Homotopy and homology of digraphs

Alexander Grigor'yan

BIMSA, March 2024

Based on a joint work with Yong Lin, Y. Muranov and S.-T. Yau

1 Chain spaces and path homology on digraphs

1.1 Paths and the boundary operator

Let us fix a finite set V and a field K. For any $p \ge 0$, an *elementary* p-path is any sequence $i_0, ..., i_p$ of p + 1 vertices of V; it will be also denoted by $e_{i_0...i_p}$. A *p*-path is any formal linear combinations of elementary *p*-paths $e_{i_0...i_p}$ with coefficients from K; that is, any *p*-path *u* has a form

$$u = \sum_{i_0, i_1, \dots, i_p \in V} u^{i_0 i_1 \dots i_p} e_{i_0 i_1 \dots i_p},$$

where $u^{i_0 i_1 \dots i_p} \in \mathbb{K}$. The set of all *p*-paths is a \mathbb{K} -linear space denoted by $\Lambda_p = \Lambda_p(V, \mathbb{K})$. For example, $\Lambda_0 = \langle e_i : i \in V \rangle$, $\Lambda_1 = \langle e_{ij} : i, j \in V \rangle$, $\Lambda_2 = \langle e_{ijk} : i, j, k \in V \rangle$.

Definition. Define for any $p \ge 1$ a linear boundary operator $\partial : \Lambda_p \to \Lambda_{p-1}$ by

$$\partial e_{i_0...i_p} = \sum_{q=0}^{p} (-1)^q e_{i_0...\hat{i_q}...i_p},$$
(1)

where $\widehat{}$ means omission of the index. For p = 0 set $\partial e_i = 0$ (and, hence, $\Lambda_{-1} = \{0\}$).

For example,

$$\partial e_{ij} = e_j - e_i$$
 and $\partial e_{ijk} = e_{jk} - e_{ik} + e_{ij}$.

It is easy to show that $\partial^2 = 0$. Hence, we obtain a chain complex $\Lambda_*(V)$:

$$0 \leftarrow \Lambda_0 \stackrel{\partial}{\leftarrow} \Lambda_1 \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_p \stackrel{\partial}{\leftarrow} \cdots$$

An elementary *p*-path $e_{i_0...i_p}$ is called *regular* if $i_k \neq i_{k+1}$ for all k = 0, ..., p-1, and *irregular* otherwise. A *p*-path is called regular (resp. irregular) if it is a linear combination of regular (resp. irregular) elementary paths.

Denote by \mathcal{R}_p the space of all regular *p*-paths. Then ∂ is well defined on the spaces \mathcal{R}_p if we identify all irregular paths with 0 (which is justified by the fact that if *u* is irregular then ∂u is also irregular). For example, if $i \neq j$ then $e_{iji} \in \mathcal{R}_2$ and

$$\partial e_{iji} = e_{ji} - e_{ii} + e_{ij} = e_{ji} + e_{ij} \in \mathcal{R}_1,$$

because $e_{ii} = 0$. Hence, we obtain a regular chain complex

$$0 \leftarrow \mathcal{R}_0 \stackrel{\partial}{\leftarrow} \mathcal{R}_1 \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_p \stackrel{\partial}{\leftarrow} \cdots$$

1.2Chain complex on digraphs

A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and $E \subset \{V \times V \setminus \text{diag}\}$ is a set of arrows (directed edges). If $(i, j) \in E$ then we write $i \to j$.

Definition. An elementary *p*-path $e_{i_0...i_p}$ in a digraph G = (V, E) is called *allowed* if $i_k \rightarrow i_{k+1}$ for any $k = 0, \dots, p-1$, and *non-allowed* otherwise.

A *p*-path is called allowed if it is a linear combination of allowed elementary *p*-paths.

Denote by $\mathcal{A}_p = \mathcal{A}_p(G, \mathbb{K})$ the linear space of all allowed *p*-paths. Since any allowed path is regular, we have $\mathcal{A}_n \subset \mathcal{R}_n$.

We would like to build a chain complex based on spaces \mathcal{A}_p . However, in general ∂ does not act on the spaces \mathcal{A}_p . For example, in the digraph $\overset{a}{\bullet} \to \overset{b}{\bullet} \to \overset{c}{\bullet}$ we have $e_{abc} \in \mathcal{A}_2$ but $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \notin \mathcal{A}_1$ because e_{ac} is not allowed.

Consider the following subspace of \mathcal{A}_p :

$$\Omega_p \equiv \Omega_p \left(G, \mathbb{K} \right) := \left\{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \right\}.$$

Claim. $\partial \Omega_p \subset \Omega_{p-1}$. Indeed, if $u \in \Omega_p$ then $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u) = 0 \in \mathcal{A}_{p-2}$ whence $\partial u \in \Omega_{p-1}$.

For example, we have $\Omega_0 = \mathcal{A}_0 = \langle e_i : i \in V \rangle$ and $\Omega_1 = \mathcal{A}_1 = \{e_{ij} : i \to j\}.$

Definition. The elements of Ω_p are called ∂ -invariant p-paths.

