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1 Chain spaces and path homology on digraphs

1.1 Paths and the boundary operator

Let us fix a finite set V and a field K. For any p > 0, an elementary p-path is any sequence
ig, ..., 1y of p + 1 vertices of V'; it will be also denoted by e;; ;.

A p-path is any formal linear combinations of elementary p-paths e;, ;, with coefficients
from K; that is, any p-path u has a form

= E igil-ipp. . .
u u e’Lo’Ll...Z;ﬂ
10,81,...,ipEV

where uioi1-i» € K. The set of all p-paths is a K-linear space denoted by A, = A, (V,K).
For example, Ag = (e; i€ V), A= (ej:9,j€V), A= {(ejr:i,75keV).
Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_1 by
P
Oei..i, = > (—1)* Cio..igenip (1)

q=0

where ~ means omission of the index. For p = 0 set de; = 0 (and, hence, A_; = {0}).
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For example,
Geij = Gj — €; and 8eijk = ij; — Cik —+ eij.

It is easy to show that 9> = 0. Hence, we obtain a chain complex A, (V):

O%AO£A1<—--- — A1 &= Ay =

An elementary p-path e;;.;, is called reqular if iy, # i1y forall k = 0, ..., p—1, and irreqular
otherwise. A p-path is called regular (resp. irregular) if it is a linear combination of regular
(resp. irregular) elementary paths.

Denote by R, the space of all regular p-paths. Then 0 is well defined on the spaces R, if
we identify all irregular paths with 0 (which is justified by the fact that if u is irregular
then Ou is also irregular). For example, if ¢ # j then e;;; € Ro and

Oeiji = eji — ey + €55 = ej; + €5 € R,

because e; = 0. Hence, we obtain a regular chain complex

0 « Ro £ Ry & ... & R &R, &...



1.2 Chain complex on digraphs

A digraph (directed graph) is a pair G = (V, E) of aset V of vertices and £ C {V xV'\diag}
is a set of arrows (directed edges). If (4,7) € E then we write i — j.

Definition. An elementary p-path e;,. ;, in a digraph G = (V, E) is called allowed

if i — tpyq forany k=0,....p — 1,

and non-allowed otherwise.

A p-path is called allowed if it is a linear combination of allowed elementary p-paths.

Denote by A, = A, (G,K) the linear space of all allowed p-paths. Since any allowed path
is regular, we have A, C R,.

We would like to build a chain complex based on spaces A,. However, in general 0 does

. . a b G
not act on the spaces A,. For example, in the digraph e — e — e we have ey, € A

but Oeupe = €pe — €ac + €ap & A1 because e, is not allowed.

Consider the following subspace of A,:

Q,=Q,GK)={ueA,:0uec A,_1}|




Claim. 09, C Q,_;. Indeed, if u € Q, then Ou € A, ; and 0(0u) = 0 € A,_» whence
@u € Qp—l-

For example, we have Qy = Ay =(e;: 1 € V) and Q= A = {e;; 11 — j}.
Definition. The elements of €2, are called 0-invariant p-paths.

Hence, we obtain a chain complex €2, = €, (G, K) that reflects a digraph structure:

0

00— Q £ o & ... &g, &

2 o 2. (2)

p—1 P

Homology groups of (2) are called path homologies of G and are denoted by H,(G).

1.3 Examples of J-invariant paths

A triangle is a sequence of three distinct vertices a, b, ¢ c

such that a - b — ¢, a — c.

It determines a O-invariant 2-path eg. € {25 because

eape € Ao and degpe = €pe — €qe + €qp € Aj.

The path ey, is also referred to as a triangle. a b
If @ — b — ¢ but a /4 cthen ey € As but egpe & .
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A square is a sequence of four distinct vertices a, b,V ¢
such that a — b — ¢, a — b/ — ¢ while a /4 c.
It determines a O-invariant 2-path
U = €gpe — €abrc € (o
because u € As and
Ou = (epe — €qc + €ap) — (erre — €ac + €arr)
= €ab t €pe — €aty — €y € A

The path u is also referred to as a square.

b'y

*C

®b



1.4 Digraph maps

We write a =b if either a — b or a = b.

