Heat kernels on manifolds with parabolic ends

Alexander Grigor'yan http://www.math.uni-bielefeld.de/~grigor/

Renmin University, October 10, 2015

Based on a joint work with S.Ishiwata and L.Saloff-Coste

Li-Yau estimate

Let M be geodesically complete non-compact Riemannian manifold. Denote by d(x, y) the geodesic distance, B(x, r) geodesic ball of radius r centered at x, and set $V(x, r) = \mu(B(x, r))$, where μ is the Riemannian measure. Let $p_t(x, y)$ be the heat kernel of M.

Theorem 1 (Li and Yau '86) If $Ricci_M \ge 0$ then

$$p_t(x,y) \asymp \frac{C}{V(x,\sqrt{t})} \exp\left(-\frac{d^2(x,y)}{ct}\right)$$
 (LY)

Here \asymp means that there are \leq and \geq but with different values of positive constants c, C. This estimate (LY) holds also on a more general class of manifolds described below.

Definition. We say that M satisfies volume doubling condition if for all $x \in M$ and r > 0

$$V(x,2r) \le CV(x,r). \tag{VD}$$

Definition. We say that M satisfies the (*weak*) Poincaré inequality if there are constants C > 0 and $\varepsilon \in (0, 1)$ such that, for any ball B(x, r) and for any function $u \in C^1(B(x, r))$,

$$\inf_{s \in \mathbb{R}} \int_{B(x,\varepsilon r)} \left(u - s \right)^2 d\mu \le Cr^2 \int_{B(x,r)} \left| \nabla u \right|^2 d\mu.$$
 (PI)

Theorem 2 $(LY) \Leftrightarrow (VD) + (PI)$.

Let us give some examples of manifolds satisfying (LY). Fix an integer $D \ge 2$ and for any $2 \le n \le D$ consider manifold $\mathcal{R}^n := \mathbb{R}^n \times \mathbb{S}^{D-n}$. For n = 1 manifold \mathcal{R}^1 is obtained from $\mathbb{R}_+ \times \mathbb{S}^{D-1}$ by closing it into a complete manifold:

Then \mathcal{R}^n satisfies (LY) for all $n \ge 1$. Note that, for large $r, V(o, r) \simeq r^n$, where $o \in \mathcal{R}^n$ is a fixed reference point $o \in \mathcal{R}^n$.

More generally, define \mathcal{R}^{α} for any real $\alpha > 0$ as $(\mathbb{R}^{D}, g_{\alpha})$ where the metric g_{α} is determined in the polar coordinates (r, θ) by

$$g_{\alpha} = dr^2 + r^{2\beta} d\theta^2$$

for r > 1 and g_{α} is Euclidean for small r, where

$$\beta = \frac{\alpha - 1}{N - 1}.$$

For example, for $\alpha = N$ we obtain $\mathcal{R}^D = \mathbb{R}^D$. It is easy to verify that, for large r,

$$V(o,r) \simeq r^{\alpha}.$$

Moreover, \mathcal{R}^{α} satisfies (LY) provided $0 < \alpha \leq D$.

The number α is called "the dimension at ∞ " of \mathcal{R}^{α} , while D is the topological "local" dimension of \mathcal{R}^{α} .

Example with bottleneck

Let $M = \mathbb{R}^n \# \mathbb{R}^n$ be a connected sum of two copies of \mathbb{R}^n with $n \ge 3$. On this manifold $V(x,r) \simeq r^n$ as in \mathbb{R}^n .

The heat kernel on M satisfies upper bound of (LY) but the lower bound

$$p_t(x,y) \ge \frac{C}{t^{n/2}} \exp\left(-\frac{d^2(x,y)}{ct}\right)$$

breaks down if x and y belong to different copies of \mathbb{R}^n as on the picture below.

Indeed, as we will see later on, in this case, for large t,

$$p_t(x,y) \asymp \frac{C}{t^{n/2}} \left(\frac{1}{|x|^{n-2}} + \frac{1}{|y|^{n-2}} \right) \exp\left(-\frac{d^2(x,y)}{ct} \right).$$
 (1)

In particular, if $|x| \simeq |y| \simeq \sqrt{t}$ then $p_t(x, y) \simeq \frac{1}{t^{n-1}} \ll \frac{1}{t^{n/2}}$ where the value $\frac{1}{t^{n/2}}$ is predicted by (LY).

