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1 Introduction and preliminaries

Let M be a complete non-compact Riemannian manifold. Let (Xt,Px) be the Brownian motion
on M , that is, the stochastic process generated by the Laplace-Beltrami operator ∆. Let also
p(t, x, y) be the heat kernel on M , that is, the minimal positive fundamental solution of the heat
equation ∂tu = ∆u on (0,∞) ×M . Then p(t, x, y) is also the transition density of Xt, which
means that for any Borel set A ⊂M ,

Px(Xt ∈ A) =
∫

A
p(t, x, y)dy

where dy denotes the Riemannian measure.
Considerable efforts have been made to obtain upper and lower estimates of the heat kernel

p(t, x, y). See, for instance, [3], [8], [18], [25], [30], [32] and the references therein. The aim of this
paper is to estimate the hitting probability function

ψK(t, x) := Px(∃ s ∈ [0, t] , Xs ∈ K)

where K ⊂M is a fixed compact set. In words, ψK(t, x) is the probability that Brownian motion
started at x hits K by time t. Our goal is to obtain precise estimates on ψK for all t > 0 and x
outside a neighborhood of K, hence avoiding the somewhat different question of the behavior of
ψK near the boundary of K. In the context of Riemannian manifolds, this natural question has
been considered only in a handful of papers including [2], [4]. We were led to study ψK in our
attempt to develop sharp heat kernel estimates on manifolds with more than one end. Indeed,
the proof of the heat kernel estimates announced in [20] depends in a crucial way on the results
of the present paper (see [21]). In this context, it turns out to be important to estimate also the
time derivative ∂tψK(t, x) which is a positive function.

We develop a general approach which allows to obtain estimates of ψK in terms of the heat
kernel p(t, x, y) or closely related objects such as the Dirichlet heat kernel pU (t, x, y) of some open
set U . In the case when Xt is transient, that is, M is non-parabolic, we show that the behavior
of ψK(t, x), away from K, is comparable to that of∫ t

0
p(s, x, y)ds,

where y is a reference point on ∂K. If (Xt)t>0 is recurrent, that is, M is parabolic, we obtain
similar estimates through ∫ t

0
pU (s, x, y)ds

where U is a certain region slightly larger than Ω := M \ K. We also show that ∂tψK(t, x) is
comparable to pΩ(t, x, y) where y stays at a certain distance from ∂K. For precise statements,
see Theorems 3.4, 3.7, 3.10 and Corollaries 3.13, 3.14.

Using the known results concerning the heat kernel p(t, x, y) and the results of [23] on
pU (t, x, y), we obtain in Theorems 4.5 and 4.11 some specific bounds on ψK for important classes
of manifolds, including manifolds of non-negative Ricci curvature. Some examples are presented
in Section 5. Consider, for instance, the case M = R

2 and K being the unit ball centered at the
origin. Then our results imply the following estimates, for |x| large enough:

(i) If 0 < t < 2 |x|2 then

c

log |x| exp

(
−C |x|2

t

)
≤ ψK(t, x) ≤ C

log |x| exp

(
−c |x|

2

t

)
,

for some positive constants C, c.
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(ii) If t ≥ 2 |x|2 then

ψK(t, x) � log
√
t− log |x|

log
√
t

,

and
∂tψK � log |x|

t(log t)2
.

Here the relation f � g means that the ratio f/g is bounded by positive constants from above
and below, for a specified range of the variables.

We develop these results below in the somewhat more general framework of weighted mani-
folds, possibly with a non-trivial boundary. We now explain this framework in detail.

Weighted manifolds. Let M be a Riemannian manifold of dimension N , possibly with a
boundary which will be then denoted by δM . (Note that δM is a part of M so that all points
on δM are interior points of M as a topological space.) The Riemannian metric gij induces the
geodesic distance d(x, y) between points x, y ∈M .

Given a smooth positive function σ on M , let µ be the measure on M given by dµ(x) = σ(x)dx
where dx is the Riemannian measure. Similarly, let µ′ be the measure with the density σ with
respect to the Riemannian measure of codimension 1 on any smooth hypersurface, in particular,
on δM . The pair (M,µ) is called a weighted manifold, and it will serve as the underlying space
in this paper.

The differential operators. For any smooth function f on M , denote by ∇f its gradient,
that is, the vector field given by

(∇f)i =
N∑

j=1

gij ∂f

∂xj
,

where gij are the entries of the inverse of the metric tensor gij . A weighted manifold possesses
the divergence divµ defined by

divµF :=
1

σ
√
g

N∑
i=1

∂

∂xi

(
σ
√
gF i

)
,

where F is a smooth vector field and g := det ‖gij‖ . If σ ≡ 1 then divµ is the Riemannian
divergence divF .

The Laplace operator ∆µ of (M,µ) is the second order differential operator defined by

∆µf := divµ(∇f) = σ−1div(σ∇ f).

We say that a smooth function f on (M,µ) is harmonic if ∆µf = 0 in M \ δM and ∂
∂nf = 0 on

δM where n is the inward unit normal vector field on δM .

Boundaries and integration by parts. For any set Ω ⊂ M , set δΩ = δM ∩ Ω. If Ω is
open then Ω can be itself considered as a manifold with boundary δΩ. Let ∂Ω be the topological
boundary of Ω in M . When δM = ∅, we say that a set Ω ⊂ M has smooth boundary if ∂Ω is a
smooth submanifold (without boundary) of co-dimension 1. In general, we have a more compli-
cated definition of smooth boundary which takes into account δΩ as well as possible intersection
of ∂Ω with δM .
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Definition 1.1 We say that a set Ω ⊂ M has smooth boundary if each component Γ of ∂Ω
satisfies one of the following two conditions (see Fig. 1):

(i) either Γ is a smooth submanifold in M of co-dimension 1 whose boundary δΓ lies on δM ,
and Γ is transversal to δM at δΓ (including the case δΓ = ∅);

(ii) or Γ lies in δM and Γ has smooth boundary as a subset of δM .

Ω

δΩΓ2

δΜ

ΜΓ1

n

n

Figure 1 The boundary ∂Ω consists of two components Γ1 and Γ2 satisfying (i) and (ii)
respectively.

Assume that Ω is an open set with smooth boundary, and let n be the inward normal unit
vector field on ∂Ω and δΩ. Then, for sufficiently regular functions f, g, we have the integration-
by-parts formulas ∫

Ω

g∆µf dµ = −
∫
Ω

(∇f,∇g) dµ −
∫

∂Ω∪δΩ

g
∂f

∂n
dµ′, (1.1)

and ∫
Ω

g∆µf dµ =
∫
Ω

f∆µg dµ+
∫

∂Ω∪δΩ

(
f
∂g

∂n
− g

∂f

∂n

)
dµ′ . (1.2)

In the absence of δΩ, the standard regularity condition sufficient for (1.1) and (1.2) is

f, g ∈ C2(Ω) ∩ C1(Ω). (1.3)

In general, if
f, g ∈ R(Ω) := C2(Ω \ δΩ) ∩ C1

(
Ω \ (∂Ω ∩ δΩ)

) ∩ L∞(Ω), (1.4)

then (1.1) and (1.2) hold. The regularity class R (Ω) coincides with (1.3) if δΩ is empty. When
δΩ is non-empty then the proof of (1.1) and (1.2) follows from [13, Prop. 2]. The point is that
the intersection ∂Ω ∩ δΩ has co-dimension 2 and hence does not affect the validity of (1.1) and
(1.2) provided f and g are bounded.

Let us observe that if Ω ⊂ M is a precompact open set with smooth boundary then the
(unique) weak solution f to the boundary value problem

∆µf = 0
f |∂Ω = f0
∂f
∂n

∣∣∣
δΩ

= 0

belongs to R(Ω) provided f0 ∈ C1(∂Ω).
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The heat kernel. Let C∞
0 (M) denote the set of smooth functions on M with compact support

(functions from C∞
0 (M) do not necessarily vanish on δM). The operator ∆µ with initial domain

C∞
0 (M) is essentially self-adjoint in L2(M,µ) and non-positive definite. It gives rise to the heat

semigroup Pt = et∆µ which has a positive smooth symmetric kernel p(t, x, y) called the heat
kernel of (M,µ). Alternatively, the heat kernel can be defined as the minimal positive solution
u(t, x) = p(t, x, y) of the Cauchy problem on M × (0,+∞)

∂tu = ∆µu
u|t=0 = δy
∂u
∂n

∣∣
δM

= 0
(1.5)

(see [5], [10], [28]). The heat kernel satisfies the following properties:

• the semigroup identity

p(t, x, y) =
∫

M
p(s, x, z)p(t− s, z, y)dµ(z), (1.6)

for all 0 < s < t and x, y ∈M ;

• the total mass inequality ∫
M
p(t, x, y)dµ(y) ≤ 1. (1.7)

The operator ∆µ generates a diffusion process (Xt)t≥0 on M (reflected at δM) which will be
called the Brownian motion on (M,µ). Denote by Px the law of Xt given X0 = x ∈M and by Ex

the corresponding expectation. The heat kernel p is equal to the transition density for Xt with
respect to measure µ, that is, for any Borel set A ⊂M ,

Px (Xt ∈ A) =
∫

A
p(t, x, y)dµ(y).

As any open set Ω ⊂ M can be regarded as a manifold with boundary δΩ, all the constructions
above can be repeated for Ω yielding the heat semigroup PΩ

t with the kernel pΩ(t, x, y), which is
called the Dirichlet heat kernel of Ω. We extend pΩ(t, x, y) to all x, y ∈M by setting it to 0 if x
or y is outside Ω. Then pΩ vanishes and is continuous at regular points of the boundary ∂Ω, and
satisfies the Neumann boundary condition on δΩ.

Observe that pΩ increases with Ω, a fact which follows from the parabolic comparison principle.
Let {Ek} be an exhaustion of M , that is an increasing sequence of precompact open sets Ek ⊂M
with smooth boundaries ∂Ek such that ∪kEk = M . Then the sequence {pEk

} of the corresponding
heat kernels increases and converges to the global heat kernel p (see [10]).

