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1 Chain spaces and path homology on digraphs

1.1 Paths and the boundary operator

Let us fix a finite set V and a field K. For any p ≥ 0, an elementary p-path is any sequence
i0, ..., ip of p + 1 vertices of V ; it will be also denoted by ei0...ip .
A p-path is any formal linear combinations of elementary p-paths ei0...ip with coefficients
from K; that is, any p-path u has a form

u =
∑

i0,i1,...,ip∈V

ui0i1...ip ei0i1...ip ,

where ui0i1...ip ∈ K. The set of all p-paths is a K-linear space denoted by Λp = Λp (V,K).

For example, Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉.

Definition. Define for any p ≥ 1 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
, (1)

where ̂ means omission of the index. For p = 0 set ∂ei = 0 (and, hence, Λ−1 = {0}).
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For example,
∂eij = ej − ei and ∂eijk = ejk − eik + eij .

It is easy to show that ∂2 = 0. Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂
← Λ1

∂
← ∙ ∙ ∙

∂
← Λp−1

∂
← Λp

∂
← ∙ ∙ ∙

An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p−1, and irregular
otherwise. A p-path is called regular (resp. irregular) if it is a linear combination of regular
(resp. irregular) elementary paths.

Denote by Rp the space of all regular p-paths. Then ∂ is well defined on the spaces Rp if
we identify all irregular paths with 0 (which is justified by the fact that if u is irregular
then ∂u is also irregular). For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij ∈ R1,

because eii = 0. Hence, we obtain a regular chain complex

0 ← R0
∂
← R1

∂
← ∙ ∙ ∙

∂
← Rp−1

∂
← Rp

∂
← ∙ ∙ ∙
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1.2 Chain complex on digraphs

A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and E ⊂ {V×V \diag}
is a set of arrows (directed edges). If (i, j) ∈ E then we write i→ j.

Definition. An elementary p-path ei0...ip in a digraph G = (V,E) is called allowed

if ik → ik+1 for any k = 0, ..., p − 1,

and non-allowed otherwise.

A p-path is called allowed if it is a linear combination of allowed elementary p-paths.

Denote by Ap = Ap (G,K) the linear space of all allowed p-paths. Since any allowed path
is regular, we have Ap ⊂ Rp.

We would like to build a chain complex based on spaces Ap. However, in general ∂ does

not act on the spaces Ap. For example, in the digraph
a
• →

b
• →

c
• we have eabc ∈ A2

but ∂eabc = ebc − eac + eab /∈ A1 because eac is not allowed.

Consider the following subspace of Ap:

Ωp ≡ Ωp (G,K) := {u ∈ Ap : ∂u ∈ Ap−1} .
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Claim. ∂Ωp ⊂ Ωp−1. Indeed, if u ∈ Ωp then ∂u ∈ Ap−1 and ∂(∂u) = 0 ∈ Ap−2 whence
∂u ∈ Ωp−1.

For example, we have Ω0 = A0 = 〈ei : i ∈ V 〉 and Ω1 = A1 = {eij : i→ j}.

Definition. The elements of Ωp are called ∂-invariant p-paths.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G,K) that reflects a digraph structure:

0 ← Ω0
∂
← Ω1

∂
← ∙ ∙ ∙

∂
← Ωp−1

∂
← Ωp

∂
← ∙ ∙ ∙ (2)

Homology groups of (2) are called path homologies of G and are denoted by Hp(G).

1.3 Examples of ∂-invariant paths

A triangle is a sequence of three distinct vertices a, b, c

such that a→ b→ c, a→ c.

It determines a ∂-invariant 2-path eabc ∈ Ω2 because

eabc ∈ A2 and ∂eabc = ebc − eac + eab ∈ A1.

The path eabc is also referred to as a triangle.

If a→ b→ c but a 6→ c then eabc ∈ A2 but eabc /∈ Ω2.
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A square is a sequence of four distinct vertices a, b, b′, c

such that a→ b→ c, a→ b′ → c while a 6→ c.

