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1 Introduction

The classical heat kernel in Rn is the fundamental solution to the heat equation,
which is given by the following formula

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

. (1.1)

It is worth observing that the Gaussian term exp
(
− |x−y|

2

4t

)
does not depend in n,

whereas the other term (4πt)−n/2 reflects the dependence of the heat kernel on the
underlying space via its dimension.

The notion of heat kernel extends to any Riemannian manifold M. In this case,
the heat kernel pt (x, y) is the minimal positive fundamental solution to the heat
equation ∂u

∂t
= ∆u where ∆ is the Laplace-Beltrami operator on M , and it always

exists (see [11], [13], [16]). Under certain assumptions about M , the heat kernel can
be estimated similarly to (1.1). For example, if M is geodesically complete and has
non-negative Ricci curvature then by a theorem of Li and Yau [25]

pt (x, y) �
C

V
(
x,
√
t
) exp

(

−
d2 (x, y)

Ct

)

.

Here V (x, r) is the volume of the geodesic ball B (x, r) of radius r centered at x,
and the sign � means that both inequality signs ≤ and ≥ can be used instead but
the positive constant C may be different in upper and lower bounds. Again, most
information about the geometry of M sits in the volume term, whereas the Gaussian

term exp
(
−d2(x,y)

Ct

)
seems to be more robust.

The recent development of analysis on fractals, notably by M.Barlow and R.Bass
(see [5] and references therein), has shed new light on the nature of the Gaussian
term. Without going into the definition of fractals sets1, let us give an example.
The most well studied fractal set is the Sierpinski gasket SG which is obtain from
an equilateral triangle by removing its middle triangle, then removing the middle
triangles from the remaining triangles, etc. (see Fig. 1 where three iterations are
shown and the removed triangles are blank).

Figure 1:

We regard SG as a metric measure energy space. A metric d on SG is defined as
the restriction of the Euclidean metric. A measure µ on SG is the Hausdorff measure

1For a detailed account of fractals see the article of M.Barlow [3] in the same volume.
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Hα where α := dimH SG is called the fractal dimension of SG (it is possible to show
that α = log2 3). Defining an energy form is highly non-trivial. By an energy form
we mean an analogue of the Dirichlet form

E [f ] =

∫

M

|∇f |2 dvol

which is defined on any Riemannian manifold M . One first defines a discrete ana-
logue of this form on graphs approximating SG, and then takes a certain scaling
limit. Barlow and Perkins [8] have proved that the resulting functional E [f ] is a
local regular Dirichlet form in L2 (SG, µ) . Furthermore, they have shown that the
associate diffusion process Xt has a transition density pt (x, y) which is a continuous
function on x, y ∈ SG and t > 0 and satisfies the following estimate

pt (x, y) �
C

tα/β
exp

(

−

(
dβ(x, y)

Ct

) 1
β−1

)

(1.2)

provided 0 < t < 1 (the restriction t < 1 can be removed if one considers an
unbounded version of SG). Here α is the same as above - the Hausdorff dimension
of SG, whereas β is a new parameter called the walk dimension. It is determined in
terms of the process Xt as follows: the mean exit time from a ball of radius r is of
the order rβ. For SG it is known that β = log2 5. Barlow and Bass [5] extended the
above construction and the estimate (1.2) to the large family of fractals including
Sierpinski carpet and its higher dimensional analogues (see also [2]). Moreover, it
turns out that estimates similar to (1.2) are valid on fractal-like graphs (see [6], [19],
[20], [22], [30]). An example of such a graph – the graphical Sierpinski gasket – is
shown on Fig. 2. Furthermore, one easily makes a smooth Riemannian manifold out

Figure 2:

of this graph by replacing the edges by tubes, and the heat kernel on this manifold
also satisfies (1.2) provided t ≥ max (d (x, y) , 1) where d is the geodesic distance.

In all the cases the nature of the parameters α and β in (1.2) is of great interest.
Assume that a metric measure space (M,d, µ) admits a heat kernel satisfying (1.2)
with some α > 0 and β > 1 (a precise definition of a heat kernel will be given in
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the next section – to some extent, specifying a heat kernel is equivalent to choosing
an appropriate energy form on M). Although a priori the parameters α and β
are defined through the heat kernel, a posteriori they happen to be invariants of
the underlying metric measure structure alone. The parameter α turns out to be
the volume growth exponent of M (see Theorem 3.1) which also implies that α
is the Hausdorff dimension of M . The parameter β is characterized intrinsically
as the critical exponent of a family of function spaces on M . This approach for
characterizing of the walk dimension originated by A.Jonsson [23] in the setting of
SG, and was later used by K.Pietruska-Pa luba [26] and A.Stós [27] for so called d-
sets in Rn supporting a fractional diffusion. In full generality this result was proved
in [18].

The structure of the paper and the main results are as follows. In Section 2
we define a heat kernel on a metric measure space and related notions. The main
result of Section 3 is Theorem 3.1 characterizing the parameter α from (1.2) as the
volume growth exponent. In Section 4 we define the energy form associated with
the heat kernel and prove that the domain of the energy form embeds compactly
into L2 (Theorem 4.1). In Section 5 we introduce a family of function spaces on
M generalizing Besov spaces, and prove Theorems 5.1 and 5.2 characterizing the
domain of the energy form in terms of the family of Besov spaces. In Section 6 we
prove Theorem 6.2 giving an intrinsic characterization of the parameter β from (1.2)
in terms of Besov spaces. In Section 7 we prove Theorem 7.2 saying that under mild
assumptions about the underlying metric space, the parameters α and β are related
by the inequalities

2 ≤ β ≤ α + 1

(see also Corollary 7.3(iii)). In Section 8 we prove an embedding of Besov spaces
into Hölder spaces Cλ (Theorem 8.1). In Section 9 we introduce Bessel potential
spaces generalizing fractional Sobolev spaces in Rn, and prove the embedding of
these spaces into Lq and Cλ (Theorem 9.2(i) and (ii), respectively).

Most results surveyed here are taken from [18] (these are Theorems 3.1, 4.1, 5.1,
6.2, 7.2, 8.1). Theorem 5.2 is new although it is largely motivated by a result of
A.Stós [27]. Theorem 9.2(ii) is also new giving a partial answer to a conjecture of
R.Strichartz [28].

In this survey we do not touch the methods of obtaining estimates like (1.2), and
for that we refer the reader to [7], [12], [19], [20], [21], [24].

Notation. For non-negative functions f and g, we write f ' g if there is a
constant C > 0 such that C−1g ≤ f ≤ Cg in the domain of the functions f, g or
in a specified range of the arguments. Letters c and C are normally used to denote
unimportant positive constants, whose values may change at each occurrence.

Acknowledgements. This survey is based on the lectures given during the
trimester program “Heat kernels, random walks, and analysis on manifolds and
graphs” held in April – June 2002 at the Centre Emile Borel, Institute Henri
Poincaré, Paris. I am grateful to the CNRS (France) for the financial support
during this program. It is my pleasure to thank A.Stós and R.Strichartz for the dis-
cussions eventually leading to Theorem 9.2(ii), as well as T.Coulhon and W.Hansen
for careful reading of the manuscript.
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2 Definition of a heat kernel and examples

Let (M,µ) be a measure space ; that is, µ is a measure on a σ-algebra of subsets of
a non-empty set M . For any q ∈ [1,+∞], set Lq = Lq(M,µ) and

‖u‖q := ‖u‖Lq(M,µ).

All functions in Lq are considered to be real-valued.

Definition 2.1 A family {pt}t>0 of µ⊗µ-measurable functions pt(x, y) on M×M is
called a heat kernel if the following conditions are satisfied, for µ-almost all x, y ∈M
and all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) Stochastic completeness:
∫

M

pt(x, y)dµ(y) ≡ 1. (2.1)

(iii) Symmetry: pt(x, y) = pt(y, x).

(iv) Semigroup property:

ps+t(x, y) =

∫

M

ps(x, z)pt(z, y)dµ(z). (2.2)

(v) Approximation of identity: for any u ∈ L2

∫

M

pt(x, y)u(y)dµ(y)
L2

−→u(x) as t→ 0 + . (2.3)

For example, the Gauss-Weierstrass kernel (1.1) in Rn satisfies this definition.
Alternatively, the function (1.1) can be viewed as the density of the normal distri-
bution in Rn with the mean y and the variance 2t. Another elementary example is
the Poisson kernel in Rn

pt(x, y) =
Cn

tn
1

(
1 + |x−y|2

t2

)n+1
2

, (2.4)

where Cn = Γ
(
n+1

2

)
/π(n+1)/2, which can be viewed as the Cauchy distribution in

Rn with parameters y and t.
On any Riemannian manifold M , the heat kernel associated with the Laplace-

Beltrami operator satisfies all properties of Definition 2.1 (with respect to the Rie-
mannian volume µ) except for the stochastic completeness; however, the latter too
can be obtained under certain mild hypotheses about M (see [15] and [17]).