Probabilistic meaning: for Brownian motion getting from x to y is hard as it has to go through the *bottleneck* of the central part, thus significantly reducing transition probability.

Manifolds with ends

Let $M_1, ..., M_k$ and M be complete non-compact Riemannian manifolds. We say that M is a connected sum of $M_1, ..., M_k$ and write

 $M = M_1 \# M_2 \# \dots \# M_k$

if $M = K \sqcup E_1 \sqcup \ldots \sqcup E_k$, where $K \subset M$ is compact and each E_i is isometric to an exterior domain in M_i . The sets E_i are called the *ends* of M (sometimes M_i are also referred to as ends).

The question to be discussed here is:

Assuming that all M_i are complete and satisfy (LY), how to estimate the heat kernel on $M = M_1 \# M_2 \# ... \# M_k$?

For example, how to estimate the heat kernel on $M = \mathcal{R}^{\alpha_1} # \mathcal{R}^{\alpha_2} # ... # \mathcal{R}^{\alpha_k}$?

Or even on $M = \mathbb{R}^n \# \mathbb{R}^n$? The estimate in the case $n \ge 3$ was stated in (1), but the case n = 2 is more complicated.

The answer to the above question depends on the property of the ends M_i to be parabolic or not, which will be discussed on the next page.

Parabolic and non-parabolic manifolds

Definition. A Riemannian manifold M is called *parabolic* if any positive superharmonic function on M is constant, and *non-parabolic* otherwise.

The parabolicity is equivalent to each of the following properties, that can be regarded as equivalent definitions:

- 1. There exists no positive fundamental solution of $-\Delta$.
- 2. $\int_{0}^{\infty} p_t(x, y) dt = \infty$ for all/some $x, y \in M$.
- 3. Brownian motion on M is recurrent.

For example, \mathbb{R}^n is parabolic for $n \leq 2$ and non-parabolic for n > 2.

Theorem 3 Let M be geodesically complete and satisfy (LY). Then M is parabolic if and only if for all/some $x \in M$

$$\int^{\infty} \frac{r dr}{V(x,r)} = \infty.$$
⁽²⁾

For example, if $V(x,r) \simeq r^{\alpha}$ then (2) is satisfies if and only if $\alpha \leq 2$. In particular, \mathcal{R}^{α} is parabolic if and only if $\alpha \leq 2$.

Heat kernels on manifolds with ends

Let $M_1, ..., M_k$ be complete non-compact manifolds satisfying (LY). Fix a reference point $o_i \in M_i$ and set $|x| = d_i(x, o_i)$. Assume for simplicity that

 $V_i(o_i, r) \simeq r^{\alpha_i}$ for large r.

(results for general functions V_i are available as well).

In the case if M_i is parabolic, we assume in addition that M_i has "relatively connected annuli": there is A > 1 such that, for all large r and all x, y with |x| = |y| = r, the points x, y can be connected by a curve in the annulus $B_i(o_i, Ar) \setminus B_i(o_i, A^{-1}r)$. Clearly, all \mathcal{R}^{α} have this property (but not \mathbb{R}^1).

Set $M = M_1 \# ... \# M_k$. We present in this setting partial estimates of the heat kernel $p_t(x, y)$ on M when x and y belong to different ends E_i and E_j , respectively, and |x|, |y|, t are large. Estimates for all t, x, y are available as well.

Non-parabolic case

Theorem 4 (AG and L.Saloff-Coste '09) Under the above conditions, assume that all $\alpha_i > 2$ (that is, all M_i are non-parabolic). Set

 $\alpha = \min_{1 \le i \le k} \alpha_i \; .$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \asymp C\left(\frac{1}{t^{\alpha/2} |x|^{\alpha_i - 2} |y|^{\alpha_j - 2}} + \frac{1}{t^{\alpha_j/2} |x|^{\alpha_i - 2}} + \frac{1}{t^{\alpha_i/2} |y|^{\alpha_j - 2}}\right) e^{-\frac{d^2(x,y)}{ct}}.$$
 (3)

In the long time regime, that is, for fixed x, y and for $t \to \infty$, we obtain from (3) that $p_t(x, y) \simeq t^{-\alpha/2}$.

