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1 Homology theory of digraphs

In this Section we state the basic notions of homology theory for digraphs in the form
that we need in subsequent sections. This is a slight adaptation of a more general
theory from [5], [7]. A dual cohomology theory was developed from a different point
of view in [3], [4].

1.1 Paths and their boundaries

Let V be a finite set. For any p ≥ 0, an elementary p-path is any (ordered) sequence
i0, ..., ip of p + 1 vertices of V that will be denoted simply by i0...ip or by ei0...ip . Fix
a commutative ring K with unity and denote by Λp = Λp (V ) = Λp (V,K) the free
K-module that consist of all formal K-linear combinations of all elementary p-paths.
Hence, each p-path has a form

v =
∑

i0i1...ip

vi0i1...ip ei0i1...ip , where vi0i1...ip ∈ K.

Definition. Define for any p ≥ 1 the boundary operator ∂ : Λp → Λp−1 as follows.
We set

∂ei0...ip−1 =

p∑

q=0

(−1)q ei0...îq ...ip
(1)

where îq means omission of the index iq; then extend ∂ to an arbitrary v ∈ Λp by
K-linearity.

For example, we have

∂eab = eb − ea

∂eabc = ebc − eac + eab.

It follows that, for a general p-path v,

(∂v)i0...ip−1 =
∑

k

p∑

q=0

(−1)q vi0...iq−1kiq ...ip−1 , (2)

where the index k is inserted between iq−1 and iq (in case q = 0 before i0 and in
case q = n after in−1).

Set also Λ−1 = {0} and define the operator ∂ : Λ0 → Λ−1 by ∂ = 0.

Claim. ∂2v = 0 for any v ∈ Λp with p ≥ 1.

2



Proof. For p = 1 this is trivial. For p ≥ 2 we have by (1)

∂2ei0...ip =

p∑

q=0

(−1)q ∂ei0...îq ...ip

=

p∑

q=0

(−1)q

(
q−1∑

r=0

(−1)r ei0...îr ...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip

)

=
∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence
∂2ei0...ip = 0. This implies ∂2v = 0 for all v ∈ Λp.

Hence, the family of K-modules {Λp}p≥−1 with the boundary operator ∂ deter-
mines a chain complex

0← Λ0 ← ...← Λp−1 ← Λp ← ... (3)

that will be denoted by Λ∗ (V ) = Λ∗ (V,K).
Given a map f : V → V ′ between two finite sets V and V ′, define for any p ≥ 0

the induced map
f∗ : Λp(V )→ Λp(V

′)

by the rule
f∗
(
ei0...ip

)
= ef(i0)...f(ip),

extended by K-linearity to all elements of Λp (V ). It follows from (1) that ∂f∗ = f∗∂,
that is, the following diagram is commutative

0 ← Λ0 (V ) ← Λ1 (V ) ← . . . ← Λp−1 (V ) ← Λp (V ) ← . . .
↓ ↓ ↓ ↓ ↓
0 ← Λ0 (V ′) ← Λ1 (V ′) ← . . . ← Λp−1 (V ′) ← Λp (V ′) ← . . .

where the horizontal arrows are given by ∂ and the vertical arrows are given by f∗.
Hence, the map f∗ is a morphism of chain complexes Λ∗ (V ) and Λ∗ (V ′).

1.2 Regular paths

Definition. An elementary p-path ei0...ip on a set V is called regular if ik 6= ik+1

for all k = 0, ..., p − 1, and non-regular otherwise.

Let Np be the submodule of Λp that is K-spanned by non-regular ei0...ip .

Claim. ∂Np ⊂ Np−1.

Proof. Since any v ∈ Np is a linear combination of elementary non-regular paths
ei0...ip , it suffices to prove that if ei0...ip is non-regular then ∂ei0...ip is non-regular, too.
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Indeed, for a non-regular path i0...ip there exists an index k such that ik = ik+1.
Then we have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (4)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (4) cancel out, whereas all other
terms are non-regular, whence ∂ei0...ip ∈ Np−1.

Consider the quotient Rp := Λp/Np. Since ∂Np ⊂ Np−1, the induced boundary
operator

∂ : Rp → Rp−1 (p ≥ 0)

is well-defined. This operator ∂ is called the regular boundary operator. In what
follows ∂ will always be the regular boundary operator.

Clearly, Rp is linearly isomorphic to the space of regular p-paths:

Rp
∼= span K

{
ei0...ip : i0...ip is regular

}
(5)

For simplicity of notation, we will identify Rp with this space, by setting all non-
regular p-paths to be equal to 0.

Then the regular ∂ satisfies (1) as before but with the following adjustments: all
the terms in the right hand side of (1), that are non-regular, are set to be zero. For
example, for non-regular operator ∂ : Λ2 → Λ1 we have

∂eiji = eji − eii + eij

whereas for the regular operator ∂ : R2 → R1

∂eiji = eji + eij .

We denote by R∗ (V ) the regular chain complex

0← R0 ← ...← Rp−1 ← Rp ← ...

Consider a map f : V → V ′ between two finite sets V and V ′. We know that
the induced map f∗ is a morphism of chain complexes Λ∗ (V ) and Λ∗ (V ′). If an
elementary path ei0...ip is non-regular then f∗

(
ei0...ip

)
is obviously also non-regular,

so that
f∗ (Np (V )) ⊂ Np (V ′) .

Therefore, f∗ is well-defined on the quotient Λp/Np so that we obtain the induced
map

f∗ : Rp (V )→ Rp (V ′) . (6)

With identification (5) of Rp we have the following rule for the map (6):

f∗
(
ei0...ip

)
=

{
ef(i0)...f(ip), if f(i0)...f (ip) is regular,

0, if f(i0)...f (ip) is non-regular.
(7)

Since f∗ commutes with ∂, we see that (6) provides a morphism R∗(V ) → R∗(V
′)

of chain complexes.
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1.3 The notion of a digraph

Definition. A directed graph (digraph) G = (V,E) is a couple of a set V , whose
elements are called the vertices, and a subset E ⊂ {V × V \ diag} of ordered pairs
of vertices that are called (directed) edges or arrows. The fact that (v, w) ∈ E will
also be denoted by v → w.

In particular, a digraph has no edges v → v. We consider only finite digraphs,
that is, digraphs with a finite set of vertices.

We write
v−→=w

if either v = w or v → w.

Definition. A morphism from a digraph G = (V,E) to a digraph G′ = (V ′, E ′) is
a map f : V → V ′ such that

v−→=w on G implies f (v) −→=f (w) on G′. (8)

We will refer to such morphisms also as digraphs maps and denote them shortly by
f : G→ G′.

The set of all digraphs with digraphs maps form a category of digraphs.
The condition (8) is trivially true for v = w but for v → w it means that the

images f (v) and f (w) either coincide or f (v)→ f (w). In other words, each arrow
in G goes to either a vertex or an arrow in G′.

1.4 Allowed and ∂-invariant paths on digraphs

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip on V is
called allowed if ik → ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise. The
set of all allowed elementary p-paths will be denoted by Ep.

For example, E0 = V and E1 = E. Denote by Ap = Ap (G) the free K-module
spanned by the allowed elementary p-paths, that is,

Ap = span K

{
ei0...ip : i0...ip ∈ Ep

}
. (9)

The elements of Ap are called allowed p-paths. Clearly, all allowed elementary paths
are regular, which implies that Ap ⊂ Rp.

Note that the family of modules A∗ is in general not invariant for ∂. For example,
in the digraph

1
• −→

2
• −→

3
•

the 2-path e123 is allowed while

∂e123 = e23 − e13 + e12

is non-allowed.
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Consider the following submodules of Ap

Ωp ≡ Ωp (G) := {v ∈ Ap : ∂v ∈ Ap−1} . (10)

Claim. Ω∗ is ∂-invariant, that is, ∂Ωp ⊂ Ωp−1 for all p ≥ 0.

Proof. Indeed, v ∈ Ωp implies ∂v ∈ Ap−1 and ∂ (∂v) = 0 ∈ Ap−2, whence
∂v ∈ Ωp−1.

The elements of Ωp are called ∂-invariant p-paths. Hence, we obtain a chain
complex Ω∗ = Ω∗ (G) = Ω∗ (G,K):

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.
Let us define for any p ≥ 0 the homologies of the digraph G with coefficients

from K by

Hp(G,K) = Hp (G) := Hp (Ω∗ (G)) = ker ∂|Ωp

/
Im ∂|Ωp+1 .