Under additional assumptions about the space (M,µ) a heat kernel pt gives rise
to a Markov process {Xt} for which pt is the transition density. This means that
for any measurable set A ⊂M and for all x ∈M , t > 0,

Px {Xt ∈ A} =

∫

M

pt(x, y)dµ(y).
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For example, the process associated with the Gauss-Weierstrass kernel is the stan-
dard Brownian motion in Rn, and process associated with the Poisson kernel is a
certain jump process in Rn.

Any heat kernel gives rise to the heat semigroup {Pt}t>0 where Pt is the operator
in L2 defined by

Ptu(x) =

∫

M

pt(x, y)u(y)dµ(y). (2.5)

Indeed, we obtain by the Cauchy-Schwarz inequality and (2.1)

‖Ptu‖
2
2 =

∫

M

(∫

M

pt(x, y)u(y)dµ(y)

)2

dµ(x)

≤
∫

M

(∫

M

pt(x, y)dµ(y)

∫

M

pt(x, y)u(y)2dµ(y)

)

dµ(x)

=

∫

M

∫

M

pt(x, y)u(y)2dµ(x)dµ(y)

= ‖u‖2
2,

which implies that Pt is a bounded operator in L2 and ‖Pt‖2→2 ≤ 1. The symmetry
of the heat kernel implies that Pt is a self-adjoint operator.

The semigroup identity (2.2) implies that PtPs = Pt+s, that is, the family {Pt}t>0

is a semigroup. Finally, it follows from (2.3) that

s- lim
t→0

Pt = I,

where I is the identity operator in L2 and s-lim stands for strong limit. Hence,
{Pt}t>0 is a strongly continuous, self-adjoint, contraction semigroup in L2.

Define the infinitesimal generator L of a semigroup {Pt}t>0 by

Lu := lim
t→0

u− Ptu
t

, (2.6)

where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions u ∈ L2 for which the limit in (2.6) exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive
definite2 operator, which immediately follows from the fact that the semigroup {Pt}
is self-adjoint and contractive. Moreover, we have

Pt = exp (−tL) , (2.7)

where the right hand side is understood in the sense of spectral theory.
For example, the generator of the Gauss-Weierstrass kernel in Rn is −∆ where

∆ =
∑n

i=1
∂2

∂x2
i

is the classical Laplace operator with a properly defined domain in

2Normally the generator of a semigroup {Pt} is defined as the limit

lim
t→0

Ptu− u
t

.

Our choice of the sign in (2.6) makes the generator positive definite.
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L2 (Rn). The generator of the Poisson kernel is (−∆)1/2. It is well known that for

any 0 < m < 2 the operator (−∆)m/2 is the generator of a heat kernel associated
with the symmetric stable process of index m, which belongs to the family of Levy
processes.

Any positive definite self-adjoint operator L in L2 determines by (2.7) a semi-
group Pt satisfying the above properties. It is not always the case that the semigroup
{Pt} defined by (2.7) possesses an integral kernel. However, when it does, the in-
tegral kernel satisfies all the properties of Definition 2.1 except for positivity and
stochastic completeness; to ensure the latter properties, some additional assump-
tions about L are needed (see [14]).

Definition 2.2 We say that a triple (M,d, µ) is a metric measure space if (M,d)
is a non-empty metric space and µ is a Borel measure on M .

In the sequel, we will always work in a metric measure space (M,d, µ). Let pt
be a heat kernel on such a space, and consider the following estimates for pt, which
in general may be true or not:

1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt(x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

, (2.8)

for µ-almost all x, y ∈ M and all t ∈ (0,∞). Here α, β are positive constants, and
Φ1 and Φ2 are a priori non-negative monotone decreasing functions on [0,+∞). For
example, the Gauss-Weierstrass kernel (1.1) satisfies (2.8) with α = n, β = 2, and

Φ1(s) = Φ2(s) =
1

(4π)n/2
exp

(

−
s2

4

)

.

The Poisson heat kernel (2.4) satisfies (2.8) with α = n, β = 1, and

Φ1(s) = Φ2(s) =
Cn

(1 + s2)
n+1

2

.

For any 0 < m < 2 the heat kernel of the operator (−∆)m/2 in Rn satisfies the
following estimate

pt(x, y) '
1

tn/m
1

(
1 + |x−y|

t1/m

)n+m (2.9)

(see [9] or Lemma 5.4 below). Hence, the estimate (2.8) is satisfied with α = n,
β = m, and with functions Φ1 and Φ2 of the form

Φ (s) =
C

(1 + s)α+β
, (2.10)

where the constant C may be different for Φ1 and Φ2.
The estimate (1.2) for heat kernels on fractals mentioned in Introduction is a

particular case of (2.8) with the same α and β and with functions Φ1,Φ2 of the form

Φ (s) = C exp
(
−Cs

β
β−1

)
.
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Definition 2.3 We say that a heat kernel pt on a metric measure space (M,d, µ)
satisfies hypothesis H (θ) (where θ > 0) if pt satisfies the estimate (2.8) with some
positive parameters α, β and non-negative decreasing functions Φ1 and Φ2 such that
Φ1(1) > 0 and ∫ ∞

sθΦ2(s)
ds

s
<∞. (2.11)

Note that hypothesis H(θ) gets stronger with increasing of θ.
For example, every function of the form

Φ2(s) = exp (−Csγ) (2.12)

satisfies (2.11) for any θ provided C > 0 and γ > 0, and the function

Φ2 (s) =
C

(1 + s)γ

satisfies (2.11) for θ < γ. In particular, the Gauss-Weierstrass kernel satisfies H (θ)

for all θ whereas the heat kernel of the operator (−∆)m/2 in Rn satisfies H (θ) for
θ < n+m.

3 Volume of balls

Let B(x, r) := {y ∈M : d(x, y) < r} be the ball in M of radius r centered at the
point x ∈M .

Theorem 3.1 If a heat kernel pt on a metric measure space (M,d, µ) satisfies hy-
pothesis H(α) then for all x ∈M and r > 0

C−1rα ≤ µ(B(x, r)) ≤ Crα. (3.1)

Remark 3.2 Note that in all examples considered in Section 2, hypothesis H(α) is
satisfied. Let us mention also that the estimate (3.1) can be true only for a single
value of α which is called the exponent of the volume growth and is determined by
intrinsic properties of the space (M,d, µ). Hence, under hypothesis H(α) the value
of the parameter α in (2.8) is an invariant of the underlying space.

Proof. Fix x ∈M and prove first the upper bound

µ(B(x, r)) ≤ Crα, (3.2)

for all r > 0. Indeed, for any t > 0, we have

∫

B(x,r)

pt(x, y)dµ(y) ≤
∫

M

pt(x, y)dµ(y) = 1 (3.3)

whence

µ(B(x, r)) ≤

(

inf
y∈B(x,r)

pt(x, y)

)−1

.
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Applying the lower bound in (2.8) and taking t = rβ we obtain

inf
y∈B(x,r)

pt(x, y) ≥
1

tα/β
Φ1

( r

t1/β

)
= c r−α,

where c = Φ1 (1) > 0, whence (3.2) follows.
Let us prove the opposite inequality

µ(B(x, r)) ≥ c rα. (3.4)

We first show that the upper bound in (2.8) and (3.2) imply the following inequality

∫

M\B(x,r)

pt(x, y)dµ(y) ≤
1

2
for all t ≤ εrβ, (3.5)

provided ε > 0 is sufficiently small. Setting rk = 2kr and using the monotonicity of
Φ2 and (3.2) we obtain

∫

M\B(x,r)

pt(x, y)dµ(y) ≤
∫

M\B(x,r)

t−α/βΦ2

(
d(x, y)

t1/β

)

dµ(y)

≤
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)

t−α/βΦ2

( rk

t1/β

)
dµ(y)

≤ C

∞∑

k=0

rαk t
−α/βΦ2

( rk

t1/β

)

= C

∞∑

k=0

(
2kr

t1/β

)α
Φ2

(
2kr

t1/β

)

≤ C

∫ ∞

1
2
r/t1/β

sαΦ2(s)
ds

s
. (3.6)

Since by (2.11) the integral in (3.6) is convergent, its value can be made arbitrarily
small provided rβ/t is large enough, whence (3.5) follows.

From (2.1) and (3.5), we conclude that for such r and t

∫

B(x,r)

pt(x, y)dµ(y) ≥
1

2
, (3.7)

whence

µ(B(x, r) ≥
1

2

(

sup
y∈B(x,r)

pt(x, y)

)−1

.

Finally, choosing t := εrβ and using the upper bound

pt(x, y) ≤ t−α/βΦ2(0) = Cr−α,

we obtain (3.4).

Corollary 3.3 If a metric measure space (M,d, µ) admits a heat kernel pt satisfying
(2.8) then µ (M) =∞. If in addition Φ1(1) > 0 then diamM =∞.
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Proof. Let us show that the upper bound in (2.8) implies µ(M) =∞. Indeed,
fix a point x0 ∈M and observe that the family of functions ut(x) = pt(x, x0) satisfies
the following two conditions: ‖ut‖1 = 1 and

‖ut‖∞ ≤ Ct−α/β → 0 as t→∞.