Green function. The Green function of (M,µ) is defined by

G(x, y) =
∫ ∞

0
p(t, x, y)dµ(y). (1.8)

Equivalently, G(x, y) can be defined as the infimum of all positive fundamental solutions of the
operator ∆µ with the Neumann condition on δM . It is known that either G(x, y) ≡ ∞ or
G(x, y) <∞ for all x �= y.

Similarly, one defines GΩ(x, y) for any open set Ω ⊂ M . If Ω is precompact and M \ Ω is
non-empty then GΩ is the fundamental solution of ∆µ with the Dirichlet condition on ∂Ω and
the Neumann condition on δΩ. In this case GΩ (x, y) <∞ for all x �= y. If M is non-compact and
{Ek} is an exhaustion of M then the sequence {GEk

} increases and converges to G as k → ∞.
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Capacity. Given a non-empty closed set F and an open set Ω on M such that F ⊂ Ω, define
the capacity cap (F,Ω) of the capacitor (F,Ω) as

cap (F,Ω) := inf
φ∈Lip0(Ω)

φ|F =1

∫
Ω
|∇φ|2 dµ. (1.9)

Here Lip0(Ω) is the class of all Lipschitz functions compactly supported in Ω. Note that Lip0 (Ω)
can be replaced by C∞

0 (Ω) without changing the value of the capacity. Various properties of
capacity can be found in [27, Sect. 2.2.1].

Assume that Ω is precompact, ∂F and ∂Ω are non-empty, and consider the following boundary
value problem in Ω \ F 

∆µϕ = 0
ϕ|∂Ω = 0
ϕ|∂F = 1
∂ϕ
∂n

∣∣∣
δ(Ω\F )

= 0.

(1.10)

The unique (Perron) solution ϕ of this problem is called the equilibrium potential of the capacitor
(F,Ω). In general, the equilibrium potential does not necessarily belong to the class of test
functions in the definition of capacity. However, one always has

cap(F,Ω) =
∫

Ω\F
|∇ϕ|2 dµ. (1.11)

Moreover, if U is a precompact open set with smooth boundary such that K ⊂ U ⊂ Ω then

cap(F,Ω) =
∫

∂U

∂ϕ

∂n
dµ′, (1.12)

where n is the inward unit normal vector field on ∂U . If Ω and F have smooth boundaries then
ϕ ∈ R(Ω \ F ), and (1.12) follows from (1.1). In particular, in this case we have cap(F,Ω) > 0.

The equilibrium potential ϕ is defined by (1.10) as a function in Ω \ K. Let us extend ϕ

by 1 in
o
K and set ϕ(x) =lim inf

y→x
ϕ(y) for x ∈ ∂K. Then ϕ becomes a lower semicontinuous

superharmonic function in Ω. Similarly, we extend ϕ by 0 outside Ω.
If Ω = M then we write cap(F ) for cap(F,M). Given an open subset Ω ⊂ M and a closed

set K ⊂ Ω, define capΩ(K) as the capacity of K in the manifold Ω. From the definition, it easily
follows that

capΩ(K) = cap(K,Ω).

Parabolicity. We say that (M,µ) is parabolic if G(x, y) ≡ ∞, and non-parabolic otherwise. For
example, R

N is parabolic if and only if N ≤ 2. It is well known that the following properties are
equivalent:

• The weighted manifold (M,µ) is parabolic.

• The Brownian motion Xt on (M,µ) is recurrent.

• For any compact set F ⊂M , cap(F ) = 0.

• For some compact set F ⊂M with non-empty interior, cap(F ) = 0.

• Any positive superharmonic function on (M,µ) is constant.

See, for example, [12], [19], [31].
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2 Basic properties of hitting probabilities

2.1 Definition of hitting probabilities

For any closed subset K ⊂ M , denote by τK the first time the Brownian motion Xt visits K,
that is

τK = inf{t ≥ 0 : Xt ∈ K}.
Since Xt has continuous paths and K is closed, τK is a stopping time (see e.g., [24, Ch. 1.]) Let
us set

ψK(t, x) := Px(τK ≤ t). (2.1)

In other words, ψK(t, x) is the probability that the Brownian motion hits K by time t. Observe
that ψK(t, x) is an increasing function in t, is bounded by 1, and ψK(x, t) = 1 if x ∈ K.

We also define
ψK(x) := lim

t→∞ψK(t, x) = Px(τK <∞), (2.2)

which is the probability that the Brownian motion ever hits K. Clearly, 0 ≤ ψK(x) ≤ 1 on M and
ψK(x) = 1 on K. Note that the parabolicity of (M,µ) is equivalent to the fact that ψK(x) ≡ 1
for any/some compact K with non-empty interior.

Let us consider also a regularized version of ψk defined by

ψ̂K(x) := Px (0 < τK <∞) .

It is obvious from (2.1) that ψ̂K(x) ≤ ψK(x). Both functions ψ̂K(x) and ψK(x) are harmonic
in Ω := M \ K and coincide in Ω. Also, they are equal to 1 in the interior of K. On ∂K, the
functions ψ̂K(x) and ψK(x) may differ but it is known that

µ
{
x ∈M : ψK(x) �= ψ̂K(x)

}
= 0 (2.3)

(see [7], [11]).
We will frequently consider the difference

ψK(x) − ψK(t, x) = Px (t < τK <∞) .

Clearly, ψK(x) − ψK(t, x) is the probability that Brownian motion ever hits K, and does it for
the first time after time t. There is the following crucial relation between ψK(x) and ψK(t, x).

Lemma 2.1 For an arbitrary closed set K ⊂M , we have for all t > 0 and x ∈M

ψK(x) − ψK(t, x) = PΩ
t ψK(x), (2.4)

where Ω := M \K.

Proof. If x ∈ K then the both sides of (2.4) vanish. Assume that x ∈ Ω and consider the
function

PΩ
t ψ̂K(x) =

∫
M
pΩ(t, x, y)ψ̂K(y)dµ(y).

Clearly, pΩ(t, x, y)dµ(y) is the law of Xt started at x and conditioned not to hit ∂Ω (and hence K)
by time t. Since ψ̂K(y) is the probability that the Brownian motion hits K at some positive time
started at y, the Markov property implies that PΩ

t ψ̂K(x) is the probability that the Brownian
motion hits K, but does it after time t. Hence, we obtain

ψK(x) − ψK(t, x) = PΩ
t ψ̂K(x) = PΩ

t ψK(x),

where the last equality holds for t > 0 due to (2.3).
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Corollary 2.2 The function ψK(t, x) satisfies in Ω × (0,+∞) the heat equation

∂tψK = ∆µψK

and the Neumann condition ∂
∂nψK = 0 on δΩ.

Proof. By (2.4), since both ψK(x) and PΩ
t ψK(x) satisfy these conditions, so does ψK(t, x).

Remark 2.3 If we assume that the process Xt is stochastically complete, that is, Pt1 ≡ 1, then
we have also

PΩ
t 1(x) = 1 − ψK(t, x). (2.5)

Indeed, the left hand side of (2.5) is the probability that the Brownian motion with the killing
boundary condition on ∂Ω stays in Ω until time t. This is equal to the probability that the global
Brownian motion on M does not hit ∂Ω up to the time t, which coincides with the right hand
side of (2.5).

2.2 Equilibrium measure

If (M,µ) is non-parabolic and K ⊂ M is any compact set then the function ψK(x) has the
following representation

ψK(x) =
∫

K
G(x, y)deK (y), ∀x ∈M, (2.6)

where eK is the equilibrium measure of K (see [6]). We will only use the properties of eK that it
is a Radon measure supported by ∂K, it satisfies (2.6) and

eK(K) = cap(K). (2.7)

If K has smooth boundary then the measure eK is given by

deK = −∂ψK

∂n
dµ′, (2.8)

where n is the normal vector field on ∂K inward with respect to Ω = M \K. Let us outline the
proof of (2.8). Suppose f is harmonic in Ω and g satisfies in Ω \ δΩ the equation ∆µg = −δx

(where x ∈ Ω) and the Neumann condition on δΩ. If the integration by parts formula (1.2) can
be applied then it yields

f(x) =
∫

∂Ω

(
∂g

∂n
f − ∂f

∂n
g

)
dµ′. (2.9)

Taking here f = ψK and g = G(x, ·) and observing that f ≡ 1 on ∂Ω, we obtain

ψK(x) =
∫

∂Ω

∂G(x, ·)
∂n

dµ′ −
∫

∂Ω
G(x, ·)∂ψK

∂n
dµ′. (2.10)

This would imply (2.6) with eK defined by (2.8) if we show that the first integral in (2.10)
vanishes. Indeed, by Definition 1.1 of smooth boundary, each component Γ of ∂Ω is either a
smooth hypersurface in M transversal to δM or Γ lies on δM . In the first case, Γ bounds a
precompact open set K0 ⊂ K so that∫

Γ

∂G(x, ·)
∂n

dµ′ = −
∫

K0

∆µG(x, ·) dµ = 0,

8



since G(x, ·) is harmonic inside K. In the second case, Γ ⊂ δM so that ∂G
∂n = 0 on Γ.

However, for the functions f and g as above the integration by parts is illegal because Ω is
not precompact. To complete the proof, one must exhaust M by precompact regions and use the
corresponding approximations for ψK and G (as in the proof of Lemma 2.5 below). Passage to
the limit is possible by the local regularity of solutions of elliptic equations up to the boundary.

The following lemma will be used to obtain lower bounds for ψK(x, t) (see Lemma 3.9).

Lemma 2.4 Let (M,µ) be non-parabolic, K be a compact subset of M . Set Ω = M \K. Then,
for all t > 0 and x ∈M ,

ψK(x) − ψK(x, t) =

∞∫
0

∫
Ω

∫
K

pΩ(t, x, y)p(s, y, z)deK (z)dµ(y)ds. (2.11)

The proof immediately follows from (2.4), (2.6), (1.8).

2.3 The time derivative

The following lemma will be used to obtain upper bounds for ψK and its time derivative.

Lemma 2.5 Let K ⊂ M be a compact set with non-empty smooth boundary. Set Ω := M \K.
Then, for all t > 0 and x ∈ Ω, we have

∂tψK(t, x) =
∫

∂Ω

∂

∂n
pΩ(t, x, ·)dµ′ , (2.12)

where n is the inward normal unit vector field at ∂Ω.

