Homotopy and homology of digraphs

Alexander Grigor'yan

BIMSA, March 2024

Based on a joint work with Yong Lin, Y. Muranov and S.-T. Yau

1 Chain spaces and path homology on digraphs

1.1 Paths and the boundary operator

Let us fix a finite set V and a field \mathbb{K}. For any $p \geq 0$, an elementary p-path is any sequence i_{0}, \ldots, i_{p} of $p+1$ vertices of V; it will be also denoted by $e_{i_{0} \ldots i_{p}}$.
A p-path is any formal linear combinations of elementary p-paths $e_{i_{0} \ldots i_{p}}$ with coefficients from \mathbb{K}; that is, any p-path u has a form

$$
u=\sum_{i_{0}, i_{1}, \ldots, i_{p} \in V} u^{i_{0} i_{1} \ldots i_{p}} e_{i_{0} i_{1} \ldots i_{p}}
$$

where $u^{i_{0} i_{1} \ldots i_{p}} \in \mathbb{K}$. The set of all p-paths is a \mathbb{K}-linear space denoted by $\Lambda_{p}=\Lambda_{p}(V, \mathbb{K})$.
For example, $\Lambda_{0}=\left\langle e_{i}: i \in V\right\rangle, \quad \Lambda_{1}=\left\langle e_{i j}: i, j \in V\right\rangle, \quad \Lambda_{2}=\left\langle e_{i j k}: i, j, k \in V\right\rangle$.
Definition. Define for any $p \geq 1$ a linear boundary operator $\partial: \Lambda_{p} \rightarrow \Lambda_{p-1}$ by

$$
\begin{equation*}
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \widehat{i_{q} \ldots i_{p}}}, \tag{1}
\end{equation*}
$$

where ${ }^{\wedge}$ means omission of the index. For $p=0$ set $\partial e_{i}=0$ (and, hence, $\left.\Lambda_{-1}=\{0\}\right)$.

For example,

$$
\partial e_{i j}=e_{j}-e_{i} \text { and } \partial e_{i j k}=e_{j k}-e_{i k}+e_{i j}
$$

It is easy to show that $\partial^{2}=0$. Hence, we obtain a chain complex $\Lambda_{*}(V)$:

$$
0 \leftarrow \Lambda_{0} \stackrel{\partial}{\leftarrow} \Lambda_{1} \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_{p} \stackrel{\partial}{\leftarrow} \cdots
$$

An elementary p-path $e_{i_{0} \ldots i_{p}}$ is called regular if $i_{k} \neq i_{k+1}$ for all $k=0, \ldots, p-1$, and irregular otherwise. A p-path is called regular (resp. irregular) if it is a linear combination of regular (resp. irregular) elementary paths.

Denote by \mathcal{R}_{p} the space of all regular p-paths. Then ∂ is well defined on the spaces \mathcal{R}_{p} if we identify all irregular paths with 0 (which is justified by the fact that if u is irregular then ∂u is also irregular). For example, if $i \neq j$ then $e_{i j i} \in \mathcal{R}_{2}$ and

$$
\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}=e_{j i}+e_{i j} \in \mathcal{R}_{1},
$$

because $e_{i i}=0$. Hence, we obtain a regular chain complex

$$
0 \leftarrow \mathcal{R}_{0} \stackrel{\partial}{\leftarrow} \mathcal{R}_{1} \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \cdots \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_{p} \stackrel{\partial}{\leftarrow} \cdots
$$

1.2 Chain complex on digraphs

A digraph (directed graph) is a pair $G=(V, E)$ of a set V of vertices and $E \subset\{V \times V \backslash \operatorname{diag}\}$ is a set of arrows (directed edges). If $(i, j) \in E$ then we write $i \rightarrow j$.

Definition. An elementary p-path $e_{i_{0} \ldots i_{p}}$ in a digraph $G=(V, E)$ is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \ldots, p-1$, and non-allowed otherwise.

A p-path is called allowed if it is a linear combination of allowed elementary p-paths.
Denote by $\mathcal{A}_{p}=\mathcal{A}_{p}(G, \mathbb{K})$ the linear space of all allowed p-paths. Since any allowed path is regular, we have $\mathcal{A}_{p} \subset \mathcal{R}_{p}$.
We would like to build a chain complex based on spaces \mathcal{A}_{p}. However, in general ∂ does not act on the spaces \mathcal{A}_{p}. For example, in the digraph ${ }_{\bullet}^{\bullet} \rightarrow \stackrel{b}{\bullet} \rightarrow \stackrel{c}{\bullet}$ we have $e_{a b c} \in \mathcal{A}_{2}$ but $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \notin \mathcal{A}_{1}$ because $e_{a c}$ is not allowed.

