1 with the coordinate y.

(b) Prove that the canonical spherical metric gS1 := gR2 |S1 has in the coordinate y
the form

gS1 =
4

(1 + y2)2 dy2.

(c) Evaluate σ (S1), where σ the Riemannian measure of (S1, gS1).

Solution. (a) It follows from the definition of the stereographic projection that

y =
x1

1 + x2

(note that x2 > −1 on U). Since also

x2
1 + x2

2 = 1,

it follows that

y2 =
x2

1

(1 + x2)
2 =

1 − x2
2

(1 + x2)
2 =

1 − x2

1 + x2

,

whence

1 + y2 =
2

1 + x2

and

x2 =
2

1 + y2
− 1 =

1 − y2

1 + y2

It follows that

x1 = y (1 + x2) =
2y

1 + y2
.

Hence, stereographic projection is a bijection between U and R1 that is continuous and
its inverse is also continuous, which implies that it is homeomorphism.
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(b) The metric gS1 in the coordinate y has the form

gS1 = (gS1)11 dy2

where

(gS1)11 =
2∑

k,l=1

(gR2)kl

∂xk

∂y

∂xl

∂y
=

(
∂x1

∂y

)2

+

(
∂x2

∂y

)2

.

Since
∂x1

∂y
=

d

dy

2y

1 + y2
=

2 (1 + y2) − 4y2

(1 + y2)2 = 2
1 − y2

(1 + y2)2

and
∂x2

∂y
=

d

dy

(
2

1 + y2
− 1

)

=
−4y

(1 + y2)2 ,

it follows that

(gS1)11 =
4 (1 − y2)

2
+ 16y2

(1 + y2)4 = 4
1 − 2y2 + y4 + 4y2

(1 + y2)4

= 4
(1 + y2)

2

(1 + y2)4 =
4

(1 + y2)2 .

(c) We have det gS1 = 4
(1+y2)2

, whence

σ
(
S1
)

= σ (U) =

∫

U

√
det gS1dy =

∫ ∞

−∞

2

1 + y2
dy = 2 [arctan y]∞−∞ = 2π.

Of course, 2π is the length of the unit circle.

36. Consider in R2 a semi-hyperbola

H :=
{
(x1, x2) ∈ R

2 : x2
2 − x2

1 = 1, x2 > 0
}

that is a submanifold of R2 of dimension 1.

For any point x ∈ H, define

its stereographic projection

onto R1 as the point y ∈ R1

such that (y, 0) ∈ R2 lies on

the straight line that goes

through x and q = (0,−1).

(a) Prove that the stereographic projection is a homeomorphism between H and the
unit interval I = {y ∈ R1 : −1 < y < 1}, and that it is given by

x1 =
2y

1 − y2
, x2 =

1 + y2

1 − y2
, (21)

where (x1, x2) ∈ H and y ∈ I. Hence, H itself is a chart with the coordinate y.
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(b) Consider in R2 the Minkowski metric tensor

gMink := dx2
1 − dx2

2.

Prove that its restriction gH := gMink|H is given in the coordinate y by

gH =
4

(1 − y2)2 dy2.

(c) Denoting by ν the Riemannian measure of (H, gH), evaluate the integral
∫

H

1

x2

dν,

where x2 is the second coordinate in R2 of a point x ∈ H (as in (18)).

Solution. (a) It follows from the definition of the stereographic projection that

y =
x1

1 + x2

(note that x2 > −1 on U). Since also

x2
2 − x2

1 = 1,

it follows that

y2 =
x2

1

(1 + x2)
2 =

x2
2 − 1

(1 + x2)
2 =

x2 − 1

1 + x2

= 1 −
2

1 + x2

whence

x2 =
2

1 − y2
− 1 =

1 + y2

1 − y2

It follows that

x1 = y (1 + x2) =
2y

1 − y2
.

Hence, stereographic projection is a bijection between H and I that is continuous and
its inverse is also continuous, which implies that it is homeomorphism.

(b) The metric gH in the coordinate y has the form

gH = (gH)11 dy2

where

(gH)11 =
2∑

k,l=1

(gMink)kl

∂xk

∂y

∂xl

∂y
=

(
∂x1

∂y

)2

−

(
∂x2

∂y

)2

.

Since
∂x1

∂y
=

d

dy

2y

1 − y2
=

2 (1 − y2) + 4y2

(1 − y2)2 = 2
1 + y2

(1 − y2)2

and
∂x2

∂y
=

d

dy

(
2

1 − y2
− 1

)

=
4y

(1 − y2)2 ,
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it follows that

(gH)11 =
4 (1 + y2)

2 − 16y2

(1 − y2)4 = 4
(1 + 2y2 + y4) − 4y2

(1 − y2)4

= 4
(1 − y2)

2

(1 − y2)4 =
4

(1 − y2)2 .

(c) Since det gH = 4
(1−y2)2

, we obtain

∫

H

1

x2

dν =

∫

H

√
det gH

1

x2

dy =

∫ 1

−1

2

1 − y2

1 − y2

1 + y2
dy

= 2

∫ 1

−1

dy

1 + y2
= 2 [arctan y]1−1 = π.

37. Let Γ be the graph in Rn+1 of a smooth function f : U → R, where U is an open
subset of Rn. Let gΓ be the Riemannian metric on Γ that is induced by the canonical
Euclidean metric in Rn+1. Let y1, ..., yn be the Cartesian coordinates in U that can be
regarded as local coordinates on Γ. Denote by νΓ the Riemannian measure of (Γ, gΓ).

(a) Prove that in the coordinates y1, ..., yn

dνΓ =

√

1 +

(
∂f

∂y1

)2

+ ... +

(
∂f

∂yn

)2

dy. (22)

Hint. Use the result of Exercise 5 that

(gΓ)ij = δij +
∂f

∂yi

∂f

∂yj
, (23)

and then the formula (17) of Exercise 5.

(b) Using (19), evaluate the area (=the Riemannian measure) of the paraboloid that
is the graph in R3 of the function

f(x, y) = 1
2
(x2 + y2)

in a disc

U = {(x, y) ∈ R2 : x2 + y2 < 1} .

Hint. Compute νΓ(Γ) using integration

in the polar coordinates in R2.
the paraboloid

Solution. (a) By the definition of the Riemannian measure, we have

dνΓ =
√

det gΓdy

where gΓ is the matrix of gΓ. Since gΓ is given by (??), we obtain by Exercise 5 that

det gΓ = 1 +
n∑

i=1

(
∂f

∂yi

)2

,
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whence (19) follows.

(b) In the case

f (x, y) =
1

2

(
x2 + y2

)

we have

dνΓ =

√

1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy =
√

1 + x2 + y2dxdy.

Hence, the area of the paraboloid Γ is

A = νΓ (Γ) =

∫

U

√
1 + x2 + y2dxdy.

This integral can be computed in the polar coordinates (r, θ) as follows: as

U = {r < 1, θ ∈ [0, 2π)} and dxdy = rdrdθ

we obtain

νΓ (Γ) =

∫ 1

0

(∫ 2π

0

√
1 + r2dθ

)

rdr

= 2π

∫ 1

0

√
1 + r2rdr

= π

∫ 1

0

√
1 + r2d

(
r2 + 1

)

= π
2

3

[(
1 + r2

)3/2
]1

0

=
2π

3

(
2
√

2 − 1
)
≈ 3.83.

38. ∗ Let q be the south pole of the unit sphere Sn ⊂ Rn+1, that is,

q = (0, ..., 0
︸ ︷︷ ︸
n zeros

,−1). (24)

For any point x ∈ U := Sn \ {q}, its stereographic projection is the point y ∈ Rn such
that the point (y, 0) ∈ Rn+1 belongs to the straight line that goes through x and q.

(a) Prove the following relations between x ∈ U and y ∈ Rn:

xi = (1 + xn+1) yi, i = 1, ..., n (25)

and

|y|2 =
2

1 + xn+1

− 1. (26)

Show that the stereographic projection is a homeomorphism between U and Rn.
Hence, U is a chart on Sn with coordinates y1, ..., yn.
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(b) Prove that the canonical spherical metric gSn := gRn+1 |Sn has in the coordinates
y1, ..., yn the form

gSn =
4

(
1 + |y|2

)2
(
dy2

1 + ... + dy2
n

)
.

Hint. Express the Euclidean metric gRn+1 = dx2
1 + ...dx2

n + dx2
n+1 via dyi using the

relations (21) and (22).

Solution. (a) Let us simplify the notation by renaming xn+1 to t. Then the equation
of the sphere Sn is

x2
1 + ... + x2

n + t2 = 1. (27)

The point y = (y1, ..., yn) is obtained from (x1, ..., xn) by scaling by the factor 1 + t,
which arises from comparison of the segments [−1, t] and [−1, 0] of the axis xn+1.
Hence, we obtain

xi = (1 + t) yi, i = 1, ..., n. (28)

Substituting into (23), we obtain

(1 + t)2 |y|2 + t2 = 1

whence

|y|2 =
1 − t2

(1 + t)2 =
1 − t

1 + t
=

2

1 + t
− 1,

which proves (22). Consequently, we obtain

xn+1 = t =
2

1 + |y|2
− 1 =

1 − |y|2

1 + |y|2
.

From (24) we obtain

xi =
2yi

1 + |y|2
, i = 1, ..., n.

Also, from (24) we have

yi =
xi

1 + t
=

xi

1 + xn+1

.

Hence, we see that the relation between x ∈ U and y ∈ Rn is bijective and continuous
in the both direction so that U and Rn are homeomorphic.

(b) The metric gSn is obtained by restricting to Sn of the Euclidean metric

gRn+1 = dx2
1 + ... + dx2

n + dt2.

Considering xi, yi and t as functions on U , we obtain from (24), for any i = 1, ..., n,
that

dxi = (1 + t) dyi + yidt

whence
dx2

i = (1 + t)2 dy2
i + (1 + t) yi (dyidt + dtdyi) + y2

i dt2.

Therefore,

gRn+1 |Sn = dt2 +
n∑

i=1

dx2
i
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= dt2 +
n∑

i=1

(1 + t)2 dy2
i +

n∑

i=1

(1 + t) yi (dyidt + dtdyi) +
n∑

i=1

y2
i dt2

= dt2 + (1 + t)2
n∑

i=1

dy2
i

+ (1 + t)

(
n∑

i=1

yidyi

)

dt + (1 + t) dt
n∑

i=1

yidyi

+ |y|2 dt2.

Since by (22)
n∑

i=1

y2
i = |y|2 =

2

1 + t
− 1,

it follows by differentiation of this identity that

n∑

i=1

yidyi = d
1

1 + t
= −

dt

(1 + t)2 .

It follows that

gRn+1 |Sn =
(
1 + |y|2

)
dt2 + (1 + t)2

n∑

i=1

dy2
i − 2 (1 + t)

dt2

(1 + t)2

=
2

1 + t
dt2 + (1 + t)2

n∑

i=1

dy2
i −

2

1 + t
dt2

= (1 + t)2
n∑

i=1

dy2
i

=
4

(
1 + |y|2

)2

n∑

i=1

dy2
i .

39. ∗ Define the n-dimensional hyperboloid Hn as the following submanifold of Rn+1:

Hn =
{
x ∈ Rn+1 : x2

n+1 − x2
1 − ... − x2

n = 1, xn+1 > 0
}

.

For any point x ∈ Hn, its stereographic projection is the point y ∈ Rn such that the
point (y, 0) ∈ Rn+1 belongs to the straight line that goes through x and q (where q is
given by (20)).

(a) Prove that the stereographic projection is a homeomorphism of Hn onto the unit
ball Bn = {y ∈ Rn : |y| < 1}. Prove also the following relations between x ∈ Hn

and y ∈ Bn:
xi = (1 + xn+1) yi, i = 1, ..., n (29)

and

|y|2 = 1 −
2

1 + xn+1

. (30)
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(b) Define the Minkowski metric tensor gMink in Rn+1 by

gMink = dx2
1 + ... + dx2

n − dx2
n+1.

The induced metric gHn = gMink|Hn is called the hyperbolic metric on Hn. Prove
that the hyperbolic metric has in the coordinates y1, ..., yn the form

gHn =
4

(
1 − |y|2

)2
(
dy2

1 + ... + dy2
n

)
. (31)

Remark. Observe that the metric gHn is positive definite and, hence, is Rieman-
nian, although the Minkowski metric in Rn+1 is not positive definite (it is called
pseudo-Riemannian). The Riemannian manifold (Hn, gHn) is called the hyper-
bolic space. The ball Bn with the metric (27) is called the Poincaré model of the
hyperbolic space.

Solution. (a) Let us simplify the notation by renaming xn+1 to t. Then the equation
of the hyperboloid Hn is

t2 − x2
1 − ... − x2

n = 1. (32)

The point y = (y1, ..., yn) is obtained from by scaling (x1, ..., xn) by the factor 1 + t,
which arises from comparison of the segments [−1, t] and [−1, 0] of the axis xn+1.
Hence, we have

xi = (1 + t) yi, i = 1, ..., n, (33)

which is equivalent to (25). Substituting into (28), we obtain

t2 − (1 + t)2 |y|2 = 1

whence

|y|2 =
t2 − 1

(1 + t)2 =
t − 1

t + 1
= 1 −

2

1 + t
,

which proves (26). In particular, we see that |y| < 1 so that y ∈ Bn.

Consequently, for any y ∈ Bn we obtain from the above equation

xn+1 = t =
2

1 − |y|2
− 1 =

1 + |y|2

1 − |y|2
.

From (29) we obtain

xi =
2yi

1 − |y|2
, i = 1, ..., n.

Hence, we see that the relation between x ∈ H and y ∈ Bn is bijective and continuous
in the both direction so that H and Bn are homeomorphic.

(b) The metric gH is obtained by restricting to H of the Minkowski metric

gMink = −dt2 + dx2
1 + ... + dx2

n.

Considering xi, yi and t as functions on H, we obtain from (29), for any i = 1, ..., n,
that

dxi = (1 + t) dyi + yidt
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whence
dx2

i = (1 + t)2 dy2
i + (1 + t) yi (dyidt + dtdyi) + y2

i dt2.

Therefore,

gMink|H = −dt2 +
n∑

i=1

dx2
i

= −dt2 +
n∑

i=1

(1 + t)2 dy2
i +

n∑

i=1

(1 + t) yi (dyidt + dtdyi) +
n∑

i=1

y2
i dt2

= −dt2 + (1 + t)2
n∑

i=1

dy2
i

+ (1 + t)

(
n∑

i=1

yidyi

)

dt + (1 + t) dt
n∑

i=1

yidyi

+ |y|2 dt2.

Since by (26)
n∑

i=1

y2
i = |y|2 = 1 −

2

1 + t
,

it follows by differentiation of this identity that

n∑

i=1

yidyi = −d
1

1 + t
=

dt

(1 + t)2 .

It follows that

gMink|H = −
(
1 − |y|2

)
dt2 + (1 + t)2

n∑

i=1

dy2
i + 2 (1 + t)

dt2

(1 + t)2

= −
2

1 + t
dt2 + (1 + t)2

n∑

i=1

dy2
i +

2

1 + t
dt2

= (1 + t)2
n∑

i=1

dy2
i

=
4

(
1 − |y|2

)2

n∑

i=1

dy2
i .
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40. Prove that if a Riemannian manifold (M, g) is connected then d (x, y) < ∞ for all
x, y ∈ M , where d is the geodesic distance function.

Hint : Show that, for any x ∈ M , the set N := {y ∈ M : d (x, y) < ∞} is open and
closed.

Solution. Fix a point x ∈ M and consider the set

N = {y ∈ M : d (x, y) < ∞} .

We need to show that N = M . It suffices to prove that the set N is open and closed.
Then, by the connectedness of M we will conclude that either N = ∅ or N = M . Since
N contains x, then we obtain N = M , which finishes the proof.

