Heat kernel on manifolds with ends (non-parabolic case)

Alexander Grigor’yan

Based on a joint work with Laurent Saloff-Coste

1 April 2015, CUHK
1 Heat kernel

Let M be a Riemannian manifold and Δ be the Laplace-Beltrami operator on M. Denote by $p_t(x, y)$ the heat kernel, that is, the smallest positive fundamental solution to the heat equation $\frac{\partial u}{\partial t} = \Delta u$ on $\mathbb{R}_+ \times M$. In \mathbb{R}^n we have

$$p_t(x, y) = \frac{1}{(4\pi t)^{n/2}} \exp \left(-\frac{|x - y|^2}{4t} \right).$$

A theorem of Li and Yau ’86 states: if $\text{Ricci}_M \geq 0$ and M is geodesically complete then

$$p_t(x, y) \asymp \frac{C}{V(x, \sqrt{t})} \exp \left(-\frac{d^2(x, y)}{ct} \right). \quad (LY)$$

Here $d(x, y)$ is the geodesic distance, $V(x, r) = \mu(B(x, r))$ is the Riemannian volume of the geodesic ball $B(x, r)$, C, c are positive constants, and \asymp means that both \leq and \geq take place, but with different values of C, c.

Moreover, (LY) holds on any geodesically complete manifold satisfying the volume doubling property and the Poincaré inequality.
2 Parabolicity and recurrence

A Riemannian manifold M is called *non-parabolic* if the Laplace operator Δ on M has a positive fundamental solution, and *parabolic* otherwise. The parabolicity is equivalent to the condition

$$\int_{-\infty}^{\infty} p_t(x,y) \, dt = \infty.$$

If M satisfies (LY) then this condition is equivalent to

$$\int_{-\infty}^{\infty} \frac{r \, dr}{V(x,r)} = \infty.$$

If in addition $V(x,r) \simeq r^\alpha$ then

parabolicity $\iff \alpha \leq 2$.

For example, in \mathbb{R}^n we have $V(x,r) = c_n r^n$ so that \mathbb{R}^n is parabolic if $n \leq 2$ and non-parabolic if $n > 2$.
Consider the Brownian motion \(\{X_t\}_{t \geq 0} \) on the manifold \(M \), which by definition, has the transition density \(p_t(x, y) \): for any Borel set \(A \subset M \),

\[
\mathbb{P}_x (X_t \in A) = \int_A p_t(x, y) \, d\mu(y).
\]

The Brownian motion is called *recurrent* if the probability to hit eventually any non-empty open set is equal to 1, and *transient* otherwise. It is known that

\[
\text{recurrence} \iff \text{parabolicity}
\]

In particular, the Brownian motion is recurrent in \(\mathbb{R}^1 \) and \(\mathbb{R}^2 \), and transient in \(\mathbb{R}^n \) if \(n > 2 \).
3 Connected sum (manifold with ends)

Let M_1, M_2, \ldots, M_k be a finite family of geodesically complete non-compact Riemannian manifolds. We say that a manifold M is a connected sum of manifolds M_i and write $M = M_1 \# M_2 \# \ldots \# M_k$ if, for some compact $K \subset M$ (called the central part of M), the exterior $M \setminus K$ is a disjoint union of open sets E_1, E_2, \ldots, E_k (called the end of M), such that each E_i is isometric to $M_i \setminus K_i$, for some compact $K_i \subset M_i$ (in fact, we will identify E_i and $M_i \setminus K_i$). Always assume that all sets K_i, K have smooth boundaries.
Here are two examples of connected sums: the catenoid and $\mathbb{R}^n \# \mathbb{R}^n$:

In what follows we always assume that each manifold M_i is non-compact, geodesically complete and satisfies the Li-Yau estimate \((LY)\). The main objective of this work is to obtain the heat kernel estimates on $M = M_1 \# \ldots \# M_k$. We will restrict ourselves to the values of $p_t(x,y)$ when $t > 1$, $x \in E_i, y \in E_j$ with $i \neq j$ although estimates for general (t,x,y) are available as well.
For each manifold M_i, $i = 1, \ldots, k$, denote by d_i the geodesic distance, by $B_i(x, r)$ the geodesic balls, by $V_i(x, r)$ the volume of $B_i(x, r)$. Choose a reference point $o_i \in K_i$ and make the following additional assumption:

there is a constant $C > 1$ such that, for large enough r, the annuli $B_i(o_i, Cr) \setminus B_i(o_i, r)$ are connected sets.

