Homologies of digraphs and the Künneth formula

Alexander Grigor'yan

Tsinghua University, October 9, 2015
Based on a joint work with Yong Lin, Yuri Muranov and Shing-Tung Yau

Paths and boundary operator

Let V be a finite set. For any $p \geq 0$, an elementary p-path is any sequence i_{0}, \ldots, i_{p} of $p+1$ vertices of V that will be denoted by $i_{0} \ldots i_{p}$ or by $e_{i_{0} \ldots i_{p}}$. Fix a field \mathbb{K}. A p-path is any formal \mathbb{K}-linear combinations of elementary p-paths, that is, any p-path has a form

$$
v=\sum_{i_{0}, i_{1}, \ldots, i_{p} \in V} v^{i_{0} i_{1} \ldots i_{p}} e_{i_{0} i_{1} \ldots i_{p}}, \quad \text { where } \quad v^{i_{0} i_{1} \ldots i_{p}} \in \mathbb{K}
$$

Denote by $\Lambda_{p}=\Lambda_{p}(V)$ the \mathbb{K}-linear space of all p-paths. Set $\Lambda_{-1}=\{0\}$. Definition. For any $p \geq 0$, the boundary operator $\partial: \Lambda_{p} \rightarrow \Lambda_{p-1}$ is a \mathbb{K}-linear operator that acts on elementary paths by

$$
\begin{equation*}
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \hat{i_{q} \ldots i_{p}}}, \tag{1}
\end{equation*}
$$

where the hat $\widehat{i_{q}}$ means omission of the index i_{q}.
For example, $e_{i j} \in \Lambda_{1}, e_{i j k} \in \Lambda_{2}$ and

$$
\partial e_{i j}=e_{j}-e_{i}, \quad \partial e_{i j k}=e_{j k}-e_{i k}+e_{i j}
$$

One can show that $\partial^{2} v=0$ for any $v \in \Lambda_{p}$ and $p \geq 1$. Hence, we obtain a chain complex $\Lambda_{*}(V)$:

$$
0 \leftarrow \Lambda_{0} \leftarrow \Lambda_{1} \leftarrow \ldots \leftarrow \Lambda_{p-1} \leftarrow \Lambda_{p} \leftarrow \ldots
$$

where arrows are given by the boundary operator ∂.
Definition. An elementary p-path $e_{i_{0} \ldots i_{p}}$ is called regular if $i_{k} \neq i_{k+1}$ for all $k=0, \ldots, p-1$, and non-regular otherwise.

For example, $e_{i i j}$ is non-regular, while $e_{i j i}$ is regular provided $i \neq j$.
Consider the following subspace of Λ_{p} :

$$
\mathcal{R}_{p} \equiv \mathcal{R}_{p}(V):=\operatorname{span}_{\mathbb{K}}\left\{e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is regular }\right\}
$$

whose elements are called regular p-paths. We would like to consider ∂ on the spaces \mathcal{R}_{p}. However, ∂ is not invariant on $\left\{\mathcal{R}_{p}\right\}$. For example, $e_{i j i} \in \mathcal{R}_{2}$ for $i \neq j$ while $\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}$ contains a non-regular component $e_{i i}$ and, hence, is not in \mathcal{R}_{1}.

To overcome this difficulty, consider the complementary subspace

$$
N_{p}:=\operatorname{span}_{\mathbb{K}}\left\{e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is non-regular }\right\}
$$

One can show that $\partial N_{p} \subset N_{p-1}$ so that the boundary operator ∂ is well-defined on $\left\{N_{p}\right\}$ and hence, on the quotient spaces Λ_{p} / N_{p}. Since $\Lambda_{p}=\mathcal{R}_{p} \oplus N_{p}$ and, hence, $\mathcal{R}_{p} \cong \Lambda_{p} / N_{p}$, we can define a regular boundary operator $\partial: \mathcal{R}_{p} \rightarrow \mathcal{R}_{p-1}$ as pullback of $\partial: \Lambda_{p} / N_{p} \rightarrow \Lambda_{p-1} / N_{p-1}$.

For regular ∂, the formula (1)

$$
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \hat{q_{q} \ldots i_{p}}}
$$

should be read as follows: all non-regular paths in the right hand side are set to be 0 .