Proof. Denote for simplicity ψK = ψ. The informal line of reasoning showing (2.12) runs as
follows:

∂tψ(t, x) = −∂tP
Ω
t ψ(x)

= −
∫
Ω

∂tpΩ(t, x, ·)ψ dµ

= −
∫
Ω

∆µpΩ(t, x, ·)ψ dµ

= −
∫
Ω

pΩ(t, x, ·)∆µψ dµ

+
∫

∂Ω∪δΩ

[
∂

∂n
pΩ(t, x, ·)ψ − pΩ(t, x, ·)∂ψ

∂n

]
dµ′ (2.13)

=
∫
∂Ω

∂

∂n
pΩ(t, x, ·)dµ′,

where we have applied (2.4), integration by parts as in (1.2), and the conditions

∆µψ = 0, ψ|∂Ω = 1, pΩ|∂Ω = 0,
∂

∂n
pΩ =

∂

∂n
ψ = 0 on δΩ.

However, the integration by parts is a priori illegal since Ω is not precompact. To make this
argument rigorous, we have to approximate Ω by precompact sets and then pass to the limit.
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Let {Ek} be an exhaustion of M . By this we mean that each Ek is a precompact open set
with smooth boundary ∂Ek; also, we assume that Ek increase to M as k → ∞. In addition we
may assume that each Ek contains K, and set Ωk = Ω ∩ Ek = Ek \K. We can consider Ek itself
as a manifold, instead of M , and perform the computations above for this manifold. Indeed,
consider on Ek the corresponding heat kernel pΩk

(t, x, y) and the hitting probabilities ψk(t, x)
and ψk(x). All these functions vanish on ∂Ek and satisfy the Neumann boundary condition on
δEk. Integration-by-parts is justified in Ωk so that the computation above yields

∂tψk(t, x) =
∫

∂Ω

∂

∂n
pΩk

(t, x, y)dµ′(y). (2.14)

We are left to pass to the limit as k → ∞. It is known (see [3, Lemma 3, p.187]) that for all
x, y ∈ Ω and t > 0

ψk(x) ↗ ψ(x) and pΩk
(t, x, y) ↗ pΩ(t, x, y)

whence we conclude by (2.4) that
ψk(t, x) ↗ ψ(t, x)

(in fact, monotonicity of ψk(t, x) in k is obvious; what we need from (2.4) is the convergence).
By local properties of parabolic equations, we obtain that

∂tψk(t, x) → ∂tψ(t, x) (2.15)

for all x ∈ Ω and t > 0. In other words, the left hand side of (2.14) converges to that of (2.12) as
k → ∞. Since pΩk

= 0 on ∂Ω and pΩk
is non-negative and increases in k, the normal derivative

∂
∂npΩk

on ∂Ω is non-negative and also increases in k. Local estimates of solutions to the heat
equation up to the boundary imply

∂

∂n
pΩk

↗ ∂

∂n
pΩ on ∂Ω.

By the monotone convergence theorem, we conclude that the right hand side of (2.14) convergence
to that of (2.12), which finishes the proof.

Remark 2.6 Integrating (2.12) in t from 0 to ∞, we obtain

ψK(x) =
∫

∂Ω

∂GΩ(x, ·)
∂n

dµ′ . (2.16)

Alternatively, (2.16) can be deduced from (2.9) taking there f = ψK and g = GΩ(x, ·), which
however, also requires an approximation argument in the spirit of the proof above.

3 General estimates of hitting probabilities

Throughout this section, (M,µ) is a weighted manifold, K ⊂ M is a compact set, Ω := M \K,
and K ′ is a precompact open neighborhood of K. The main results are Theorems 3.4, 3.7, and
3.10 providing estimates for ψK(t, x).

3.1 Estimates based on the equilibrium potential

Lemma 3.1 Assume that both K and K ′ have non-empty smooth boundaries. Then, for any
function ϕ ∈ R(K ′\K) such that

ϕ|∂K = 1, ϕ|∂K ′ = 0,
∂ϕ

∂n

∣∣∣∣
δ(K ′\K)

= 0, (3.1)

10



we have, for all x ∈ Ω and t > 0,

∂tψK(t, x) =
∫

K ′\K
pΩ(t, x, ·)∆µ

(
ϕ2
)
dµ−

∫
K ′\K

∂tpΩ(t, x, ·)ϕ2 dµ. (3.2)

Remark 3.2 Since pΩ(t, x, y) and ∂tψK(t, x) vanish if x /∈ Ω, (3.2) is, in fact, satisfied for all
x ∈M .

K

x
y

K

Figure 2 Sets K, K ′ and function φ

Proof. Let us denote for simplicity u(t, y) := pΩ(t, x, y) and let n be the inward normal
vector field on the boundary of K ′ \K. By Lemma 2.5, we have

∂tψK(t, x) =
∫

∂K

∂u

∂n
dµ′. (3.3)

The function u satisfies the heat equation

∂tu = ∆µu. (3.4)

Multiply (3.4) by ϕ2 and integrating over K ′\K, we obtain∫
K ′\K

ϕ2∂tu dµ =
∫

K ′\K
ϕ2∆µu dµ =

∫
K ′\K

u∆µϕ
2dµ −

∫
∂(K ′\K)

∂u

∂n
ϕ2dµ′ +

∫
∂(K ′\K)

∂ϕ2

∂n
u dµ′.

Note that the terms containing integration over δ(K ′ \K) vanish because both u and ϕ satisfy
the Neumann condition on δ(K ′ \K). Since u|∂K = 0, ϕ|∂K = 1, ϕ|∂K ′ = 0 and

∂ϕ2

∂n

∣∣∣∣
∂K ′

= 2ϕ
∂ϕ

∂n

∣∣∣∣
∂K ′

= 0,

we obtain ∫
∂K

∂u

∂n
dµ′ =

∫
K ′\K

u∆µϕ
2dµ−

∫
K ′\K

ϕ2∂tu dµ ,

which together with (3.3) implies (3.2).

Corollary 3.3 Let K and K ′ have non-empty smooth boundaries. Let ϕ be the equilibrium
potential of capacitor (K,K ′) . Then, for all x ∈ Ω and t > 0,

∂tψK(t, x) = 2
∫

K ′\K
pΩ(t, x, ·) |∇ϕ|2 dµ−

∫
K ′\K

∂tpΩ(t, x, ·)ϕ2 dµ. (3.5)

11



Proof. Since ∆µϕ = 0 in Ω, we obtain

∆µ(ϕ2) = σ−1div
(
σ∇ϕ2

)
= 2ϕσ−1div (σ∇ϕ) + 2 |∇ϕ|2 = 2ϕ∆µϕ+ 2 |∇ϕ|2 = 2 |∇ϕ|2 .

Substituting into (3.2) and using (3.1), we obtain (3.5).

Theorem 3.4 Let K and K ′ have non-empty boundaries. Then, for all x ∈ Ω and t > 0 ,

∂tψK(t, x) ≤ 2cap(K,K ′) sup
y∈K ′\K

pΩ(t, x, y) + µ(K ′\K) sup
y∈K ′\K

|∂tpΩ(t, x, y)| . (3.6)

If in addition K ′′ is a compact set such that K ⊂ K ′′ ⊂ K ′ then, for all x ∈ Ω and t > 0,

∂tψK(t, x) ≥ 2m cap(K,K ′) inf
y∈K ′\K ′′

pΩ(t, x, y) − µ(K ′\K) sup
y∈K ′\K

|∂tpΩ(t, x, y)| , (3.7)

where m = infK ′′ ϕ and ϕ is the equilibrium potential of capacitor (K,K ′).

Remark 3.5 If cap(K,K ′) > 0 then the constant m in (3.7) is positive. Indeed, ifm = infK ′′ ϕ =
0 then ϕ(x) = 0 for some x ∈ K ′. Since K ′ is connected, the strong minimum principle for
superharmonic functions implies ϕ ≡ 0 in K ′. However, this contradicts cap(K,K ′) > 0.

We precede the proof of Theorem 3.4 by the following lemma.

Lemma 3.6 Under the hypotheses of Theorem 3.4 and assuming that K and K ′ have smooth
boundaries, we have ∫

K ′\K ′′
|∇ϕ|2 dµ ≥ (inf

K ′′ ϕ) cap(K,K ′). (3.8)

Proof. If m := infK ′′ ϕ = 0 then (3.8) holds trivially. Assuming m > 0, consider the sets

Uλ = {x ∈M : ϕ(x) > λ} .

K

Ub

K K

Ua

n
n

Figure 3 Sets Ua and Ub

As follows from Sard’s theorem, for almost all 0 < λ < 1 the set Uλ has a smooth boundary.
Taking 0 < a < b < m so that ∂Ua and ∂Ub are smooth, we have K ′′ ⊂ Ub ⊂ Ua ⊂ K ′ (see Fig.
3) and∫
K ′\K ′′

|∇ϕ|2 dµ ≥
∫

Ua\Ub

|∇ϕ|2 dµ =
∫

∂(Ua\Ub)

ϕ
∂ϕ

∂n
dµ′ =

∫
∂Ub

ϕ
∂ϕ

∂n
dµ′−

∫
∂Ua

ϕ
∂ϕ

∂n
dµ′ = (b− a) cap(K,K ′),

12



where we have applied (1.1), (1.10), and (1.12). Letting a ↓ 0 and b ↑ m we obtain (3.8).
Proof of Theorem 3.4. Let {Kn} be a decreasing sequence of compact sets with non-

empty smooth boundaries such that
⋂

nKn = K and {K ′
n} be an increasing sequence of open

sets with non-empty smooth boundaries such that
⋃

nK
′
n = K ′. Denote by ϕn the equilibrium

potential of (Kn,K
′
n). Since ∫

K ′
n\Kn

|∇ϕn|2 dµ = cap(Kn,K
′
n),

the identity (3.5) implies

∂tψKn
(t, x) ≤ 2cap(Kn,K

′
n) sup

y∈K ′
n\Kn

pΩn(t, x, y) − ∂tP
Ωn
t ϕ2

n(x) (3.9)