Observe that, by definition of N ,

N =
∞⋃

k=1

B (x, k) ,

where
B (x, r) = {y ∈ M : d (x, y) < r}

is geodesic ball of radius r. Since the topology of the smooth manifold M coincides
with the topology of the metric space (M,d), all geodesic balls are open sets, which
implies that N is also open.

Let us show that N is closed. For that, we need to verify that the complement

N c = {y ∈ M : d (x, y) = ∞}

is open. This will follows if we show that for, any y ∈ N c and any ε > 0, the ball
B (y, ε) is a subset of N c. Indeed, for any z ∈ B (y, ε) we have by the triangle inequality

d (x, y) ≤ d (x, z) + d (z, x)

that is,
∞ ≤ ε + d (x, z) ,

whence d (x, z) = ∞ and z ∈ N c. Therefore, B (y, ε) ⊂ N c.

41. Let (M, g) be a Riemannian model, and let x′, x′′ be two points in M \ {o} with the
polar coordinates (r′, θ′) and (r′′, θ′′), respectively.

(a) Prove that, for any piecewise C1 path γ on M connecting the points x′ and x′′,

`g (γ) ≥ |r′ − r′′| .

Deduce that d (x′, x′′) ≥ |r′ − r′′|, where d is the geodesic distance on (M, g).

Hint. Use the metric g in the polar coordinates on M .
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(b) Prove that if θ′ = θ′′ then d (x′, x′′) = |r′ − r′′| .

(c) Prove that, for any point x = (r, θ), we have d (o, x) = r.

(d) Conclude that in (Rn, gRn) the geodesic distance d (x, y) is equal to |x − y| for all
x, y ∈ Rn.

Solution. (a) Denoting θ0 = r and using that the metric g has the form

g =
n−1∑

i,j=0

gijθ
iθj =

(
dθ0
)2

+
n−1∑

i,j=1

gijθ
iθj ,

we obtain, for any piecewise C1 path γ : [a, b] → M ,

|γ̇|2g =
n−1∑

i,j=0

gij γ̇
iγ̇j =

∣
∣γ̇0
∣
∣2 +

n−1∑

i,j=1

gij γ̇
iγ̇j ≥

∣
∣γ̇0
∣
∣2 ,

whence it follows that

`g (γ) =

∫ b

a

|γ̇|g dt ≥
∫ b

a

∣
∣γ̇0
∣
∣ dt ≥

∣
∣
∣
∣

∫ b

a

γ̇0dt

∣
∣
∣
∣ =

∣
∣γ0 (b) − γ0 (a)

∣
∣ .

If γ connects x′ and x′′ then γ0 (a) = r′ and γ0 (b) = r′′, which implies

`g (γ) ≥ |r′ − r′′| .

Minimizing in all γ connecting x′ and x′′, we obtain d (x′, x′′) ≥ |r′ − r′′| .

(b) If θ′ = θ′′ =: θ then the path

γ (t) = (r′ (1 − t) + r′′t, θ) , t ∈ [0, 1] ,

connects x′ and x′′, because γ (0) = x′ and γ (1) = x′′. Since γ̇ (t) = (r′′ − r′, 0) and
|γ̇|g = |r′′ − r′|, we obtain

`g (γ) =

∫ b

a

|γ̇|g dt = r′′ − r′.

(c) Let us show that if γ is a piecewise C1 path connecting the points o and x = (r, θ),
then

`g (γ) ≥ r.

Fix any r′ ∈ (0, r). Then γ interests the sphere Sr′ = {y ∈ Rn : |y| = r′}, say, at a
point x′. By (b), the length of a part of γ between x′ and x is ≥ r − r′, which implies

`g (γ) ≥ r − r′.

Since r′ is arbitrary, it follows that `g (γ) ≥ r and, hence, d (o, x) ≥ r.

On the other hand, the path γ (t) = (tr, θ) defined for t ∈ [0, 1], connects o and x, and
it is easy to see that `g (γ) = r. Hence, d (0, x) = r, which was to be proved.

(d) In Rn, the above argument proves that d (0, x) = |x|. Since the origin o of the polar
coordinates in Rn may be at any point, setting it to y we obtain that d (x, y) = |x − y|.
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42. Let γ (t) : (a, b) → M be a parametric C1 curve on a Riemannian manifold (M, g) .

(a) Consider a time change τ : (α, β) → (a, b) where the function τ is bijective and
C1 smooth. Then τ determines a new parametric curve

γ̃ : (α, β) → M

γ̃ (s) = γ (τ(s)) .

Prove that `g (γ̃) = `g (γ) .

Remark. This identity means that the length of the parametric curve does not
depend on a specific parametrization.

(b) Assume in addition that γ is C∞ smooth, injective, γ̇ (t) 6= 0 for all t ∈ (a, b)
and that γ is a homeomorphism of (a, b) onto the image S = γ (a.b) . Then, by
Exercise 5, S is a submanifold of dimension 1. Let νS be the induced metric on
S. Prove that

`g (γ) = νS(S).

Hint. Write down the induced metric gS using the local coordinate t on S.

Solution. (a) We have
d

ds
γ̃ (s) = γ̇ (τ (s))

dτ

ds

and

`g (γ̃) =

∫ β

α

|γ̇ (τ (s))|

∣
∣
∣
∣
dτ

ds

∣
∣
∣
∣ ds.

Since τ is bijective and C1, it must be either monotone increasing or monotone de-
creasing, that is, either τ ′ ≥ 0 on (α, β) or τ ′ ≤ 0 on (α, β). Indeed, assume from the
contrary that τ ′ (s1) < 0 and τ ′ (s2) > 0. Suppose s1 < s2. Let s0 ∈ [s1, s2] be the
point of minimum of τ on [s1, s2]. Then the function τ on [s1, s0] takes all the values
from τ (s0) to τ (s1), and on the interval [s0, s2] it takes all values from τ (s0) to τ (s2).
Hence, some value τ (s0) + ε is taken twice, which contradicts the hypothesis that τ is
bijective.

Suppose that τ is monotone increasing. Then necessarily τ (α) = a and τ (β) = b, and
we obtain by change t = τ (s) that

`g (γ̃) =

∫ β

α

|γ̇ (τ (s))|
dτ

ds
ds =

∫ b

a

|γ̇ (t)| dt = `g (γ) ,

which was to be proved.

(b) By a formula from lectures, if x1, ..., xn are local coordinates on M and y1, ..., ym

are local coordinates on submanifold S then the induced metric gS is given by

(gS)ij = gkl
∂xk

∂yi

∂xl

∂yj

where i, j = 1, ...,m and xi (y1, ..., ym) is the coordinate in M of the point y1, ..., ym on
S.
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In our case m = 1, y1 = t and xi (t) = γi (t) . Hence,

(gS)11 = gklγ̇
kγ̇l = |γ|2g .

It follows that
dνS =

√
det gSdt = |γ|g dt

and

νS (S) =

∫ b

a

|γ|g dt = `g (γ) ,

which was to be proved.

43. Let I be an open interval in R and S be a surface of revolution in Rn+1 around I that
is given by the equation

|x′| = ϕ (xn+1) , xn+1 ∈ I,

where x′ = (x1, ..., xn) and ϕ(t) is a smooth

positive function on I.

Here is an example of a surface of revolution:

(a) Prove that S is a submanifold of Rn+1 of dimension n.

(b) Let us introduce on S the prepolar coordinates (t, θ) as follows: for any point
(x′, xn+1) ∈ S, set

t = xn+1 ∈ I and θ =
x′

|x′|
∈ Sn−1.

Prove that in the coordinates (t, θ) the induced metric gS := gRn+1 |S has the form

gS =
(
1 + ϕ′ (t)2) dt2 + ϕ2 (t) gSn−1 .

Hint. Express all xi in terms of t and the Cartesian coordinates f i (θ) of θ.

(c) Define the polar coordinates (r, θ) on S as follows: θ is as above, while r = r(t) is
defined by

r =

∫ t

t0

√
1 + ϕ′ (ξ)2dξ, (34)

where t0 is any fixed point from I. Prove that the metric gS has in the coordinates
(r, θ) the model form

gS = dr2 + ψ2 (r) gSn−1 , (35)

where the function ψ is defined by the identity ψ (r(t)) = ϕ (t) .

Hint. Use (30) to express dr via dt.

Remark. The manifold (S, gS) is called a cylindrical model, which refers the fact
that S is homeomorphic to a cylinder I × Sn−1 (rather than to a ball).

(d) Represent in the model form (31) the induced metric of the cone

Cone =
{
x ∈ Rn+1 : |x′| = αxn+1 + β, xn+1 > 0

}
,

where α > 0 and β ≥ 0.
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Solution. (a) The set S is given as a subset of Rn+1 by the equation F (x) = 0, where

F (x) = |x′|2 − ϕ2
(
xn+1

)
∈ C∞.

Clearly, we have
∂F

∂xi
= 2xi, i = 1, ..., n.

Since ϕ > 0 on I, it follows that on S we have |x′| > 0 and, hence, at least one of the
partial derivatives ∂F

∂xi does not vanish. It follows that dF 6= 0 on S and, hence, S is a
submanifold.

(b) Let the Cartesian coordinates in Rn of a point θ ∈ Sn−1 be f 1 (θ) , ..., fn (θ). For
any point (t, θ) ∈ S, we have

x′ = |x′| θ = ϕ (t) θ,

which implies that the Cartesian coordinates of (t, θ) are as follows:

xi = ϕ (t) f i (θ) , i = 1, ..., n

xn+1 = t.

Therefore, the metric gS is given by

gS = gRn+1 |S =
(
dx1
)2

+ ... + (dxn)2 +
(
dxn+1

)2

=
n∑

i=1

d (ϕ (t) f ′ (θ))
2
+ dt2

=
n∑

i=1

(
f iϕ′dt + ϕdf i

)2
+ dt2

=
n∑

i=1

[(
f i
)2

(ϕ′)
2
dt2 + ϕϕ′dt

(
f idf i

)
+
(
f idf i

)
ϕϕ′dt + ϕ2

(
df i
)2]

+ dt2.

Using that
n∑

i=1

(
f i (θ)

)2
= |θ|2 = 1

n∑

i=1

f idf i = 0

and
n∑

i=1

(
df i
)2

= gSn−1

(see lectures), we obtain that

gS =
(
1 + (ϕ′)

2
)

dt2 + ϕ2gSn−1 .

(c) The change r =
∫ t

t0

√
1 + ϕ′ (ξ)2dξ obviously implies

dr2 =
(
1 + (ϕ′)

2
)

dt2,
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whence
gS = dr2 + ϕ2 (t) gSn−1 = dr2 + ψ2 (r) gSn−1 ,

where ψ is defined by ψ (r) = ϕ (t).

(d) For the cone we have ϕ (t) = αt + β on I = (0,∞) and

r =

∫ t

0

√
1 + (ϕ′ (ξ))2dξ =

∫ t

0

√
1 + α2dξ =

√
1 + α2t

and, hence,

ψ (r) = ϕ (t) = αt + β =
α

√
1 + α2

r + β.

It follows that

gCone = dr2 +

(
α

√
1 + α2

r + β

)2

gSn−1 .

44. ∗ The purpose of this question is to compute the induced metric gS on surfaces of
revolution given in parametric form.

(a) Assume that a surface of revolution S in Rn+1 is given by the parametric equations

xn+1 = a (s) and |x′| = b (s) ,

where a, b are smooth functions of s on some interval and a′(s) > 0. Prove that
the polar radius r on S (see (30)) can be computed as a function of s by

r =

∫ s

s0

√
(a′ (ξ))2 + (b′ (ξ))2dξ,

and the function ψ in (31) is determined by the equation ψ (r(s)) = b (s) .

(b) The pseudo-sphere PS in Rn+1 is given by the parametric equations

xn+1 = s − tanh s and |x′| =
1

cosh s
, s > 0.

Prove that the induced metric on PS has in the polar coordinates the form

gPS = dr2 + e−2rgSn−1 .

A tractrix x = 1
cosh s

, y = s − tanh s A pseudosphere in R3

Remark. The pseudo-sphere is the surface of revolution of a tractrix.
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Solution. (b) The surface S is represented in the form

|x′| = ϕ
(
xn+1

)

where ϕ (t) = b (a−1 (t)) (the condition a′ > 0 ensures that a−1 exists). Making change
t = a (s), we obtain

r =

∫ t

t0

√

1 +

(
dϕ

dt

)2

dt =

∫ s

s0

√

1 +

(
b′(s)

a′(s)

)2

a′ (s) ds =

∫ s

s0

√
(a′ (s))2 + (b′ (s))2ds.

The function ψ (t) is defined by condition ψ (r) = ϕ (t) = b (a−1 (t)) = b (s) , which
finishes the proof.

(c) For PS, we have

a (s) = s − tanh s

b (s) =
1

cosh s
.

Note that the function a (s) has the derivative

a′ = (s − tanh s)′ = 1 −
1

cosh2 s
=

sinh2 s

cosh2 s
= tanh2 s > 0.

Using also

b′ =

(
1

cosh s

)′

= −
sinh s

cosh2 s
= −

tanh s

cosh s
,

we obtain

r =

∫ s

0

√
tanh2 s

cosh2 s
+ tanh4 sds =

∫ s

0

√

tan2 s

(
1

cosh2 s
+

sinh2 s

cosh2 s

)

ds

=

∫ s

0

tanh sds = ln cosh s.

The function ψ is determined by

ψ (r) = b (s) =
1

cosh s
= e−r,

where r ∈ (0,∞). Hence, the metric of PS in the polar coordinates is

gPS = dr2 + e−2rgSn−1 .

45. ∗ Let a surface S in R3 be given in a parametric form as follows:

S =
{
x ∈ R3 : x = Φ(y), y ∈ U

}
,
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where U is an open subset

of R2 and Φ : U → R3 is a

smooth injective mapping.

Assume that the Jacobi

matrix J of Φ has rank 2

at all points.

Assume also that Φ is a homeomorphism of U onto S. Then by Exercise 5 S is a
2-dimensional submanifold of R3.

Let the components of Φ be Φi, i = 1, 2, 3. Denoting by y1, y2 the Cartesian coordinates
in U , consider at any point of U the following two 3-dimensional vectors:

u :=
(

∂Φ1

∂y1 , ∂Φ2

∂y1 , ∂Φ3

∂y1

)
and v :=

(
∂Φ1

∂y2 , ∂Φ2

∂y2 , ∂Φ3

∂y2

)
.

(a) Prove that the induced metric gS = gRn |S is given in the local coordinates y1, y2

by the matrix

gS =

(
u ∙ u u ∙ v
u ∙ v v ∙ v

)

where “∙” denotes the scalar product of vectors in R3. Prove also that

det gS = |u × v|2 , (36)

where “×”denotes the cross product of vectors in R3.

(b) Using (32), compute the induced measure νS for the surface S that is given by
the parametric equations

x1 = sin ϕ cos θ, x2 = sin ϕ sin θ, x3 = cos ϕ,

where ϕ ∈ (0, π) and θ ∈ (−π, π).

Solution. (a) Let x1, x2, x3 be the Cartesian coordinates in R3. Then the relation
between xi and yj are given by

xi = Φi(y1, y2).

The Jacobi matrix of the change of coordinates coincides with the Jacobi matrix of Φ:

J =






∂x1

∂y1
∂x1

∂y2

∂x2

∂y1
∂x2

∂y2

∂x3

∂y1
∂x3

∂y2




 =






∂Φ1

∂y1
∂Φ1

∂y2

∂Φ2

∂y1
∂Φ2

∂y2

∂Φ3

∂y1
∂Φ3

∂y2




 .

