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Heat kernel in Rn

The heat equation in Rn: ∂tu = Δu where u = u (t, x), t ∈ R, x ∈ Rn, and
Δ =

∑n
i=1 ∂xixi

u is the Laplace operator. The Gauss-Weierstrass function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

(GW )

satisfies the heat equation in (t, x) ∈ R+ × Rn

and tends to δy as t → 0 + .

The function (GW ) is called the heat kernel
or the fundamental solution of the heat equation.

Other characterizations of the heat kernel:

=the integral kernel of the heat semigroup
{
etΔ
}

t≥0
in L2 (Rn);

=the density of the normal distribution with the mean y and variance 2t;

=the transition density of Brownian motion in Rn.
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Heat kernel on a manifold

Let M be a geodesically complete Riemannian manifold and Δ - the Laplace-
Beltrami operator on M. In the local coordinates it has the form

Δ =
1

√
det g

∂

∂xi

(√
det ggij ∂

∂xj

)

.

Let pt (x, y) be the heat kernel of M , that is, the smallest positive fundamental
solution of ∂tu = Δu on R+ × M , where u = u (t, x), t ∈ R, x ∈ M.

Problem: obtaining estimates of pt (x, y) depending on the geometry of M .

A theorem of Li and Yau 1986 states: if RicciM ≥ 0 then

pt (x, y) �
C

V (x,
√

t)
exp

(

−
d2(x, y)

ct

)

. (LY )

Here d(x, y) is the geodesic distance, V (x, r) = μ (B (x, r)) is the Riemannian
volume of the geodesic ball B(x, r), C, c are positive constants, and � means
that both ≤ and ≥ take place, but with different values of C, c. For example, in
Rn we have V (x, r) = cnrn, and (LY ) matches (GW ).
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Heat kernels on manifolds with ends

Let M be a connected sum of other manifolds
M1, ...Mk. We write M = M1#...#Mk.
The manifolds Mi are called ends of M.
Assuming that the heat kernel on each end Mi

satisfies (LY ), we ask the following question:

how to estimate the heat kernel pt (x, y) on M?

Some results were obtained in a series of papers of A.Grigor’yan and L.Saloff-
Coste from 1999 to 2018.

For example, let M = Rn#Rn with n > 2.
Let x, y lie on different sheets. Then

pt (x, y) �
C

tn/2

(
1

|x|n−2 +
1

|y|n−2

)

Rn#Rn
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Consider now M = R2#R2 or, equivalently, the catenoid

Let x, y again lie on different sheets. If |x| , |y| ≤
√

t then the heat kernel on
M satisfies

pt(x, y) �
C

t ln2
√

t

(
ln
√

t + ln2
√

t − ln |x| ln |y|
)

.

If |x| , |y| ≥
√

t then

pt (x, y) �
C

t

(
1

ln |x|
+

1

ln |y|

)

e−
d2(x,y)

ct .
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Weighted manifolds

Consider in Rn the measure eψ(x) dμ where μ is the Lebesgue measure in Rn and
ψ is a given function. The new measure determines a weighted Laplacian

L = e−ψ div
(
eψ∇

)
= Δ + ∇ψ ∙ ∇

that is symmetric with respect to eψdμ. The function ψ may degenerate to −∞
or to +∞ thus creating singularities of L.

Question: how obtain estimates of the heat kernel of L near singularities?

A model example with

ψ (x) = −
1

|x|α

(where α > 0) was partially solved in a paper of A.Grigor’yan, S.Ouyang and
M.Röckner 2018: it was proved that, for 0 < t < 1,

sup
x

pt(x, x) � C exp

(
c

t
α

α+2

)

.

However, optimal off-diagonal estimates of the heat kernel are not yet known,
even in this model case.
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Jump processes in Rn

The Gauss-Weierstrass function (GW )
serves as the transition density of
Brownian motion {Xt} in Rn. That is,

Px (Xt ∈ A) =

∫

A

pt (x, y) dy.

Let {Yt} be the Levy process in Rn generated by (−Δ)β/2 where β ∈ (0, 2). This
is a jump process that is called symmetric stable process of index β. Its transition
density pt (x, y) satisfies the estimate

pt (x, y) �
C

(t1/β + |x − y|)n+β
=

C

tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

.