Hence, the long time decay of p_t is determined by the *minimal* volume growth exponent min α_i . Note for comparison, that $V(x,r) \simeq r^{\max \alpha_i}$.

For example, (3) holds for $M = \mathcal{R}^{\alpha_1} \# ... \# \mathcal{R}^{\alpha_k}$ if all $\alpha_i > 2$. Probabilistic meaning for $p_t(x, y) \simeq t^{-\alpha/2}$: in order to get from x to y in time t, Brownian motion on M spends most time in the *smallest* end \mathcal{R}^{α} . The reason for that is, that the return probability in that end is the largest.

Consider also the medium time regime when $|x| \simeq |y| \simeq \sqrt{t} \to \infty$. In this case (3) implies $p_t(x,y) \simeq t^{-\left(\frac{\alpha_i+\alpha_j}{2}-1\right)} \ll t^{-\alpha/2}$, which we refer to as a bottleneck effect. In the case $M = \mathbb{R}^n \# \mathbb{R}^n$, n > 2, (3) implies (1), that is,

$$p_t(x,y) \simeq \frac{C}{t^{n/2}} \left(\frac{1}{|x|^{n-2}} + \frac{1}{|y|^{n-2}} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

Mixed case

Theorem 5 Assume that all $\alpha_i \neq 2$ and there is $\alpha_l > 2$. Set

$$\widetilde{\alpha}_i := \begin{cases} 4 - \alpha_i, & \alpha_i < 2\\ \alpha_i, & \alpha_i > 2 \end{cases}$$

and

$$\alpha := \min_{1 \le i \le k} \widetilde{\alpha}_i.$$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \simeq C\left(\frac{1}{t^{\alpha/2} |x|^{\tilde{\alpha}_i - 2} |y|^{\tilde{\alpha}_j - 2}} + \frac{1}{t^{\tilde{\alpha}_i/2} |y|^{\tilde{\alpha}_j - 2}} + \frac{1}{t^{\tilde{\alpha}_j/2} |x|^{\tilde{\alpha}_i - 2}}\right) \qquad (4)$$
$$\times |x|^{(2-\alpha_i)_+} |y|^{(2-\alpha_j)_+} e^{-\frac{d^2(x,y)}{ct}}$$

Observe that always $\tilde{\alpha}_i > 2$, and the minimal $\tilde{\alpha}_i$ is determined by the value of α_i that is *nearest* to 2!

Hence, the long time decay of the heat kernel $p_t(x,y) \simeq t^{-\alpha/2}$ is determined by the nearest to 2 value of α_i .

This rules applies also to Theorem 4 where the nearest to 2 exponent α_i is the minimal one. As we will see below, this rules is valid also in the parabolic case. As an example, consider $M = \mathcal{R}^1 \# \mathcal{R}^3$, where $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^3$.

Parabolic case

In the next two theorems we state our main result, obtained by AG, S.Ishiwata and L.Saloff-Coste in 2015.

Theorem 6 (Subcritical case) Assume that $0 < \alpha_i < 2$ for all i = 1, ..., k and set

$$\alpha = \max_{1 \le i \le k} \alpha_i \; .$$

For $x \in E_i$ and $y \in E_j$ with $i \neq j$ we have

$$p_t(x,y) \asymp \frac{C}{t^{\alpha/2}} e^{-\frac{d^2(x,y)}{ct}}.$$

In this case the long time behavior of the heat kernel $p_t(x, y) \simeq t^{-\alpha/2}$ is determined by the *maximal* volume growth exponent α_i , which is again nearest to 2. There is no bottleneck effect in this case.

