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Paths and boundary operator

Let V be a finite set. For any p ≥ 0, an elementary p-path is any sequence
i0, ..., ip of p + 1 vertices of V that will be denoted by i0...ip or by ei0...ip .
Fix a field K. A p-path is any formal K-linear combinations of elementary
p-paths, that is, any p-path has a form

v =
∑

i0,i1,...,ip∈V

vi0i1...ip ei0i1...ip , where vi0i1...ip ∈ K.

Denote by Λp = Λp (V ) the K-linear space of all p-paths. Set Λ−1 = {0} .

Definition. For any p ≥ 0, the boundary operator ∂ : Λp → Λp−1 is a
K-linear operator that acts on elementary paths by

∂ei0...ip =

p∑

q=0

(−1)q ei0...îq ...ip
, (1)

where the hat îq means omission of the index iq.

For example, eij ∈ Λ1, eijk ∈ Λ2 and

∂eij = ej − ei, ∂eijk = ejk − eik + eij .
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One can show that ∂2v = 0 for any v ∈ Λp and p ≥ 1. Hence, we
obtain a chain complex Λ∗ (V ):

0← Λ0 ← Λ1 ← ...← Λp−1 ← Λp ← ...

where arrows are given by the boundary operator ∂.

Definition. An elementary p-path ei0...ip is called regular if ik 6= ik+1 for
all k = 0, ..., p − 1, and non-regular otherwise.

For example, eiij is non-regular, while eiji is regular provided i 6= j.
Consider the following subspace of Λp:

Rp ≡ Rp (V ) := spanK
{
ei0...ip : i0...ip is regular

}
,

whose elements are called regular p-paths. We would like to consider ∂
on the spaces Rp. However, ∂ is not invariant on {Rp}. For example,
eiji ∈ R2 for i 6= j while ∂eiji = eji − eii + eij contains a non-regular
component eii and, hence, is not in R1.

To overcome this difficulty, consider the complementary subspace

Np := spanK
{
ei0...ip : i0...ip is non-regular

}
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One can show that ∂Np ⊂ Np−1 so that the boundary operator ∂ is
well-defined on {Np} and hence, on the quotient spaces Λp/Np. Since
Λp = Rp⊕Np and, hence, Rp

∼= Λp/Np, we can define a regular boundary
operator ∂ : Rp → Rp−1 as pullback of ∂ : Λp/Np → Λp−1/Np−1.

For regular ∂, the formula (1)

∂ei0...ip =

p∑

q=0

(−1)q ei0...îq ...ip

should be read as follows: all non-regular paths in the right hand side
are set to be 0.

For example, for non-regular ∂ : Λ2 → Λ1 we have ∂eiji = eji−eii+eij

whereas for regular ∂ : R2 → R1 we have ∂eiji = eji + eij since eii is set
to be zero.

Denote by R∗ (V ) the chain complex

0← R0 ← R1 ← ...← Rp−1 ← Rp ← ...

where all the arrows are given by regular operator ∂. Below we use always
the regular boundary operator ∂.
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Definition. A digraph (directed graph) is a pair G = (V,E) of a set V
of vertices and a set E ⊂ {V × V \ diag} of (directed) edges. The fact
that (i, j) ∈ E is also denoted by i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip
on V is called allowed if ik → ik+1 for any k = 0, ..., p−1, and non-allowed
otherwise.

∙ ∙ ∙

•↘
•

↗
•
↓

∙ ∙ ∙

• → •
↗

V

Consider the following linear space

Ap ≡ Ap (G) = span K

{
ei0...ip : i0...ip is allowed

}
. (2)

Definition. The elements of Ap are called allowed p-paths.

By construction Ap ⊂ Rp but spaces Ap are in general not invariant
for ∂. For example, let eabc be allowed, that is, a → b → c. Then
∂eabc = ebc − eac + eab is not allowed if a 6→ c.
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To fix this problem, consider the following subspace of Ap

Ωp ≡ Ωp (G) := {v ∈ Ap : ∂v ∈ Ap−1} . (3)

Definition. The elements of Ωp are called ∂-invariant p-paths.