The elements of ker ∂|Ωp are called closed paths and the elements of Im ∂|Ωp+1 are
called exact.

Let us note that homology groups Hp (G) (as well as the modules Ωp (G)) can be
computed directly by definition using simple tools of linear algebra, in particular,
those implemented in modern computational software.

Example. Fix n ≥ 3. Denote by Sn a digraph with the vertex set VSn =
{0, ..., n − 1} and with the set of edges ESn that contains for any i ∈ VSn exactly
one of the edges i→ i + 1, i + 1→ i (where n ≡ 0), and no other edge. We refer to
Sn as a cycle digraph.

The following 1-path on Sn

$ =
∑

{i∈Sn:i→i+1}

ei(i+1) −
∑

{i∈Sn:i+1→i}

e(i+1)i (11)

lies in Ω1(Sn) and is closed. We will refer to $ as a standard 1-path on Sn. It is
possible to show that $ generates the space of all closed 1-paths in Ω1 (Sn), which
is therefore one-dimensional. The homology group H1 (Sn,K) is, hence, generated
by the homology class [$], provided this class is non-trivial. One can show that
[$] = 0 if and only if Sn is isomorphic to one of the following two digraphs:

a triangle ↗

1
•↘

0• → •2
or a square

1• −→ •2

↑ ↑
0• −→ •3

, (12)

so that in this case H1 (Sn,K) = {0}. In the case of triangle, $ is the boundary of
the 2-path e012 ∈ Ω2, and, in the case of square, $ is the boundary of e012−e032 ∈ Ω2.

If Sn is neither triangle nor square, then [$] is a generator of H1 (Sn,K) ∼= K.
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Figure 1: Planar digraph with a nontrivial homology group H2

Example. Consider a digraph G as on Fig. 1.
A direct computation shows that H1 (G,K) = {0} and H2 (G,K) ∼= K, where a

generating element of H2 (G) is

e124 + e234 + e314 − (e125 + e235 + e315) (13)

(this path is closed but not exact). It is easy to see that G is a planar graph but
nevertheless its second homology group is non-zero. This shows that the digraph
homologies “see” some non-trivial intrinsic dimensions of digraphs that are not nec-
essarily related to embedding properties.

Proposition 1 Let G be any finite digraph. Then any ω ∈ Ω2 (G,Z) can be repre-
sented as a linear combination of the ∂-invariant 2-paths of following three types:

1. eiji with i→ j → i (a double edge in G);

2. eijk with i→ j → k and i→ k (a triangle as a subgraph of G);

3. eijk − eimk with i→ j → k, i→ m→ k, i 6→ k, i 6= k (a square as a subgraph
of G).

Proof. Since the 2-path ω is allowed, it can be represented as a sum of elemen-
tary 2-path eijk with i → j → k multiplied with +1 or −1. If k = i then eijk is a
double edge. If i 6= k and i→ k then eijk is a triangle. Subtracting from ω all double
edges and triangles, we can assume that ω has no such terms any more. Then, for
any term eijk in ω we have i 6= k and i 6→ k. Fix such a pair i, k and consider any
vertex j with i→ j → k. The 1-path ∂ω is the sum of 1-paths of the form

∂eijk = eij − eik + ejk.

Since ∂ω is allowed but eik is not allowed, the term eik should cancel out after we
sum up all such terms over all possible j. Therefore, the number of j such that eijk

enters ω with coefficient +1 is equal to the number of j such that eijk enters in ω
with the coefficient −1. Combining the pair with +1 and −1 together, we obtain
that ω is the sum of the terms of the third type (squares).
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Proposition 2 Let G and G′ be two digraphs, and f : G → G′ be a digraph map.
Then, for any p ≥ 0,

f∗ (Ωp (G)) ⊂ Ωp (G′) , (14)

where f∗ is the induced map (6). Moreover, the map

f∗ : Ωp (G)→ Ωp (G′)

is a morphism of the chain complexes

Ω∗(G)→ Ω∗(G
′)

and, consequently, a homomorphism of homology groups

H∗(G)→ H∗(G
′)

that will also be denoted by f∗.

Proof. Let us first show that

f∗ (Ap (G)) ⊂ Ap (G′) .

It suffices to prove that if ei0...ip is allowed on G then f∗
(
ei0...ip

)
is allowed on G′.

Indeed, if f (i0) ...f (ip) is non-regular then we have by (7) that f∗
(
ei0...ip

)
= 0 ∈

Ap (G′) . If f (i0) ...f (ip) is regular then f (ik) 6= f (ik+1) for all k = 0, ..., p−1. Since
ik → ik+1 on G, by the definition of a digraph map we have either f (ik)→ f (ik+1)
on G′ or f (ik) = f (ik+1). Since the second possibility is excluded, we obtain
f (ik) → f (ik+1) for all k, whence it follows that f∗

(
ei0...ip

)
= ef(i0)...(ip) is allowed

on G′.
Now let us prove (14). For any v ∈ Ωp (G) we have by (10) v ∈ Ap (G) and

∂v ∈ Ap−1 (G), whence

f∗ (v) ∈ Ap (G′) and ∂ (f∗ (v)) = f∗ (∂v) ∈ Ap−1 (G′) ,

which implies f∗ (v) ∈ Ωp (G′) and, hence, (14). Since f∗ commutes with ∂, we see
that f∗ is a morphism of Ω∗ (G) and Ω∗ (G′) .

Any morphism of chain complexes induces canonically homomorphism of homol-
ogy groups because f∗ maps closed paths to closed ones and exact paths to exact
ones.

1.5 Cylinders

Definition. For two digraphs G = (VG, EG) and H = (VH , EH) define the Cartesian
product G � H as a digraph with the set of vertices VG × VH and with the set of
edges as follows: for x, x′ ∈ VG and y, y′ ∈ VH , we have (x, y) → (x′, y′) in G �H
if and only if

either x′ = x and y → y′, or x→ x′ and y = y′,
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as is shown on the following diagram:

y′• . . .
(x,y′)
• −→

(x′,y′)
• . . .

↑ ↑ ↑

y• . . .
(x,y)
• −→

(x′,y)
• . . .

H � G . . . •
x
−→ •

x′
. . .

For any digraph G consider its product G� I with the digraph I = (0• → •1).

Definition. The digraph G � I is called the cylinder over G and will be denoted
by Ĝ.

We shall put the hat̂over all notation related to Ĝ, for example, R̂p := Rp(Ĝ)

and Ω̂p := Ωp(Ĝ).

By the definition of Cartesian product, the set of vertices of Ĝ is V̂ = V ×{0, 1}
and the edges of Ĝ are given by the rules:

1. (x, 0)→ (x, 1) for all x ∈ VG (vertical edges);

2. (x, a)→ (y, a) for all x→ y in G and a ∈ {0, 1} (horizontal edges).

The digraph Ĝ consists of two subgraphs G×0 and G×1 both being isomorphic
to G. So, we identify G× 0 with G, that is, put (x, 0) ≡ x for all x ∈ V and denote
G× 1 by G′ using the notation (x, 1) =: x′ for all x ∈ V . Then, for x ∈ V , we have
x→ x′, and, for all x, y ∈ V , we have

x→ y in Ĝ⇔ x→ y in G⇔ x′ → y′ in G′.

Define the operation of lifting paths from G to Ĝ as follows. Fix p ≥ 0. If
v = ei0...ip then v̂ is a (p + 1)-path in Ĝ defined by

êi0...ip =

p∑

k=0

(−1)k ei0...iki′k...i′p . (15)

By K-linearity this definition extends to all v ∈ Λp, thus giving v̂ ∈ Λ̂p+1. In the

case p = −1 define lifting of v = 0 ∈ Λ−1 (G) by v̂ = 0 ∈ Λ̂0.
For example, we have

êa = eaa′

êab = eaa′b′ − eabb′

êabc = eaa′b′c′ − eabb′c′ + eabcc′

(see Fig. 2).
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a b c 

a' c' b' 

Figure 2: The component eabb′c′ of the 3-path êabc

If i0...ip is allowed in G then, for any k, the path i0...iki
′
k...i

′
p is allowed in Ĝ:

∙ ∙ ∙
i′k• −→

i′k+1
• −→ ∙ ∙ ∙ −→

i′p
•

↑ ↑
i0• −→ ∙ ∙ ∙ −→

ik• −→
ik+1
• ∙ ∙ ∙

,

Hence, for any v ∈ Ap we have v̂ ∈ Âp+1. Below we will prove that if v ∈ Ωp then

v̂ ∈ Ω̂p+1.
For any path v in G define its image v′ in G′ by

(
ei0...ip

)′
= ei′0...i′p .