Since gRn = id, we have by a lemma from lectures that the matrix g of gS is given by

g = JT gRnJ = JT J.
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Since

J =




 uT vT






and, hence,

JT =




u

v



 ,

we obtain

g = JT J =

(
u
v

)
(
uT vT

)
=

(
u ∙ u u ∙ v
u ∙ v v ∙ v

)

.

It follows that
det g = (u ∙ u) (v ∙ v) − (u ∙ v)2 .

Denoting u = (u1, u2, u3) and v = (v1, v2, v3), we obtain

det g =
(
u2

1 + u2
2 + u2

3

) (
v2

1 + v2
2 + v2

3

)
− (u1v1 + u2v2 + u3v3)

2

= (u1v2 − u2v1)
2 + (u3v1 − u1v3)

2 + (u2v3 − u3v2)
2

= |u × v|2

because
u × v = ((u2v3 − u3v2) , (u3v1 − u1v3) , (u1v2 − u2v1)) .

(b) Since
x1 = sin ϕ cos θ, x2 = sin ϕ sin θ, x3 = cos ϕ,

we have
u =

(
∂x1

∂ϕ
, ∂x2

∂ϕ
, ∂x3

∂ϕ

)
= (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ)

and
v :=

(
∂x1

∂θ
, ∂x2

∂θ
, ∂x3

∂θ

)
= (− sin ϕ sin θ, sin ϕ cos θ, 0)

whence

u × v =
(
cos θ sin2 ϕ, sin θ sin2 ϕ,

(
cos2 θ + sin2 θ

)
cos ϕ sin ϕ

)

=
(
cos θ sin2 ϕ, sin θ sin2 ϕ, cos ϕ sin ϕ

)

and

det gS = |u × v|2 = cos2 θ sin4 ϕ + sin2 θ sin4 ϕ + cos2 ϕ sin2 ϕ

= sin4 ϕ + cos2 ϕ sin2 ϕ

= sin2 ϕ.

Hence,
dνS =

√
det gS dϕ dθ = sin ϕdϕdθ.
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46. ∗∗ Prove that, for any n ≥ 1,

ωn = 2
πn/2

Γ (n/2)
, (37)

where ωn is the surface area of Sn−1 and Γ is the gamma function.

Hint. Consider the integrals

In =

∫ π

0

sinn rdr

and, using integration by parts, prove that

In =
n − 1

n
In−2.

By induction obtain that

In =
√

π
Γ ((n + 1) /2)

Γ ((n + 2) /2)
.

Then prove (33) by means of the inductive relation ωn+1 = ωnIn−1 from lectures.

Remark. The gamma function is defined for all x > 0 by

Γ (x) =

∫ ∞

0

tx−1e−tdt.

It is known that Γ (x) = (x − 1)! for a positive integer x. The following identities are
satisfied for all x > −1:

Γ (x + 1) = xΓ (x) , Γ (1) = 1 and Γ (1/2) =
√

π.

Solution. Let us first evaluate the integral

In =

∫ π

0

sinn rdr,

where n is a non-negative integer. Assuming n ≥ 2 and integrating by parts as
sinn−1 rd cos r, we obtain

In = −
∫ π

0

sinn−1 r d cos r

= −
[
sinn−1 r cos r

]π
0

+ (n − 1)

∫ π

0

cos2 r sinn−2 rdr

= (n − 1)

∫ π

0

(
1 − sin2 r

)
sinn−2 rdr

= (n − 1) In−2 − (n − 1) In,

whence

In =
n − 1

n
In−2. (38)

Let us prove by induction that, for all n ≥ 0,

In =

√
πΓ ((n + 1) /2)

Γ ((n + 2) /2)
(39)
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For n = 0 we have I0 = π, which matches the right hand side of (35) because Γ (1/2) =√
π and Γ (1) = 1. For n = 1 we have I1 = 2, which again matches the right hand side

of (35) because Γ (3/2) = 1
2

√
π. For n ≥ 2 we obtain, using the inductive hypothesis

for In−2, (34), and the identity zΓ (z) = Γ (z + 1), that

In =
n − 1

n

√
π

Γ ((n − 1) /2)

Γ (n/2)
=

√
π

Γ ((n + 1) /2)

Γ ((n + 2) /2)
,

which proves (35).

Combining (35) with ωn+1 = ωnIn−1, we obtain, for all n ≥ 1,

ωn+1 = ωn

√
πΓ (n/2)

Γ ((n + 1) /2)
, (40)

which easily implies (33) by induction in n. Sometimes the following consequence of
(??) is useful:

ωn+2 = ωn
2π

n
.
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47. Denote by σn the canonical Riemannian measure on the sphere Sn and by ηn the
canonical Riemannian measure on the hyperbolic space Hn.

(a) Let (ϕ, θ) be the polar coordinates on S2, where ϕ ∈ (0, π) is the polar radius

and θ ∈ (0, 2π) is the polar angle.

Compute σ2(A) for the following

subset A of S2:

A = {(ϕ, θ) : 0 < ϕ < α, 0 < θ < β} ,

where α ∈ (0, π) and β ∈ (0, 2π) are given.

(b) Let (r, ϕ, θ) the spherical coordinates on S3, where r ∈ (0, π) is the polar radius
and (ϕ, θ) are the polar coordinates on S2 as in (a). Compute σ3(B) for the
following subset B of S3:

B = {(r, ϕ, θ) : 0 < r < R, 0 < ϕ < α, 0 < θ < β} ,

and 0 < R < π, α ∈ (0, π), β ∈ (0, 2π) are given.

(c) Let (r, θ) be the polar coordinates in H2. Compute η2(C) for the following subset
C of H2:

C = {(r, θ) : 0 < r < R, 0 < θ < β} ,

where R > 0 and β ∈ (0, 2π) are given.

(d) Let (r, ϕ, θ) be the spherical coordinates on H3, where r > 0 is the polar radius
and (ϕ, θ) are the polar coordinates on S2 as in (a). Compute η3(D) for the
following subset D of H3:

D = {(r, ϕ, θ) : 0 < r < R, 0 < ϕ < α, 0 < θ < β} ,

where R > 0, α ∈ (0, π), β ∈ (0, 2π) are given.

Solution. Let (M, g) be an n-dimensional model manifold with a profile function
ψ(r), that is,

g = dr2 + ψ2(r)gSn−1 . (41)

Recall that the Riemannian measure ν in (M, g) is given by

dν = ψn−1(r)dr dσn−1, (42)
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where σn−1 is the Riemannian measure on Sn−1.

Since on Sn we have ψ(r) = sin r, it follows from (19) that

dσn = sinn−1 r dr dσn−1

In the case n = 1, using an angle θ on S1, we have

gS1 = dθ2, dσ1 = dθ, ΔS1 =
∂2

∂θ2 . (43)

In Hn we have ψ (r) = sinh r whence

dηn = sinhn−1 r dr dσn−1.

(a) On S2 we obtain in the polar coordinates (ϕ, θ)

dσ2 = sin ϕdϕdσ1 = sin ϕdϕdθ

We have

σ2(A) =

∫

A

dσ2 =

∫ β

0

(∫ α

0

sin ϕdϕ

)

dθ = (1 − cos α) β.

(b) On S3 we obtain the spherical coordinates (r, ϕ, θ)

dσ3 = sin2 r dr dσ2 = sin2 r sin ϕdr dϕ dθ.

We have

σ3(B) =

∫

A

dσ3 =

∫ β

0

(∫ α

0

(∫ R

0

sin2 rdr

)

sin ϕdϕ

)

dθ

=
1

4
(2R − sin 2R) (1 − cos α) β.

(c) In H2 we have
dη2 = sinh r dr dσ1 = sinh r dr dθ,

whence

η2(C) =

∫

A

dη2 =

∫ β

0

(∫ R

0

sinh r dr

)

dθ = (cosh R − 1) β.

(d) In H3 we have

dη3 = sinh2 r dr dσ2 = sinh2 r sin ϕdr dϕ dθ

whence

η4(D) =

∫

A

dη3 =

∫ β

0

∫ α

0

(∫ R

0

sinh2 rdr

)

sin ϕdϕdθ

=
1

4
(sinh 2R − 2R) (1 − cos α) β.
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48. Let (M, g) be a Riemannian manifold. A smooth function u in an open set Ω ⊂ M is
called harmonic in Ω if Δgu = 0 in Ω. Suppose that M is a model manifold of radius
r0 with the area function S (r). A function u in M \ {o} is called radial if it depends
only on the polar radius r (and does not depend on the polar angle θ).

(a) Prove that a smooth radial function u in M \ {o}is harmonic if and only if

u (r) = C1

∫ r

r1

dt

S (t)
+ C2, (44)

where C1, C2 are arbitrary real constants and r1 ∈ (0, r0) is arbitrary.

Hint. Use the representation of the Laplace-Beltrami operator Δg in polar coor-
dinates using the area function.

(b) With help of (38) find all radial harmonic functions in Rn, Sn, Hn for n = 2, 3.

Solution. (a) Recall that

Δg,μ =
∂2

∂r2
+

S ′

S

∂

∂r
+

1

ψ2 (r)
ΔSn−1 . (45)

Since u does not depend on the polar angle, we obtain ΔSn−1u = 0 and the equation
Δg,μu = 0 becomes

u′′ +
S ′

S
u = 0

This equation equivalent to
(Su′)

′
= 0,

that is, to

Su′ = C1

u′ =
C1

S
.

Fix some r1 ∈ (0, r0) and consider the function

v (r) = C1

∫ r

r1

dt

S (t)
.

Then v′ = C1

S
, and we obtain that u′ = v′, whence

u − v = C2,

that is,

u (r) = C1

∫ r

r1

dt

S (t)
+ C2. (46)

(b) In Rn we have S (r) = ωnrn−1 and (40) yields

u (r) = C2 + C1

{
ln r, in R2,
r−1, in R3,
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where we have used that ∫
dr

r
= ln r + C

and ∫
dr

r2
= −

1

r
+ C.

Since in Sn we have S (r) = ωn sinn−1 r, we obtain from (40)

u (r) = C2 + C1

{
ln tan r

2
, in S2,

cot r, in S3,

where we have used that ∫
dr

sin r
= ln tan

r

2
+ C

and ∫
dr

sin2 r
= − cot r + C

Similarly, using that ∫
dr

sinh r
= ln tanh

r

2
+ C

and ∫
dr

sinh2 r
= − coth r + C,

we obtain

u (r) = C2 + C1

{
ln tanh r

2
, in H2,

coth r, in H3.

Everywhere the value r1 is absorbed into C2.

49. (Continuation of Exercises 5 and 5). A catenoid Cat is a surface in R3 that is given
by the parametric equations

x1 = cosh ρ cos θ, x2 = cosh ρ sin θ, x3 = ρ,

where ρ ∈ R and θ ∈ (−π, π) .

(a) Write down the Laplace-Beltrami operator Δg

on Cat in the coordinates ρ, θ.

(b) Considering the Cartesian coordinates x1, x2, x3

as functions on the catenoid, prove that they are

harmonic, that is,

Δgx
1 = Δgx

2 = Δgx
3 = 0.

Catenoid

Hint. Use the Riemannian metric on Cat stated in Exercise 5.
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Solution. The Riemannian metric on Cat has in the coordinates ρ, θ the form

g = cosh2 ρ
(
dρ2 + dθ2

)
.

(a) It follows from that √
det g = cosh2 ρ

and
(
gij
)

= g−1 =

(
1

cosh2 ρ
0

0 1
cosh2 ρ

)

.

Using that

Δg =
1

√
det g

∂

∂yi

(√
det ggij ∂

∂yj

)

with y1 = ρ, y2 = θ, we obtain

Δg =
1

cosh2 ρ

(
∂2

∂ρ2
+

∂2

∂θ2

)

.

(b) Since x1 = cosh ρ cos θ, it follows by (a) that

Δgx
1 =

1

cosh2 ρ
(cosh ρ cos θ − cosh ρ cos θ) = 0.

In the same way, for x2 = cosh ρ sin θ, we obtain

Δgx
2 =

1

cosh2 ρ
(cosh ρ sin θ − cosh ρ sin θ) = 0

and for x3 = ρ we obtain Δgx
3 = Δgρ = 0.

50. A non-zero smooth function v on a Riemannian manifold (M, g) is called an eigen-
function of the Laplace-Beltrami operator Δg if, for some constant λ,

Δgv + λv = 0,

where the constant λ is called an eigenvalue of Δg. The multiplicity of the eigenvalue
λ is defined as the dimension of the eigenspace

Eλ = {v ∈ C∞(M) : Δgv + λv = 0} .

Prove that all the eigenvalues of the Laplace-Beltrami operator ΔS1 on the unit circle
S1 are given by the sequence {m2}∞m=0, where the eigenvalue 0 has the multiplicity 1,
and each eigenvalue m2 with m ≥ 1 has the multiplicity 2.

Hint. Write down the equation ΔS1v + λv = 0 using the angle θ ∈ (−π, π) as a local
coordinate on S1, and find solutions v (θ) that are 2π-periodic in θ.

Solution. (a) Using the polar angle θ ∈ (−π, π) on S1, we have gS1 = dθ2 (see Exercise
5) and ΔS1 = d2

dθ2 (cf. solution of Exercise 5(f)vO). The eigenvalue problem becomes

d2v

dθ2 + λv = 0, (47)
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where v is any smooth function on S1 (we know that any eigenfunction must be smooth,
while any smooth function on a compact manifold belongs to D and, hence, to W 1

0 ).
Since v (θ) has to be defined and smooth not only on the interval (−π, π) but on the
entire S1, the function v (θ) must be 2π-periodic, in particular, it must satisfy

v (−π) = v (π) and v′ (−π) = v′ (π) . (48)

If λ = 0 then we obtain a solution v = C1θ + C2 of (??) that satisfies (??) only if
C1 = 0. Hence, λ = 0 is an eigenvalue with the eigenfunction v ≡ const.

Assume λ > 0. Then all solutions of (??) are given by

v = C1 cos
(√

λθ
)

+ C2 sin
(√

λθ
)

,

where C1, C2 are arbitrary constants. The boundary conditions (??) become

C1 cos
(√

λπ
)
− C2 sin

(√
λπ
)

= C1 cos
(√

λπ
)

+ C2 sin
(√

λπ
)

and

−C1

√
λ sin

(√
λπ
)

+ C2

√
λ cos

(√
λπ
)

= C1

√
λ sin

(√
λπ
)

+ C2

√
λ cos

(√
λπ
)

that are equivalent to

sin
(√

λπ
)

= 0

(because either C1 or C2 must be non-zero). The latter condition is satisfied if and only
if
√

λ = m where m is a positive integer. Hence, we obtain that the sequence of the
eigenvalues of S1 is given by {m2}∞m=0. The eigenvalue 0 is simple with the eigenfunction
v = const, while m2 with m ≥ 1 is double, with independent eigenfunctions cos mθ
and sin mθ.

51. ∗ Consider in H3 a function u given in the polar coordinates (r, θ) by

u =
r

sinh r
.

(a) Prove that, away from the pole of H3, the function u satisfies the equation

ΔH3u + u = 0. (49)

Hint. Use the representation of ΔH3 in the polar coordinates.

(b) Prove that the function u extends to a smooth function on the entire space H3

and, hence, satisfies (41) on H3.

Hint. Show first that the function v = r2 is a smooth function on H3 (as well as
on any model manifold). Then represent u as a smooth function of r2.

Solution. (a) Let (r, θ) be the polar coordinates in H3, where r > 0 is the polar radius
and θ ∈ S2. Then we have

ΔH3 =
∂2

∂r2
+ 2 coth r

∂

∂r
+

1

sinh2 r
ΔS2 .
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Since the function u depends only on r, we obtain

ΔH3u = u′′ + 2 (coth r) u′.