Consider the following subspace of \mathcal{A}_{p} :

$$
\Omega_{p} \equiv \Omega_{p}(G, \mathbb{K}):=\left\{u \in \mathcal{A}_{p}: \partial u \in \mathcal{A}_{p-1}\right\} .
$$

Claim. $\partial \Omega_{p} \subset \Omega_{p-1}$. Indeed, if $u \in \Omega_{p}$ then $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u)=0 \in \mathcal{A}_{p-2}$ whence $\partial u \in \Omega_{p-1}$.
For example, we have $\Omega_{0}=\mathcal{A}_{0}=\left\langle e_{i}: i \in V\right\rangle$ and $\Omega_{1}=\mathcal{A}_{1}=\left\{e_{i j}: i \rightarrow j\right\}$.
Definition. The elements of Ω_{p} are called ∂-invariant p-paths.
Hence, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G, \mathbb{K})$ that reflects a digraph structure:

$$
\begin{equation*}
0 \leftarrow \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \cdots \tag{2}
\end{equation*}
$$

Homology groups of (2) are called path homologies of G and are denoted by $H_{p}(G)$.

1.3 Examples of ∂-invariant paths

A triangle is a sequence of three distinct vertices a, b, c such that $a \rightarrow b \rightarrow c, a \rightarrow c$.
It determines a ∂-invariant 2-path $e_{a b c} \in \Omega_{2}$ because
$e_{a b c} \in \mathcal{A}_{2}$ and $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \in \mathcal{A}_{1}$.
The path $e_{a b c}$ is also referred to as a triangle.

If $a \rightarrow b \rightarrow c$ but $a \nrightarrow c$ then $e_{a b c} \in \mathcal{A}_{2}$ but $e_{a b c} \notin \Omega_{2}$.

A square is a sequence of four distinct vertices a, b, b^{\prime}, c such that $a \rightarrow b \rightarrow c, a \rightarrow b^{\prime} \rightarrow c$ while $a \nrightarrow c$.
It determines a ∂-invariant 2-path

$$
u=e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}
$$

because $u \in \mathcal{A}_{2}$ and

$$
\begin{aligned}
\partial u & =\left(e_{b c}-\underline{e_{a c}}+e_{a b}\right)-\left(e_{b^{\prime} c}-\underline{e_{a c}}+e_{a b^{\prime}}\right) \\
& =e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c} \in \mathcal{A}_{1} .
\end{aligned}
$$

The path u is also referred to as a square.

1.4 Digraph maps

We write $a \equiv b$ if either $a \rightarrow b$ or $a=b$.
Definition. A morphism from a digraph $G=(V, E)$ to a digraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a map $f: V \rightarrow V^{\prime}$ such that

$$
\begin{equation*}
\text { if } a \equiv b \text { on } G \text { then } f(a) \equiv f(b) \text { on } G^{\prime} \tag{3}
\end{equation*}
$$

That is, if $a \rightarrow b$ in G then either $f(a) \rightarrow f(b)$ or $f(a)=f(b)$ in G^{\prime}. We will refer to such morphisms also as digraphs maps and denote them shortly by $f: G \rightarrow G^{\prime}$.

Given a map $f: V \rightarrow V^{\prime}$, define for any $p \geq 0$ the induced map

$$
f_{*}: \Lambda_{p}(V) \rightarrow \Lambda_{p}\left(V^{\prime}\right)
$$

by the rule

$$
\begin{equation*}
f_{*}\left(e_{i_{0} \ldots i_{p}}\right)=e_{f\left(i_{0}\right) \ldots f\left(i_{p}\right)}, \tag{4}
\end{equation*}
$$

extended by \mathbb{K}-linearity to all elements of $\Lambda_{p}(V)$. It is obvious that

$$
f_{*}\left(\mathcal{R}_{p}(V)\right) \subset \mathcal{R}_{p}\left(V^{\prime}\right) \text { and } f_{*}\left(\mathcal{A}_{p}(G)\right) \subset \mathcal{A}_{p}\left(G^{\prime}\right)
$$

It follows from (1) and (4) that $\partial f_{*}=f_{*} \partial$, which implies the following.

Proposition 1 Let G and G^{\prime} be two digraphs, and $f: G \rightarrow G^{\prime}$ be a digraph map. Then, for any $p \geq 0$,

$$
\begin{equation*}
f_{*}\left(\Omega_{p}(G)\right) \subset \Omega_{p}\left(G^{\prime}\right) \tag{5}
\end{equation*}
$$

Moreover, the map

$$
f_{*}: \Omega_{p}(G) \rightarrow \Omega_{p}\left(G^{\prime}\right)
$$

is a morphism of the chain complexes

$$
\Omega_{*}(G) \rightarrow \Omega_{*}\left(G^{\prime}\right)
$$

and, consequently, a homomorphism of homology groups

$$
H_{*}(G) \rightarrow H_{*}\left(G^{\prime}\right)
$$

that will also be denoted by f_{*}.

1.5 Cartesian product

Given two digraphs G and H, define their Cartesian product as a digraph $G \square H$ as follows:

- the vertices of $G \square H$ are the couples (x, a) where $x \in V_{G}$ and $a \in V_{H}$;
- the arrows of $G \square H$ are of two types: $(x, a) \rightarrow(y, a)$ if $x \rightarrow y$ in G (a horizontal arrow) and $(x, a) \rightarrow(x, b)$ if $a \rightarrow b$ in H (a vertical arrow):

For any digraph G, define the cylinder over G by $\widehat{G}=G \square I$ where $I=\left({ }^{0} \bullet \rightarrow \bullet^{1}\right)$.
We shall put the hat over all notation related to \widehat{G}.