Hence, we obtain

µ(M) ≥
‖ut‖1

‖ut‖∞
→∞ as t→∞,

that is µ(M) =∞.
On the other hand, the first part of the proof of Theorem 3.1, based on the

hypothesis Φ1(1) > 0, says that the measure of any ball is finite. Hence, M is not
contained in any ball, that is diamM =∞.

4 Energy form

Given a heat kernel {pt} on a measure space (M,µ), define for any t > 0 a quadratic
form Et on L2 by

Et [u] :=

(
u− Ptu

t
, u

)

, (4.1)

where (·, ·) is the inner product in L2. An easy computation shows that Et can be
equivalently defined by

Et [u] =
1

2t

∫

M

∫

M

|u(x)− u(y)|2 pt(x, y)dµ(y)dµ(x). (4.2)

Indeed, by (2.1) and (2.5) we have

u(x)− Ptu(x) =

∫

M

(u(x)− u(y)) pt(x, y)dµ(y)

whence by (4.1)

Et [u] =
1

t

∫

M

∫

M

(u(x)− u(y)) u(x)pt(x, y)dµ(y)dµ(x). (4.3)

Interchanging the variables x and y and using the symmetry of the heat kernel, we
obtain also

Et [u] =
1

t

∫

M

∫

M

(u(y)− u(x)) u(y)pt(x, y)dµ(y)dµ(x), (4.4)

and (4.2) follows by adding up (4.3) and (4.4).
In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed

as follows

Et [u] =

∫ ∞

0

1− e−tλ

t
d‖Eλu‖

2
2,

which implies that Et [u] is decreasing in t (indeed, this is an elementary exercise to

show that the function t 7→ 1−e−tλ

t
is decreasing).

10



Let us define a quadratic form E by

E [u] := lim
t→0+

Et [u] =

∫ ∞

0

λ d‖Eλu‖
2
2 (4.5)

(where the limit may be +∞ since E [u] ≥ Et [u]) and its domain D (E) by

D(E) : = {u ∈ L2 : E [u] <∞}.

It is clear from (4.2) and (4.5) that Et and E are positive definite.
It is easy to see from (4.5) that D(E) = dom(L1/2). It will be convenient for us

to use the following notation:

domE(L) := D (E) = dom(L1/2). (4.6)

The domain D(E) is dense in L2 because D (E) contains dom(L). Indeed, if u ∈
dom(L) then using (2.6) and (4.1), we obtain

E [u] = lim
t→0
Et [u] = (Lu, u) <∞. (4.7)

The quadratic form E [u] extends to a bilinear form E (u, v) by the polarization
identity

E (u, v) =
1

2
(E [u+ v]− E [u− v]) .

It follows from (4.7) that E(u, v) = (Lu, v) for all u, v ∈ dom(L). The space D (E)
is naturally endowed with the inner product

[u, v] := (u, v) + E (u, v) . (4.8)

It is possible to show that the form E is closed, that is the space D(E) is Hilbert.
It is easy to see from (2.5) and the definition of a heat kernel that the semigroup

{Pt} is Markovian, that is 0 ≤ u ≤ 1 implies 0 ≤ Ptu ≤ 1. This implies that the form
E satisfies the Markov property, that is u ∈ D (E) implies v := min(u+, 1) ∈ D (E)
and E [v] ≤ E [u]. Hence, E is a Dirichlet form.

In the next statement, we demonstrate how the heat kernel estimate (2.8) allows
to prove a compact embedding theorem.

Theorem 4.1 Let (M,d, µ) be a metric measure space, and pt be a heat kernel in
M satisfying (2.8). Then for any bounded sequence {uk} ⊂ D(E) there exists a
subsequence {uki} that converges to a function u ∈ L2(M,µ) in the following sense:

‖uki − u‖L2(B,µ) → 0,

for any set B ⊂M of finite measure.

Remark 4.2 The estimate (2.8) without further assumptions on Φ1 and Φ2 is equiv-
alent to the upper bound

µ-ess sup
x,y∈M

pt(x, y) ≤ Ct−α/β, for all t > 0. (4.9)
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Proof. Let {uk} be a bounded sequence in D (E). Since {uk} is also bounded
in L2, there exists a subsequence, still denoted by {uk}, such that {uk} weakly
converges to some function u ∈ L2. Let us show that in fact {uk} converges to u in
L2(B) = L2(B, µ) for any set B ⊂M of finite measure.

For any t > 0, we have by the triangle inequality

‖uk − u‖L2(B) ≤ ‖uk − Ptuk‖L2(M) + ‖Ptuk − Ptu‖L2(B) + ‖Ptu− u‖L2(M). (4.10)

For any function v ∈ L2 we have

‖v − Ptv‖
2
2 =

∫

M

(∫

M

(v(x)− v(y))pt(x, y)dµ(y)

)2

dµ(x)

≤
∫

M

{∫

M

pt(x, y)dµ(y)

∫

M

|v(x)− v(y)|2 pt(x, y)dµ(y)

}

dµ(x)

= 2t Et [v]

≤ 2t E [v] .

Since E [uk] is uniformly bounded in k by the hypothesis, we obtain that for all k
and t > 0

‖uk − Ptuk‖2 ≤ C
√
t. (4.11)

Since {uk} converges to u weakly in L2 and pt(x, ·) ∈ L2, we see that for µ-almost
all x ∈M

Ptuk(x) =

∫

M

pt(x, y)uk(y)dµ(y) −→
∫

M

pt(x, y)u(y)dµ(y) = Ptu(x).

Using the definition (2.5) of the semigroup Pt, the Cauchy-Schwarz inequality,
and (2.1) we obtain that, for any v ∈ L2,

|Ptv(x)| ≤
∫

M

pt(x, y)|v(y)| dµ(y)

≤

{∫

M

pt(x, y)v(y)2dµ(y)

}1/2{∫

M

pt(x, y)dµ(y)

}1/2

≤ C t−
α
2β ‖v‖2. (4.12)

Hence, we have by (4.12)
‖Ptuk‖∞ ≤ Ct−

α
2β ‖uk‖2

so that the sequence {Ptuk} is uniformly bounded in k for any t > 0. Since {Ptuk}
converges to Ptu almost everywhere, the dominated convergence theorem yields

Ptuk −→ Ptu in L2(B), (4.13)

because µ(B) < ∞. Hence, we obtain from (4.10), (4.11), and (4.13) that for any
t > 0

lim sup
k→∞

‖uk − u‖L2(B) ≤ C
√
t+ ‖Ptu− u‖L2(M).

Since Ptu→ u in L2(M) as t→ 0, we finish the proof by letting t→ 0.
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Corollary 4.3 Let (M,d, µ) be a metric measure space, and pt be a heat kernel in
M satisfying (2.8) with Φ1(1) > 0. Then for any bounded sequence {uk} ⊂ D(E)
there exists a subsequence {uki} that converges to a function u ∈ L2(M,µ) almost
everywhere.

Proof. By the first part of the proof of Theorem 3.1, the hypothesis Φ1(1) > 0
implies finiteness of the measure of any ball. Fix a point x ∈ M and consider the
sequence of balls BN = B(x,N), where N = 1, 2, .... By Theorem 4.1 we can assume
that the sequence {uk} converges to u ∈ L2(M) in the norm of L2(BN) for any N .
Therefore, there exists a subsequence that converges almost everywhere in B1. From
this sequence, let us select a subsequence that converges to u almost everywhere in
B2, and so on. Using the diagonal process, we obtain a subsequence that converges
to u almost everywhere in M .

5 Besov spaces and energy domain

The purpose of this section is to give an alternative characterization of domE(L) in
terms of Besov spaces, which are defined independently of the heat kernel.

5.1 Besov spaces in Rn

Recall that the Sobolev space W 1
2 (Rn) consists of functions u ∈ L2(Rn) such that

∂u
∂xi
∈ L2(Rn) for all i = 1, 2, ..., n. It is known that a function u ∈ L2(Rn) belongs

to W 1
2 (Rn) if and only if

sup
z∈Rn\{0}

‖u(x+ z)− u(x)‖2

|z|
<∞.

Fix 1 ≤ p < ∞, 0 < σ < 1, and consider a more general Besov-Nikol’skii space
Bσ
p,∞ (Rn) that consists of functions u ∈ Lp (Rn) such that

sup
z∈Rn,0<|z|≤1

‖u (x+ z)− u (x) ‖p
|z|σ

<∞, (5.1)

and the norm in Bσ
p,∞ is the sum of ‖u‖p and the left hand side of (5.1).

A more general family Bσ
p,q of Besov spaces is defined for any 1 ≤ q ≤ ∞ but

alongside the case q = ∞ considered above, we will need only the case q = p. By
definition, u ∈ Bσ

p,p if u ∈ Lp and
∫∫

Rn Rn

|u(y)− u(x)|p

|y − x|n+pσ dx dy <∞, (5.2)

with the obvious definition of a norm in Bσ
p,p. Here are some well known facts about

Besov and Sobolev spaces (see for example [1]).