Lemma 3 (Product rule) For any p-path v on G with p ≥ 0

∂v̂ + ∂̂v = v′ − v. (16)

Proof. It suffices to prove (16) for v = ei0...ip . For p = 0 set v = ei so that
∂v = 0 and v̂ = eii′ whence

∂v̂ + ∂̂v = ei′ − ei + 0 = v′ − v.

For p ≥ 1 we have

∂v̂ =

p∑

k=0

(−1)k ∂ei0...iki′k...i′p

=

p∑

k=0

(−1)k

[
l∑

l=0

(−1)l ei0...îl...iki′k...i′p
+

p∑

l=k

(−1)l+1 e
i0...iki′k...î′l...i

′
p

]

=
∑

0≤l≤k≤p

(−1)k+l ei0...îl...iki′k...i′p
+

∑

0≤k≤l≤p

(−1)k+l+1 e
i0...iki′k...î′l...i

′
p
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and

∂̂v =

(
p∑

l=0

(−1)l ei0...îl...ip

)̂

=

p∑

l=0

(−1)l

[
p∑

k=l+1

(−1)k−1 ei0...îl...iki′k...i′p
+

l−1∑

k=0

(−1)k e
i0...iki′k...î′l...i

′
p

]

=
∑

0≤l<k≤p

(−1)k+l−1 ei0...îl...iki′k...i′p
+

∑

0≤k<l≤p

(−1)k+l e
i0...iki′k...î′l...i

′
p
.

We see that in the sum ∂v̂ + ∂̂v all the terms with k 6= l cancel out and we obtain

∂v̂ + ∂̂v =

p∑

k=0

ei0...ik−1i′k...i′p −
p∑

k=0

ei0...iki′k+1...i′p

= ei′0....i′p − ei0...ip = v′ − v.

Proposition 4 If v ∈ Ωp then v̂ ∈ Ω̂p+1.

Proof. By definition, the condition v ∈ Ωp is equivalent to v ∈ Ap and ∂v ∈
Ap−1. We know already that in this case v̂ ∈ Ap+1, and we need to prove that

∂v̂ ∈ Âp. Indeed, if v ∈ Ap and ∂v ∈ Ap−1 then v′ and ∂̂v belong to Âp whence it

follows from (16) that also ∂v̂ ∈ Âp.

Example. The cylinder over the digraph I = (0• → •1) is a square

2• −→ •3

↑ ↑
0• −→ •1

(17)

where 0′ = 2 and 1′ = 3. Lifting a ∂-invariant 1-path e01 ∈ Ω1 we obtain a ∂-invariant
2-path on the square:

ê01 = e00′1′ − e011′ = e023 − e013.

The cylinder over the square (17) is a 3-cube that is shown in Fig. 3, where we
take i′ = i + 4.

Lifting the ∂-invariant 2-path v = e023 − e013 we obtain a ∂-invariant 3-path on
the 3-cube:

v̂ = e00′2′3′ − e022′3′ + e0233′ − (e00′1′2′ − e011′2′ + e0133′)

= e0467 − e0267 + e0237 − e0457 + e0157 − e0137.

Defining further n-cube as the cylinder over (n− 1)-cube, we see that n-cube pos-
sesses a ∂-invariant n-path that is a lifting of a ∂-invariant (n− 1)-path from (n− 1)-
cube and that is an alternating sum of n! elementary terms. One can show that this
n-path generates Ωn on n-cube (see [7]).

All homology groups of the n-cube are trivial as it will be shown below.
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Figure 3: 3-cube

2 Homotopy theory of digraphs

In this Section we introduce a homotopy theory of digraphs and establish the re-
lations between this theory and the homology theory of digraphs, following [6]. A
similar homotopy theory for undirected graphs was earlier developed in [1].

2.1 The notion of homotopy

Fix n ≥ 0. Denote by In any digraph whose the set of vertices is {0, 1, . . . , n} and
the set of edges contains exactly one of the edges i → (i + 1), (i + 1) → i for any
i = 0, 1, . . . , n − 1, and no other edges. A digraph In is called a line digraph.

Denote by In the set of all line digraphs In. Clearly, there is only one digraph
in I0 – the one-point digraph. There are two digraphs in I1: the digraph I with the
edge (0→ 1) and the digraph I− with the edge (1 → 0).

Definition. Let G = (VG, EG) and H = (VH , EH) be two digraphs. Two digraph
maps f, g : G → H are called homotopic if there exists a line digraph In ∈ In with
n ≥ 1 and a digraph map

F : G� In → H

such that
F |G×0 = f and F |G×n = g. (18)

In this case we shall write f ' g. The map F is called a homotopy between f and
g.

In the case n = 1 we refer to the map F as an one-step homotopy between f and

g and write f
1-step
' g. In this case the identities (18) become

F |G×0 = f and F |G×1 = g,

which determine F uniquely. The requirement, that F : G � I1 → H is a digraph
map, can be understood as follows. For I1 there are only two choices: I1 = I =
(0→ 1) or I1 = I−1 = (0← 1). Consider the case I1 = I. Then G � I1 is the

12



cylinder Ĝ considered in the previous section. Identifying G with the union two
sheets G and G′ as before, we see that F |G = f and F |G′ = g are digraph maps.

For the vertical edges x→ x′ of Ĝ we have

F (x) = f (x) and F (x′) = g (x)

so that the requirement F (x)−→=F (x′) becomes

f (x)−→=g (x) in H.

Combining with the case I1 = I−, we obtain that f and g are one-step homotopic if
and only if

either f (x)−→=g (x) for all x ∈ VG or g (x)−→=f (x) for all x ∈ VG. (19)

Example. Consider the digraphs

G = ↗

1
•↘

0• → •2
and H = a• → •b

and the mappings f, g : VG → VH given by the table:

x ∈ VG 0 1 2
f (x) a a b
g (x) a b b

It is easy to see that both f and g are digraph maps from G to H. Moreover, f and
g are one-step homotopic, because f (x)−→=g (x) for all x ∈ VG.

It follows from definition of homotopy, that f, g : G → H are homotopic if and
only if there is a finite sequence of digraph maps f = f0, f1, ..., fn = g from G to H
such that fk and fk+1 are one-step homotopic. It is obvious that the relation ”'”
is an equivalence relation on the set of all digraph maps from G to H.

Definition. Two digraphs G and H are called homotopy equivalent if there exist
digraph maps

f : G→ H, g : H → G (20)

such that
f ◦ g ' idH , g ◦ f ' idG . (21)

In this case we shall write G ' H. The maps f and g as in (21) are called homotopy
inverses of each other.

A digraph G is called contractible if G ' {∗} where {∗} is a single vertex digraph.
It follows from definition that a digraph G is contractible if and only if there is a
digraph map h : G → G such that the image of h consists of a single vertex and
h ' idG . Indeed, with H = {∗} the mapping f in (20) is trivial and f ◦ g = idH for
any choice of g. The mapping g ◦ f : G→ G is any digraph map h : G→ G whose
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Figure 4: Star-like digraphs

image consists of a single vertex. Hence, we are left only to satisfy the requirement
h ' idG .

Example. A digraph G is called star-like (resp. inverse star-like) if there is a
vertex a ∈ VG such that a→ x (resp. x→ a) for all x ∈ VG \ {a} . if G is a (inverse)
star-like digraph, then the map h : G → G given by h (x) = a for all x ∈ VG is
one-step homotopic to idG. Indeed, for all x ∈ VG we have

h (x) = a−→=x = idG (x)

so that h and idG satisfy (19) and, hence, h ' idG. Therefore, G is contractible.
For example, consider the digraph-simplex of dimension n, which is a digraph G

with the set of vertices {0, 1, . . . , n} and the set of edges given by the condition

i→ j ⇐⇒ i < j

Then G is star-like and, hence, G is contractible. The digraph-simplex of dimension
1 is 0• → •1, the digraph-simplex of dimension 2 is the triangle

↗

1
•↘

0• → •2
,

the digraph-simplex of dimension 3 is shown on the left panel on Fig. 4. In par-
ticular, the triangle is contractible. Another star-like digraph is shown on the right
panel of Fig. 4.

2.2 Retraction

A (induced) sub-digraph H of a digraph G is a digraph whose set of vertices is a
subset of that of G and the edges of H are all those edges of G whose adjacent
vertices belong to H.