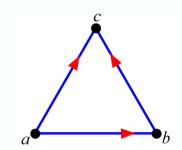
Hence, we obtain a chain complex $\Omega_* = \Omega_*(G, \mathbb{K})$ that reflects a digraph structure:

$$0 \leftarrow \Omega_0 \stackrel{\partial}{\leftarrow} \Omega_1 \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_p \stackrel{\partial}{\leftarrow} \cdots$$
(2)

Homology groups of (2) are called *path homologies* of G and are denoted by $H_p(G)$.

1.3 Examples of ∂ -invariant paths

A triangle is a sequence of three distinct vertices a, b, csuch that $a \to b \to c$, $a \to c$. It determines a ∂ -invariant 2-path $e_{abc} \in \Omega_2$ because $e_{abc} \in \mathcal{A}_2$ and $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \in \mathcal{A}_1$. The path e_{abc} is also referred to as a triangle. If $a \to b \to c$ but $a \not\rightarrow c$ then $e_{abc} \in \mathcal{A}_2$ but $e_{abc} \notin \Omega_2$.



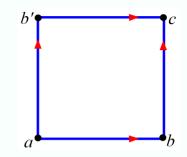
A square is a sequence of four distinct vertices a, b, b', csuch that $a \to b \to c, a \to b' \to c$ while $a \not\to c$. It determines a ∂ -invariant 2-path

$$u = e_{abc} - e_{ab'c} \in \Omega_2$$

because $u \in \mathcal{A}_2$ and

$$\partial u = (e_{bc} - \underline{e_{ac}} + e_{ab}) - (e_{b'c} - \underline{e_{ac}} + e_{ab'})$$
$$= e_{ab} + e_{bc} - e_{ab'} - e_{b'c} \in \mathcal{A}_1.$$

The path u is also referred to as a square.



1.4 Digraph maps

We write $a \cong b$ if either $a \to b$ or a = b.

Definition. A morphism from a digraph G = (V, E) to a digraph G' = (V', E') is a map $f: V \to V'$ such that

if
$$a \equiv b$$
 on G then $f(a) \equiv f(b)$ on G' . (3)

That is, if $a \to b$ in G then either $f(a) \to f(b)$ or f(a) = f(b) in G'. We will refer to such morphisms also as *digraphs maps* and denote them shortly by $f: G \to G'$.

Given a map $f: V \to V'$, define for any $p \ge 0$ the *induced map*

 $f_* \colon \Lambda_p(V) \to \Lambda_p(V')$

by the rule

$$f_*(e_{i_0...i_p}) = e_{f(i_0)...f(i_p)},\tag{4}$$

extended by K-linearity to all elements of $\Lambda_p(V)$. It is obvious that

$$f_*(\mathcal{R}_p(V)) \subset \mathcal{R}_p(V')$$
 and $f_*(\mathcal{A}_p(G)) \subset \mathcal{A}_p(G')$.

It follows from (1) and (4) that $\partial f_* = f_*\partial$, which implies the following.

Proposition 1 Let G and G' be two digraphs, and $f: G \to G'$ be a digraph map. Then, for any $p \ge 0$,

$$f_*\left(\Omega_p\left(G\right)\right) \subset \Omega_p\left(G'\right). \tag{5}$$

Moreover, the map

$$f_*:\Omega_p\left(G\right)\to\Omega_p\left(G'\right)$$

is a morphism of the chain complexes

 $\Omega_*(G) \to \Omega_*(G')$

and, consequently, a homomorphism of homology groups

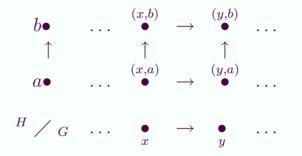
 $H_*(G) \to H_*(G')$

that will also be denoted by f_* .

1.5 Cartesian product

Given two digraphs G and H, define their Cartesian product as a digraph $G \Box H$ as follows:

- the vertices of $G \Box H$ are the couples (x, a) where $x \in V_G$ and $a \in V_H$;
- the arrows of $G \Box H$ are of two types: $(x, a) \to (y, a)$ if $x \to y$ in G (a horizontal arrow) and $(x, a) \to (x, b)$ if $a \to b$ in H (a vertical arrow):



For any digraph G, define the *cylinder* over G by $\widehat{G} = G \Box I$ where $I = (^{0} \bullet \to \bullet^{1})$. We shall put the hat $\widehat{}$ over all notation related to \widehat{G} . Let us identify $G \times 0$ with G and set $G' = G \times 1$.

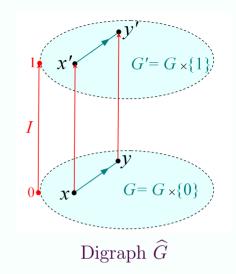
For any $x \in V$, identify (x, 0) with xand set x' = (x, 1) so that $x \to x'$ in \widehat{G} .

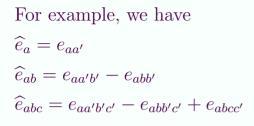
For any arrow $x \to y$ in G, we have also $x \to y$ and $x' \to y'$ in \widehat{G} .