Denote

$$V_i(r) = V_i(o_i, r).$$

For example, if $M_i = \mathbb{R}^n$ then $V_i(r) = c_n r^n$. Fix some $o \in K$ and, for any $x \in M$, set $|x| = d(x, o)$.

We consider first the case when each $V_i(r)$ satisfies

$$V_i(r) \simeq r^{\alpha_i}$$

for $r > 1$. The value of α_i is called “dimension at ∞” of M_i. For example, the manifold

$$M_i = \mathbb{R}^{n_i} \times \text{(compact)}$$

has “dimension at ∞” equal to n_i. Fractional values of the dimension at ∞ can be achieved for surfaces of revolution.
4 Pure non-parabolic case: all $\alpha_i > 2$

Theorem 1 If all $\alpha_i > 2$ then the heat kernel on $M = M_1 \# \ldots \# M_k$ satisfies the following estimate for all $t > 1$, $x \in E_i$ and $y \in E_j$ with $i \neq j$:

$$p_t(x, y) \asymp C \left(\frac{1}{t^{\alpha_j/2} |x|^{\alpha_i-2}} + \frac{1}{t^{\alpha_i/2} |y|^{\alpha_j-2}} + \frac{1}{t^{\alpha/2} |x|^{\alpha_i-2} |y|^{\alpha_j-2}} \right) e^{-\frac{d^2(x, y)}{ct}},$$

(1)

where $\alpha = \min(\alpha_1, \ldots, \alpha_k)$.

In the long time regime, when x, y are fixed and $t \to \infty$, we obtain

$$p_t(x, y) \asymp t^{-\alpha/2} \quad \text{as } t \to \infty$$

where α is determined by the smallest end, which, therefore, is dominant.

In the case $k = 2$ the the third term in (1) is dominated by the first two and we obtain

$$p_t(x, y) \asymp C \left(\frac{1}{t^{\alpha_j/2} |x|^{\alpha_i-2}} + \frac{1}{t^{\alpha_i/2} |y|^{\alpha_j-2}} \right) e^{-\frac{d^2(x, y)}{ct}}.$$
For $M = \mathbb{R}^n \# \mathbb{R}^n$ with $n > 2$ we have $\alpha = \alpha_1 = \alpha_2 = n$ and obtain for $t \geq |x|^2 + |y|^2$

$$p_t (x, y) \simeq \frac{1}{t^{n/2}} \left(\frac{1}{|x|^{n-2}} + \frac{1}{|y|^{n-2}} \right).$$

In particular, in the medium time regime $|x|^2 \simeq |y|^2 \simeq t \to \infty$ we obtain

$$p_t (x, y) \simeq \frac{1}{t^{n-1}} \ll \frac{1}{t^{n/2}},$$

which reflects the bottleneck effect between E_1 and E_2.
If M has at least 3 ends then it can happen that $\alpha_i > \alpha$ and $\alpha_j > \alpha$. Let $\alpha = \alpha_l$. The long time asymptotic

$$p_t(x, y) \simeq t^{-\alpha/2} = t^{-\alpha_l/2}$$

means that the process X_t spends most time the smallest end E_l, even when going from E_i to E_j.

![Diagram](image)
The proof of Theorem 1 consists of a number of steps.

1. Central upper bound: for $o \in K$ and $t > 1$

$$p_t (o, o) \leq C t^{-\alpha/2}.$$ \hspace{1cm} (2)

The heat kernel $p_t^{(i)} (x, y)$ on M_i satisfies by \((LY)\)

$$p_t^{(i)} (o_i, o_i) \simeq t^{-\alpha_i/2},$$ \hspace{1cm} (3)

and (2) is obtained as the worst of the estimates (3).

2. Central lower bound: $p_t (o, o) \geq c t^{-\alpha/2}$, which follows from comparison with the Dirichlet heat kernel on each end.

3. Upper and lower bounds for the hitting probability $\psi_A (t, x) = \mathbb{P}_x (\tau_A \leq t)$ and its time derivative $\psi'_A (t, x)$ on each M_i.

![Diagram of a random walk with a region A and points x and X_{\tau_A}](image)
4. Let Ω_1 and Ω_2 be two disjoint open sets on M. Set $\psi_i = \psi_{\partial \Omega_i}$.

