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Heat kernel in Rn

Heat equation in Rn:
∂tu = Δu

where u = u (t, x), t ∈ R, x ∈ Rn, and Δ =
∑n

i=1 ∂xixi
u is the Laplace operator.

The Gauss-Weierstrass function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

(1)

satisfies the heat equation in (t, x) ∈ (0,∞) × Rn and tends to δy as t → 0+.
The function (1) is called the heat kernel or the fundamental solution of the heat

equation. Other characterizations:

• the integral kernel of the heat semigroup
{
etΔ
}

t≥0
in L2 (Rn);

• the density of the normal distribution with the mean y and variance 2t;

• the transition density of Brownian motion in Rn.

Observe: if |x − y| = O
(√

t
)

then pt (x, y) ' t−n/2.
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Elliptic operators in divergence form

Consider in Rn a divergence form elliptic operator

L =
n∑

i,j=1

∂xi

(
aij (x) ∂xj

)

where the matrix (aij (x))n
i.j=1 is symmetric and positive definite. Uniform ellipticity:

there is λ ≥ 1 such that, for any x, all the eigenvalues of (aij (x)) lie in
[
λ−1, λ

]
.

Theorem 1 (D.G. Aronson ’67) The fundamental solution pt (x, y) of ∂tu = Lu
satisfies for all t > 0 and x, y ∈ Rn the estimates

pt (x, y) �
C

tn/2
exp

(

−
|x − y|2

ct

)

where C, c > 0 depend on n, λ only and � means ≤ and ≥, but with different values
of C, c.

The proof is based on the previous works of Jürgen Moser and John Nash.
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Laplace-Beltrami operator and Li-Yau estimate

Given a Riemannian manifold (M, g), the Laplace-Beltrami operator Δg is defined
in local coordinates x1, ..., xn by

Δg =
1

√
det g

n∑

i,j=1

∂xi

(
gij
√

deg g∂xj

)
= divg ◦∇,

where gij = (gij)
−1 and g = (gij).

Heat equation ∂tu = Δgu on R+ × M has the minimal positive fundamental
solution pt (x, y) that is called the heat kernel of M . The heat kernel is also:

• the integral kernel of
{
etΔg

}
t≥0

in L2 (M,μ), where μ is Riemannian measure;

• the transition density for Brownian motion {Xt}t≥0 on M :

for any Borel set A ⊂ M ,

Px (Xt ∈ A) =

∫

A

pt (x, y) dμ (y) ,

where Px is the probability measure
in the space of paths started at x.
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Goal : estimates of the heat kernel on a class of Riemannian manifolds.
Notation:
M - a geodesically complete, non-compact Riemannian manifold;
d (x, y) - the geodesic distance on M ;
B (x, r) - the geodesic ball of radius r centered at x, and V (x, r) = μ (B (x, r)).

Theorem 2 (E.B. Davies ’92) For arbitrary measurable sets A,B ⊂ M ,

∫

A

∫

B

pt (x, y) dμ (x) dμ (y) ≤
√

μ (A) μ (B) exp

(

−
d2 (A,B)

4t

)

.

Assumptions about the geometry of M are needed in order to obtain pointwise
estimates with a decay as t → ∞.

Theorem 3 (P.Li and S.-T.Yau ’86) If RicciM ≥ 0 then, for some c, C > 0 and all
x, y ∈ M and t > 0,

pt (x, y) �
C

V
(
x,
√

t
) exp

(

−
d2 (x, y)

ct

)

. (LY )

In Rn: V
(
x,
√

t
)

= ctn/2 so that (LY ) matches (1).
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The estimate (LY ) holds also on a more general class of manifolds.

Definition. We say that M satisfies volume doubling condition if for all x ∈ M and
r > 0

V (x, 2r) ≤ CV (x, r) . (V D)

Definition. We say that M satisfies the (weak) Poincaré inequality if there are
constants C > 0 and ε ∈ (0, 1] such that, for any ball B (x, r) and for any function
u ∈ C1 (B (x, r)),

inf
s∈R

∫

B(x,εr)

(u − s)2 dμ ≤ Cr2

∫

B(x,r)

|∇u|2 dμ. (PI)

For example, (PI) holds in Rn with ε = 1.

Theorem 4 (AG ’91, L.Saloff-Coste ’92)

(LY ) ⇔ (V D) + (PI) .

Theorem 4 implies Theorem 3 as both (V D) and (PI) can be proved on manifolds
with Ricci ≥ 0.