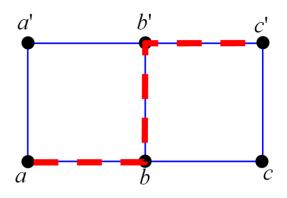
For any path $v \in \Lambda_p$ define the lifted path $\hat{v} \in \widehat{\Lambda}_{p+1}$ by

$$\widehat{e}_{i_0\dots i_p} = \sum_{k=0}^{p} \left(-1\right)^k e_{i_0\dots i_k i'_k\dots i'_p} \tag{6}$$

and linearity.

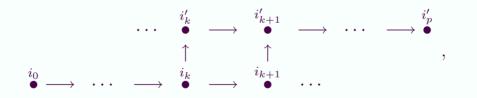






The component $e_{abb'c'}$ of the 3-path \widehat{e}_{abc}

If $i_0...i_p$ is allowed in G then, for any k, the path $i_0...i_k i'_k...i'_p$ is allowed in \widehat{G} :



Hence, for any $v \in \mathcal{A}_p$ we have $\widehat{v} \in \widehat{\mathcal{A}}_{p+1}$. Below we will prove that if $v \in \Omega_p$ then $\widehat{v} \in \widehat{\Omega}_{p+1}$. For any path v in G define its image v' in G' by $(e_{i_0...i_p})' = e_{i'_0...i'_p}$. **Lemma 2** For any p-path v on G with $p \ge 0$

$$\partial \widehat{v} + \widehat{\partial v} = v' - v. \tag{7}$$

Proof. It suffices to prove (7) for $v = e_{i_0...i_p}$. For p = 0 set $v = e_i$ so that $\partial v = 0$ and $\hat{v} = e_{ii'}$ whence

$$\partial \widehat{v} + \widehat{\partial v} = e_{i'} - e_i + 0 = v' - v.$$

For $p \ge 1$ we have

$$\begin{aligned} \partial \widehat{v} &= \sum_{k=0}^{p} (-1)^{k} \, \partial e_{i_{0} \dots i_{k} i'_{k} \dots i'_{p}} \\ &= \sum_{k=0}^{p} (-1)^{k} \left[\sum_{l=0}^{l} (-1)^{l} e_{i_{0} \dots \widehat{i}_{l} \dots i_{k} i'_{k} \dots i'_{p}} + \sum_{l=k}^{p} (-1)^{l+1} e_{i_{0} \dots i_{k} i'_{k} \dots i'_{l}} \right] \\ &= \sum_{0 \leq l \leq k \leq p} (-1)^{k+l} e_{i_{0} \dots \widehat{i}_{l} \dots i_{k} i'_{k} \dots i'_{p}} + \sum_{0 \leq k \leq l \leq p} (-1)^{k+l+1} e_{i_{0} \dots i_{k} i'_{k} \dots \widehat{i'_{l} \dots i'_{p}}} \end{aligned}$$

and

$$\begin{split} \widehat{\partial v} &= \left(\sum_{l=0}^{p} (-1)^{l} e_{i_{0} \dots \widehat{i_{l}} \dots i_{p}}\right)^{\widehat{}} \\ &= \sum_{l=0}^{p} (-1)^{l} \left[\sum_{k=l+1}^{p} (-1)^{k-1} e_{i_{0} \dots \widehat{i_{l}} \dots i_{k} i'_{k} \dots i'_{p}} + \sum_{k=0}^{l-1} (-1)^{k} e_{i_{0} \dots i_{k} i'_{k} \dots i'_{p}}\right] \\ &= \sum_{0 \leq l < k \leq p} (-1)^{k+l-1} e_{i_{0} \dots \widehat{i_{l}} \dots i_{k} i'_{k} \dots i'_{p}} + \sum_{0 \leq k < l \leq p} (-1)^{k+l} e_{i_{0} \dots i_{k} i'_{k} \dots \widehat{i'_{l}} \dots i'_{p}}. \end{split}$$

We see that in the sum $\partial \hat{v} + \widehat{\partial v}$ all the terms with $k \neq l$ cancel out and we obtain

$$\partial \widehat{v} + \widehat{\partial v} = \sum_{k=0}^{p} e_{i_0 \dots i_{k-1} i'_k \dots i'_p} - \sum_{k=0}^{p} e_{i_0 \dots i_k i'_{k+1} \dots i'_p} = e_{i'_0 \dots i'_p} - e_{i_0 \dots i_p} = v' - v.$$

Corollary 3 If $v \in \Omega_p$ then $\widehat{v} \in \widehat{\Omega}_{p+1}$.

Proof. We already know that $\hat{v} \in \mathcal{A}_{p+1}$, and we need to prove that $\partial \hat{v} \in \widehat{\mathcal{A}}_p$. Since $v \in \mathcal{A}_p$ and $\partial v \in \mathcal{A}_{p-1}$, we have $v' \in \widehat{\mathcal{A}}_p$ and $\widehat{\partial v} \in \widehat{\mathcal{A}}_p$ whence it follows from (7) that also $\partial \hat{v} \in \widehat{\mathcal{A}}_p$.