Definition. A morphism from a digraph G = (V| F) to a digraph G’ = (V', E’) is a map
f:V — V' such that

if a=bon G then f(a) =f(b) on G (3)

That is, if @ — b in G then either f(a) — f(b) or f(a) = f(b) in G'. We will refer to
such morphisms also as digraphs maps and denote them shortly by f: G — G'.

Given a map f:V — V' define for any p > 0 the induced map
fur Ap(V) = Ap(V)

by the rule
Fu (Cio-ip) = €f(io)...F(in); (4)
extended by K-linearity to all elements of A, (V). It is obvious that

fo(Rp(V)) CRH(V') and fi(Ay(G)) C A(G).
It follows from (1) and (4) that df, = f.0, which implies the following.
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Proposition 1 Let G and G be two digraphs, and f: G — G’ be a digraph map. Then,

for any p > 0,
fe (2 () C O (G).

Moreover, the map

fe 1 Qp(G) — 8 (€Y

1s a morphism of the chain complezes
0(G) — Q.(G)
and, consequently, a homomorphism of homology groups
H.(G) — H.(G)

that will also be denoted by f,.

(5)



1.5 Cartesian product

Given two digraphs GG and H, define their Cartesian product as a digraph GLIH as follows:
e the vertices of GLH are the couples (z,a) where x € Vi and a € Vj;

e the arrows of GLH are of two types: (z,a) — (y,a) if x — y in G (a horizontal arrow)
and (z,a) — (x,b) if @ — bin H (a vertical arrow):

(z,b) (y,b)
[ J — [

be e
T T T
(z,a) (y,a)
ae ce [} — [
H /2o .. o — e
x y

For any digraph G, define the cylinder over G by G = GOI where I = (Yo — ol).

We shall put the hat ™ over all notation related to G.



Let us identify G x 0 with G and
set G' =G x 1.

For any = € V, identify (z,0) with x

and set 2’ = (x, 1) so that + — 2’ in G.

For any arrow x — y in G, we have also

a:—>yand:1:’—>y’in@.

For any path v € A, define the lifted path v € Kp—l—l by

p

= Z (—1)k Cig...ixd)...1

k=0

AN
€ig.. Ap

and linearity.
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For example, we have

/e\a = €qa’

€ab = €Cad’ty — Eabl’

€abc = €aa'b'c’ — Eabb'c! T Eabee! )
a A ¢

The component e,/ .» of the 3-path €,

If ig...ip is allowed in G then, for any k, the path ig...ixi}...i;, is allowed in G:

i/ ,L'/ ,L‘l

k k+1 P

[ J e [ ] — o .. — @

T T :
10 1 Tht1
e — o .. —_— [ J _— [ ]

Hence, for any v € A, we have 0 € A, ;. Below we will prove that if v € €, then 7 € Q4.
For any path v in GG define its image v’ in G’ by <€i0...ip)/ = €y .

Lc
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Lemma 2 For any p-path v on G with p > 0
90+ v =1 —v. (7)

Proof. It suffices to prove (7) for v = e;,. ;

,- For p =0 set v = ¢; so that Jv = 0 and
v = e;y whence

86+55:ei/—6i+021;’—v.
For p > 1 we have

p
~ k
v = E (—1) aeio...iki;...ig
k=0
l p
_§ : 2 : l 2 : l+1 R
1) elo...zl...lklk 'L' + 7,0 Zkzzl;@{p
=0 =k
. 2 : IC-H 2 k+l+l
_ ( 1) 'Lo...Zl...Zklk / + ( 1 zozkzgczgz;,
0<I<k<p 0<k<i<p
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and

p p -1
2 : k-1
(_1) 620...1[...’Lk2k + 7,0 zkz Z;’L;
=0

k=Il+1
- k=1, Z k+1 R
- ( 1) Zo...ll...lklk l/ + 1 elozklk’bglé

0<l<k<p 0<k<I<p

We see that in the sum 9% + Ov all the terms with & = [ cancel out and we obtain
p

p
. — /
v+ Ov = E Cig.ip1il...if E Cig.igifyq-ipy — Cifoi, — Cigoip = U — Vs
|

Corollary 3 Ifv e Q, thenv € (Alpﬂ.