A direct computation yields

( r

sinh r

)′
=

1

sinh2 r
(sinh r − r cosh r)

( r

sinh r

)′′
=

1

2 sinh3 r
(3r − 2 sinh 2r + r cosh 2r) ,

whence

u′′ + 2 (coth r) u′ =
1

2 sinh3 r
(3r − 2 sinh 2r + r cosh 2r)

+ 2
cosh r

sinh r

1

sinh2 r
(sinh r − r cosh r)

= −
r

sinh r
,

that is, u′′ + 2 (coth r) u′ = −u, whence (41) follows.

(b) As a model manifold, H3 can be identified with R3 with the metric

gHn = dr2 + sinh2 rgSn−1

where (r, θ) are the polar coordinates not only in H3 but also in R3. In R3 the function

r2 =
(
x1
)2

+
(
x2
)2

+
(
x3
)2

is clearly C∞, whence the same follows for H3 (and in the same way for any other
model manifold).

We have

sinh r =
er − r−r

2
= r +

r3

3!
+

r5

5!
+ ...

whence

u =
r

sinh r
=

1

1 + r2

3!
+ r4

5!
+ ...

.

Obviously, the right hand side is a smooth function of r2, which implies that u is a
smooth function on the entire H3.

52. ∗∗ Consider the Riemannian manifold (M, g), where

M = Rn
+ :=

{(
x1, ..., xn

)
∈ Rn : xn > 0

}

and

g =
(dx1)

2
+ ... + (dxn)2

(xn)2 .

Consider on Rn
+ the following function

u(x) = (xn)s
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where s is any real parameter. Prove that Δgu = λu, where λ = s (s − n + 1) .

Solution. For the Laplace-Beltrami operator we have

Δg =
1

√
det g

∂

∂xi

(√
det ggij ∂

∂xj

)

.

Here

(gij) =
1

(xn)2 id,

which implies (
gij
)

= (xn)2 id

and

det g =
1

(xn)2n .

Hence,

Δg = (xn)n
n∑

i=1

∂

∂xi

(

(xn)2−n ∂

∂xi

)

= (xn)2
n∑

i=1

∂2

(∂xi)2 + (xn)n ∂

∂xn

(

(xn)2−n ∂

∂xn

)

.

For u (x) = (xn)s we obtain

Δgu = (xn)n ∂

∂xn

(

(xn)2−n ∂u

∂xn

)

= (xn)n ∂

∂xn

(
(xn)2−n s (xn)s−1)

= (xn)n s
∂

∂xn
(xn)s−n+1

= (xn)n s (s − n + 1) (xn)s−n

= s (s − n + 1) (xn)s

= s (s − n + 1) u,

which was to be proved.

53. ∗∗ A function P : RN → R is called a polynomial if P (x) is a finite R-linear combination
of the monomials xm1

1 ...xmN
N where m1, ...,mN are non-negative integers. The sum m1+

... + mN is called the degree of the monomial. A polynomial P is called homogeneous
of degree m if all non-zero monomials of P have the same degree m.

(a) Let P be a homogeneous polynomial of degree m on Rn+1, where m is a non-
negative integer. Assume that P is harmonic, that is, P satisfies the equation

ΔRn+1P = 0 in Rn+1.

Prove that the function v = P |Sn is an eigenfunction of the Laplace-Beltrami
operator ΔSn with the eigenvalue λ = m (m + n − 1) , that is,

ΔSnv + λv = 0 in Sn.
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Hint. Use the identity P (x) = αmP
(

x
α

)
for all α ∈ R \ {0} and all x ∈ Rn+1 that

follows from the homogeneity of P , and represent ΔRn+1 in the polar coordinates.

(b) Prove that a polynomial in R3

P (x) = C1x
3
1x2x3 + C2x1x

3
2x3 + C3x1x2x

3
3

is harmonic for some non-zero coefficients C1, C2, C3. Hence, prove that λ = 30 is
an eigenvalue of the Laplace-Beltrami operator ΔS2 .

Remark. It is possible to prove that all the eigenvalues of ΔSn are given by the
sequence {m (m + n − 1)}∞m=0, and the eigenvalue m (m + n − 1) has the multi-
plicity

(n + m − 2)! (n + 2m − 1)

(n − 1)!m!

if m ≥ 1, and 1 if m = 0.

Solution. (a) Let (r, θ) be the polar coordinates on Rn+1. For any x = (r, θ) we have
by the homogeneity of P that

P (x) = rmP
(x

r

)
= rmP (θ) = rmv (θ) .

By the formula for the Laplace operator in Rn+1 in the polar coordinates, we have

ΔRn+1P =
∂2P

∂r2
+

n

r

∂P

∂r
+

1

r2
ΔSnP.

Since ΔRn+1P = 0, we obtain that in Rn+1 \ {0}

∂2P

∂r2
+

n

r

∂P

∂r
+

1

r2
ΔSnP = 0.

Substituting here P = rmv (θ), we obtain

m (m − 1) rm−2v (θ) +
n

r
mrm−1v (θ) +

1

r2
rmΔSnv (θ) = 0

whence after cancelling by rm−2

−ΔSnv = (m (m − 1) + nm) v = λv.

Hence, λ is an eigenvalue of ΔSn with the eigenfunction v, which was to be proved.

(b) We have

ΔR3

(
x3

1x2x3

)
=

(
∂2

(∂x1)2 +
∂2

(∂x2)2 +
∂2

(∂x3)2

)
(
x3

1x2x3

)
= 6x1x2x3,

whence it follows that

ΔR3P = (6C1 + 6C2 + 6C3) x1x2x3.

Choosing C1 = C2 = 1 and C3 = −2, we obtain ΔR3P = 0. Hence, P is a harmonic
homogeneous polynomial of degree m = 5. Therefore, by (a), ΔS2 has an eigenvalue
λ = m (m + n − 1) = 5 ∙ (5 + 2 − 1) = 30.
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54. Let (M, g) be a Riemannian manifold of dimension n. Let F : M → R be a smooth
function on M such that F is non-singular1 on the null set S = {x ∈ M : F (x) = 0}.
In particular, S is a submanifold of dimension n − 1.

(a) Prove that, at any point p ∈ S, the gradient ∇F (p) is orthogonal to TpS in the
tangent space TpM .

Hint. Use Exercise 5.

(b) Consider the set
Ω := {x ∈ M : F (x) < 0} (50)

and prove that S = ∂Ω.

Remark. An open set Ω ⊂ M is called a region if it can be represented in the
form (42), where F is a smooth function on M that is non-singular on its null set.

Solution. (a) Since TpS ⊂ TpM and ∇F (p) ∈ TpM , we need to prove that, for any
ξ ∈ TpS,

〈∇F, ξ〉g = 0

that is,
〈dF, ξ〉 = 0.

The latter holds by Exercise 5. Or, we have

〈dF, ξ〉 = ξ (F ) = ξ (F |S) = ξ (0) = 0.

(b) By definition, the condition x ∈ ∂Ω holds if in any neighborhood of x there are
points from Ω and Ωc. If x ∈ ∂Ω then in any neighborhood of x there are points where
F < 0 and F ≥ 0, which implies by continuity that F (x) = 0 and x ∈ S. Conversely,
let x ∈ S that is, F (x) = 0. Then we need to verify that in any neighborhood of x
there are points with F < 0. If this is not the case then in some neighborhood of x
we have F ≥ 0, which implies that x is a point of local minimum of F , which implies
dF (x) = 0. However, this contradicts to the fact that dF is non-singular on S.

55. Let H be the semi-hyperbola

H =
{
(x1, x2) ∈ R

2 : x2
2 − x2

1 = 1, x2 > 0
}

.

For any s > 0, consider the following subset of H:

Hs = {(x1, x2) ∈ H : 0 < x1 < s} .

1Recall that F is non-singular on a set S if dF (x) 6= 0 at any point x ∈ S.
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Let ν be the Riemannian measure of (H, gH), where gH is the hyperbolic metric on
H. Prove that

ν (Hs) = ln
(
s +

√
s2 + 1

)
.

Remark. Note that the function ln
(
s +

√
s2 + 1

)
is the inverse to sinh.

Hint. Use the chart on H with the coordinate y from Exercise 5.

Solution. By Exercise 5 and (18), there is a chart on H with the coordinate y ∈ (−1, 1)
such that, for the point (x1, x2) ∈ H,

x1 =
2y

1 − y2
, x2 =

1 + y2

1 − y2
.

Besides the hyperbolic metric on H is given by

gH =
4

(1 − y2)2 dy2.

The condition {0 < x1 < s} is equivalent to

0 <
2y

1 − y2
< s,

which is equivalent to
0 < y < r

where r is determined by the equation

s =
2r

1 − r2
.

Solving this equation in r, we obtain

r =

√
1 + s2 − 1

s
.

Since det gH = 4
(1−y2)2

, we obtain

ν (Hs) =

∫ r

0

√
det gHdy =

∫ r

0

2

1 − y2
dy = ln

1 + r

1 − r
.

Note that
1 + r

1 − r
=

s − 1 +
√

1 + s2

s + 1 −
√

1 + s2
.

Set u = s +
√

1 + s2 and observe that

1

u
=

√
1 + s2 − s

because (
s +

√
1 + s2

)(√
1 + s2 − s

)
=
(
1 + s2

)
− s2 = 1.
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Hence,
1 + r

1 − r
=

u − 1

1 − 1
u

= u,

whence it follows that

ν (Hs) = ln u = ln
(
s +

√
1 + s2

)
.

56. For any two-dimensional Riemannian manifold (M, g), the Gauss curvature Kg (x) is
defined in a certain way as a function on M . It is known that if the metric g has in
coordinates x1, x2 the form

g =
(dx1)

2
+ (dx2)

2

f 2 (x)
, (51)

where f is a smooth positive function, then the Gauss curvature can be computed in
this chart as follows

Kg = f 2Δ ln f, (52)

where Δ = ∂2

(∂x1)2
+ ∂2

(∂x2)2
is the Euclidean two-dimensional Laplace operator in the

coordinates x1, x2.

(a) Compute the Gauss curvature of R2 and the catenoid Cat (see Exercise 5).

(b) Let (M, g) be a two-dimensional model manifold with the profile function ψ, so
that in the polar coordinates (r, θ)

g = dr2 + ψ2 (r) dθ2. (53)

Prove that

Kg = −
ψ′′ (r)

ψ (r)
. (54)

Hint. Find other coordinates (ρ, θ) on M where the metric (45) has the form

g =
dρ2 + dθ2

f 2 (ρ)
,

and then use (44).

(c) Using (46), compute the Gauss curvature of the sphere S2, the hyperbolic plane
H2, and the two-dimensional pseudosphere PS from Exercise 5(f)vJ.

Solution. (a) The metric of Rn is given by (43) with f ≡ 1 whence

KRn = 0.

The metric of Cat in Exercise 5 is given by

gCat = cosh2 ρ
(
dρ2 + dθ2

)

which matches (43) with

f (ρ) =
1

cosh ρ
.
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Since Δ = ∂2

∂ρ2 + ∂2

∂θ2 , we have

Δ ln f = (ln f)′′ =
1

cosh2 ρ
sinh2 ρ − 1 = −

1

cosh2 ρ

whence

KCat = f 2Δ ln f = −
1

cosh4 ρ
.

(b) Let us change the variable

ρ =

∫
dr

ψ (r)

so that dρ = dr
ψ(r)

. Since dρ = 1
ψ(r)

dr and, hence, dr2 = ψ2 (r) dρ2, the metric g has in
the coordinates ρ, θ the form

g = ψ2 (r)
(
dρ2 + dθ2

)
,

which matches (43) with f (ρ) = 1
ψ(r)

(hence, x1 = ρ, x2 = θ). Since in this case

Δ = ∂2

∂ρ2 + ∂2

∂θ2 and ψ does not depend on θ, we obtain by (44)

Kg = −
1

ψ2

d2

dρ2
ln ψ.

We have
d

dρ
ln ψ =

1

ψ

dr

dρ

dψ

dr
= ψ′

and
d2

dρ2
ln ψ =

d

dρ
ψ′ =

dr

dρ
ψ′′ = ψψ′′,

whence

Kg = −
ψψ′′

ψ2 = −
ψ′′

ψ
.

(c) Since in S2

g = dr2 + sin2 r dθ2

then

KS2 = −
(sin r)′′

sin r
= 1.

Since in H2

g = dr2 + sinh2 r dθ2,

we have

KH2 = −
(sinh r)′′

sinh r
= 1.

Since on PS
g = dr2 + e−2rdθ2,

we obtain

KPS = −
(e−2r)

′′

e−2r
= −4.
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57. Let g be the metric (43) on a two-dimensional manifold M . Consider the metric
g̃ = 1

h2g where h is a smooth positive function on M . Prove that

Kg̃ = (Kg + Δg log h) h2,

where Δg is the Laplace-Beltrami operator of the metric g.

Solution. (a) Let us write down the Laplace operator Δg in the coordinates x1, x2

using the fact that the matrix g = (gij) of the metric g has the form

g =

(
f−2 0
0 f−2

)

.

Since det g = f−4 and

g−1 =

(
f 2 0
0 f 2

)

,

we obtain

Δg =
1

√
det g

∂

∂x1

(√
det gg11 ∂

∂x1

)

+
1

√
det g

∂

∂x2

(√
det gg22 ∂

∂x2

)

= f 2 ∂2

(∂x1)2 + f 2 ∂2

(∂x2)2

= f 2Δ,

that is
Δg = f 2Δ.

Since

g̃ =
(dx1)

2
+ (dx2)

2

(fh)2 ,

the formula (44) gives for this metric

KM,g̃ = (fh)2 Δ ln (fh) = h2
(
f 2Δ ln f + f 2Δ ln h

)
= h2 (KM,g + Δg ln h) ,

which was to be proved.

(b)

58. ∗ Let g, g̃ be two Riemannian metric tensors on a smooth n-dimensional manifold M .
Assume that, for some constant C,

g̃ ≤ Cg, (55)

that is, for all x ∈ M and ξ ∈ TxM ,

g̃ (x) (ξ, ξ) ≤ Cg (x) (ξ, ξ) . (56)

(a) Prove that if ν and ν̃ are the Riemannian measures of g and g̃, respectively, then

dν̃

dν
≤ Cn/2.
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(b) Prove that, for any smooth function f on M ,

|∇f |2g ≤ C |∇f |2g̃ .

Hint. Fix x0 ∈ M and consider Tx0M as a Euclidean space with the inner product g.
Since g̃ is a symmetric bilinear form in this space, there exists a g-orthonormal basis
{e1, ..., en} in Tx0M in which g̃ has a diagonal form, that is, (g̃ij) = diag {α1, ..., αn}
with some reals αi. By a linear change of coordinates in a neighborhood of x0, you can
assume that ∂

∂xi = ei. For (a) note also that, by Exercise 5, the ratio det g̃(x0)
det g(x0)

does not
depend on the choice of local coordinates.

Solution. (a) Since in any chart

dν =
√

det gdλ, (57)

where λ is the Lebesgue measure in this chart, it suffices to verify that, for any x0 ∈ M ,

det g̃ (x0)

det g (x0)
≤ Cn. (58)

By Exercise 5, this ratio does not depend on the choice of the local coordinates. Fix a
point x0 ∈ M and choose an orthonormal basis e = {e1, ..., en} in Tx0M with respect
to the inner product 〈, 〉g where the quadratic form g̃ (x) is diagonal, say g̃ii = αi and
g̃ij = 0 if i 6= j. By linear change of coordinates in a neighborhood of x0 we can always
assume that ∂

∂xi = ei.

Then we have in the basis
{

∂
∂xi

}

det g (x0) = 1 and det g̃ (x0) = λ1...λn.

On the other hand, by (48)

λi = g̃ii = 〈ei, ei〉g̃ ≤ C〈ei, ei〉g = Cgii = C,

whence
det g̃ (x0) ≤ Cn = Cn det g (x0) ,

which proves (50).