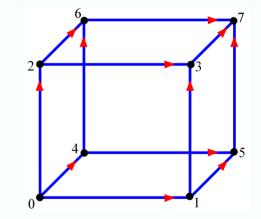
Example. The cylinder over the digraph $I = ({}^{0} \bullet \to \bullet^{1})$ is a square

Lifting a ∂ -invariant 1-path $e_{01} \in \Omega_1$ we obtain a ∂ -invariant 2-path on the square:

$$\widehat{e}_{01} = e_{00'1'} - e_{011'} = e_{023} - e_{013}.$$

The cylinder over the square (8) is a 3-cube: where we take i' = i + 4.

Lifting the ∂ -invariant 2-path $v = e_{023} - e_{013}$ we obtain a ∂ -invariant 3-path on the 3-cube:



$$\hat{v} = e_{00'2'3'} - e_{022'3'} + e_{0233'} - (e_{00'1'2'} - e_{011'2'} + e_{0133'})$$

= $e_{0467} - e_{0267} + e_{0237} - e_{0457} + e_{0157} - e_{0137}.$

2 Homotopy theory of digraphs

2.1 The notion of homotopy

For any $n \ge 1$ define a *linear digraph* I_n as any digraph with vertices $\{0, 1, \ldots, n\}$ such that if |i - j| = 1 then either $i \to j$ or $j \to i$, and if $|i - j| \ne 1$ then there is no arrow between i and j.

For example, here is a linear digraph $I_3: \quad \bullet \to \bullet_1 \leftarrow \bullet_2 \to \bullet_3$

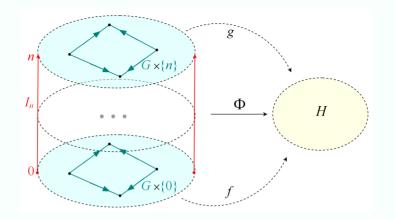
Definition. Let G and H be digraphs. Two digraph maps $f, g: G \to H$ are called *homotopic* if there exists a linear digraph I_n with some $n \ge 1$ and a digraph map

$$\Phi\colon G\Box I_n\to H$$

such that

$$\Phi|_{G \times 0} = f \quad \text{and} \quad \Phi|_{G \times n} = g. \tag{9}$$

In this case we write $f \simeq g$. Clearly, this is an equivalence relation.



In the case n = 1 we refer to the map Φ as an *one-step homotopy* between f and g and write $f \stackrel{1-\text{step}}{\simeq} g$.

It is easy to see that $f, g: G \to H$ are homotopic if and only if there is a finite sequence of digraph maps $f = f_0, f_1, ..., f_n = g$ from G to H such that

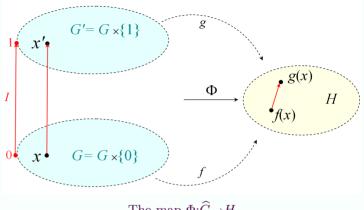
$$f_k \stackrel{1-\text{step}}{\simeq} f_{k+1}.$$

Let $\Phi: G \square I_1 \to H$ be an one-step homotopy between f and g and let $I_1 = (^0 \bullet \to \bullet^1) = I$.

Then $G\Box I$ is the cylinder \widehat{G} , and the map $\Phi: G \square I \to H$ is determined by its restrictions $\Phi|_G = f$ and $\Phi|_{G'} = g$.

For a vertical arrow $x \to x'$ we have

 $\Phi(x) = f(x)$ and $\Phi(x') = q(x)$ so that the requirement $\Phi(x) \cong \Phi(x')$ becomes $f(x) \stackrel{\longrightarrow}{=} g(x)$ in H.



The map $\Phi: \widehat{G} \to H$

Considering similarly the case $I_1 = \{ {}^0 \bullet \leftarrow \bullet^1 \}$, we obtain that $f \stackrel{1-\text{step}}{\simeq} g$ if and only if

either $f(x) \equiv g(x)$ for all $x \in V_G$ or $g(x) \stackrel{\text{def}}{=} f(x)$ for all $x \in V_G$. **Example.** Consider the digraphs

$$G = \bigcap_{\substack{0 \\ \bullet \\ \to \\ \bullet}} \int_{\bullet}^{1} \operatorname{and} H = {}^{a} \bullet \to \bullet^{b}$$

and the mappings $f, g: V_G \to V_H$ given by the table:

$x \in V_G$	f(x)	g(x)
0	a	a
1	a	b
2	b	b

It is easy to see that both f and g are digraph maps from G to H. Moreover, f and g are one-step homotopic, because $f(x) \cong g(x)$ for all $x \in V_G$.

Definition. Two digraphs G and H are called *homotopy equivalent* if there exist digraph maps

$$f: G \to H, \quad g: H \to G$$
 (10)

such that

$$f \circ g \simeq \mathrm{id}_H, \qquad g \circ f \simeq \mathrm{id}_G.$$
 (11)

In this case we shall write $G \simeq H$. The maps f and g as in (12) are called *homotopy* inverses of each other.

2.2 Homotopy preserves homologies

Now we can prove the main result about connections between homotopy and homology on digraphs.

Theorem 4 Let G, H be two digraphs.

