
Analysis on fractal spaces and walk dimension

Alexander Grigor’yan
University of Bielefeld

2024 ICBS, Beijing



Introduction

Differentiation and integration have been the cornerstones of Analysis in Euclidean spaces
since the days of Newton and Leibniz. Our purpose here is to discuss elements of Analysis
on Ahlfors-regular metric spaces, in particular, on fractals.

Following Lebesgue, integration amounts to measure theory, and the latter on such spaces
is determined by the Hausdorff dimension α and the Hausdorff measure Hα.

The differential calculus on metric spaces/fractals (if there is one) is determined by one more
parameter β that is called the walk dimension. In Rn one does not see it because β = 2
independently of n. However, on fractal spaces one has typically β > 2.

Originally the walk dimension was introduced in connection with diffusion processes on
fractal spaces where it determines the scaling time ' spaceβ for this process. The generator
of this process is an analogue of the Laplace operator that gives rise to differential calculus
on the underlying space.

In this talk we show how the notion of the walk dimension can be defined in any regular
metric space independently of a diffusion process, using instead a critical exponent of the
family of Besov function spaces. Hence, the walk dimension can be regarded as the second
important invariant of a regular metric space, after the Hausdorff dimension, which can be
used for classification of such spaces.

1



Brownian motion in Rn

Let {Xt}t≥0 be the classical Brownian motion in Rn, whose transition density is given by
the Gauss-Weierstrass function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

that is, for any initial point x ∈ Rn, any Borel set A ⊂ Rn, and any t > 0,

Px(Xt ∈ A) =

∫

A

pt(x, y)dy.

The function pt(x, y) is also referred to as

the heat kernel since it is the fundamental

solution of the heat equation

∂tu = Δu

where

Δ =
n∑

i=1

∂2u
∂x2

i

is the Laplace operator.

2



Assume for simplicity that the initial point is 0. Let τR be the first exit time of Xt from the
ball BR of radius R centered at 0, that is,

τR = inf {t > 0 : |Xt| > R} .

The expected value EτR is called the

mean exit time of Xt from the ball BR.

It is possible to prove that

EτR = cR2

where c = 1
2n

.

Hence, Brownian motion needs time cR2

to cover the distance R from the origin:

time ' space2.

The exponent 2 here is called the walk dimension of Brownian motion.

3



Brownian motion on manifolds

Let M be a complete non-compact Riemannian manifold of dimension n and Δ be the
Laplace-Beltrami operator on M . The associated heat equation

∂tu = Δu

has the minimal positive fundamental solution pt(x, y) (where t > 0, x, y ∈ M). It serves as
the transition density of a diffusion process {Xt} on M that is also called Brownian motion.

For any open set Ω ⊂ M , denote by τΩ the first exit time of Xt from Ω, that is,

τΩ = inf {t > 0 : Xt /∈ Ω} .

One can ask to estimate the mean exit time ExτB(x,R) where B(x,R) denotes the geodesic
ball of radius R centered at x ∈ M .

Assume that the heat kernel on M admits the following Gaussian estimates:

pt(x, y) �
C

tn/2
exp

(

−
d(x, y)2

ct

)

, (1)

where d(x, y) is the geodesic distance, c, C are positive constants, and the sign � means
both ≤ and ≥ but with possibly different values of c and C. Then one can that, for any ball
B(x,R), ExτB(x,R) ' R2. Hence, the walk dimension in this case is also equal to 2.
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This class of manifolds satisfying (1) is characterized by the following two conditions:

(i) the volume estimate: for any geodesic ball B(x, r),

μ (B(x, r)) ' rn,

where μ is the Riemannian volume;

(ii) the Poincaré inequality: for any f ∈ C1(B(x, r))
∫

B(x,r)

|∇f |2 dμ ≥
c

r2

∫

B(x,εr)

(
f − f

)2
dμ,

where c > 0 and ε ∈ (0, 1) are constants, and f = −
∫

B(x,εr)
fdμ.