Proof. We already know that o € A,,;, and we need to prove that 90 € A,. Since
veA,and Ov € A, 1, we have v € A, and v € A, whence it follows from (7) that also
veA, =
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Example. The cylinder over the digraph I = (e — e!) is a square

Lifting a O-invariant 1-path eq; € 2; we obtain a O-invariant 2-path on the square:

€01 = €00’'1’ — €011 = €023 — €013-

Y
(0%)
RS

6
A
The cylinder over the square (8) is a 3-cube: 2/

where we take i/ =1 + 4. )\ )\

Lifting the O-invariant 2-path v = ega3 — €913 )
we obtain a O-invariant 3-path on the 3-cube: /

0

v
—

U = eoprary — €o22r3 + €023z — (€001 — €o1172 + €01337)

= €0467 — €0267 T €0237 — €o457 + €0157 — €0137-

14



2 Homotopy theory of digraphs

2.1 The notion of homotopy

For any n > 1 define a linear digraph I,, as any digraph with vertices {0, 1,...,n} such
that if |[¢ — j| = 1 then either i — j or j — i, and if |i — j| # 1 then there is no arrow
between 7 and j.

For example, here is a linear digraph I3: DS O 00
1

Definition. Let G and H be digraphs. Two digraph maps f,g: G — H are called
homotopic if there exists a linear digraph I,, with some n > 1 and a digraph map

. GOI,, — H

such that
Plaxo = f and Ploxn =g. 9)

In this case we write f ~ g. Clearly, this is an equivalence relation.
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In the case n = 1 we refer to the map ® as an one-step homotopy between f and g and
1-ste

write f ~" g.

It is easy to see that f,g : G — H are homotopic if and only if there is a finite sequence

of digraph maps f = fy, f1,..., fn = g from G to H such that

1-step

fr = fegr-
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Let ® : GOI; — H be an one-step homotopy between f and g and let I; = (Yo — ') = 1.
Then GUII is the cylinder @, and the e

, , G'= G x{1 }\ g
map ¢ : GLI — H is determined by It x'
its restrictions ®|g = f and | = g. [y R ()
I LA
—2 H
For a vertical arrow x — 2’ we have e S S
®(x)=f(z) and ®(2') =g (x) 0,.( X0 G- G0} :)
so that the requirement ® (z) = (') e L
becomes f (x) =g (z) in H. The map ®:G— H
1-step

Considering similarly the case I} = {%e < e} we obtain that f ~ g if and only if

either f () =g (x) for all x € Vg
or g(x)=f(z) forall z € V.
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Example. Consider the digraphs

1

G = ~\ and H = “e — e
le — o2

b

and the mappings f, g : Vo — Vg given by the table:

z€Vg | f(z) | g(x)
0 a a
1 a b
2 b b

It is easy to see that both f and g are digraph maps from G to H. Moreover, f and g are

one-step homotopic, because f (x) =g (z) for all z € V.

Definition. Two digraphs G and H are called homotopy equivalent if there exist digraph
maps
f:G—H, g:H—-G (10)

such that

fog~idy, go f ~idg. (11)
In this case we shall write G ~ H. The maps f and g as in (12) are called homotopy
inverses of each other.
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2.2 Homotopy preserves homologies

Now we can prove the main result about connections between homotopy and homology
on digraphs.

Theorem 4 Let G, H be two digraphs.
(i) Let f,g: G — H be two digraph maps. If f ~ g then the induced maps

f«:H,(G)— H,(H) and g¢.:H,(G)— H,(H)

of the homology groups are identical, that is, f. = g. in homologies.

(ii) If the digraphs G and H are homotopy equivalent, then all their homology groups are
1somorphic.

Proof. (i) Let ® : GOI, — H be a homotopy between f and g. It suffices to treat the
case n = 1 as the general case then follows by induction. Let Iy = I = (0 — 1) so that

A~

GUOI, = GOI = G (the case I} = I~ can be treated similarly). The maps f and g induce
morphisms of chain complexes

for g7 U(G) — Q.(H),
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and ® induces a morphism

~

P, : Q(G) — Q(H).
As before, we identify G with G x 0 and set G’ = G x 1. For any path v € Q.(G)
considering as a path in G we have ®, (v) = f. (v) and @, (V') = g. (V).