It determines a ∂-invariant 2-path

u = eabc − eab′c ∈ Ω2

because u ∈ A2 and

∂u = (ebc − eac + eab)− (eb′c − eac + eab′)

= eab + ebc − eab′ − eb′c ∈ A1.

The path u is also referred to as a square.
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1.4 Digraph maps

We write a−→=b if either a→ b or a = b.

Definition. A morphism from a digraph G = (V,E) to a digraph G′ = (V ′, E ′) is a map
f : V → V ′ such that

if a−→=b on G then f (a) −→=f (b) on G′. (3)

That is, if a → b in G then either f (a) → f (b) or f (a) = f (b) in G′. We will refer to
such morphisms also as digraphs maps and denote them shortly by f : G→ G′.

Given a map f : V → V ′, define for any p ≥ 0 the induced map

f∗ : Λp(V )→ Λp(V
′)

by the rule
f∗
(
ei0...ip

)
= ef(i0)...f(ip), (4)

extended by K-linearity to all elements of Λp (V ). It is obvious that

f∗(Rp(V )) ⊂ Rp(V
′) and f∗(Ap(G)) ⊂ Ap(G

′).

It follows from (1) and (4) that ∂f∗ = f∗∂, which implies the following.
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Proposition 1 Let G and G′ be two digraphs, and f : G→ G′ be a digraph map. Then,
for any p ≥ 0,

f∗ (Ωp (G)) ⊂ Ωp (G′) . (5)

Moreover, the map
f∗ : Ωp (G)→ Ωp (G′)

is a morphism of the chain complexes

Ω∗(G)→ Ω∗(G
′)

and, consequently, a homomorphism of homology groups

H∗(G)→ H∗(G
′)

that will also be denoted by f∗.
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1.5 Cartesian product

Given two digraphs G and H, define their Cartesian product as a digraph G�H as follows:

• the vertices of G�H are the couples (x, a) where x ∈ VG and a ∈ VH ;

• the arrows of G�H are of two types: (x, a)→ (y, a) if x→ y in G (a horizontal arrow)
and (x, a)→ (x, b) if a→ b in H (a vertical arrow):

b• . . .
(x,b)
• →

(y,b)
• . . .

↑ ↑ ↑

a• . . .
(x,a)
• →

(y,a)
• . . .

H � G . . . •
x
→ •

y
. . .

For any digraph G, define the cylinder over G by Ĝ = G�I where I = (0• → •1).

We shall put the hat̂over all notation related to Ĝ.
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Let us identify G× 0 with G and

set G′ = G× 1.

For any x ∈ V , identify (x, 0) with x

and set x′ = (x, 1) so that x→ x′ in Ĝ.

For any arrow x→ y in G, we have also

x→ y and x′ → y′ in Ĝ.
Digraph Ĝ

For any path v ∈ Λp define the lifted path v̂ ∈ Λ̂p+1 by

êi0...ip =

p∑

k=0

(−1)k ei0...iki′k...i′p (6)

and linearity.
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For example, we have

êa = eaa′

êab = eaa′b′ − eabb′

êabc = eaa′b′c′ − eabb′c′ + eabcc′

The component eabb′c′ of the 3-path êabc

If i0...ip is allowed in G then, for any k, the path i0...iki
′
k...i

′
p is allowed in Ĝ:

∙ ∙ ∙
i′k• −→

i′k+1

• −→ ∙ ∙ ∙ −→
i′p
•

↑ ↑
i0• −→ ∙ ∙ ∙ −→

ik• −→
ik+1

• ∙ ∙ ∙

,

Hence, for any v ∈ Ap we have v̂ ∈ Âp+1. Below we will prove that if v ∈ Ωp then v̂ ∈ Ω̂p+1.