(i) Let $f, g: G \to H$ be two digraph maps. If $f \simeq g$ then the induced maps

 $f_*: H_p(G) \to H_p(H) \quad and \quad g_*: H_p(G) \to H_p(H)$

of the homology groups are identical, that is, $f_* = g_*$ in homologies.

(ii) If the digraphs G and H are homotopy equivalent, then all their homology groups are isomorphic.

Proof. (i) Let $\Phi: G \Box I_n \to H$ be a homotopy between f and g. It suffices to treat the case n = 1 as the general case then follows by induction. Let $I_1 = I = (0 \to 1)$ so that $G \Box I_1 = G \Box I = \hat{G}$ (the case $I_1 = I^-$ can be treated similarly). The maps f and g induce morphisms of chain complexes

$$f_*, g_* \colon \Omega_*(G) \to \Omega_*(H)$$

and Φ induces a morphism

$$\Phi_*\colon \Omega_*(\widehat{G}) \to \Omega_*(H).$$

As before, we identify G with $G \times 0$ and set $G' = G \times 1$. For any path $v \in \Omega_*(G)$ considering as a path in \widehat{G} we have $\Phi_*(v) = f_*(v)$ and $\Phi_*(v') = g_*(v')$.

In order to prove that f_* and g_* induce the identical homomorphisms $H_*(G) \to H_*(H)$, it suffices to construct a chain homotopy between the chain complexes $\Omega_*(G)$ and $\Omega_*(H)$, that is, the K-linear mappings

$$L_p:\Omega_p(G)\to\Omega_{p+1}(H)$$

such that

$$\partial L_p + L_{p-1}\partial = g_* - f_*$$

(note that all the terms here are mapping from $\Omega_{p}(G)$ to $\Omega_{p}(H)$) as on the following diagram:

$$\Omega_{p-1}(G) \stackrel{\partial}{\leftarrow} \Omega_p(G) \stackrel{}{\leftarrow} \Omega_{p+1}(G)$$

$$\stackrel{L_{p-1}}{\searrow} \stackrel{L_p}{\downarrow^{f_*}\downarrow^{g_*}} \stackrel{L_p}{\searrow}$$

$$\Omega_{p-1}(H) \stackrel{}{\leftarrow} \Omega_p(H) \stackrel{}{\leftarrow} \frac{\partial}{\partial} \Omega_{p+1}(H)$$

Let us define the mapping L_p as follows

$$L_p(v) = \Phi_*(\widehat{v}) \text{ for any } v \in \Omega_p(G),$$

where $\hat{v} \in \Omega_{p+1}(\hat{G})$ is the lifting of v to the graph \hat{G} defined in Section 1.5. Using $\partial \Phi_* = \Phi_* \partial$ (see Proposition 1) and the product rule (7) of Lemma 2, we obtain

$$(\partial L_p + L_{p-1}\partial)(v) = \partial(\Phi_*(\widehat{v})) + \Phi_*(\widehat{\partial v})$$

= $\Phi_*(\partial\widehat{v}) + \Phi_*(\widehat{\partial v})$
= $\Phi_*(\partial\widehat{v} + \widehat{\partial v})$
= $\Phi_*(v' - v)$
= $g_*(v) - f_*(v)$.

(ii) Let $f: G \to H$ and $g: H \to G$ be digraph maps such that

$$f \circ g \simeq \mathrm{id}_H, \quad g \circ f \simeq \mathrm{id}_G.$$
 (12)

Then they induce the following mappings

$$H_p(G) \xrightarrow{f_*} H_p(H) \xrightarrow{g_*} H_p(G) \xrightarrow{f_*} H_p(H).$$

By (i) and (13) we have $f_* \circ g_* = \text{id}$ and $g_* \circ f_* = \text{id}$, which implies that f_* and g_* are mutually inverse isomorphisms of $H_p(G)$ and $H_p(H)$.

2.3 Retraction

A (induced) sub-digraph H of a digraph G is a digraph such that $V_H \subset V_G$, and $x \to y$ in H if and only if $x \to y$ in G.

Definition. Let G be a digraph and H be its sub-digraph. A retraction of G onto H is a digraph map $r: G \to H$ such that $r|_H = id_H$.

Let $r: G \to H$ be a retraction and let $i: H \to G$ be the natural inclusion map. By definition of retraction we have $r \circ i = id_H$. Therefore, if

$$i \circ r \simeq \mathrm{id}_G,$$
 (13)

then *i* and *r* are homotopy inverses and we obtain that $G \simeq H$. A retraction $r: G \to H$ with the property (14) is called a *deformation retraction*.

Proposition 5 Let $r: G \to H$ be a retraction of a digraph G onto a sub-digraph H such that

either
$$x \equiv r(x)$$
 for all $x \in V_G$ or $r(x) \equiv x$ for all $x \in V_G$. (14)

Then r is a deformation retraction and, consequently, the digraphs G and H are homotopy equivalent.

Proof. Set $f = \operatorname{id}_G$ and $g = i \circ r$. For any $x \in V_G$ we have f(x) = x and g(x) = r(x). The condition (15) means that f and g satisfy (??), whence $f \stackrel{1-\operatorname{step}}{\simeq} g$. Hence, we obtain (14) and, consequently, $G \simeq H$.

