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Li-Yau estimate

Let M be geodesically complete non-compact Riemannian manifold. Denote by
d (x,y) the geodesic distance, B (z,r) geodesic ball of radius r centered at z, and
set V (z,7) = p (B (x,r)), where p is the Riemannian measure. Let p; (z,y) be the
heat kernel of M.

Theorem 1 (Li and Yau ’86) If Ricciyy > 0 then

< e (_CF 1)) (LY)

P (xay) ct

Here = means that there are < and > but with different values of positive
constants ¢, C'. This estimate (LY') holds also on a more general class of manifolds
described below.

Definition. We say that M satisfies volume doubling condition if for all x € M and

r>0
V(x,2r) < CV (z,7). (VD)



Definition. We say that M satisfies the (weak) Poincaré inequality if there are
constants C' > 0 and ¢ € (0, 1) such that, for any ball B (z,7) and for any function
ue CH(B(x,r)),

inf/ (u—s)du < CT2/ Vul? dp. (PI)
seR B(z,er) B(z,r)

Theorem 2 (LY) < (VD) + (PI).

Let us give some examples of manifolds satisfying (LY'). Fix an integer D > 2
and for any 2 < n < D consider manifold R" := R" x SP~". For n = 1 manifold R!
is obtained from R, x SP~! by closing it into a complete manifold:

Then R" satisfies (LY') for all n > 1. Note that, for large r, V (o,7) ~ r", where
0o € R" is a fixed reference point o € R".



More generally, define R® for any real a > 0 as (RD , ga) where the metric g, is
determined in the polar coordinates (r,6) by

Go = dr® + 129 dp?
for » > 1 and g, is Euclidean for small r, where

a—1

b=~N—7

For example, for &« = N we obtain R” = RP”. It is easy to verify that, for large r,
V (o,7) ~r®.

Moreover, R® satisfies (LY') provided 0 < ao < D.
The number « is called “the dimension at co” of R®, while D is the topological
“local” dimension of R®.



Example with bottleneck

Let M = R"#R" be a connected sum of two copies of R™ with n > 3. On this
manifold V' (z,r) >~ r™ as in R".

RI’]

RI’]

The heat kernel on M satisfies upper bound of (LY') but the lower bound

& (af,y)>

ct

pe(w,y) > WGXP <
breaks down if x and y belong to different copies of R™ as on the picture below.
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Rn

Rn

Indeed, as we will see later on, in this case, for large t,

C 1 1 d*(z,y)
e =g (e e o () =

1
In particular, if |z| ~ |y| ~ v/t then p, (z,y) ~ <

tn—1 tn/2
predicted by (LY).
Probabilistic meaning: for Brownian motion getting from x to y is hard as it has

to go through the bottleneck of the central part, thus significantly reducing transition
probability.

1 .
where the value 7 is



Manifolds with ends

Let M, ..., M} and M be complete non-compact Riemannian manifolds. We say
that M is a connected sum of M, ..., M} and write

M = My#Mo#t. M,

if M =KUEFE;U...UE, where K C M is compact and each Fj; is isometric to an
exterior domain in M;. The sets E; are called the ends of M (sometimes M; are also
referred to as ends).

® E=Mi\ K|




The question to be discussed here is:

Assuming that all M, are complete and satisfy (LY),
how to estimate the heat kernel on M = M # My#...4#M;.?

For example, how to estimate the heat kernel on M = R H#R2H#.. . H#R*?

Or even on M = R"#R"?
The estimate in the case n > 3 was stated in (1), but the case n = 2 is more
complicated.

The answer to the above question depends on the property of the ends M; to be
parabolic or not, which will be discussed on the next page.



Parabolic and non-parabolic manifolds

Definition. A Riemannian manifold M is called parabolic if any positive superhar-
monic function on M is constant, and non-parabolic otherwise.

The parabolicity is equivalent to each of the following properties, that can be
regarded as equivalent definitions:

1. There exists no positive fundamental solution of —A.

2. [“pi(z,y)dt = oo for all/some x,y € M.

3. Brownian motion on M is recurrent.

For example, R" is parabolic for n < 2 and non-parabolic for n > 2.

