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1 Heat kernel

Let M be a Riemannian manifold and A be the Laplace-Beltrami op-
erator on M. Denote by p; (z,y) the heat kernel, that is, the smallest

positive fundamental solution to the heat equation 2% = Aw on R, x M.

ot
In R™ we have

( ) 1 |$ - y‘Q
T = ex — .

A theorem of Li and Yau 86 states: if Riccip; > 0 and M is geodesically

complete then
C d*(z, y))
JY) X ———— - : LY
P (@.y) V(z,\/t) P ( ct (LY)

Here d(x,y) is the geodesic distance, V(x,7) = pu (B (z,7)) is the Rie-
mannian volume of the geodesic ball B(x,r), C, ¢ are positive constants,

and =< means that both < and > take place, but with different values of
C,c.

Moreover, (LY') holds on any geodesically complete manifold satis-
fying the volume doubling property and the Poincaré inequality:.
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2 Parabolicity and recurrence

A Riemannian manifold M is called non-parabolic if the Laplace operator
A on M has a positive fundamental solution, and parabolic otherwise.
The parabolicity is equivalent to the condition

/ P (2, y) dt = oco.

If M satisfies (LY') then this condition is equivalent to

/OO rdr e
Vie,r)

If in addition V' (z,7) ~ r* then

parabolicity & o < 2.

For example, in R™ we have V (x,r) = ¢,r™ so that R"™ is parabolic if
n < 2 and non-parabolic if n > 2.



Consider the Brownian motion {X;},,, on the manifold M, which by
definition, has the transition density p; (z,y): for any Borel set A C M,

P, (X, € A) :/Apt (z,y)dp(y) -

The Brownian motion is called recurrent if the probability to hit
eventually any non-empty open set is equal to 1, and transient otherwise.
It is known that

recurrence < parabolicity

In particular, the Brownian motion is recurrent in R! and R?, and tran-
sient in R™ if n > 2.



3 Connected sum (manifold with ends)

Let My, M,,.., M, be a finite family of geodesically complete non-compact
Riemannian manifolds. We say that a manifold M is a connected sum
of manifolds M; and write M = M i#Ms#...# M, if, for some compact
K C M (called the central part of M), the exterior M \ K is a disjoint
union of open sets E, Fs, ..., Ej (called the end of M), such that each
E; is isometric to M; \ K;, for some compact K; C M; (in fact, we will
identify F; and M;\ K;). Always assume that all sets K;, K have smooth
boundaries.




Here are two examples of connected sums: the catenoid and R"#R"™:

Rn

Rn

In what follows we always assume that each manifold M; is non-
compact, geodesically complete and satisfies the Li-Yau estimate (LY).
The main objective of this work is to obtain the heat kernel estimates
on M = My#...4#M,. We will restrict ourselves to the values of p; (z,y)

when t > 1, x € E;,y € E; with ¢ # j although estimates for general
(t,z,y) are available as well.



For each manifold M;, « = 1, ..., k, denote by d; the geodesic distance,
by B; (x,r) the geodesic balls, by V; (x,r) the volume of B; (x,r). Choose

a reference point 0; € K; and make the following additional assumption:
there is a constant C' > 1 such that, for large enough r, the annuli
B; (0;,Cr) \ B; (0;,7) are connected sets.

Denote

Vi(r) = V(o).

For example, if M; = R™ then V; (r) = ¢,r". Fix some o € K and, for
any r € M, set |z| = d(x,0).
We consider first the case when each V; (r) satisfies

Vi(r) o~ r%

for r > 1. The value of «; is called “dimension at co” of M;. For example,
the manifold
M; = R"™ x (compact)

has “dimension at co” equal to n;. Fractional values of the dimension at
oo can be achieved for surfaces of revolution.



4 Pure non-parabolic case: all o; > 2

Theorem 1 If all a; > 2 then the heat kernel on M = Mi#...4# M}
satisfies the following estimate for all t > 1, x € E; and y € E; with

£ g

( ) 8. 1 n 1 i 1 _d%(z)
Z, = — — — — e ct
bty b2 || TE gea/2 |y| T /2 g MR |y |

(1)

where o = min (ay, ..., ) .
In the long time regime, when z,y are fixed and ¢ — 0o, we obtain
e (T,y) =~ 792 a5t — 00

where « is determined by the smallest end, which, therefore, is dominant.
In the case k = 2 the the third term in (1) is dominated by the first
two and we obtain

1 1 d*(2,y)
=C T
bt (3;'7 y) <taj/2 |.T a;—2 + ‘[:ai/2 |y’o¢j—2) € i




For M = R"#R" with n > 2 we have a = oy = as = n and obtain for
2 2
t 2> |z" + |y|

1 1 1
Pt (SC,y) - tn/Q ‘x‘n_2 + ‘yln_z .