Clearly, as n→ ∞,

ψKn
(t, x) ↘ ψK(t, x) and pΩn(t, x, y) ↗ pΩ(t, x, y),

(cf. the discussion in Section 2.3). In particular, we have also ∂tψKn
(t, x) −→ ∂tψK(t, x) as ψKn

solves the heat equation. Also, ϕn converges to ϕ locally uniformly in K ′ \ K, which together
with (1.12) yields

cap(Kn,K
′
n) −→ cap(K,K ′)

(see also [27, 2.2.1 (iii)-(iv)]). Since 0 ≤ ϕn ≤ 1 and pΩn ≤ pΩ, the dominated convergence
theorem yields

PΩn
t ϕ2

n(x) −→ PΩ
t ϕ

2(x),

for all x ∈ Ω, t > 0. Since PΩn
t ϕ2

n(x) solves the heat equation, this implies also the convergence
of the time derivatives. Hence, passing to the limit in (3.9) and applying∣∣∂tP

Ω
t ϕ

2(x)
∣∣ ≤ ∫

K ′\K
|∂tpΩ(t, x, y)| dµ(y) ≤ µ(K ′ \K) sup

y∈K ′\K
|∂tp(t, x, y)| , (3.10)

we obtain (3.6).
To prove (3.7), choose a decreasing sequence {K ′′

n} of compact sets such that
⋂

nK
′′
n = K ′′

and Kn ⊂ K ′′
n ⊂ K ′

n. By (3.5) and (3.8), we obtain

∂tψKn
(t, x) ≥ 2

∫
K ′

n\K ′′
n

|∇ϕn|2 dµ inf
y∈K ′

n\K ′′
n

pΩn(t, x, y) −
∫

K ′
n\Kn

∂tpΩn(t, x, ·)ϕ2
n dµ.

≥ 2(inf
K ′′

n

ϕn)cap(Kn,K
′
n) inf

y∈K ′\K ′′
pΩn(t, x, y) −

∣∣∣∂tP
Ωn
t ϕ2

n(x)
∣∣∣ .

Passing to the limit as n→ ∞ and using (3.10), we obtain (3.7).

Theorem 3.7 Assume that cap(K,K ′) > 0. Then we have, for all x /∈ K ′ and t > 0,

ψK(t, x) ≤ 2cap(K,K ′)
t∫

0

sup
y∈K ′\K

pΩ(s, x, y)ds (3.11)

and

ψK(x) − ψK(t, x) ≤ 2cap(K,K ′)
∞∫
t

sup
y∈K ′\K

pΩ(s, x, y)ds + µ(K ′\K) sup
y∈K ′\K

pΩ(t, x, y). (3.12)

13



Let in addition K ′ be connected and K ′′ be a compact set such that K ⊂ K ′′ ⊂ K ′. Then, for all
x /∈ K ′ and t > 0,

ψK(x) − ψK(t, x) ≥ 2m cap(K,K ′)
∞∫
t

inf
y∈K ′\K ′′

pΩ(s, x, y)ds, (3.13)

where m := infK ′′ ϕ > 0 and ϕ is the equilibrium potential of capacitor (K,K ′).

Proof. Assume first that K and K ′ have smooth boundaries. Integrating (3.5) from 0 to t,
we obtain

ψK(t, x) = 2

t∫
0

∫
K ′\K

pΩ(s, x, ·) |∇ϕ|2 dµds −
∫

K ′\K
pΩ(t, x, ·)ϕ2dµ

where we have used pΩ(0, x, y) = 0 because x �= y (indeed, we have x /∈ K ′ and y ∈ K ′). Hence,

ψK(t, x) ≤ 2

t∫
0

∫
K ′\K

pΩ(s, x, ·) |∇ϕ|2 dµds, (3.14)

which obviously implies (3.11). Similarly, integrating (3.5) from t to ∞, we obtain

ψK(x) − ψK(t, x) = 2

∞∫
t

∫
K ′\K

pΩ(s, x, ·) |∇ϕ|2 dµds+
∫

K ′\K
pΩ(t, x, ·)ϕ2dµ, (3.15)

whence the upper bound (3.12) follows. Finally, restricting the first integration in (3.15) to
K ′ \K ′′ and using (3.8), we obtain (3.13). The positivity of m is explained in Remark 3.5.

For general K, K ′, we use the same approximation procedure as in the previous proof.

Remark 3.8 By letting t→ ∞ in (3.14), we obtain, for all x /∈ K ′,

ψK(x) ≤ 2
∫

K ′\K

GΩ(x, y) |∇ϕ|2 dµ(y) ≤ 2cap(K,K ′) sup
y∈K ′\K

GΩ(x, y). (3.16)

Note that GΩ(x, y) in (3.16) and pΩ(s, x, y) in (3.11), (3.12) can be replaced by G(x, y) and
p(s, x, y), respectively, since pΩ ≤ p and GΩ ≤ G. Let us mention for comparison that (2.6)
implies

cap(K) inf
y∈∂K

G(x, y) ≤ ψK(x) ≤ cap(K) sup
y∈∂K

G(x, y). (3.17)

3.2 Estimates based on the equilibrium measure

Lemma 3.9 Assume (M,µ) is non-parabolic. Then, for all x /∈ K and t > 0,

ψK(t, x) ≥
∫

K

∫ t

0
p(s, x, y)ds deK(y) , (3.18)

where eK is the equilibrium measure of K.
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Proof. Denote Ω := M \ K. Applying Lemma 2.4 and the semi-group identity (1.6), we
obtain

ψK(x) − ψK(t, x) =
∫

Ω

∫
K

∫ ∞

0
pΩ(t, x, z)p(s, z, y)ds deK (y)dµ(z)

≤
∫

K

∫ ∞

0

[∫
Ω
p(t, x, z)p(s, z, y)dµ(z)

]
ds deK(y)

≤
∫

K

∫ ∞

0
p(t+ s, x, y)ds deK(y)

=
∫

K

∫ ∞

t
p(s, x, y)ds deK(y). (3.19)

Hence, by (2.6) and (1.8),

ψK(t, x) ≥
∫

K

∫ ∞

0
p(s, x, y)ds deK(y) −

∫
K

∫ ∞

t
p(s, x, y)ds deK(y)

=
∫

K

∫ t

0
p(s, x, y)ds deK(y).

which was to be proved.

Theorem 3.10 Let (M,µ) be non-parabolic. Then, for all x /∈ K and t > 0,

ψK(t, x) ≥ cap(K)
∫ t

0
inf

y∈∂K
p(s, x, y)ds (3.20)

and
ψK(x) − ψK(t, x) ≤ cap(K)

∫ ∞

t
sup

y∈∂K
p(s, x, y)ds. (3.21)

Proof. Indeed, then (3.20) follows from (3.18), (2.7) and the fact that eK sits on ∂K.
Similarly, (3.21) follows from (3.19). Note that (3.20) holds also for a parabolic manifold (M,µ)
as in this case the right hand side of (3.20) vanishes due to cap(K) = 0.

Estimate (3.20) is trivially true also for parabolic (M,µ) as in this case cap(K) = 0. However,
Theorem 3.10 can give in this case a non-trivial lower bound for ψK(t, x) as in Corollary 3.11
below. To state it, let us introduce the notion of conductivity. For any two disjoint non-empty
sets A and B in M , define the conductivity between A and B by

cond(A,B) = inf
ϕ∈Lip(M)

ϕ|A=1, ϕ|B=0

∫
M

|∇ϕ|2 dµ.

Clearly, cond(A,B) is symmetric in A, B. Also, each of the sets A, B can be replaced by its
boundary. Comparing with the definition (1.9) of capacity we see that if A is compact and D is
an open set containing A then

cond(A,M \D) ≤ inf
ϕ∈Lip0(D)

ϕ|A=1

∫
M

|∇ϕ|2 dµ = cap(A,D). (3.22)

If in addition D is precompact then equality takes place in (3.22).
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Corollary 3.11 Let F ⊂ M be a compact set such that ∂K and F are non-empty and disjoint
(see Fig. 4). Set U = M \ F . Then, for all x ∈ U \K and t > 0,

ψK(t, x) ≥ cond(∂K,F )
∫ t

0
inf

y∈∂K
pU (s, x, y)ds. (3.23)

Remark 3.12 Note that cond(∂K,F ) > 0 whenever both K and F have non-empty interior.
In this case, (3.23) provides a non-trivial lower bound for ψK(t, x) regardless of (M,µ) being

parabolic or not. A particularly interesting application for (3.23) is when F ⊂ o
K. In this case we

have
cond(∂K,F ) = cond(F,M \K) = cap(F,

o
K) (3.24)

so that cond(∂K,F ) depends only on the intrinsic properties of K.

x
F

y

K

K

x
F

y

K

K

Figure 4 Possible locations of K and F

Proof. Let us apply Theorem 3.10 to estimate from below ψ∂K,U(t, x) – the hitting probability
of the compact set ∂K in manifold (U,µ) (note that ∂K ⊂ U). It is obvious that if x /∈ K then

ψK(t, x) = ψ∂K(t, x),

and if x ∈ U \K then
ψ∂K(t, x) ≥ ψ∂K,U(t, x).

Applying (3.20) to the manifold (U,µ) and the compact ∂K, we obtain

ψ∂K,U(t, x) ≥ capU (∂K)
∫ t

0
inf

y∈∂K
pU(s, x, y)ds.

Observing that
capU (∂K) = cap(∂K,U) ≥ cond(∂K,F ), (3.25)

and collecting together all the above estimates, we obtain (3.23).

3.3 Two-sided estimates

Here we collect together the estimates of Theorems 3.7 and 3.10.

Corollary 3.13 Let (M,µ) be non-parabolic and K ⊂M be a compact set such that cap(K) > 0.

1. Then, for all x /∈ K ′ and t > 0

cap(K)
∫ t

0
inf

y∈∂K
p(s, x, y)ds ≤ ψK(t, x) ≤ 2cap(K,K ′)

∫ t

0
sup

y∈K ′\K
pΩ(s, x, y)ds. (3.26)
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2. Let K ′ be connected and K ′′ be a compact set such that K ⊂ K ′′ ⊂ K ′. Then, for all x /∈ K ′

and t > 0,

c

∫ ∞

t
inf

y∈K ′\K ′′
pΩ(s, x, y)ds ≤ ψK(x) − ψK(t, x) ≤ cap(K)

∫ ∞

t
sup

y∈∂K
p(s, x, y)ds, (3.27)

where c > 0 depends on K, K ′ and K ′′.