For example, for non-regular $\partial: \Lambda_{2} \rightarrow \Lambda_{1}$ we have $\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}$ whereas for regular $\partial: \mathcal{R}_{2} \rightarrow \mathcal{R}_{1}$ we have $\partial e_{i j i}=e_{j i}+e_{i j}$ since $e_{i i}$ is set to be zero.

Denote by $\mathcal{R}_{*}(V)$ the chain complex

$$
0 \leftarrow \mathcal{R}_{0} \leftarrow \mathcal{R}_{1} \leftarrow \ldots \leftarrow \mathcal{R}_{p-1} \leftarrow \mathcal{R}_{p} \leftarrow \ldots
$$

where all the arrows are given by regular operator ∂. Below we use always the regular boundary operator ∂.

Definition. A digraph (directed graph) is a pair $G=(V, E)$ of a set V of vertices and a set $E \subset\{V \times V \backslash \operatorname{diag}\}$ of (directed) edges. The fact that $(i, j) \in E$ is also denoted by $i \rightarrow j$.

Definition. Let $G=(V, E)$ be a digraph. An elementary p-path $i_{0} \ldots i_{p}$ on V is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \ldots, p-1$, and non-allowed otherwise.

Consider the following linear space

$$
\begin{equation*}
\mathcal{A}_{p} \equiv \mathcal{A}_{p}(G)=\operatorname{span}_{\mathbb{K}}\left\{e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is allowed }\right\} \tag{2}
\end{equation*}
$$

Definition. The elements of \mathcal{A}_{p} are called allowed p-paths.
By construction $\mathcal{A}_{p} \subset \mathcal{R}_{p}$ but spaces \mathcal{A}_{p} are in general not invariant for ∂. For example, let $e_{a b c}$ be allowed, that is, $a \rightarrow b \rightarrow c$. Then $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b}$ is not allowed if $a \nrightarrow c$.

To fix this problem, consider the following subspace of \mathcal{A}_{p}

$$
\begin{equation*}
\Omega_{p} \equiv \Omega_{p}(G):=\left\{v \in \mathcal{A}_{p}: \partial v \in \mathcal{A}_{p-1}\right\} \tag{3}
\end{equation*}
$$

Definition. The elements of Ω_{p} are called ∂-invariant p-paths.
Claim. If $v \in \Omega_{p}$ then $\partial v \in \Omega_{p-1}$.
Indeed, $v \in \Omega_{p}$ implies $\partial v \in \mathcal{A}_{p-1}$ and $\partial(\partial v)=0 \in \mathcal{A}_{p-2}$, which implies that $\partial v \in \Omega_{p-1}$.

Hence, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G)$:

$$
0 \leftarrow \Omega_{0} \leftarrow \Omega_{1} \leftarrow \ldots \leftarrow \Omega_{p-1} \leftarrow \Omega_{p} \leftarrow \Omega_{p+1} \leftarrow \ldots
$$

Recall that by construction $\Omega_{p} \subset \mathcal{A}_{p} \subset \mathcal{R}_{p}$. Note also that
$\Omega_{0}=\mathcal{A}_{0}=\mathcal{R}_{0}=\operatorname{span}_{\mathbb{K}}\left\{e_{i}: i \in V\right\}, \quad \Omega_{1}=\mathcal{A}_{1}=\operatorname{span}_{\mathbb{K}}\left\{e_{i j}:(i, j) \in E\right\}$.
Definition. Define the path homologies of the digraph G by

$$
H_{p}(G, \mathbb{K})=H_{p}(G):=H_{p}\left(\Omega_{*}(G)\right)=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}} .
$$

It is easy to show that $H_{0}(G) \cong \mathbb{K}$ if G is connected, but all other $H_{p}(G)$ carry non-trivial information about G.
Example. Consider the triangle digraph

Then $e_{012} \in \Omega_{2}$ as $e_{012} \in \mathcal{A}_{2}$ and $\partial e_{012}=e_{12}-e_{02}+e_{01} \in \mathcal{A}_{1}$. In fact, $\Omega_{2}=\mathcal{A}_{2}=\operatorname{span}\left\{e_{012}\right\}, \Omega_{p}=\mathcal{A}_{p}=\{0\} \forall p \geq 3$, and $H_{p}=\{0\} \forall p \geq 1$ (the only closed element in Ω_{1} is $e_{12}-e_{02}+e_{01}$, which is exact as it is the boundary of e_{012}; hence $H_{1}=\{0\}$).