Let us identify $G \times 0$ with G and set $G^{\prime}=G \times 1$.

For any $x \in V$, identify $(x, 0)$ with x and set $x^{\prime}=(x, 1)$ so that $x \rightarrow x^{\prime}$ in \widehat{G}.

For any arrow $x \rightarrow y$ in G, we have also $x \rightarrow y$ and $x^{\prime} \rightarrow y^{\prime}$ in \widehat{G}.

Digraph \widehat{G}

For any path $v \in \Lambda_{p}$ define the lifted path $\widehat{v} \in \widehat{\Lambda}_{p+1}$ by

$$
\begin{equation*}
\widehat{e}_{i_{0} \ldots i_{p}}=\sum_{k=0}^{p}(-1)^{k} e_{i_{0} \ldots i_{k} i_{k} \ldots i_{p}^{\prime}} \tag{6}
\end{equation*}
$$

and linearity.

For example, we have
$\widehat{e}_{a}=e_{a a^{\prime}}$
$\widehat{e}_{a b}=e_{a a^{\prime} b^{\prime}}-e_{a b b^{\prime}}$
$\widehat{e}_{a b c}=e_{a a^{\prime} b^{\prime} c^{\prime}}-e_{a b b^{\prime} c^{\prime}}+e_{a b c c^{\prime}}$

The component $e_{a b b^{\prime} c^{\prime}}$ of the 3-path $\widehat{e}_{a b c}$
If $i_{0} \ldots i_{p}$ is allowed in G then, for any k, the path $i_{0} \ldots i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}$ is allowed in \widehat{G} :

Hence, for any $v \in \mathcal{A}_{p}$ we have $\widehat{v} \in \widehat{\mathcal{A}}_{p+1}$. Below we will prove that if $v \in \Omega_{p}$ then $\widehat{v} \in \widehat{\Omega}_{p+1}$. For any path v in G define its image v^{\prime} in G^{\prime} by $\left(e_{i_{0} \ldots i_{p}}\right)^{\prime}=e_{i_{0}, . . i_{p}}$.

Lemma 2 For any p-path v on G with $p \geq 0$

$$
\begin{equation*}
\partial \widehat{v}+\widehat{\partial v}=v^{\prime}-v \tag{7}
\end{equation*}
$$

Proof. It suffices to prove (7) for $v=e_{i_{0} \ldots i_{p}}$. For $p=0$ set $v=e_{i}$ so that $\partial v=0$ and $\widehat{v}=e_{i i^{\prime}}$ whence

$$
\partial \widehat{v}+\widehat{\partial v}=e_{i^{\prime}}-e_{i}+0=v^{\prime}-v
$$

For $p \geq 1$ we have

$$
\begin{aligned}
\partial \widehat{v} & =\sum_{k=0}^{p}(-1)^{k} \partial e_{i_{0} \ldots i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}} \\
& =\sum_{k=0}^{p}(-1)^{k}\left[\sum_{l=0}^{l}(-1)^{l} e_{i_{0} \ldots \ldots \hat{i}_{l} \ldots i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}}+\sum_{l=k}^{p}(-1)^{l+1} e_{i_{0} \ldots i_{k} i_{k}^{\prime} \ldots \hat{i}_{l}^{\prime} \ldots i_{p}^{\prime}}\right] \\
& =\sum_{0 \leq l \leq k \leq p}(-1)^{k+l} e_{i_{0} \ldots \hat{i} \ldots . i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}}+\sum_{0 \leq k \leq l \leq p}(-1)^{k+l+1} e_{i_{0} \ldots i_{k} i_{k}^{\prime} \ldots . i_{l}^{i_{l}} \ldots i_{p}^{\prime}}
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\partial v} & =\left(\sum_{l=0}^{p}(-1)^{l} e_{i_{0} \ldots \hat{i_{l}} \ldots i_{p}}\right) \\
& =\sum_{l=0}^{p}(-1)^{l}\left[\sum_{k=l+1}^{p}(-1)^{k-1} e_{i_{0} \ldots \hat{i_{l}} \ldots i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}}+\sum_{k=0}^{l-1}(-1)^{k} e_{i_{0} \ldots i_{k} i_{k}^{\prime} \ldots \widehat{i_{l}^{\prime} \ldots i_{p}^{\prime}}}\right] \\
& =\sum_{0 \leq l<k \leq p}(-1)^{k+l-1} e_{i_{0} \ldots \widehat{i_{l}} \ldots i_{k} i_{k}^{\prime} \ldots i_{p}^{\prime}}+\sum_{0 \leq k<l \leq p}(-1)^{k+l} e_{i_{0} \ldots i_{k} i_{k}^{\prime} \ldots \widehat{i_{l}^{\prime}} \ldots i_{p}^{\prime}}
\end{aligned}
$$

