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1 Heat kernel

Let M be a Riemannian manifold and Δ be the Laplace-Beltrami op-
erator on M . Denote by pt (x, y) the heat kernel, that is, the smallest
positive fundamental solution to the heat equation ∂u

∂t
= Δu on R+ ×M .

In Rn we have

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

A theorem of Li and Yau ’86 states: if RicciM ≥ 0 and M is geodesically
complete then

pt (x, y) �
C

V (x,
√

t)
exp

(

−
d2(x, y)

ct

)

. (LY )

Here d(x, y) is the geodesic distance, V (x, r) = μ (B (x, r)) is the Rie-
mannian volume of the geodesic ball B(x, r), C, c are positive constants,
and � means that both ≤ and ≥ take place, but with different values of
C, c.

Moreover, (LY ) holds on any geodesically complete manifold satis-
fying the volume doubling property and the Poincaré inequality.
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2 Parabolicity and recurrence

A Riemannian manifold M is called non-parabolic if the Laplace operator
Δ on M has a positive fundamental solution, and parabolic otherwise.
The parabolicity is equivalent to the condition

∫ ∞

pt (x, y) dt = ∞.

If M satisfies (LY ) then this condition is equivalent to

∫ ∞ rdr

V (x, r)
= ∞.

If in addition V (x, r) ' rα then

parabolicity ⇔ α ≤ 2.

For example, in Rn we have V (x, r) = cnrn so that Rn is parabolic if
n ≤ 2 and non-parabolic if n > 2.
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Consider the Brownian motion {Xt}t≥0 on the manifold M , which by
definition, has the transition density pt (x, y): for any Borel set A ⊂ M ,

Px (Xt ∈ A) =

∫

A

pt (x, y) dμ (y) .

 

x 

Xt A 

The Brownian motion is called recurrent if the probability to hit
eventually any non-empty open set is equal to 1, and transient otherwise.
It is known that

recurrence ⇔ parabolicity

In particular, the Brownian motion is recurrent in R1 and R2, and tran-
sient in Rn if n > 2.
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3 Connected sum (manifold with ends)

Let M1, M2,.., Mk be a finite family of geodesically complete non-compact
Riemannian manifolds. We say that a manifold M is a connected sum
of manifolds Mi and write M = M1#M2#...#Mk if, for some compact
K ⊂ M (called the central part of M), the exterior M \ K is a disjoint
union of open sets E1, E2, ..., Ek (called the end of M), such that each
Ei is isometric to Mi \ Ki, for some compact Ki ⊂ Mi (in fact, we will
identify Ei and Mi \Ki). Always assume that all sets Ki, K have smooth
boundaries.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

K 

Ei 

Mi 

Ki 
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Here are two examples of connected sums: the catenoid and Rn#Rn:

n

n

In what follows we always assume that each manifold Mi is non-
compact, geodesically complete and satisfies the Li-Yau estimate (LY ).
The main objective of this work is to obtain the heat kernel estimates
on M = M1#...#Mk. We will restrict ourselves to the values of pt (x, y)
when t > 1, x ∈ Ei, y ∈ Ej with i 6= j although estimates for general
(t, x, y) are available as well.
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For each manifold Mi, i = 1, ..., k, denote by di the geodesic distance,
by Bi (x, r) the geodesic balls, by Vi (x, r) the volume of Bi (x, r). Choose

a reference point oi ∈
o

K i and make the following additional assumption:
there is a constant C > 1 such that, for large enough r, the annuli
Bi (oi, Cr) \ Bi (oi, r) are connected sets.

Denote
Vi (r) = Vi (oi, r) .

For example, if Mi = Rn then Vi (r) = cnrn. Fix some o ∈
o

K and, for
any x ∈ M , set |x| = d (x, o) .