Definition. Let G be a digraph and H be its sub-digraph. A retraction of G onto
H is a digraph map r : G→ H such that r|H = idH .

14



Let r : G→ H be a retraction and let i : H → G be the natural inclusion map.
By definition of retraction we have r ◦ i = IdH . Therefore, if

i ◦ r ' idG, (22)

then i and r are homotopy inverses and we obtain that G ' H. A retraction
r : G→ H with the property (22) is called a deformation retraction.

Proposition 5 Let r : G → H be a retraction of a digraph G onto a sub-digraph
H such that

either x−→=r (x) for all x ∈ VG or r (x) −→=x for all x ∈ VG. (23)

Then r is a deformation retraction and, consequently, the digraphs G and H are
homotopy equivalent.

Proof. Set f = idG and g = i ◦ r. For any x ∈ VG we have f (x) = x and
g (x) = i◦ r (x) = r (x). The condition (23) means that f and g satisfy (19), whence

f
1-step
' g. Hence, we obtain (22) and, consequently, G ' H.

Example. Let us show that the square

G =

2• −→ •3

↑ ↑
0• −→ •1

is also contractible. It suffices to show that G ' H where H is the following subgraph

H = 0• −→ •1 .

Consider a retraction r : G→ H given by

r (0) = r (2) = 0 and r (1) = r (3) = 1.

Clearly, it satisfies r (x)−→=x for all x ∈ VG and we conclude by Proposition 5 that
G ' H. Since H is contractible, we obtain that G is also contractible.

Example. For any n ≥ 1, consider the n-dimensional cube

In = I � I � ∙ ∙ ∙� I︸ ︷︷ ︸
n times

For example, I2 is the square from (12) and I3 is a 3-cube shown on Fig. 3. As in
the previous example, one constructs an obvious deformation retraction of In onto
In−1 thus proving that In ' In−1. By induction we obtain that all cubes In are
contractible.

15



2.3 Homotopy preserves homologies

Now we can prove the main result about connections between homotopy and ho-
mology theories for digraphs.

Theorem 6 Let G,H be two digraphs.

(i) Let f, g : G→ H be two digraph maps. If f ' g then the induced maps

f∗ : Hp (G)→ Hp (H) and g∗ : Hp (G)→ Hp (H)

of the homology groups are identical, that is, f∗ = g∗ in homologies.

(ii) If the digraphs G and H are homotopy equivalent, then all their homology
groups are isomorphic. Furthermore, if the homotopical equivalence of G and
H is provided by the digraph maps (20) then their induced maps f∗ and g∗
provide mutually inverse isomorphisms of the homology groups of G and H.

Proof. (i) Let F : G � In → H be a homotopy between f and g. It suffices to
treat the case n = 1 as the general case then follows by induction. Let I1 = I =
(0→ 1) so that G � I1 = G � I = Ĝ (the case I1 = I− can be treated similarly).
The maps f and g induce morphisms of chain complexes

f∗, g∗ : Ω∗(G)→ Ω∗(H),

and F induces a morphism

F∗ : Ω∗(Ĝ)→ Ω∗(H).

As before, we identify G with G × 0 and set G′ = G × 1. For any path v ∈ Ω∗(G)

considering as a path in Ĝ we have F∗ (v) = f∗ (v) and F∗ (v′) = g∗ (v′) .
In order to prove that f∗ and g∗ induce the identical homomorphisms H∗ (G)→

H∗ (H), it suffices by [9, Theorem 2.1, p.40] to construct a chain homotopy between
the chain complexes Ω∗ (G) and Ω∗ (H), that is, the K-linear mappings

Lp : Ωp(G)→ Ωp+1(H)

such that
∂Lp + Lp−1∂ = g∗ − f∗

(note that all the terms here are mapping from Ωp (G) to Ωp (H)) as on the following
diagram:

Ωp−1 (G)
∂
←− Ωp (G) ←− Ωp+1 (G)
Lp−1

↘ ↓f∗↓g∗
Lp

↘
Ωp−1 (H) ←− Ωp (H) ←−

∂
Ωp+1 (H)

Let us define the mapping Lp as follows

Lp(v) = F∗ (v̂) for any v ∈ Ωp (G) ,
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where v̂ ∈ Ωp+1(Ĝ) is the lifting of v to the graph Ĝ defined in Section 1.5. Using
∂F∗ = F∗∂ (see Proposition 2) and the product rule (16) of Lemma 3, we obtain

(∂Lp + Lp−1∂)(v) = ∂(F∗(v̂)) + F∗(∂̂v)

= F∗ (∂v̂) + F∗(∂̂v)

= F∗(∂v̂ + ∂̂v)

= F∗ (v′ − v)

= g∗ (v)− f∗ (v) .

(ii) Let f : G→ H and g : H → G be digraph maps such that

f ◦ g ' idH , g ◦ f ' idG . (24)

Then they induce the following mappings

Hp (G)
f∗→ Hp (H)

g∗→ Hp (G)
f∗→ Hp (H) .

By (i) and (24) we have f∗ ◦ g∗ = id and g∗ ◦ f∗ = id, which implies that f∗ and g∗
are mutually inverse isomorphisms of Hp (G) and Hp (H).

Example. If a digraph G is contractible, then all the homology groups of G are
trivial (that is, are those of {∗}, that is, H0

∼= K and Hp = {0} for all p ≥ 1). For
example, all homology groups of star-like digraphs are trivial; in particular, this is
the case for all digraph simplexes, including triangle. Also, all cubes are contractible
and, hence, have all trivial homology groups.

Example. Let Sn be a cycle digraph. If Sn is triangle or square then Sn is con-
tractible as was shown above. If Sn is neither triangle nor square then as we know,
H1(Sn,K) ∼= K and, hence, Sn is not contractible by Theorem 6. In particular, this
is always the case when n ≥ 5. Here are other examples of non-contractible cycles
with n = 3, 4:

↗

1
•↘

0• ←− •2
and

1• −→ •2

↑ ↓
0• ←− •3

,

Let us show that two cycles Sn and Sm with n 6= m are not homotopy equivalent,
except for the case when one of them is a triangle and the other is a square. Assume
that Sn and Sm with n < m are homotopy equivalent. Then by Theorem 6 there is
a digraph map f : Sn → Sm such that f∗ : H1 (Sn)→ H1 (Sm) is an isomorphism. If
homology groups H1 (Sn) and H1 (Sm) are not isomorphic then we are done. If they
are isomorphic, then they are isomorphic to K. Let $n ∈ Ω1 (Sn) be the generator
of closed 1-paths on Sn and $m ∈ Ω1 (Sm) be the generator of closed 1-paths on Sn,
as in (11). Then [$n] generates H1 (Sn), [$m] generates H1 (Sm), and we should
have

f∗ ([$n]) = α [$m]
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Figure 5: The digraph admits a deformation retraction onto a subgraph {1, 3, 4}

for some non-zero constant α ∈ K. Consequently, we obtain

f∗ ($n) = α$m,

which is impossible because f cannot be surjective by n < m, whereas $m uses all
the vertices of Sm.

Example. Consider the digraph G as on Fig. 5.
Consider also its sub-digraph H with the vertex set VH = {1, 3, 4} and a re-

traction r : G → H given by r (0) = 1, r (2) = 3 and r|H = id. Since x−→=r (x)
for all x, by Proposition 5, we conclude that r is a deformation retraction, whence
G ' H. Consequently, we obtain H1 (G,K) ∼= H1 (H,K) ∼= K and Hp (G,K) = {0}
for p ≥ 2.

Example. Let a, b be two vertices of a digraph G such that either a→ b or b→ a.
Denote by H the digraph that is obtained from G by removing a vertex a with all
adjacent edges. Assume that the map r : VG → VH given by

r (a) = b and r|H = idH

is a digraph map. We claim that in this case G ' H. Indeed, r is a retraction from
G to H. If a→ b then r satisfies x−→= r (x) and if b→ a then r (x)−→=x for all x ∈ VG.
By Proposition 5 r is a deformation retraction, whence we obtain that G ' H.
Consequently, all homology groups of G and H are the same. This is very similar to
the results about transformations of simplicial complexes by simple homotopy (see,
for example, [2]).

The requirement that r is a digraph map is equivalent to the following condition.

∀c ∈ VG \ {a, b} a→ c⇒ b→ c and a← c⇒ b← c. (25)
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Figure 6: The left digraph is contractible while the right one is not.