For any path v in G define its image v′ in G′ by
(
ei0...ip

)′
= ei′0...i′p .
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Lemma 2 For any p-path v on G with p ≥ 0

∂v̂ + ∂̂v = v′ − v. (7)

Proof. It suffices to prove (7) for v = ei0...ip . For p = 0 set v = ei so that ∂v = 0 and
v̂ = eii′ whence

∂v̂ + ∂̂v = ei′ − ei + 0 = v′ − v.

For p ≥ 1 we have

∂v̂ =

p∑

k=0

(−1)k ∂ei0...iki′k...i′p

=

p∑

k=0

(−1)k

[
l∑

l=0

(−1)l ei0...îl...iki′k...i′p
+

p∑

l=k

(−1)l+1 e
i0...iki′k...î′l...i

′
p

]

=
∑

0≤l≤k≤p

(−1)k+l ei0...îl...iki′k...i′p
+

∑

0≤k≤l≤p

(−1)k+l+1 e
i0...iki′k...î′l...i

′
p
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and

∂̂v =

(
p∑

l=0

(−1)l ei0...îl...ip

)̂

=

p∑

l=0

(−1)l

[
p∑

k=l+1

(−1)k−1 ei0...îl...iki′k...i′p
+

l−1∑

k=0

(−1)k e
i0...iki′k...î′l...i

′
p

]

=
∑

0≤l<k≤p

(−1)k+l−1 ei0...îl...iki′k...i′p
+

∑

0≤k<l≤p

(−1)k+l e
i0...iki′k...î′l...i

′
p
.

We see that in the sum ∂v̂ + ∂̂v all the terms with k 6= l cancel out and we obtain

∂v̂ + ∂̂v =

p∑

k=0

ei0...ik−1i′k...i′p −
p∑

k=0

ei0...iki′k+1...i′p = ei′0....i′p − ei0...ip = v′ − v.

Corollary 3 If v ∈ Ωp then v̂ ∈ Ω̂p+1.

Proof. We already know that v̂ ∈ Ap+1, and we need to prove that ∂v̂ ∈ Âp. Since

v ∈ Ap and ∂v ∈ Ap−1, we have v′ ∈ Âp and ∂̂v ∈ Âp whence it follows from (7) that also

∂v̂ ∈ Âp.
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Example. The cylinder over the digraph I = (0• → •1) is a square

2=0′• −→ •1
′=3

↑ ↑
0• −→ •1

(8)

Lifting a ∂-invariant 1-path e01 ∈ Ω1 we obtain a ∂-invariant 2-path on the square:

ê01 = e00′1′ − e011′ = e023 − e013.

The cylinder over the square (8) is a 3-cube:

where we take i′ = i + 4.

Lifting the ∂-invariant 2-path v = e023 − e013

we obtain a ∂-invariant 3-path on the 3-cube:

v̂ = e00′2′3′ − e022′3′ + e0233′ − (e00′1′2′ − e011′2′ + e0133′)

= e0467 − e0267 + e0237 − e0457 + e0157 − e0137.
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2 Homotopy theory of digraphs

2.1 The notion of homotopy

For any n ≥ 1 define a linear digraph In as any digraph with vertices {0, 1, . . . , n} such
that if |i− j| = 1 then either i → j or j → i, and if |i− j| 6= 1 then there is no arrow
between i and j.

For example, here is a linear digraph I3: •
0
→ •

1
← •

2
→ •

3

Definition. Let G and H be digraphs. Two digraph maps f, g : G → H are called
homotopic if there exists a linear digraph In with some n ≥ 1 and a digraph map

Φ: G�In → H

such that
Φ|G×0 = f and Φ|G×n = g. (9)

In this case we write f ' g. Clearly, this is an equivalence relation.
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In the case n = 1 we refer to the map Φ as an one-step homotopy between f and g and

write f
1-step
' g.

It is easy to see that f, g : G→ H are homotopic if and only if there is a finite sequence
of digraph maps f = f0, f1, ..., fn = g from G to H such that

fk

1-step
' fk+1.
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Let Φ : G�I1 → H be an one-step homotopy between f and g and let I1 = (0• → •1) = I.