In the next statement we use the following notation:

$$Q(x,t) = \frac{1}{\ln|x|} + \frac{1}{\ln t} \left(\ln \frac{\sqrt{t}}{|x|} \right)_{+} \simeq \begin{cases} \frac{1}{\ln|x|}, & \text{if } |x| \ge \sqrt{t} \\ \frac{1}{\ln t} \ln \frac{e\sqrt{t}}{|x|}, & \text{if } |x| \le \sqrt{t}, \end{cases}$$

Theorem 7 (Critical case) Assume that $0 < \alpha_i \leq 2$ for all i = 1, ..., k and that $\alpha_l = 2$ for some l. For $x \in E_i$ and $y \in E_j$ with $i \neq j$ the following is true: (a) If $\alpha_i < 2$ and $\alpha_j < 2$ then in the case $|x| + |y| \geq \sqrt{t}$

$$p_t(x,y) \asymp \frac{C \ln t}{t} e^{-\frac{d^2(x,y)}{ct}},$$

and in the case $|x| + |y| < \sqrt{t}$

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln t \left[\left(\frac{|x|}{\sqrt{t}} \right)^{2-\alpha_i} + \left(\frac{|y|}{\sqrt{t}} \right)^{2-\alpha_j} \right] \right).$$

(b) If $\alpha_i = 2$ and $\alpha_j < 2$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + Q(x,t) \ln t \left(\frac{|y|}{|y| + \sqrt{t}} \right)^{2-\alpha_j} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

In particular, if $|x|, |y| \ge \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \frac{\ln t}{\ln |x|} \right) e^{-\frac{d^2(x,y)}{ct}}$$

and if $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln \frac{e\sqrt{t}}{|x|} \left(\frac{|y|}{\sqrt{t}} \right)^{2-\alpha_j} \right).$$

(c) If $\alpha_i = \alpha_j = 2$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(Q(x,t) Q(y,t) + Q(x,t) \frac{\ln|y|}{\ln|y| + \ln t} + Q(y,t) \frac{\ln|x|}{\ln|x| + \ln t} \right) e^{-\frac{d^2(x,y)}{ct}}.$$

In particular, if $|x|, |y| \ge \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} \left(\frac{1}{\ln|x|} + \frac{1}{\ln|y|} \right) e^{-\frac{d^2(x,y)}{ct}},$$

and if $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t \ln^2 t} \left(\ln \frac{e\sqrt{t}}{|x|} \ln \frac{e\sqrt{t}}{|y|} + \ln |y| \ln \frac{e\sqrt{t}}{|x|} + \ln |x| \ln \frac{e\sqrt{t}}{|y|} \right).$$

Note that in the setting of Theorem 7 the long time behavior of the heat kernel is simple:

$$p_t(x,y) \simeq \frac{1}{t} \simeq \frac{1}{V(o,\sqrt{t})}$$

and is determined by the value $\alpha_l = 2$, which is again the nearest to 2 volume growth exponent.

In the medium time regime $|x| \simeq |y| \simeq \sqrt{t} \to \infty$ we have the following. In the case (a), that is, $\alpha_i, \alpha_j < 2$:

$$p_t(x,y) \simeq \frac{\ln t}{t}.$$

In the case (b), that is, $\alpha_i = 2, \alpha_j < 2$:

$$p_t(x,y) \simeq \frac{1}{t}.$$

In the case (c), that is, $\alpha_i = \alpha_j = 2$:

$$p_t(x,y) \simeq \frac{1}{t \ln t}.$$

Some examples

Let $M = \mathbb{R}^2 \# \mathbb{R}^2$. This manifold is equivalent to the catenoid. Let x, y belong to the different sheets.

Then by Theorem 7(c) we have

$$p_t(x,y) \simeq \frac{C}{t} \left(Q(x,t)Q(y,t) + Q(x,t) \frac{\ln|y|}{\ln|y| + \ln t} + Q(y,t) \frac{\ln|x|}{\ln|x| + \ln t} \right) e^{-\frac{d^2(x,y)}{ct}}$$

If $t \to +\infty$ then $p_t(x,y) \simeq t^{-1}$. If $|x| \ge \sqrt{t}$ and $|y| \ge \sqrt{t}$ then
 $p_t(x,y) \asymp \frac{C}{t} \left(\frac{1}{\ln|x|} + \frac{1}{\ln|y|} \right) e^{-\frac{d^2(x,y)}{ct}}$.
In particular, if $|x| \simeq |y| \simeq \sqrt{t}$ then $p_t(x,y) \simeq \frac{1}{t\ln t}$.

