Heat kernels on manifolds with ends

Alexander Grigor'yan University of Bielefeld, Germany

"Spectral Theory", Euler Institute, St. Petersburg, June 9-12, 2018

1

Heat kernel in \mathbb{R}^n

Heat equation in \mathbb{R}^n :

$$\partial_t u = \Delta u$$

where $u = u(t, x), t \in \mathbb{R}, x \in \mathbb{R}^n$, and $\Delta = \sum_{i=1}^n \partial_{x_i x_i} u$ is the Laplace operator. The *Gauss-Weierstrass* function

$$p_t(x,y) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x-y|^2}{4t}\right)$$
(1)

satisfies the heat equation in $(t, x) \in (0, \infty) \times \mathbb{R}^n$ and tends to δ_y as $t \to 0+$.

The function (1) is called the *heat kernel* or the *fundamental solution* of the heat equation. Other characterizations:

- the integral kernel of the heat semigroup $\{e^{t\Delta}\}_{t>0}$ in $L^2(\mathbb{R}^n)$;
- the density of the normal distribution with the mean y and variance 2t;
- the transition density of Brownian motion in \mathbb{R}^n .

Observe: if $|x - y| = O(\sqrt{t})$ then $p_t(x, y) \simeq t^{-n/2}$.

Elliptic operators in divergence form

Consider in \mathbb{R}^n a *divergence form* elliptic operator

$$L = \sum_{i,j=1}^{n} \partial_{x_i} \left(a_{ij} \left(x \right) \partial_{x_j} \right)$$

where the matrix $(a_{ij}(x))_{i,j=1}^n$ is symmetric and positive definite. Uniform ellipticity: there is $\lambda \geq 1$ such that, for any x, all the eigenvalues of $(a_{ij}(x))$ lie in $[\lambda^{-1}, \lambda]$.

Theorem 1 (D.G. Aronson '67) The fundamental solution $p_t(x, y)$ of $\partial_t u = Lu$ satisfies for all t > 0 and $x, y \in \mathbb{R}^n$ the estimates

$$p_t(x,y) \asymp \frac{C}{t^{n/2}} \exp\left(-\frac{|x-y|^2}{ct}\right)$$

where C, c > 0 depend on n, λ only and \asymp means \leq and \geq , but with different values of C, c.

The proof is based on the previous works of Jürgen Moser and John Nash.

Laplace-Beltrami operator and Li-Yau estimate

Given a Riemannian manifold (M, g), the Laplace-Beltrami operator Δ_g is defined in local coordinates $x_1, ..., x_n$ by

$$\Delta_g = \frac{1}{\sqrt{\det g}} \sum_{i,j=1}^n \partial_{x_i} \left(g^{ij} \sqrt{\deg g} \partial_{x_j} \right) = \operatorname{div}_g \circ \nabla,$$

where $g^{ij} = (g_{ij})^{-1}$ and $g = (g_{ij})$.

Heat equation $\partial_t u = \Delta_g u$ on $\mathbb{R}_+ \times M$ has the minimal positive fundamental solution $p_t(x, y)$ that is called the *heat kernel* of M. The heat kernel is also:

- the integral kernel of $\{e^{t\Delta_g}\}_{t>0}$ in $L^2(M,\mu)$, where μ is Riemannian measure;
- the transition density for Brownian motion $\{X_t\}_{t>0}$ on M:

for any Borel set $A \subset M$, $\mathbb{P}_x (X_t \in A) = \int_A p_t(x, y) d\mu(y)$, where \mathbb{P}_x is the probability measure in the space of paths started at x.

Goal: estimates of the heat kernel on a class of Riemannian manifolds. *Notation*:

M - a geodesically complete, non-compact Riemannian manifold;

d(x, y) - the geodesic distance on M;

B(x,r) - the geodesic ball of radius r centered at x, and $V(x,r) = \mu(B(x,r))$.

Theorem 2 (E.B. Davies '92) For arbitrary measurable sets $A, B \subset M$,

$$\int_{A} \int_{B} p_t(x, y) \, d\mu(x) \, d\mu(y) \leq \sqrt{\mu(A) \, \mu(B)} \exp\left(-\frac{d^2(A, B)}{4t}\right).$$

Assumptions about the geometry of M are needed in order to obtain pointwise estimates with a decay as $t \to \infty$.