For example, the Poincaré inequality is satisfied

if RicciM ≥ 0, and in this case (1) follows from

the Li-Yau theorem.

Another case when (i) and (ii) are satisfied is

when M covers a compact with a nilpotent deck

transformation group G .

On this picture M is a jungle gym with G = Z3.
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Regular metric spaces and fractals

Let (M,d) be a metric space and μ be a Borel measure on M . We say that M is α-regular
if, for any metric ball B(x, r) := {y ∈ M : d(x, y) < r} of radius r < r0,

μ (B (x, r)) ' rα, (2)

where α > 0. It follows from (2) that α is the Hausdorff dimension of M and μ ' Hα.

Equivalently, we can define α = dimH M , set μ = Hα and assume (2).

Hence, in some sense, α determines the integral calculus on M .

The α-regular spaces with fractional α are usually called

fractals. The fractals first appeared in mathematics as

curious examples of sets serving as counterexamples to

illustrate various theorems.

A well-known fractal is the Cantor set, which however is

disconnected.

Here is a connected fractal set – the Sierpinski gasket :
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Here are three steps of

construction of SG:

α = log 3
log 2

≈ 1.58.

Sierpinski carpet

and two steps of

construction of SC:

α = log 8
log 3

≈ 1.89.

Vicsek snowflake

and three steps of

construction of VS:

α = log 5
log 3

≈ 1.46.
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Dirichlet forms and their generators

On certain metric measure spaces, including fractals, it is possible to construct a Laplace-type
operator, by means of the theory of Dirichlet forms (Beurling–Deny and Fukushima).

Definition. A Dirichlet form in L2 (M,μ) is a pair (E ,F) where F is dense subspace of
L2 (M,μ) and E is a symmetric bilinear form on F with the following properties:

• It is positive definite, that is, E (f, f) ≥ 0 for all f ∈ F .

• It is closed, that is, F is complete with respect to the norm
∫

M

f 2dμ + E (f, f) .

• It is Markovian, that is, if f ∈ F then f̃ := min(f+, 1) ∈ F and E(f̃ , f̃) ≤ E (f, f).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L in L2(M,μ)
with domain dom (L) ⊂ F such that

(Lf, g) = E (f, g) for all f ∈ dom (L) and g ∈ F .
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For example, the classical Dirichlet integral in Rn

E(f, f) =

∫

Rn

|∇f |2 dx (3)

is the quadratic part of a Dirichlet form (E ,F) with domain F = W 1
2 (Rn). Its generator is

L = −Δ with dom (L) = W 2
2 (Rn) .

Another example of a Dirichlet form in Rn arises from the quadratic form

E(f, f) =

∫

Rn

∫

Rn

(f (x) − f (y))2

|x − y|n+s dxdy, (4)

where s ∈ (0, 2), with the domain F = B
s/2
2,2 (Rn) . Its generator is L = (−Δ)s/2 .

The generator L of any Dirichlet form determines the heat semigroup {e−tL}t≥0 in L2(M,μ).

If the operator e−tL for t > 0 is an integral operator:

e−tLf (x) =

∫

M

pt(x, y)f(y)dμ(y) for all f ∈ L2,

then its integral kernel pt(x, y) (that is necessarily non-negative) is called the heat kernel of
L or of (E ,F) .
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A Dirichlet form (E ,F) is called strongly local if E(f, g) = 0 whenever

f = const in a neighborhood of supp g.

For example, the Dirichlet form (3) is strongly

local, while the Dirichlet form (4) is non-local.

The local Dirichlet form (3) with the generator L = −Δ has the heat kernel

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

. (5)

The non-local Dirichlet form (4) with the generator L = (−Δ)s/2 has the heat kernel that
admits the following estimate:

pt(x, y) '
1

tn/s

(

1 +
|x − y|

t1/s

)−(n+s)

. (6)

10



In the special case s = 1 the heat kernel of (−Δ)1/2 coincides with the Cauchy distribution
with the scale parameter t:

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

=
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

.