In particular, in the medium time regime |z|* ~ |y|> ~ ¢t — 0o we obtain

1 1

Pt (ZC,y) = tn_l < tn/27

which reflects the bottleneck effect between E; and FEs.

- R"
Ko™, -~.,.->-':‘. oo

..




If M has at least 3 ends then it can happen that «; > o and a; > «.
Let a = ;. The long time asymptotic

pe (z,y) =t =o/2

means that the process X; spends most time the smallest end Ej, even
when going from E; to Ej.




The proof of Theorem 1 consists of a number of steps.
1. Central upper bound: for o € K and t > 1

pe (0,0) < Ct/2. (2)
The heat kernel pgi) (x,y) on M; satisfies by (LY)
pi” (01, 0) = 72, (3)

and (2) is obtained as the worst of the estimates (3).

2. Central lower bound: p; (0,0) > ct=/2_ which follows from com-
parison with the Dirichlet heat kernel on each end.

3. Upper and lower bounds for the hitting probability 4 (t,x) =
P, (14 < t) and its time derivative ¢, (¢, z) on each M;.
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4. Let €y and )y be two disjoint open sets on M. Set ¥; = yq. .
Then, for all x € )y and y € )y

pt(xay) S 2 sup sup ps(vaw) 1/)1(t,$)¢2(t,y)
sE[t/4,1] ve%%
weolls

s€(t/4,t] s€[t/4,t] " 5)66?9%1
2

+ ¢2(t7y) sup ¢1(S7I)+¢1(t7$) sSup Qpé(say)]/ Sup ps(U,UJ)dS

and there is also a similar lower bound for p; (z,v).

For () = E;, )y = E;, substituting the central estimates of the heat
kernel and the estimates of the hitting probability, we obtain (1).
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5 Mixed case: there are o; <2 and «a; > 2

Assuming that all «; # 2, set

(note that o > 2)

(o% o; > 2
af:max(ozi,él—cvi):{ v !

4—()4@', o < 2

Theorem 2 Assume that, for any i, we have V;(r) ~ r% forr > 1,
where all a; # 2 and max; a; > 2. Then the heat kernel of the manifold
M = Mi#Ms#...#M, satisfies the following estimate: for all t > 1,
re b, ycE; wherei # j,

1 1 1
x, = C . — + — + - ;
Pt ( y) (taj/2 |$ ai—2 ta:/Q ‘y|aj_2 ta/2 |£I.’,‘ a;—2 |ya]2>

_d%(zw)

X fa] P70 [y e e (4)

where v = min (a7, ..., ) .

If all a; > 2 then (4) amounts to Theorem 1. A new interesting case
occurs when there are a; < 2 and a; > 2.
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Consider the case of two ends with oy = 1 and ay = 3. For example,
this is the case when

Ei=R, xS* and M, =R>

— SZ RN
=1
o X
R,
=3
Ye L
v
RS
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We have
o] =4—a; =3, aj=ay=3, and @ = min (aj,a3) = 3.

Hence, if x € Fy and y € E,, we obtain by (4)

1 1 o o d?(x,y)
_ (2-ai)y | (2—ag)s — L)

C 1 X 1 ’ | _d2(z,y)
= — | — —_— xT|e ct
32 \ || ~ yl

In the long time regime ¢ — oo and in the medium time regime |z|* ~
ly|* ~ t — 0o we obtain the same behavior

pi(T,y) =~ t/2,
Therefore, there is no bottleneck effect. However, there is a new effect
in the intermediate regime when y is fixed and |z|> ~ t — oo, as in this
case we obtain

pe(z,y) =t > 1732
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The proof of Theorem 2 uses Doob’s h-transform M. If at least one
M; is non-parabolic, then there is a positive harmonic function h on M
such that A ~ 1 on non-parabolic ends and h — oo on parabolic ends.
Consider a new measure ; on M given by

dn = h2dp,
the weighted Laplace operator

~ 1 1
A:ﬁdlv(thrad):ﬁvoh

and the associated weighted heat kernel

~ _ D (le,y)
P = e

The weighted manifold (M, ) has the ends (M;, ) that are now all
non-parabolic. Moreover, one shows that each (M;, i) satisfies Li-Yau
estimate. Theorem 1 can be extended in the case, which yields the es-
timates of p; (x,y) . Since function h (x) can be effectively estimates via
|z|, we obtain the estimates of p; (z,y).
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6 The case of general volume functions V; (r)