Then G�I is the cylinder Ĝ, and the

map Φ : G�I → H is determined by

its restrictions Φ|G = f and Φ|G′ = g.

For a vertical arrow x→ x′ we have

Φ (x) = f (x) and Φ (x′) = g (x)

so that the requirement Φ (x)−→=Φ (x′)

becomes f (x)−→=g (x) in H. The map Φ:Ĝ→H

Considering similarly the case I1 = {0• ← •1}, we obtain that f
1-step
' g if and only if

either f (x)−→=g (x) for all x ∈ VG

or g (x)−→=f (x) for all x ∈ VG.
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Example. Consider the digraphs

G = ↗

1
•↘

0• → •2
and H = a• → •b

and the mappings f, g : VG → VH given by the table:

x ∈ VG f(x) g(x)
0 a a
1 a b
2 b b

It is easy to see that both f and g are digraph maps from G to H. Moreover, f and g are
one-step homotopic, because f (x)−→=g (x) for all x ∈ VG.

Definition. Two digraphs G and H are called homotopy equivalent if there exist digraph
maps

f : G→ H, g : H → G (10)

such that
f ◦ g ' idH , g ◦ f ' idG . (11)

In this case we shall write G ' H. The maps f and g as in (12) are called homotopy
inverses of each other.
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2.2 Homotopy preserves homologies

Now we can prove the main result about connections between homotopy and homology
on digraphs.

Theorem 4 Let G,H be two digraphs.

(i) Let f, g : G→ H be two digraph maps. If f ' g then the induced maps

f∗ : Hp (G)→ Hp (H) and g∗ : Hp (G)→ Hp (H)

of the homology groups are identical, that is, f∗ = g∗ in homologies.

(ii) If the digraphs G and H are homotopy equivalent, then all their homology groups are
isomorphic.

Proof. (i) Let Φ : G�In → H be a homotopy between f and g. It suffices to treat the
case n = 1 as the general case then follows by induction. Let I1 = I = (0→ 1) so that

G�I1 = G�I = Ĝ (the case I1 = I− can be treated similarly). The maps f and g induce
morphisms of chain complexes

f∗, g∗ : Ω∗(G)→ Ω∗(H),
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and Φ induces a morphism
Φ∗ : Ω∗(Ĝ)→ Ω∗(H).

As before, we identify G with G × 0 and set G′ = G × 1. For any path v ∈ Ω∗(G)

considering as a path in Ĝ we have Φ∗ (v) = f∗ (v) and Φ∗ (v′) = g∗ (v′) .

In order to prove that f∗ and g∗ induce the identical homomorphisms H∗ (G)→ H∗ (H),
it suffices to construct a chain homotopy between the chain complexes Ω∗ (G) and Ω∗ (H),
that is, the K-linear mappings

Lp : Ωp(G)→ Ωp+1(H)

such that
∂Lp + Lp−1∂ = g∗ − f∗

(note that all the terms here are mapping from Ωp (G) to Ωp (H)) as on the following
diagram:

Ωp−1 (G)
∂
←− Ωp (G) ←− Ωp+1 (G)
Lp−1

↘ ↓f∗↓g∗
Lp

↘
Ωp−1 (H) ←− Ωp (H) ←−

∂
Ωp+1 (H)
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Let us define the mapping Lp as follows

Lp(v) = Φ∗ (v̂) for any v ∈ Ωp (G) ,

where v̂ ∈ Ωp+1(Ĝ) is the lifting of v to the graph Ĝ defined in Section 1.5. Using
∂Φ∗ = Φ∗∂ (see Proposition 1) and the product rule (7) of Lemma 2, we obtain

(∂Lp + Lp−1∂)(v) = ∂(Φ∗(v̂)) + Φ∗(∂̂v)

= Φ∗ (∂v̂) + Φ∗(∂̂v)

= Φ∗(∂v̂ + ∂̂v)

= Φ∗ (v′ − v)

= g∗ (v)− f∗ (v) .