A Dirichlet form (E ,F) is called regular if F ∩ C0 (M) is dense both in F and C0 (M). For
example, the both Dirichlet forms (3) and (4) are regular.

Any regular Dirichlet form (E ,F) determines a Markov processes {Xt}t≥0 on M with the

transition semigroup e−tL, which means that

Exf (Xt) = e−tLf (x) for all f ∈ C0 (M) and t ≥ 0.

If the heat kernel of (E ,F) exists then it

serves as the transition density of {Xt}:

Px(Xt ∈ A) =

∫

A

pt(x, y)dμ(y),

for any Borel set A ⊂ M and t > 0.
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If (E ,F) is local then {Xt} is a diffusion process (=with continuous trajectories), while
otherwise the trajectories of the process {Xt} contain jumps.

For example, the local Dirichlet form (3) with the generator L = −Δ determines Brownian
motion in Rn with the transition density (5), while the non-local Dirichlet form (4) with the

generator L = (−Δ)s/2 determines a symmetric stable Levy process in Rn of the index s
with the transition density (6).

If a metric measure space M possesses a strongly local regular Dirichlet form (E ,F) then its
generator L can be regarded as an analogue of the Laplace operator; hence, it determines in
some sense a differential calculus on M .
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Strongly local Dirichlet forms on fractals

Nontrivial strongly local regular Dirichlet forms have been successfully constructed on large
families of fractals, in particular, on SG by Barlow–Perkins ’88, Goldstein ’87 and Kusuoka
’87, on SC by Barlow–Bass ’89 and Kusuoka–Zhou ’92, on p.c.f. fractals (including VS ) by
Kigami ’93.

Each of these fractals can be regarded as limit of a sequence of approximating graphs Γn.

Approximating graphs Γ1, Γ2, Γ3 for SG
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Define on each Γn a Dirichlet form En by

En (f, f) =
∑

x∼y

(f (x) − f (y))2

(where x ∼ y denotes neighboring vertices on Γn), and then consider a scaled limit

E (f, f) = lim
n→∞

RnEn (f, f) (7)

with an appropriate renormalizing sequence {Rn} .

The main difficulty is to ensure the existence of {Rn} such that this limit exists in (0,∞)
for a dense in L2 family of functions f .

For p.c.f. fractals one chooses Rn = ρn where, for example, ρ = 5
3

for SG and ρ = 3 for VS,
and the limit in (7) exists due to monotonicity.

For SC the situation is much harder. Initially a strongly local Dirichlet form on SC was
constructed by Barlow and Bass ’89 in a different way by using a probabilistic approach.
After a work of Barlow, Bass, Kumagai and Teplyaev ’10 it became possible to claim that
the limit (7) exists for a certain sequence {Rn} such that Rn ' ρn, where the exact value of
ρ is still unknown. Numerical computation indicates that ρ ≈ 1.25.

Other methods of constructing a strongly local Dirichlet form on SC were proposed by
Kusuoka and Zhou ’92 and AG and M.Yang ’19.
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Walk dimension

In all the above examples of fractals, the strongly local Dirichlet form possesses the heat
kernel that satisfies the following sub-Gaussian estimate:

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(8)

(where C, c > 0), for all x, y ∈ M and t ∈ (0, t0) (Barlow–Perkins ’88, Barlow–Bass ’92).

Here α as above is the Hausdorff dimension of the underlying metric space (M,d) while β is
a new parameter.

For any open set Ω ⊂ M , denote by τΩ

the first exit time of diffusion Xt from Ω:

τΩ = inf {t > 0 : Xt /∈ Ω} .

It is known that if (8) holds then, for any

ball B (x, r) with r < r0,

ExτB(x,r) ' rβ.
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That is, β is the walk dimension of the diffusion process {Xt} .