Introduce the following functions:

Theorem 3 If at least one of the ends is non-parabolic then the heat
kernel p; (x,y) on the connected sum M = Mi#Ms#....# My admits the
following estimate: for allt >0 andx € E;, y € E;, 1 # j:

o) = izl ) (|y| t)  Hi(lz|,0)H;(lyl. )\, . ey
P ( ,Z/)AC< (\/-) NG + o V) )h%( DR (yl)e :
(5)
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If V; (r) >~ r% where «; # 2 then, for r > 1,

—_

, a; > 2,

2—qy - 7,(2—0%)_,_’
reTY oy < 2,

whence

~ re, a; > 2, o
‘/’L(T)Z{ T4_ai < 2 =Tr,
9 1

Vinin (r) ~r®  where a = min o]
1<i<k

and H; (r,t) ~ r>=%. Hence, in this case (5) is equivalent (4).

Theorem 3 allows to cover the new case «; = 2. Consider an example
with a3 = 2, ap = 3. For example, this is the case when M; = R? x S!
and M, = R3. We have for large r and ¢

hy(r) ~logr, ho(r) ~1,
Vi(r) ~r?logr, Va(r) =71, Vi (r) =r*log?r
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1 1 1
Hi(r,t) ~ —
1(r:1) log® r * (210g7’ logt)Jr ’

Hy(r,t) ~ r%.

Hence, for x € E1, y € Ej,

log |z| 1 1 1 log|x| _ ()
=C = - ot .
7Y) tlog?t ML log |z 13 log t ‘
nid yjrlog +

In particular, in the long time regime ¢ — oo we obtain

1
tlog®t’

Pt (.CU, y) =
while in the medium time regime |z|*> ~ |y|* ~ t — oo

() ~ —
xr ~Y —
pt 7y t3/210gt
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Consider an example with a; = 1, as = 2, a3 = 3, which is the case
when F; = R, x S%, M, = R? x St and M3 = R3. Then, for large r and
Vi(r)~r, Vi(r)=r® Vi(r)~r?
hy(r)~r,  hy(r)=~logr, hs(r) ~ 1,
Vi(r) ~r? ‘72(7’) ~ r?log?r, ‘72(7’) ~ 73

~

Vmin (T) ~ T2 10g2 T,

H1 (T’,t) ~ 7’_1

1 1 1
Hy(r,t) ~ _
2(7, 1) 102;27" + (210gr 10gt>+ )

Hs (r,t) -1

12

r

Hence, for x € E1, y € E,
(2.4) = C log |y] N || L] L (1 log |y| - L
P ) = tlog?t 32 tlog®t ) |loglyl 2 logt /), '
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In particular, in the long time regime
1
tlog®t’

P (2, y) ~

in the medium time regime

(2,y) = —
€T ~ .

If x € E1 and Y < E3 then

1 || 1 d%(z.y)
X, = C —_— 1 ‘|‘ —_— ‘|‘ — G_Ta
P () (tw ( \y\> \y|tlog2t>

and in the medium time regime
1
pe(z,y) =~ 1372

One sees that there is a bottleneck effect between R, and R?® but not

between R, and R2.
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7 One-dimensional Schrodinger operator

Consider the operator in R

H = —@ + P (x)
where ® (z) = b|z|™” for large |z|, where b > 0. Theorem 3 allows to
obtain the heat kernel estimate for this operator.

Theorem 4 Set

1
=44/ +b.
b=5ryg™

Then the heat kernel p? (x,y) of the operator H satisfies the estimate:
forallx < =1,y >1,t>1,

c (W | z — y|®
(] - 7
pi <f’““vy>nl/2+ﬂ<x“+y|“ exp |~ |-
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In particular, if + — oo then

® (5. y) ~ —C lyl” N "\ _Clallyl” [ 1 L
Py v Y) = 11/248 |Q?‘B_1 ‘y|ﬁ—1 o t1/248 ‘ZE"ZB_I ‘y|25—1 .

For comparison, for the operator H = —A+ ® (z) in R”, n > 2, we have
as t — o0

Clal” Jy)”
tn/2+6

5:—g+1+\/(g—1>2+b.

py (z,y) =<

where
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