Two examples when (25) is satisfied are shown in the following diagram:

↗
a • −→

↘

• c
↑
• b
↓
• c′

∙ ∙ ∙ H G
↗

a • ←−
↖

• c
↑
• b
↑
• c′

∙ ∙ ∙ H G

On the contrary, the digraph G on following diagram

• c
↗ ↓

a • ←− • b

does not satisfy (25). Moreover, this digraph is not homotopy equivalent to subgraph
H =

(
c• → •b

)
since G and H have different homology group H1.

The digraph on the left panel of Fig. 6 is contractible as one can successively
remove the vertices 5, 4, 3, 2 each time satisfying (25).

The digraph on the right panel of Fig. 6 is different from the left one only by
the direction of the edge between 1 and 3, but it is not contractible as its H2 group
is non-trivial (cf. (13)).

Consider one more example: the digraph G on Fig. 7.
Removing successively the vertices A,B, 8, 9, 6, 7, which each time satisfy (25),

we obtain a digraph H with VH = {0, 1, 2, 3, 4, 5} that is homotopy equivalent to G
and, in particular, has the same homologies as G. The digraph H is shown in two
ways on Fig. 8. Clearly, the second representation of this graph is reminiscent of an
octahedron.

It is possible to show that Hp (H,K) = {0} for p = 1 and p > 2 while H2 (H,K) ∼=
K. It follows that the same is true for the homology groups of G. Furthermore, it is
possible to show that H2 (G,K) is generated by the following 2-path

ω = e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135,

that determines a 2-dimensional “hole” in G given by the octahedron H. Note that
on Fig. 7 this octahedron is hardy visible.
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Figure 8: Two representations of the digraph H

2.4 Cylinder of a map

Let us give some further examples of homotopy equivalent digraphs.

Definition. Let G = (VG, EG) and H = (VH , EH) be two digraphs and f be a
digraph map from G to H. The cylinder Cf of f is the digraph with the set of
vertices VCf

= VG t VH and with the set of edges ECf
that consists of all the edges

from EG and EH as well as of the edges of the form x→ f (x) for all x ∈ VG.
The inverse cylinder C

−
f is defined in the same way except that the edge x→ f (x)

is replaced by f (x)→ x.

For example, for f = idG we have Cf = G � I where I = (0• −→ •1) and

C
−
f = G� I− where I− = (0• ←− •1) .

Example. Let G be the digraph with vertices {0, 1, 2, 3, 4, 5} and H is be the
digraph with vertices {a, b, c} as on Fig. 9. Consider the digraph map f : G → H
given by f (0) = f (1) = a, f (2) = f (3) = b and f (4) = f (5) = c. The cylinder Cf

of f is shown on Fig. 9.
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Figure 9: The cylinder of the map

Claim. For any digraph f : G→ H

Cf ' H ' C
−
f .

Proof. Indeed, the projection p : Cf → H defined by

p (x) =

{
x, x ∈ VH ,
f (x) , x ∈ VG,

is by Proposition 5 a deformation retraction of Cf onto H, whence it follows that

Cf ' H. The case of the inverse cylinder C
−
f is similar.

3 Fundamental group of a digraph

In this Section we define fundamental group of a digraph and describe theirs basic
properties. A based digraph G∗ is a digraph G with a fixed base vertex ∗ ∈ VG. A
based digraph map f : G∗ → H∗ is a digraph map f : G → H such that f (∗) = ∗.
Any line digraph In ∈ In will always be considered as a based digraph with the base
point 0.

3.1 C-homotopy and π1

Definition. A loop in a digraph G is any digraph map φ : In → G with φ (0) =
φ (n). A based loop on a based digraph G∗ is a loop φ : In → G∗, such that
φ (0) = φ (n) = ∗.

Definition. A digraph map h : In → Im is called shrinking if h (0) = 0, h(n) = m,
and h (i) ≤ h (j) whenever i ≤ j (that is, if h as a function from {0, ..., n} to
{0, ...,m} is monotone increasing).

It follows from the definition that h (i) ≤ h (i + 1) ≤ h (i) + 1. The existence of
a shrinking map h : In → Im implies m ≤ n. If n = m then h is a bijection.
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Figure 10: Two examples of based loops

Definition. Consider two based loops

φ : In → G∗ and ψ : Im → G∗.

We say that there is one-step direct C-homotopy from φ to ψ if there exists a
shrinking map h : In → Im such that the map F : VCh

→ VG given by

F |In = φ and F |Im = ψ, (26)

is a digraph map from Ch to G. If F is a digraph map from C
−
h to G then we refer

to an one-step inverse C-homotopy.

Remark. The requirement that F is a digraph map is equivalent to the condition

φ (i)−→=ψ (h (i)) for all i ∈ In. (27)

In turn, (27) implies that the digraph maps φ and ψ ◦ h (from In to G) satisfy (19),
which yields φ ' ψ ◦ h.

If n = m then h = idIn and an one-step C-homotopy is a homotopy.

Example. An example of one-step direct C-homotopy is shown in Fig. 11.
Note that the images of the loops φ and ψ on Fig. 11 are not homotopic as

digraphs because they are cycles of different lengths 5 and 3. Nevertheless, the
loops φ and ψ are one-step C-homotopic.

Definition. Two based loops φ, ψ in G∗ are called C-homotopic if there exists a
finite sequence {φk}

l
k=0 of based loops in G∗ such that φ0 = φ, φl = ψ and, for any
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Figure 11: The loops φ : I5 → G and and ψ : I3 → G are C-homotopic. Note that
φ (0) = φ (5) = ∗ = ψ (0) = ψ (3) .

k = 0, ..., l − 1, the loops φk and φk+1 are related by an one-step direct or inverse
C-homotopy (either from φk to φk+1 or from φk+1 to φk). We write in this case

φ
C
' ψ.

Clearly, the C-homotopy is an equivalence relation. The C-homotopy class of a

based loop φ will be denoted by [φ]. We say that a loop φ is C-contractible if φ
C
' e,

that is, [φ] = [e] .

Definition. Denote by π1(G
∗) the set of all equivalence classes [φ] for all bases

loops φ in G∗.

Example. A triangular loop is a loop φ : I3 → G∗ with I3 = (0→ 1→ 2← 3) .

G*=0 1 2 3

*=0

*

φ(1)

φ(2)

φ

e

h
Ch

-

Figure 12: A triangular loop φ is C-contractible.

The triangular loop is C-contractible because the following shrinking map

h : I3 → I0, h (k) = 0 for all k = 0, ..., 3,

provides an inverse one-step C-homotopy between φ and e (see Fig. 12).

Example. A square loop is a loop φ : I4 → G with I4 = (0→ 1→ 2← 3← 4) .The
square loop can be C-contracted to e in two steps as is shown on Fig. 13.

In the case n ≥ 5, a loop φ : In → G∗ does not have to be C-contractible, which
is the case, for example, if φ is the natural map In → Sn.
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Figure 13: A square loop φ is C-contractible. Note that φ (0) = φ (4) = ψ (0) =
ψ (2) = ∗.

3.2 Local description of C-homotopy

We prove here an equivalent description of C-homotopy using images of the loops.

Lemma 7 Let a, b be two vertices in a digraph G such that either a = b or a →
b → a. Then loop φ : In → G∗, such that φ (i) = a, φ (i + 1) = b, and i → i + 1 in
In, is C-homotopic to a loop φ′ : I ′

n → G∗ where I ′
n is obtained from In by changing

one edge i→ i + 1 to i + 1→ i and φ′ (j) = φ (j) for all j = 0, ..., n.

Proof. A C-homotopy between φ and φ′ is constructed in two one-step inverse
C-homotopies as is shown on the following diagram:

φ′ : In′ → G ... i
a
← i + 1

b
...

↓ ↘ ↘
ψ : In+1 → G ... i

a
→ i + 1

a
← i + 2

b
...

↑ ↑ ↗
φ : In → G ... i

a
→ i + 1

b
...

The subscript under each element of the line digraph indicates the value of the loop
on this element.

Any digraph map φ : In → G determines a sequence θφ = {vi}
n
i=0 of vertices of

G by vi = φ (i) . By the definition of a digraph map, we have for any i = 0, ..., n− 1
one of the following relations:

vi = vi+1, vi → vi+1, vi+1 → vi. (28)

We consider the sequence θφ as a word over the alphabet VG. Any sequence {vi}
n
i=0

that satisfies (28) is the word of some digraph map φ : In → G.