We consider first the case when each Vi (r) satisfies

Vi (r) ' rαi

for r > 1. The value of αi is called “dimension at ∞” of Mi. For example,
the manifold

Mi = Rni × (compact)

has “dimension at ∞” equal to ni. Fractional values of the dimension at
∞ can be achieved for surfaces of revolution.
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4 Pure non-parabolic case: all αi > 2

Theorem 1 If all αi > 2 then the heat kernel on M = M1#...#Mk

satisfies the following estimate for all t > 1, x ∈ Ei and y ∈ Ej with
i 6= j :

pt (x, y) � C

(
1

tαj/2 |x|αi−2 +
1

tαi/2 |y|αj−2 +
1

tα/2 |x|αi−2 |y|αj−2

)

e−
d2(x,y)

ct ,

(1)
where α = min (α1, ..., αk) .

In the long time regime, when x, y are fixed and t → ∞, we obtain

pt (x, y) ' t−α/2 as t → ∞

where α is determined by the smallest end, which, therefore, is dominant.
In the case k = 2 the the third term in (1) is dominated by the first

two and we obtain

pt (x, y) � C

(
1

tαj/2 |x|αi−2 +
1

tαi/2 |y|αj−2

)

e−
d2(x,y)

ct .
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For M = Rn#Rn with n > 2 we have α = α1 = α2 = n and obtain for
t ≥ |x|2 + |y|2

pt (x, y) '
1

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

.

In particular, in the medium time regime |x|2 ' |y|2 ' t → ∞ we obtain

pt (x, y) '
1

tn−1
�

1

tn/2
,

which reflects the bottleneck effect between E1 and E2.

n

n

x

y
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If M has at least 3 ends then it can happen that αi > α and αj > α.
Let α = αl. The long time asymptotic

pt (x, y) ' t−α/2 = t−αl/2

means that the process Xt spends most time the smallest end El, even
when going from Ei to Ej.

x

y

K
Vi(r) r i

Vj(r) r

Vl(r) r

j
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The proof of Theorem 1 consists of a number of steps.
1. Central upper bound: for o ∈ K and t > 1

pt (o, o) ≤ Ct−α/2. (2)

The heat kernel p
(i)
t (x, y) on Mi satisfies by (LY )

p
(i)
t (oi, oi) ' t−αi/2, (3)

and (2) is obtained as the worst of the estimates (3).
2. Central lower bound: pt (o, o) ≥ ct−α/2, which follows from com-

parison with the Dirichlet heat kernel on each end.
3. Upper and lower bounds for the hitting probability ψA (t, x) =

Px (τA ≤ t) and its time derivative ψ′
A (t, x) on each Mi.

x
A

X
A

10



4. Let Ω1 and Ω2 be two disjoint open sets on M . Set ψi = ψ∂Ωi
.

Then, for all x ∈ Ω1 and y ∈ Ω2

pt(x, y) ≤ 2



 sup
s∈[t/4,t]

sup
v∈∂Ω1
w∈∂Ω2

ps(v, w)



ψ1(t, x)ψ2(t, y)

+

[

ψ2(t, y) sup
s∈[t/4,t]

ψ′
1(s, x) + ψ1(t, x) sup

s∈[t/4,t]

ψ′
2(s, y)

] t∫

0

sup
v∈∂Ω1
w∈∂Ω2

ps(v, w)ds

and there is also a similar lower bound for pt (x, y).

x

1

2

2
1

y

For Ω1 = Ei, Ω2 = Ej , substituting the central estimates of the heat
kernel and the estimates of the hitting probability, we obtain (1).
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5 Mixed case: there are αi < 2 and αj > 2

Assuming that all αi 6= 2, set

α∗
i = max (αi, 4 − αi) =

{
αi, αi > 2
4 − αi, αi < 2

(note that α∗
i > 2)

Theorem 2 Assume that, for any i, we have Vi (r) ' rαi for r > 1,
where all αi 6= 2 and maxi αi > 2. Then the heat kernel of the manifold
M = M1#M2#...#Mk satisfies the following estimate: for all t > 1,
x ∈ Ei , y ∈ Ej where i 6= j,

pt (x, y) � C

(
1

tα
∗
j /2 |x|α

∗
i −2

+
1

tα
∗
i /2 |y|α

∗
j−2

+
1

tα/2 |x|α
∗
i −2 |y|α

∗
j−2

)

× |x|(2−αi)+ |y|(2−αj)+ e−
d2(x,y)

ct , (4)

where α = min (α∗
1, ..., α

∗
k) .