We see that in the sum $\partial \widehat{v}+\widehat{\partial v}$ all the terms with $k \neq l$ cancel out and we obtain

$$
\partial \widehat{v}+\widehat{\partial v}=\sum_{k=0}^{p} e_{i_{0} \ldots i_{k-1} i_{k}^{\prime} \ldots i_{p}^{\prime}}-\sum_{k=0}^{p} e_{i_{0} \ldots i_{k} i_{k+1}^{\prime} \ldots i_{p}^{\prime}}=e_{i_{0}^{\prime} \ldots i_{p}^{\prime}}-e_{i_{0} \ldots i_{p}}=v^{\prime}-v
$$

Corollary 3 If $v \in \Omega_{p}$ then $\widehat{v} \in \widehat{\Omega}_{p+1}$.
Proof. We already know that $\hat{v} \in \mathcal{A}_{p+1}$, and we need to prove that $\partial \widehat{v} \in \widehat{\mathcal{A}}_{p}$. Since $v \in \mathcal{A}_{p}$ and $\partial v \in \mathcal{A}_{p-1}$, we have $v^{\prime} \in \widehat{\mathcal{A}}_{p}$ and $\widehat{\partial v} \in \widehat{\mathcal{A}}_{p}$ whence it follows from (7) that also $\partial \widehat{v} \in \widehat{\mathcal{A}}_{p}$.

Example. The cylinder over the digraph $I=\left({ }^{0} \bullet \bullet^{1}\right)$ is a square

Lifting a ∂-invariant 1-path $e_{01} \in \Omega_{1}$ we obtain a ∂-invariant 2-path on the square:

$$
\widehat{e}_{01}=e_{00^{\prime} 1^{\prime}}-e_{011^{\prime}}=e_{023}-e_{013}
$$

The cylinder over the square (8) is a 3 -cube:
where we take $i^{\prime}=i+4$.
Lifting the ∂-invariant 2-path $v=e_{023}-e_{013}$ we obtain a ∂-invariant 3 -path on the 3 -cube:

$$
\begin{aligned}
\widehat{v} & =e_{00^{\prime} 2^{\prime} 3^{\prime}}-e_{022^{\prime} 3^{\prime}}+e_{0233^{\prime}}-\left(e_{00^{\prime} 1^{\prime} 2^{\prime}}-e_{011^{\prime} 2^{\prime}}+e_{0133^{\prime}}\right) \\
& =e_{0467}-e_{0267}+e_{0237}-e_{0457}+e_{0157}-e_{0137}
\end{aligned}
$$

2 Homotopy theory of digraphs

2.1 The notion of homotopy

For any $n \geq 1$ define a linear digraph I_{n} as any digraph with vertices $\{0,1, \ldots, n\}$ such that if $|i-j|=1$ then either $i \rightarrow j$ or $j \rightarrow i$, and if $|i-j| \neq 1$ then there is no arrow between i and j.

For example, here is a linear digraph $I_{3}: \underset{0}{\bullet} \rightarrow \underset{1}{\bullet} \leftarrow \underset{2}{\bullet} \rightarrow \underset{3}{\bullet}$
Definition. Let G and H be digraphs. Two digraph maps $f, g: G \rightarrow H$ are called homotopic if there exists a linear digraph I_{n} with some $n \geq 1$ and a digraph map

$$
\Phi: G \square I_{n} \rightarrow H
$$

such that

$$
\begin{equation*}
\left.\Phi\right|_{G \times 0}=f \quad \text { and }\left.\quad \Phi\right|_{G \times n}=g . \tag{9}
\end{equation*}
$$

In this case we write $f \simeq g$. Clearly, this is an equivalence relation.

In the case $n=1$ we refer to the map Φ as an one-step homotopy between f and g and write $f \stackrel{1 \text {-step }}{\sim} g$.
It is easy to see that $f, g: G \rightarrow H$ are homotopic if and only if there is a finite sequence of digraph maps $f=f_{0}, f_{1}, \ldots, f_{n}=g$ from G to H such that

$$
f_{k} \stackrel{1 \text {-step }}{\sim} f_{k+1} .
$$

Let $\Phi: G \square I_{1} \rightarrow H$ be an one-step homotopy between f and g and let $I_{1}=\left({ }^{0} \bullet \rightarrow \bullet^{1}\right)=I$. Then $G \square I$ is the cylinder \widehat{G}, and the map $\Phi: G \square I \rightarrow H$ is determined by its restrictions $\left.\Phi\right|_{G}=f$ and $\left.\Phi\right|_{G^{\prime}}=g$.

For a vertical arrow $x \rightarrow x^{\prime}$ we have

$$
\Phi(x)=f(x) \text { and } \Phi\left(x^{\prime}\right)=g(x)
$$

so that the requirement $\Phi(x) \Longrightarrow \Phi\left(x^{\prime}\right)$ becomes $f(x) \rightrightarrows g(x)$ in H.

