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Li-Yau estimate

Let M be geodesically complete non-compact Riemannian manifold. Denote by
d (x, y) the geodesic distance, B (x, r) geodesic ball of radius r centered at x, and
set V (x, r) = μ (B (x, r)) , where μ is the Riemannian measure. Let pt (x, y) be the
heat kernel of M .

Theorem 1 (Li and Yau ’86) If RicciM ≥ 0 then

pt (x, y) �
C

V
(
x,
√

t
) exp

(

−
d2 (x, y)

ct

)

(LY )

Here � means that there are ≤ and ≥ but with different values of positive
constants c, C. This estimate (LY ) holds also on a more general class of manifolds
described below.

Definition. We say that M satisfies volume doubling condition if for all x ∈ M and
r > 0

V (x, 2r) ≤ CV (x, r) . (V D)
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Definition. We say that M satisfies the (weak) Poincaré inequality if there are
constants C > 0 and ε ∈ (0, 1) such that, for any ball B (x, r) and for any function
u ∈ C1 (B (x, r)),

inf
s∈R

∫

B(x,εr)

(u − s)2 dμ ≤ Cr2

∫

B(x,r)

|∇u|2 dμ. (PI)

Theorem 2 (LY ) ⇔ (V D) + (PI).

Let us give some examples of manifolds satisfying (LY ). Fix an integer D ≥ 2
and for any 2 ≤ n ≤ D consider manifold Rn := Rn × SD−n. For n = 1 manifold R1

is obtained from R+ × SD−1 by closing it into a complete manifold:

 

Then Rn satisfies (LY ) for all n ≥ 1. Note that, for large r, V (o, r) ' rn, where
o ∈ Rn is a fixed reference point o ∈ Rn.
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More generally, define Rα for any real α > 0 as
(
RD, gα

)
where the metric gα is

determined in the polar coordinates (r, θ) by

gα = dr2 + r2βdθ2

for r > 1 and gα is Euclidean for small r, where

β =
α − 1

N − 1
.

For example, for α = N we obtain RD = RD. It is easy to verify that, for large r,

V (o, r) ' rα.

Moreover, Rα satisfies (LY ) provided 0 < α ≤ D.
The number α is called “the dimension at ∞” of Rα, while D is the topological

“local” dimension of Rα.
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Example with bottleneck

Let M = Rn#Rn be a connected sum of two copies of Rn with n ≥ 3. On this
manifold V (x, r) ' rn as in Rn.

n

n

The heat kernel on M satisfies upper bound of (LY ) but the lower bound

pt (x, y) ≥
C

tn/2
exp

(

−
d2 (x, y)

ct

)

breaks down if x and y belong to different copies of Rn as on the picture below.
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Indeed, as we will see later on, in this case, for large t,

pt (x, y) �
C

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

exp

(

−
d2 (x, y)

ct

)

. (1)

In particular, if |x| ' |y| '
√

t then pt (x, y) '
1

tn−1
�

1

tn/2
where the value 1

tn/2 is

predicted by (LY ).
Probabilistic meaning: for Brownian motion getting from x to y is hard as it has

to go through the bottleneck of the central part, thus significantly reducing transition
probability.
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Manifolds with ends

Let M1, ...,Mk and M be complete non-compact Riemannian manifolds. We say
that M is a connected sum of M1, ...,Mk and write

M = M1#M2#...#Mk

if M = K t E1 t ... t Ek, where K ⊂ M is compact and each Ei is isometric to an
exterior domain in Mi. The sets Ei are called the ends of M (sometimes Mi are also
referred to as ends).

E3

K

E2

E1

M

Ei=Mi \ KiKi

Mi
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The question to be discussed here is:

Assuming that all Mi are complete and satisfy (LY ),
how to estimate the heat kernel on M = M1#M2#...#Mk?

For example, how to estimate the heat kernel on M = Rα1#Rα2#...#Rαk?

Or even on M = Rn#Rn?
The estimate in the case n ≥ 3 was stated in (1), but the case n = 2 is more

complicated.

The answer to the above question depends on the property of the ends Mi to be
parabolic or not, which will be discussed on the next page.
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Parabolic and non-parabolic manifolds

Definition. A Riemannian manifold M is called parabolic if any positive superhar-
monic function on M is constant, and non-parabolic otherwise.

The parabolicity is equivalent to each of the following properties, that can be
regarded as equivalent definitions:

1. There exists no positive fundamental solution of −Δ.

2.
∫∞

pt (x, y) dt = ∞ for all/some x, y ∈ M .

3. Brownian motion on M is recurrent.

For example, Rn is parabolic for n ≤ 2 and non-parabolic for n > 2.

