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Heat kernel in R"

The heat equation in R™: d,u = Au where u = u (t,x), t € R, z € R", and
A =>" Opau is the Laplace operator. The Gauss-Weierstrass function
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satisfies the heat equation in (¢,z2) € Ry x R"
and tends to 0, ast — 0 +.

The function (GW) is called the heat kernel
or the fundamental solution of the heat equation.

Other characterizations of the heat kernel:

—the integral kernel of the heat semigroup {e®} _ in L? (R");

t>0

=the density of the normal distribution with the mean y and variance 2t;

=the transition density of Brownian motion in R".



Heat kernel on a manifold

Let M be a geodesically complete Riemannian manifold and A - the Laplace-
Beltrami operator on M. In the local coordinates it has the form
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Let p; (z,y) be the heat kernel of M, that is, the smallest positive fundamental
solution of dyu = Au on R, x M, where u = u (t,z), t € R, x € M.

Problem: obtaining estimates of p, (x,y) depending on the geometry of M.
A theorem of Li and Yau 1986 states: if Ricciyr > 0 then
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Here d(z,y) is the geodesic distance, V(z,7) = p (B (z,7)) is the Riemannian
volume of the geodesic ball B(x,r), C,c are positive constants, and < means
that both < and > take place, but with different values of C, c. For example, in
R™ we have V (x,r) = ¢,r™, and (LY") matches (GW).



Heat kernels on manifolds with ends

Let M be a connected sum of other manifolds
My, ..M. We write M = Mi#...4#Mj,.

The manifolds M; are called ends of M.
Assuming that the heat kernel on each end M;
satisfies (LY'), we ask the following question:

how to estimate the heat kernel p; (z,y) on M?

Some results were obtained in a series of papers of A.Grigor’yan and L.Saloff-
Coste from 1999 to 2018.

For example, let M = R"#R" with n > 2.
Let x,y lie on different sheets. Then ) K

0(1 1) é

Pt (xa y) = tn/z

n— + n—
"7 "




Consider now M = R?#R? or, equivalently, the catenoid

Let x,y again lie on different sheets. If |z|, |y| < v/t then the heat kernel on
M satisfies
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If |z|, |y| > v/t then
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Weighted manifolds

Consider in R™ the measure e¥®) du where i is the Lebesgue measure in R™ and
1 is a given function. The new measure determines a weighted Laplacian

L=e¢Vdiv(e!V)=A+Vy -V

that is symmetric with respect to e¥du. The function ¥ may degenerate to —oo
or to +oo thus creating singularities of L.

Question: how obtain estimates of the heat kernel of L near singularities?

A model example with
1
Y (z)=—1Tm=5
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(where a@ > 0) was partially solved in a paper of A.Grigor’yan, S.Ouyang and
M.Rockner 2018: it was proved that, for 0 < ¢t < 1,
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However, optimal off-diagonal estimates of the heat kernel are not yet known,
even in this model case.



Jump processes in R”

The Gauss-Weierstrass function (GW)
serves as the transition density of
Brownian motion {X;} in R™. That is, A

P, (X; € A) = /A pe () dy.

Let {Y;} be the Levy process in R” generated by (—A)*? where 3 € (0,2). This
is a jump process that is called symmetric stable process of index (3. Its transition
density p; (z,y) satisfies the estimate
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In a particular case § = 1 we obtain the Cauchy distribution:
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Diffusions and jump processes on fractal-like spaces

Let (M, d, 1) be a metric measure space with a regular Dirichlet form (&, F). The
heat kernel is defined as the integral kernel of the corresponding heat semigroup.
We look for equivalent conditions for the following heat kernel bounds:

o Sub-Gaussian bounds in the case of diffusion (=local Dirichlet form):
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e Stable-like bounds in the case of jump process (=non-local Dirichlet form):
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Here « has to be the Hausdorff dimension of (M, d), while [ is called the walk
dimension (in the case (1)) or the index (in the case (2)).

Note that the walk dimension is an invariant of the metric space (M, d) alone!



There are many reasons to consider such estimates.
Firstly, they are known to hold on various fractals,
like the Sierpinski gasket or carpet. Secondly, if the
heat kernel satisfies a self-similar estimate
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with some function ® then this estimate has to be
either (1) or (2) (A.Grigor'yan & T.Kumagai, 2008)

Sierpinski gasket

Sub-Gaussian estimate. The major question to be addressed here is to find
some practical conditions on (M,d, ) and (€, F) that should be equivalent to
(1). On a complete Riemannian manifold the Gaussian heat kernel bounds (that
corresponds to § = 2 in (1)) are equivalent to the conjunction of the following
two properties:

e the volume regularity p (B (x,r)) < Cr®, where B (z,r) are d-balls;

e the Poincaré inequality
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In the general setting (including the case 5 > 2 that typically occurs in fractals),
we have a conjecture.

Conjecture. The sub-Gaussian heat kernel estimate (1) is equivalent to the
conjunction of the three properties:

(0%

e the volume regularity p (B (z,r)) < Cr®;

e the -Poincaré inequality
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e the capacity estimate
cap(B (z,r), B (z,2r)) < Cr*=°,
where cap is the variational capacity associated with (&, F).

A similar equivalence has been proved by A.Grigor’yan, J.Hu and K.-S.Lau 2015
but with a more complicated third condition that involves a generalized capac-
ity containing an additional weight function. However, the generalized capacity
condition is difficult to verify in applications.



Stable-like estimates. The question about equivalent conditions arises also
for the stable-like estimate

C d(z,y)\
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Conjecture. Estimate (3) is equivalent to the conjunction of three conditions:

e the volume regularity (B (x,r)) < Cr®;

e the estimate of the jump kernel J of the Dirichlet form (&, F)

C
J(z,y) < W;

(similarly to the jump kernel of the symmetric g-stable process in R™);
e the capacity condition

cap(B (z,r), B (z,2r)) < Crob.

A similar equivalence has been proved by A.Grigor'van, E.Hu and J.Hu 2018
assuming the third condition with a generalized capacity in place of capacity
(like in the local case).
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Construction of jump processes on fractals. Let (M,d,u) be a metric
measure space, and assume that measure p is a-regular. For any § > 0 define
the following bilinear form in L* (M, u):

5/@ (f, g) _ /]w/j\/[ (f (37) — ];((y)) ()ga—(:g) — g(y»d,u(x)du(y) (4)

L,y

The following question arises immediately: for which 3 the bilinear form &g with
a proper domain is a regular Dirichlet form?

If so then &3 defines on M a jump process of the index (.

In R™ this is the case if and only if # < 2, while on the Sierpinski gasket &z

is a regular Dirichlet form if and only if 8 < 3,, where 3, = 15 is the walk

In2
dimension of SG. This result is obtained by using subordination techniques,
which requires a priori construction of a diffusion on SG and the sub-Gaussian

heat kernel estimates.

Problem. To develop tools for construction of jump type Dirichlet forms on met-
ric measure spaces, without using diffusion. It is particularly important to obtain
possible values of the index § and to understand the nature of the supremum
value (3, of the index, because (3, is an invariant of (M, d).
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