The map $\Phi: \widehat{G} \rightarrow H$

Considering similarly the case $I_{1}=\left\{{ }^{0} \bullet \leftarrow \bullet^{1}\right\}$, we obtain that $f \stackrel{1 \text {-step }}{\simeq} g$ if and only if

$$
\begin{aligned}
& \text { either } f(x) \rightrightarrows g(x) \text { for all } x \in V_{G} \\
& \text { or } g(x) \rightrightarrows f(x) \text { for all } x \in V_{G} .
\end{aligned}
$$

Example. Consider the digraphs

$$
G={ }_{0} \stackrel{1}{\bullet} \rightarrow \bullet^{2} \text { and } H={ }^{a} \bullet \rightarrow \bullet^{b}
$$

and the mappings $f, g: V_{G} \rightarrow V_{H}$ given by the table:

$x \in V_{G}$	$f(x)$	$g(x)$
0	a	a
1	a	b
2	b	b

It is easy to see that both f and g are digraph maps from G to H. Moreover, f and g are one-step homotopic, because $f(x) \equiv g(x)$ for all $x \in V_{G}$.

Definition. Two digraphs G and H are called homotopy equivalent if there exist digraph maps

$$
\begin{equation*}
f: G \rightarrow H, \quad g: H \rightarrow G \tag{10}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ g \simeq \operatorname{id}_{H}, \quad g \circ f \simeq \operatorname{id}_{G} . \tag{11}
\end{equation*}
$$

In this case we shall write $G \simeq H$. The maps f and g as in (12) are called homotopy inverses of each other.

2.2 Homotopy preserves homologies

Now we can prove the main result about connections between homotopy and homology on digraphs.

Theorem 4 Let G, H be two digraphs.
(i) Let $f, g: G \rightarrow H$ be two digraph maps. If $f \simeq g$ then the induced maps

$$
f_{*}: H_{p}(G) \rightarrow H_{p}(H) \quad \text { and } \quad g_{*}: H_{p}(G) \rightarrow H_{p}(H)
$$

of the homology groups are identical, that is, $f_{*}=g_{*}$ in homologies.
(ii) If the digraphs G and H are homotopy equivalent, then all their homology groups are isomorphic.

Proof. (i) Let $\Phi: G \square I_{n} \rightarrow H$ be a homotopy between f and g. It suffices to treat the case $n=1$ as the general case then follows by induction. Let $I_{1}=I=(0 \rightarrow 1)$ so that $G \square I_{1}=G \square I=\widehat{G}$ (the case $I_{1}=I^{-}$can be treated similarly). The maps f and g induce morphisms of chain complexes

$$
f_{*}, g_{*}: \Omega_{*}(G) \rightarrow \Omega_{*}(H),
$$

and Φ induces a morphism

$$
\Phi_{*}: \Omega_{*}(\widehat{G}) \rightarrow \Omega_{*}(H)
$$

As before, we identify G with $G \times 0$ and set $G^{\prime}=G \times 1$. For any path $v \in \Omega_{*}(G)$ considering as a path in \widehat{G} we have $\Phi_{*}(v)=f_{*}(v)$ and $\Phi_{*}\left(v^{\prime}\right)=g_{*}\left(v^{\prime}\right)$.

In order to prove that f_{*} and g_{*} induce the identical homomorphisms $H_{*}(G) \rightarrow H_{*}(H)$, it suffices to construct a chain homotopy between the chain complexes $\Omega_{*}(G)$ and $\Omega_{*}(H)$, that is, the \mathbb{K}-linear mappings

$$
L_{p}: \Omega_{p}(G) \rightarrow \Omega_{p+1}(H)
$$

such that

$$
\partial L_{p}+L_{p-1} \partial=g_{*}-f_{*}
$$

(note that all the terms here are mapping from $\Omega_{p}(G)$ to $\Omega_{p}(H)$) as on the following diagram:

Let us define the mapping L_{p} as follows

$$
L_{p}(v)=\Phi_{*}(\widehat{v}) \text { for any } v \in \Omega_{p}(G)
$$

where $\widehat{v} \in \Omega_{p+1}(\widehat{G})$ is the lifting of v to the graph \widehat{G} defined in Section 1.5. Using $\partial \Phi_{*}=\Phi_{*} \partial$ (see Proposition 1) and the product rule (7) of Lemma 2, we obtain

$$
\begin{aligned}
\left(\partial L_{p}+L_{p-1} \partial\right)(v) & =\partial\left(\Phi_{*}(\widehat{v})\right)+\Phi_{*}(\widehat{\partial v}) \\
& =\Phi_{*}(\partial \widehat{v})+\Phi_{*}(\widehat{\partial v}) \\
& =\Phi_{*}(\partial \widehat{v}+\widehat{\partial v}) \\
& =\Phi_{*}\left(v^{\prime}-v\right) \\
& =g_{*}(v)-f_{*}(v)
\end{aligned}
$$

(ii) Let $f: G \rightarrow H$ and $g: H \rightarrow G$ be digraph maps such that

$$
\begin{equation*}
f \circ g \simeq \operatorname{id}_{H}, \quad g \circ f \simeq \operatorname{id}_{G} . \tag{12}
\end{equation*}
$$

Then they induce the following mappings

$$
H_{p}(G) \xrightarrow{f_{*}} H_{p}(H) \xrightarrow{g_{*}} H_{p}(G) \xrightarrow{f_{*}} H_{p}(H) .
$$

By (i) and (13) we have $f_{*} \circ g_{*}=\mathrm{id}$ and $g_{*} \circ f_{*}=\mathrm{id}$, which implies that f_{*} and g_{*} are mutually inverse isomorphisms of $H_{p}(G)$ and $H_{p}(H)$.