Theorem 3 Let M be geodesically complete and satisfy (LY ). Then M is parabolic
if and only if for all/some x ∈ M

∫ ∞ rdr

V (x, r)
= ∞. (2)

For example, if V (x, r) ' rα then (2) is satisfies if and only if α ≤ 2. In
particular, Rα is parabolic if and only if α ≤ 2.
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Heat kernels on manifolds with ends

Let M1, ...,Mk be complete non-compact manifolds satisfying (LY ). Fix a reference
point oi ∈ Mi and set |x| = di (x, oi) . Assume for simplicity that

Vi (oi, r) ' rαi for large r.

(results for general functions Vi are available as well).
In the case if Mi is parabolic, we assume in addition that Mi has “relatively

connected annuli”: there is A > 1 such that, for all large r and all x, y with |x| =
|y| = r, the points x, y can be connected by a curve in the annulus Bi (oi, Ar) \
Bi (oi, A

−1r) . Clearly, all Rα have this property (but not R1).

oi

x

y

Ar

A-1r
r
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Set M = M1#...#Mk. We present in this setting partial estimates of the heat
kernel pt (x, y) on M when x and y belong to different ends Ei and Ej, respectively,
and |x| , |y| , t are large. Estimates for all t, x, y are available as well.

Non-parabolic case

Theorem 4 (AG and L.Saloff-Coste ’09) Under the above conditions, assume that
all αi > 2 (that is, all Mi are non-parabolic). Set

α = min
1≤i≤k

αi .

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) � C

(
1

tα/2 |x|αi−2 |y|αj−2 +
1

tαj/2 |x|αi−2 +
1

tαi/2 |y|αj−2

)

e−
d2(x,y)

ct . (3)

In the long time regime, that is, for fixed x, y and for t → ∞, we obtain from (3)
that pt (x, y) ' t−α/2.

Hence, the long time decay of pt is determined by the minimal volume growth
exponent min αi. Note for comparison, that V (x, r) ' rmax αi .
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For example, (3) holds for M = Rα1#...#Rαk if all αi > 2. Probabilistic meaning
for pt (x, y) ' t−α/2: in order to get from x to y in time t, Brownian motion on M
spends most time in the smallest end Rα. The reason for that is, that the return
probability in that end is the largest.

x
αi

αj

α

y

K

Consider also the medium time regime when |x| ' |y| '
√

t → ∞. In this case

(3) implies pt (x, y) ' t
−
(

αi+αj
2

−1
)

� t−α/2, which we refer to as a bottleneck effect.
In the case M = Rn#Rn, n > 2, (3) implies (1), that is,

pt (x, y) �
C

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

e−
d2(x,y)

ct .

12



Mixed case

Theorem 5 Assume that all αi 6= 2 and there is αl > 2. Set

α̃i :=

{
4 − αi, αi < 2
αi, αi > 2

and
α := min

1≤i≤k
α̃i.

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) ' C

(
1

tα/2 |x|α̃i−2 |y|α̃j−2
+

1

tα̃i/2 |y|α̃j−2
+

1

tα̃j/2 |x|α̃i−2

)

(4)

× |x|(2−αi)+ |y|(2−αj)+ e−
d2(x,y)

ct

Observe that always α̃i > 2, and the minimal α̃i is determined by the value of
αi that is nearest to 2!

Hence, the long time decay of the heat kernel pt (x, y) ' t−α/2 is deter-
mined by the nearest to 2 value of αi.

13



This rules applies also to Theorem 4 where the nearest to 2 exponent αi is the
minimal one. As we will see below, this rules is valid also in the parabolic case.

As an example, consider M = R1#R3, where x ∈ R1 and y ∈ R3.

 

3 

x 

y 

1 = + x 2
 

In this case α1 = 1, α2 = 3 whence α̃1 = α̃2 = 3. It follows from (4) that

pt(x, y) �
C

t3/2

(

1 +
|x|
|y|

)

e−
d2(x,y)

ct .

For t → ∞ we obtain pt (x, y) ' t−3/2. In the case |y| ' 1, |x| '
√

t → ∞ we obtain
pt (x, y) ' t−1 � t−3/2 – a kind of anti-bottleneck effect!
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Parabolic case

In the next two theorems we state our main result, obtained by AG, S.Ishiwata and
L.Saloff-Coste in 2015.

Theorem 6 (Subcritical case) Assume that 0 < αi < 2 for all i = 1, ..., k and set

α = max
1≤i≤k

αi .

For x ∈ Ei and y ∈ Ej with i 6= j we have

pt (x, y) �
C

tα/2
e−

d2(x,y)
ct .

In this case the long time behavior of the heat kernel pt (x, y) ' t−α/2 is de-
termined by the maximal volume growth exponent αi, which is again nearest to 2.
There is no bottleneck effect in this case.