(b) It follows from (47) that
g̃−1 ≥ C−1g−1,

where g−1 is the metric tensor on covectors, whose matrix in the local coordinates is
(gij). Indeed, in the basis

{
∂

∂xi

}
as in part (a), the matrix of g−1 is the identity matrix,

while that of g̃−1 is the diagonal matrix with the diagonal entries α−1
i ≥ C−1, whence

the claim follows. Using the identity

〈∇f,∇h〉g = 〈df, dh〉g−1 , (59)

we obtain
|∇f |2g = 〈df, df 〉g−1 ≤ C〈df, df 〉g̃−1 = C |∇f |2g̃ ,

which finishes the proof.
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59. ∗ Consider two Riemannian manifolds (X, gX) and (Y, gY ). Let us define a Riemannian
metric tensor g on the product manifold M = X × Y as follows

g = gX + ψ2 (x) gY , (60)

where ψ is a smooth positive function on X. The Riemannian manifold (M, g) with
this metric is called a warped product of (X, gX) and (Y, gY ) with profile ψ.

(a) Prove that the Riemannian measure νg of the metric (51) is given by

dνg = ψm (x) dνXdνY , (61)

where νX and νY are the Riemannian measures of (X, gX) and (Y, gY ), respec-
tively, and m = dim Y .

(b) Prove that the Laplace-Beltrami operator Δg of the metric (51) is given by

Δgf = ΔXf + m〈∇X ln ψ,∇Xf〉gX
+

1

ψ2(x)
ΔY f, (62)

where ∇X is gradient on X and ΔX , ΔY are the Laplace-Beltrami operators on
X and Y , respectively.

Solution. Fix a chart U on X with coordinates x1, ..., xn and a chart V on Y with co-
ordinates y1, ..., ym. Then U×V is the chart on M with coordinates x1, ..., xn, y1, ..., ym.
The matrix of the metric g in this chart has the form

g (x, y) =







gX (x) 0

0 ψ2 (x) gY (y)





 (63)

where gX and gY are the matrices of gX and gY in U and V , respectively.

(a) It follows from (52) that

det g (x, y) = ψ2m(x) det gX (x) det gY (y) .

Denoting by dx and dy the Lebesgue measures on U and V , respectively, we obtain

dνg =
√

det gdxdy = ψm (x)
√

det gX (x)dx
√

det gY (y)dy = ψm (x) dνXdνY .

(b) It also follows from (52) that

g−1 =








g−1
X 0

0 ψ−2 (x) g−1
Y








. (64)

By definition, we have the following the formula for the gradient

(∇gu)i = gij ∂u

∂xj
(65)
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that is

[∇gu] = g−1

[
∂u

∂xj

]

,

where [∙] denotes a column-vector and the right hand side is the product of the matrix
g−1 with the column-vector.

Using (??), we see that the gradient ∇g for the metric (51) is given by the column-
vector

[∇gu] =

[
∇Xu

ψ−2∇Y u

]

.

Consider a vector field v =

[
vX

vY

]

on M . By the definition of divergence

div v =
1

√
det g

∂

∂xi

(√
det gvi

)
, (66)

we obtain the following formula for the divergence div on M

div v =
1

ψm (x)
√

det gY

divX

(
ψm (x)

√
det gY vX

)

+
1

ψm (x)
√

det gX

divY

(
ψm (x)

√
det gXvY

)

= divX vX +
1

ψm 〈∇Xψm, vX〉 + divY vY .

Finally, applying this to v = ∇gu we obtain

Δu = div∇u = divX (∇Xu) +
1

ψm (x)
〈∇Xψm,∇Xu〉 + divY (ψ−2 (x)∇Y u)

= ΔXu + 〈∇X ln ψm,∇Xu〉 +
1

ψ2 (x)
ΔY u.

60. ∗∗ Let X,Y be smooth manifolds of the same dimension n and let Φ : Y → X be a
diffeomorphism. Let S be a submanifold of Y , and set R = Φ(S).

(a) Prove that R is a submanifold of X and that Ψ := Φ|S is a diffeomorphism of S
onto R.

(b) Prove that, for any y ∈ S,
dΦ|TyS = dΨ

(that is, for any ξ ∈ TyS, we have dΦξ = dΨξ).

(c) Let g(x) be a bilinear form on any space TxX (for example, a Riemannian metric)
and consider the induced form gR := g|R. Prove that

(Φ∗g)S = Ψ∗ (gR) .

(d) Prove that if X and Y are Riemannian manifolds and Φ is a Riemannian isometry
of Y and X then Ψ is a Riemannian isometry of the Riemannian manifolds S and
R with the induced metrics.
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Solution. (a) Let dim S = m. Let (U,ϕ) be a chart in a neighborhood of a point
p ∈ S with coordinates y1, ..., yn where

S ∩ U =
{
y ∈ U : ym+1 = ... = yn = 0

}
.

Set V = ϕ(U) ⊂ Rn, W = Φ(U) ⊂ X and consider the mapping

ψ := ϕ ◦ Φ−1 : W → V

that is a diffeomorphism. Hence, (W,ψ) is a chart in X, denote the coordinates in this
chart (that come from V ) by x1, ..., xn.

Any point y ∈ U has the image ϕ(y) in V , and the point x = Φ(y) has the image in V

ψ(x) = ψ(Φ(y)) = ϕ(Φ−1(Φ(y))) = ϕ(y).

Hence, the points y ∈ U and x = Φ(y) ∈ W have the same coordinates from V , whence

xi = yi for all i = 1, ..., n.

Since R ∩ W = Φ(S ∩ U), it follows that

R ∩ W =
{
x ∈ W : xm+1 = ... = xn = 0

}

so that R is a submanifold of X.

Note that we have constructed the local coordinates {x1, .., .xm} on R and {y1, ..., ym}
on S.

The mapping Ψ : S → R is clearly bijective. It is given in the above local coordinates
{x1, .., .xm} on S and {y1, ..., ym} on R by

xi = yi, i = 1, ...,m,

which implies that it is smooth and its inverse is also smooth, so that Ψ is a diffeo-
morphism.
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(b) Fix y ∈ S and ξ ∈ TyS. Set x = Φ (y) ∈ R and observe that dΦξ ∈ TxX and
dΨξ ∈ TxR ⊂ TxX. Hence, we consider dΦξ and dΨξ as elements of the same space
TxX. For any f ∈ C∞ (Y ), we have

dΦξ (f) = ξ (f ◦ Φ) = ξ (f ◦ Φ|S) = ξ (f ◦ Ψ) .

Since f ◦ Ψ = f |S ◦ Ψ, it follows that

dΦξ (f) = ξ (f |S ◦ Ψ) = Ψξ (f |S) = Ψξ (f) ,

whence dΦξ = dΨξ follows.

(c) By definition, for all ξ, η ∈ TyY,

Φ∗g (ξ, η) = g(dΦξ, dΦη),

where dΦξ and dΦη ∈ TxX, x = Φ(y). If ξ, η ∈ TyS then by (b)

g(dΦξ, dΦη) = g(dΨξ, dΨη) = gR(dΨξ, dΨη)

= Ψ∗gR(ξ, η),

which proves that

Φ∗g (ξ, η) = Ψ∗gR(ξ, η) for all ξ, η ∈ TyS,

that is,
(Φ∗g)S = Ψ∗ (gR) ,

which was to be proved.

(d) Let g be the Riemannian metric on X and g′ – on Y . Since Φ is a Riemannian
isometry then

g′ = Φ∗g.

It follows from (a) that
g′

S = (Φ∗g)S = Ψ∗ (gR) ,

that is, Ψ is a Riemannian isometry of (S, g′
S) and (R, gR) .

61. ∗∗ Fix a point a on a Riemannian manifold (M, g) and consider on M the function
ρ (x) = d (x, a). Assume that ρ is finite and smooth in a neighborhood of a point
b ∈ M \ {a}. The purpose of this Exercise is to prove that

|∇ρ (b)|g ≤ 1. (67)

(a) Let γ : [0, ε] → M be a smooth path on M such that γ (0) = b and γ̇ (0) = ξ ∈
TbM . Prove that

d

dt
(ρ (γ (t)))

∣
∣
∣
∣
t=0

≤ |ξ|g . (68)

Hint. Use the definition of the geodesic distance d and the triangle inequality.
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(b) Prove (53).

Hint. It suffices to prove that, for any ξ ∈ TbM ,

〈∇ρ (b) , ξ〉g ≤ |ξ|g . (69)

Use (54) to prove (55).

Solution. (a) Using the definition of the geodesic distance and the triangle inequality,
we obtain, for any t ∈ [0, ε],

ρ (γ (t)) − ρ (γ (0)) = d (γ (t) , a) − d (γ (0) , a) ≤ d (γ (t) , γ (0)) ≤ `
(
γ|[0,t]

)
. (70)

Since

`
(
γ|[0,t]

)
=

∫ t

0

|γ̇ (s)| ds,

dividing (56) by t and letting t → 0, we obtain (54).

(b) It suffices to prove that
〈∇ρ (b) , ξ〉g ≤ |ξ|g ,

for any tangent vector ξ ∈ TbM . By the definition of ∇ρ, we have

〈∇ρ (b) , ξ〉g = 〈dρ, ξ〉 = ξ (ρ) ,

so that we need to prove that
ξ (ρ) ≤ |ξ|g .

Consider any smooth path γ : [0, ε] → M for some ε > 0 such that γ (0) = b and
γ̇ (0) = ξ. Then

ξ (ρ) =
∂ρ

∂ξ
= ξi ∂ρ

∂xi
=

d

dt
(ρ (γ (t)))

∣
∣
∣
∣
t=0

.

By (a) we conclude that ξ (ρ) ≤ |ξ|g, which finishes the proof.

62. ∗∗ Consider the Riemannian manifold
(
Rn

+, g
)

where

g =
(dx1)

2
+ ... + (dxn)2

(xn)2 .

Prove that
(
Rn

+, g
)

is isometric to the hyperbolic space Hn.

Remark. This manifold
(
Rn

+, g
)

is called the Poincaré half-space model of the hyper-
bolic space.

Hint. By Exercise 5f, Hn is isometric to the Poincaré ball, that is, the unit ball

Bn = {y ∈ Rn : |y| < 1}

with the metric

gBn = 4
(dy1)

2
+ ... + (dyn)2

(
1 − |y|2

)2 .
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Set p = (0, ..., 0, 1) ∈ Rn and consider the mapping Φ : Rn \ {−p} → Rn given by

Φ (y) =
2 (y + p)

|y + p|2
− p

(in fact, Φ is the inversion in the sphere of radius 2 centered at −p). Prove that Φ
is a diffeomorphism of Rn \ {−p} onto itself, and that y ∈ Bn ⇔ x = Φ (y) ∈ Rn

+.
Conclude that Φ is a diffeomorphism of Bn onto Rn

+. Then prove that Φ is isometry,
that is, Φ∗g = gBn .

Solution. The mapping

x = Φ (y) =
2 (y + p)

|y + p|2
− p. (71)

is invertible in Rn \ {−p} because it can be solved with respect to y as follows. Firstly,
it follows from (57) that

x + p =
2 (y + p)

|y + p|2
,

in particular, x 6= −p, that is, the image of Φ is in Rn \ {−p}. Next, we have

|x + p| =
2

|y + p|
,

|y + p| =
2

|x + p|

and

y =
1

2
(x + p) |y + p|2 − p =

2 (x + p)

|x + p|2
− p.

In particular, the inverse Φ−1 coincides with Φ. Since Φ ∈ C∞, we obtain that Φ is
diffeomorphism of Rn \ {−p} onto itself.

Let us show that x ∈ Rn
+ if and only if y ∈ Bn, where x and y are related by (57).

Indeed, setting y = (y′, yn), where y′ = (y1, ..., yn−1), we obtain

xn =
2 (yn + 1)

|y + p|2
− 1 =

2 (yn + 1)

|y′|2 + (yn + 1)2 − 1

=
2 (yn + 1) − (yn + 1)2 − |y′|2

|y + p|2

=
1 − (yn)2 − |y′|2

|y + p|2

=
1 − |y|2

|y + p|2
(72)

whence we see that xn > 0 is equivalent to |y| < 1 that is, x ∈ Rn
+ is equivalent to

y ∈ Bn. Hence, Φ is a diffeomorphism of Bn onto Rn
+. I

In order to prove that Φ∗g = gBn , we need to compute the Jacobi matrix J =
(

∂Φi

∂yj

)

and then verify that
JT gJ = gBn .
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Note that

g
Bn =

4

(1 − |y|)2 id and g =
1

(xn)2 id .

Since g is a diagonal matrix, it commutes with any other matrix, and we need to prove
that

JT Jg = gBn ,

that is,
1

(xn)2 JT J =
4

(
1 − |y|2

)2 id

Substituting here (??), we see that we need to prove that

JT J =
4

|y + p|4
id .

Changing variables y + p =: z and rewriting Φ in the form

Φ (z) =
2z

|z|2
− p,

we need to prove that, for J =
(

∂Φi

∂zj

)
,

JT J =
4

|z|4
id .

Using that
∂

∂zj
|z|2 = 2zj and

∂zi

∂zj
= δi

j ,

we obtain
∂Φi

∂zj
=

∂

∂zj

2zi

|z|2
=

2δi
j |z|

2 − 4zizj

|z|4
=

2

|z|2
δi

j −
4

|z|4
zizj .

Denote Z = (z1, ..., zn) and consider Z as an 1 × n matrix. Then we have

ZT Z =






z1

...
zn





(
z1, ..., zn

)
=
(
zizj

)n
i,j=1

and, hence,

J =
2

|z|2
id−

4

|z|4
ZT Z =

2

|z|2

(

id−
2

|z|2
ZT Z

)

.

It follows that JT = J and

JT J =
4

|z|4

(

id−
4

|z|2
ZT Z +

4

|z|4
ZT ZZT Z

)

.

Noticing that ZZT is an 1 × 1 matrix

ZZT =
(
z1, ..., zn

) (
z1, ..., zn

)T
= |z|2 id ,
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we obtain

JT J =
4

|z|4

(

id−
4

|z|2
ZT Z +

4

|z|4
ZT |z|2 Z

)

=
4

|z|4

(

id−
4

|z|2
ZT Z +

4

|z|2
ZT Z

)

and, hence,

JT J =
4

|z|4
id,

which finishes the proof.

63. ∗∗ Fix a real α and consider the mapping x = Q (y) of Rn+1 onto itself given by

x1 = y1

...
xn−1 = yn−1

xn = yn cosh α + yn+1 sinh α
xn+1 = yn sinh α + yn+1 cosh α.

(73)

The mapping Q is called a hyperbolic rotation or the Lorentz transformation2.

(a) Prove that Q is an isometry of Rn+1 with respect to the Minkowski metric

gMink =
(
dx1
)2

+ ... + (dxn)2 −
(
dxn+1

)2
.

(b) Prove that Q maps Hn onto itself. Prove that the restriction of Q to Hn is a
Riemannian isometry of (Hn, gHn).

Hint. Recall that the hyperbolic space Hn is defined as the hyperboloid

(
y1
)2

+ ... + (yn)2 −
(
yn+1

)2
= −1, yn+1 > 0,

with the metric tensor gHn = gMink|Hn .

Solution. (a) It is obvious that the mapping Q is a linear bijection of Rn+1 and, hence,
a diffeomorphism. We need to prove that the metric tensor g ≡ gMink is preserved by
Q, that is,

Q∗g = g.