In a particular case β = 1 we obtain the Cauchy distribution:

pt (x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

=
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

(where cn = Γ
(

n+1
2

)
/π(n+1)/2)
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Diffusions and jump processes on fractal-like spaces

Let (M,d, μ) be a metric measure space with a regular Dirichlet form (E ,F). The
heat kernel is defined as the integral kernel of the corresponding heat semigroup.
We look for equivalent conditions for the following heat kernel bounds:

• Sub-Gaussian bounds in the case of diffusion (=local Dirichlet form):

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

. (1)

• Stable-like bounds in the case of jump process (=non-local Dirichlet form):

pt (x, y) �
C

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (2)

Here α has to be the Hausdorff dimension of (M,d), while β is called the walk
dimension (in the case (1)) or the index (in the case (2)).

Note that the walk dimension is an invariant of the metric space (M,d) alone!
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There are many reasons to consider such estimates.
Firstly, they are known to hold on various fractals,
like the Sierpinski gasket or carpet. Secondly, if the
heat kernel satisfies a self-similar estimate

pt (x, y) �
C

tα/β
Φ

(
d(x, y)

t1/β

)

with some function Φ then this estimate has to be
either (1) or (2) (A.Grigor’yan & T.Kumagai, 2008)

Sierpinski gasket

Sub-Gaussian estimate. The major question to be addressed here is to find
some practical conditions on (M,d, μ) and (E ,F) that should be equivalent to
(1). On a complete Riemannian manifold the Gaussian heat kernel bounds (that
corresponds to β = 2 in (1)) are equivalent to the conjunction of the following
two properties:

• the volume regularity μ (B (x, r)) � Crα, where B (x, r) are d-balls;

• the Poincaré inequality
∫

B(x,2r)

|∇f |2 dμ ≥
c

r2
inf
ξ∈R

∫

B(x,r)

(f − ξ)2 dx.
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In the general setting (including the case β > 2 that typically occurs in fractals),
we have a conjecture.

Conjecture. The sub-Gaussian heat kernel estimate (1) is equivalent to the
conjunction of the three properties:

• the volume regularity μ (B (x, r)) � Crα;

• the β-Poincaré inequality
∫

B(x,2r)

dΓ (f, f) ≥
c

rβ
inf
ξ∈R

∫

B(x,r)

(f − ξ)2 dx ;

• the capacity estimate

cap(B (x, r) , B (x, 2r)) ≤ Crα−β,

where cap is the variational capacity associated with (E ,F).

A similar equivalence has been proved by A.Grigor’yan, J.Hu and K.-S.Lau 2015
but with a more complicated third condition that involves a generalized capac-
ity containing an additional weight function. However, the generalized capacity
condition is difficult to verify in applications.
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Stable-like estimates. The question about equivalent conditions arises also
for the stable-like estimate

pt (x, y) �
C

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (3)

Conjecture. Estimate (3) is equivalent to the conjunction of three conditions:

• the volume regularity μ (B (x, r)) � Crα;

• the estimate of the jump kernel J of the Dirichlet form (E ,F)

J (x, y) �
C

d (x, y)α+β
,

(similarly to the jump kernel of the symmetric β-stable process in Rn);

• the capacity condition

cap(B (x, r) , B (x, 2r)) ≤ Crα−β.

A similar equivalence has been proved by A.Grigor’yan, E.Hu and J.Hu 2018
assuming the third condition with a generalized capacity in place of capacity
(like in the local case).
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Construction of jump processes on fractals. Let (M,d, μ) be a metric
measure space, and assume that measure μ is α-regular. For any β > 0 define
the following bilinear form in L2 (M,μ):

Eβ (f, g) =

∫

M

∫

M

(f (x) − f (y)) (g (x) − g (y))

d (x, y)α+β
dμ(x)dμ(y). (4)

The following question arises immediately: for which β the bilinear form Eβ with
a proper domain is a regular Dirichlet form?

If so then Eβ defines on M a jump process of the index β.

In Rn this is the case if and only if β < 2, while on the Sierpinski gasket Eβ

is a regular Dirichlet form if and only if β < β∗, where β∗ = ln 5
ln 2

is the walk
dimension of SG. This result is obtained by using subordination techniques,
which requires a priori construction of a diffusion on SG and the sub-Gaussian
heat kernel estimates.

Problem. To develop tools for construction of jump type Dirichlet forms on met-
ric measure spaces, without using diffusion. It is particularly important to obtain
possible values of the index β and to understand the nature of the supremum
value β∗ of the index, because β∗ is an invariant of (M,d).
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