In the next statement we use the following notation:

Q (x, t) =
1

ln |x|
+

1

ln t

(

ln

√
t

|x|

)

+

'

{
1

ln|x| , if |x| ≥
√

t
1

ln t
ln e

√
t

|x| , if |x| ≤
√

t,
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Theorem 7 (Critical case) Assume that 0 < αi ≤ 2 for all i = 1, ..., k and that
αl = 2 for some l. For x ∈ Ei and y ∈ Ej with i 6= j the following is true:

(a) If αi < 2 and αj < 2 then in the case |x| + |y| ≥
√

t

pt (x, y) �
C ln t

t
e−

d2(x,y)
ct ,

and in the case |x| + |y| <
√

t

pt (x, y) �
C

t

(

1 + ln t

[(
|x|
√

t

)2−αi

+

(
|y|
√

t

)2−αj
])

.

(b) If αi = 2 and αj < 2 then

pt (x, y) �
C

t

(

1 + Q (x, t) ln t

(
|y|

|y| +
√

t

)2−αj

)

e−
d2(x,y)

ct .

In particular, if |x| , |y| ≥
√

t then

pt (x, y) �
C

t

(

1 +
ln t

ln |x|

)

e−
d2(x,y)

ct
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and if |x| , |y| ≤
√

t then

pt (x, y) �
C

t

(

1 + ln
e
√

t

|x|

(
|y|
√

t

)2−αj
)

.

(c) If αi = αj = 2 then

pt (x, y) �
C

t

(

Q (x, t) Q (y, t) + Q (x, t)
ln |y|

ln |y| + ln t
+ Q (y, t)

ln |x|
ln |x| + ln t

)

e−
d2(x,y)

ct .

In particular, if |x| , |y| ≥
√

t then

pt (x, y) �
C

t

(
1

ln |x|
+

1

ln |y|

)

e−
d2(x,y)

ct ,

and if |x| , |y| ≤
√

t then

pt (x, y) �
C

t ln2 t

(

ln
e
√

t

|x|
ln

e
√

t

|y|
+ ln |y| ln

e
√

t

|x|
+ ln |x| ln

e
√

t

|y|

)

.
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Note that in the setting of Theorem 7 the long time behavior of the heat kernel
is simple:

pt (x, y) '
1

t
'

1

V
(
o,
√

t
)

and is determined by the value αl = 2, which is again the nearest to 2 volume growth
exponent.

In the medium time regime |x| ' |y| '
√

t → ∞ we have the following.
In the case (a), that is, αi, αj < 2:

pt (x, y) '
ln t

t
.

In the case (b), that is, αi = 2, αj < 2:

pt (x, y) '
1

t
.

In the case (c), that is, αi = αj = 2:

pt (x, y) '
1

t ln t
.
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Some examples

Let M = R2#R2.
This manifold is equivalent to
the catenoid. Let x, y belong
to the different sheets.

Then by Theorem 7(c) we have

pt (x, y) '
C

t

(

Q(x, t)Q(y, t) + Q(x, t)
ln |y|

ln |y| + ln t
+ Q(y, t)

ln |x|
ln |x| + ln t

)

e−
d2(x,y)

ct .

If t → +∞ then pt (x, y) ' t−1. If |x| ≥
√

t and |y| ≥
√

t then

pt (x, y) �
C

t

(
1

ln |x|
+

1

ln |y|

)

e−
d2(x,y)

ct .

In particular, if |x| ' |y| '
√

t then pt (x, y) ' 1
t ln t

.
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Let M = R1#R2. By Theorem 7(b) we obtain, for x ∈ R1 and y ∈ R2,

pt(x, y) �
C

t

(

1 + ln t
|x|

|x| +
√

t
Q(y, t)

)

e−
d2(x,y)

ct

If |x| , |y| >
√

t then

pt(x, y) �
C

t
e−

d2(x,y)
ct ,

If |x| , |y| ≤
√

t then

pt(x, y) '
1

t

(

1 +
|x|
√

t
ln

e
√

t

|y|

)

.

For t → ∞ we obtain
pt (x, y) ' t−1.

If y ' 1 and |x| '
√

t → ∞ then

pt (x, y) '
ln t

t
.
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Let M = R2#R3. This is a mixed case, that is covered by extension of Theorem
5. It yields the following estimate for x ∈ R2 and y ∈ R3:

pt(x, y) � C

(
ln |x|

t ln2 t |y|
+

1

t3/2
Q (x, t)

)

e−
d2(x,y)

ct .

For t → ∞ we have

pt (x, y) '
1

t ln2 t
.