Example. Let us show that the square



is also contractible. It suffices to show that $G \simeq H$ where H is the following subgraph

$$H = {}^{0} \bullet \longrightarrow \bullet^{1} .$$

Consider a retraction $r: G \to H$ given by

r(0) = r(2) = 0 and r(1) = r(3) = 1.

Clearly, it satisfies $r(x) \equiv x$ for all $x \in V_G$ and we conclude by Proposition 5 that $G \simeq H$. Since H is contractible, we obtain that G is also contractible.

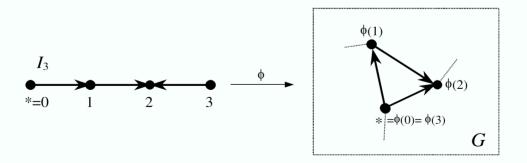
Example. For any $n \ge 1$, consider the *n*-dimensional cube $I^n = \underbrace{I \square I \square \dots \square I}_{n \text{ times}}$. As in the previous example, one constructs an obvious deformation retraction of I^n onto I^{n-1} thus proving that $I^n \simeq I^{n-1}$. By induction we obtain that all cubes I^n are contractible.

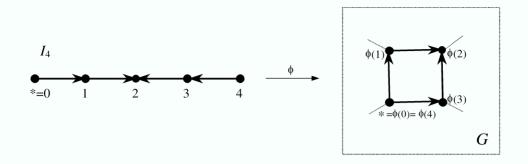
3 Fundamental group of a digraph

A based digraph G^* is a digraph G with a fixed base vertex $* \in V_G$. A based digraph map $f: G^* \to H^*$ is a digraph map $f: G \to H$ such that f(*) = *. Any linear digraph I_n will always be considered as a based digraph with the base point 0.

3.1 *C*-homotopy

A loop in a digraph G is any digraph map $\phi : I_n \to G$ with $\phi(0) = \phi(n)$. A based loop on a based digraph G^* is a loop $\phi : I_n \to G^*$, such that $\phi(0) = \phi(n) = *$.



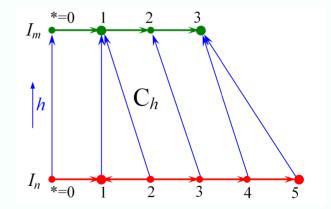


A digraph map $h: I_n \to I_m$ is called *shrinking* if h(0) = 0, h(n) = m, and $h(i) \le h(j)$ whenever $i \le j$ (which is only possible when $m \le n$).

The cylinder C_h of the map h is the digraph with the set of vertices $V_{C_h} = V_{I_n} \sqcup V_{I_m}$ and with the set of arrows E_{C_h} that consists of all the arrows of I_n and I_m and of the arrows

 $i \to h(i)$ for all $i \in I_n$.

Similarly define the inverse cylinder C_h^- using $h(i) \to i$ for all $i \in I_n$.



Definition. Consider two based loops

$$\phi \colon I_n \to G^* \text{ and } \psi \colon I_m \to G^*.$$

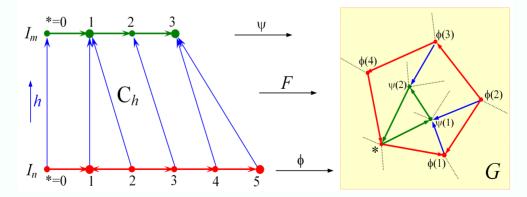
We say that there is one-step direct C-homotopy from ϕ to ψ and write with $\phi \xrightarrow{C} \psi$ if there exists a shrinking map $h: I_n \to I_m$ such that the map $F: C_h \to G$ given by

$$F|_{I_n} = \phi \quad \text{and} \quad F|_{I_m} = \psi,$$
(15)

is a digraph map, that is, $\phi(i) \cong \psi(h(i))$ for all $i \in I_n$.

If F is a digraph map from C_h^- to G then we call it an one-step *inverse* C-homotopy and write $\phi \stackrel{C}{\leftarrow} \psi$.

Example. An example of one-step direct *C*-homotopy is shown here:

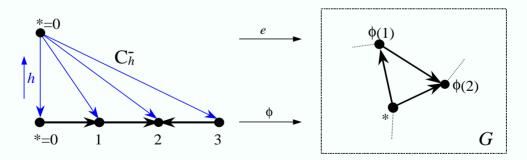


If n = m then $h = id_{I_n}$ and an one-step C-homotopy is a homotopy.

Definition. We call two loops ϕ, ψ *C-homotopic* and write $\phi \stackrel{C}{\simeq} \psi$ if there exists a finite sequence $\{\phi_k\}_{k=0}^m$ of loops in G^* such that $\phi_0 = \phi, \phi_m = \psi$ and, for any k = 0, ..., m - 1, holds $\phi_k \stackrel{C}{\to} \phi_{k+1}$ or $\phi_k \stackrel{C}{\leftarrow} \phi_{k+1}$.

Clearly, $\phi \stackrel{C}{\simeq} \psi$ is an equivalence relation. The *C*-homotopy class of a based loop ϕ will be denoted by $[\phi]$. We say that a loop ϕ is *C*-contractible if $\phi \stackrel{C}{\simeq} e$, that is, $[\phi] = [e]$.