2.3 Retraction

A (induced) sub-digraph H of a digraph G is a digraph such that $V_{H} \subset V_{G}$, and $x \rightarrow y$ in H if and only if $x \rightarrow y$ in G.

Definition. Let G be a digraph and H be its sub-digraph. A retraction of G onto H is a digraph map $r: G \rightarrow H$ such that $\left.r\right|_{H}=\operatorname{id}_{H}$.

Let $r: G \rightarrow H$ be a retraction and let $i: H \rightarrow G$ be the natural inclusion map. By definition of retraction we have $r \circ i=\operatorname{id}_{H}$. Therefore, if

$$
\begin{equation*}
i \circ r \simeq \operatorname{id}_{G}, \tag{13}
\end{equation*}
$$

then i and r are homotopy inverses and we obtain that $G \simeq H$. A retraction $r: G \rightarrow H$ with the property (14) is called a deformation retraction.

Proposition 5 Let $r: G \rightarrow H$ be a retraction of a digraph G onto a sub-digraph H such that

$$
\begin{equation*}
\text { either } x \equiv r(x) \text { for all } x \in V_{G} \text { or } r(x) 引 x \quad \text { for all } x \in V_{G} \text {. } \tag{14}
\end{equation*}
$$

Then r is a deformation retraction and, consequently, the digraphs G and H are homotopy equivalent.

Proof. Set $f=\operatorname{id}_{G}$ and $g=i \circ r$. For any $x \in V_{G}$ we have $f(x)=x$ and $g(x)=r(x)$. The condition (15) means that f and g satisfy (??), whence $f \stackrel{1 \text {-step }}{\sim} g$. Hence, we obtain (14) and, consequently, $G \simeq H$.

Example. Let us show that the square

is also contractible. It suffices to show that $G \simeq H$ where H is the following subgraph

$$
H={ }^{0} \bullet \longrightarrow \bullet^{1} .
$$

Consider a retraction $r: G \rightarrow H$ given by

$$
r(0)=r(2)=0 \text { and } r(1)=r(3)=1
$$

Clearly, it satisfies $r(x) \equiv x$ for all $x \in V_{G}$ and we conclude by Proposition 5 that $G \simeq H$. Since H is contractible, we obtain that G is also contractible.

Example. For any $n \geq 1$, consider the n-dimensional cube $I^{n}=\underbrace{I \square I \square \ldots \square I}_{n \text { times }}$. As in the previous example, one constructs an obvious deformation retraction of I^{n} onto I^{n-1} thus proving that $I^{n} \simeq I^{n-1}$. By induction we obtain that all cubes I^{n} are contractible.

3 Fundamental group of a digraph

A based digraph G^{*} is a digraph G with a fixed base vertex $* \in V_{G}$. A based digraph map $f: G^{*} \rightarrow H^{*}$ is a digraph map $f: G \rightarrow H$ such that $f(*)=*$. Any linear digraph I_{n} will always be considered as a based digraph with the base point 0 .

3.1 C-homotopy

A loop in a digraph G is any digraph map $\phi: I_{n} \rightarrow G$ with $\phi(0)=\phi(n)$. A based loop on a based digraph G^{*} is a loop $\phi: I_{n} \rightarrow G^{*}$, such that $\phi(0)=\phi(n)=*$.

A digraph map $h: I_{n} \rightarrow I_{m}$ is called shrinking if $h(0)=0, h(n)=m$, and $h(i) \leq h(j)$ whenever $i \leq j$ (which is only possible when $m \leq n$).

The cylinder C_{h} of the map h is the digraph with the set of vertices $V_{\mathrm{C}_{h}}=V_{I_{n}} \sqcup V_{I_{m}}$ and with the set of arrows $E_{\mathrm{C}_{h}}$ that consists of all the arrows of I_{n} and I_{m} and of the arrows

$$
i \rightarrow h(i) \text { for all } i \in I_{n} .
$$

Similarly define the inverse cylinder C_{h}^{-}using

$$
h(i) \rightarrow i \text { for all } i \in I_{n}
$$

Definition. Consider two based loops

$$
\phi: I_{n} \rightarrow G^{*} \text { and } \psi: I_{m} \rightarrow G^{*}
$$

We say that there is one-step direct C-homotopy from ϕ to ψ and write with $\phi \xrightarrow{C} \psi$ if there exists a shrinking map $h: I_{n} \rightarrow I_{m}$ such that the map $F: \mathrm{C}_{h} \rightarrow G$ given by

$$
\begin{equation*}
\left.F\right|_{I_{n}}=\phi \quad \text { and }\left.\quad F\right|_{I_{m}}=\psi \tag{15}
\end{equation*}
$$

is a digraph map, that is, $\phi(i) \supsetneqq \psi(h(i))$ for all $i \in I_{n}$.
If F is a digraph map from C_{h}^{-}to G then we call it an one-step inverse C-homotopy and write $\phi \stackrel{C}{\leftarrow} \psi$.

