Erva

1SOPERIMETRIC INEQUALITIES FOR RIEMANNIAN PRODUCTS

A. A. Grigor'yan

INTRODUCTION

We shall say that the f-isoperimetric inequality holdk@ the smooth Riemannian manifold
M, or, what is the same, that the manifold M has isoperimetric function f, if for any open
set DC M of finite volume v, having smooth boundary, the measure of codimension 1 of the
poundary @D 1is not less than f(v). The need to calculate an isoperimetric function arises,
for example, in the investigation of elliptic and parabolic equations on a manifold (cf.,
e.g., [1-5]). A vast literature is devoted to proofs of various isoperimetric inequalities
and Sobolev-type inequalities connected with them. The list of papers [6-8] has a purely
jllustrative character.

In the present paper we solve the problem of finding an isoperimetric function up to a
constant for the direct product M,xX M., of the manifolds M; and M,, if isoperimetric
inequalities on M, and M, are known. For .example, it turns out that if the isoperimetric
functions of the manifolds M, and )/, are equal to ¥ and ©® vrespectively, where
0<a, f<1 , then on the manifold M, x M, one has a v'~-isoperimetric inequality, where

1 1 1

=y "T—a & I=B°

The precise formulation of the basic results is given in Sec. 1. In Sec. 2 the geometric
problem of the proof of the isoperimetric inequality is reduced to finding the minimum of a
certain functional of functions of one variable. The latter problem is solved (up to multipli-
cation by a constaant) in Sec. 3.

The results of the present paper were partially reported to joint sessions of the Moscow
Mathematical Society and the I. G. Petrovskii Seminar in 1982 (cf. [9]).

Notation. The symbols |, Jts, B — i; X ps will denote the measures on the Riemannian
zanifolds AM,, M, and M = M, x M,, induced by the Riemannian metric. If N is a Riemannian
manifold of dimension n (for example, a submanifold of M), then its n-dimensional volume will
be denoted by |/N |. The letter c denotes an absolute positive constant.

1. Formulation of the Basic Results

- Let ¢: (0,4 ~)=-10, + ) be a monotone decreasing right continuous function, where
'fl_fiq' () =0 . We call the function (s) =mes{t>0|q(t)>s}, s>0, the generalized

inverse of ¢ (f). It is easy to see that the generalized inverse function V¥ also decreases
®onotonically on (0, 4+%), is right continuous, and limy(s) =0. Moreover, the function ¢

4 N e
‘téelf is the generalized function of ¥, i.e., p(f) = mes {s >0 |y (s) > 1), and one has
So 'P“)d"—‘s. P () ds.
THEOREM 1. Let the manifolds M, and M, have isoperimetric functions f and g, which

:TE continuous on the intervals (0,| A/,|) and (0, | M,|), respectively. Then on the manifold
“ the (1/2)h(v)-isoperimetric inequality holds, where

: (1)
ho)=inf [ 10N e + g (v (s as]:
:;e " and Y are generalized mutually inverse functions such that ¢ < | M, |, < | M, |
- - (2)

\, qa(l)dtzsn (s)ds=v,

.-_-‘--‘-'——-—_
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and the infimum is taken over all such pairs ¢, 9.

Remark. The assertion of Theorem 1 is sharp in the following sense. If the manifolds
M, and M; have one-parameter families of subsets on which the isoperimetric inequalitieg
reduce to equalities (cf. Sec. 2 for a precise formulation), then any isoperimetric function
of the manifold M does not exceed h(v). We have been unable to liquidate the margin between
(1/2)h(v) and h(v).

Under additional restrictions on f and g one can get estimates for the function h, which
are more convenient for applicationms. i

THEOREM 2. Let the functions f and g be continuous, monotone increasing on the interval
(0, +o) , and the functions f(x)/x and g(y)/y be monotone decreasing. Then

h (v) > (1/3) hy (v), (3)

where
he (©) = inf (f () y 4= 2 (4) 2). (4)

=

Remarks. 1. The expression f(x)y + g(y)x is natural from the geometric point of view.
In fact, if D,C M, DsCM,,|Dy|=2z,|Ds|=y, then |D,<D,|= xy and |d(D, X D) | =

|9D, |y + | 0D, | =. |

2. If one does not impose any conditions on the functions f and g besides the monotonicity,
then h cannot be estimated in terms of %, : an example is given in Sec. 3 when & (v)=0, ‘

and h, (v) > 0. -.
3. In the case of monotone increasing f(x)/x and g(y)/y, and also in a somewhat more

general situation one can prove the estimate h(v) > Cgho((1 — e)v) (where it is impossible

to get rid of the e >0). |

THEOREM 2a. Let the functions f and g be nonnegative, continuous on the intervals
0, v,) and (0, V,), and symmetric with respect to the points V,/2 and V,/2 ' respectively.
Also let f and g increase on the intervals (0, V,/2) and (0, V,/2) respectively, and functions
f(z)/z g (yN¥ be monotone decreasing on these intervals. Then for v< (1/2) V,V, one has ‘

h(v) > cmin {h.(v}, f(%)l’,, g(-;.—)Vl}, (5)
where ,
ho (v) = il (f(@)y +8)). |
X</, y<O/IVs !