Claim. If v ∈ Ωp then ∂v ∈ Ωp−1.
Indeed, v ∈ Ωp implies ∂v ∈ Ap−1 and ∂ (∂v) = 0 ∈ Ap−2, which

implies that ∂v ∈ Ωp−1.
Hence, we obtain a chain complex Ω∗ = Ω∗ (G) :

0← Ω0 ← Ω1 ← ...← Ωp−1 ← Ωp ← Ωp+1 ← ...

Recall that by construction Ωp ⊂ Ap ⊂ Rp. Note also that

Ω0 = A0 = R0 = spanK {ei : i ∈ V } , Ω1 = A1 = spanK {eij : (i, j) ∈ E} .

Definition. Define the path homologies of the digraph G by

Hp(G,K) = Hp (G) := Hp (Ω∗ (G)) = ker ∂|Ωp

/
Im ∂|Ωp+1 .
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It is easy to show that H0 (G) ∼= K if G is connected, but all other
Hp (G) carry non-trivial information about G.

Example. Consider the triangle digraph

↗

2
•↖

0• → •1

Then e012 ∈ Ω2 as e012 ∈ A2 and ∂e012 = e12 − e02 + e01 ∈ A1. In fact,
Ω2 = A2 = span {e012}, Ωp = Ap = {0} ∀p ≥ 3, and Hp = {0} ∀p ≥ 1
(the only closed element in Ω1 is e12 − e02 + e01, which is exact as it is
the boundary of e012; hence H1 = {0}).

Consider the square digraph:

2• −→ •3
↑ ↑

0• −→ •1

For this digraph A2 = span {e013, e023} but neither e013 nor e023 is ∂-
invariant. However, the 2-path v := e013 − e023 is ∂-invariant as

∂v = (e13 − e03 + e01)− (e23 − e03 + e02) = e13 + e01 − e23 − e02 ∈ A1,

In fact, Ω2 = span {v} , Ωp = Ap = {0} ∀p ≥ 3, and Hp = {0} ∀p ≥ 1.
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Consider one more example of a digraph G:

  
 
 
 
 
 
 
 
  

4 

5 

1 

2 

3 1 

2 

3 

4 

5 

= 

A computation shows that H1 (G) = {0} and Hp (G) = {0} for p ≥ 3,
whereas dim H2 (G) = 1 and

H2 (G) = span {e124 + e234 + e314 − (e125 + e235 + e315)} .

It is interesting to observe that G is a planar graph but nevertheless its
second homology group is non-zero.
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Cross product of paths

Given two finite sets X,Y , consider their Cartesian product Z = X × Y.

Definition. A regular elementary path z = z0z1...zr on Z is called
step-like if, for any k = 1, ..., r, the vertices zk−1 and zk have the same
projections either on X or on Y .

Any step-like r-path z on Z determines by projections regular ele-
mentary paths x = x0...xp and y = on X and y = y0...yq on Y , where
p + q = r.

 

xp xi 

yj 

yq 

zk=(xi,yj) 

z0=(x0,y0) 

zr=(xp,yq) 
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Every vertex (xi, yj) of a step-like path z can be represented as a
point (i, j) of Z2 so that the whole path z is represented by a staircase
S (z) in Z2 connecting the points (0, 0) and (p, q).

 

(0,0) 

(p,q) 

(i,j) 

L(z) 

S(z) 

(p,0) 

(0,q) 

Definition. Define the elevation L (z) of the path z as the number of
the cells in Z2

+ below the staircase S (z).
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By definition, any p-path u on X is given by u =
∑

x uxex where x is
any elementary p-paths on X and ux ∈ K. Extend the summation to all
elementary paths x with arbitrary length, by setting ux = 0 if the length
of x is not equal to p.

Definition. For any paths u ∈ Rp (X) and v ∈ Rq (Y ) with p, q ≥ 0
define their cross product u× v as a path on Z by the following rule: for
any step-like elementary path z on Z, the component (u× v)z is defined
by

(u× v)z = (−1)L(z) uxvy, (4)

where x and y are the projections of z onto X and Y , while for the other
paths z set (u× v)z = 0. It follows that u× v ∈ Rp+q (Z) .