Proof. Indeed, the estimates (3.26) follow from (3.11) and (3.20), and the estimates (3.27)
follow from (3.21) and (3.13).

Corollary 3.14 Let (M,µ) be parabolic and let F ⊂ o
K be a compact set such cap(F,

o
K) > 0. Set

U = M \ F .

1. Then, for all x /∈ K ′ and t > 0,

cap(F,
o
K)
∫ t

0
inf

y∈∂K
pU(s, x, y)ds ≤ ψK(t, x) ≤ 2cap(K,K ′)

∫ t

0
sup

y∈K ′\K
pΩ(s, x, y)ds. (3.28)

2. Let K ′ be connected and K ′′ be a compact set such that K ⊂ K ′′ ⊂ K ′. Then, for all x /∈ K ′

and t > 0,

c

∫ ∞

t
inf

y∈K ′\K ′′
pΩ(s, x, y)ds ≤ 1 − ψK(t, x) ≤ cap(F,

o
K)
∫ ∞

t
sup

y∈∂K
pU (s, x, y)ds, (3.29)

where c > 0 depends on F , K, K ′ and K ′′.

Proof. The upper bound in (3.28) follows from (3.11), and the lower bound in (3.29) follows
from (3.13). The other two estimates here follow from the corresponding estimates of Corollary
3.13 when applied to the compact ∂K on the manifold (U,µ), and to the set K ′ \ F instead of
K ′. Indeed, ∂K ⊂ U , and for x /∈ K we have ψK(t, x) = ψ∂K,U(t, x) and ψK(x) = 1. The fact
that cap(F ) > 0 implies that (U,µ) is non-parabolic.

We are left to verify that capU (∂K) = cap(F,
o
K). Indeed, we have (cf. (3.24) and (3.25))

capU (∂K) = cap(∂K,U) = cond(∂K,F ) + cap(K) = cap(F,
o
K),

as cap(K) = 0 by the parabolicity of (M,µ).

4 Specific estimates of hitting probabilities

In this section, we present estimates of ∂tψK(t, x) and ψK(t, x) which depend on additional
assumptions on the heat kernel. The main results are Theorems 4.5 and 4.11.

For any δ > 0 and any set A ⊂M , let Aδ denote the open δ-neighborhood of A. Throughout
the section, we fix δ > 0, a compact set K ⊂M , and a reference point o ∈ K. Denote Ω := M \K
and |x| := d(x, o).
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4.1 Upper estimates I

Proposition 4.1 Assume that there exists a constant C0 such that, for all x ∈ Ω and for all
t > 0,

pΩ(t, x, x) ≤ C0

f(x, t)
, (4.1)

where f(x, t) is a positive function on M × (0,+∞) which possesses the following regularity
properties:

(i) for any x ∈M , the function f(x, t) is monotone increasing in t;

(ii) for some γ > 1 and for all x ∈M , 0 < t1 < t2,

f(x, γt1)
f(x, t1)

≤ C0
f(x, γt2)
f(x, t2)

; (4.2)

(iii) for some α > 0 for all x, y ∈M , t > 0,

f(x, t)
f(y, t)

≤ C0

(
1 +

d(x, y)√
t

)α

. (4.3)

If cap(K,Kδ) > 0 then, for all x /∈ K2δ, t > 0 ,

ψK(t, x) ≤ C cap(K,Kδ)
∫ t

0

ds

f(o, κs)
exp

(
−c |x|

2

s

)
, (4.4)

ψK(x) − ψK (t, x) ≤ C

(
cap(K,Kδ)

∫ ∞

t

ds

f(o, κs)
+
µ (Kδ \K)
f (o, κt)

)
, (4.5)

and

∂tψK(t, x) ≤ C µ(Kδ \K)
f(o, κt)δ2

exp

(
−c |x|

2

t

)
, (4.6)

where κ > 0 depends on γ, c > 0 depends on (diamK)/δ, and C depends on C0, α, γ, and
(diamK)/δ.

Example 4.2 Suppose that pΩ(t, x, x) ≤ C0t
−α/2 for all x ∈ Ω, t > 0 and some α > 0. In

this case, we can set f(x, t) = tα/2, which satisfies (4.2) and (4.3) (the latter is trivially satisfied
whenever f(x, t) does not depend on x). Then (4.4) and (4.6) yield

ψK(t, x) ≤ C

|x|α−2 exp

(
−c |x|

2

t

)
(4.7)

and

∂tψK(t, x) ≤ C

tα/2
exp

(
−c |x|

2

t

)
.

If α > 2 then (4.5) implies
ψK(x) − ψK (t, x) ≤ Ct1−α/2.
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Proof of Proposition 4.1. Applying (4.3), we obtain, for all x ∈M , s > 0, ε > 0,

1
f(x, s)

=
1

f(o, s)
f(o, s)
f(x, s)

≤ C

f(o, s)

(
1 +

|x|2
s

)α/2

≤ Cε

f(o, s)
exp

(
ε
|x|2
s

)
. (4.8)

By [17, Theorem 3.1], the hypotheses (4.1) and (4.2) imply, for all x, y ∈ Ω and t > 0,

pΩ(t, x, y) ≤ 4C0√
f(x, κt)f(y, κt)

exp
(
−cd

2(x, y)
t

)
,

with any c ∈ (0, 1/4) and some κ = κ (c, γ) > 0. Applying here the estimate (4.8) for s = κt, we
obtain

pΩ(t, x, y) ≤ C

f(o, κt)
exp

(
−cd

2(x, y)
t

+ ε
|x|2 + |y|2

t

)
.

Choosing ε small enough, we obtain for all y ∈ Kδ \K and x ∈M \K2δ,

pΩ(t, x, y) ≤ C

f(o, κt)
exp

(
−c |x|

2

t

)
. (4.9)

Then (4.4) follows from (3.11) and (4.9).
Estimate (4.5) follows from (3.12) and (4.9). To prove (4.6), let us first estimate |∂tpΩ(t, x, y)|.

By [17, Corollary 3.3], the hypotheses (4.1) and (4.2) imply, for all x, y ∈ Ω and t > 0,

|∂tpΩ(t, x, y)| ≤ C

t
√
f(x, κt)f(y, κt)

exp
(
−cd

2(x, y)
t

)
. (4.10)

Using (4.8) and assuming y ∈ Kδ \K and x ∈M \K2δ as above we obtain

|∂tpΩ(t, x, y)| ≤ C

tf(o, κt)
exp

(
−c |x|

2

t

)

=
C

|x|2 f(o, κt)
|x|2
t

exp

(
−c |x|

2

t

)

≤ C ′

δ2f(o, κt)
exp

(
−c′ |x|

2

t

)
. (4.11)

Substituting (4.9) and (4.11) into (3.6) we obtain, for x ∈M \K2δ,

∂tψK(t, x) ≤
(

cap(K,Kδ) +
µ(Kδ\K)

δ2

)
C

f(o, κt)
exp

(
−c |x|

2

t

)
.

We are left to apply the elementary inequality

cap(K,Kδ) ≤ µ(Kδ\K)
δ2

,

which follows from the definition of the capacity (1.9) if we use the tent test function.
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4.2 Upper estimates II

Let
B(x, r) = {y ∈M | d(x, y) < r}

denote the geodesic ball of radius r centered at x, and set

V (x, r) := µ(B(x, r)).

Consider the following two conditions which in general may be true or not:

V (x, 2r) ≤ C0V (x, r), for all x ∈M, r > 0, (4.12)

and
p(t, x, x) ≤ C0

V (x,
√
t)
, for all x ∈M, t > 0. (4.13)

Obviously, (4.12) and (4.13) are satisfied for R
N . More generally, (4.12) and (4.13) are satisfied

if M is a complete Riemannian manifold with non-negative Ricci curvature (see [25]). Other
examples are provided by unbounded convex subsets of R

N regarded as manifolds with boundary.
Necessary and sufficient conditions for (4.12) and (4.13) in terms of certain Faber-Krahn type
inequality can be found in [15, Proposition 5.2]. If (4.13) holds then the parabolicity of (M,µ) is
equivalent to ∫ ∞ ds

V (x,
√
s)

= ∞. (4.14)

For all t, r > 0, define the function

H(r, t) :=
r2

V (o, r)
+
(∫ t

r2

ds

V (o,
√
s)

)
+

. (4.15)

Corollary 4.3 Let (M,µ) be a complete non-compact manifold satisfying (4.12) and (4.13), and
let cap(K) > 0. Then, for all x /∈ K2δ and t > 0,

ψK(t, x) ≤ C cap(K,Kδ)H (|x| , t) exp

(
−c |x|

2

s

)
, (4.16)

ψK(x) − ψK(t, x) ≤ C cap(K)

∞∫
t

ds

V (o,
√
s)
, (4.17)

and

∂tψK(t, x) ≤ C µ(Kδ \K)
V (o,

√
t)δ2

exp

(
−c |x|

2

t

)
, (4.18)

where c > 0 depends on (diamK)/δ, and C depends on C0 and (diamK)/δ.

Proof. We obtain (4.16) and (4.18) from Proposition 4.1. Let us set f(x, t) = V (x,
√
t). Then

the hypothesis (4.12) implies both (4.2) and (4.3). Indeed, we have, for all positive t1 and t2, by
(4.12),

V (x,
√

4t1)
V (x,

√
t1)

≤ C ≤ C
V (x,

√
4t2)

V (x,
√
t2)

,

whence (4.2) follows with γ = 4.