Remarks. 1. For a manifold of finite volume V one can assume that the isoperimetric
function is symmetric with respect to the point V/2, since the boundaries of an open set and

its complement coincide.

2. All three terms on the right side of (5) are essential. Thus the term [ (V/V,y)V, i
corresponds to the following geometric situation. If D,C M, D=D,x M,, |D| =v, then |

|oD{ = 8D, |- V, > f (I D, [) Vo = f (/V,y) V.

e
=il |

3. If one of the volumes V¥; 1is equal to oo, then it is necessary to throw the %
corresponding term in (5) away. =
2. Proof of Theorem 1 i} :

We need the following auxiliary assertions. :_

LEMMA 1. Let N be a smooth Riemannian manifold, pe&=C=(N), 8§ ={z=N|p(z) =1t} be &

a level set of the function P (which is a submanifold for almost all t); let v, v, be thé =
measures on N and §,, generated by the Riemannian metric. -

Then if n &= L'(N, v), 4 >0, one has ®

SN n|Vp|dv= g:l dt Ss, ndv,. =
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LEMMA 2. Let D be an open subset of the manifold N, having smooth boundary. Then

dD|= inf Tim \ |VF,|dv=inflim\ |VF,|dv,
|9D] tr,,ru—-ensﬂl ! {r,,:nTa.S"I "
where {F,} 1is a monotone increasing sequence of functions F, = C= (N), converging pointwise
to Xp, the characteristic function of the set D.

Both these lemmas are special cases of more general assertions proved in [10]. In this

connection we note that the requirement of smoothness demanded in the present paper of all
the functions and boundaries considered is not essential, but merely simplifies the arguments.

Proof of Theorem 1. Let D be an open set in M with smooth boundary, |D|= p<oo -
Let {F.} be a monotone increasing sequence of smooth functions on M, wvhere F,— xp . By
Lemma 2 it suffices to prove that

ESM[W-I"“?%’-"W}- (N

Let V., and V, denote gradients on the manifolds M, and M, respectively. Then
|VELI* = | VoFuP + |V ,FuP , so |VF,|>|V.F,|, |VF,|>|V,F,|. Hence instead of (7) it suffices

to prove that
— . (8)
T { |V.F|dp + T |V,Fa|dp>h).

We estimate the second summand in (8) as follows. For each z=M, we let S(z) =
{v=M,|(z, y)= D) . It follows from Sard's theorem that for almost all x the section
S(x) has smooth boundary. We consider F,(z,y) as a function on M, for fixed x. By Lemma
2 wa have

tim §_ | 9,7 (2, 9) | dua () > 95 (2)] 2
(for almost all x). Integrating (9) over M, and using Fatou's lemma, we get
(10)

iim § 19, P a0 () dp

-

The geometric meaning of (10) is this. We have estimated the part of the measure of
the boundary @D, which depends on the "extent" of D along M,. If M,=M,=R, D 1is a
domain in R® (10) means that the length of the boundary 4D 1is not less than the projec-
tion of D to M,.

Now we estimate the first summand in (8). Of course it could be estimated analogously
to (10), but it is more convenient to do this as follows. Let 0(z) = S (z). Then the part
of the measure of the boundary 48D , which depends on the '"extent" along M,, roughly

speaking, is larger the larger the values assumed by o . For example, if o assumes only
one value, then D can be a cylinder D, x M,;, and the whole boundarydD isdetermined by the

extent along M,.
The formal realization of this idea is the following. By Fubini's formula we have

Co | Vealdn =S am§ 1V Folape > | Face p)apa|. (>
0n(2) =\, Falz, ) dps(v).

Then @, (z) is a monotone increasing sequence of smooth functions on M, , converging point-
wise to 0(z). Using (11), Lemma 1, and the f-isoperimetric inequality, we get

Vyo | VFaldn > 1V.0, | dp =

= at§ Vol | Voot =) muton =010t > 1 (0> 1)t

“o o
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set f(0) = 0). Passing to the limit as n-— oo, we get

Tim 1
.!.iﬂs.,IVJNI"“T?;SI(P:{G}W})M (12)

Combining (10) and (12) now and using the isoperimetric inequality |dS(z)|> g(o(z)), we get
S, — . (13)
Tw § [ VaFaldp -+ Tim{ [V Faldn >S go(@)dm + ] fGuto>n)de

We set @ (i) =pn,{o0>1t); let ¥ be the generalized inverse function to ¢ . It follows
from the definition of that the functions % and O are equimeasurable. Hence ¢ < | M,]|,

'P < I MI L
S‘:qv(t]dt-_—.fq;(s)ds:S“‘ddp;=|D|=v,

and the right side of (13) is equal to

| eenas + ro@ya~aw).
This proves (8) and hence Theorem 1.

Now we give an example confirming the sharpness of the function h(v) we have found. Let
us assume that for sufficiently large families of subsets in M, and M., the f- and
_g-isoperimetric inequalities are sharp. Namely, let #&;(!). 1°~0, be a family of open sets

M, with smooth boundaries, such that: a) B;(a)C B,(b) for a<b ; b) the union
of all the boundaries 4B, (t) coincides with the whole manifold Af; without a set of
measure zero; c) one has

4B, =1,

1PB{O1=\ gqB:)), 1=2

Moreover, one can assume that
(14)
[Bi(t) | =t
(otherwise we make a change of parameter t).