For any elementary regular p-path x on X and q-path y on Y with
p, q ≥ 0 denote by Πx,y the set of all step-like paths z on Z whose
projections on X and Y are x and y respectively. It follows from (4)
that, for all regular elementary paths x, y,

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez. (5)
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Example. Denote the vertices of X by letters a, b, c etc and the vertices
of Y by integers 0, 1, 2, etc. The vertices of Z = X × Y will be denoted
as a0, b2, c1, etc, as the fields on the chessboard. For example, we have
ea × e01 = ea0a1, eab × e0 = ea0b0

eab × e01 = ea0b0b1 − ea0a1b1

eabc × e01 = ea0b0c0c1 − ea0b0b1c1 + ea0a1b1c1

eabc×e012 = ea0b0c0c1c2−ea0b0b1c1c2+ea0b0b1b2c2+ea0a1b1c1c2−ea0a1b1b2c2+ea0a1a2b2c2

  

a0 b0 c0 

a1 

a2 

c1 

c2 

b1 

b2 

Proposition 1 (Product rule for cross product) If u ∈ Rp (X) and v ∈
Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) . (6)
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Cartesian product of digraphs

To simplify notation, we denote the set of vertices of a digraph by the
same letter as the digraph itself.

Definition. Cartesian product X�Y of two digraphs X,Y is a digraph
Z with the set of vertices X × Y = {(x, y) : x ∈ X, y ∈ Y } and with the
set of edges as follows: for x, x′ ∈ X and y, y′ ∈ Y ,

(x, y)→ (x′, y′) if either x→ x′ and y = y′ or x = x′ and y → y′.

as is shown on the following diagram:

y′• . . .
(x,y′)
• −→

(x′,y′)
• . . .

↑ ↑ ↑

y• . . .
(x,y)
• −→

(x′,y)
• . . .

Y � X . . . •
x
−→ •

x′
. . .

Clearly, any regular elementary path on Z = X�Y is allowed if and
only if it is step-like and its projections onto X and Y are allowed.
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Proposition 2 Let p, q ≥ 0 and r = p + q.
(a) If u ∈ Ap (X) and v ∈ Aq (Y ) then u× v ∈ Ar (Z) .
(b) If u ∈ Ωp (X) and v ∈ Ωq (Y ) then u× v ∈ Ωr (Z) . Moreover, the

operation u, v 7→ u×v extends to that for the homology classes u ∈ Hp (X)
and v ∈ Hq (Y ) so that u× v ∈ Hr (Z) .

Proof. (a) It suffices to prove this for u = ex and v = ey. By (5)
ex× ey is a linear combination of ez with z ∈ Πx,y. If x and y are allowed
then any z ∈ Πx,y is allowed, which implies that ex × ey ∈ Ar (Z).

(b) We already know that u× v is allowed. Hence, it suffices to prove
that ∂ (u× v) is allowed, which follows from the product rule:

∂ (u× v) = ∂u× v + (−1)p u× ∂v (7)

as the right hand side is allowed by (a) . For the second claim it suffices
to verify two properties. Firstly, if u and v are closed then u×v is closed,
which is obvious from (7). Secondly, if one of u, v is exact then also u×v
is exact: indeed, if, for example, u = ∂w then

∂ (w × v) = ∂w × v + (−1)p+1 w × ∂v = u× v

so that u× v is exact.
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Theorem 3 Let X,Y be two finite digraphs and Z = X�Y. Then we
have the following isomorphism of the chain complexes:

Ω∗ (Z) ∼= Ω∗ (X)⊗ Ω∗ (Y ) , (8)

which is given by the map u⊗v 7→ u×v with u ∈ Ω∗ (X) and v ∈ Ω∗ (Y ).

The right hand side of (8) is the tensor product of the two chain
complexes. More explicitly (8) means that, for any r ≥ 0,

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}
(Ωp (X)⊗ Ωq (Y )) . (9)

Isomorphism (8) and an abstract theorem of Künneth yield

H∗ (Z) ∼= H∗ (X)⊗H∗ (Y ) . (10)

The latter is called the Künneth formula for homologies. The Künneth
formula is known for simplicial and singular homologies of products. For
Cartesian product of digraphs we have a stronger isomorphism (8), which
can be referred to as the Künneth formula for chain complexes. It has
no analogue in algebraic topology.
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Example. Consider the digraph Z = X�Y , where

X = ↗

b
•↘

a• → •c
, Y =

2• −→ •3
↑ ↑

0• −→ •1
.