Let $M = \mathcal{R}^1 \# \mathcal{R}^2$. By Theorem 7(b) we obtain, for $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^2$,

$$p_t(x,y) \asymp \frac{C}{t} \left(1 + \ln t \frac{|x|}{|x| + \sqrt{t}} Q(y,t) \right) e^{-\frac{d^2(x,y)}{ct}}$$

If $|x|, |y| > \sqrt{t}$ then

$$p_t(x,y) \asymp \frac{C}{t} e^{-\frac{d^2(x,y)}{ct}},$$

If $|x|, |y| \leq \sqrt{t}$ then

$$p_t(x,y) \simeq \frac{1}{t} \left(1 + \frac{|x|}{\sqrt{t}} \ln \frac{e\sqrt{t}}{|y|} \right).$$

For $t \to \infty$ we obtain

$$p_t(x,y) \simeq t^{-1}.$$

If $y \simeq 1$ and $|x| \simeq \sqrt{t} \to \infty$ then

$$p_t(x,y) \simeq \frac{\ln t}{t}.$$

Let $M = \mathcal{R}^2 \# \mathcal{R}^3$. This is a mixed case, that is covered by extension of Theorem 5. It yields the following estimate for $x \in \mathcal{R}^2$ and $y \in \mathcal{R}^3$:

$$p_t(x,y) \simeq C\left(\frac{\ln|x|}{t\ln^2 t |y|} + \frac{1}{t^{3/2}}Q(x,t)\right)e^{-\frac{d^2(x,y)}{ct}}.$$

For $t \to \infty$ we have

$$p_t\left(x,y\right) \simeq \frac{1}{t\ln^2 t}.$$

For $|x| \simeq |y| \simeq \sqrt{t} \to \infty$ we obtain

$$p_t\left(x,y\right) \simeq \frac{1}{t^{3/2}\ln t},$$

so that there is a bottleneck effect. For $|y| \simeq 1$ and $|x| \simeq \sqrt{t} \to \infty$ we obtain

$$p_t\left(x,y\right) \simeq \frac{1}{t\ln t},$$

that is, an anti-bottleneck effect.

Let
$$M = \mathcal{R}^1 \# \mathcal{R}^2 \# \mathcal{R}^3$$
. For $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^2$ we have
 $p_t(x, y) \simeq C\left(\frac{\ln|y|}{t\ln^2 t} + \left(\frac{|x|}{t^{3/2}} + \frac{1}{t\ln^2 t}\right)Q(y, t)\right)e^{-\frac{d^2(x, y)}{ct}}.$

In particular, for $t \to \infty$

$$p_t(x,y) \simeq \frac{1}{t \ln^2 t},$$

For $|x| \simeq |y| \simeq \sqrt{t}$ we have an anti-bottleneck effect:

$$p_t(x,y) \simeq \frac{1}{t \ln t}.$$

For $x \in \mathcal{R}^1$ and $y \in \mathcal{R}^3$ we have

$$p_t(x,y) \asymp C\left(\frac{1}{t^{3/2}}\left(1+\frac{|x|}{|y|}\right)+\frac{1}{|y|t\ln^2 t}\right)e^{-\frac{d^2(x,y)}{ct}}.$$

For $|x| \simeq |y| \simeq \sqrt{t}$ we have a bottleneck effect:

$$p_t(x,y) \simeq \frac{1}{t^{3/2}}.$$

Approach to the proof

The following approach works when all ends are non-parabolic (Theorem 4) and when all ends are parabolic (Theorems 6, 7).