Example. A triangular loop is a loop $\phi : I_3 \to G^*$ with $I_3 = (0 \to 1 \to 2 \leftarrow 3)$.

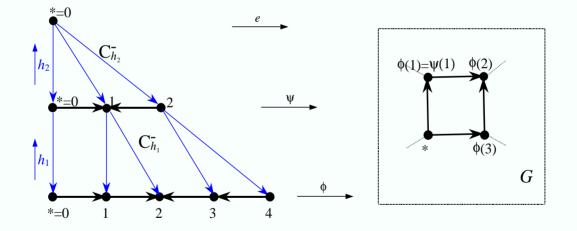


The triangular loop is C-contractible because the following shrinking map

$$h: I_3 \to I_0, \ h(k) = 0 \text{ for all } k = 0, ..., 3,$$

provides an inverse one-step C-homotopy between ϕ and e.

Example. A square loop is a loop $\phi : I_4 \to G$ with $I_4 = (0 \to 1 \to 2 \leftarrow 3 \leftarrow 4)$. The square loop can be C-contracted to e in two steps:



3.2 Local description of *C*-homotopy

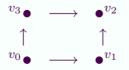
Any loop $\phi: I_n \to G$ determines a sequence $\theta_{\phi} = \{\phi(i)\}_{i=0}^n$ of vertices of G. We consider the sequence θ_{ϕ} as a *word* over the alphabet V_G .

Theorem 6 Two based loops $\phi : I_n \to G^*$ and $\psi : I_m \to G^*$ are *C*-homotopic if and only if the word θ_{ψ} can be obtained from θ_{ϕ} by a finite sequence of the following transformations (or their inverses):

(i) ...abc... \mapsto ...ac... where (a, b, c) is any permutation of a triple (v_0, v_1, v_2) of vertices forming a triangle in G:

(and the dots "..." denote the unchanged parts of the words).

(ii) ...abc... \mapsto ...adc... where (a, b, c, d) is any cyclic permutation (or an inverse cyclic permutation) of a quadruple (v_0, v_1, v_2, v_3) of vertices forming a square in G:



(iii)
$$\dots abcd \dots \mapsto \dots ad \dots$$
 where (a, b, c, d) is as in (ii).
(iv) $\dots aba \dots \mapsto \dots a \dots$ if $a \to b$ or $b \to a$.
(v) $\dots aa \dots \mapsto \dots a \dots$

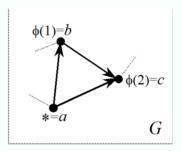
Examples.

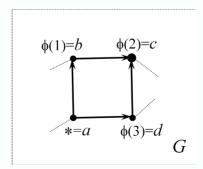
1. A triangular loop $\phi: I_3 \to G$ is contractible because

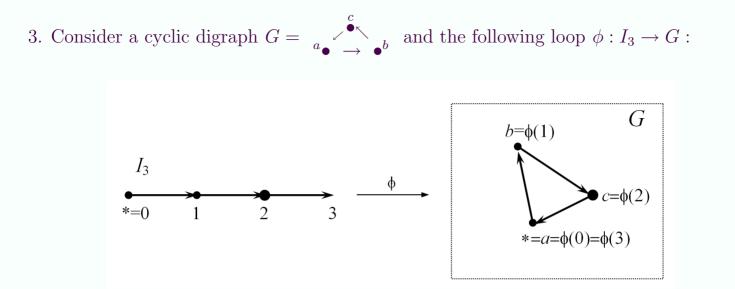
$$\theta_{\phi} = abca \stackrel{(i)}{\sim} aca \stackrel{(iv)}{\sim} a$$

2. A square loop $\phi: I_4 \to G$ is contractible because

$$\theta_{\phi} = abcda \stackrel{(iii)}{\sim} ada \stackrel{(iv)}{\sim} a.$$

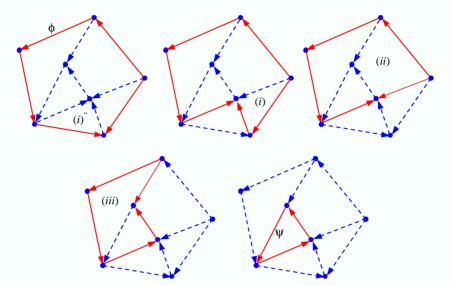






We have $\theta_{\phi} = abca$. It is clear that this word does not allow any of the transformations of Theorem 6, which implies that ϕ is not *C*-contractible.

4. Consider the loops ϕ and ψ as p.27. It is shown here how to transform θ_{ϕ} to θ_{ψ} using the word transformations of Theorem 6.



Transforming a 5-cycle θ_{ϕ} to a 3-cycle θ_{ψ} using successively $(i)^{-}$ (the inverse of (i)), (i), (ii) and (iii).

3.3 Group structure in π_1

For any two linear digraphs I_n and I_m , define the linear digraph $I_n \vee I_m$ that is obtained from I_n and I_m by identification of the vertex $n \in I_n$ with the vertex $0 \in I_m$.