Theorem 3 (P.Li and S.-T.Yau '86) If $Ricci_M \ge 0$ then, for some c, C > 0 and all $x, y \in M$ and t > 0,

$$p_t(x,y) \asymp \frac{C}{V(x,\sqrt{t})} \exp\left(-\frac{d^2(x,y)}{ct}\right).$$
 (LY)

In \mathbb{R}^n : $V(x, \sqrt{t}) = ct^{n/2}$ so that (LY) matches (1).

The estimate (LY) holds also on a more general class of manifolds.

Definition. We say that M satisfies volume doubling condition if for all $x \in M$ and r > 0

$$V(x,2r) \le CV(x,r). \tag{VD}$$

Definition. We say that M satisfies the (*weak*) Poincaré inequality if there are constants C > 0 and $\varepsilon \in (0, 1]$ such that, for any ball B(x, r) and for any function $u \in C^1(B(x, r))$,

$$\inf_{s \in \mathbb{R}} \int_{B(x,\varepsilon r)} (u-s)^2 d\mu \le Cr^2 \int_{B(x,r)} |\nabla u|^2 d\mu.$$
 (PI)

For example, (PI) holds in \mathbb{R}^n with $\varepsilon = 1$.

Theorem 4 (AG '91, L.Saloff-Coste '92)

 $(LY) \Leftrightarrow (VD) + (PI)$.

Theorem 4 implies Theorem 3 as both (VD) and (PI) can be proved on manifolds with $Ricci \ge 0$.

Theorem 4 allows to obtain further examples of manifolds satisfying (LY).

Let (r, θ) be the polar coordinates on \mathbb{R}^n with $n \ge 2$, where r > 0 and $\theta \in \mathbb{S}^{n-1}$. The canonical metric of \mathbb{R}^n is $dr^2 + r^2 d\theta^2$ where $d\theta^2$ is the canonical metric on \mathbb{S}^{n-1} . Fix a real $\alpha > 0$ and define a Biomennian metric a on \mathbb{R}^n by

Fix a real $\alpha > 0$ and define a Riemannian metric g_{α} on \mathbb{R}^n by

$$g_{\alpha} = \begin{cases} dr^2 + r^2 d\theta^2 & r \ll 1, \\ dr^2 + r^{2\beta} d\theta^2 & r \gg 1, \end{cases}$$

where $\beta = \frac{\alpha - 1}{n - 1}$. Set

$$\mathcal{R}^{\alpha} := (\mathbb{R}^n, g_{\alpha}).$$

It is easy to verify that on \mathcal{R}^{α} ,

$$V(o,r) \simeq r^{\alpha} \text{ for } r \gg 1.$$

The number α is called "the dimension at ∞ " of \mathcal{R}^{α} , while the topological dimension of \mathcal{R}^{α} is *n*. Note that $\mathcal{R}^{n} = \mathbb{R}^{n}$ while \mathcal{R}^{1} is a (one-sided) cylinder:

Proposition 5 The heat kernel on \mathcal{R}^{α} satisfies (LY) provided $0 < \alpha \leq n$.

An example where (LY) fails

Let $M = \mathbb{R}^n \# \mathbb{R}^n$ be a connected sum of two copies of \mathbb{R}^n with $n \ge 3$. On this manifold $V(x,r) \simeq r^n$.

The heat kernel on M satisfies the *upper* bound of (LY) but the *lower* bound

$$p_t(x,y) \ge \frac{C}{t^{n/2}} \exp\left(-\frac{d^2(x,y)}{ct}\right)$$

fails if x and y belong to different copies of \mathbb{R}^n : the probability of getting from x to y become smaller because any path from x to y has to go through the *bottleneck* of the central part. This example is a major motivation for what follows.

Manifolds with ends

Let $M_1, ..., M_k$ and M be complete, connected, non-compact Riemannian manifolds of the same dimension n. We say that M is a *connected sum* of $M_1, ..., M_k$ and write

 $M = M_1 \# M_2 \# \dots \# M_k$

if $M = K \sqcup E_1 \sqcup ... \sqcup E_k$, where $K \subset M$ is compact and each E_i is isometric to an exterior domain in M_i .

The sets E_i (as well as manifolds M_i) are called the *ends* of M. Manifold M is referred to as a manifold with ends.