Theorem 3 Let M be geodesically complete and satisfy (LY'). Then M is parabolic
if and only if for all/some x € M

/ v?i% - )

For example, if V (z,7) ~ r® then (2) is satisfies if and only if « < 2. In
particular, R® is parabolic if and only if a < 2.




Heat kernels on manifolds with ends

Let My, ..., M} be complete non-compact manifolds satisfying (LY"). Fix a reference
point o; € M; and set |x| = d; (x, 0;) . Assume for simplicity that

Vi (0;,7) >~ r for large 7.

(results for general functions V; are available as well).

In the case if M; is parabolic, we assume in addition that M; has “relatively
connected annuli”: there is A > 1 such that, for all large r and all x,y with |z| =
ly| = r, the points z,y can be connected by a curve in the annulus B; (0;, Ar) \
B; (0;, A7'r) . Clearly, all R have this property (but not R').

0]

10



Set M = M+#...4#M;. We present in this setting partial estimates of the heat
kernel p; (z,y) on M when x and y belong to different ends E; and E;, respectively,
and |z|,|y|,t are large. Estimates for all ¢, z,y are available as well.

Non-parabolic case

Theorem 4 (AG and L.Saloff-Coste '09) Under the above conditions, assume that
all oy > 2 (that is, all M; are non-parabolic). Set

a = min «; .
1<i<k

For x € E; andy € E; with i # j we have

1 1 1 d? (x,y)
=C T ’
Pt (.TC,y) <ta/2|$ Oéi—2|y‘aj_2 + tOéj/2|:U o;—2 + tai/2|y‘aj—2> € t ( )

In the long time regime, that is, for fixed x,y and for ¢ — oo, we obtain from (3)
that p; (z,y) ~ t=/2.

Hence, the long time decay of p; is determined by the minimal volume growth
exponent min «;. Note for comparison, that V' (x,r) o rmaxai,
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For example, (3) holds for M = R* #...#R* if all a; > 2. Probabilistic meaning
for py (x,y) ~ t=*/%: in order to get from z to y in time ¢, Brownian motion on M
spends most time in the smallest end R*. The reason for that is, that the return
probability in that end is the largest.

Consider also the medium time regime when |z| ~ |y| ~ v/t — oo. In this case
a;tag

(3) implies p; (x,y) ~ t_( 1) < t7%/2_ which we refer to as a bottleneck effect.
In the case M = R"#R", n > 2, (3) implies (1), that is,

( ) C ( 1 I 1 > _d2(m,y)
pelx,y) < - P — e ct |
N N
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Mixed case

Theorem 5 Assume that all o; # 2 and there is oy > 2. Set

3 — 4—0@, a; < 2
L 78 a; > 2

and

o = min aq;.
1<i<k

For x € E; andy € Ej with i # j we have

1 1 1
x, ~ (C = — + — + — = 4
bt ( y) <ta/2 ‘ZE a;—2 ‘ylaj—Q taz/Q |y|ocj—2 taj/Q |.'L' ai2> ( )

% ’x’(2—&i)+ |y|(2—01j)+ e—dQ(ji’y)

Observe that always «; > 2, and the minimal «; is determined by the value of
«; that is nearest to 2!

Hence, the long time decay of the heat kernel p, (z,7y) ~ t=%/? is deter-
mined by the nearest to 2 value of ;.
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This rules applies also to Theorem 4 where the nearest to 2 exponent «; is the
minimal one. As we will see below, this rules is valid also in the parabolic case.

As an example, consider M = R'#R3, where x € R! and y € R3.
3

R'=R, x §?

R3

In this case a1 =1, ay = 3 whence a; = ap = 3. It follows from (4) that

C |z|\ 2w
pt(x,y) = t37 (1 + m) & ct

For t — oo we obtain p; (x,y) ~ t=3/2. In the case |y| ~ 1, |2| ~ v/t — oo we obtain
pe (w,y) ~ 171 > t7%2 — a kind of anti-bottleneck effect!
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Parabolic case

In the next two theorems we state our main result, obtained by AG, S.Ishiwata and
L.Saloff-Coste in 2015.