20



To show (4.3), let us observe that (4.12) implies, for some α > 0,

V (x,R)
V (x, r)

≤ C

(
R

r

)α

, (4.19)

for all x ∈M and R ≥ r > 0. Therefore,

V (x,
√
t)

V (y,
√
t)

≤ V (y,
√
t+ d(x, y))

V (y,
√
t)

≤ C

(
1 +

d(x, y)√
t

)α

, (4.20)

which was to be proved.
Obviously, (4.13) implies (4.1). The estimate (4.4) of Proposition 4.1 gives

ψK(t, x) ≤ C cap(K,Kδ)
∫ t

0
exp

(
−c |x|

2

s

)
ds

V (o,
√
s)
, (4.21)

where we have eliminated κ by (4.19). Observing that

c′H(r, t) exp(−2cr2

t
) ≤

∫ t

0

exp
(
−c r2

s

)
ds

V (o,
√
s)

≤ C ′H(r, t) exp(−cr
2

2t
), (4.22)

(where C ′, c′ > 0 depend on c and C0) we obtain (4.16).
Estimate (4.17) follows from inequality (3.21) of Theorem 3.10 using the fact that for all

x ∈M \Kδ and y ∈ ∂K,

p(t, x, y) ≤ C

V (o,
√
t)
,

which is deduced from (4.13) and (4.12) in the same way as (4.9).
Finally, (4.18) follows from (4.6).
The next statement provides an upper bound on ψK(t, x) using a different approach.

Proposition 4.4 Let (M,µ) be a complete non-compact manifold satisfying (4.12) and (4.13).
Then, for any c ∈ (0, 1/4), for all x ∈M \K and t > 0,

ψK(t, x) ≤ C exp
(
−cd

2(x,K)
t

)
, (4.23)

where C depends on C0 and c.

Proof. We apply the fact that (4.12) and (4.13) imply the following mean value type inequal-
ity (see [15, Proposition 5.2 and eq. (3.5)]):

If a function u(t, y) satisfies the heat equation ∂tu = ∆µu in cylinder B(x, r) × [t/2, t] and
the Neumann condition ∂u

∂n = 0 on δB(x, r) then

u2(t, x) ≤ C

((
r2

t

)β

+
t

r2

)
1

tV (x, r)

∫ t

t/2

∫
B(x,r)

u2(s, y)dµ(y)ds, (4.24)

with some constants β > 0 and C > 0 depending only on the constants in (4.12) and (4.13).
The following inequality was proved in [16, Theorem 3] 1:

1Inequality (4.25) is an L2 version of Takeda’s inequality [33] - see also [26].
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If a function u(t, y), 0 ≤ u ≤ 1, satisfies the heat equation ∂tu = ∆µu in cylinder Ar × (0, s]
(where A ⊂ M is a precompact set), the Neumann condition ∂u

∂n = 0 on δAr, and the initial
condition u(0, x) = 0 in Ar, then∫

A
u2(y, s)dµ(y) ≤ µ(Ar)

(
r2

s
+

s

r2

)
exp

(
− r

2

2s
+ 1
)
. (4.25)

Given x /∈ K, let us set d = d(x,K), r = (1 − ε) d and A = B(x, εd) where ε ∈ (0, 1). Then
the function u(t, y) = ψK(t, y) satisfies both (4.24) and (4.25). Integrating (4.25) in s from t/2
to t, we obtain ∫ t

t/2

∫
B(x,εd)

ψ2
K(s, y)dµ(y)ds ≤ CtV (x, d)

(
r2

t
+

t

r2

)
exp

(
−r

2

2t

)
.

Therefore, applying (4.24) in B(x, εd) and (4.12), we obtain

ψ2
K(t, x) ≤ C

((
r2

t

)β+1

+
(
t

r2

)2
)

exp
(
−r

2

2t

)
. (4.26)

If t ≤ r2, then (4.26) yields (4.23). If t > r2, then (4.23) follows from ψK ≤ 1.
If x /∈ K2δ then (4.23) can also be deduced from (4.16), provided the condition (4.14) holds,

that is, (M,µ) is non-parabolic. If (M,µ) is parabolic then we do not know an alternative way
of proving (4.23). Moreover, examples show that (4.23) is often sharp for parabolic manifolds.

4.3 Two-sided estimates in the non-parabolic case

In this section we obtain two-sided estimates of ψK(t, x) in the case when the heat kernel satisfies
the following estimate, for all x, y ∈M and t > 0,

c1

V (x,
√
t)

exp
(
−C1

d2(x, y)
t

)
≤ p(t, x, y) ≤ C2

V (x,
√
t)

exp
(
−c2d

2(x, y)
t

)
. (4.27)

The estimate (4.27) is known to be equivalent to the doubling volume property (4.12) and a
certain Poincaré inequality (see [29], [30]). In is known that (4.27) holds in the following settings:

• M is a complete Riemannian manifold of non-negative Ricci curvature, µ is the Riemannian
volume (see [25]).

• M is a unbounded convex region in R
N considered as a manifold with boundary, µ is the

Lebesgue measure (see [14]).

• M is a nilpotent Lie groups with left-invariant Riemannian metric, µ is the Haar measure
(see [34]).

Many more examples of weighted manifolds where (4.27) holds can be found in [22]. It is
known (see [29]) that (4.27) is stable under quasi-isometry of (M,µ).

Note that the hypotheses (4.12) and (4.13) from Section 4.2 imply the upper bound in (4.27)
(cf. [17, Theorem 1.1]). On the other hand, (4.27) implies both (4.12) and (4.13). Hence all
results of Section 4.2 can be used in the present setting.

Theorem 4.5 Let (M,µ) be a complete non-compact non-parabolic weighted manifold satisfying
(4.27), and let cap(K) > 0. Then the following estimates hold:

22



1. For any δ > 0 and for all x /∈ K2δ , t > 0,

c cap(K)H(|x| , t) exp
(
−C |x|2

t

)
≤ ψK(t, x) ≤ C cap(K,Kδ)H(|x| , t) exp

(
−c |x|

2

t

)
,

(4.28)
where c, C > 0 depend on c1, c2, C1, C2, and (diamK) /δ.

2. For a large enough δ and for all x /∈ K2δ, t ≥ |x|2,

c

∫ ∞

t

ds

V (o,
√
s)

≤ ψK(x) − ψK(t, x) ≤ C

∫ ∞

t

ds

V (o,
√
s)
. (4.29)

3. For a large enough δ and for all x /∈ K2δ, t ≥ δ2,

c

V (o,
√
t)

exp
(
−C |x|2

t

)
≤ ∂tψK(t, x) ≤ C

V (o,
√
t)

exp
(
−c |x|

2

t

)
. (4.30)

In (4.29) and (4.30) the constants c, C > 0 depend on c1, c2, C1, C2, and K.

Remark 4.6 Using the definition (4.15) of the function H(r, t), one can rewrite (4.28) as follows:
if 0 < t < 2 |x|2 then

c
cap(K) |x|2
V (o, |x|) exp

(
−C |x|2

t

)
≤ ψK(t, x) ≤ C

cap(K,Kδ) |x|2
V (o, |x|) exp

(
−c |x|

2

t

)
(4.31)

and if t ≥ 2 |x|2 then

c cap(K)
∫ t

|x|2
ds

V (o,
√
s)

≤ ψK(t, x) ≤ C cap(K,Kδ)
∫ t

|x|2
ds

V (o,
√
s)
. (4.32)

Remark 4.7 Clearly, the estimate (4.29) can be obtained from (4.30) by integrating it from t
to ∞, assuming t ≥ |x|2. Nevertheless, we give below an independent proof for (4.29), as it is
simpler than (4.30).

Proof. Let us observe that for all x /∈ K2δ, y ∈ Kδ \K,

c

V (o,
√
t)

exp

(
−C |x|2

t

)
≤ p(t, x, y) ≤ C

V (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.33)

Indeed, this follows from (4.27) with swapped x, y, from

cε

V (o,
√
t)

exp

(
−ε |y|

2

t

)
≤ 1
V (y,

√
t)

≤ Cε

V (o,
√
t)

exp

(
ε
|y|2
t

)
, (4.34)

(see (4.20)) and from the fact that d(x, y) is comparable to |x| in the range in question. Given
the estimates (4.33), (4.28) follows from (3.26), pΩ ≤ p, and (4.22).

The upper bound in (4.29) follows in the same way from that of (3.27) since (4.33) implies

p(t, x, y) ≤ C

V (o,
√
t)
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(here we do not need neither δ is large nor t ≥ |x|2). To prove the lower bound in (4.29), we use
again (3.27) and the following lower estimate for pΩ

pΩ (t, x, y) ≥ cp (Ct, x, y) ≥ c

V (y,
√
t)

exp
(
−Cd(x, y)

2

t

)
, (4.35)

which holds for all t > 0 provided |x| and |y| are large enough (see [23, Theorem 3.1] – note
that the non-parabolicity of (M,µ) is important for (4.35)). Take δ large enough so that (4.35)
holds for |x| , |y| ≥ δ/2 and K ′ := Kδ is connected; set K ′′ = Kδ/2. Then (4.35) implies, for all
y ∈ K ′ \K ′′ and x /∈ K2δ

pΩ(t, x, y) ≥ c

V (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.36)

Assuming in addition t ≥ |x|2, we obtain the lower bound in (4.29) from that of (3.27).
The upper bound in (4.30) follows from (4.18). To prove the lower bound in (4.30), let us

recall that by (3.7), for all x ∈ Ω and t > 0,

∂tψK(t, x) ≥ c inf
y∈K ′\K ′′

pΩ(t, x, y) − C sup
y∈K ′\K

|∂tpΩ(t, x, y)| . (4.37)

By pΩ ≤ p, (4.27), (4.10), and (4.20), we obtain, for all x, y ∈ Ω and t > 0,

|∂tpΩ(t, x, y)| ≤ C

tV (y,
√
t)

exp
(
−cd(x, y)

2

t

)
. (4.38)

For x /∈ K2δ and y ∈ K ′ \K, this implies

|∂tpΩ(t, x, y)| ≤ C

tV (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.39)

Substituting (4.36) and (4.39) into (4.37) and assuming in addition t ≥ |x|2, we obtain

∂tψK(t, x) ≥ c

V (o,
√
t)

− C

tV (o,
√
t)

≥
(
c− C/δ2

)
V (o,

√
t)

≥ c/2
V (o,

√
t)
, (4.40)

provided δ is large enough. This proves the lower bound in (4.30) in the range t ≥ |x|2.
To obtain the lower bound for ∂tψK(t, x) in the range δ2 ≤ t ≤ |x|2 , observe that ∂tψK is

a non-negative solution of the heat equation in (0,+∞) × Ω. Hence, the full range lower bound
in (4.30) follows by the standard chaining argument based on the parabolic Harnack inequality
that is a consequence of (4.27) (see, for instance, [1], [23, (2.18)] or [22, Theorem 2.7]).