1. u ∈ Bσ
p,∞ (Rn) if and only if u ∈ Lp (Rn) and there is a constant C such that

for all 0 < r ≤ 1

Dp (u, r) :=

∫∫

{x,y∈Rn:|x−y|<r}

|u(y)− u(x)|p dx dy ≤ Crn+pσ. (5.3)
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2. u ∈ Bσ
p,p (Rn) if and only if u ∈ Lp (Rn) and

∫ ∞

0

Dp (u, r)

rn+pσ

dr

r
<∞.

3. For any 0 < σ < 1 the following relations take place

W 1
2 (Rn) ⊂ Bσ

2,2 (Rn) ⊂ Bσ
2,∞ (Rn)

‖ ‖
domE(−∆) ⊂ domE (−∆)σ

(5.4)

5.2 Besov spaces in a metric measure space

Fix α > 0, and for any σ > 0 introduce the following functionals on L2 (M,µ):

D (u, r) :=

∫∫

{x,y∈M :d(x,y)<r}

|u(x)− u(y)|2 dµ(x)dµ(y), (5.5)

Nσ,∞ (u) := sup
0<r≤1

D (u, r)

rα+2σ
(5.6)

and

Nσ,2(u) :=

∫ ∞

0

D (u, r)

rα+2σ

dr

r
. (5.7)

More generally, for any q ∈ [1,+∞) one can set

Nσ,q (u) :=

(∫ ∞

0

(
D (u, r)

rα+2σ

)q/2
dr

r

)2/q

. (5.8)

For any q ∈ [1,+∞] define the space

Λσ
2,q :=

{
u ∈ L2 : Nσ,q(u) <∞

}

and the norm in this space by

‖u‖2
Λσ2,q

:= ‖u‖2
2 +Nσ,q(u).

An obvious modification of the above formulas allows to introduce the space Λσ
p,q

for any p ∈ [1,+∞) (the space Λσ
p,q was denoted by Lip (σ, p, q) in [23] and by Λp,q

σ

in [28]; the space Λσ
2,∞ was denoted by W σ,2 in [18]).

For example, we have

Λσ
2,q (Rn) = Bσ

2,q (Rn) if 0 < σ < 1,
Λσ

2,q (Rn) = {0} , if σ > 1,
Λ1

2,∞ (Rn) = W 1
2 (Rn) ,

Λ1
2,2 (Rn) = {0} .

The definitions of Λσ
2,q and Bσ

2,q match only for σ < 1. For σ ≥ 1 the definition
of Bσ

2,q becomes more involved whereas the above definition of Λσ
2,q is valid for all
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σ > 0 even if the space Λσ
2,q degenerates to {0} for sufficiently large σ. With some

abuse of terminology, we refer to Λσ
p,q also as Besov spaces.

The fact that D (u, r) is increasing in r implies that for any r > 0

D (u, r)

rα+2σ
≤ 2α+2σ

∫ 2r

r

D (u, ρ)

ρα+2σ

dρ

ρ

whence Nσ,∞ (u) ≤ CNσ,2 (u) and

Λσ
2,2 ↪→ Λσ

2,∞. (5.9)

The above definition of the spaces Λσ
2,q depends on the choice of α. A priori α

is any number but we will use the above definition in the presence of the following
condition

µ (B(x, r)) ' rα for all x ∈M and r > 0, (5.10)

and α in (5.6)-(5.8) will always be the same as in (5.10). In particular, (5.10) implies
that for any u ∈ L2

D (u, r) ≤ 2

∫∫

{d(x,y)<r}

(
|u (x)|2 + |u (y)|2

)
dµ (x) dµ (y)

= 4

∫∫

{d(x,y)<r}

|u (y)|2 dµ (x) dµ (y)

= 4

∫

M

|u (y)|2 µ (B (y, r)) dµ (y)

≤ Crα‖u‖2.

Therefore, the integrals in (5.7) and (5.8) converge at ∞ for all u ∈ L2 and σ > 0,
and the point of the condition Nσ,q (u) <∞ is the convergence of the integral at 0.
Consequently, we see that the space Λσ

2,q decreases when σ increases.

5.3 Identification of energy domains and Besov spaces

Recall that a heat kernel pt on a metric measure space (M,d, µ) has the associated
energy form E and the generator L. The following theorem identifies the domain
D(E) of the energy form in terms of Besov spaces.

Theorem 5.1 Let pt be a heat kernel on (M,d, µ) satisfying hypothesis H(α + β).
Then

domE(L) := D(E) = Λ
β/2
2,∞

and for any u ∈ D (E)
E [u] ' Nβ/2,∞(u). (5.11)

The result of Theorem 5.1 was first obtained by Jonsson [23, Theorem 1] for SG
and then was extended to more general fractal diffusions by Pietruska-Pa luba [26,
Theorem 1]. In the present form it was proved in [18, Theorem 4.2].
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Recall that hypothesis H(α + β) means that pt satisfies (2.8) with functions Φ1

and Φ2 such that Φ1(1) > 0 and
∫ ∞

sα+βΦ2(s)
ds

s
<∞. (5.12)

Let us show the sharpness of the condition (5.12). As it was mentioned above if
0 < σ < 1 then the heat kernel of the operator (−∆)σ in Rn satisfies (2.8) with the
function Φ2 (s) = C

1+sα+β , where α = n and β = 2σ (see also Lemma 5.4 below). For
this function, the condition (5.12) breaks just on the borderline, and the conclusion
of Theorem 5.1 is not valid either. Indeed, in Rn by (5.4) domE (−∆)σ = Bσ

2,2 that is

strictly smaller than Bσ
2,∞ = Λ

β/2
2,∞. This case will be covered by Theorem 5.2 below.

As we will see in the proof below (cf. (5.15) and (5.17)), under hypothesis
H (α + β) we have in fact

E [u] ' lim sup
r→0

r−α−β
∫∫

{d(x,y)<r}

|u(x)− u(y)|2dµ(y)dµ(x). (5.13)

In particular, this implies that the energy form is strongly local, that is for all
functions u, v ∈ D (E) with compact supports, if u ≡ const in an open neighborhood
of the support of v then E (u, v) = 0. The operator (−∆)σ is not local for 0 < σ < 1,
and this explains why Theorem 5.1 does not apply to this operator.

Proof of Theorem 5.1. Since the expressions E [u] and Nβ/2,∞(u) are defined
(with possibility of infinite values) for all u ∈ L2, it suffices to show that (5.11) holds
for all u ∈ L2. Fix a function u ∈ L2 and recall that by (5.6) and (5.5)

Nβ/2,∞ (u) = sup
0<r≤1

D(u, r)

rα+β

where

D(u, r) =

∫

M

∫

B(x,r)

|u(x)− u(y)|2dµ(y)dµ(x). (5.14)

We first prove that for some c > 0 and for all r > 0

E [u] ≥ c
D (u, r)

rα+β

which would imply

E [u] ≥ c sup
r>0

D (u, r)

rα+β
≥ cNβ/2,∞ (u) . (5.15)

Using the lower bound in (2.8) and the monotonicity of Φ1, we obtain from (4.2)
that for any r > 0 and t = rβ,

E [u] ≥
1

2t

∫

M

∫

B(x,r)

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≥
1

2

(
1

t

)α/β+1

Φ1

( r

t1/β

)∫

M

∫

B(x,r)

(u(x)− u(y))2dµ(y)dµ(x)

=
1

2

1

rα+β
Φ1 (1)

∫

M

∫

B(x,r)

(u(x)− u(y))2dµ(y)dµ(x)

≥ c
D (u, r)

rα+β
,
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which was to be proved.
Let us now prove that for any r > 0

E [u] ≤ C sup
0<ρ≤r

D (u, ρ)

ρα+β
, (5.16)

which would imply

E [u] ≤ C lim sup
r→0+

D (u, r)

rα+β
≤ C Nβ/2,∞ (u) . (5.17)

For any t > 0 and r > 0 we have

Et [u] =
1

2t

∫

M

∫

M

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x) = A(t) + B(t) (5.18)

where

A(t) =
1

2t

∫

M

∫

M\B(x,r)

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x), (5.19)

B(t) =
1

2t

∫

M

∫

B(x,r)

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x). (5.20)

To estimate A(t) let us observe that by (3.6)

∫

M\B(x,r)

pt(x, y)dµ(y) ≤ C

∫ ∞

1
2
rt−1/β

sαΦ2(s)
ds

s
≤ C

t

rβ

∫ ∞

1
2
rt−1/β

sα+βΦ2(s)
ds

s
,

(5.21)
whence by (5.12)

1

t

∫

M\B(x,r)

pt(x, y)dµ(y) = o (t) as t→ 0 + uniformly in x ∈M. (5.22)

Therefore, applying the elementary inequality (a − b)2 ≤ 2(a2 + b2) in (5.19) and
using (5.22), we obtain that for small enough t > 0

A(t) ≤
1

t

∫∫

{x,y:d(x,y)<r}

(u(x)2 + u(y)2)pt(x, y)dµ(y)dµ(x)

=
2

t

∫

M

u(x)2

(∫

M\B(x,r)

pt(x, y)dµ(y)

)

dµ(x)

= o(1)‖u‖2
2,

whence
lim
t→0+

A(t) = 0. (5.23)
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The quantity B(t) is estimated as follows using (2.8), (5.14), and (5.12), setting
rk = 2−kr:

B(t) =
1

2t

∞∑

k=0

∫

M

∫

B(x,rk)\B(x,rk+1)

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≤
1

2

∞∑

k=0

1

t1+α/β
Φ2

(rk+1

t1/β

)∫

M

∫

B(x,rk)

(u(x)− u(y))2dµ(y)dµ(x)

≤ C

∞∑

k=0

(rk+1

t1/β

)α+β

Φ2

(rk+1

t1/β

) D(u, rk)

rα+β
k

(5.24)

≤ C sup
0<ρ≤r

D(u, ρ)

ρα+β

∫ ∞

0

sα+βΦ2(s)
ds

s

≤ C sup
0<ρ≤r

D(u, ρ)

ρα+β
. (5.25)

Finally, (5.16) follows from (5.18), (5.23) and (5.25) by letting t→ 0.