Theorem 6 (Subcritical case) Assume that 0 < o; <2 for alli=1,....,k and set

= Imax o .
1<i<k

For xz € E; andy € E; with i # j we have

P (z,y) < #376_ ot

In this case the long time behavior of the heat kernel p, (z,y) ~ t=%/2 is de-
termined by the maximal volume growth exponent «;, which is again nearest to 2.
There is no bottleneck effect in this case.

In the next statement we use the following notation:

1 1 t — if |z| >Vt
Qz,t)=——+— (In— Vi ~ lrﬂw' e\/i , a
In|z| Int k4 In <%t if |o| < VA,

Int
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Theorem 7 (Critical case) Assume that 0 < a; < 2 for all i = 1,...;k and that
a; = 2 for some l. For x € E; and y € E; with i # j the following is true:
(a) If a; < 2 and a; < 2 then in the case |z| + |y| > V/t

Clnt 2@y
t (& ct ,

g (xay) =

and in the case |z| + |y| < /1t

pi(z,y) = g (1 +Ind K%)Q“ i (%)Q%D |

(b) If vy =2 and oj < 2 then

C |y 79\ R
= — 11 t)Int [ ———— ct

In particular, if |x|,|y| > v/t then

C Int _ d2(z)
pt(xay)x?(l‘l‘ )6 et

In |z|
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and if |z|, |y| <Vt then

(¢) If a; = aj = 2 then

In |y|

I t

C
Pt (xay) = 7

(Q (z,t) Q (y,t) + Q (x,1) In || > ey

In particular, if |x|,|y| > V/t then

(z,y) C( L ;1 —
x’ = — (& ct ,
Peisy t \In|z| Inly|

and if |z|, |y| <Vt then

C e\ﬁ e\/z_f
pe (7, 9) In m In "

T tln?t

+Infy[In

evt eﬂ> |

+ In|z|In —
7]

Y|
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Note that in the setting of Theorem 7 the long time behavior of the heat kernel

is simple:
1 1

SO

and is determined by the value a; = 2, which is again the nearest to 2 volume growth
exponent.

In the medium time regime |z| ~ |y| ~ v/t — oo we have the following.

In the case (a), that is, a;, a; < 2

Int
pe (z,y) =~ T
In the case (b), that is, a; =2, a; < 2:
1
Pt (x7y) = Z
In the case (c), that is, a; = a; = 2:
1
pi (z,y) =~ ot

18



Some examples

Let M = R2*#R2.

This manifold is equivalent to
the catenoid. Let x,y belong
to the different sheets.

Then by Theorem 7(c¢) we have

e =T (@001 + Qe

If t — +o0 then p, (z,y) ~ t~'. If |z| > v/t and |y| > v/t then

( ) C 1 X 1 _dz(ryy)
T,Yy) =X — e et .
Pty t \In|z| In|y|

In Jy|
In|y| +1Int

+Q(y, 1)

In |z| > _ a2 (@)
e :

In|z| +Int

In particular, if |z| =~ |y| = v/t then p; (z,y) ~ .
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Let M = R'#R?. By Theorem 7(b) we obtain, for z € R! and y € R?,

C ‘ZC‘ > _d%(zyy)
r,y) < —(1+Int———— Jt) e e
pe(@,y) t( |x|+ﬁQ(y )
If |z|, |y| > v/t then
C _dQ(x,y)
ple,y) < S

If ||, |y] < v/t then
1 || e\/E)
pelz,y) -1+ —In——].
() t( Vil

For t — oo we obtain
Dt ($7y> gt_l'
If y ~ 1 and |z| ~ v/t — oo then
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Let M = R?*#R3. This is a mixed case, that is covered by extension of Theorem
5. Tt yields the following estimate for x € R? and y € R?:

In |z| 1 d%(z.y)
x,y) =<C + r,t) ) e et .