The question to be discussed here is:

Assuming that all M_i are complete and satisfy (LY), how to estimate the heat kernel on $M = M_1 \# M_2 \# ... \# M_k$?

For example, how to estimate the heat kernel on

$$M = \mathcal{R}^{\alpha_1} \# \mathcal{R}^{\alpha_2} \# \dots \# \mathcal{R}^{\alpha_k} ?$$

Here we assume that all \mathcal{R}^{α_i} have the same topological dimension n and that $0 < \alpha_i \leq n$, so that each \mathcal{R}^{α_i} satisfies (LY).

Even obtaining the heat kernel estimates on $M = \mathbb{R}^n \# \mathbb{R}^n$ is highly non-trivial!

The answer to the above question depends on the property of the ends M_i to be *parabolic* or not.

Parabolic and non-parabolic manifolds

Definition. A Riemannian manifold M is called *parabolic* if any positive superharmonic function on M is constant, and *non-parabolic* otherwise.

Equivalent characterizations of the parabolicity:

- there exists no positive fundamental solution of $-\Delta$;
- $\int_{-\infty}^{\infty} p_t(x, y) dt = \infty$ for all/some $x, y \in M$;
- Brownian motion on M is recurrent.

For example, \mathbb{R}^n is parabolic for $n \leq 2$ and non-parabolic for n > 2.

Proposition 6 Let M be geodesically complete and satisfy (LY). Then M is parabolic if and only if for all/some $x \in M$

$$\int^{\infty} \frac{r dr}{V(x,r)} = \infty.$$
⁽²⁾

For example, if $V(x,r) \simeq r^{\alpha}$ for large r, then (2) is satisfies if and only if $\alpha \leq 2$. In particular, \mathcal{R}^{α} is parabolic if and only if $\alpha \leq 2$.

Heat kernels on manifolds with ends

Let $M_1, ..., M_k$ be complete non-compact manifolds satisfying (LY). Fix a reference point $o_i \in M_i$ and set $|x| = d_i(x, o_i)$. Assume for simplicity that

 $V_i(o_i, r) \simeq r^{\alpha_i}$ for large r.

If M_i is parabolic M_i , then assume in addition that M_i has "relatively connected annuli": there is A > 1 such that, for all large r and all x, y with |x| = |y| = r, the points x, y can be connected by a curve in the annulus $B_i(o_i, Ar) \setminus B_i(o_i, A^{-1}r)$.

Clearly, any $\mathcal{R}^{\alpha} = (\mathbb{R}^n, g_{\alpha})$ with $n \geq 2$ satisfies this property, but \mathbb{R}^1 does not.

We present estimates of the heat kernel $p_t(x, y)$ on $M = M_1 # ... # M_k$ assuming that $x \in E_i, y \in E_j$ with $i \neq j$ and that |x|, |y|, t are large. Estimates for the entire range of t, x, y are available as well.

Non-parabolic case (all M_i are non-parabolic)

Theorem 7 (AG and L.Saloff-Coste '09) Assume that all $\alpha_i > 2$ and set

$$\alpha = \min_{1 \le i \le k} \alpha_i \; .$$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \asymp C\left(\frac{1}{t^{\alpha/2} |x|^{\alpha_i - 2} |y|^{\alpha_j - 2}} + \frac{1}{t^{\alpha_j/2} |x|^{\alpha_i - 2}} + \frac{1}{t^{\alpha_i/2} |y|^{\alpha_j - 2}}\right) e^{-\frac{d^2(x,y)}{ct}}.$$
 (3)

In particular, (3) holds for $M = \mathcal{R}^{\alpha_1} \# ... \# \mathcal{R}^{\alpha_k}$ provided all $\alpha_i > 2$. For $M = \mathbb{R}^n \# \mathbb{R}^n$ with n > 2, the estimate (3) becomes

$$p_t(x,y) \simeq \frac{C}{t^{n/2}} \left(\frac{1}{|x|^{n-2}} + \frac{1}{|y|^{n-2}} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

Long time regime: x, y are fixed and $t \to \infty$. Then (3) amounts to

$$p_t(x,y) \simeq t^{-\alpha/2}.\tag{4}$$

Hence, the long time decay of p_t is determined by the *minimal* volume growth exponent $\alpha = \min \alpha_i$. Note that $V(x, r) \simeq r^{\max \alpha_i}$.