Theorem 8 Two based loops φ : In → G∗ and ψ : Im → G∗ are C-homotopic if
and only if the word θψ can be obtained from θφ by a finite sequence of the following
transformations (or their inverses):
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(i) ...abc... 7→ ...ac... where (a, b, c) is any permutation of a triple (v0, v1, v2) of
vertices forming a triangle in G:

↗

v2•↘
v0• → •v1

(and the dots “...” denote the unchanged parts of the words).
(ii) ...abc... 7→ ...adc... where (a, b, c, d) is any cyclic permutation (or an inverse

cyclic permutation) of a quadruple (v0, v1, v2, v3) of vertices forming a square in G:

v3• −→ •v2

↑ ↑
v0• −→ •v1

(iii) ...abcd... 7→ ...ad... where (a, b, c, d) is as in (ii).
(iv) ...aba... 7→ ...a... if a→ b or b→ a.
(v) ...aa... 7→ ...a...

Proof. Let us first show that if θφ = θψ then φ
C
' ψ. If, for any edge i→ i + 1

(or i ← i + 1) in In we have also i → i + 1 (resp. i ← i + 1) in Im then In = Im

and φ = ψ (although n = m, the line digraphs In and Im could a priori be different
elements of In). Assume that, for some i, we have i→ i + 1 in In but i← i + 1 in
Im. Then, by Lemma 7, we can change the edge i→ i + 1 in In to i← i + 1 while

staying in the same C-homotopy class of φ. Arguing by induction, we obtain φ
C
' ψ.

We write θφ ∼ θψ if θψ can be obtained from θφ by a finite sequence of trans-
formations (i) − (v) (or inverses to them). Let us show that θφ ∼ θψ implies that

φ
C
' ψ. For that we construct for each of the transformations (i)−(v) a C-homotopy

between φ and ψ.
(i) Assume that a → c (the case c → a is similar). Then either b → c or a → b

(otherwise we would have got a → c → b → a which is excluded by a triangle
hypothesis). The C-homotopies in the both cases are shown on the diagram:

Im ... a → c ...
| � �

In ... a − b → c...

Im ... a → c ...
| | �

In ... a → b − c...

Each position here corresponds to a vertex in a cylinder Ch or C
−
h (that is, in In or Im)

and shows its image (a, b or c) under the map φ resp. ψ. The arrows and undirected
segments shows the edges in the cylinder Ch or C

−
h (in particular, horizontal arrows

and segments show the edges in In and Im). The undirected segments, such as a− b
and c− b, should be given directions matching those on the digraph G.

(ii) Assume a→ d and b→ c. Then we have the following C-homotopy:

In ... a − b → c ...
| | | �

In+1 ... a − a → d − c...
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which shows that the loops with the words ...abc... and ...aadc... are C-homotopic.
Then we use the transformation ...aa... to ...a... as in (v). Other cases are treated
similarly.

(iii) Assume a→ d. Then we have b→ c, and the C-homotopy is shown on the
diagram:

Im ... ... a → d ...
� | | �

In ... a − b → c − d

Note that if a→ b then also d→ c, and if b→ a then also c→ d.
(iv) Assuming a→ b we obtain the following C-homotopy:

Im ... ... a ...
↙ ↓ ↘

In ... a → b ← a...

(v) Here is the required C-homotopy:

Im ... ... a ...
↗ ↑

In ... a − a ...

Before we go to the second half of the proof, observe that the transformation

...abc... 7→ ...ac... (29)

of words is possible not only in the case when a, b, c come from a triangle as in (i)
but also when a, b, c form a degenerate triangle, that is, when there are identical
vertices among a, b, c while distinct vertices among a, b, c are connected by an edge.
Indeed, in the case a = b we have by (v)

abc = aac ∼ ac,

in the case a = c we have by (iv) and (v)

abc = aba ∼ a ∼ ac,

and in the case b = c by (v)
abc = acc ∼ ac.

Now let us prove that φ
C
' ψ implies θφ ∼ θψ. It suffices to assume that there

exists an one-step direct C-homotopy from φ to ψ given by a shrinking map h :
In → Im. Set

θφ = a0a1...an and θψ = b0b1...bm

where ai, bj ∈ VG and a0 = b0 = an = bm = ∗. For any i = 0, ..., n set j = h (i) and
consider two words

Ai = a0a1...aibj and Bi = b0b1...bj .
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We will prove by induction in i that Ai ∼ Bi for all i = 0, ..., n. If this is already
known, then for i = n we have j = m and

a0a1...anbm ∼ b0b1...bm.

Since anbm = ∗∗ ∼ ∗ = an, it follows that θφ ∼ θψ.
For i = 0 we have A0 = a0b0 = ∗∗ ∼ ∗ = b0 = B0. Assuming that Ai ∼ Bi, let

us prove that Ai+1 ∼ Bi+1. Let us consider a structure of the cylinder Ch over the
edge between i and i + 1 in In. Set as before j = h (i) and consider two cases.

Case 1. h (i + 1) = j. In this case we have Bi = Bi+1 and the following structure
in Ch:

bj

↗ ↖
ai − ai+1

.

Note that each arrow on Ch transforms either to an arrow between the vertices of
G or to a vertex. Then we obtain by (29) and by the induction hypothesis that

Ai+1 = a0a1...ai−1 aiai+1bj︸ ︷︷ ︸
∼ a0a1...ai−1 aibj︸︷︷︸

= Ai ∼ Bi = Bi+1.

Case 2. h (i + 1) = j + 1. Then we have the following fragment of Ch:

bj − bj+1

↑ ↑
ai − ai+1

. (30)

Let us show that in this case

aiai+1bj+1 ∼ aibjbj+1. (31)

Indeed, if all the vertices ai, ai+1, bj , bj+1 are distinct, then they form a square and
(31) follows by transformation (ii). Consider various cases of equal vertices in the
diagram (30).

In the case ai+1 = bj (31) is an equality, and in the case ai = bj+1 the relation
(31) follows by transformation (iv):

aiai+1bj+1 ∼ ai = bj+1 ∼ aibjbj+1.

In the case ai = bj the triple ai, ai+1, bj+1 is a triangle or a degenerate triangle, and
we obtained from (29) and (v)

aiai+1bj+1 ∼ aibj+1 ∼ aiaibj+1 = aibjbj+1,

and the case ai+1 = bj+1 is similar. Finally, if ai = ai+1 then similarly by (v) and
(29) we obtain

aiai+1bj+1 = aiaibj+1 ∼ aibj+1 ∼ aibjbj+1,

and the case bj = bj+1 is similar.
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It follows from (31) that

Ai+1 = a0a1...ai−1 aiai+1bj+1︸ ︷︷ ︸
∼ a0a1...ai−1 aibjbj+1︸ ︷︷ ︸

= Aibj+1 ∼ Bibj+1 = Bi+1,

which proves the induction step.

Remark. Note that the transformation (iii) was not used in the second half of the
proof, so (iii) is logically not necessary in the statement of Theorem 8. Note also
that (iii) can be obtained as composition of (ii) and (iv) as follows:

abcd ∼ adcd ∼ ad.

However, in applications it is still convenient to be able to use (iii).

Example. 1. A triangular loop φ on Fig. 12 is contractible because for a =
φ (0) , b = φ (1) , c = φ (2) we have

θφ = abca ∼ aca ∼ a,

where we have used transformations (i) and (iv).
2. A square loop φ on Fig. 13 is contractible because if a, b, c, d are vertices of

the square then
θφ = abcda ∼ ada ∼ a,

where we have used (iii) and (iv).
3. Consider a cyclic digraph S3 as follows

↙

c
•↖

a• → •b

with the base vertex ∗ = a and a loop φ : I3 → S3 where

I3 = (0→ 1→ 2→ 3)

and φ (0) = φ (3) = a, φ (1) = b, φ (2) = c. We have θφ = abca. It is clear that this
word does not allow any of the transformations of Theorem 8, which implies that φ
is not C-contractible.

4. Consider the loops φ and ψ on Fig. 11, that were proved above to be C-
homotopic. It is shown on Fig. 14 how to transform θφ to θψ using the word
transformations of Theorem 8.

3.3 Group structure in π1

For any In ∈ In define a line digraph În ∈ In as follows:

i→ j in În ⇔ (n− i)→ (n− j) in In.
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Figure 14: Transforming a 5-cycle θφ to a 3-cycle θψ using successively (i)− (the
inverse of (i)), (i) , (ii) and (iii) .

For any two line digraphs In and Im, define the line digraph In ∨ Im ∈ In+m that is
obtained from In and Im by identification of the vertices n ∈ In and 0 ∈ Im.