Then, for all $x \in \Omega_1$ and $y \in \Omega_2$

$$p_t(x, y) \leq 2 \left[\sup_{s \in [t/4, t]} \sup_{v \in \partial \Omega_1} p_s(v, w) \psi_1(t, x) \psi_2(t, y) \right.$$

$$+ \left[\psi_2(t, y) \sup_{s \in [t/4, t]} \psi'_1(s, x) + \psi_1(t, x) \sup_{s \in [t/4, t]} \psi'_2(s, y) \right] \int_0^t \sup_{v \in \partial \Omega_1 \atop w \in \partial \Omega_2} p_s(v, w) ds$$

and there is also a similar lower bound for $p_t(x, y)$.

For $\Omega_1 = E_i$, $\Omega_2 = E_j$, substituting the central estimates of the heat kernel and the estimates of the hitting probability, we obtain (1).
5 Mixed case: there are \(\alpha_i < 2 \) and \(\alpha_j > 2 \)

Assuming that all \(\alpha_i \neq 2 \), set

\[
\alpha_i^* = \max (\alpha_i, 4 - \alpha_i) = \begin{cases}
\alpha_i, & \alpha_i > 2 \\
4 - \alpha_i, & \alpha_i < 2
\end{cases}
\]

(note that \(\alpha_i^* > 2 \))

Theorem 2 Assume that, for any \(i \), we have \(V_i (r) \simeq r^{\alpha_i} \) for \(r > 1 \), where all \(\alpha_i \neq 2 \) and \(\max_i \alpha_i > 2 \). Then the heat kernel of the manifold \(M = M_1 \# M_2 \# \ldots \# M_k \) satisfies the following estimate: for all \(t > 1 \), \(x \in E_i \), \(y \in E_j \) where \(i \neq j \),

\[
p_t (x, y) \asymp C \left(\frac{1}{t^{\alpha_j^*/2} |x|^{\alpha_j^* - 2}} + \frac{1}{t^{\alpha_i^*/2} |y|^{\alpha_i^* - 2}} + \frac{1}{t^{\alpha/2} |x|^{\alpha_i^* - 2} |y|^{\alpha_j^* - 2}} \right) \\
\times |x|^{(2 - \alpha_i)_+} |y|^{(2 - \alpha_j)_+} e^{-\frac{d^2(x,y)}{ct}}
\]

(4)

where \(\alpha = \min (\alpha_1^*, \ldots, \alpha_k^*) \).

If all \(\alpha_i > 2 \) then (4) amounts to Theorem 1. A new interesting case occurs when there are \(\alpha_i < 2 \) and \(\alpha_j > 2 \).
Consider the case of two ends with $\alpha_1 = 1$ and $\alpha_2 = 3$. For example, this is the case when

$$E_1 = \mathbb{R}_+ \times S^2 \quad \text{and} \quad M_2 = \mathbb{R}^3.$$
We have
\[\alpha_1^* = 4 - \alpha_1 = 3, \quad \alpha_2^* = \alpha_2 = 3, \quad \text{and} \quad \alpha = \min(\alpha_1^*, \alpha_2^*) = 3. \]

Hence, if \(x \in E_1 \) and \(y \in E_2 \), we obtain by (4)
\[
\begin{align*}
pt(x, y) &\asymp C \left(\frac{1}{t^{\alpha_1^*/2} |x|^{\alpha_1^*-2}} + \frac{1}{t^{\alpha_2^*/2} |y|^{\alpha_2^*-2}} \right) |x|^{(2-\alpha_i)+} |y|^{(2-\alpha_j)+} e^{-\frac{d^2(x,y)}{ct}} \\
&= \frac{C}{t^{3/2}} \left(\frac{1}{|x|} + \frac{1}{|y|} \right) |x| e^{-\frac{d^2(x,y)}{ct}}
\end{align*}
\]

In the long time regime \(t \to \infty \) and in the medium time regime \(|x|^2 \simeq |y|^2 \simeq t \to \infty \) we obtain the same behavior
\[
pt(x, y) \simeq t^{-3/2}.
\]

Therefore, there is no bottleneck effect. However, there is a new effect in the intermediate regime when \(y \) is fixed and \(|x|^2 \simeq t \to \infty \), as in this case we obtain
\[
pt(x, y) \simeq t^{-1} \gg t^{-3/2}.
\]
The proof of Theorem 2 uses Doob’s h-transform M. If at least one M_i is non-parabolic, then there is a positive harmonic function h on M such that $h \approx 1$ on non-parabolic ends and $h \to \infty$ on parabolic ends. Consider a new measure $\tilde{\mu}$ on M given by
\[
d\tilde{\mu} = h^2 d\mu,
\]
the weighted Laplace operator
\[
\tilde{\Delta} = \frac{1}{h^2} \text{div} (h^2 \text{grad}) = \frac{1}{h} \circ \Delta \circ h
\]
and the associated weighted heat kernel
\[
\tilde{p}_t (x, y) = \frac{p_t (x, y)}{h(x) h(y)}.
\]
The weighted manifold $(M, \tilde{\mu})$ has the ends $(M_i, \tilde{\mu})$ that are now all non-parabolic. Moreover, one shows that each $(M_i, \tilde{\mu})$ satisfies Li-Yau estimate. Theorem 1 can be extended in the case, which yields the estimates of $\tilde{p}_t (x, y)$. Since function $h(x)$ can be effectively estimates via $|x|$, we obtain the estimates of $p_t (x, y)$.
6 The case of general volume functions $V_i(r)$