In the both cases one starts with estimates for $p_t(o, o)$ where $o \in K$ is a fixed reference point. In the non-parabolic case one uses Faber-Krahn type inequalities to obtain upper bound of $p_t(o, o)$. Li-Yau upper bound for the heat kernel $p_t^{(i)}$ on M_i implies certain FK inequality on M_i . The "weakest" of FK inequalities across all ends M_i gives a FK inequality on M, which implies then the upper bound of $p_t(o, o)$, which matches the weakest upper bound among all $p_t^{(i)}(o_i, o_i)$.

For the lower bounds of $p_t(x, y)$ one uses inequality $p_t(x, y) \ge p_t^{E_i}(x, y)$, where $p_t^{E_i}$ is the Dirichlet heat kernel in E_i . By non-parabolicity of M_i , $p_t^{E_i}(x, y)$ satisfies (LY) away from ∂E_i , which then implies the lower bound of $p_t(o, o)$ that matches the strongest lower bound among all $p_t^{(i)}(o_i, o_i)$.

To obtain estimates for $p_t(x, y)$ for arbitrary x, y one uses the *hitting probability*. For any closed set $S \subset M$, define the function $\psi_S(t, x)$ on $\mathbb{R}_+ \times M$ as the probability that Brownian motion on M hits S before time t provided the starting point is x. In fact, $\psi_S(t, x)$ solves in $\mathbb{R}_+ \times S^c$ the heat equation with the initial condition $\psi_S(0, \cdot) = 0$ and the boundary condition $\psi_S(t, \cdot) = 1$ on ∂S . Then the following inequality is true for $x \in E_i$ and $y \in E_j$ with $i \neq j$: $p_t(x,y) \leq 2\psi_{\partial E_i}(t,x)\psi_{\partial E_j}(t,y) \sup_{s\in[t/4,t]} \sup_{v\in\partial E_i,w\in\partial E_j} p_s(v,w)$ $+ \left(\psi_{\partial E_i}(t,x) \sup_{s\in[t/4,t]} \psi'_{\partial E_j}(s,y) + \psi_{\partial E_j}(t,y) \sup_{s\in[t/4,t]} \psi'_{\partial E_i}(s,x)\right)$ $\times \int_0^t \sup_{v\in\partial E_i,w\in\partial E_j} p_s(v,w) ds,$

and there is a similar lower bound.

Note that $\psi_{\partial E_i}$ depends only on the intrinsic geometry of M_i and can be estimated using (LY) on M_i .

By local Harnack inequality $p_s(v, w)$ can be estimated via $p_s(o, o)$, which gives desired estimates for $p_t(x, y)$

In the parabolic case this scheme works except for the crucial upper bound for $p_t(o, o)$. Indeed, the FK method gives the upper bound of $p_t(o, o)$ using the smallest volume growth exponent α_i whereas in the parabolic case we expect to use the largest exponent α_i , that is, we need a stronger upper bound.

In fact, in the parabolic case we prove the following upper bound:

$$p_t(o,o) \le \frac{C}{V(o,\sqrt{t})},\tag{5}$$

using a new method involving the *resolvents* on each end:

$$R_{\lambda}^{(i)}\left(x,y\right) = \int_{0}^{\infty} e^{-t\lambda} p_{t}^{(i)}\left(x,y\right) dt,$$

where $\lambda > 0$. The parabolicity of M_i implies that $R_{\lambda}^{(i)}(x, y) \to \infty$ as $\lambda \to 0$, and the rate of increase of $R_{\lambda}^{(i)}(x, y)$ as $\lambda \to 0$ is related to the rate of decay of $p_t^{(i)}(x, y)$ as $t \to \infty$.

One shows that the resolvent $R_{\lambda}(x, y)$ on M satisfies a certain integral equation involving as coefficients $R_{\lambda}^{(i)}(x, y)$. This allows to estimate the rate of growth of $R_{\lambda}(x, y)$ as $\lambda \to 0$ and then to recover the upper bound (5). In the critical case one has to involve also the estimates of $\frac{\partial}{\partial \lambda}R_{\lambda}(x, y)$. Once the upper bound (5) is known, it implies automatically the matching lower bound

$$p_t(o,o) \ge \frac{c}{V(o,\sqrt{t})}$$

by a theorem of AG and T.Coulhon '97.