In order to prove that f, and g, induce the identical homomorphisms H, (G) — H, (H),
it suffices to construct a chain homotopy between the chain complexes Q. (G) and Q. (H),
that is, the K-linear mappings

Ly : Q(G) = Qpy1(H)
such that
aLp —+ Lp_la = gx — f*
(note that all the terms here are mapping from 2, (G) to Q,(H)) as on the following

diagram:
0

-1 (G) — 2 (G) — Q1 (G)
p\ lf*lg* \p

Qp1 (H) «— Q,(H) \ry Qpi1 (H)
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Let us define the mapping L, as follows
L,(v)=®, (v) foranyveQ,(G),

where v € QPH(@) is the lifting of v to the graph G defined in Section 1.5. Using
0P, = .0 (see Proposition 1) and the product rule (7) of Lemma 2, we obtain

(OLy + Ly 10)(v) = O(®.(D)) + ©.(Av)
= ®, (00) + ®,(0v)
= ®, (00 + Ov)
=, (v —v)
=g+ (v) = fu (v).
(ii)) Let f: G — H and g : H — G be digraph maps such that
fog~idy, go f ~idg. (12)
Then they induce the following mappings
H,(G) = Hy (H) % H, (G) & H, (H).
By (i) and (13) we have f, o g, = id and g, o f, = id, which implies that f, and g. are

mutually inverse isomorphisms of H, (G) and H, (H). =
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2.3 Retraction

A (induced) sub-digraph H of a digraph G is a digraph such that Vi C Vi, and x — y
in A if and only if x — y in G.

Definition. Let G be a digraph and H be its sub-digraph. A retraction of G onto H is
a digraph map r : G — H such that r|g = idg.

Let r : G — H be a retraction and let ¢ : H — G be the natural inclusion map. By
definition of retraction we have r o ¢ = idy . Therefore, if

1or ~idg, (13>

then ¢ and r are homotopy inverses and we obtain that G ~ H. A retraction r : G — H
with the property (14) is called a deformation retraction.

Proposition 5 Let r: G — H be a retraction of a digraph G onto a sub-digraph H such
that
either x =r (x) for allx € Vg or r(x) =z for all x € Vg. (14)

Then r is a deformation retraction and, consequently, the digraphs G and H are homotopy
equivalent.
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Proof. Set f =idg and g =ior. For any = € Vi; we have f (z) = z and g (z) = r (z).
The condition (15) means that f and g satisfy (?7), whence f P g. Hence, we obtain

(14) and, consequently, G ~ H. =

Example. Let us show that the square

2o 3

[ J
G= 1 T
lg — . ol
is also contractible. It suffices to show that G ~ H where H is the following subgraph
H= Y% — ol
Consider a retraction r : G — H given by
r(0)=r(2)=0 and r (1) =r(3) =1,
Clearly, it satisfies r (z) =z for all z € Vz and we conclude by Proposition 5 that G ~ H.
Since H is contractible, we obtain that G is also contractible.

Example. For any n > 1, consider the n-dimensional cube /™ = JLI[]...I. As in the

-~

n times

previous example, one constructs an obvious deformation retraction of I"™ onto I™~! thus
proving that I™ ~ "1, By induction we obtain that all cubes I" are contractible.
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3 Fundamental group of a digraph

A based digraph G* is a digraph G with a fixed base vertex x € V. A based digraph map
f:G* — H*is a digraph map f : G — H such that f (x) = %. Any linear digraph I,, will
always be considered as a based digraph with the base point 0.

3.1 (C-homotopy

A loop in a digraph G is any digraph map ¢ : I, — G with ¢ (0) = ¢ (n). A based loop
on a based digraph G* is a loop ¢ : I,, — G*, such that ¢ (0) = ¢ (n) = *.

I3

° >@ >0« °® > {0(2)
#=() 1 2 3

#=0(0)= 6(3)
G
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I o(1) 2)
—>0—>ec—o0<—0 b,
s20 1 2 3 4 o)

% =0(0)= O(4)

A digraph map h : I, — I, is called shrinking if h (0) = 0, h(n) = m, and h (i) < h(j)
whenever i < j (which is only possible when m < n).