Theorem 4 allows to obtain further examples of manifolds satisfying (LY ).
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Let (r, θ) be the polar coordinates on Rn with n ≥ 2, where r > 0 and θ ∈ Sn−1.
The canonical metric of Rn is dr2 + r2dθ2 where dθ2 is the canonical metric on Sn−1.

Fix a real α > 0 and define a Riemannian metric gα on Rn by

gα =

{
dr2 + r2dθ2 r � 1,
dr2 + r2βdθ2 r � 1,

where β = α−1
n−1

. Set
Rα := (Rn, gα) .

It is easy to verify that on Rα,

V (o, r) ' rα for r � 1.

The number α is called “the dimension at ∞” of Rα, while the topological dimension
of Rα is n. Note that Rn = Rn while R1 is a (one-sided) cylinder:

Proposition 5 The heat kernel on Rα satisfies (LY ) provided 0 < α ≤ n.
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An example where (LY ) fails

Let M = Rn#Rn be a connected sum of two copies of Rn with n ≥ 3. On this
manifold V (x, r) ' rn.

The heat kernel on M satisfies the upper bound of (LY ) but the lower bound

pt (x, y) ≥
C

tn/2
exp

(

−
d2 (x, y)

ct

)

fails if x and y belong to different copies of Rn: the probability of getting from x to
y become smaller because any path from x to y has to go through the bottleneck of
the central part. This example is a major motivation for what follows.
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Manifolds with ends

Let M1, ...,Mk and M be complete, connected, non-compact Riemannian manifolds
of the same dimension n. We say that M is a connected sum of M1, ...,Mk and write

M = M1#M2#...#Mk

if M = K t E1 t ... t Ek, where K ⊂ M is compact and each Ei is isometric to an
exterior domain in Mi.

The sets Ei (as well as manifolds Mi) are called the ends of M . Manifold M is
referred to as a manifold with ends.
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The question to be discussed here is:

Assuming that all Mi are complete and satisfy (LY ),
how to estimate the heat kernel on M = M1#M2#...#Mk?

For example, how to estimate the heat kernel on

M = Rα1#Rα2#...#Rαk ?

Here we assume that all Rαi have the same topological dimension n and that 0 <
αi ≤ n, so that each Rαi satisfies (LY ).

Even obtaining the heat kernel estimates on M = Rn#Rn is highly non-trivial!

The answer to the above question depends on the property of the ends Mi to be
parabolic or not.
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Parabolic and non-parabolic manifolds

Definition. A Riemannian manifold M is called parabolic if any positive superhar-
monic function on M is constant, and non-parabolic otherwise.

Equivalent characterizations of the parabolicity:

• there exists no positive fundamental solution of −Δ;

•
∫∞

pt (x, y) dt = ∞ for all/some x, y ∈ M ;

• Brownian motion on M is recurrent.

For example, Rn is parabolic for n ≤ 2 and non-parabolic for n > 2.

Proposition 6 Let M be geodesically complete and satisfy (LY ). Then M is parabolic
if and only if for all/some x ∈ M

∫ ∞ rdr

V (x, r)
= ∞. (2)

For example, if V (x, r) ' rα for large r, then (2) is satisfies if and only if α ≤ 2.
In particular, Rα is parabolic if and only if α ≤ 2.
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Heat kernels on manifolds with ends

Let M1, ...,Mk be complete non-compact manifolds satisfying (LY ). Fix a reference
point oi ∈ Mi and set |x| = di (x, oi) . Assume for simplicity that

Vi (oi, r) ' rαi for large r.

If Mi is parabolic Mi, then assume in addition that Mi has “relatively connected
annuli”: there is A > 1 such that, for all large r and all x, y with |x| = |y| = r, the
points x, y can be connected by a curve in the annulus Bi (oi, Ar) \ Bi (oi, A

−1r) .

Clearly, any Rα = (Rn, gα) with n ≥ 2 satisfies this property, but R1 does not.
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We present estimates of the heat kernel pt (x, y) on M = M1#...#Mk assuming
that x ∈ Ei, y ∈ Ej with i 6= j and that |x| , |y| , t are large. Estimates for the entire
range of t, x, y are available as well.

Non-parabolic case (all Mi are non-parabolic)

Theorem 7 (AG and L.Saloff-Coste ’09) Assume that all αi > 2 and set

α = min
1≤i≤k

αi .