(ii) Let f : G→ H and g : H → G be digraph maps such that

f ◦ g ' idH , g ◦ f ' idG . (12)

Then they induce the following mappings

Hp (G)
f∗→ Hp (H)

g∗→ Hp (G)
f∗→ Hp (H) .

By (i) and (13) we have f∗ ◦ g∗ = id and g∗ ◦ f∗ = id, which implies that f∗ and g∗ are
mutually inverse isomorphisms of Hp (G) and Hp (H).
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2.3 Retraction

A (induced) sub-digraph H of a digraph G is a digraph such that VH ⊂ VG, and x → y
in H if and only if x→ y in G.

Definition. Let G be a digraph and H be its sub-digraph. A retraction of G onto H is
a digraph map r : G→ H such that r|H = idH .

Let r : G → H be a retraction and let i : H → G be the natural inclusion map. By
definition of retraction we have r ◦ i = idH . Therefore, if

i ◦ r ' idG, (13)

then i and r are homotopy inverses and we obtain that G ' H. A retraction r : G→ H
with the property (14) is called a deformation retraction.

Proposition 5 Let r : G→ H be a retraction of a digraph G onto a sub-digraph H such
that

either x−→=r (x) for all x ∈ VG or r (x) −→=x for all x ∈ VG. (14)

Then r is a deformation retraction and, consequently, the digraphs G and H are homotopy
equivalent.
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Proof. Set f = idG and g = i ◦ r. For any x ∈ VG we have f (x) = x and g (x) = r (x).

The condition (15) means that f and g satisfy (??), whence f
1-step
' g. Hence, we obtain

(14) and, consequently, G ' H.

Example. Let us show that the square

G =

2• −→ •3

↑ ↑
0• −→ •1

is also contractible. It suffices to show that G ' H where H is the following subgraph

H = 0• −→ •1 .

Consider a retraction r : G→ H given by

r (0) = r (2) = 0 and r (1) = r (3) = 1.

Clearly, it satisfies r (x)−→=x for all x ∈ VG and we conclude by Proposition 5 that G ' H.
Since H is contractible, we obtain that G is also contractible.

Example. For any n ≥ 1, consider the n-dimensional cube In = I�I� . . .�I︸ ︷︷ ︸
n times

. As in the

previous example, one constructs an obvious deformation retraction of In onto In−1 thus
proving that In ' In−1. By induction we obtain that all cubes In are contractible.
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3 Fundamental group of a digraph

A based digraph G∗ is a digraph G with a fixed base vertex ∗ ∈ VG. A based digraph map
f : G∗ → H∗ is a digraph map f : G→ H such that f (∗) = ∗. Any linear digraph In will
always be considered as a based digraph with the base point 0.

3.1 C-homotopy

A loop in a digraph G is any digraph map φ : In → G with φ (0) = φ (n). A based loop
on a based digraph G∗ is a loop φ : In → G∗, such that φ (0) = φ (n) = ∗.
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A digraph map h : In → Im is called shrinking if h (0) = 0, h(n) = m, and h (i) ≤ h (j)
whenever i ≤ j (which is only possible when m ≤ n).

The cylinder Ch of the map h is the digraph

with the set of vertices VCh
= VIn t VIm and

with the set of arrows ECh
that consists of all

the arrows of In and Im and of the arrows

i→ h (i) for all i ∈ In.

Similarly define the inverse cylinder C
−
h using

h (i)→ i for all i ∈ In.
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Definition. Consider two based loops

φ : In → G∗ and ψ : Im → G∗.

We say that there is one-step direct C-homotopy from φ to ψ and write with φ
C
→ ψ if

there exists a shrinking map h : In → Im such that the map F : Ch → G given by

F |In = φ and F |Im = ψ, (15)

is a digraph map, that is, φ (i)−→=ψ (h (i)) for all i ∈ In.

If F is a digraph map from C
−
h to G then we call it an one-step inverse C-homotopy and

write φ
C
← ψ.