Theorem 5.2 Let pt be a heat kernel on (M,d, µ) satisfying estimate (2.8) with
functions Φ1 and Φ2 such that

Φ1 (s) ' s−(α+β) for s > 1 and Φ2 (s) ≤ Cs−(α+β) for s > 0. (5.26)

Then
domE(L) = Λ

β/2
2,2 ,

and for any u ∈ D (E)
E [u] ' Nβ/2,2(u). (5.27)

Remark 5.3 Condition (5.26) implies thatH (α + β) is not satisfied whileH (α + β − ε)
is satisfied for any ε > 0. In this case, neither the hypotheses nor the conclusions of
Theorem 5.1 are satisfied.

Proof. The proof is similar to that of Theorem 5.1. It suffices to show that (5.27)
holds for any u ∈ L2. Fix a decreasing geometric sequence {rk}k∈Z and observe that
by (5.7)

Nβ/2,2 (u) '
∑

k∈Z

D (u, rk)

rα+β
k

.

Using (4.2) and the upper bounds in (2.8) and (5.26) we obtain

2Et[u] =
1

t

∑

k∈Z

∫

M

∫

B(x,rk)\B(x,rk+1)

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≤
∑

k∈Z

1

t1+α/β
Φ2

(rk+1

t1/β

)∫

M

∫

B(x,rk)\B(x,rk+1)

(u(x)− u(y))2dµ(y)dµ(x)

≤
∑

k∈Z

1

t1+α/β
Φ2

(rk+1

t1/β

)
D (u, rk)

≤ C
∑

k∈Z

D (u, rk)

rα+β
k

≤ CNβ/2,2 (u) ,
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whence
E [u] = lim

t→0
Et [u] ≤ CNβ/2,2 (u) . (5.28)

Similarly, using the lower bound in (2.8), we obtain

2Et [u] ≥
∑

k∈Z

1

t1+α/β
Φ1

(rk+1

t1/β

)∫

M

∫

B(x,rk)\B(x,rk+1)

(u(x)− u(y))2dµ(y)dµ(x)

=
∑

k∈Z

1

t1+α/β
Φ1

(rk+1

t1/β

)
(D (u, rk)−D (u, rk+1))

=
∑

k∈Z

1

t1+α/β

(
Φ1

(rk+1

t1/β

)
− Φ1

( rk

t1/β

))
D (u, rk) . (5.29)

The first part of the hypothesis (5.26) implies that there exists a large enough
number a such that

Φ1

(s
a

)
≥ 2Φ1 (s) ∀s > a.

Setting rk = a−k, we obtain from (5.29) and (5.26)

Et [u] ≥
1

2

∑

{k:rk>at1/β}

1

t1+α/β
Φ1

( rk

t1/β

)
D (u, rk) ≥ c

∑

{k:rk>at1/β}

D (u, rk)

rα+β
k

.

Letting t→ 0, we conclude

E [u] = lim
t→0
Et[u] ≥ c

∑

k∈Z

D (u, rk)

rα+β
k

' Nβ/2,2 (u) ,

which together with (5.28) finishes the proof.

5.4 Subordinated heat kernel

Let ϕ be a non-negative continuous function on [0,+∞) such that ϕ (0) = 0, and
let {ηt}t>0 be a family of non-negative continuous functions on (0,+∞) such that
for all t > 0 and λ ≥ 0

exp (−tϕ (λ)) =

∫ ∞

0

ηt (s) e−sλds. (5.30)

Then, for any heat kernel pt on a metric measure space (M,d, µ), the following
expression

qt (x, y) :=

∫ ∞

0

ηt (s) ps (x, y) ds (5.31)

defines a new heat kernel {qt}t>0 on M , which is called a subordinated heat kernel
to pt (and ηt is called a subordinator). Indeed, applying (5.30) to the generator L
of pt we obtain

exp (−tϕ (L)) =

∫ ∞

0

ηt (s)Ps ds.
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Comparing to (5.31) we see that qt is the integral kernel of the semigroup
{
e−tϕ(L)

}
t>0

generated by the operator ϕ (L). Since
{
e−tϕ(L)

}
t>0

is a self-adjoint strongly contin-

uous contraction semigroup in L2, the family {qt}t>0 satisfies the properties 3, 4, 5
of Definition 2.1. The positivity of qt follows from ηt ≥ 0, and the stochastic com-
pleteness of qt follows from that of pt and

∫

M

qt (x, y) dµ (y) =

∫ ∞

0

ηt (s)

(∫

M

ps (x, y) dµ (y)

)

ds =

∫ ∞

0

ηt (s) ds = 1,

where the last equality is obtained from (5.30) by taking λ = 0. Hence, {qt}t>0 is a
heat kernel.

For example, it follows from the definition of the gamma-function that for all
t > 0 and λ ≥ 0

exp (−t log (1 + λ)) = (1 + λ)−t =
1

Γ (t)

∫ ∞

0

st−1e−s(1+λ)ds,

which takes the form (5.30) for ϕ (λ) = log (1 + λ) and ηt (s) = st−1e−s

Γ(t)
. Therefore,

the operator log (1 + L) that generates the semigroup
{

(I + L)−t
}
t>0

has the heat
kernel

qt (x, y) =
1

Γ (t)

∫ ∞

0

st−1e−sps (x, y) ds.

It is well known that for any δ ∈ (0, 1) there exists a subordinator ηt = η
(δ)
t such

that (5.30) takes place with ϕ (λ) = λδ. In this case, (5.31) defines the heat kernel
qt of the operator Lδ. For example, if δ = 1

2
then

η
(1/2)
t (s) =

t
√

4πs3
exp

(

−
t2

4s

)

.

For any 0 < δ < 1, the function η
(δ)
t (s) possesses the scaling property

η
(δ)
t (s) =

1

t1/δ
η

(δ)
1

( s

t1/δ

)
,

and satisfies the estimates

η
(δ)
t (s) ≤ C

t

s1+δ
∀s, t > 0, (5.32)

η
(δ)
t (s) '

t

s1+δ
∀s ≥ t1/δ > 0. (5.33)

As s→ 0+, η
(δ)
1 (s) goes to 0 exponentially fast so that for any γ > 0

∫ ∞

0

s−γη
(δ)
1 (s) ds <∞ (5.34)

(see [31] and [10]).
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Lemma 5.4 If a heat kernel pt satisfies hypothesis H (α + β′) where β′ = δβ, 0 <
δ < 1, then the heat kernel qt (x, y) of operator Lδ satisfies the estimate

qt (x, y) '
1

tα/β
′

1
(

1 + d(x,y)

t1/β
′

)α+β′
' min

(

t−α/β
′
,

t

d (x, y)α+β′

)

, (5.35)

for all x, y ∈M and t > 0.

Proof. Setting r = d (x, y) and using (5.31), (2.8), (5.32) we obtain

qt (x, y) ≤
∫ ∞

0

1

sα/β
Φ2

( r

s1/β

)
η

(δ)
t (s) ds

≤ C

∫ ∞

0

1

sα/β
Φ2

( r

s1/β

) t

s1+δ
ds

= C
t

rα+βδ

∫ ∞

0

Φ2 (ξ) ξα+βδ dξ

ξ
.

By H (α + β′) the above integral converges, whence

qt (x, y) ≤ C
t

rα+β′
. (5.36)

On the other hand, using the upper bound ps (x, y) ≤ Cs−α/β and the change
τ = s/t1/δ we obtain

qt (x, y) ≤ C

∫ ∞

0

1

sα/β
η

(δ)
t (s) ds = t−α/(βδ)

∫ ∞

0

1

τα/β
η

(δ)
1 (τ) dτ ≤ Ct−α/β

′
(5.37)

where the last inequality follows from (5.34). Combining (5.36) and (5.37) we obtain
the upper bound in (5.35).