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) � C

(
1

tα/2 |x|αi−2 |y|αj−2 +
1

tαj/2 |x|αi−2 +
1

tαi/2 |y|αj−2

)

e−
d2(x,y)

ct . (3)

In particular, (3) holds for M = Rα1#...#Rαk provided all αi > 2.
For M = Rn#Rn with n > 2, the estimate (3) becomes

pt (x, y) �
C

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

e−
d2(x,y)

ct .
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Long time regime : x, y are fixed and t → ∞. Then (3) amounts to

pt (x, y) ' t−α/2. (4)

Hence, the long time decay of pt is determined by the minimal volume growth
exponent α = min αi. Note that V (x, r) ' rmax αi .

The estimate (4) has the following
probabilistic meaning: in order to get from
x to y in time t, Brownian motion on M
spends most time on the smallest endRα.
The reason for that is that the return
probability in that end is the largest.

Medium time regime: |x| ' |y| '
√

t → ∞. Then (3) implies

pt (x, y) ' t
−
(

αi+αj
2

−1
)

.

Since
αi+αj

2
− 1 > α

2
, we obtain pt (x, y) � t−α/2, which is due to a bottleneck effect.
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Mixed case (there are parabolic and non-parabolic Mi)

Theorem 8 Assume that all αi 6= 2 and there are values αi > 2 and αi < 2. Set

α̃i :=

{
4 − αi, αi < 2
αi, αi > 2

and
α := min

1≤i≤k
α̃i.

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) ' C

(
1

tα/2 |x|α̃i−2 |y|α̃j−2
+

1

tα̃i/2 |y|α̃j−2
+

1

tα̃j/2 |x|α̃i−2

)

(5)

× |x|(2−αi)+ |y|(2−αj)+ e−
d2(x,y)

ct

This theorem contains the estimate (3) of non-parabolic case because if αi > 2

then α̃i = αi and |x|(2−αi)+ = 1.
Observe that always α̃i > 2, and the minimal α̃i is determined by the value

of αi that is nearest to 2! Hence, the long time decay of the heat kernel
pt (x, y) ' t−α/2 is determined by the nearest to 2 value of αi.
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This rules applies also to Theorem 7 where the nearest to 2 exponent αi is the
minimal one. As we will see below, this rule is valid also in the parabolic case.

As an example, consider M = R1#R3, where x ∈ R1 and y ∈ R3.

In this case α1 = 1, α2 = 3 whence α̃1 = α̃2 = 3. It follows from (5) that

pt(x, y) �
C

t3/2

(

1 +
|x|
|y|

)

e−
d2(x,y)

ct .

For t → ∞ we obtain pt (x, y) ' t−3/2. In the case |y| ' 1, |x| '
√

t → ∞ we obtain
pt (x, y) ' t−1 � t−3/2 – a kind of anti-bottleneck effect!
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Parabolic case (all Mi are parabolic)

The next two theorems were obtained by AG, S.Ishiwata and L.Saloff-Coste in 2015.

Theorem 9 (Subcritical case) Assume that 0 < αi < 2 for all i = 1, ..., k and set

α = max
1≤i≤k

αi .

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) �
C

tα/2
e−

d2(x,y)
ct .

In this case the long time behavior of the heat kernel pt (x, y) ' t−α/2 is de-
termined by the maximal volume growth exponent αi, which is again nearest to 2.
There is no bottleneck effect in this case.

In the next statement we use the following notation:

Q (x, t) =
1

ln |x|
+

1

ln t

(

ln

√
t

|x|

)

+

'

{
1

ln|x| , if |x| ≥
√

t
1

ln t
ln e

√
t

|x| , if |x| ≤
√

t,
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Theorem 10 (Critical case) Assume that 0 < αi ≤ 2 for all i = 1, ..., k and that
αl = 2 for some l. For x ∈ Ei and y ∈ Ej with i 6= j the following is true:

(a) If αi < 2 and αj < 2 then in the case |x| + |y| ≥
√

t

pt (x, y) �
C ln t

t
e−

d2(x,y)
ct ,

and in the case |x| + |y| <
√

t

pt (x, y) �
C

t

(

1 + ln t

[(
|x|
√

t

)2−αi

+

(
|y|
√

t

)2−αj
])

.

(b) If αi = 2 and αj < 2 then

pt (x, y) �
C

t

(

1 + Q (x, t) ln t

(
|y|

|y| +
√

t

)2−αj

)

e−
d2(x,y)

ct .

In particular, if |x| , |y| ≥
√

t then

pt (x, y) �
C

t

(

1 +
ln t

ln |x|

)

e−
d2(x,y)

ct
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and if |x| , |y| ≤
√

t then

pt (x, y) �
C

t

(

1 + ln
e
√

t

|x|

(
|y|
√

t

)2−αj
)

.