Hence, we have the fractal scaling time=distanceβ that is different from the Euclidean one
time=distance2.

The walk dimension can be regarded as a numerical characteristic of the differential calculus
on M that is determined by the generator L.

It is known that always β ≥ 2. Moreover, for any pair of reals α ≥ 1 and β ∈ [2, α + 1],
there exists a geodesic metric measure space with a heat kernel satisfying (8) (Barlow ’04).
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Hence, we obtain a large family of regular metric measure spaces that are characterized by a
pair (α, β) , where α is responsible for integration while β is responsible for differentiation.

The Euclidean space Rn belongs to this family with α = n and β = 2 (in the case β = 2 the
estimate (8) becomes Gaussian).

On fractals the values of β is determined by the scaling parameter ρ. It is known that:

• on SG : β = log 5
log 2

≈ 2.32 (and α = log 3
log 2

≈ 1.58)

• on VS : β = log 15
log 3

≈ 2.46 (and α = log 5
log 3

≈ 1.46)

• on SC : β = log(8ρ)
log 3

≈ 2.10 (and α = log 8
log 3

≈ 1. 89).
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Besov spaces characterization of β

Given an α-regular metric measure space (M,d, μ) , it is possible to define a family Bσ
p,q of

Besov spaces, where p, q ∈ [1,∞], σ > 0. Here we need only the following special cases: for
any σ > 0 the space Bσ

2,2 consists of functions f ∈ L2(M,μ) such that

‖f‖2
Ḃσ

2,2
:=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y) < ∞, (9)

and Bσ
2,∞ consists of functions f ∈ L2(M,μ) such that

‖f‖2
Ḃσ

2,∞
:= sup

0<r<r0

1

rα+2σ

∫ ∫

{d(x,y)<r}

|f(x) − f(y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that the space Bσ
2,2 shrinks as σ increases. Define

σ∗ = sup{σ > 0 : Bσ
2,2 is dense in L2} . (10)

If σ < 1 then Bσ
2,2 contains all Lipschitz functions with compact support. Hence, σ∗ ≥ 1.

In Rn, if σ > 1 then Bσ
2,2 = {0} so that σ∗ = 1. On most fractal spaces σ∗ > 1.
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Theorem 1 (AG, Jiaxin Hu, Ka-Sing Lau) Let (E ,F) be a strongly local Dirichlet form on
(M,d, μ) such that its heat kernel exists and satisfies the sub-Gaussian estimate

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(11)

with some α and β. Then the following is true:

(a) the space M is α-regular (consequently, α = dimH M and μ ' Ha);

(b) β = 2σ∗ (consequently, β ≥ 2);

(c) F = Bσ∗

2,∞ and E(f, f) ' ‖f‖2
Ḃσ∗

2,∞
.

Corollary 2 Both α and β in (11) are the invariants of the metric structure (M,d) alone.

Indeed, σ∗ is defined by using metric d and measure μ, while in this case μ ' Hα is also
determined by d. Therefore, σ∗ and β are also invariants of the metric space (M,d).

Note that σ∗ is well defined by (10) for any α-regular metric space using μ = Hα. In the
view of Theorem 1, we redefine now the notion of the walk dimension by setting

β := 2σ∗ . (12)

Hence, β is the second invariant of a regular metric space after the Hausdorff dimension α.
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Here is a classification of regular metric spaces according to their walk dimension .

Note that according to (10) and (12), the walk dimension β may take the value ∞, which is
attained on ultra-metric spaces.
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Ultra-metric spaces

A metric space (M,d) is called ultra-metric if it satisfies a stronger triangle inequality

d(x, y) ≤ max (d (x, z) , d (y, z)) for all x, y, z ∈ M. (13)

For example, the field Qp of p-adic numbers is an ultra-metric space with respect to the
p-adic distance d(x, y) = |x − y|p. Recall that, for a rational z ∈ Q, the p-adic norm is

defined by |z|p = p−k provided z = pk a
b

where the integers a, b are not divisible by p.