The cylinder Cj of the map h is the digraph I :‘=0 1 2 3
with the set of vertices Vo, =V, UV, and I
with the set of arrows Eg, that consists of all
the arrows of I,, and I,, and of the arrows h Ch
i — h (i) for all i € I,,.
Similarly define the inverse cylinder C, using [ s
h (i) — i for all i € I,. Tr=0 1 2 3 4 5
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Definition. Consider two based loops
¢: I, - G and v: I, — G".

We say that there is one-step direct C-homotopy from ¢ to ¢ and write with ¢ A Y if
there exists a shrinking map A : I, — I, such that the map F': C;, — G given by

Fl,=¢ and F|;, =1, (15)
is a digraph map, that is, ¢ (1) =1 (h (1)) for all i € I,,.
If I is a digraph map from C, to G then we call it an one-step inverse C-homotopy and
write ¢ & .

Example. An example of one-step direct C-homotopy is shown here:

*=() 1 2 3 Y

]m [ _—




If n =m then h =id;, and an one-step C-homotopy is a homotopy.

Definition. We call two loops ¢, C-homotopic and write ¢ < 1 if there exists a finite
sequence {¢, },-, of loops in G* such that ¢, = ¢, ¢,, = ¢ and, for any k =0,....,m — 1,

C C
holds ¢, — @1 Or @p < Dpy-

Clearly, ¢ £ Y is an equivalence relation. The C-homotopy class of a based loop ¢ will
be denoted by [¢]. We say that a loop ¢ is C-contractible if ¢ £ e, that is, [¢] = [e].

Example. A triangular loop is a loop ¢ : I3 — G* with I3 = (0 - 1 — 2 < 3).

*= 0 =
D
Ci
Th 92)
@ L
*=0 1 2 3 G
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The triangular loop is C-contractible because the following shrinking map
h:l3— Iy, h(k)=0forall k=0,...,3,
provides an inverse one-step C-homotopy between ¢ and e.

Example. A square loop is a loop ¢ : Iy, — G with I, = (0 -1 — 2+« 3« 4).The
square loop can be C-contracted to e in two steps:

*:0

KL=V ¥2)~
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3.2 Local description of C-homotopy

Any loop ¢: I, — G determines a sequence 645 = {¢(i)}._, of vertices of G. We consider
the sequence 04 as a word over the alphabet V.

Theorem 6 Two based loops ¢ : I, — G* and ¢ : I, — G* are C'-homotopic if and only

if the word 8y can be obtained from 0,4 by a finite sequence of the following transformations
(or their inverses):

() ...abc... — ...ac... where (a,b,c) is any permutation of a triple (vy,vy,vs) of vertices
forming a triangle in G:
v2

AN

e — o1
(and the dots “..” denote the unchanged parts of the words).

(73) ...abc... — ..adc... where (a,b,c,d) is any cyclic permutation (or an inverse cyclic
permutation) of a quadruple (vg,vi,ve,v3) of vertices forming a square in G:

e — @2

T T

e — o
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(idi) ...abcd... — ...ad... where (a,b,c,d) is as in (ii).

(iv) ...aba... — ...a... if a — b or b — a.

(v) ...aa... — ...a...

Examples.

1. A triangular loop ¢ : I3 — G

is contractible because

0y = abca ) aca () a

2. A square loop ¢ : I, — G

is contractible because

i iv)

04 = abcda 0 ada W a.

30
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C

3. Consider a cyclic digraph G = <N o and the following loop ¢ : I3 — G :

o —

p=4(1) G
2
—e——e———> ' . =0(2)
*=() 1 2 3

r=a=0(0)=0(3)

We have 0, = abca. It is clear that this word does not allow any of the transformations
of Theorem 6, which implies that ¢ is not C-contractible.
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4. Consider the loops ¢ and ¢ as p.27. It is shown here how to transform 604 to 6, using
the word transformations of Theorem 6.