For any linear digraph I_n define a linear digraph \hat{I}_n as follows:

$$i \to j \text{ in } \hat{I}_n \iff (n-i) \to (n-j) \text{ in } I_n.$$

Definition. (i) For two based loops $\phi : I_n \to G$ and $\psi : I_m \to G$ define their concatenation $\phi \lor \psi : I_n \lor I_m \to G$ by

$$\phi \lor \psi(i) = \begin{cases} \phi(i), & 0 \le i \le n \\ \psi(i-n), & n \le i \le n+m \end{cases}$$

(*ii*) For any based loop $\phi: I_n \to G$ define its *inversion* $\hat{\phi}: \hat{I}_n \to G$ by $\hat{\phi}(i) = \phi(n-i)$.

Denote by $\pi_1(G^*)$ the set of all equivalence classes $[\phi]$ for all based loops ϕ in G^* . Now we can define a product in $\pi_1(G^*)$ as follows.

Definition. For any two based loops ϕ, ψ in G^* define the product of the equivalence classes $[\phi]$ and $[\psi]$ by $[\phi] \cdot [\psi] = [\phi \lor \psi]$.

Theorem 7 Let G, H be digraphs.

(i) The product in $\pi_1(G^*)$ is well defined. The set $\pi_1(G^*)$ with the product $[\phi] \cdot [\psi]$, the neutral element [e] and inversion $[\hat{\phi}]$ is a group.

(ii) Any based digraph map $f: G^* \to H^*$ induces a group homomorphism

$$f : \pi_1(G^*) \to \pi_1(H^*)$$

$$f([\phi]) = [f \circ \phi],$$

which depends only on homotopy class of f.

(iii) Let G, H be connected. If $G \simeq H$ then the fundamental groups $\pi_1(G^*)$ and $\pi_1(H^*)$ are isomorphic (for any choice of the base vertices).

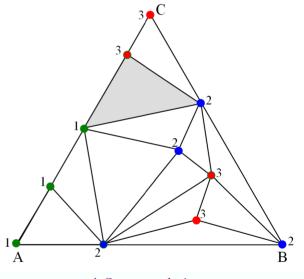
3.4 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the classical lemma of Sperner, using the notion the fundamental group and C-homotopy.

Consider a triangle ABC on the plane \mathbb{R}^2 and its triangulation T. Assume that the set of vertices of T is colored with three colors 1, 2, 3 in such a way that

- A, B, C are colored with 1, 2, 3 respectively;
- each vertex on any side of *ABC* is colored with one of the two colors of the endpoints of the side.

The classical lemma of Sperner says: there exists in T a 3-color triangle, that is, a triangle whose vertices are colored with three different colors.

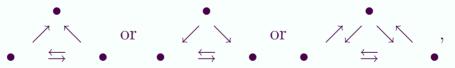


A Sperner coloring

To prove this, let us first modify the triangulation T so that there are no vertices on the sides AB, AC, BC except for A, B, C. Indeed, if X is a vertex on AB then we move X a bit inside the triangle ABC. This gives rise to a new triangle in the triangulation T that is formed by X and its former neighbors, say Y and Z, on the arrow AB (while keeping all other triangles). However, since all X, Y, Z are colored with two colors, no 3-color triangle emerges after that move. By induction, we remove all the vertices from the sides of ABC.

The triangulation T can be regarded as a graph. Let us make it into a digraph G by choosing the direction on the arrows as follows. If the vertices a, b are connected by an arrow in T then choose direction between a, b using the colors of a, b and the following rule:

Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G like



in particular, each of them contains a triangle in the sense of Theorem 6.

Consider a 3-loop $\phi: I_3 \to G^*$ with the word $\theta_{\phi} = ABCA$. Using the transformation (*ii*) of Theorem 6 and the partition of G into the triangle digraphs, we can contract the word ABCA to an empty word. Hence, $\phi \stackrel{C}{\sim} e$.

Consider the cycle digraph H with the vertices a, b, c as follows

$$\begin{array}{ccc}
 & c_3 \\
\swarrow & \swarrow \\
 a_1 & \longrightarrow & b_2
\end{array}$$
(17)

where the vertex a is colored by 1, b by 2 and c by 3. Define a map $f: G \to H$ by the rule that f(x) has the same color in H as x in G.

By the choice of directions on the arrows of $G,\,f$ is a digraph map. The loop $f\circ\phi$ on H has the word

$$\theta_{f \circ \phi} = abca,$$

which is not contractible on H as we have seen above. However, by Theorem 8, f induces homomorphism of $\pi_1(G)$ to $\pi_1(H)$. Therefore, $\phi \stackrel{C}{\simeq} e$ implies that also $f \circ \phi \stackrel{C}{\simeq} e$, which contradicts the previous observation.

3.5 Hurewicz theorem

One of our main results is the following discrete version of Hurewicz theorem.

Theorem 8 For any based connected digraph G^* we have an isomorphism

 $\pi_1(G^*) / [\pi_1(G^*), \pi_1(G^*)] \cong H_1(G, \mathbb{Z})$

where $[\pi_1(G^*), \pi_1(G^*)]$ is a commutator subgroup.