Introduce the following functions:

$$h_i(r) = 1 + \left(\int_1^r \frac{sds}{V_i(s)} \right)_+,$$

$$\tilde{V}_i(r) = h_i^2(r)V_i(r), \quad \tilde{V}_{\min}(r) = \min_{1 \leq i \leq k} \tilde{V}_i(r),$$

$$H_i(r,t) = \frac{r^2}{\tilde{V}_i(r)} + \left(\int_r^\sqrt{t} \frac{sds}{\tilde{V}_i(s)} \right)_+.$$

Theorem 3 If at least one of the ends is non-parabolic then the heat kernel $p_t(x,y)$ on the connected sum $M = M_1 \# M_2 \# \ldots \# M_k$ admits the following estimate: for all $t > 0$ and $x \in E_i$, $y \in E_j$, $i \neq j$:

$$p_t(x,y) \asymp C \left(\frac{H_i(|x|,t)}{\tilde{V}_j(\sqrt{t})} + \frac{H_j(|y|,t)}{\tilde{V}_i(\sqrt{t})} + \frac{H_i(|x|,t)H_j(|y|,t)}{\tilde{V}_{\min}(\sqrt{t})} \right) h_i(|x|)h_j(|y|)e^{-\frac{d^2(x,y)}{ct}}.$$

(5)
If \(V_i(r) \simeq r^{\alpha_i} \) where \(\alpha_i \neq 2 \) then, for \(r > 1 \),

\[
h_i(r) \simeq \begin{cases}
1, & \alpha_i > 2, \\
r^{2-\alpha_i}, & \alpha_i < 2,
\end{cases} = r^{(2-\alpha_i)_+},
\]

whence

\[
\tilde{V}_i(r) \simeq \begin{cases}
r^{\alpha_i}, & \alpha_i > 2, \\
r^{4-\alpha_i}, & \alpha_i < 2
\end{cases} = r^{\alpha_i^*},
\]

\[
\tilde{V}_{\text{min}}(r) \simeq r^\alpha \quad \text{where } \alpha = \min_{1 \leq i \leq k} \alpha_i^*
\]

and \(H_i(r, t) \simeq r^{2-\alpha_i^*} \). Hence, in this case (5) is equivalent (4).

Theorem 3 allows to cover the new case \(\alpha_i = 2 \). Consider an example with \(\alpha_1 = 2, \alpha_2 = 3 \). For example, this is the case when \(M_1 = \mathbb{R}^2 \times S^1 \) and \(M_2 = \mathbb{R}^3 \). We have for large \(r \) and \(t \)

\[
V_1(r) \simeq r^2, \quad V_2(r) \simeq r^3,
\]

\[
h_1(r) \simeq \log r, \quad h_2(r) \simeq 1,
\]

\[
\tilde{V}_1(r) \simeq r^2 \log^2 r, \quad \tilde{V}_2(r) \simeq r^3, \quad \tilde{V}_{\text{min}}(r) = r^2 \log^2 r
\]
\[H_1(r, t) \approx \frac{1}{\log^2 r} + \left(\frac{1}{2 \log r} - \frac{1}{\log t} \right)_+ , \]
\[H_2(r, t) \approx r^{-1}. \]

Hence, for \(x \in E_1, y \in E_2, \)
\[p_t(x, y) \leq C \left(\frac{\log |x|}{|y| t \log^2 t} + \frac{1}{t^{3/2}} \left[\frac{1}{\log |x|} + \left(\frac{1}{2} - \frac{\log |x|}{\log t} \right)_+ \right] \right) e^{-\frac{d^2(x,y)}{ct}}. \]