For |x| ' |y| '
√

t → ∞ we obtain

pt (x, y) '
1

t3/2 ln t
,

so that there is a bottleneck effect. For |y| ' 1 and |x| '
√

t → ∞ we obtain

pt (x, y) '
1

t ln t
,

that is, an anti-bottleneck effect.
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Let M = R1#R2#R3. For x ∈ R1 and y ∈ R2 we have

pt (x, y) ' C

(
ln |y|

t ln2 t
+

(
|x|
t3/2

+
1

t ln2 t

)

Q (y, t)

)

e−
d2(x,y)

ct .

In particular, for t → ∞

pt (x, y) '
1

t ln2 t
,

For |x| ' |y| '
√

t we have an anti-bottleneck effect:

pt (x, y) '
1

t ln t
.

For x ∈ R1 and y ∈ R3 we have

pt (x, y) � C

(
1

t3/2

(

1 +
|x|
|y|

)

+
1

|y| t ln2 t

)

e−
d2(x,y)

ct .

For |x| ' |y| '
√

t we have a bottleneck effect:

pt (x, y) '
1

t3/2
.
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Approach to the proof

The following approach works when all ends are non-parabolic (Theorem 4) and
when all ends are parabolic (Theorems 6, 7).

In the both cases one starts with estimates for pt (o, o) where o ∈ K is a fixed
reference point. In the non-parabolic case one uses Faber-Krahn type inequalities
to obtain upper bound of pt (o, o). Li-Yau upper bound for the heat kernel p

(i)
t on

Mi implies certain FK inequality on Mi. The “weakest” of FK inequalities across
all ends Mi gives a FK inequality on M , which implies then the upper bound of
pt (o, o), which matches the weakest upper bound among all p

(i)
t (oi, oi) .

For the lower bounds of pt (x, y) one uses inequality pt (x, y) ≥ pEi
t (x, y), where

pEi
t is the Dirichlet heat kernel in Ei. By non-parabolicity of Mi, pEi

t (x, y) satisfies
(LY ) away from ∂Ei, which then implies the lower bound of pt (o, o) that matches

the strongest lower bound among all p
(i)
t (oi, oi) .

To obtain estimates for pt (x, y) for arbitrary x, y one uses the hitting probability.
For any closed set S ⊂ M , define the function ψS(t, x) on R+×M as the probability
that Brownian motion on M hits S before time t provided the starting point is
x. In fact, ψS (t, x) solves in R+ × Sc the heat equation with the initial condition
ψS (0, ∙) = 0 and the boundary condition ψS (t, ∙) = 1 on ∂S.
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Then the following inequality is true for x ∈ Ei and y ∈ Ej with i 6= j:

pt(x, y) ≤ 2ψ∂Ei
(t, x)ψ∂Ej

(t, y) sup
s∈[t/4,t]

sup
v∈∂Ei,w∈∂Ej

ps(v, w)

+

(

ψ∂Ei
(t, x) sup

s∈[t/4,t]

ψ′
∂Ej

(s, y) + ψ∂Ej
(t, y) sup

s∈[t/4,t]

ψ′
∂Ei

(s, x)

)

×
∫ t

0

sup
v∈∂Ei,w∈∂Ej

ps(v, w)ds,

and there is a similar lower bound.

Note that ψ∂Ei
depends only on

the intrinsic geometry of Mi and
can be estimated using (LY ) on Mi.

By local Harnack inequality ps (v, w)
can be estimated via ps (o, o) , which
gives desired estimates for pt (x, y)

K

Ej

Ei

Ei

Ej

x
y

v

w
o
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In the parabolic case this scheme works except for the crucial upper bound for
pt (o, o). Indeed, the FK method gives the upper bound of pt (o, o) using the smallest
volume growth exponent αi whereas in the parabolic case we expect to use the largest
exponent αi, that is, we need a stronger upper bound.

In fact, in the parabolic case we prove the following upper bound:

pt (o, o) ≤
C

V
(
o,
√

t
) , (5)

using a new method involving the resolvents on each end:

R
(i)
λ (x, y) =

∫ ∞

0

e−tλp
(i)
t (x, y) dt,

where λ > 0. The parabolicity of Mi implies that R
(i)
λ (x, y) → ∞ as λ → 0, and the

rate of increase of R
(i)
λ (x, y) as λ → 0 is related to the rate of decay of p

(i)
t (x, y) as

t → ∞.
One shows that the resolvent Rλ (x, y) on M satisfies a certain integral equation

involving as coefficients R
(i)
λ (x, y). This allows to estimate the rate of growth of

Rλ (x, y) as λ → 0 and then to recover the upper bound (5). In the critical case one
has to involve also the estimates of ∂

∂λ
Rλ (x, y) .
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Once the upper bound (5) is known, it implies automatically the matching lower
bound

pt (o, o) ≥
c

V
(
o,
√

t
)

by a theorem of AG and T.Coulhon ’97.
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