For t — oo we have

1
T,Y)
P (@) tIn?t
For |z| ~ |y| ~ v/t — oo we obtain
1

pe (2, y) ~ B2 nt’

so that there is a bottleneck effect. For |y| ~ 1 and |z| ~ v/t — 0o we obtain

1

Pt (:zs,y) = m,

that is, an anti-bottleneck effect.
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Let M = R'#R2#R3. For x € R and y € R? we have

In |y| || 1 _ a2 (@)
x,y) ~C + + Jt) ) e e .
P (2.y) (t1n2t (t3/2 tln®t Q1)
In particular, for t — oo
1
C tln®t’
For |z| ~ |y| ~ v/t we have an anti-bottleneck effect:

N 1
~ tint

Pt (33, y)

Dt (:L’, y)

For x € R! and y € R? we have

1 |$‘ 1 d?(z,y)
) =0 —(1+2 )+ —— e .
P (@) <t3/2 ( |y\) \y\tln%)

For |x| ~ |y| ~ v/t we have a bottleneck effect:

1
pe(,y) 73
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Approach to the proof

The following approach works when all ends are non-parabolic (Theorem 4) and
when all ends are parabolic (Theorems 6, 7).

In the both cases one starts with estimates for p; (0,0) where 0 € K is a fixed
reference point. In the non-parabolic case one uses Faber-Krahn type 1nequahtles
to obtain upper bound of p; (0,0). Li-Yau upper bound for the heat kernel p; % on
M; implies certain FK inequality on M;. The “weakest” of FK inequalities across
all ends M; gives a FK inequality on M, which implies then the upper bound of
pt (0,0), which matches the weakest upper bound among all pgi) (04,0;) .

For the lower bounds of p; (z,y) one uses inequality p; (z,y) > p (z,y), where
pr is the Dirichlet heat kernel in E;. By non-parabolicity of M;, p/ (z,y) satisfies
(LY') away from OF;, which then implies the lower bound of p; (0,0) that matches

the strongest lower bound among all p,(f) (04,0;) .

To obtain estimates for p; (z,y) for arbitrary x, y one uses the hitting probability.
For any closed set S C M, define the function 1 ¢(¢, z) on R, x M as the probability
that Brownian motion on M hits S before time t provided the starting point is
x. In fact, ¥g (t,x) solves in Ry x S¢ the heat equation with the initial condition
¥4 (0,-) = 0 and the boundary condition ¥g (¢,-) = 1 on 98S.
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Then the following inequality is true for x € E; and y € E; with @ # j:

pe(@,y) < 24¢5p, (L 2)0og,(ty) sup  sup  py(v,w)
s€[t/4,t] vEOE; ,wedE;

+<¢8Ei(tax) sup Yy, (8,y) + Yop,(t,y) sup @%Ei(s)x))
s€E[t/4,t] sE[t/4,t]

t
X / sup  ps(v,w)ds,
0

anEi,wéaE]‘

and there is a similar lower bound.

Note that 1, depends only on
the intrinsic geometry of M; and
can be estimated using (LY’) on M,;.

By local Harnack inequality ps (v, w)
can be estimated via ps (0,0), which
gives desired estimates for p; (z,y)
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In the parabolic case this scheme works except for the crucial upper bound for
pt (0,0). Indeed, the FK method gives the upper bound of p; (0, 0) using the smallest
volume growth exponent a; whereas in the parabolic case we expect to use the largest
exponent «;, that is, we need a stronger upper bound.

In fact, in the parabolic case we prove the following upper bound:

C
pe(0,0) < m, (5)

using a new method involving the resolvents on each end:
RY (,y) = / e p” (x,y) dt,
0

where A > 0. The parabolicity of M; implies that Rf\i) (x,y) — oo as A — 0, and the
rate of increase of Rf\i) (z,y) as A — 0 is related to the rate of decay of pgi) (x,y) as
t — oo.

One shows that the resolvent Ry (z,y) on M satisfies a certain integral equation
involving as coefficients Rf\i) (z,y). This allows to estimate the rate of growth of

Ry (z,y) as A — 0 and then to recover the upper bound (5). In the critical case one
has to involve also the estimates of % Ry (z,y) .
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Once the upper bound (5) is known, it implies automatically the matching lower

bound
c

0,0) > —————
pt( ) V( 7\/1—5)
by a theorem Of AG and T.COUlhOH ’91 .
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