The estimate (4) has the following probabilistic meaning: in order to get from x to y in time t, Brownian motion on Mspends most time on the *smallest* end \mathcal{R}^{α} . The reason for that is that the return probability in that end is the *largest*.

Medium time regime: $|x| \simeq |y| \simeq \sqrt{t} \to \infty$. Then (3) implies

$$p_t(x,y) \simeq t^{-\left(\frac{\alpha_i + \alpha_j}{2} - 1\right)}.$$

Since $\frac{\alpha_i + \alpha_j}{2} - 1 > \frac{\alpha}{2}$, we obtain $p_t(x, y) \ll t^{-\alpha/2}$, which is due to a *bottleneck effect*.

Mixed case (there are parabolic and non-parabolic M_i)

Theorem 8 Assume that all $\alpha_i \neq 2$ and there are values $\alpha_i > 2$ and $\alpha_i < 2$. Set

$$\widetilde{\alpha}_i := \begin{cases} 4 - \alpha_i, & \alpha_i < 2\\ \alpha_i, & \alpha_i > 2 \end{cases}$$

and

$$\alpha := \min_{1 \le i \le k} \widetilde{\alpha}_i.$$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \simeq C\left(\frac{1}{t^{\alpha/2} |x|^{\tilde{\alpha}_i - 2} |y|^{\tilde{\alpha}_j - 2}} + \frac{1}{t^{\tilde{\alpha}_i/2} |y|^{\tilde{\alpha}_j - 2}} + \frac{1}{t^{\tilde{\alpha}_j/2} |x|^{\tilde{\alpha}_i - 2}}\right)$$
(5)

$$\times |x|^{(2-\alpha_i)_+} |y|^{(2-\alpha_j)_+} e^{-\frac{d^2(x,y)}{ct}}$$

This theorem contains the estimate (3) of non-parabolic case because if $\alpha_i > 2$ then $\tilde{\alpha}_i = \alpha_i$ and $|x|^{(2-\alpha_i)_+} = 1$.

Observe that always $\tilde{\alpha}_i > 2$, and the minimal $\tilde{\alpha}_i$ is determined by the value of α_i that is *nearest* to 2! Hence, the long time decay of the heat kernel $p_t(x,y) \simeq t^{-\alpha/2}$ is determined by the nearest to 2 value of α_i .

This rules applies also to Theorem 7 where the nearest to 2 exponent α_i is the minimal one. As we will see below, this rule is valid also in the parabolic case. As an example, consider $M = \mathcal{R}^1 \# \mathcal{R}^3$, where $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^3$.

In this case $\alpha_1 = 1$, $\alpha_2 = 3$ whence $\tilde{\alpha}_1 = \tilde{\alpha}_2 = 3$. It follows from (5) that

$$p_t(x,y) \asymp \frac{C}{t^{3/2}} \left(1 + \frac{|x|}{|y|}\right) e^{-\frac{d^2(x,y)}{ct}}.$$

For $t \to \infty$ we obtain $p_t(x, y) \simeq t^{-3/2}$. In the case $|y| \simeq 1$, $|x| \simeq \sqrt{t} \to \infty$ we obtain $p_t(x, y) \simeq t^{-1} \gg t^{-3/2}$ – a kind of anti-bottleneck effect!

Parabolic case (all M_i are parabolic)

The next two theorems were obtained by AG, S.Ishiwata and L.Saloff-Coste in 2015.

Theorem 9 (Subcritical case) Assume that $0 < \alpha_i < 2$ for all i = 1, ..., k and set

 $\alpha = \max_{1 \le i \le k} \alpha_i \; .$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \asymp \frac{C}{t^{\alpha/2}} e^{-\frac{d^2(x,y)}{ct}}.$$

In this case the long time behavior of the heat kernel $p_t(x, y) \simeq t^{-\alpha/2}$ is determined by the *maximal* volume growth exponent α_i , which is again nearest to 2. There is no bottleneck effect in this case.