In particular, in the long time regime \(t \to \infty \) we obtain
\[p_t(x, y) \approx \frac{1}{t \log^2 t}, \]
while in the medium time regime \(|x|^2 \approx |y|^2 \approx t \to \infty \)
\[p_t(x, y) \approx \frac{1}{t^{3/2} \log t}. \]
Consider an example with \(\alpha_1 = 1, \alpha_2 = 2, \alpha_3 = 3 \), which is the case when \(E_1 = \mathbb{R}_+ \times S^2 \), \(M_2 = \mathbb{R}^2 \times S^1 \) and \(M_3 = \mathbb{R}^3 \). Then, for large \(r \) and \(t \),
\[
V_1(r) \simeq r, \quad V_1(r) \simeq r^2, \quad V_3(r) \simeq r^3,
\]
\[
h_1(r) \simeq r, \quad h_2(r) \simeq \log r, \quad h_3(r) \simeq 1,
\]
\[
\tilde{V}_1(r) \simeq r^3, \quad \tilde{V}_2(r) \simeq r^2 \log^2 r, \quad \tilde{V}_2(r) \simeq r^3,
\]
\[
\tilde{V}_{\text{min}}(r) \simeq r^2 \log^2 r,
\]
\[
H_1(r, t) \simeq r^{-1}
\]
\[
H_2(r, t) \simeq \frac{1}{\log^2 r} + \left(\frac{1}{2 \log r} - \frac{1}{\log t} \right)_+,
\]
\[
H_3(r, t) \simeq r^{-1}.
\]
Hence, for \(x \in E_1, y \in E_2 \),
\[
p_t(x, y) \leq C \left(\frac{\log |y|}{t \log^2 t} + \left(\frac{|x|}{t^{3/2}} + \frac{1}{t \log^2 t} \right) \left[\frac{1}{\log |y|} + \left(\frac{1}{2} - \frac{\log |y|}{\log t} \right)_+ \right] \right) e^{-\frac{a^2(x, y)}{ct}}.
\]
In particular, in the long time regime

\[p_t(x, y) \simeq \frac{1}{t \log^2 t}, \]

in the medium time regime

\[p_t(x, y) \simeq \frac{1}{t \log t}. \]

If \(x \in E_1 \) and \(y \in E_3 \) then

\[p_t(x, y) \asymp C \left(\frac{1}{t^{3/2}} \left(1 + \frac{|x|}{|y|} \right) + \frac{1}{|y| t \log^2 t} \right) e^{-\frac{d^2(x,y)}{ct}}, \]

and in the medium time regime

\[p_t(x, y) \simeq \frac{1}{t^{3/2}}. \]

One sees that there is a bottleneck effect between \(\mathbb{R}_+ \) and \(\mathbb{R}^3 \) but not between \(\mathbb{R}_+ \) and \(\mathbb{R}^2 \).
7 One-dimensional Schrödinger operator

Consider the operator in \(\mathbb{R} \)

\[
H = -\frac{d^2}{dx^2} + \Phi(x)
\]

where \(\Phi(x) = b|x|^{-2} \) for large \(|x| \), where \(b \geq 0 \). Theorem 3 allows to obtain the heat kernel estimate for this operator.

Theorem 4 Set

\[
\beta = \frac{1}{2} + \sqrt{\frac{1}{4} + b}.
\]

Then the heat kernel \(p_t^\Phi(x,y) \) of the operator \(H \) satisfies the estimate:

for all \(x < -1, y > 1, t \geq 1, \)

\[
p_t^\Phi(x,y) \lesssim \frac{C}{t^{1/2+\beta}} \left(\frac{|y|^\beta}{|x|^{\beta-1}} + \frac{|x|^\beta}{|y|^{\beta-1}} \right) \exp \left(-c \frac{|x-y|^2}{t} \right).
\]
In particular, if $t \to \infty$ then
\[
p_t^\Phi (x, y) \simeq \frac{C}{t^{1/2 + \beta}} \left(\frac{|y|^\beta}{|x|^{\beta-1}} + \frac{|x|^\beta}{|y|^{\beta-1}} \right) = \frac{C |x|^\beta |y|^\beta}{t^{1/2 + \beta}} \left(\frac{1}{|x|^{2\beta-1}} + \frac{1}{|y|^{2\beta-1}} \right).
\]

For comparison, for the operator $H = -\Delta + \Phi(x)$ in \mathbb{R}^n, $n \geq 2$, we have as $t \to \infty$
\[
p_t^\Phi (x, y) \simeq \frac{C |x|^\beta |y|^\beta}{t^{n/2 + \beta}},
\]
where
\[
\beta = -\frac{n}{2} + 1 + \sqrt{\left(\frac{n}{2} - 1 \right)^2 + b}.
\]