Definition. (i) For any digraph map φ : In → G define its inversion by

φ̂ : În → G

φ̂(i) = φ(n− i).

(ii) For two digraph maps φ : In → G and ψ : Im → G with φ (n) = ψ (0) define
their concatenation by

φ ∨ ψ : In ∨ Im → G

φ ∨ ψ(i) =

{
φ(i), 0 ≤ i ≤ n

ψ(i− n), n ≤ i ≤ n + m.

Clearly, if φ is a based loop then φ̂ is also a based loop. If φ and ψ are based
loops then φ ∨ ψ is always defined and is also a based loop.

Now we can define a product in π1 (G∗) as follows.

Definition. For any two based loops φ, ψ in G∗ define the product of the equivalence
classes [φ] and [ψ] by

[φ] ∙ [ψ] = [φ ∨ ψ]. (32)

Lemma 9 The product in π1 (G∗) is well defined.
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Proof. Let φ, φ′, ψ, ψ′ be loops of G∗ and let

φ
C
' φ′, ψ

C
' ψ′. (33)

We must prove that

φ ∨ ψ
C
' φ′ ∨ ψ′. (34)

It suffices to consider only the case when the both C-homotopies in (33) are one-step
C-homotopies. Then we have

φ ∨ ψ
C
' φ′ ∨ ψ

because one-step C-homotopy between φ and φ′ easily extends to that between φ∨ψ
and φ′ ∨ ψ. In the same way we obtain

φ′ ∨ ψ
C
' φ′ ∨ ψ′,

whence (34) follows.

Lemma 10 For any loop φ : In → G∗ we have φ ∨ φ̂
C
' e.

Proof. Let θφ = v0...vn. Then θφ̂ = vn...v0 and

θφ∨φ̂ = v0...vn−1vnvn−1...v0.

Using successively the transformations aba 7→ a and aa 7→ a of Theorem 8, we

obtain that θφ∨φ̂ ∼ ∗ whence φ ∨ φ̂
C
' e follows.

Theorem 11 Let G,H be digraphs.
(i) The set π1(G

∗) with the product (32) and neutral element [e] is a group. It
will be referred to as the fundamental group of a digraph G∗.

(ii) Any based digraph map f : G∗ → H∗ induces a group homomorphism

f : π1(G
∗)→ π1(H

∗)

f ([φ]) = [f ◦ φ],

which depends only on homotopy class of f .
(iii) Let G,H be connected. If G ' H then the fundamental groups π1 (G∗) and

π1 (H∗) are isomorphic (for any choice of the base vertices).

Proof. (i) This follows from Lemmas 9 and 10, since the product in π1(G
∗)

satisfies the associative law, the class [e] ∈ π1(G
∗) satisfies the definition of a neutral

element, and [φ̂] is the inverse of [φ] for any [φ] ∈ π1 (G∗).
(ii) Let φ : In → G∗ and ψ : Im → G∗ be C-homotopic. Let us show that

f ◦ φ and f ◦ ψ are C-homotopic in H∗. It suffices to prove this for one-step C-
homotopy, for example, for direct C-homotopy. In this case there is a shrinking map
h : In → Im such that

φ (i)−→=ψ (h (i)) for all i ∈ In.
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It follows that
f (φ (i))−→=f (ψ (h (i)))

that is,

f ◦ φ
C
' f ◦ ψ.

Hence, the map f is well defined on π1(G
∗).

The map f : π1(G
∗)→ π1(H

∗) is a homomorphism because

f([e]) = [f ◦ e] = [e]

and, for any two loops φ, ψ in G∗,

f ([φ] ∙ [ψ]) = f ([φ ∨ ψ]) = [f ◦ (φ ∨ ψ)]

= [(f ◦ φ) ∨ (f ◦ ψ)]

= f ([φ]) ∙ f ([ψ]) .

If f and g are homotopic then also f ◦ φ ' g ◦ φ, whence f ◦ φ
C
' g ◦ φ and, hence,

f ([φ]) = g ([φ]) .
(iii) Let f : G→ H and g : H → G be homotopy inverses maps, that is,

f ◦ g ' idH and g ◦ f ' idG . (35)

Consider a special case when f (∗) = ∗ and g (∗) = ∗ (the general case requires some
additional argument). By (ii) we have group homomorphisms

π1 (G∗)
f
→ π1 (H∗)

g
→ π1 (G∗)

f
→ π1 (H∗) .

It follows from (35) and (ii) that on this diagram

f ◦ g = idπ1(H∗) and g ◦ f = idπ1(G∗),

which implies that f and g are mutual inverses and, hence, isomorphisms.

3.4 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof
of the classical lemma of Sperner, using the notion the fundamental group and C-
homotopy.

Consider a triangle ABC on the plane R2 and its triangulation T . The set of
vertices of T is colored with three colors 1, 2, 3 in such a way that

• the vertices A,B,C are colored with 1, 2, 3 respectively;

• each vertex on any side of ABC is colored with one of the two colors of the
endpoints of the side (see Fig. 15).
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Figure 15: A Sperner coloring

The classical lemma of Sperner says that then there exists in T a 3-color triangle,
that is, a triangle, whose vertices are colored with the three different colors.

To prove this, let us first modify the triangulation T so that there are no vertices
on the sides AB,AC,BC except for A,B,C. Indeed, if X is a vertex on AB then
we move X a bit inside the triangle ABC. This gives rise to a new triangle in the
triangulation T that is formed by X and its former neighbors, say Y and Z, on the
edge AB (while keeping all other triangles). However, since all X,Y, Z are colored
with two colors, no 3-color triangle emerges after that move. By induction, we
remove all the vertices from the sides of ABC.

The triangulation T can be regarded as a graph. Let us make it into a digraph G
by choosing the direction on the edges as follows. If the vertices a, b are connected
by an edge in T then choose direction between a, b using the colors of a, b and the
following rule:

1→ 2, 2→ 3, 3→ 1
1� 1, 2� 2, 3� 3

(36)

Assume now that there is no 3-color triangle in T. Then each triangle from T looks
in G like

•
↗ ↖

• � •
or

•
↙ ↘

• � •
or

•
↗↙ ↘↖

• � •
,

in particular, each of them contains a triangle in the sense of Theorem 8.
Consider a 3-loop φ : I3 → G∗ with the word θφ = ABCA. Using the transfor-

mation (ii) of Theorem 8 and the partition of G into the triangle digraphs, we can

contract the word ABCA to an empty word. Hence, φ
C
∼ e.

Consider the cycle digraph S3 with the vertices a, b, c as follows

c3

↙ ↖
a1 −→ b2

(37)
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where the vertex a is colored by 1, b by 2 and c by 3. Define a map f : G→ S3 by
the rule that f (x) has the same color in S3 as x in G.

By the choice of directions on the edges of G, f is a digraph map. The loop f ◦φ
on S3 has the word

θf◦φ = abca,

which is not contractible on S3 as we have seen above. However, by Theorem 11,

f induces homomorphism of π1 (G) to π1 (S3). Therefore, φ
C
' e implies that also

f ◦ φ
C
' e, which contradicts the previous observation.

4 Hurewicz theorem

One of our main results is the following discrete version of Hurewicz theorem.

Theorem 12 For any based connected digraph G∗ we have an isomorphism

π1(G
∗) /[π1(G

∗), π1(G
∗)] ∼= H1(G,Z)

where [π1(G
∗), π1(G

∗)] is a commutator subgroup.

Proof. The proof is similar to that in the classical algebraic topology [8, p.166].
For any based loop φ : In → G∗ of a digraph G∗, define a 1-path χ(φ) on G as
follows: χ(φ) = 0 for n = 0, 1, 2, and for n ≥ 3

χ (φ) =
∑

{i:i→i+1}

eφ(i)φ(i+1) −
∑

{i:i+1→i}

eφ(i+1)φ(i), (38)

where the summation index i runs from 0 to n − 1. It is easy to see that the 1-
path χ (φ) is allowed and closed and, hence, determines a homology class [χ (φ)] ∈
H1 (G,Z). Let us first prove that, for any two based loops φ : In → G∗ and ψ : Im →
G∗,

φ
C
' ψ ⇒ [χ(φ)] = [χ(ψ)] . (39)

Note that any based loop with n ≤ 2 is C-homotopic to trivial. For n ≥ 3, it

is sufficiently to check (39) assuming that φ
C
' ψ is given by an one-step direct

C-homotopy with a shrinking map h : In → Im. Set

φ′ := ψ ◦ h : In → G∗

and observe that by (38) χ (φ′) = χ (ψ) . It remains to show that [χ (φ)] = [χ (φ′)] .
By Remark 3.1 the digraph maps φ and φ′, acting from In to G, are homotopic.