In the next statement we use the following notation:

$$Q(x,t) = \frac{1}{\ln|x|} + \frac{1}{\ln t} \left(\ln \frac{\sqrt{t}}{|x|} \right)_{+} \simeq \begin{cases} \frac{1}{\ln|x|}, & \text{if } |x| \ge \sqrt{t} \\ \frac{1}{\ln t} \ln \frac{e\sqrt{t}}{|x|}, & \text{if } |x| \le \sqrt{t}, \end{cases}$$

Theorem 10 (Critical case) Assume that $0 < \alpha_i \leq 2$ for all i = 1, ..., k and that $\alpha_l = 2$ for some l. For $x \in E_i$ and $y \in E_j$ with $i \neq j$ the following is true: (a) If $\alpha_i < 2$ and $\alpha_j < 2$ then in the case $|x| + |y| \geq \sqrt{t}$

$$p_t(x,y) \asymp \frac{C \ln t}{t} e^{-\frac{d^2(x,y)}{ct}},$$

and in the case $|x| + |y| < \sqrt{t}$

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln t \left[\left(\frac{|x|}{\sqrt{t}} \right)^{2-\alpha_i} + \left(\frac{|y|}{\sqrt{t}} \right)^{2-\alpha_j} \right] \right).$$

(b) If $\alpha_i = 2$ and $\alpha_j < 2$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + Q(x,t) \ln t \left(\frac{|y|}{|y| + \sqrt{t}} \right)^{2-\alpha_j} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

In particular, if $|x|, |y| \ge \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \frac{\ln t}{\ln |x|} \right) e^{-\frac{d^2(x,y)}{ct}}$$

and if $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln \frac{e\sqrt{t}}{|x|} \left(\frac{|y|}{\sqrt{t}} \right)^{2-\alpha_j} \right).$$

(c) If $\alpha_i = \alpha_j = 2$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(Q(x,t) Q(y,t) + Q(x,t) \frac{\ln|y|}{\ln|y| + \ln t} + Q(y,t) \frac{\ln|x|}{\ln|x| + \ln t} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

In particular, if $|x|, |y| \ge \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(\frac{1}{\ln|x|} + \frac{1}{\ln|y|}\right) e^{-\frac{d^2(x,y)}{ct}},$$

and if $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t \ln^2 t} \left(\ln \frac{e\sqrt{t}}{|x|} \ln \frac{e\sqrt{t}}{|y|} + \ln |y| \ln \frac{e\sqrt{t}}{|x|} + \ln |x| \ln \frac{e\sqrt{t}}{|y|} \right).$$

Note that in the setting of Theorem 10 the long time behavior of the heat kernel is simple:

$$p_t(x,y) \simeq \frac{1}{t} \simeq \frac{1}{V(o,\sqrt{t})} \text{ as } t \to \infty,$$

and is determined by the value $\alpha_l = 2$, which is again the nearest to 2 volume growth exponent.

In the medium time regime $|x| \simeq |y| \simeq \sqrt{t} \to \infty$, we have the following. In the case (a), that is, $\alpha_i, \alpha_j < 2$:

$$p_t(x,y) \simeq \frac{\ln t}{t}.$$

In the case (b), that is, $\alpha_i = 2, \alpha_j < 2$:

$$p_t(x,y) \simeq \frac{1}{t}.$$

In the case (c), that is, $\alpha_i = \alpha_j = 2$:

$$p_t(x,y) \simeq \frac{1}{t \ln t}.$$

Some examples

Let $M = \mathbb{R}^2 \# \mathbb{R}^2$. This manifold is equivalent to the catenoid. Let x, y belong to the different sheets.

Then by Theorem 10(c) we have

$$p_t(x,y) \simeq \frac{C}{t} \left(Q(x,t)Q(y,t) + Q(x,t)\frac{\ln|y|}{\ln|y| + \ln t} + Q(y,t)\frac{\ln|x|}{\ln|x| + \ln t} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

If $t \to +\infty$ then $p_t(x,y) \simeq t^{-1}.$
If $|x| \ge \sqrt{t}$ and $|y| \ge \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(\frac{1}{\ln|x|} + \frac{1}{\ln|y|} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

In particular, if $|x| \simeq |y| \simeq \sqrt{t}$ then $p_t(x,y) \simeq \frac{1}{t \ln t}.$

Let $M = \mathcal{R}^1 \# \mathcal{R}^2$. By Theorem 10(b) we obtain, for $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^2$,