 

a0 

b0 

c0 

a2 

b2 

c2 

a3 

b3 

c3 

a1 

b1 

c1 

Z = 

For r = 4 we obtain from (9) that

Ω4 (Z) ∼=
⊕

{p,q≥0:p+q=4}
(Ωp (X)⊗ Ωq (Y )) = Ω2 (X)⊗ Ω2 (Y )

because on both digraphs X,Y we have Ωp = {0} for p ≥ 3.
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We know that Ω2 (X) = span (eabc) and Ω2 (Y ) = span (e013 − e023),
whence it follows that Ω4 (Z) is spanned by a singe 4-path

eabc × (e013 − e023) = ea0b0c0c1c3 − ea0b0b1c1c3 + ea0b0b1b3c3

+ea0a1b1c1c3 − ea0a1b1b3c3 + ea0a1a3b3c3

−ea0b0c0c2c3 + ea0b0b2c2c3 − ea0b0b2b3c3

−ea0a2b2c2c3 + ea0a2b2b3c3 − ea0a2a3b3c3.

Similarly one can compute Ωr (Z) for other values of r. For example,

Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y )
⊕

Ω2 (X)⊗ Ω1 (Y ) ,

which implies dim Ω3 (Z) = 3 ∙ 1 + 1 ∙ 4 = 7 and the generators of Ω3 (Z)
are

eab × (e013 − e023) , eac × (e013 − e023) , ebc × (e013 − e023)

eabc × e01, eabc × e13, eabc × e02, eabc × e23

Since all the homology groups of X,Y are trivial except for H0, we obtain
that the same is true for homologies of Z.
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Example. Consider Z = X�Y where X,Y are cyclic digraphs:

X = ↗

b
•↘

a• ← •c
, Y =

1• −→ •2
↑ ↓

0• ←− •3
.

Note that X is not a triangle and Y is not a square.
One can show that all homologies Hp (X) and Hq (Y ) are trivial for

p, q ≥ 2 whereas

H1 (X) = span (eab + ebc + eca)

H1 (Y ) = span (e01 + e12 + e23 + e30) .

It follows from (10) that

H2 (Z) ∼=
⊕

{p,q≥0:p+q=2}
(Hp (X)⊗Hq (Y )) = H1 (X)⊗H1 (Y ) ,

in particular, dim H2 (Z) = 1. The generating element of H2 (Z) is

(eab + ebc + eca)× (e01 + e12 + e23 + e30) .
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For any digraph X, define the cylinder over X by

Cyl X := X� Y with Y =
(
0• → •1

)
.

Assuming that the vertices of X are enumerated by 0, 1, ..., n − 1, let us
enumerate the vertices of Cyl X by 0, 1, ..., 2n− 1 as follows: the vertex
(i, 0) of Cyl X receives the number i, while (i, 1) receives i + n.

For any regular path v on X, the lifted path v̂ on Cyl X by v̂ = v×e01.
For example, if v = ei0...ip then

v̂ = ei0...ip × e01 =

p∑

k=0

(−1)p−k ei0...ik(ik+n)...(ip+n). (11)

 

ip ik i0 

i0+n ik+n ip+n 

Since e01 ∈ Ω1 (Y ), we see that if v ∈ Ωp (X) then v̂ ∈ Ωp+1 (Cyl X).
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Example. Let us define the digraph Cuben inductively: Cube0 = {0}
and

Cuben = Cyl Cuben−1 .

For example, Cube1 is
0• → •1

Cube2 is a square
2• −→ •3

↑ ↑
0• −→ •1

and Cube3 is shown here:

0 1

32

4 5

76
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Since Cuben = Cuben−1×Y , where Ωq (Y ) is non-trivial only for
q = 0, 1, and Ωn (Cuben−1) = {0}, we obtain from (9)

Ωn (Cuben) ∼= Ωn−1 (Cuben−1)⊗ Ω1 (Y ) .