It is easy to see that

|z1 + z2|p ≤ max
(
|z1|p , |z2|p

)
,

which implies (13) for all rational x, y, z. Since Qp is the completion of Q with respect to
the p-adic norm, it follows that (13) holds for all x, y, z ∈ Qp.

Consequently, also Qn
p is an ultra-metric space with the max-distance:

d(x, y) = max
1≤k≤n

(
|xk − yk|p

)
,

where xk’s are the p-adic components of x ∈ Qn
p . It is easy to prove that the Haar measure

μ on Qn
p is n-regular.
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Let (M,d) be an α-regular ultra-metric space. The ultra-metric property (13) implies that,
for any ball B of radius r, any point x ∈ B is a center of B.

In particular, d(x, y) ≥ r for any y /∈ B.

It follows that:

• the indicator function 1B is continuous;

• 1B ∈ Bσ
2,2 for any σ > 0.

Consequently, Bσ
2,2 is dense in L2 for any σ > 0, whence σ∗ = ∞ and β = ∞.

Note that any ultra-metric space is totally disconnected and, hence, cannot carry a non-
trivial diffusion. However, it carries a lot of jump processes.

Theorem 3 (A.Bendikov, AG, Eryan Hu, Jiaxin Hu, ’21) For any σ > 0, the Besov semi-
norm (9) determines a regular Dirichlet form with the domain Bσ

2,2, its heat kernel satisfies
a stable-like estimate

pt (x, y) '
1

tα/s

(

1 +
d (x, y)

t1/s

)−(α+s)

(14)

with the index s = 2σ, and the walk dimension of the associated jump process is equal to s.
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An approach to construction of local Dirichlet forms

An open question. Let (M,d, μ) be an α-regular metric measure space (or even self-
similar). Assume σ∗ < ∞. Does there exist a strongly local (regular) Dirichlet form in M?
Does it have a heat kernel satisfying the sub-Gaussian estimate (11) with β = 2σ∗?

Which additional conditions may be required?

Here is a possible approach to construction of such a Dirichlet form based on the family of
Besov spaces. For any σ < σ∗ we need to define in Bσ

2,2 a quadratic form Eσ(f, f) with the
following properties:

(i) Eσ(f, f) ' ‖f‖2
Ḃσ

2,2
=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y);

(ii) there should exist in some sense the limit

limσ→σ∗ (σ∗ − σ) Eσ;

(iii) this limit should determine a strongly local regular Dirichlet form on M .

In Rn this method works with Eσ(f, f) = ‖f‖2
Ḃσ

2,2
and yields the Dirichlet integral. For SG

and SC this method was realized by AG and Meng Yang ’18 and ’19.
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An open question. How to determine the walk dimension (equivalently, σ∗), even for
self-similar sets?

Each self-similar set is determined by the first step in its construction:

SG SC VS

It is well known how to compute the Hausdorff dimension: α = log A
log B

where A is the number
of remaining cells after the first step, and B is the contraction ratio.

An open question. How to compute the walk dimension β using the first step in the
fractal construction? This must be some graph invariant.

The exact value of β remains open for the Sierpinski carpet.
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Self-similar heat kernels

Let M be an α-regular metric space.

Theorem 4 (AG–Takashi Kumagai) Let (E ,F) be a regular Dirichlet form on M . Assume
that its heat kernel exists and satisfies the following estimate:

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

where β > 0 and Φ is a positive function on [0,∞). Then the following dichotomy holds :

• either the Dirichlet form E is strongly local, β ≥ 2 and Φ (s) � C exp(−cs
β

β−1 ).

• or the Dirichlet form E is non-local and Φ (s) ' (1 + s)−(α+β).

That is, in the first case pt (x, y) satisfies the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(15)
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while in the second case we obtain a stable-like estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (16)
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