Example. An example of one-step direct C-homotopy is shown here:

If $n=m$ then $h=\operatorname{id}_{I_{n}}$ and an one-step C-homotopy is a homotopy.
Definition. We call two loops ϕ, ψ-homotopic and write $\phi \stackrel{C}{\simeq} \psi$ if there exists a finite sequence $\left\{\phi_{k}\right\}_{k=0}^{m}$ of loops in G^{*} such that $\phi_{0}=\phi, \phi_{m}=\psi$ and, for any $k=0, \ldots, m-1$, holds $\phi_{k} \xrightarrow{C} \phi_{k+1}$ or $\phi_{k} \stackrel{C}{\leftarrow} \phi_{k+1}$.

Clearly, $\phi \stackrel{C}{\simeq} \psi$ is an equivalence relation. The C-homotopy class of a based loop ϕ will be denoted by $[\phi]$. We say that a loop ϕ is C-contractible if $\phi \stackrel{C}{\simeq} e$, that is, $[\phi]=[e]$.

Example. A triangular loop is a loop $\phi: I_{3} \rightarrow G^{*}$ with $I_{3}=(0 \rightarrow 1 \rightarrow 2 \leftarrow 3)$.

The triangular loop is C-contractible because the following shrinking map

$$
h: I_{3} \rightarrow I_{0}, \quad h(k)=0 \text { for all } k=0, \ldots, 3
$$

provides an inverse one-step C-homotopy between ϕ and e.
Example. A square loop is a loop $\phi: I_{4} \rightarrow G$ with $I_{4}=(0 \rightarrow 1 \rightarrow 2 \leftarrow 3 \leftarrow 4)$. The square loop can be C-contracted to e in two steps:

3.2 Local description of C-homotopy

Any loop $\phi: I_{n} \rightarrow G$ determines a sequence $\theta_{\phi}=\{\phi(i)\}_{i=0}^{n}$ of vertices of G. We consider the sequence θ_{ϕ} as a word over the alphabet V_{G}.

Theorem 6 Two based loops $\phi: I_{n} \rightarrow G^{*}$ and $\psi: I_{m} \rightarrow G^{*}$ are C-homotopic if and only if the word θ_{ψ} can be obtained from θ_{ϕ} by a finite sequence of the following transformations (or their inverses):
(i) ...abc... $\mapsto \ldots a c \ldots$ where (a, b, c) is any permutation of a triple $\left(v_{0}, v_{1}, v_{2}\right)$ of vertices forming a triangle in G :

(and the dots "..." denote the unchanged parts of the words).
(ii) ...abc... \mapsto...adc... where (a, b, c, d) is any cyclic permutation (or an inverse cyclic permutation) of a quadruple $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ of vertices forming a square in G :

(iii) ...abcd... $\mapsto \ldots$...d... where (a, b, c, d) is as in (ii).
(iv) ...aba $\ldots \mapsto \ldots a \ldots$ if $a \rightarrow b$ or $b \rightarrow a$.
(v) ...aa... $\mapsto \ldots a \ldots$

Examples.

1. A triangular loop $\phi: I_{3} \rightarrow G$ is contractible because
$\theta_{\phi}=a b c a \stackrel{(i)}{\sim} a c a \stackrel{(i v)}{\sim} a$

2. A square loop $\phi: I_{4} \rightarrow G$ is contractible because
$\theta_{\phi}=a b c d a \stackrel{(i i i)}{\sim} a d a \stackrel{(i v)}{\sim} a$.

We have $\theta_{\phi}=a b c a$. It is clear that this word does not allow any of the transformations of Theorem 6, which implies that ϕ is not C-contractible.
4. Consider the loops ϕ and ψ as p.27. It is shown here how to transform θ_{ϕ} to θ_{ψ} using the word transformations of Theorem 6.

Transforming a 5 -cycle θ_{ϕ} to a 3 -cycle θ_{ψ} using successively $(i)^{-}$(the inverse of (i)), (i), (ii) and (iii).