Example. An example of one-step direct C-homotopy is shown here:
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If n = m then h = idIn and an one-step C-homotopy is a homotopy.

Definition. We call two loops φ, ψ C-homotopic and write φ
C
' ψ if there exists a finite

sequence {φk}
m
k=0 of loops in G∗ such that φ0 = φ, φm = ψ and, for any k = 0, ...,m − 1,

holds φk
C
→ φk+1 or φk

C
← φk+1.

Clearly, φ
C
' ψ is an equivalence relation. The C-homotopy class of a based loop φ will

be denoted by [φ]. We say that a loop φ is C-contractible if φ
C
' e, that is, [φ] = [e] .

Example. A triangular loop is a loop φ : I3 → G∗ with I3 = (0→ 1→ 2← 3) .

G*=0 1 2 3

*=0

*

φ(1)

φ(2)

φ

e

h
Ch

-
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The triangular loop is C-contractible because the following shrinking map

h : I3 → I0, h (k) = 0 for all k = 0, ..., 3,

provides an inverse one-step C-homotopy between φ and e.

Example. A square loop is a loop φ : I4 → G with I4 = (0→ 1→ 2← 3← 4) .The
square loop can be C-contracted to e in two steps:

G

*=0 1 2

*=0

*

φ(1)=ψ(1) φ(2)

ψ

e

h2

Ch
-

*=0 1 2 3

φ

4

φ(3)
h1

2

Ch
-

1

28



3.2 Local description of C-homotopy

Any loop φ : In → G determines a sequence θφ = {φ(i)}ni=0 of vertices of G. We consider
the sequence θφ as a word over the alphabet VG.

Theorem 6 Two based loops φ : In → G∗ and ψ : Im → G∗ are C-homotopic if and only
if the word θψ can be obtained from θφ by a finite sequence of the following transformations
(or their inverses):

(i) ...abc... 7→ ...ac... where (a, b, c) is any permutation of a triple (v0, v1, v2) of vertices
forming a triangle in G:

↗

v2•↘
v0• → •v1

(and the dots “...” denote the unchanged parts of the words).

(ii) ...abc... 7→ ...adc... where (a, b, c, d) is any cyclic permutation (or an inverse cyclic
permutation) of a quadruple (v0, v1, v2, v3) of vertices forming a square in G:

v3• −→ •v2

↑ ↑
v0• −→ •v1
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(iii) ...abcd... 7→ ...ad... where (a, b, c, d) is as in (ii).

(iv) ...aba... 7→ ...a... if a→ b or b→ a.

(v) ...aa... 7→ ...a...

Examples.

1. A triangular loop φ : I3 → G

is contractible because

θφ = abca
(i)
∼ aca

(iv)
∼ a

2. A square loop φ : I4 → G

is contractible because

θφ = abcda
(iii)
∼ ada

(iv)
∼ a.
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3. Consider a cyclic digraph G = ↙

c
•↖

a• → •b
and the following loop φ : I3 → G :

We have θφ = abca. It is clear that this word does not allow any of the transformations
of Theorem 6, which implies that φ is not C-contractible.
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4. Consider the loops φ and ψ as p.27. It is shown here how to transform θφ to θψ using
the word transformations of Theorem 6.

 

(i)
-
 

(i) 

(ii ) 

(iii ) 

φ 

ψ 

Transforming a 5-cycle θφ to a 3-cycle θψ using successively (i)− (the inverse of (i)),
(i) , (ii) and (iii) .
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3.3 Group structure in π1

For any two linear digraphs In and Im, define the linear digraph In ∨ Im that is obtained
from In and Im by identification of the vertex n ∈ In with the vertex 0 ∈ Im.

For any linear digraph In define a linear digraph În as follows:

i→ j in În ⇔ (n− i)→ (n− j) in In.