(c) If αi = αj = 2 then

pt (x, y) �
C

t

(

Q (x, t) Q (y, t) + Q (x, t)
ln |y|

ln |y| + ln t
+ Q (y, t)

ln |x|
ln |x| + ln t

)

e−
d2(x,y)

ct .

In particular, if |x| , |y| ≥
√

t then

pt (x, y) �
C

t

(
1

ln |x|
+

1

ln |y|

)

e−
d2(x,y)

ct ,

and if |x| , |y| ≤
√

t then

pt (x, y) �
C

t ln2 t

(

ln
e
√

t

|x|
ln

e
√

t

|y|
+ ln |y| ln

e
√

t

|x|
+ ln |x| ln

e
√

t

|y|

)

.
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Note that in the setting of Theorem 10 the long time behavior of the heat kernel
is simple:

pt (x, y) '
1

t
'

1

V
(
o,
√

t
) as t → ∞,

and is determined by the value αl = 2, which is again the nearest to 2 volume growth
exponent.

In the medium time regime |x| ' |y| '
√

t → ∞, we have the following.
In the case (a), that is, αi, αj < 2:

pt (x, y) '
ln t

t
.

In the case (b), that is, αi = 2, αj < 2:

pt (x, y) '
1

t
.

In the case (c), that is, αi = αj = 2:

pt (x, y) '
1

t ln t
.
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Some examples

Let M = R2#R2.
This manifold is equivalent to
the catenoid. Let x, y belong
to the different sheets.

Then by Theorem 10(c) we have

pt (x, y) '
C

t

(

Q(x, t)Q(y, t) + Q(x, t)
ln |y|

ln |y| + ln t
+ Q(y, t)

ln |x|
ln |x| + ln t

)

e−
d2(x,y)

ct .

If t → +∞ then pt (x, y) ' t−1.
If |x| ≥

√
t and |y| ≥

√
t then

pt (x, y) �
C

t

(
1

ln |x|
+

1

ln |y|

)

e−
d2(x,y)

ct .

In particular, if |x| ' |y| '
√

t then pt (x, y) ' 1
t ln t

.
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Let M = R1#R2. By Theorem 10(b) we obtain, for x ∈ R1 and y ∈ R2,

pt(x, y) �
C

t

(

1 + ln t
|x|

|x| +
√

t
Q(y, t)

)

e−
d2(x,y)

ct

If |x| , |y| >
√

t then

pt(x, y) �
C

t
e−

d2(x,y)
ct ,

If |x| , |y| ≤
√

t then

pt(x, y) '
1

t

(

1 +
|x|
√

t
ln

e
√

t

|y|

)

.

For t → ∞ we obtain
pt (x, y) ' t−1.

If y ' 1 and |x| '
√

t → ∞ then

pt (x, y) '
ln t

t
.
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Let M = R2#R3. This is a mixed case that is covered by an extension of
Theorem 8. It yields the following estimate for x ∈ R2 and y ∈ R3:

pt(x, y) � C

(
ln |x|

t ln2 t |y|
+

1

t3/2
Q (x, t)

)

e−
d2(x,y)

ct .

For t → ∞ we have

pt (x, y) '
1

t ln2 t
.

For |x| ' |y| '
√

t → ∞ we obtain

pt (x, y) '
1

t3/2 ln t
,

so that there is a bottleneck effect. For |y| ' 1 and |x| '
√

t → ∞ we obtain

pt (x, y) '
1

t ln t
,

that is, an anti-bottleneck effect.
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Let M = R1#R2#R3. For x ∈ R1 and y ∈ R2 we have

pt (x, y) ' C

(
ln |y|

t ln2 t
+

(
|x|
t3/2

+
1

t ln2 t

)

Q (y, t)

)

e−
d2(x,y)

ct .

In particular, for t → ∞

pt (x, y) '
1

t ln2 t
,

For |x| ' |y| '
√

t we have an anti-bottleneck effect:

pt (x, y) '
1

t ln t
.

For x ∈ R1 and y ∈ R3 we have

pt (x, y) � C

(
1

t3/2

(

1 +
|x|
|y|

)

+
1

|y| t ln2 t

)

e−
d2(x,y)

ct .

For |x| ' |y| '
√

t we have a bottleneck effect:

pt (x, y) '
1

t3/2
.
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Approach to the proof

The following approach works in non-parabolic case (Theorem 7) and in parabolic
case (Theorems 9, 10).