Since Ω1 (Y ) is generated by a single element v1 = e01, we obtain by in-
duction that dim Ωn (Cuben) = 1. A generating element vn of Ωn (Cuben)
can be computed inductively by

vn = vn−1 × e01 = v̂n−1.

By (11) we obtain successively

v2 = v̂1 = e013 − e023,
v3 = v̂2 = e0457 − e0157 + e0137 − e0467 + e0267 − e0237,

...

...

0 1

32

4 5

76

In general, vn is an alternating sum of n! elementary paths that cor-
respond to partitioning of a solid n-cube into n! simplexes.

By (10) all homology groups of Cuben are trivial except for H0.
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Sketch of proof of Theorem 3. The main difficulty is to show
that each ∂-invariant path w on Z = X�Y can be represented as a linear
combination of the products u× v where u is ∂-invariant on X and v is
∂-invariant on Y .

For any r ≥ 0 consider the space

Ω̃r (Z) = span {u× v : u ∈ Ωp (X) , v ∈ Ωq (Y ) , p + q = r}

By Proposition 2 we have Ω̃r (Z) ⊂ Ωr (Z), but we have to prove the
opposite inclusion. It suffices to prove that

dim Ωr (Z) ≤ dim Ω̃r (Z) .

In the next argument we take K = R (a general field K requires a more
complicated argument). Consider the space

Ãr (Z) = span {u× v : u ∈ Ap (X) , v ∈ Aq (Y ) , p + q = r} .

By Proposition 2 we have Ãr (Z) ⊂ Ar (Z) .
We prove separately, that any element from Ωr (Z) is a linear combi-

nation of ex × ey with allowed x, y, which implies

Ωr (Z) ⊂ Ãr (Z) . (12)
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If digraphs X,Y are such that Ωp (X) = Ap (X) and Ωq (Y ) = Aq (Y )

for all p, q ≥ 0 then also Ω̃r (Z) = Ãr (Z). Substitution into (12) yields

Ωr (Z) ⊂ Ω̃r (Z), which finishes the proof in this case. However, the main
difficulty lies in the fact that in general Ωp $ Ap.

In the general case we use the inner product for regular paths u, v on
a digraph:

[u, v] =
∑

x

uxvx,

for which we need K = R. We prove that if u, u′ are allowed paths on X
and v, v′ are allowed paths on Y then

[u× v, u′ × v′] = C [u, u′] [v, v′] , (13)

where C is a constant depending on the lengths of the paths.
Define the following subspaces:

Ω⊥
p (X) – the orthogonal complement of Ωp (X) in Ap (X).

Ω⊥
q (Y ) – the orthogonal complement of Ωq (Y ) in Aq (Y ).

Ω⊥
r (Z) – the orthogonal complement of Ωr (Z) in Ãr (Z) .
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We use (13) in order to prove that, for p + q = r,

u ∈ Ω⊥
p (X) , v ∈ Aq (Y ) ⇒ u× v ∈ Ω⊥

r (Z) ,
u ∈ Ap (X) , v ∈ Ω⊥

q (Y ) ⇒ u× v ∈ Ω⊥
r (Z) ,

(14)

Since
Ap (X) = Ωp (X)⊕ Ω⊥

p (X) ,

any u ∈ Ap (X) admits a decomposition u = uΩ +u⊥ where uΩ ∈ Ωp (X)
and u⊥ ∈ Ω⊥

p (X). Using also a similar decomposition v = vΩ + v⊥ for
v ∈ Aq (Y ), we obtain

u× v = uΩ × vΩ + uΩ × v⊥ + u⊥ × vΩ + u⊥ × v⊥.

where uΩ × vΩ ∈ Ω̃r (Z), while by (14) all other terms in the right hand
side belong to Ω⊥

r (Z). It follows that

u × v ∈ Ω̃r (Z) + Ω⊥
r (Z) .

Since Ãr (Z) is spanned by the products u × v where u, v are allowed,
we obtain that

Ãr (Z) ⊂ Ω̃r (Z) + Ω⊥
r (Z) .
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Comparing with the decomposition

Ãr (Z) = Ωr (Z)⊕ Ω⊥
r (Z) ,

we obtain dim Ωr (Z) ≤ dim Ω̃r (Z), which was to be proved.
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