2Assuming n = 1 and denoting x = x1, t = x2, x′ = y1, t′ = y2, we obtain from (58)

x =
x′ + vt′
√

1 − v2
, t =

t′ + vx′

√
1 − v2

where v = tanh α. These are classical Lorentz transformations in the 2-dimensional space-time that describe
in the Relativity Theory the change of coordinates in the inertial frame (x′, t′) moving at a speed v with
respect to the frame (x, t). Note that v < 1 where 1 is the speed of light.
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Note that the Jacobi matrix J =
(

∂xj

∂yi

)
of Q is equal to

J =












1 0
. . .

. . .

1
cosh α sinh a

0 sinh α cosh α












Since

Q∗
(
dxj
)

=
∂xj

∂yi
dyi,

we obtain

Q∗g = Q∗

((
dx1
)2

+ ... +
(
dxn−1

)2
+ (dxn)2 −

(
dxn+1

)2)

=
(
dy1
)2

+ ... +
(
dyn−1

)2

+ cosh2 α (dyn)2 + sinh2 α
(
dyn+1

)2
+ cosh α sinh α

(
dyndyn+1 + dyn+1dyn

)

− sinh2 α (dyn)2 − cosh α2α
(
dyn+1

)2
− cosh α sinh α

(
dyndyn+1 + dyn+1dyn

)

=
(
dy1
)2

+ ... +
(
dyn−1

)2
+ (dyn)2 −

(
dyn+1

)2
,

which finishes the proof.

Alternatively, one can directly verify that

JT gJ = g,

where

g =








1 0
. . .

1
0 −1








is the matrix of g.

(b) Recall that Hn is a hyperboloid in Rn+1, given by the equation

(
y1
)2

+ ... + (yn)2 −
(
yn+1

)2
= −1, yn+1 > 0.

Similarly to the computation in (a), we obtain, for x defined by (58),

(
x1
)2

+ ... + (xn)2 −
(
xn+1

)2

=
(
y1
)2

+ ... +
(
yn−1

)2

+ cosh2 α (yn)2 + sinh2 α
(
yn+1

)2
+ cosh α sinh α

(
2ynyn+1

)

− sinh2 α (yn)2 − cosh α2α
(
yn+1

)2
− cosh α sinh α

(
2ynyn+1

)

=
(
y1
)2

+ ... +
(
yn−1

)2
+ (yn)2 −

(
yn+1

)2

= −1
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Hence, Q maps Hn into itself, and the same holds for Q−1. Hence, Q (Hn) = Hn. By
the same argument as in Exercise 5(f)v(d), Q|Hn preserves the induced metric of Hn,
that is gHn .

64. ∗∗ We are concerned here with Riemannian isometries of Hn.

(a) Prove that, for any point a ∈ Hn, there exists a Riemannian isometry

Φ : Hn → Hn

such that Φ (a) = p where p = (0, .., 0, 1) ∈ Rn+1 is the pole of Hn.

(b) Prove that, for any four points a, b, a′, b′ ∈ Hn such that

d (a′, b′) = d (a, b) , (74)

there exists a Riemannian isometry Φ of Hn such that Φ (a′) = a and Φ (b′) = b.

Hint. Use the hyperbolic rotation of Exercise 5(f)v.

Solution. (a) By rotation in the subspace

Rn =
{
x ∈ Rn+1 : xn+1 = 0

}

we can assume that the projection of a onto Rn lies on the axis xn, that is,

a =
(
0, ..., 0, an, an+1

)
.

Since a ∈ Hn, we have (
an+1

)2
− (an)2 = 1.

Then there exists real α such that

an+1 = cosh α and an = − sinh α.

Let Φ be the hyperbolic rotation (58) of Exercise 5(f)v with this parameter α. Then
we obtain from (58)

Φ (a)n = − sin α cosh α + cosh α sin α = 0

Φ (a)n+1 = − sinh α sin α + cosh α cosh α = 1,

and (Φa)i = 0 for i < n. Hence, Φ (a) = p.

(b) Consider first the case a = a′ = p. If b, b′ ∈ Hn are two points such that d (p, b) =
d (p, b′) then, in the polar coordinates on Hn, the points b and b′ have the same polar
radius (cf. Exercise 5(f)ivD). Therefore, for a suitable rotation Φ of the polar angle,
we obtain Φ (b) = b′, while Φ (p) = p, that is, Φ (a) = a′.

Consider now the general case, when points a, b, a′, b′ ∈ Hn satisfy (59). Let Φ be an
isometry of Hn such that Φ (a) = p and Φ′ be an isometry such that Φ′ (a′) = p. Then

d (p, Φ′ (b′)) = d (Φ′ (a′) , Φ (b′)) = d (a′, b′)

= d (a, b) = d (Φ (p) , Φ (b)) = d (p, Φ (b)) .
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Hence, there exists an isometry Ψ such that

Ψ (Φ′ (b′)) = Φ (b) and Ψ (p) = p.

Since p = Φ (a) = Φ′ (a′), we obtain

Ψ (Φ′ (a′)) = Φ (a) .

It follows that
Φ−1ΨΦ′ (a′) = a

and
Φ−1ΨΦ′ (a′) = b,

so that Φ−1ΨΦ′ is the required isometry.

65. ∗∗ Consider the weighted manifold (R, g, μ) where g = gRn is the canonical Euclidean
metric and dμ = e−x2

dx. Consider also the corresponding weighted Laplace operator
Δg,μ. Prove that the Hermite polynomial

hk (x) = ex2 dk

dxk
e−x2

of degree k (where k is a non-negative integer) satisfies the equation

Δg,μhk + 2khk = 0.

That is, hk is an eigenfunction of Δg,μ.

Hint. Show first that the function g (x) = e−x2
satisfies the equation

dk+2

dxk+2
g + 2x

dk+1

dxk+1
g + (2k + 2)

dk

dxk
g = 0. (75)

Solution. If k = 0 then (60) becomes

g′′ + 2xg′ + 2g = 0. (76)

Indeed, we have

g′ = −2xe−x2

g′′ = 4x2e−x2

− 2e−x2

,

whence (??) follows. If (60) is proved for some k, then differentiating of (60) in x gives

dk+3

dxk+3
g + 2x

dk+2

dxk+2
g + 2

dk+1

dxk+1
g + (2k + 2)

dk+1

dxk+1
g = 0,

that is,
dk+3

dxk+3
g + 2x

dk+2

dxk+2
g + (2k + 4)

dk+1

dxk+1
g = 0,

which finishes the inductive step.
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The weighted Laplace operator in given by

Δg,μf = ex2 d

dx

(

e−x2 d

dx
f

)

.

For

f = hk = ex2 dk

dxk
e−x2

= ex2 dk

dxk
g

we obtain
d

dx
hk = ex2 dk+1

dxk+1
e−x2

+ 2xex2 dk

dxk
e−x2

and

Δg,μhk = ex2 d

dx

(

e−x2 d

dx
hk

)

= ex2 d

dx

(
dk+1

dxk+1
e−x2

+ 2x
dk

dxk
e−x2

)

= ex2

(
dk+2

dxk+2
g + 2x

dk+1

dxk+1
g + 2

dk

dxk
g

)

.

Using (60) we see that the value of the bracket is

−2k
dk

dxk
g = −2ke−x2

hk,

whence it follows that
Δg,μhk = −2khk,

which was to be proved.
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In all questions, (M, g, μ) is a weighted manifold, Δ = Δg,μ, and Ω is an open subset
of M . The quantity λ1(Ω) is defined in Exercise 5(f)v.

66. Let Rα be the resolvent operator in Ω. Prove that, for any α > 0 and f ∈ L2 (Ω), the
function u = αRαf is a unique minimizer of the functional

E (v) := ‖∇v‖2
~L2 + α ‖v − f‖2

L2

in the domain v ∈ W 1
0 (Ω).

Hint. Show that E (u + ϕ) ≥ E (u) for any ϕ ∈ W 1
0 (Ω).

Solution. The function u = αRαf = Rα (αf) satisfies the identity

(∇u,∇ϕ)~L2 + α (u, ϕ)L2 = (αf, ϕ)L2

for all ϕ ∈ W 1
0 . Hence, for any ϕ ∈ W 1

0 , we have (all norms are in L2 (Ω)):

E (u + ϕ) = ‖∇ (u + ϕ)‖2 + α ‖u + ϕ − f‖2

= ‖∇u‖2 + 2 (∇u,∇ϕ) + ‖∇ϕ‖2 + α ‖u − f‖2 + 2α (u − f, ϕ) + α‖ϕ‖2

=
(
‖∇u‖2 + α ‖u − f‖2)+ ‖∇ϕ‖2 + α

∥
∥ϕ2

∥
∥+ 2 ((∇u,∇ϕ) + α (u, ϕ) − (αf, ϕ))

= E (u) + ‖∇ϕ‖2 + α‖ϕ‖2.

It follows that E (u + ϕ) > E (u) unless ϕ ≡ 0, which was to be proved.

67. For any open subset Ω ⊂ M , define λ1 (Ω) by

λ1 (Ω) := inf
f∈D(Ω)\{0}

∫
Ω
|∇f |2 dμ
∫

Ω
f 2dμ

. (77)

Prove the following properties of λ1 (Ω) .

(a) If Ω1 ⊂ Ω2 are two open sets then

λ1 (Ω1) ≥ λ1 (Ω2) .

(b) If {Ωk}
∞
k=1 is an increasing sequence of open sets (that is, Ωk ⊂ Ωk+1) and Ω =⋃

k Ωk then
λ1 (Ω) = lim

k→∞
λ1 (Ωk) = inf

k
λ1 (Ωk) .

Remark. For any non-zero function f ∈ D (M), define its Rayleigh quotient by

R (f) :=
‖∇f‖2

~L2

‖f‖2
L2

.
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Then (61) can be rewritten in the form

λ1 (Ω) := inf
f∈D(Ω)\{0}

R (f) .

Solution. (a) Since
λ1 (Ω) = inf

f∈D(Ω)\{0}
R (f)

and D (Ω1) ⊂ D (Ω2), we obtain λ1 (Ω1) ≥ λ1 (Ω2) .

(b) By part (a), the sequence {λ1 (Ωk)} decreases and

λ1 (Ωk) ≥ λ1 (Ω) .

It follows that
lim

k→∞
λ1 (Ωk) = inf

k
λ1 (Ωk) ≥ λ1 (Ω) . (78)

To prove the opposite inequality, observe that, for any f ∈ D (Ω), the support of f
is covered by {Ωk}. Hence, by the compactness of supp f , there is a finite sequence
Ωk1 , ..., Ωkm that covers supp f . Assuming that k1 < k2 < ... < km and using the
monotonicity of {Ωk}, we see that Ωkm covers supp f . Hence, f ∈ D (Ωkm) and,
therefore,

λ1 (Ωkm) ≤ R (f) .

It follows that
inf
k

λ1 (Ωk) ≤ R (f) .

Taking infimum over f ∈ D (Ω), we obtain

inf
k

λ1 (Ωk) ≤ λ1 (Ω) ,

which together with (62) proves the claim.

68. Assume that λ1 (Ω) > 0.

(a) Prove that the weak Dirichlet problem in Ω

{
Δu = −f weakly in Ω,
u ∈ W 1

0 (Ω) ,
(79)

has exactly one solution u for any f ∈ L2 (Ω).

Hint. Set [u, v] := (∇u,∇v)~L2 for all u, v ∈ W 1
0 (Ω) and prove that [∙, ∙] is an inner

product in W 1
0 (Ω). For that, use the hypothesis λ1(Ω) > 0.

(b) Prove that, for the solution u of (63),

‖u‖L2 ≤ λ1 (Ω)−1 ‖f‖L2 (80)

and
‖∇u‖~L2 ≤ λ1 (Ω)−1/2 ‖f‖L2 . (81)
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Solution. (a) By definition of λ1 = λ1 (Ω), we have, for any f ∈ W 1
0 (Ω)

‖∇f‖2
~L2 ≥ λ1 ‖f‖

2
L2 . (82)

It follows that
‖∇f‖2

~L2 ' ‖∇f‖2
~L2 + ‖f‖2

L2 = ‖f‖2
W 1 ,

which implies that
[u, v] := (∇u,∇v)~L2

is an inner product in W 1
0 (Ω), and its norm is equivalent to the standard norm in

W 1
0 (Ω). Hence, W 1

0 (Ω) with the inner product [∙, ∙] is a Hilbert space.

The weak Dirichlet problem has the following formulation:

{
(∇u,∇ϕ)~L2 = (f, ϕ)L2 ∀ϕ ∈ W 1

0 (Ω)
u ∈ W 1

0 (Ω)
(83)

which can be rewritten in the form

[u, v] = l (ϕ) ∀ϕ ∈ W 1
0 (Ω)

where l (ϕ) = (f, ϕ)L2 is a continuous linear functional in W 1
0 (Ω). Hence, the above

problem has a unique solution by the Riesz representation theorem.

(b) Substituting into (65) ϕ = u, we obtain

‖∇u‖2
~L2 = (f, u)L2 ≤ ‖f‖L2 ‖u‖L2 . (84)

Since by (64)
‖∇u‖2

~L2 ≥ λ1 ‖u‖
2
L2 ,

it follows that
λ1 ‖u‖

2
L2 ≤ ‖f‖L2 ‖u‖L2 ,

whence
‖u‖L2 ≤ λ−1

1 ‖f‖L2 .

Substituting into (??), we obtain

‖∇u‖2
~L2 ≤ λ−1

1 ‖f‖2
L2

and
‖∇u‖~L2 ≤ λ

−1/2
1 ‖f‖L2

69. Consider the following version of the weak Dirichlet problem in Ω: given a real constant
α and functions f ∈ L2 (Ω), g ∈ W 1 (Ω), find a function u ∈ W 1 (Ω) such that

{
Δu − αu = −f weakly in Ω,
u − g ∈ W 1

0 (Ω) .
(85)

Prove that if α > −λ1 (Ω) then the problem (66) has exactly one solution.
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Solution. The weak equation Δu − αu = −f means that

(∇u,∇ϕ)~L2 + α (u, ϕ)L2 = (f, ϕ)L2 for any ϕ ∈ W 1
0 (Ω) .

Setting v = u − g and replacing u in the above equation by u = v + g, we obtain the
following equation for v ∈ W 1

0 :

(∇v,∇ϕ) + α (v, ϕ) = − (∇g,∇ϕ) + (f − αg, ϕ) for any ϕ ∈ W 1
0 , (86)

where the brackets mean the inner product in L2 or ~L2.

Let us show that the bilinear form

[v, ϕ]α := (∇v,∇ϕ) + α (v, ϕ)

defines an inner product in W 1
0 , which is equivalent to the standard inner product

[v, ϕ]1. If α > 0 then this is trivial and was already in lectures. We need to prove the
same in under the weaker hypothesis α > −λ1.

It suffices to show that
[ϕ, ϕ]α ≥ ε [ϕ, ϕ]1 (87)

for some ε ∈ (0, 1) and all ϕ ∈ W 1
0 , which is equivalent to

‖∇ϕ‖2
L2 ≥

ε + α

1 − ε
‖ϕ‖2

L2 . (88)

By Exercise 5(f)v we have
‖∇ϕ‖2

L2 ≥ λ1‖ϕ‖
2
L2 .

Hence, define ε from the equation

ε + α

1 − ε
= λ1,

which yields

ε =
λ1 + α

1 + λ1

> 0.

Hence, the Riesz representation theorem yields that (67) has a unique solution v ∈ W 1
0

because the right hand side of (67) is a bounded linear functional of ϕ in W 1.

70. ∗ Let f ∈ L2 (Ω) and assume that u is a solution of the following weak Dirichlet
problem: {

Δu = −f weakly in Ω,
u ∈ W 1

0 (Ω) .

Prove that
‖u‖2

W 1 ≤ c
(
‖u‖2

L2 + ‖f‖2
L2

)
, (89)

where c = 1+
√

2
2

.