Definition. (i) For two based loops φ : In → G and ψ : Im → G define their concatena-
tion φ ∨ ψ : In ∨ Im → G by

φ ∨ ψ(i) =

{
φ(i), 0 ≤ i ≤ n

ψ(i− n), n ≤ i ≤ n + m.

(ii) For any based loop φ : In → G define its inversion φ̂ : În → G by φ̂(i) = φ(n− i).

Denote by π1(G
∗) the set of all equivalence classes [φ] for all based loops φ in G∗. Now

we can define a product in π1 (G∗) as follows.

Definition. For any two based loops φ, ψ in G∗ define the product of the equivalence
classes [φ] and [ψ] by [φ] ∙ [ψ] = [φ ∨ ψ].
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Theorem 7 Let G,H be digraphs.

(i) The product in π1 (G∗) is well defined. The set π1(G
∗) with the product [φ] ∙ [ψ], the

neutral element [e] and inversion [φ̂] is a group.

(ii) Any based digraph map f : G∗ → H∗ induces a group homomorphism

f : π1(G
∗)→ π1(H

∗)

f ([φ]) = [f ◦ φ],

which depends only on homotopy class of f .

(iii) Let G,H be connected. If G ' H then the fundamental groups π1 (G∗) and π1 (H∗)
are isomorphic (for any choice of the base vertices).
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3.4 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group and C-homotopy.

Consider a triangle ABC on the plane R2 and its triangulation T . Assume that the set
of vertices of T is colored with three colors 1, 2, 3 in such a way that

• A,B,C are colored with 1, 2, 3 respectively;

• each vertex on any side of ABC is colored
with one of the two colors of the endpoints
of the side.

The classical lemma of Sperner says:
there exists in T a 3-color triangle, that is, a
triangle whose vertices are colored with three
different colors.

A Sperner coloring
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To prove this, let us first modify the triangulation T so that there are no vertices on the
sides AB,AC,BC except for A,B,C. Indeed, if X is a vertex on AB then we move X a
bit inside the triangle ABC. This gives rise to a new triangle in the triangulation T that
is formed by X and its former neighbors, say Y and Z, on the arrow AB (while keeping
all other triangles). However, since all X,Y, Z are colored with two colors, no 3-color
triangle emerges after that move. By induction, we remove all the vertices from the sides
of ABC.

The triangulation T can be regarded as a graph. Let us make it into a digraph G by
choosing the direction on the arrows as follows. If the vertices a, b are connected by an
arrow in T then choose direction between a, b using the colors of a, b and the following
rule:

1→ 2, 2→ 3, 3→ 1
1� 1, 2� 2, 3� 3

(16)

Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G
like

•
↗ ↖

• � •
or

•
↙ ↘

• � •
or

•
↗↙ ↘↖

• � •
,

in particular, each of them contains a triangle in the sense of Theorem 6.
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Consider a 3-loop φ : I3 → G∗ with the word θφ = ABCA. Using the transformation (ii)
of Theorem 6 and the partition of G into the triangle digraphs, we can contract the word

ABCA to an empty word. Hence, φ
C
∼ e.

Consider the cycle digraph H with the vertices a, b, c as follows

c3

↙ ↖
a1 −→ b2

(17)

where the vertex a is colored by 1, b by 2 and c by 3. Define a map f : G → H by the
rule that f (x) has the same color in H as x in G.

By the choice of directions on the arrows of G, f is a digraph map. The loop f ◦ φ on H
has the word

θf◦φ = abca,

which is not contractible on H as we have seen above. However, by Theorem 8, f induces

homomorphism of π1 (G) to π1 (H). Therefore, φ
C
' e implies that also f ◦ φ

C
' e, which

contradicts the previous observation.

37



3.5 Hurewicz theorem

One of our main results is the following discrete version of Hurewicz theorem.

Theorem 8 For any based connected digraph G∗ we have an isomorphism

π1(G
∗) /[π1(G

∗), π1(G
∗)] ∼= H1(G,Z)

where [π1(G
∗), π1(G

∗)] is a commutator subgroup.
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