We start with estimates for pt (o, o) where o ∈ K is a fixed reference point. In the
non-parabolic case we use Faber-Krahn type inequalities to obtain upper bound of
pt (o, o). The Li-Yau upper bound for the heat kernel p

(i)
t on Mi implies certain FK

inequality on Mi. The “weakest” of FK inequalities across all ends Mi gives a FK
inequality on M , which implies the upper bound of pt (o, o), matching the weakest

upper bound among all p
(i)
t (oi, oi) .

For the lower bounds of pt (x, y) we use pt (x, y) ≥ pEi
t (x, y), where pEi

t is the
Dirichlet heat kernel in Ei. By non-parabolicity of Mi, pEi

t (x, y) satisfies (LY ) away
from ∂Ei, which implies the lower bound of pt (o, o) matching the strongest lower

bound among all p
(i)
t (oi, oi) .

To estimate pt (x, y) for arbitrary x, y, we use the hitting probability. For any
closed set A ⊂ M , define the function

ψA(t, x) = Px (Xs ∈ A for some s ≤ t)

In fact, ψA (t, x) solves in R+ × Ac the heat equation with the initial condition
ψA (0, ∙) = 0 and the boundary condition ψA (t, ∙) = 1 on ∂A.
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For all x ∈ Ei and y ∈ Ej with i 6= j, the following holds:

pt(x, y) ≤ 2ψ∂Ei
(t, x)ψ∂Ej

(t, y) sup
s∈[t/4,t]

sup
u∈∂Ei,v∈∂Ej

ps(u, v)

+

(

ψ∂Ei
(t, x) sup

s∈[t/4,t]

∂sψ∂Ej
(s, y) + ψ∂Ej

(t, y) sup
s∈[t/4,t]

∂sψ∂Ei
(s, x)

)

×
∫ t

0

sup
u∈∂Ei,v∈∂Ej

ps(u, v)ds,

and there is a similar lower bound.

Note that ψ∂Ei
depends only on

the intrinsic geometry of Mi and
can be estimated using (LY ) on Mi.

By local Harnack inequality, ps (u, v)
can be estimated via ps (o, o) , which
gives desired estimates for pt (x, y)
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In the parabolic case this scheme works except for the crucial upper bound for
pt (o, o). Indeed, the FK method gives the upper bound of pt (o, o) using the smallest
volume growth exponent αi whereas in the parabolic case we expect to use the largest
exponent αi, that is, we need a stronger upper bound.

In fact, in the parabolic case we prove the following upper bound:

pt (o, o) ≤
C

V
(
o,
√

t
) , (6)

using a new method involving the resolvents on each end:

R
(i)
λ (x, y) =

∫ ∞

0

e−tλp
(i)
t (x, y) dt,

where λ > 0. The parabolicity of Mi implies that R
(i)
λ (x, y) → ∞ as λ → 0, and the

rate of increase of R
(i)
λ (x, y) as λ → 0 is related to the rate of decay of p

(i)
t (x, y) as

t → ∞.
We show that the resolvent Rλ (x, y) on M satisfies a certain integral equation

containing R
(i)
λ (x, y). This allows to estimate the rate of growth of Rλ (x, y) as

λ → 0 and then to recover the upper bound (6). In the critical case we use also the
estimates of ∂λRλ (x, y) .
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Once the upper bound (6) is known, it implies automatically the matching lower
bound

pt (o, o) ≥
c

V
(
o,
√

t
) ,

by a theorem of AG and T.Coulhon ’97.
Finally, the mixed case of Theorem 8 can be reduced to the non-parabolic case by

a Doob transform. We construct a positive harmonic function h on M = M1#...#Mk

such that h → ∞ on each parabolic end and h ' 1 on each non-parabolic end.
Consider a new measure μ̃ on M given by dμ̃ = h2dμ, where μ is the Riemannian
measure, and the associated weighted Laplacian

Δ̃ =
1

h2
div
(
h2∇

)
=

1

h
◦ Δ ◦ h.

The heat kernel p̃t (x, y) of Δ̃ is related to pt (x, y) by

pt (x, y) = p̃t (x, y) h (x) h (y) .

It turns out that each weighted manifold (Mi, μ̃) satisfies (LY ) and has the volume
growth exponent α̃i > 2. In particular, (Mi, μ̃) is non-parabolic! By extension of
Theorem 7 to weighted manifolds, we obtain the estimates of p̃t (x, y), whence the
estimates of pt (x, y) follow.
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