Finally, (5.31), (2.8), (5.33) imply the lower bound in (5.35) as follows:

qt (x, y) ≥
∫ ∞

max(t1/δ ,rβ)

1

sα/β
Φ1

( r

s1/β

)
η

(δ)
t (s) ds

≥ cΦ1 (1)

∫ ∞

max(t1/δ ,rβ)

1

sα/β
t

s1+δ
ds

= ctmax
(
t1/δ, rβ

)−α/β−δ

= cmin
(
t−α/β

′
, tr−α−β

′
)
.

Corollary 5.5 If a heat kernel pt satisfies hypothesis H (α + β′) where β′ = δβ,
0 < δ < 1, then

domE(L
δ) = Λ

β′/2
2,2 . (5.38)

Remark 5.6 This result was essentially proved by A.Stós [27].
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Proof. By Lemma 5.4, the heat kernel qt of the operator Lδ satisfies the estimate
(2.8)

qt (x, y) '
1

tα/β
′Φ

(
d (x, y)

t1/β
′

)

where

Φ (s) =
1

(1 + s)α+β′
.

Applying Theorem 5.2 to the heat kernel qt and its generator Lδ we obtain (5.38).

6 Intrinsic characterization of walk dimension

Definition 6.1 Let us set

β∗ := 2 sup
{
σ : dim Λσ

2,∞ =∞
}

(6.1)

and refer to β∗ as the critical exponent of the family
{

Λσ
2,∞

}
σ>0

of Besov spaces.

Note that the value of β∗ is an intrinsic property of the space (M,d, µ), which is
defined independently of any heat kernel. For example, for Rn we have β∗ = 2.

Theorem 6.2 Let pt be a heat kernel on a metric measure space (M,d, µ).

(i) If pt satisfies hypothesis H(α) then dim Λ
β/2
2,∞ =∞. Consequently, β ≤ β∗.

(ii) If pt satisfies hypothesis H(α + β + ε) for some ε > 0 then Λσ
2,∞ = {0} for

any σ > β/2. Consequently, β = β∗.

If pt is the heat kernel of the operator (−∆)β/2 in Rn, 0 < β < 2, then by (2.9)
it satisfies H (α) (with α = n) but not H (α + β + ε). In this case the conclusion of
Theorem 6.2(ii) is not true, because β can actually be smaller than β∗ = 2.

Proof of Theorem 6.2(i). As one can see from the proof of Theorem 5.1, the

inclusion D (E) ⊂ Λ
β/2
2,∞ requires only the lower estimates in (2.8) and (3.1) (and the

opposite inclusion requires only the upper estimates in (2.8) and (3.1)). By Theorem

3.1 hypothesis H(α) implies (3.1), and by the above remark we obtain D (E) ⊂ Λ
β/2
2,∞.

On the other hand, D (E) is always dense in L2, whereas it follows from Corollary

3.3 that dimL2 =∞. Therefore, dim Λ
β/2
2,∞ =∞, whence β ≤ β∗.

Proof of Theorem 6.2(ii). Let us first explain why β = β∗ follows from the
first claim. Indeed, Λσ

2,∞ = {0} implies that σ ≥ β∗/2, and since this is true for
any σ > β/2, we obtain β ≥ β∗. Since the opposite inequality holds by part (i), we
conclude β = β∗.

Let us prove that Λσ
2,∞ = {0} for any σ > β/2. It suffices to assume that σ−β/2

is positive but sufficiently small. Namely, we can assume that ε := 2σ − β is so
small that hypothesis H (α + β + ε) holds. Recall that this hypothesis means that
the estimate (2.8) holds with functions Φ1 and Φ2 such that Φ1(1) > 0 and

∫ ∞
sα+β+εΦ2(s)

ds

s
<∞. (6.2)
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Let us show that for any function u ∈ Λσ
2,∞ we have E [u] = 0. We use again the

decomposition Et [u] = A(t) + B(t), where A(t) and B(t) are defined in (5.19) and
(5.20) with r = 1. Estimating B(t) similarly to (5.24) but using Nσ,∞ instead of
Nβ/2,∞ and setting rk = 2−k we obtain

t−ε/βB(t) ≤ C

∞∑

k=0

(rk+1

t1/β

)α+β+ε

Φ2

(rk+1

t1/β

) D(u, rk)

rα+β+ε
k

≤ C sup
0<ρ≤1

D(u, ρ)

ρα+2σ

∫ ∞

0

sα+β+εΦ2(s)
ds

s

≤ CNσ,∞ (u) .

Together with (5.18) and (5.23) this yields

Et[u] ≤ A(t) + Ctε/βNσ,∞(u)→ 0 as t→ 0,

whence
E [u] = lim

t→0
Et [u] = 0.

Since Et [u] ≤ E [u], this implies back Et [u] ≡ 0 for all t > 0. On the other hand, it
follows from (4.2) and the lower bound in (2.8) that

Et [u] ≥
1

2tα/β+1
Φ1(1)

∫∫

{d(x,y)≤t1/β}

(u(x)− u(y))2dµ(y)dµ(x),

which yields u(x) = u(y) for µ-almost all x, y such that d(x, y) ≤ t1/β. Since t is
arbitrary, we conclude that u is a constant function. Since µ(M) =∞ (see Corollary
3.3), we obtain u ≡ 0.

Corollary 6.3 If a heat kernel pt satisfies H(α + β + ε) then the values of the
parameters α and β in (2.8) are invariants of the metric measure space (M,d, µ).

Proof. By Theorem 3.1, µ (B(x, r)) satisfies (3.1), which uniquely determines α
as the exponent of the volume growth of (M,d, µ). By Theorem 6.2(ii), β is uniquely
determined as the critical exponent of the family of Besov spaces of (M,d, µ).

7 Inequalities for walk dimension

Definition 7.1 We say that a metric space (M,d) satisfies the chain condition if
there exists a (large) constant C such that for any two points x, y ∈M and for any
positive integer n there exists a sequence {xi}

n
i=0 of points in M such that x0 = x,

xn = y, and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, ..., n− 1. (7.1)

The sequence {xi}
n
i=0 is referred to as a chain connecting x and y.
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For example, the chain condition is satisfied if (M,d) is a length space, that is if
the distance d(x, y) is defined as the infimum of the length of all continuous curves
connecting x and y, with a proper definition of length. On the other hand, the chain
condition is not satisfied if M is a locally finite graph, and d is the graph distance.

Recall that the critical exponent β∗ = β∗(M,d, µ) of the family of Besov spaces
Λσ

2,∞ was defined by (6.1).

Theorem 7.2 Let (M,d, µ) be a metric measure space.
(i) If 0 < µ (B (x, r)) <∞ for all x ∈M and r > 0, and

µ(B(x, r)) ≤ Crα (7.2)

for all x ∈M and 0 < r ≤ 1 then

β∗ ≥ 2. (7.3)

(ii) If the space (M,d) satisfies the chain condition and

µ(B(x, r)) ' rα (7.4)

for all x ∈M and 0 < r ≤ 1 then

β∗ ≤ α + 1. (7.5)

Observe that the chain condition is essential for the inequality β∗ ≤ α+ 1 to be
true. Indeed, assume for a moment that the claim of Theorem 7.2(ii) holds without
the chain condition, and consider a new metric d′ on M given by d′ = d1/γ where
γ > 1. Let us mark by a dash all notions related to the space (M,d′, µ) as opposed
to those of (M,d, µ). It is easy to see that α′ = αγ and N ′σγ = Nσ; in particular,
the latter implies β∗′ = β∗γ. Hence, if Theorem 7.2 could be applied to the space
(M,d′, µ) it would yield β∗γ ≤ αγ+1 which implies β∗ ≤ α because γ may be taken
arbitrarily large. However, there are spaces with β∗ > α, for example SG.

Clearly, the metric d′ does not satisfy the chain condition; indeed the inequality
(7.1) implies

d′(xi, xi+1) ≤ C
d′(x, y)

n1/γ
, (7.6)

which is not good enough. Note that if in the inequality (7.1) we replace n by n1/γ

then the proof below will give β∗ ≤ α + γ instead of β∗ ≤ α + 1.

Corollary 7.3 Let pt be a heat kernel on a metric measure space (M,d, µ).
(i) If pt satisfies hypothesis H(α + β + ε) for some ε > 0 then β ≥ 2.
(ii) If pt satisfies hypothesis H(α) and (M,d) satisfies the chain condition then

β ≤ α + 1.
(iii) If pt satisfies hypothesis H(2α + 1 + ε) for some ε > 0 and (M,d) satisfies

the chain condition then
2 ≤ β ≤ α + 1. (7.7)
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M.Barlow [4] has proved that if α and β satisfy (7.7) then there exists a graph
such that the transition probability for the random walk on this graph satisfies (1.2).
There is no doubt that similar examples can be constructed in the setting of metric
measure spaces satisfying the chain condition.

Proof of Corollary 7.3. (i) By Theorems 3.1 and 7.2(i) we have β∗ ≥ 2, and
by Theorem 6.2(ii) we have β = β∗, whence β ≥ 2.

(ii) By Theorems 3.1 and 7.2(ii) we have β∗ ≤ α+ 1, and by Theorem 6.2(i) we
have β ≤ β∗, whence β ≤ α + 1.