3.3 Group structure in π_{1}

For any two linear digraphs I_{n} and I_{m}, define the linear digraph $I_{n} \vee I_{m}$ that is obtained from I_{n} and I_{m} by identification of the vertex $n \in I_{n}$ with the vertex $0 \in I_{m}$.
For any linear digraph I_{n} define a linear digraph \hat{I}_{n} as follows:

$$
i \rightarrow j \text { in } \hat{I}_{n} \Leftrightarrow(n-i) \rightarrow(n-j) \text { in } I_{n} .
$$

Definition. (i) For two based loops $\phi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ define their concatenation $\phi \vee \psi: I_{n} \vee I_{m} \rightarrow G$ by

$$
\phi \vee \psi(i)= \begin{cases}\phi(i), & 0 \leq i \leq n \\ \psi(i-n), & n \leq i \leq n+m\end{cases}
$$

(ii) For any based loop $\phi: I_{n} \rightarrow G$ define its inversion $\hat{\phi}: \hat{I}_{n} \rightarrow G$ by $\hat{\phi}(i)=\phi(n-i)$.

Denote by $\pi_{1}\left(G^{*}\right)$ the set of all equivalence classes $[\phi]$ for all based loops ϕ in G^{*}. Now we can define a product in $\pi_{1}\left(G^{*}\right)$ as follows.

Definition. For any two based loops ϕ, ψ in G^{*} define the product of the equivalence classes $[\phi]$ and $[\psi]$ by $[\phi] \cdot[\psi]=[\phi \vee \psi]$.

Theorem 7 Let G, H be digraphs.
(i) The product in $\pi_{1}\left(G^{*}\right)$ is well defined. The set $\pi_{1}\left(G^{*}\right)$ with the product $[\phi] \cdot[\psi]$, the neutral element $[e]$ and inversion $[\hat{\phi}]$ is a group.
(ii) Any based digraph map $f: G^{*} \rightarrow H^{*}$ induces a group homomorphism

$$
\begin{aligned}
f & : \pi_{1}\left(G^{*}\right) \rightarrow \pi_{1}\left(H^{*}\right) \\
f([\phi]) & =[f \circ \phi],
\end{aligned}
$$

which depends only on homotopy class of f.
(iii) Let G, H be connected. If $G \simeq H$ then the fundamental groups $\pi_{1}\left(G^{*}\right)$ and $\pi_{1}\left(H^{*}\right)$ are isomorphic (for any choice of the base vertices).

3.4 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the classical lemma of Sperner, using the notion the fundamental group and C-homotopy.

Consider a triangle $A B C$ on the plane \mathbb{R}^{2} and its triangulation T. Assume that the set of vertices of T is colored with three colors $1,2,3$ in such a way that

- A, B, C are colored with $1,2,3$ respectively;
- each vertex on any side of $A B C$ is colored with one of the two colors of the endpoints of the side.

The classical lemma of Sperner says: there exists in T a 3-color triangle, that is, a triangle whose vertices are colored with three different colors.

To prove this, let us first modify the triangulation T so that there are no vertices on the sides $A B, A C, B C$ except for A, B, C. Indeed, if X is a vertex on $A B$ then we move X a bit inside the triangle $A B C$. This gives rise to a new triangle in the triangulation T that is formed by X and its former neighbors, say Y and Z, on the arrow $A B$ (while keeping all other triangles). However, since all X, Y, Z are colored with two colors, no 3 -color triangle emerges after that move. By induction, we remove all the vertices from the sides of $A B C$.

The triangulation T can be regarded as a graph. Let us make it into a digraph G by choosing the direction on the arrows as follows. If the vertices a, b are connected by an arrow in T then choose direction between a, b using the colors of a, b and the following rule:

$$
\begin{array}{lll}
1 \rightarrow 2, & 2 \rightarrow 3, & 3 \rightarrow 1 \tag{16}\\
1 \leftrightarrows 1, & 2 \leftrightarrows 2, & 3 \leftrightarrows 3
\end{array}
$$

Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G like

in particular, each of them contains a triangle in the sense of Theorem 6.

Consider a 3-loop $\phi: I_{3} \rightarrow G^{*}$ with the word $\theta_{\phi}=A B C A$. Using the transformation (ii) of Theorem 6 and the partition of G into the triangle digraphs, we can contract the word $A B C A$ to an empty word. Hence, $\phi \stackrel{C}{\sim} e$.

Consider the cycle digraph H with the vertices a, b, c as follows

where the vertex a is colored by $1, b$ by 2 and c by 3 . Define a map $f: G \rightarrow H$ by the rule that $f(x)$ has the same color in H as x in G.
By the choice of directions on the arrows of G, f is a digraph map. The loop $f \circ \phi$ on H has the word

$$
\theta_{f \circ \phi}=a b c a,
$$

which is not contractible on H as we have seen above. However, by Theorem $8, f$ induces homomorphism of $\pi_{1}(G)$ to $\pi_{1}(H)$. Therefore, $\phi \stackrel{C}{\simeq} e$ implies that also $f \circ \phi \stackrel{C}{\simeq} e$, which contradicts the previous observation.

3.5 Hurewicz theorem

One of our main results is the following discrete version of Hurewicz theorem.

Theorem 8 For any based connected digraph G^{*} we have an isomorphism

$$
\pi_{1}\left(G^{*}\right) /\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right] \cong H_{1}(G, \mathbb{Z})
$$

where $\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right]$ is a commutator subgroup.