Corollary 4.8 Referring to Theorem 4.5, assume in addition that, for some c0 > 0 and α > 2,

V (o,R)
V (o, r)

≥ c0

(
R

r

)α

, ∀R ≥ r > δ. (4.41)

1. For any δ > 0, for all x /∈ K2δ and t > 0,

c cap(K) |x|2
V (o, |x|) exp

(
−C |x|2

t

)
≤ ψK(t, x) ≤ C cap(K,Kδ) |x|2

V (o, |x|) exp

(
−C |x|2

t

)
, (4.42)

where c, C > 0 depend on c0, c1, c2, C1, C2, and (diamK)/δ.
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2. For a large enough δ and for all x /∈ K2δ and t ≥ |x|2,

c |x|2
V (o, |x|) ≤ ψK(x) − ψK(t, x) ≤ C |x|2

V (o, |x|) .

where c, C > 0 depend on c1, c2, C1, C2 and K.

Proof. The condition (4.41) implies, for all r > δ,

cr2

V (o, r)
≤
∫ ∞

r2

ds

V (o,
√
s)

≤ Cr2

V (o, r)
. (4.43)

whence we obtain by (4.15)
cr2

V (o, r)
≤ H(r, t) ≤ Cr2

V (o, r)
.

The rest follows by Theorem 4.5.

Example 4.9 To illustrate Corollary 4.8, take K = B(o, r) and δ = r. The result of [23, Lemma
4.3] provides the following bound, for all R ≥ 2r > 0

1
2

∫ R

r

sds

V (o, s)
≤ cap(B (o, r) , B(o,R))−1 ≤ C

∫ R

r

sds

V (o, s)

assuming (4.12) and (4.13). Assuming also (4.41), we obtain for such R, r

cr2

V (o, r)
≤
∫ R

r

sds

V (o, s)
≤ Cr2

V (o, r)
.

Hence, (4.42) gives

c V (o, r) |x|2
V (o, |x|)r2 exp

(
−C |x|2

t

)
≤ ψB(o,r)(t, x) ≤

C V (o, r) |x|2
V (o, |x|)r2 exp

(
−c |x|

2

t

)
,

for all o ∈M , r, t > 0 and all x ∈M such that |x| > 4r.

4.4 Two-sided estimates in the parabolic case

This section describes sharp two sided estimates on ψK in the case where the weighted manifold
(M,µ) is parabolic and satisfies some additional assumptions. Throughout this section, we also
assume that (M,µ) satisfies the two sided heat kernel bounds (4.27). This implies in particular
the volume doubling property (4.12).

Given a point o ∈M , we call the pair (M,o) a pointed manifold.

Definition 4.10 We say that a pointed Riemannian manifold (M,o) satisfies the condition
(RCA), that is, has relatively connected annuli, if there exists A > 1 such that, for any r > A2

and all x, y with |x| = |y| = r, there exists a continuous path γ : [0, 1] → M with γ(0) = x,
γ(1) = y whose image is contained in B(o,Ar) \B(o, r/A).

Define a function h(r) for all r > 0 by

h(r) := 1 +
(∫ r

1

sds

V (o, s)

)
+

= 1 +
1
2

(∫ r2

1

dt

V (o,
√
t)

)
+

. (4.44)
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Theorem 4.11 Let (M,µ) be complete, non-compact, parabolic, and satisfy (4.27) and (RCA).
Assume that, for some ε > 0, the set F := B(o, ε) does not intersect δM . Let δ > ε be large
enough and B(o, δ) be contained in K.

1. For all x /∈ K2δ we have the following: if 0 < t < 2|x|2 then

c|x|2
V (o, |x|)h(|x|) exp

(
−C |x|2

t

)
≤ ψK(t, x) ≤ C |x|2

V (o, |x|)h(|x|) exp
(
−c |x|

2

t

)
, (4.45)

and if t ≥ 2|x|2 then

c

h(
√
t)

∫ √
t

|x|

sds

V (o, s)
≤ ψK(t, x) ≤ C

h(
√
t)

∫ √
t

|x|

sds

V (o, s)
. (4.46)

2. For all x /∈ K2δ and t ≥ |x|2,

c
h(|x|)
h(
√
t)

≤ 1 − ψK(t, x) ≤ C
h(|x|)
h(
√
t)
. (4.47)

3. For all x /∈ K2δ and t ≥ δ2,

ch(|x|) exp
(
−C |x|2

t

)
V (o,

√
t)(h(|x|) + h(

√
t))h(

√
t)

≤ ∂tψK(t, x) ≤
Ch(|x|) exp

(
−c |x|2t

)
V (o,

√
t)(h(|x|) + h(

√
t))h(

√
t)
. (4.48)

Here c, C > 0 depend on c1, c2, C1, C2 from (4.27), on A from (RCA) as well as on K.

Remark 4.12 For the range t ≥ |x|2, (4.48) reads as follows:

ch(|x|)
V (o,

√
t)h2(

√
t)

≤ ∂tψK(t, x) ≤ Ch(|x|)
V (o,

√
t)h2(

√
t)
.

Integrating this from t to ∞ gives (4.47) (cf. (4.59)).

Remark 4.13 Theorem 4.11 requires that K contains the ball B(o, δ) of a large enough radius
δ. As we will see from the proof, δ depends on the estimates of the Dirichlet heat kernel pU in
the region U = M \ F based on [23, Theorem 4.9]. This makes applications of Theorem 4.11 to
concrete situations somewhat difficult. However, combining [23, Theorem 4.9] with [23, Corrolary
3.5], one can drop the assumption that K contains B(o, δ) replacing it by

K contains B(o, ε) and M \B(o, ε) is connected.

Then, statement 1 of Theorem 4.11 holds for all x with d(x,K) ≥ 1. Statement 2 holds for all x
with |x| large enough. In statement 3, the upper bound holds for all x with d(x,K) ≥ 1 whereas
the lower bound holds for all x with |x| large enough.

Proof. Set U = M \ F . By (3.28) we have, for all x /∈ Kδ and t > 0,

c

∫ t

0
inf

y∈∂Kδ

pU (s, y, x)ds ≤ ψK(t, x) ≤ C

∫ t

0
sup

y∈Kδ\K
pU (s, y, x)ds. (4.49)
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For any complete weighted parabolic manifold (M,µ) satisfying (4.27) and (RCA), [23, Theorem
4.9] yields the following estimates for the Dirichlet heat kernel pU (t, x, y) provided d(x, F ) and
d(y, F ) are large enough:

c
D(t, x, y)
V (y,

√
t)

exp
(
−Cd

2(x, y)
t

)
≤ pU (t, x, y) ≤ C

D(t, x, y)
V (y,

√
t)

exp
(
−cd

2(x, y)
t

)
(4.50)

where
D(t, x, y) :=

h(|x|)h(|y|)(
h(|x|) + h(

√
t)
) (
h(|y|) + h(

√
t)
) .

Taking δ large enough, we can assume that (4.50) holds for all x, y /∈ K and t > 0. If in addition
x /∈ K2δ and y ∈ Kδ \K then (4.50) and (4.34) imply

c
D̃(t, x)
V (o,

√
t)

exp

(
−C |x|2

t

)
≤ pU (t, x, y) ≤ C

D̃(t, x)
V (o,

√
t)

exp

(
−c |x|

2

t

)
(4.51)

where
D̃(t, x) :=

h(|x|)
(h(|x|) + h(

√
t))h(

√
t)
. (4.52)

Set

Ia(r, t) :=
∫ t

0

h(r)
(h(r) + h(

√
s))h(

√
s)

exp
(
−a r2

s

)
V (o,

√
s)

ds.

Since the functions V and h are doubling, one easily checks that, for 0 < t < 2r2,

cr2

V (o, r)h(r)
exp

(
−4a

r2

t

)
≤ Ia(r, t) ≤ Cr2

V (o, r)h(r)
exp

(
−ar

2

2t

)
. (4.53)

For t ≥ 2r2, we have instead,

ce−ah(r)
∫ t

r2

ds

V (o,
√
s)h2(

√
s)

≤ Ia(r, t) ≤ Ch(r)
∫ t

r2

ds

V (o,
√
s)h2(

√
s)
.

Moreover, for r ≥ 1, we obtain

1
2

∫ t

r2

ds

V (o,
√
s)h2(

√
s)

=
∫ √

t

r

ρdρ

V (o, ρ)
(
1 +

∫ ρ
1

σdσ
V (o,σ)

)2

=
1

1 +
∫ r
1

σdσ
V (o,σ)

− 1

1 +
∫√

t
1

σdσ
V (o,σ)

(4.54)

=
1

h(r)h(
√
t)

∫ √
t

r

σdσ

V (o, σ)
.

Thus, for t ≥ 2r2 and r ≥ 1,

ca

h(
√
t)

∫ √
t

r

sds

V (o, s)
≤ Ia(r, t) ≤ Ca

h(
√
t)

∫ √
t

r

sds

V (o, s)
. (4.55)

Collecting together (4.49), (4.51), (4.52), (4.53), and (4.55), we finish the proof of (4.45) and
(4.46).
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To prove (4.47) let us apply the estimate (3.29) which yields, for all x /∈ Kδ and t > 0,

c

∫ ∞

t
inf

y∈Kδ\Kδ/2

pΩ(s, x, y)ds ≤ 1 − ψK(t, x) ≤ C

∫ ∞

t
sup

y∈∂K
pU(s, x, y)ds. (4.56)

If x /∈ K2δ and t ≥ |x|2 then (4.51) and (4.52) imply

sup
y∈∂K

pU (t, x, y) ≤ C h(|x|)
V (o,

√
t)h2(

√
t)
. (4.57)

The heat kernel pΩ admits the estimates similar to (4.50). Hence, if δ is large enough, x /∈ K2δ ,
y ∈ Kδ \Kδ/2 and t ≥ |x|2, we obtain

inf
y∈Kδ\Kδ/2

pΩ(t, x, y) ≥ c h(|x|)
V (o,

√
t)h2(

√
t)
. (4.58)

Substituting (4.57) and (4.58) into (4.56) and using the identity∫ ∞

t

ds

V (o,
√
s)h2(

√
s)

=
2

h(
√
t)
, (4.59)

which is proved in the same way as (4.54), we obtain (4.47).
To prove (4.48), observe that pΩ ≤ pU whence by (4.50), for all x, y /∈ K and t > 0,

pΩ(t, x, y) ≤ C
D(t, x, y)
V (y,

√
t)

exp
(
−cd

2(x, y)
t

)
. (4.60)

By [9, Theorem 4], (4.60) implies

|∂tpΩ(t, x, y)| ≤ C
D(t, x, y)
tV (y,

√
t)

exp
(
−cd

2(x, y)
t

)
.