Denote by Sn the digraph that is obtained from In by identification of the vertices
0 and n (that is, Sn is a cycle digraph as defined before). Then ϕ and φ′ can be
regarded as digraph maps from Sn to G, and they are again homotopic as such.

Consider the standard homology class [$] ∈ H1 (Sn) given by (11). Comparing
(11) and (38), we see that

φ∗ ($) = χ (ϕ) and φ′
∗ ($) = χ (φ′) .
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On the other hand, by Theorem 6 we have [φ∗ ($)] = [φ′
∗ ($)], which finishes the

proof of (39).
Hence, χ determines a map

χ∗ : π1(G
∗)→ H1(G,Z), χ∗[φ] = [χ(φ)].

The map χ∗ is a group homomorphism because, for based loops φ, ψ and the neutral
element [e] ∈ π1 (G∗), we have χ∗([e]) = 0 and

χ∗([φ] ∙ [ψ]) = χ∗([φ ∨ ψ]) = [χ(φ ∨ ψ)]

= [χ(φ) + χ(ψ)] = [χ(φ)] + [χ(ψ)] = χ∗([φ]) + χ∗([ψ]).

Since the group H1(G,Z) is abelian, it follows that

[π1(G
∗), π1(G

∗)] ⊂ Ker χ∗.

Now let us prove that χ∗ is an epimorphism. Define a standard loop on G as
a finite sequence v = {vk}

n
k=0 of vertices of G such that v0 = vn and, for any k

= 0, ..., n− 1, either vk → vk+1 or vk+1 → vk. For a standard loop v define an 1-path

$v =
∑

{k:vk→vk+1}

evkvk+1
−

∑

{k:vk+1→vk}

evkvk+1
(40)

and observe that $v is allowed and closed. The 1-paths of the form (40) will be
referred to as standard paths. Consider an arbitrary closed 1-path

w =
∑

k

nkeikjk
∈ Ω1(G,Z).

Since ∂w = 0 and ∂eij = ej − ei, the path w can be represented as a finite sum of
standard paths. Hence, in order to prove that χ∗ is an epimorphism, it suffices to
show that any standard 1-path $v is in the image of χ. Note that the standard loop
v determines naturally a based loop φ : In → Gv0 by φ (i) = vi. Since the digraph G
is connected, there exists a based path f : Is → G∗ with f(s) = v0. Thus we obtain
a based loop

f ∨ φ ∨ f̂ : I2s+n → G∗.

It follows directly from our construction, that χ(f ∨ φ ∨ f̂) = $v, and hence χ∗ is
an epimorphism.

We are left to prove that

Ker χ∗ ⊂ [π1(G
∗), π1(G

∗)].

For that we need to prove that, for any loop φ : In → G∗, if χ∗([φ]) = 0 ∈ H1(G,Z),
then [φ] lies in the commutator [π1(G

∗), π1(G
∗)]. In the case n ≤ 2 any loop φ is

C-homotopic to the trivial loop. Assuming in the sequel n ≥ 3, we use the word
θφ = v0v1...vn where vi = φ (i).

Consider first the case, when χ(φ) = 0 ∈ Ω1(G). Since the digraph G is con-
nected, for any vertex vi there exists a based digraph map ψi : Ipi

→ G∗ with ψi(pi) =
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vi. If vi = vj for some i, j then we make sure to choose ψi and ψj identical. For
i = 0 and i = n choose ψi to be trivial loop e : I0 → G∗. For any i = 0, ..., n − 1
define the digraph maps φi : I± → G by the conditions φi(0) = vi, φi(1) = vi+1 and
consider the following loop

γ = ψ0 ∨ φ0 ∨ ψ̂1 ∨ ψ1 ∨ φ1 ∨ ψ̂2 ∨ ψ2 ∨ φ2 ∨ ∙ ∙ ∙ ∨ ψ̂n−1 ∨ ψn−1 ∨ φn−1 ∨ ψn (41)

(see Fig. 16).

*

vi
vi+1

φi

ψi ψi+1
^

φ

Figure 16: Loop ψi ∨ φi ∨ ψ̂i+1

Using transformation (iv) of Theorem 8 (similarly to the proof of Lemma 10),
we obtain that

γ
C
' φ0 ∨ φ1 ∨ ... ∨ φn−1 = φ.

On the other hand, it follows from (41) that

[γ] =
n−1∏

i=0

[
ψi ∨ φi ∨ ψ̂i+1

]

Consider for some i = 0, ..., n − 1, such that i → i + 1, the vertices a = vi and
b = vi+1. If a = b then the loop ψi∨φi∨ ψ̂i+1 is C-homotopic to e. Assume a 6= b, so
that a→ b. Then the term eab is present in the right hand side of the identity (38)
defining χ (φ). Due to χ (φ) = 0, the term eab should cancel out with −eab in the
right hand side of (38). Therefore, there exists j = 0, ..., n− 1 such that j + 1→ j,
vj+1 = a and vj = b. It follows that

ψj ∨ φj ∨ ψ̂j+1 = ψi+1 ∨ φ̂i ∨ ψ̂i,

and that the loops

[
ψi ∨ φi ∨ ψ̂i+1

]
and

[
ψj ∨ φj ∨ ψ̂j+1

]
(42)

are mutually inverse. Therefore, [γ] is a product of pairs of mutually inverse loops,
which implies that [γ] = [φ] lies in the commutator of π1.
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Now consider the general case, when χ (φ) ∈ Ω1 (G) is exact, that is, χ(φ) = ∂ω
for some ω ∈ Ω2(G). Recall that by Proposition 1 any 2-path ω ∈ Ω2 can be
represented in the form

ω =
N∑

j=1

κjσj

where N ∈ N, κl = ±1 and σl is one of the following 2-paths: a double edge, a
triangle, a square. Further proof goes by induction in N . In the case N = 0 we have
ω = 0 which was already considered above.

In the case N ≥ 1 choose an arbitrary index i = 0, ..., n−1 such that the vertices
a = φ (i) and b = φ (i + 1) are distinct. Assume for certainty that i → i + 1 and,
hence, a → b (the case i + 1 → i can be handled similarly). Then eab enters χ (φ)
with the coefficient 1. Since

χ (φ) = ∂ω =
N∑

j=1

κj∂σj ,

there exists σl such that ∂σl contains a term κleab. Fix this l and define a new loop
φ′ as follows.

If σl is a double edge a, b, a, then consider a loop φ′ that is obtained from φ :
In → G∗ by changing one edge i→ i + 1 in In to i→ i + 1. Then by Lemma 7 we

have φ′ C
' φ.

Let σl be a triangle with the vertices a, b, c. Noticing that

θφ = ...ab...

consider a loop φ′ such that
θφ′ = ...acb...

(see Fig. 17).

 

*  

a 
b 

σl φ 

c 

φ ' 

Figure 17: Loops φ and φ′ in the case when σl is a triangle.

If σl is a square with the vertices a, b, c, d, then we define a loop φ′ so that

θφ′ = ...adcb.
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By Theorem 8, we have in the both cases φ′ C
' φ and, hence, [φ′] = [φ].

By construction, χ (φ′) contains no longer the term eab. On the other hand, we
will prove below that, for some κ = ±1,

χ (φ′) = χ (φ)− κ∂σl. (43)

Comparing the coefficients in front of eab in the both parts of (43), we obtain the
identity 0 = 1 − κκl whence κ = κl. It follows from (43) with κ = κl that

χ (φ′) = χ (φ)− ∂ (κlσl) = ∂ω − ∂ (κlσl) = ∂ω′,

where
ω′ =

∑

j 6=l

cjσj .

By the inductive hypothesis we conclude that [φ′] lies in the commutator [π1(G
∗), π1(G

∗)],
whence the same for [φ] follows.

We are left to prove the identity (43). If σl is a double edge a, b, a then

χ (φ′)− χ (φ) = −eba − eab = −∂eaba = −∂σl.

If σl is a triangle
c

� �
a −→ b

then we obtain a cycle digraph S3 with the vertices a, b, c, and if σl is a square

d −→ c
| |
a −→ b

then we obtain a cycle digraph S4 with the vertices a, b, c, d. Let $ be the standard
1-path on S3 in the first case and that on S4 in the second case (see (11)). Then it
is easy to see that

χ (φ)− χ (φ′) = $,

and (43) follows from the observation that ∂σl = ±$.
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