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln t \frac{|x|}{|x| + \sqrt{t}} Q(y,t) \right) e^{-\frac{d^2(x,y)}{ct}}$$

If $|x|, |y| > \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} e^{-\frac{d^2(x,y)}{ct}},$$

If $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \simeq \frac{1}{t} \left(1 + \frac{|x|}{\sqrt{t}} \ln \frac{e\sqrt{t}}{|y|} \right).$$

For $t \to \infty$ we obtain

$$p_t\left(x,y\right)\simeq t^{-1}.$$

If $y \simeq 1$ and $|x| \simeq \sqrt{t} \to \infty$ then

$$p_t(x,y) \simeq \frac{\ln t}{t}.$$

Let $M = \mathcal{R}^2 \# \mathcal{R}^3$. This is a mixed case that is covered by an extension of Theorem 8. It yields the following estimate for $x \in \mathcal{R}^2$ and $y \in \mathcal{R}^3$:

$$p_t(x,y) \simeq C\left(\frac{\ln|x|}{t\ln^2 t |y|} + \frac{1}{t^{3/2}}Q(x,t)\right)e^{-\frac{d^2(x,y)}{ct}}.$$

For $t \to \infty$ we have

$$p_t(x,y) \simeq \frac{1}{t \ln^2 t}.$$

For $|x| \simeq |y| \simeq \sqrt{t} \to \infty$ we obtain

$$p_t\left(x,y\right) \simeq \frac{1}{t^{3/2}\ln t},$$

so that there is a bottleneck effect. For $|y| \simeq 1$ and $|x| \simeq \sqrt{t} \to \infty$ we obtain

$$p_t\left(x,y\right) \simeq \frac{1}{t\ln t},$$

that is, an anti-bottleneck effect.

Let
$$M = \mathcal{R}^1 \# \mathcal{R}^2 \# \mathcal{R}^3$$
. For $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^2$ we have
 $p_t(x, y) \simeq C\left(\frac{\ln|y|}{t\ln^2 t} + \left(\frac{|x|}{t^{3/2}} + \frac{1}{t\ln^2 t}\right)Q(y, t)\right)e^{-\frac{d^2(x, y)}{ct}}.$

In particular, for $t \to \infty$

$$p_t(x,y) \simeq \frac{1}{t \ln^2 t},$$

For $|x| \simeq |y| \simeq \sqrt{t}$ we have an anti-bottleneck effect:

$$p_t(x,y) \simeq \frac{1}{t \ln t}.$$

For $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^3$ we have

$$p_t(x,y) \asymp C\left(\frac{1}{t^{3/2}}\left(1+\frac{|x|}{|y|}\right)+\frac{1}{|y|t\ln^2 t}\right)e^{-\frac{d^2(x,y)}{ct}}.$$

For $|x| \simeq |y| \simeq \sqrt{t}$ we have a bottleneck effect:

$$p_t(x,y) \simeq \frac{1}{t^{3/2}}.$$

Approach to the proof

The following approach works in non-parabolic case (Theorem 7) and in parabolic case (Theorems 9, 10).

We start with estimates for $p_t(o, o)$ where $o \in K$ is a fixed reference point. In the non-parabolic case we use *Faber-Krahn type* inequalities to obtain upper bound of $p_t(o, o)$. The Li-Yau upper bound for the heat kernel $p_t^{(i)}$ on M_i implies certain FK inequality on M_i . The "weakest" of FK inequalities across all ends M_i gives a FK inequality on M, which implies the upper bound of $p_t(o, o)$, matching the weakest upper bound among all $p_t^{(i)}(o_i, o_i)$.

For the lower bounds of $p_t(x, y)$ we use $p_t(x, y) \ge p_t^{E_i}(x, y)$, where $p_t^{E_i}$ is the Dirichlet heat kernel in E_i . By non-parabolicity of M_i , $p_t^{E_i}(x, y)$ satisfies (LY) away from ∂E_i , which implies the lower bound of $p_t(o, o)$ matching the strongest lower bound among all $p_t^{(i)}(o_i, o_i)$.

To estimate $p_t(x, y)$ for arbitrary x, y, we use the *hitting probability*. For any closed set $A \subset M$, define the function

$$\psi_A(t,x) = \mathbb{P}_x \left(X_s \in A \text{ for some } s \le t \right)$$

In fact, $\psi_A(t,x)$ solves in $\mathbb{R}_+ \times A^c$ the heat equation with the initial condition $\psi_A(0,\cdot) = 0$ and the boundary condition $\psi_A(t,\cdot) = 1$ on ∂A .