(iii) Clearly, H(2α+ 1 + ε) implies H(α), and by part (ii) we obtain β ≤ α+ 1.
Therefore, H(2α+ 1 + ε) implies H(α+ β + ε), and by part (i) we obtain β ≥ 2.

Proof of Theorem 7.2(i). Let us show that dim Λ1
2,∞ = ∞, which would

imply by definition (6.1) of β∗ that β∗ ≥ 2. Fix a ball B(x0, R) in M of a positive
radius R, and let u(x) be the tent function of this ball, that is

u(x) = (R− d(x, x0))+ . (7.8)

Let us show that u ∈ Λ1
2,∞. Indeed, by (5.6), it suffices to prove that for some

constant C and for all 0 < r < 1

D(u, r) =

∫

M

∫

B(x,r)

|u(x)− u(y)|2dµ(y)dµ(x) ≤ Cr2+α. (7.9)

Since the function u vanishes outside the ball B(x0, R) and r ≤ 1, the exterior
integration in (7.9) can be reduced to B(x0, R + 1). Using the obvious inequality

|u(x)− u(y)| ≤ d(x, y) ≤ r,

and (7.2) we obtain

D(u, r) ≤ C

∫

B(x0,R+1)

r2µ (B (x, r)) dµ(x) = Cr2+α,

whence (7.9) follows. Note also that ‖u‖2 6= 0 which follows from µ(B(x0, R)) > 0.
Observe that M contains infinitely many points. Indeed, by (7.2) the measure of

any single point is 0. Since any ball has positive measure, it has uncountable many
points. Let {xi}

∞
i=1 be a sequence of distinct points in M . Fix a positive integer

n and choose R > 0 small enough so that all balls B(xi, R), i = 1, 2, ..., n, are
disjoint. The tent functions of these balls are linearly independent, which implies
dim Λ1

2,∞ ≥ n. Since this is true for any n, we conclude dim Λ1
2,∞ =∞.

We precede the proof of the second part of Theorem 7.2 by a lemma.

Lemma 7.4 Let {xi}
n
i=0 be a sequence of points in a metric space (M,d) such that

for some ρ > 0 we have d(x0, xn) > 2ρ and

d(xi, xi+1) < ρ for all i = 0, 1, ..., n− 1. (7.10)

Then there exists a subsequence {xik}
l
k=0 such that

(a) 0 = i0 < i1 < ... < il = n;
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(b) d(xik , xik+1
) < 5ρ for all k = 0, 1, ..., l − 1;

(c) d(xik , xij) ≥ 2ρ for all distinct k, j = 0, 1, ..., l.

The significance of conditions (a) , (b) , (c) is that a sequence {xik}
l
k=0 satisfying

them gives rise to a chain of balls B(xik , 5ρ) connecting the points x0 and xn in a
way that each ball contains the center of the next one whereas the balls B(xik , ρ)
are disjoint. This is similar to the classical ball covering argument, but additional
difficulties arise from the necessity to maintain a proper order in the set of balls.

Proof. Let us say that a sequence of indices {ik}
l
k=0 is good if the following

conditions are satisfied:

(a′) 0 = i0 < i1 < ... < il ;

(b′) d(xik , xik+1
) < 3ρ for all k = 0, 1, ..., l − 1;

(c′) d(xik , xij) ≥ 2ρ for all distinct k, j = 0, 1, ..., l.

Note that a good sequence does not necessarily have il = n as required in condi-
tion (a). We start with a good sequence that consists of a single index i0 = 0, and
will successively redefine it to increase at each step the value of il. A terminal good
sequence will be used to construct a sequence satisfying (a), (b), (c).

Assuming that {ik}
l
k=0 is a good sequence, define the following set of indices

S := {s : il < s ≤ n and d(xs, xik) ≥ 2ρ for all k ≤ l} ,

and consider two cases.
Set S is non-empty. In this case we will redefine {ik} to increase il. Let m be the

minimal index in S. Therefore, m− 1 is not in S, whence we have either m− 1 ≤ il
or

d(xm−1, xik) < 2ρ for some k ≤ l (7.11)

(see Fig. 3). In the first case, we have in fact m − 1 = il so that (7.11) also holds
(with k = l).

ikx

ilx

xm-1xmy=xn

x=x0

<ρ

<2ρ<3ρ

Figure 3:

By (7.11) and (b′) we obtain, for the same k as in (7.11),

d(xm, xik) ≤ d(xm, xm−1) + d(xm−1, xik) < 3ρ.

Now we modify the sequence {ij} as follows: keep i0, i1, ..., ik as before, forget the
previously selected indices ik+1, ..., il, and set ik+1 := m and l := k + 1.
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Clearly, the new sequence {ik}
l
k=0 is also good, and the value of il has increased

(although l may have decreased). Therefore, this construction can be repeated only
a finite number of times.

Set S is empty. In this case, we will use the existing good sequence to construct a
sequence satisfying conditions (a) , (b), (c). The set S can be empty for two reasons:

• either il = n

• or il < n and for any index s such that il < s ≤ n there exists k ≤ l such that
d(xs, xik) < 2ρ.

In the first case the sequence {ik}
l
k=0 already satisfies (a) , (b) , (c), and the proof

is finished. In the second case, choose the minimal k ≤ l such that d(xn, xik) < 2ρ
(see Fig. 4).

ikx

ilx

y=xn

<2ρ

<3ρ

<5ρ

ik-1
xx=x0

Figure 4:

The hypothesis d(xn, x0) ≥ 2ρ implies k ≥ 1, and we obtain from (b′)

d(xn, xik−1
) ≤ d(xn, xik) + d(xik , xik−1

) < 5ρ.

By the minimality of k, we have also d(xn, xij) ≥ 2ρ for all j < k. Hence, we define
the final sequence {ij} as follows: keep i0, i1, ..., ik−1 as before, forget ik, ..., il, and
set ik := n and l := k. Then this sequence satisfies (a) , (b) , (c) .

Let A be a subset of M of finite measure, that is µ(A) <∞. Then any function
u ∈ L2 is integrable on A, and let us set

uA :=
1

µ(A)

∫

A

u dµ.

For any two measurable sets A,B ⊂ M of finite measure, the following identity
takes place

∫

A

∫

B

|u(x)− u(y)|2 dµ(x)dµ(y) (7.12)

= µ(A)

∫

B

|u− uB|
2
dµ+ µ(B)

∫

A

|u− uA|
2
dµ+ µ(A)µ(B) |uA − uB|

2
,

which is proved by a straightforward computation.
Proof of Theorem 7.2(ii). The inequality β∗ ≤ α+ 1 will follow from (6.1) if

we show that for any σ > α+1
2

the space Λσ
2,∞ is trivial, that is Nσ,∞(u) <∞ implies

u ≡ 0. By definition (5.6) of Nσ,∞ and (7.4) we have, for any 0 < r ≤ 1,

Nσ,∞ (u) ≥ cr−2σ−α

∫∫

{ d(x,y)<r}

|u(x)− u(y)|2dµ(y)dµ(x). (7.13)
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Fix some 0 < r ≤ 1 and assume that we have a sequence of disjoint balls {Bk}
l
k=0

of the same radius 0 < ρ < 1, such that for all k = 0, 1, ..., l − 1

x ∈ Bk and y ∈ Bk+1 =⇒ d(x, y) < r. (7.14)

Then (7.13), (7.12), and (7.4) imply

Nσ,∞ (u) ≥ cr−2σ−α
l−1∑

k=0

∫

Bk

∫

Bk+1

|u(x)− u(y)|2 dµ(y)dµ(x)

≥ cr−2σ−αρ2α

l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣2 . (7.15)

By the chain condition, for any two distinct points x, y ∈ M and for any positive
integer n there exists a sequence of points {xi}

n
i=0 such that x0 = x, xn = y, and

d(xi, xi+1) < C
d(x, y)

n
:= ρ, for all 0 ≤ i < n.

Assuming that n is large enough so that d(x, y) > 2ρ and ρ < 1/7, we obtain by
Lemma 7.4 that there exists a subsequence {xik}

l
k=0 (where of course l ≤ n) such

that xi0 = x, xil = y, the balls {B (xik , ρ)} are disjoint, and

d(xik , xik+1
) < 5ρ, (7.16)

for all k = 0, 1, ..., l − 1.
Applying (7.15) to the balls Bk := B (xik , ρ) and setting r = 7ρ < 1 (which

together with (7.16) ensures (7.14)) we obtain

Nσ,∞ (u) ≥ cρ−2σ+α

l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣2

≥ cρ−2σ+α1

l

(
l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣

)2

≥ cρ−2σ+α 1

n
|uB0 − uBl |

2

≥ cρ−2σ+α+1

∣
∣uB(x,ρ) − uB(y,ρ)

∣
∣2

d(x, y)
. (7.17)

The property (7.4) of measure of balls implies that for µ-almost all x ∈M one has

lim
ρ→0

uB(x,ρ) = u(x), (7.18)

and any point x satisfying (7.18) is called a Lebesgue point of u. Assuming that x
and y are Lebesgue points of u, using Nσ,∞(u) <∞ we obtain from (7.17) as n→∞
(that is, as ρ→ 0)

|u(x)− u(y)|2

d(x, y)
≤ C Nσ,∞(u) lim

ρ→0
ρ2σ−α−1. (7.19)

Since 2σ > α + 1, the above limit is zero whence u ≡ const. Finally, µ(M) = ∞
implies u ≡ 0.
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8 Embedding of Besov spaces into Hölder spaces

In addition to the spaces Lp and Λσ
2,q defined above, let us define a Hölder space

Cλ = Cλ(M,d, µ) as follows: u ∈ Cλ if

‖u‖Cλ := ‖u‖∞ + µ-ess sup
x, y ∈ M

0 < d(x, y) ≤ 1/3

|u(x)− u(y)|
d(x, y)λ

<∞.