In particular, for x /∈ K2δ, y ∈ Kδ \K we obtain

pΩ(t, x, y) ≤
C h(|x|) exp

(
−c |x|2t

)
V (o,

√
t)(h(|x|) + h(

√
t))h(

√
t)

and

|∂tpΩ(t, x, y)| ≤
C h(|x|) exp

(
−c |x|2t

)
tV (o,

√
t)(h(|x|) + h(

√
t))h(

√
t)
. (4.61)

Substituting the above estimates into (3.6), we obtain the upper bound in (4.48). If t ≥ |x|2,
x /∈ K2δ , y ∈ Kδ \Kδ/2, and δ is large enough then (4.61) and (4.58) imply

|∂tpΩ(t, x, y)| ≤ C h(|x|)
tV (o,

√
t)h2(

√
t)

≤ C h(|x|)
δ2V (o,

√
t)h2(

√
t)
<< pΩ(t, x, y).

Therefore, for t ≥ |x|2 we obtain from (3.7)

∂tψK(t, x) ≥ c h(|x|)
V (o,

√
t)h2(

√
t)
, (4.62)

which is equivalent to the lower bound in (4.48).
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Assume now |x|2 ≥ t ≥ δ2. Let z be the point on a geodesic line connecting o and x, such that
|z| =

√
t/2. Since ∂tψk is a nonnegative solution to the heat equation in a c

√
t-neighborhood of

the geodesic line connecting z and x, the parabolic Harnack inequality implies (see [23, (2.18)])

∂tψK(t, x) ≥ c∂tψK(
t

2
, z) exp

(
−Cd(x, z)

2

t

)
.

Applying (4.62) to estimate ∂tψK( t
2 , z), we obtain

∂tψK(
t

2
, z) ≥ c

V (o,
√
t)h(

√
t)

whence

∂tψK(t, x) ≥ c

V (o,
√
t)h(

√
t)

exp

(
−C |x|2

t

)
.

We are left to observe that in the range |x|2 ≥ t this estimate is equivalent to the lower bound in
(4.48).

5 Examples

For two positive functions f, g, the relation f ≈ g means that there are positive constants c, C
such that c ≤ f/g ≤ C, for a specified range of the arguments.

5.1 Surfaces of revolution

Consider the polar coordinates x = (r, θ) around the origin in R
2 and the following Riemannian

metric
dr2 + f2(r)dθ2

where f(r) is a smooth positive function on (0,+∞). Let M = {(r, θ) : r ≥ 1} be the manifold
with boundary equipped with this metric, and let µ be the Riemannian measure on M .

Obviously, (M,o) satisfies (RCA), for any point o ∈M . It is proved in [22] that the two sided
Gaussian bound (4.27) holds on M , in particular, for the following two classes of f :

(a) f(r) = rα with α ∈ (−1, 1];

(b) f(r) = r(1 + log r)−β with β > 0.

We assume in the sequel that f is one of the functions in (a), (b). Observe that if α = 1 then
M is the exterior of a ball in R

2. Let K = δM = {(r, θ) : r = 1}. For any point o ∈ K and s ≥ 1,
we have V (o, s) ≈ sf(s) ≤ s2 so that (M,µ) is parabolic. Computing function h by (4.44), we
obtain, for large values of the argument τ ,

h(τ ) ≈


τ1−α, case (a), α < 1
log τ , case (a), α = 1
(log τ)1+β, case (b).

Applying Theorem 4.11, we obtain the following estimates for x = (r, θ), assuming r is large
enough.

Case (a), α < 1. We have for all t > 0

c exp
(
−C r

2

t

)
≤ ψK(t, x) ≤ C exp

(
−cr

2

t

)
,
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and, for all t ≥ r2,

1 − ψK(t, x) �
(
r√
t

)1−α

and ∂tψK(t, x) � 1
t

(
r√
t

)1−α

.

Case (a), α = 1. We have:

(i) For all t < 2r2,

c

log r
exp

(
−C r

2

t

)
≤ ψK(t, x) ≤ C

log r
exp

(
−cr

2

t

)
.

(ii) For t ≥ 2r2

ψK(t, x) � log
√
t− log r

log
√
t

(5.1)

and
1 − ψK(t, x) � log r

log t
and ∂tψK � log r

t(log t)2
.

(iii) If t ≥ 2r2 and in addition a :=
√
t/r = const then (5.1) implies

ψK(t, x) � log a
log r

.

If t ≥ r2+ε, ε > 0, then ψK(t, x) � 1.

Case (b). We have:

(i) If t < 2r2, then
c

log r
exp

(
−C r

2

t

)
≤ ψK(t, x)

C

log r
exp

(
−cr

2

t

)
.

(ii) If t ≥ 2r2 then

ψK(t, x) � (log
√
t)1+β − (log r)1+β

(log
√
t)1+β

, (5.2)

as well as

1 − ψK(t, x) �
(

log r
log t

)1+β

and ∂tψK(t, x) � (log r)1+β

t(log t)2+β
.

(iii) If t ≥ 2r2 and in addition a :=
√
t/r = const then (5.2) implies

ψK(t, x) � log a
log r

.

If t ≥ r2+ε, ε > 0, then (5.2) implies ψK(t, x) � 1.
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5.2 Bodies of revolution

Let (r, u, v) be the Cartesian coordinates in R
3. Given a smooth positive function f(r) on (0,+∞),

consider the following domain of revolution in R
3 (see Fig. 5):

M = {(r, u, v) ∈ R
3 : r ≥ 0,

√
u2 + v2 ≤ f(r)}.

M

r

u

f(r)

Figure 5 The domain of revolution.

If f possesses a certain regularity at r = 0 (in particular, f(0) = 0) then M can be regarded as
a manifold with boundary. Let us endow M with the Euclidean metric and the Lebesgue measure
µ. Assume in the sequel that f is concave, that is f ′′ ≤ 0. Then M is convex as a subset of R

3,
and the result of [25] and [14] implies that M satisfies (4.27).

Let o = (0, 0, 0) and
K = {x = (r, u, v) ∈M : 0 ≤ r ≤ 1}.

Clearly, (M,o) satisfies (RCA) and we have for any τ > 0, V (o, τ ) ≈ τf2(τ). Set

f(r) =
√
r logα (2 + r).

Then, for all s ≥ 1,
V (o, s) ≈ s2(1 + log s)α.

In particular, M is parabolic if and only if α ≤ 1. We will use Theorems 4.5 and 4.11 to obtains
estimates for ψK(t, x) where x = (r, u, v) and r is large enough.

Case α > 1. In this case, (M,µ) is non-parabolic, and Theorem 4.5 gives the following
estimates.

(i) If t < r2 then

c

(log r)α
exp

(
−C r

2

t

)
≤ ψK(t, x) ≤ C

(log r)α
exp

(
−cr

2

t

)
.

(ii) If t ≥ r2 then

ψK(t, x) � 1
(log r)α

+
[

1
(log r)α−1

− 1
(log

√
t)α−1

]
,

as well as
ψK(x) − ψK(t, x) � 1

(log t)α−1
and ∂tψK � 1

t (log t)α
.
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(iii) If t ≥ r2 and a :=
√
t/r = const then

ψK(t, x) � log a
(log r)α

.

If t ≥ r2+ε, ε > 0, then

ψK(t, x) � 1
(log r)α−1

Case α < 1. In this case (M,µ) is parabolic. Computing the function h(r) by (4.44) we
obtain for large τ

h(τ ) � 1 +
∫ τ

1

ds

s(1 + log s)α
� (log τ)1−α.

Hence, we obtain by Theorem 4.11:

(i) If t < 2r2, then

c

log r
exp

(
−C r

2

t

)
≤ ψK(t, x) ≤ C

log r
exp

(
−cr

2

t

)
.

(ii) If t ≥ 2r2 then

ψK(t, x) � (log
√
t)1−α − (log r)1−α

(log
√
t)1−α

as well as

1 − ψK(t, x) �
(

log r
log t

)1−α

and ∂tψK � (log r)1−α

t(log t)2−α
.

(iii) If t ≥ 2r2 and a :=
√
t/r = const then

ψK(t, x) � log a
log r

.

If t ≥ r2+ε, ε > 0, then ψK(t, x) � 1.

Case α = 1. Computing the function h(r) by (4.44) we obtain for large τ

h(τ ) � 1 +
∫ τ

1

ds

s(1 + log s)
� log log τ .

Theorem 4.11 then yields:

(i) If t < 2r2, then
c exp

(
−C r2

t

)
log r log log r

≤ ψK(t, x) ≤
C exp

(
−c r2

t

)
log r log log r

.

(ii) If t ≥ 2r2 then

ψK(t, x) � log log
√
t− log log r

log log
√
t

as well as
1 − ψK(t, x) � log log r

log log t
and ∂tψK(t, x) � log log r

t log t(log log t)2
.
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(ii) Let t ≥ 2r2. If a :=
√
t/r = const then

ψK(t, x) � log a
log r log log r

.

If a := log
√
t/ log r = const then

ψK(t, x) � log a
log log r

.

If log
√
t ≥ (log r)1+ε, ε > 0, then ψK(t, x) � 1.
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