Solution. By the definition of a weak solution of Δu = −f , we have, for any v ∈
W 1

0 (Ω),
(∇u,∇v)~L2 = (f, v)L2
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Setting here v = u, we obtain

‖∇u‖2
~L2 = (∇u,∇u)~L2 = (f, u)L2 .

Using the inequality

ab ≤
s

2
a2 +

1

2s
b2,

which holds for all real a, b and s > 0, we obtain

(f, u)L2 =

∫

Ω

fudμ ≤
∫

Ω

(
s

2
u2 +

1

2s
f 2

)

dμ

=
s

2
‖u‖2

L2 +
1

2s
‖f‖2

L2 .

Therefore,

‖u‖2
W 1 = ‖u‖2

L2 + ‖∇u‖2
~L2 ≤

(
1 +

s

2

)
‖u‖2

L2 +
1

2s
‖f‖2

L2 .

Therefore, (70) holds with

c = max

(

1 +
s

2
,

1

2s

)

.

The minimum value of c is attained if

1 +
s

2
=

1

2
s−1,

which leads to s =
√

2 − 1 and c = 1+
√

2
2

.

71. ∗ (Cheeger’s inequality) The Cheeger constant of Ω is defined by

h (Ω) := inf
ϕ∈D(Ω)\{0}

∫
Ω
|∇ϕ| dμ
∫

Ω
|ϕ| dμ

. (90)

Prove that

λ1 (Ω) ≥
1

4
h2 (Ω) .

Hint. Substitute in the right hand side of (71) ϕ2 in place of ϕ and use the definition
of λ1 (Ω).

Solution. By (71) we have, for any ϕ ∈ D (Ω), that

∫

Ω

|∇ϕ|g dμ ≥ h

∫

Ω

|ϕ| dμ.

Let us apply this inequality to ϕ2 in place of ϕ. Since ∇ϕ2 = 2ϕ∇ϕ, we obtain

∫

Ω

2 |ϕ| |∇ϕ|g dμ ≥ h

∫

Ω

ϕ2dμ.

Since ∫

Ω

|ϕ| |∇ϕ|g dμ ≤

(∫

Ω

ϕ2dμ

)1/2(∫

Ω

|∇ϕ|2g dμ

)1/2

,
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it follows that ∫

Ω

|∇ϕ|2g dμ ≥
h2

4

∫

Ω

ϕ2dμ.

By definition of λ1 (Ω), we conclude that

λ1 (Ω) = inf
ϕ∈D(Ω)\{0}

‖∇ϕ‖2
~L2

‖ϕ‖2
L2

= inf
ϕ∈D(Ω)\{0}

∫
Ω
|∇ϕ|2g dμ
∫

Ω
ϕ2dμ

≥
h2

4
.

72. ∗∗ Let d be the geodesic distance on a connected Riemannian manifold (M, g). A
function f : M → R is called Lipschitz if there exists a constant L such that

|f (x) − f (y)| ≤ Ld (x, y) for all x, y ∈ M.

The number L is called the Lipschitz constant of f . Prove that if f is Lipschitz with
the Lipschitz constant L then the weak gradient ∇f exists and

‖∇f‖~L∞ ≤ L. (91)

Hint. In Rn this statement can be taken as known. In order to reduce the general case
to that in Rn, prove first the following claim: for any point p ∈ M and for any C > 1,
there exists a chart U 3 p such that, for all x ∈ U and ξ ∈ TxM ,

C−2
((

ξ1
)2

+ ... + (ξn)2
)
≤ gij (x) ξiξj ≤ C2

((
ξ1
)2

+ ... + (ξn)2
)

.

This inequality was proved in lectures, however, with some constant C. Show that the
constant C can be chosen arbitrarily close to 1.

Solution. Let us first prove the following claim.

Claim. For any point p ∈ M and for any C > 1, there exists a chart U 3 p such that
for all x ∈ U , ξ ∈ TxM

C−2
((

ξ1
)2

+ ... + (ξn)2
)
≤ gij (x) ξiξj ≤ C2

((
ξ1
)2

+ ... + (ξn)2
)

. (92)

Let V be any chart containing p, with coordinates x1, ..., xn. Let gx be the matrix of
the metric tensor g in the coordinates x1, ..., xn and gy be the matrix of g in another
coordinate system y1, ..., yn in U (yet to be defined).We know that

gy = JT gxJ,

where J =
(

∂xi

∂yj

)
is the Jacobi matrix. It is well known from linear algebra that any

quadratic form can be brought to a diagonal form by a linear change of the variables.
The quadratic form ξ 7→ gx

ij (p) ξiξj is positive definite and, hence, can be transform

to the diagonal form (η1)2 + ... + (ηn)2 by a linear change ξi = Ai
jη

j , where A is a
numerical non-singular matrix. This implies that

AT gx (p) A = id .
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Defining the new coordinates yj by the linear equations xi = Ai
jy

j , we obtain that
J (p) = A and, hence, gy (p) = id. By continuity, the matrix gy is close enough to id
in a small enough neighborhood U of p. More precisely, by choosing U small enough,
we can ensure that the matrix gy

ij satisfies the conditions (73). We are left to rename
y1, ..., yn back to x1, ..., xn.

Note that the conditions (73) mean that all the eigenvalues of the matrix gij (x) are
located in the interval [C−2, C2] . Then the same is true for the eigenvalues of the
inverse matrix gij (x). Hence, the inequalities (73) hold also for gij in place of gij .

Hence, let U be a chart as in the above Claim. By shrinking further U , we can assume
that U is a ball in the coordinates x1, ..., xn centered at p. Then, for any two points
x, y ∈ U , the straight line segment between x, y is also contained in U . By (73), the
Riemannian length of this segment is bounded by C |x − y|, which implies that

d (x, y) ≤ C |x − y| . (93)

Let now f be a Lipschitz function on M with the Lipschitz constant L. In a chart U
as above, we have

|f (x) − f (y)| ≤ Ld (x, y) ≤ CL |x − y| ,

so that f is Lipschitz with a Lipschitz constant CL in the Euclidean metric in U . Hence,
we conclude that f has the weak gradient ∇ef =

(
∂f
∂x1 , ...,

∂f
∂xn

)
in the Euclidean metric

e = gRn and
|∇ef | ≤ CL a.e.. (94)

The Riemannian weak gradient ∇gf is given then by

(∇gf)k = gki ∂f

∂xi
,

and

|∇gf |
2 = gij ∂f

∂xi

∂f

∂xj
.

Using the above Claim for gij we obtain

|∇gf |
2 ≤ C2

n∑

i=1

(
∂f

∂xi

)2

≤ C2 (CL)2 a.e.

that is, in U ,
|∇gf | ≤ C2L a.e.. (95)

Since M can be covered by a countable family of such charts U , (??) holds also in M .
Finally, since C > 1 was arbitrary, we obtain |∇gf | ≤ L a.e., which finishes the proof.
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In all questions, (M, g, μ) is a weighted manifold, Ω is a precompact open subset of
M , {λk}

∞
k=1 is the sequence of the Dirichlet eigenvalues of Δ = Δg,μ in Ω in the

increasing order, and {vk} is the sequence of the corresponding eigenfunctions that
forms an orthonormal basis in L2 (Ω) .

73. Recall that any function u ∈ L2 (Ω) admits an eigenfunction expansion

u =
∞∑

k=1

akvk , (96)

where ak ∈ R and the series converges in L2 (Ω).

(a) Prove that if u ∈ W 1
0 (Ω) then the series (74) converges also in W 1(Ω) and

‖u‖2
W 1 =

∞∑

k=1

(λk + 1) a2
k. (97)

Hint. Use the Parseval identity in L2 (Ω) and in W 1
0 (Ω).

(b) Prove that if u ∈ W 1
0 (Ω) and Δu ∈ L2 (Ω) then

Δu = −
∞∑

k=1

λkakvk, (98)

where the series converges in L2 (Ω).

Solution. (a) For any u ∈ L2 (Ω) we have an expansion

u =
∞∑

k=1

akvk (99)

where ak = (u, vk) and the series converges in L2 (Ω). We know that {vk} is also an
orthogonal basis in W 1

0 (Ω). If u ∈ W 1
0 (Ω) then u can be expanded as

u =
∞∑

k=1

bkvk

where the series converges in W 1
0 (Ω). In particular, this series converges in L2 (Ω),

which implies that bk = ak. Hence, if u ∈ W 1
0 (Ω) then the series (76) converges also

in W 1
0 (Ω). It follows by the Parseval identity in L2

‖u‖2
L2 =

∞∑

k=1

a2
k ‖vk‖

2
L2 =

∞∑

k=1

a2
k
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and in W 1
0 :

‖u‖2
W 1 =

∞∑

k=1

a2
k ‖vk‖

2
W 1 .

Since
‖vk‖

2
W 1 = ‖∇vk‖

2
~L2 + ‖vk‖

2
L2 = λk + 1,

we obtain

‖u‖2
W 1 =

∞∑

k=1

(λk + 1) a2
k.

(b) Let f = −Δu ∈ L2 (Ω). Then f allows an L2 expansion

f =
∞∑

k=1

bkvk

where
bk = (f, vk)L2 = (∇u,∇vk)~L2 ,

where we have used the definition of the weak Δ and vk ∈ W 1
0 (Ω). Since vk is an

eigenfunction and u ∈ W 1
0 (Ω), we have

(∇vk,∇u)~L2 = λk (vk, u)L2 = λkak

which implies that
bk = λak,

which finishes the proof.

74. (Variational property of the bottom eigenvalue) For any non-zero function u ∈ W 1 (Ω),
consider its Rayleigh quotient :

R (u) :=
‖∇u‖2

~L2

‖u‖2
L2

.

Prove that the bottom Dirichlet eigenvalue λ1 (Ω) satisfies the following identity:

λ1 (Ω) = min
u∈W 1

0 (Ω)\{0}
R(u) = inf

u∈D(Ω)\{0}
R (u) . (100)

Hint. Use Exercise 5(f)v.

Remark. The notation λ1 (Ω) for any open set Ω was defined in Exercise 5(f)v as
λ1 (Ω) = inf

u∈D(Ω)\{0}
R (u) . The identity (77) shows that, for precompact Ω, this notation

is consistent with the notation λ1 (Ω) for the bottom Dirichlet eigenvalue.

Solution. Using notation of Exercise (5(f)v), we have

‖u‖2
L2 =

∞∑

k=1

a2
k
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and, by (??),

‖∇u‖2
~L2 = ‖u‖2

W 1 − ‖u‖2
L2 =

∞∑

k=1

λka
2
k.

Hence, for any u ∈ W 1
0 (Ω) \ {0},

R (u) =
‖∇u‖2

~L2

‖u‖2
L2

=

∑∞
k=1 λka

2
k∑∞

k=1 a2
k

≥ λ1.

On the other hand, for u = v1 we obtain

R (v1) =
‖∇v1‖

2
~L2

‖v1‖
2
L2

= λ1,

which implies that
min

u∈W 1
0 (Ω)\{0}

R (u) = λ1.

Hence, we have proved the first equality in (77).

The second equality follows from the fact that R (u) is a continuous functional in
W 1 (Ω) \ {0} and that D (Ω) is dense in W 1

0 (Ω).

75. Let a function f ∈ L2 (Ω) have an eigenfunction expansion

f =
∞∑

k=1

akvk.

(a) Prove that, for any α > 0,

Rαf =
∞∑

k=1

1

α + λk

akvk. (101)

Hint. Use Exercise 5(f)v.

(b) Using (78), prove the following resolvent identity for all α, β > 0:

Rα − Rβ = (β − α) RαRβ. (102)

Solution. (a) For the function u = Rαf we know that u ∈ W 1
0 (Ω) and

Δu = αu − f ∈ L2 (Ω) . (103)

Let

u =
∞∑

k=1

bkvk

where the series converges in L2 (Ω). By Exercise 5(f)v, we have

Δu = −
∞∑

k=1

λkbkvk.
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Substituting into (79), we obtain

−
∞∑

k=1

λkbkvk = α
∞∑

k=1

bkvk −
∞∑

k=1

akvk,

whence we obtain the identity for any k:

−λkbk = αbk − ak

and
bk =

ak

α + λk

,

which was to be proved.

(b) By (78) we have

(Rα − Rβ) f =
∞∑

k=1

(
1

α + λk

−
1

β + λk

)

akvk

and

(β − α) RαRβ =
∞∑

k=1

(β − α)

(α + λk) (β + λk)
akvk.

The right hand sides of these equalities are identically equal because

1

α + λ
−

1

β + λ
=

(β − α)

(α + λ) (β + λ)
,

whence (??) follows.

76. ∗ Let f ∈ L2 (Ω).

(a) Prove that αRaf
L2

−→ f as α → +∞.

Hint. Use Exercise 5(f)v.

(b) Prove that if in addition f ∈ W 1
0 (Ω) and Δf ∈ L2 (Ω) then, for all α > 0,

‖αRαf − f‖L2 ≤
1

α
‖Δf‖L2 .

Hint. Use Exercise 5(f)v.

Solution. Let

f =
∞∑

k=1

akvk.

Then by Exercise 5(f)v(a)

Rαf =
∞∑

k=1

ak

α + λk

vk,
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where the both series converge in L2. Hence,

αRαf − f =
∞∑

k=1

(
αak

α + λk

− ak

)

vk = −
∞∑

k=1

λk

α + λk

akvk.

By the Parseval identity, we have

‖αRαf − f‖2
L2 =

∞∑

k=1

(
λk

α + λk

)2

a2
k. (104)

Clearly, we have for any k

(
λk

α + λk

)2

→ 0 as α → ∞.

We need to prove that the whole sum (??) goes to 0 as α → ∞. For that, fix ε > 0
and find N such that

∞∑

k=N

a2
k < ε.

Then

‖αRαf − f‖2
L2 =

N∑

k=1

(
λk

α + λk

)2

a2
k +

∞∑

k=N

(
λk

α + λk

)2

a2
k

≤
N∑

k=1

(
λk

α + λk

)2

a2
k + ε,

because
(

λk

α+λk

)2

≤ 1. Now letting α → ∞ and noticing that the finite sum goes to 0,

we obtain that
lim sup

α→∞
‖αRαf − f‖2

L2 ≤ ε.

Since ε > 0 is arbitrary, it follows that

lim
α→∞

‖αRαf − f‖2
L2 = 0,

which was to be proved.

If f ∈ W 1
0 (Ω) and Δf ∈ L2 (Ω) then by Exercise 5(f)v

Δf = −
∞∑

k=1

λkakvk,

and, hence,

‖Δf‖2
L2 =

∞∑

k=1

λ2
ka

2
k.

Since λk ≥ 0 and, hence,
λk

α + λk

≤
λk

α
,
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it follows from (??) that

‖αRαf − f‖2
L2 ≤

1

α2

∞∑

k=1

λ2
ka

2
k =

1

α2
‖Δf‖2

L2 ,

which finishes the proof.

77. Prove that there exists a positive constant cn such that, for any ball BR of radius R in
Rn,

λ1 (BR) =
cn

R2
.

Hint. Using the variational property (77) of Exercise 5(f)v, prove first that

λ1 (BR) = R−2λ1 (B1) .

You can assume without loss of generality that the ball BR is centered at the origin of
Rn.

Remark. Letting R → ∞ and using Exercise 5(f)v we conclude that λ1 (Rn) = 0.

Solution. Observe the following:

(i) c := λ1 (B1) > 0 by a Theorem from lectures.

(ii) λ1 (BR) = R−2λ1 (B1) . Indeed, let f ∈ D (BR). Then the function f̃ (x) = f (Rx)
belongs to D (B1), and we have

∥
∥
∥f̃
∥
∥
∥

2

L2
=

∫

BR

f (Rx)2 dx =

∫

B1

f (y)2 R−ndy = R−n ‖f‖2
L2

and
∇f̃ (x) = R∇f (Rx)

whence ∥
∥
∥∇f̃

∥
∥
∥

2

L2
= R2

∫

B1

|∇f | (Rx)2 dx = R2−n ‖∇f‖2
L2 .