We show that for each v-= (0, |AM/]|) and for each positive ¢ one can find a domain
DC M suchthat |D|=p and |0D | < hk(v) + £. Weintroduce functions P an Af,: p;(z)=1¢, if
z=oB;(t). We fix e>0, ves (0,7 and we choose the functions ¢ and % in (1) so

that ) @@)dt=\ $()ds=v and
oo o 15)
ww) >, fem)ar +§ g(p () ds—e; |
e can assume that the functions ¢ and % are smooth and mutually inverse in the general-
ed sense.
We consider the domain
1 (16)
D_{{:, HJEMIWP!@J<1}-

Let S, (z)={y=M,|(z, y)=D) and S,(y) = {z= M, |(z, yy =D) be sections of the
domain D. Obviously they belong to the families {B;(t)}). By (14) and (16) we have

|8, (2) | =paly = M, | p: () < 9 (p1 (2))} = B2Bs (9 (1 (2))) = @ (p, (2));
mElSi@] >s=mzleE (@) >s)=pm{zlp ) <P () =1y

Consequently, the function |S:(z)| is equimeasurable with ¢ ; analogously, |S,(y) |
is equimeasurable with ¥ . In particular,

D=1, |5:(@)|dm @)= e @ dt=0.
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We note that
10D| <, 1851(2) | dps (2) + §,,, 1953 (v)| dpa 4)
(geometrically this inequality is obvious; the rigorous proof uses Lemma 2 for a special

sequence {F,} and the triangle inequality |VF, | |V.F,| + |V Fal).

Since the sections §; belong to the family ({B;(f)}, one has |aS,| =/f(18.1).
|0S; |=g (| S.1) . Using the equimeasurability of |S,(z)| and |S;(y)| with @ and ¥
respectively, and (15), we get

10D <§; F(o@)dt+; g(w(s) ds <h(w) +e.

| 3. Proof of Theorem 2

We show that for any generalized mutually inverse functions ¢ and ¢ , satisfying
(2), one has

| I=S:f(cp(t))d£ - S:gw(s)}ds:?%ko(v).

where f, g, h, are the functions from the hypothesis of Theorem 2. Let

Q={ta)=ER |0 s 9 (1)

=

We consider all rectangles
Me={ts) IRIOS<E<p, 0<s< g

lying entirely in Q . If for one of them pg > (1/3)v, then
P
 rema>§ r@a=r@p

[, £(v(s))ds > gg (o),
' I>1(0)p+8(0)23 ke (113)0) > (1/3)ho (0)-

The last inequality is valid since the function
ho(v) __ (=) £ (¥
I v *_éﬂi( =t )
| is monotone decreasing.

Let the area of any rectangle II,,CQ not exceed (1/3)v. Since the area of Q is
equal to v, one can find a rectangle I, ,, dividing the domain  into three parts:
Mg (t>p)NKQ {s>q) ) Q2 , vhere the areas of the last two parts are not less than (1/3)v.
In other words,

» § emar>5u | v@d> 5o
4 q
Then
S:H«P(f))dt > 5; L:(‘:)’—’w)m 3*'#5:‘1’(‘)‘“?’—;—%'—:'1.
o : I z(p - 1 "'k"_) 1 »
hn £ () de _I‘Tp - B t'i: =-3_qg(7)'

17 5 (f@+ - g(+)a) =5 ko)

The proof of Theorem 2a, and also of the generalization mentioned in the remarks on
Theorem 2, goes analogously.

We give an example showing that for monotone increasing functions f and g, the function
h(v) cannot be bounded below, in general by h,{(r) (obviously &k (v)<h,(v) always).
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For the sake of some simplification, in the following example the functions f and g wily"
be piecewise-constant (in particular, discontinuous). Let a,=1,a,a,... be a monotone
increasing sequence, which we shall make more precise below. For now we shall only assume
that a,.; >> 2a,. We define the function f(x) for === 1| as follows:

Hle.. a) — 1‘ ”lﬂ,.‘ an e '[ﬂu-l“n' I n: I.
for z<<1 we set !
f(x) =f{/e) (17)

Also let g=/. It follows in an obvious way from (4) and (17) that for v = Lh,(v) =k, |
(1) > 2. At the same time it turns out that Ak (r)=(0. To prove this it suffices to give an
example of a function ¢, having the following properties: .

a) ¢ is its own generalized inverse;
b) §, e()de=o; |

o § Le@)a< .

For t>1,9(f) 1is defined as follows:
i

’
Sns2

'Ph‘u.nn..l)=

and for (< 1,9(f) is defined so as to satisfy a).
It is easy to show that b) and c) will hold if

2:=l ‘::1 = Z:&l l//_'-::< i (18)

Relation (18) holds, for example, for the recursively defined sequence:

Gansy = 203y, Gagia = (2n |- 2)' agen (0 .=0).
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