For all
$$x \in E_i$$
 and $y \in E_j$ with $i \neq j$, the following holds:
 $p_t(x,y) \leq 2\psi_{\partial E_i}(t,x)\psi_{\partial E_j}(t,y) \sup_{s\in[t/4,t]} \sup_{u\in\partial E_i, v\in\partial E_j} p_s(u,v)$
 $+ \left(\psi_{\partial E_i}(t,x) \sup_{s\in[t/4,t]} \partial_s \psi_{\partial E_j}(s,y) + \psi_{\partial E_j}(t,y) \sup_{s\in[t/4,t]} \partial_s \psi_{\partial E_i}(s,x)\right)$
 $\times \int_0^t \sup_{u\in\partial E_i, v\in\partial E_j} p_s(u,v)ds,$

and there is a similar lower bound.

Note that $\psi_{\partial E_i}$ depends only on the intrinsic geometry of M_i and can be estimated using (LY) on M_i .

By local Harnack inequality, $p_s(u, v)$ can be estimated via $p_s(o, o)$, which gives desired estimates for $p_t(x, y)$

In the parabolic case this scheme works except for the crucial upper bound for $p_t(o, o)$. Indeed, the FK method gives the upper bound of $p_t(o, o)$ using the smallest volume growth exponent α_i whereas in the parabolic case we expect to use the largest exponent α_i , that is, we need a stronger upper bound.

In fact, in the parabolic case we prove the following upper bound:

$$p_t(o,o) \le \frac{C}{V(o,\sqrt{t})},\tag{6}$$

using a new method involving the *resolvents* on each end:

$$R_{\lambda}^{(i)}\left(x,y\right) = \int_{0}^{\infty} e^{-t\lambda} p_{t}^{(i)}\left(x,y\right) dt,$$

where $\lambda > 0$. The parabolicity of M_i implies that $R_{\lambda}^{(i)}(x, y) \to \infty$ as $\lambda \to 0$, and the rate of increase of $R_{\lambda}^{(i)}(x, y)$ as $\lambda \to 0$ is related to the rate of decay of $p_t^{(i)}(x, y)$ as $t \to \infty$.

We show that the resolvent $R_{\lambda}(x, y)$ on M satisfies a certain integral equation containing $R_{\lambda}^{(i)}(x, y)$. This allows to estimate the rate of growth of $R_{\lambda}(x, y)$ as $\lambda \to 0$ and then to recover the upper bound (6). In the critical case we use also the estimates of $\partial_{\lambda}R_{\lambda}(x, y)$. Once the upper bound (6) is known, it implies automatically the matching lower bound

$$p_t(o,o) \ge \frac{c}{V(o,\sqrt{t})},$$

by a theorem of AG and T.Coulhon '97.

Finally, the mixed case of Theorem 8 can be reduced to the non-parabolic case by a *Doob transform*. We construct a positive harmonic function h on $M = M_1 # ... # M_k$ such that $h \to \infty$ on each parabolic end and $h \simeq 1$ on each non-parabolic end. Consider a new measure $\tilde{\mu}$ on M given by $d\tilde{\mu} = h^2 d\mu$, where μ is the Riemannian measure, and the associated *weighted Laplacian*

$$\widetilde{\Delta} = \frac{1}{h^2} \operatorname{div} \left(h^2 \nabla \right) = \frac{1}{h} \circ \Delta \circ h.$$

The heat kernel $\widetilde{p}_{t}(x, y)$ of $\widetilde{\Delta}$ is related to $p_{t}(x, y)$ by

$$p_t(x,y) = \widetilde{p}_t(x,y) h(x) h(y).$$

It turns out that each weighted manifold $(M_i, \tilde{\mu})$ satisfies (LY) and has the volume growth exponent $\tilde{\alpha}_i > 2$. In particular, $(M_i, \tilde{\mu})$ is non-parabolic! By extension of Theorem 7 to weighted manifolds, we obtain the estimates of $\tilde{p}_t(x, y)$, whence the estimates of $p_t(x, y)$ follow.