Transforming a 5-cycle 6, to a 3-cycle 6, using successively (i)~ (the inverse of (7)),
(4, (4) and (4ii) .
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3.3 Group structure in m;

For any two linear digraphs [,, and I,,,, define the linear digraph I,, V I,,, that is obtained
from I,, and I,, by identification of the vertex n € I,, with the vertex 0 € I,,.
For any linear digraph I,, define a linear digraph I,, as follows:

i—jinl, & (n—i)— (n—7j) in I,
Definition. (i) For two based loops ¢ : I, — G and v : I,, — G define their concatena-
tion ¢V : I,V I,, — G by

o(1), 0<i<n
Y(i—n), n<i<n+m.

(77) For any based loop ¢ : I, — G define its inversion ¢:1,— G by gAb(z) = ¢(n —1).

Denote by m1(G*) the set of all equivalence classes [¢] for all based loops ¢ in G*. Now
we can define a product in m (G*) as follows.

Definition. For any two based loops ¢, in G* define the product of the equivalence
classes [¢] and [¢] by [¢] - [¢] = [¢ V ¢].
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Theorem 7 Let G, H be digraphs.

() The product in w1 (G*) is well defined. The set mi(G*) with the product [¢] - [1)], the
neutral element |e] and inversion [¢] is a group.

(13) Any based digraph map f : G* — H* induces a group homomorphism
f : Wl(G*)—>7T1(H*)
fel) = [foql
which depends only on homotopy class of f.

(131) Let G, H be connected. If G ~ H then the fundamental groups m (G*) and m, (H*)
are isomorphic (for any choice of the base vertices).
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3.4 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group and C-homotopy.

Consider a triangle ABC' on the plane R? and its triangulation 7'. Assume that the set
of vertices of T' is colored with three colors 1,2, 3 in such a way that

e A, B,( are colored with 1,2, 3 respectively;

e cach vertex on any side of ABC' is colored
with one of the two colors of the endpoints
of the side.

The classical lemma of Sperner says:

there exists in T' a 3-color triangle, that is, a
triangle whose vertices are colored with three
different colors.

A Sperner coloring
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To prove this, let us first modify the triangulation 7" so that there are no vertices on the
sides AB, AC, BC' except for A, B, C. Indeed, if X is a vertex on AB then we move X a
bit inside the triangle ABC'. This gives rise to a new triangle in the triangulation 7" that
is formed by X and its former neighbors, say Y and Z, on the arrow AB (while keeping
all other triangles). However, since all X,Y,Z are colored with two colors, no 3-color

triangle emerges after that move. By induction, we remove all the vertices from the sides
of ABC.

The triangulation T" can be regarded as a graph. Let us make it into a digraph G by
choosing the direction on the arrows as follows. If the vertices a,b are connected by an
arrow in 1" then choose direction between a, b using the colors of a,b and the following

rule:
1—2, 2—3, 3—1

=1 =D B

(16)

Assume now that there is no 3-color triangle in 7". Then each triangle from 7" looks in G
like

N or YRR or A NN

L] — [ ] (] — (] o — ®

in particular, each of them contains a triangle in the sense of Theorem 6.
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Consider a 3-loop ¢ : I3y — G* with the word 0, = ABCA. Using the transformation (i)
of Theorem 6 and the partition of GG into the triangle digraphs, we can contract the word

ABCA to an empty word. Hence, ¢ Le.
Consider the cycle digraph H with the vertices a, b, ¢ as follows

C3

7N\ (17)

a1 B— bg

where the vertex a is colored by 1, b by 2 and ¢ by 3. Define a map f : G — H by the
rule that f (x) has the same color in H as z in G.

By the choice of directions on the arrows of GG, f is a digraph map. The loop fo ¢ on H
has the word

00 = abca,
which is not contractible on H as we have seen above. However, by Theorem 8, f induces

. & . . C }
homomorphism of 7 (G) to 1 (H). Therefore, ¢ ~ e implies that also f o ¢ ~ e, which
contradicts the previous observation.
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3.5 Hurewicz theorem

One of our main results is the following discrete version of Hurewicz theorem.

Theorem 8 For any based connected digraph G* we have an isomorphism
m(G") /[m1(GY), m(G7)] = Hi(G, Z)

where [11(G*), 71(G")] is a commutator subgroup.
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