If all αi > 2 then (4) amounts to Theorem 1. A new interesting case
occurs when there are αi < 2 and αj > 2.
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Consider the case of two ends with α1 = 1 and α2 = 3. For example,
this is the case when

E1 = R+ × S2 and M2 = R3.

3

2

x

y

+

1=1

2=3
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We have

α∗
1 = 4 − α1 = 3, α∗

2 = α2 = 3, and α = min (α∗
1, α

∗
2) = 3.

Hence, if x ∈ E1 and y ∈ E2, we obtain by (4)

pt (x, y) � C

(
1

tα
∗
j /2 |x|α

∗
i −2

+
1

tα
∗
i /2 |y|α

∗
j−2

)

|x|(2−αi)+ |y|(2−αj)+ e−
d2(x,y)

ct

=
C

t3/2

(
1

|x|
+

1

|y|

)

|x| e−
d2(x,y)

ct

In the long time regime t → ∞ and in the medium time regime |x|2 '
|y|2 ' t → ∞ we obtain the same behavior

pt (x, y) ' t−3/2.

Therefore, there is no bottleneck effect. However, there is a new effect
in the intermediate regime when y is fixed and |x|2 ' t → ∞, as in this
case we obtain

pt (x, y) ' t−1 � t−3/2.
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The proof of Theorem 2 uses Doob’s h-transform M . If at least one
Mi is non-parabolic, then there is a positive harmonic function h on M
such that h ' 1 on non-parabolic ends and h → ∞ on parabolic ends.
Consider a new measure μ̃ on M given by

dμ̃ = h2dμ,

the weighted Laplace operator

Δ̃ =
1

h2
div
(
h2 grad

)
=

1

h
◦ Δ ◦ h

and the associated weighted heat kernel

p̃t (x, y) =
pt (x, y)

h (x) h (y)
.

The weighted manifold (M, μ̃) has the ends (Mi, μ̃) that are now all
non-parabolic. Moreover, one shows that each (Mi, μ̃) satisfies Li-Yau
estimate. Theorem 1 can be extended in the case, which yields the es-
timates of p̃t (x, y) . Since function h (x) can be effectively estimates via
|x|, we obtain the estimates of pt (x, y).
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6 The case of general volume functions Vi (r)

Introduce the following functions:

hi(r) = 1 +

(∫ r

1

sds

Vi(s)

)

+

,

Ṽi(r) = h2
i (r)Vi(r), Ṽmin (r) = min

1≤i≤k
Ṽi (r) ,

Hi(r, t) =
r2

Ṽi (r)
+

(∫ √
t

r

sds

Ṽi(s)

)

+

.

Theorem 3 If at least one of the ends is non-parabolic then the heat
kernel pt (x, y) on the connected sum M = M1#M2#....#Mk admits the
following estimate: for all t > 0 and x ∈ Ei, y ∈ Ej, i 6= j:

pt (x, y) � C

(
Hi(|x| , t)

Ṽj(
√

t)
+

Hj(|y| , t)

Ṽi(
√

t)
+

Hi(|x| , t)Hj(|y| , t)

Ṽmin(
√

t)

)

hi(|x|)hj(|y|)e
− d2(x,y)

ct .

(5)
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If Vi (r) ' rαi where αi 6= 2 then, for r > 1,

hi (r) '

{
1, αi > 2,
r2−αi , αi < 2,

= r(2−αi)+ ,

whence

Ṽi (r) '

{
rαi , αi > 2,
r4−αi , αi < 2

= rα∗
i ,

Ṽmin (r) ' rα where α = min
1≤i≤k

α∗
i

and Hi (r, t) ' r2−α∗
i . Hence, in this case (5) is equivalent (4).