The restriction d(x, y) ≤ 1/3 here is related to the restriction r ≤ 1 in definition
(5.6). If (M,d) satisfies the chain condition then the 1/3 can be replaced by any
other positive constant.

Theorem 8.1 Let (M,d, µ) satisfy (5.10). Then for any σ > α/2

Λσ
2,∞ ↪→ Cλ where λ = σ − α/2.

That is, for any u ∈ L2 we have

‖u‖Cλ ≤ C‖u‖Λσ2,∞
. (8.1)

Remark 8.2 From (5.9) it follows that also Λσ
2,2 ↪→ Cλ, which will be used in the

proof of Theorem 9.2(ii).

Proof. For any x ∈M and r > 0, set

ur(x) :=
1

µ(B(x, r))

∫

B(x,r)

u(ξ)dµ(ξ). (8.2)

We claim that for any u ∈ L2, any 0 < r ≤ 1/3, and all x, y ∈ M such that
d(x, y) ≤ r, the following inequality holds:

|ur(x)− ur(y)| ≤ C rλNσ,∞(u)1/2. (8.3)

Indeed, setting B1 = B(x, r), B2 = B(y, r), we have

ur(x) =
1

µ(B1)

∫

B1

u(ξ)dµ(ξ) =
1

µ(B1)µ(B2)

∫

B1

∫

B2

u(ξ)dµ(η)dµ(ξ),

and similarly

ur(y) =
1

µ(B1)µ(B2)

∫

B1

∫

B2

u(η)dµ(η)dµ(ξ).

Applying the Cauchy-Schwarz inequality, (3.1) and (5.6), we obtain

|ur(x)− ur(y)|2 =

{
1

µ(B1)µ(B2)

∫

B1

∫

B2

(u(ξ)− u(η)) dµ(η)dµ(ξ)

}2

≤
1

µ(B1)µ(B2)

∫

B1

∫

B2

|u(ξ)− u(η)|2 dµ(η)dµ(ξ)

≤ C r−2α

∫

M

∫

B(η,3r)

|u(ξ)− u(η)|2 dµ(η)dµ(ξ)

≤ C r−α+2σNσ,∞(u),
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thus proving (8.3).
Similarly, one proves that for any 0 < r ≤ 1/3 and x ∈M

|u2r(x)− ur(x)| ≤ C rλNσ,∞(u)1/2. (8.4)

Let x be a Lebesgue point of u. Setting rk = 2−kr for any k = 0, 1, 2, ... we obtain
from (8.4)

|u(x)− ur(x)| ≤
∞∑

k=0

|urk(x)− urk+1
(x)|

≤ C

(
∞∑

k=0

rλk

)

Nσ,∞(u)1/2

≤ C rλNσ,∞(u)1/2. (8.5)

Applying the Cauchy-Schwarz inequality

|ur(x)| ≤ C r−α/2‖u‖2

and using (8.5) to some fixed value of r, say r = 1/4, we obtain

|u(x)| ≤ |u(x)− ur(x)|+ |ur(x)| ≤ C
(
‖u‖2 +Nσ,∞(u)1/2

)
,

whence
‖u‖∞ ≤ C ‖u‖Λσ2,∞

. (8.6)

If y is another Lebesgue point of u such that r := d(x, y) < 1/3 then we obtain
from (8.3), (8.5), and a similar inequality for y

|u(x)− u(y)| ≤ |u(x)− ur(x)|+ |ur(x)− ur(y)|+ |ur(y)− u(y)| ≤ C rλNσ,∞(u)1/2.

Hence,
|u(x)− u(y)|
d(x, y)λ

≤ C Nσ,∞(u)1/2,

which together with (8.6) yields (8.1).

9 Bessel potential spaces

Let pt be a heat kernel on a metric measure space (M,d, µ) and let L be its generator.
Since L is positive definite, the operator (I + L)−s is a bounded operator in L2 for
any s > 0 (cf. Section 5.4). This operator is called a Bessel potential. Fix β > 0,

and for any σ > 0 define the Bessel potential space Hσ as the image of (I + L)−σ/β,

that is Hσ := (I + L)−σ/β (L2), with the norm

‖u‖Hσ := ‖ (I + L)σ/β u‖2.

This definition of Hσ depends on the parameter β. A priori the value of β is arbitrary
but in fact we take for β the corresponding exponent in (2.8) assuming that (2.8)
holds. For example, for the Gauss-Weierstrass kernel in Rn we take β = 2. In this
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case L = −∆ and it is easy to see that Hσ (Rn) consists of functions u ∈ L2 (Rn)
such that ∫

Rn
|ũ (ξ)|2

(
1 + |ξ|2

)σ/2
dξ <∞,

where ũ is the Fourier transform of u. Of course, this is the classical definition of
the fractional Sobolev space Hσ(Rn).

The purpose of this section is to prove embedding theorems for the space Hσ in
the abstract setting, which generalize the classical Sobolev embedding theorems in
Rn. We start with a lemma.

Lemma 9.1 For any 0 < σ ≤ β/2 we have Hσ = domE(L2σ/β).

Proof. Indeed, let {Eλ}λ∈R be the spectral resolution of the operator L. Setting
s = σ/β, we have

Hσ = dom(I + L)s =

{

u ∈ L2 :

∫ ∞

0

(1 + λ)2s
d‖Eλu‖

2 <∞

}

=

{

u ∈ L2 :

∫ ∞

0

λ2s d‖Eλu‖
2 <∞

}

= domE(L
2s),

which was to be proved.

Theorem 9.2 (Embedding of Hσ)
(i) If a heat kernel pt satisfies (2.8) and 0 < σ < α/2 then

Hσ↪→ Lq where q =
2α

α− 2σ
. (9.1)

(ii) If a heat kernel pt satisfies H (α + β) and α/2 < σ ≤ β/2 then

Hσ ↪→ Cλ where λ = σ − α/2. (9.2)

Remark 9.3 It is curious that under the chain condition the Hölder exponent λ in
(9.2) does not exceed 1/2, which follows from Corollary 7.3(ii).

Proof. (i) This is essentially a result of Varopoulos. Indeed, [29, Theorem II.2.7]
says that if for all t > 0 and some ν > 0

‖Pt‖1→∞ ≤ Ct−ν (9.3)

then for any 0 < s < ν/2 the operator (I + L)−s is bounded from L2 to Lq where
q = 2ν

ν−2s
. In our case (9.3) with ν = α/β follows from (4.12). Applying the above

result with s = σ/β we obtain (9.1).
An alternative proof is given in [28, Theorem 3.11] under a stronger assumption

that the heat kernel satisfies the upper bound in (1.2).
(ii) Using Lemma 9.1, Theorem 5.1, Corollary 5.5, Theorem 8.1, and Remark

8.2 we obtain

Hσ = domE(L
2σ/β) =

{
Λσ

2,∞, σ = β/2,
Λσ

2,2, σ < β/2,
↪→ Cλ,
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which was to be proved.
For SG the claim of Theorem 9.2(ii) was proved by Strichartz [28, Theorem

3.13(a)]. He has conjectured a certain scale of embedding theorems for Sobolev
spaces on fractals. Indeed, for any 1 < p <∞ consider the space

Hp,σ := (I + L)−σ/β (Lp) .

Then Conjecture 3.14 from [28] adapted to our setting says that if the heat kernel
satisfies (1.2) then for all σ > α/p the space Hp,σ embeds into a certain Hölder-
Zygmund space, where the latter coincides with Cσ−α/p provided σ ≤ β/p. Hence,
our embedding (9.2) proves a particular case of this conjecture when p = 2 and
α/2 < σ ≤ β/2. Note also that the identity Hσ = Λσ

2,2 (where α/2 < σ < β/2) used
in the above proof was also stated in [28] as an open question.

A result closely related to Theorem 9.2(ii) was obtained by Coulhon [12, Theorem
4.1]. Namely, he has proved that, under the chain condition, the estimate (1.2) with
α < β is equivalent to the conjunction of the following three conditions: (i) the upper
bound in (1.2); (ii) the volume estimate (5.10); (iii) the embedding Hp,σ ↪→ Cσ−α/p

for all p > 1 and σ > α/p provided σ − α/p is sufficiently small. Hence, Coulhon’s
result proves the above conjecture for all p > 1 but for a smaller range of σ.
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