It follows that

R
(
f̃
)

=

∥
∥
∥∇f̃

∥
∥
∥

2

L2

∥
∥
∥f̃
∥
∥
∥

2

L2

= R−2R (f) .

Taking infimum in all f ∈ D (BR), we obtain λ1 (BR) = R−2λ1 (B1). Hence, we
conclude that λ1 (BR) = c/R2 where c = λ1 (B1) > 0 depends only on n.

78. ∗∗ Prove that, for any geodesic ball BR = B (x0, R) on an arbitrary connected weighted
manifold M ,

λ1 (BR) ≤
4

R2

μ (BR)

μ
(
BR/2

) .

Solution. Consider the distance function

ρ (x) = d (x, x0)
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and set
f (x) = (R − ρ (x))+ .

Since ρ is the Lipschitz function with the Lipschitz constant 1, f is also a Lipschitz
function on M with the Lipschitz constant 1. Since f (x) = 0 on ∂BR, it follows that
f ∈ W 1

0 (BR). We have

R (f) =

∫
BR

|∇f |2 dμ
∫

BR
f 2dμ

.

Since |∇f | ≤ 1 and f ≥ R
2

in B
(
x0,

R
2

)
, we obtain

R (f) ≤
μ(BR)

(
R
2

)2
μ
(
BR/2

) ,

whence the claim follows.

79. ∗∗ Let M be connected. Fix a point x0 ∈ M and consider the function ρ (x) = d (x, x0) .

(a) Prove that ρ ∈ W 1
loc (M) and ‖∇ρ‖~L∞ ≤ 1.

Hint. Use Exercise 5(f)v.

(b) Assume ρ has in Ω the weak Laplacian Δρ, and that Δρ satisfies in Ω the in-
equality Δρ ≥ a, where a is a positive constant. Prove that

λ1 (Ω) ≥
a2

4
.

Hint. First prove that h (Ω) ≥ a where h (Ω) is the Cheeger constant from Exercise
5(f)v, and then use the Cheeger inequality.

Solution. (a) Function ρ is continuous and, hence, in L2
loc (M). The function ρ is

Lipschitz with the Lipschitz constant 1 because by the triangle inequality

|ρ (x) − ρ (y)| = |d (x, x0) − d (y, x0)| ≤ d (x, y) .

Hence, by Exercise 5(f)v, ∇ρ exists weakly and satisfies ‖∇ρ‖~L∞ ≤ 1. Hence, ∇ρ ∈
~L2

loc (M) and ρ ∈ W 1
loc (M).

(b) For any non-negative ϕ ∈ D (Ω), we have

∫

Ω

Δρϕdμ ≥ a

∫

Ω

ϕdμ.

By the definition of the weak Laplacian, we have

∫

Ω

Δρϕdμ = −
∫

Ω

〈∇ρ,∇ϕ〉 dμ,

whence

−
∫

Ω

〈∇ρ,∇ϕ〉 dμ ≥ a

∫

Ω

ϕdμ
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Since

−
∫

Ω

〈∇ρ,∇ϕ〉 dμ ≤
∫

Ω

|∇ρ| |∇ϕ| dμ ≤ ‖∇ρ‖L∞

∫

Ω

|∇ϕ| dμ ≤
∫

Ω

|∇ϕ| dμ,

we obtain ∫

Ω

|∇ϕ| dμ ≥ a

∫

Ω

ϕdμ.

By the definition of the Cheeger constant, we conclude that h (Ω) ≥ a. By the Cheeger
inequality, we obtain that λ1 (Ω) ≥ a2

4
.

Remark. Although in the definition of the Cheeger constant one uses also signed
functions ϕ ∈ D (Ω), one can see from the solution of Exercise 5(f)v that it is enough
to restrict the definition (71) of h to non-negative ϕ, which is needed for the present
solution.

80. ∗∗ Prove that

λ1 (Hn) ≥
(n − 1)2

4
.

Hint. Use Exercise 5(f)v and the polar coordinates in Hn.

Solution. By Exercise 5(f)v, it suffices to prove that, for any precompact open set
Ω ⊂ Hn,

λ1 (Ω) ≥
(n − 1)2

4
.

By the translation invariance of Hn (see Exercise 5(f)v), we can assume that the origin
o lies outside Ω. Then Ω is contained in the domain of the polar coordinates. In the
polar coordinate system, we have

ΔHn =
∂2

∂r2
+ (n − 1) coth r

∂

∂r
+

1

sinh2 r
ΔSn−1 .

Applying this to the function ρ = r = d (x, o) (note that r is smooth in Ω), we obtain

Δr = (n − 1) coth r ≥ n − 1,

Solution. By Exercise 5(f)v we conclude that λ1 (Ω) ≥ (n−1)2

4
, which finishes the

proof.

81. ∗∗ Prove that

λ1 (Hn) =
(n − 1)2

4
.

Hint. It suffices to find for any ε > 0 a function f ∈ W 1
0 (Hn) such that

R (f) ≤
(n − 1)2

4
+ ε.

Look for f in the form f (x) = e−cr where r is the polar radius. You may use without
proof the fact that if f ∈ W 1 (M) and f (x) → 0 as x → ∞ then f ∈ W 1

0 (M).
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Solution. In the view of Exercise 5(f)v, we need to prove that λ1 (Hn) ≤ (n−1)2

4
. For

that, it suffices to find for any ε > 0 a function f ∈ W 1
0 (Hn) such that

R (f) <
(n − 1)2

4
+ ε.

Recall that the area function on Hn is S (r) = ωn sinhn−1 r. Since sinh r ≤ er, it follows
that

S (r) ≤ ωne(n−1)r.

Using r as a polar radius, consider on Hn the function f (x) = e−
1
2
ar. Assuming that

a > n − 1, we obtain

‖f‖2
L2 =

∫

Hn

f 2dμ =

∫ ∞

0

f (r)2 S (r) dr ≤ ωn

∫ ∞

0

e−are(n−1)rdr < ∞,

whence f ∈ L2 (M). Since function r has weak derivative bounded by 1, we have

∇f = ∇e−
1
2
ar =

1

2
af∇r,

whence ∫

M

|∇f |2 dμ =
a2

4

∫

M

f 2 |∇r|2 dμ ≤
a2

4

∫

M

f 2dμ. (105)

Hence, we see that f ∈ W 1 (M) and R (f) ≤ a2/4. Since f (x) → 0 as x → ∞, we
conclude that f ∈ W 1

0 (M).

By (??) we obtain R (f) ≤ a2

4
whence also λ1 (Hn) ≤ a2

4
. Since a was any number

> n − 1, we conclude that λ1 (Hn) ≤ (n−1)2

4
, which finishes the proof.
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In all questions, (M, g, μ) is a weighted manifold, Ω is a precompact open subset of
M , {λk (Ω)}∞k=1 is the sequence of the Dirichlet eigenvalues of Δ = Δg,μ in Ω in the
increasing order, and {vk} is the sequence of the corresponding eigenfunctions that
forms an orthonormal basis in L2 (Ω) .

82. Let M be a compact connected manifold. Set Ω = M . Prove that λ1 (Ω) = 0 and
λ2 (Ω) > 0. In other words, 0 is a simple eigenvalue of Δ in Ω.

Hint. You need to prove that if v is an eigenfunction of Δ in Ω with the eigenvalue 0
then v = const .

Solution. Since function v(x) ≡ 1 belongs to C∞
0 (M) = C∞

0 (M) and Δv = 0, it
follows that the constant function is an eigenfunction of Δ in Ω with the eigenvalue
0. Hence, λ1 (Ω) = 0. Let us verify that the eigenvalue λ1 = 0 is simple. Indeed,
if v ∈ W 1

0 (Ω) is another eigenfunction with the eigenvalue 0, that is, Δv = 0 then
we obtain that ‖∇v‖2

~L2 = λ1 ‖v‖
2
L2 = 0 whence ∇v = 0. Since Ω is connected and

v ∈ C∞ (Ω), it follows that v = const . Hence, only constant is the eigenfunction of
λ1 = 0, that is, λ1 = 0 is a simple eigenvalue, which implies that λ2 (Ω) > 0.

83. Recall that the Rayleigh quotient of a non-zero function u ∈ W 1 (Ω) is defined by

R (u) :=
‖∇u‖2

~L2

‖u‖2
L2

.

Assume that, for a function f ∈ W 1
0 (Ω) \ {0},

R (f) = λ1 (Ω) . (106)

Prove that f is the eigenfunction of Δ in Ω with the eigenvalue λ1 (Ω).

Remark. We know that if v is an eigenfunction of Δ in Ω with the eigenvalue λ then
R (v) = λ. The above claim says that the converse statement is also true provided
λ = λ1 (Ω) (but it is not true for higher eigenvalues).

Hint. Set λ = λ1 (Ω) and recall that by Exercise 5(f)v,

λ = inf
u∈W 1

0 (Ω)\{0}
R (u) .

Hence, for any ϕ ∈ W 1
0 (Ω) and any t ∈ R, we have

R (f + tϕ) ≥ λ = R (f) .

Use this inequality with t → 0 to deduce that (∇f,∇ϕ) − λ (f, ϕ) = 0, which will
imply the claim.

Solution. Denote for simplicity λ = λ1 (Ω) and observe that, for any ϕ ∈ W 1
0 (Ω) and

real t, we have
R (f + tϕ) ≥ λ = R (f) ,

95



that is
‖∇ (f + tϕ) ‖2

‖f + tϕ‖2
≥ λ =

‖∇f‖2

‖f‖2
,

which implies

‖∇ (f + tϕ) ‖2 − λ‖f + tϕ‖2 ≥ 0 = ‖∇f‖2 − λ‖f‖2.

We have
‖∇f + t∇ϕ‖2 = ‖∇f‖2 + 2t (∇f,∇ϕ) + t2‖∇ϕ‖2

and
‖f + tϕ‖2 = ‖f‖2 + 2 (f, ϕ) + t2‖ϕ‖2,

whence

‖∇ (f + tϕ) ‖2 − λ‖f + tϕ‖2 = 2t ((∇f,∇ϕ) − λ (f, ϕ)) + t2
(
‖∇ϕ‖2 − λϕ2

)
.

Since the left hand side is non-negative for all real t, the linear in t term in the right
hand side must vanish, that is

(∇f,∇ϕ) − λ (f, ϕ) = 0.

This equality means that f is the eigenfunction of Δ in Ω with the eigenvalue λ.

84. Let M be a compact connected manifold and Ω = M. Let u be a solution of the mixed
problem for the heat equation in R+ × Ω with the initial function f ∈ L2 (Ω). Prove
that, for any t > 0, ∫

Ω

u(t, ∙)dμ =

∫

Ω

fdμ. (107)

Hint. Use Exercise 5(f)v and expansions of f and u (t, ∙) in the eigenfunction basis
{vk}

∞
k=1 .

Solution. By Exercise 5(f)v we know that λ1 (Ω) = 0, λ2 (Ω) > 0 and v1 = const . We
would like to have all eigenfunctions {vk} normalized in L2 (Ω), in particular, we have

v1 (x) =
1

√
μ (Ω)

.

Observe that since μ (Ω) < ∞, we have L2(Ω) ⊂ L1(Ω) so that
∫

Ω
fdμ is well defined.

Let

f =
∞∑

k=1

akvk.

Then ∫

Ω

fdμ = (f, 1)L2 =
∞∑

k=1

ak(vk, 1)L2 .

Since vk⊥v1 for k > 1, we obtain that (vk, 1) = 0 for k > 1, and

(v1, 1) =

∫

Ω

v1dμ =
√

μ(Ω).
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Hence, ∫

Ω

fdμ = a1

√
μ(Ω).

Since

u (t, ∙) =
∞∑

k=1

e−λktakvk,

we obtain in the same way that

∫

Ω

u (t, ∙) dμ = e−λ1ta1

√
μ(Ω).

Since λ1 = 0, we obtain (81).

85. (Product rule for L2-derivatives) Let I be an interval in R and u (t) , v (t) : I → L2 (Ω)
be differentiable paths. Prove that

d

dt
(u, v) = (u,

dv

dt
) + (

du

dt
, v),

where (∙, ∙) denotes the inner product in L2 (Ω) .

Solution. We have

(u (t + ε) , v (t + ε)) − (u (t) , v (t))

ε
=

(

u (t + ε) ,
v (t + ε) − v (t)

ε

)

+

(
u (t + ε) − u (t)

ε
, v (t)

)

.

When ε → 0, we have u (t + ε) → u (t) and

v (t + ε) − v (t)

ε
→ v′ (t) and

u (t + ε) − u (t)

ε
→ u′ (t) ,

where all the convergencies are in L2-norm . Since the inner product is a continuous
functional of the both arguments, we obtain

(u (t + ε) , v (t + ε)) − (u (t) , v (t))

ε
→ (u (t) , v′ (t)) + (u′ (t) , v (t)) ,

which was to be proved.

86. ∗ (Chain rule for L2-derivatives) Let u (t) : I → L2 (Ω) be a differentiable path.
Consider a function ψ ∈ C1 (R) such that

ψ (0) = 0 and sup |ψ′| < ∞. (108)

Prove that the path ψ (u (t)) is also differentiable in t ∈ I and

dψ (u)

dt
= ψ′ (u)

du

dt
.
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Solution. The condition (82) implies that |ψ (t)| ≤ C |t| whence it follows that
ψ (u (t)) is also in L2 (Ω). Fix t ∈ I. Denoting

r (s) :=
u (t + s) − u (t)

s

and u′ = du
dt

, we have by hypothesis

r (s)
L2

−→ u′ (t) as s → 0. (109)

We need to prove that

ψ (u (t + s)) − ψ (u (t))

s

L2

−→ ψ′ (u) u′ as s → 0. (110)

It suffices to show that for any sequence sk → 0, there is a subsequence along which
(??) holds.

By the mean value theorem, we have

ψ (u (t + s)) − ψ (u (t)) = ψ (u (t) + sr (s)) − ψ (u (t))

= ψ′ (u (t) + ξsr (s)) sr (s)

where ξ = ξ (s, x) ∈ (0, 1). Therefore,

ψ (u (t + s)) − ψ (u (t))

s
− ψ′ (u) u′ = [ψ′ (u (t) + ξsr (s)) − ψ′ (u (t))] u′ (t)

+ψ′ (u (t) + ξsr (s)) [r (s) − u′ (t)]

and, hence,

∥
∥
∥
∥
ψ (u (t + s)) − ψ (u (t))

s
− ψ′ (u) u′

∥
∥
∥
∥

L2

≤

(∫

Ω

|ψ′ (u (t) + ξsr (s)) − ψ′ (u (t))|2 |u′ (t)|2 dμ

)1/2

+ sup |ψ′| ‖r (s) − u (t) ‖L2 .(111)

When s → 0, the second term in (83) tends to 0 by (??). Let us show that, for any
sequence sk → 0, there is a subsequence along which the first term in (83) tends to 0.
The sequence of functions skr (sk) tends to 0 in L2 because the norms ‖r (s) ‖L2 remain
bounded as s → 0. Therefore, there is a subsequence ski

, which will be renumbered
by {sk}, along which skr (sk, ∙) → 0 a.e. Since ξk := ξ (sk) is bounded, we also have
ξkskr (sk) → 0 a.e., and by the continuity of ψ′,

ψ′ (u (t) + ξkskr (sk)) → ψ′ (u (t)) a.e.

Hence, the function under the integral sign in (83) tends to 0 almost everywhere. Since
this function is bounded for all s by the integrable function 4C2 |u′|2, we conclude by
the dominated convergence theorem that the integral in (83) tends to 0, which finishes
the proof.
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