Theorem 3 allows to cover the new case αi = 2. Consider an example
with α1 = 2, α2 = 3. For example, this is the case when M1 = R2 × S1

and M2 = R3. We have for large r and t

V1(r) ' r2, V2(r) ' r3,

h1(r) ' log r, h2(r) ' 1,

Ṽ1(r) ' r2 log2 r, Ṽ2(r) ' r3, Ṽmin (r) = r2 log2 r
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H1(r, t) '
1

log2 r
+

(
1

2 log r
−

1

log t

)

+

,

H2 (r, t) ' r−1.

Hence, for x ∈ E1, y ∈ E2,

pt (x, y) � C

(
log |x|

|y| t log2 t
+

1

t3/2

[
1

log |x|
+

(
1

2
−

log |x|
log t

)

+

])

e−
d2(x,y)

ct .

In particular, in the long time regime t → ∞ we obtain

pt (x, y) '
1

t log2 t
,

while in the medium time regime |x|2 ' |y|2 ' t → ∞

pt (x, y) '
1

t3/2 log t
.
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Consider an example with α1 = 1, α2 = 2, α3 = 3, which is the case
when E1 = R+ × S2, M2 = R2 × S1 and M3 = R3. Then, for large r and
t,

V1 (r) ' r, V1(r) ' r2, V3(r) ' r3,

h1 (r) ' r, h2(r) ' log r, h3(r) ' 1,

Ṽ1 (r) ' r3, Ṽ2(r) ' r2 log2 r, Ṽ2(r) ' r3,

Ṽmin (r) ' r2 log2 r,

H1 (r, t) ' r−1

H2(r, t) '
1

log2 r
+

(
1

2 log r
−

1

log t

)

+

,

H3 (r, t) ' r−1.

Hence, for x ∈ E1, y ∈ E2,

pt (x, y) � C

(
log |y|

t log2 t
+

(
|x|
t3/2

+
1

t log2 t

)[
1

log |y|
+

(
1

2
−

log |y|
log t

)

+

])

e−
d2(x,y)

ct .
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In particular, in the long time regime

pt (x, y) '
1

t log2 t
,

in the medium time regime

pt (x, y) '
1

t log t
.

If x ∈ E1 and y ∈ E3 then

pt (x, y) � C

(
1

t3/2

(

1 +
|x|
|y|

)

+
1

|y| t log2 t

)

e−
d2(x,y)

ct ,

and in the medium time regime

pt (x, y) '
1

t3/2
.

One sees that there is a bottleneck effect between R+ and R3 but not
between R+ and R2.
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7 One-dimensional Schrödinger operator

Consider the operator in R

H = −
d2

dx2
+ Φ (x)

where Φ (x) = b |x|−2 for large |x|, where b ≥ 0. Theorem 3 allows to
obtain the heat kernel estimate for this operator.

Theorem 4 Set

β =
1

2
+

√
1

4
+ b .

Then the heat kernel pΦ
t (x, y) of the operator H satisfies the estimate:

for all x < −1, y > 1, t ≥ 1,

pΦ
t (x, y) �

C

t1/2+β

(
|y|β

|x|β−1
+

|x|β

|y|β−1

)

exp

(

−c
|x − y|2

t

)

.
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In particular, if t → ∞ then

pΦ
t (x, y) '

C

t1/2+β

(
|y|β

|x|β−1
+

|x|β

|y|β−1

)

=
C |x|β |y|β

t1/2+β

(
1

|x|2β−1
+

1

|y|2β−1

)

.

For comparison, for the operator H = −Δ + Φ (x) in Rn, n ≥ 2, we have
as t → ∞

pΦ
t (x, y) �

C |x|β |y|β

tn/2+β
,

where

β = −
n

2
+ 1 +

√(n

2
− 1
)2

+ b.
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