Consider the square digraph:

For this digraph $\mathcal{A}_{2}=\operatorname{span}\left\{e_{013}, e_{023}\right\}$ but neither e_{013} nor e_{023} is ∂ invariant. However, the 2-path $v:=e_{013}-e_{023}$ is ∂-invariant as

$$
\partial v=\left(e_{13}-e_{03}+e_{01}\right)-\left(e_{23}-e_{03}+e_{02}\right)=e_{13}+e_{01}-e_{23}-e_{02} \in \mathcal{A}_{1},
$$

In fact, $\Omega_{2}=\operatorname{span}\{v\}, \Omega_{p}=\mathcal{A}_{p}=\{0\} \forall p \geq 3$, and $H_{p}=\{0\} \forall p \geq 1$.

Consider one more example of a digraph G :

A computation shows that $H_{1}(G)=\{0\}$ and $H_{p}(G)=\{0\}$ for $p \geq 3$, whereas $\operatorname{dim} H_{2}(G)=1$ and

$$
H_{2}(G)=\operatorname{span}\left\{e_{124}+e_{234}+e_{314}-\left(e_{125}+e_{235}+e_{315}\right)\right\} .
$$

It is interesting to observe that G is a planar graph but nevertheless its second homology group is non-zero.

Cross product of paths

Given two finite sets X, Y, consider their Cartesian product $Z=X \times Y$. Definition. A regular elementary path $z=z_{0} z_{1} \ldots z_{r}$ on Z is called step-like if, for any $k=1, \ldots, r$, the vertices z_{k-1} and z_{k} have the same projections either on X or on Y.

Any step-like r-path z on Z determines by projections regular elementary paths $x=x_{0} \ldots x_{p}$ and $y=$ on X and $y=y_{0} \ldots y_{q}$ on Y, where $p+q=r$.

Every vertex $\left(x_{i}, y_{j}\right)$ of a step-like path z can be represented as a point (i, j) of \mathbb{Z}^{2} so that the whole path z is represented by a staircase $S(z)$ in \mathbb{Z}^{2} connecting the points $(0,0)$ and (p, q).

Definition. Define the elevation $L(z)$ of the path z as the number of the cells in \mathbb{Z}_{+}^{2} below the staircase $S(z)$.

By definition, any p-path u on X is given by $u=\sum_{x} u^{x} e_{x}$ where x is any elementary p-paths on X and $u^{x} \in \mathbb{K}$. Extend the summation to all elementary paths x with arbitrary length, by setting $u^{x}=0$ if the length of x is not equal to p.
Definition. For any paths $u \in \mathcal{R}_{p}(X)$ and $v \in \mathcal{R}_{q}(Y)$ with $p, q \geq 0$ define their cross product $u \times v$ as a path on Z by the following rule: for any step-like elementary path z on Z, the component $(u \times v)^{z}$ is defined by

$$
\begin{equation*}
(u \times v)^{z}=(-1)^{L(z)} u^{x} v^{y}, \tag{4}
\end{equation*}
$$

where x and y are the projections of z onto X and Y, while for the other paths z set $(u \times v)^{z}=0$. It follows that $u \times v \in \mathcal{R}_{p+q}(Z)$.

For any elementary regular p-path x on X and q-path y on Y with $p, q \geq 0$ denote by $\Pi_{x, y}$ the set of all step-like paths z on Z whose projections on X and Y are x and y respectively. It follows from (4) that, for all regular elementary paths x, y,

$$
\begin{equation*}
e_{x} \times e_{y}=\sum_{z \in \Pi_{x, y}}(-1)^{L(z)} e_{z} . \tag{5}
\end{equation*}
$$

Example. Denote the vertices of X by letters a, b, c etc and the vertices of Y by integers $0,1,2$, etc. The vertices of $Z=X \times Y$ will be denoted as $a 0, b 2, c 1$, etc, as the fields on the chessboard. For example, we have $e_{a} \times e_{01}=e_{a 0 a 1}, \quad e_{a b} \times e_{0}=e_{a 0 b 0}$
$e_{a b} \times e_{01}=e_{a 0 b 0 b 1}-e_{a 0 a 1 b 1}$
$e_{a b c} \times e_{01}=e_{a 0 b 0 c 0 c 1}-e_{a 0 b 0 b 1 c 1}+e_{a 0 a 1 b 1 c 1}$
$e_{a b c} \times e_{012}=e_{a 0 b 0 c 0 c 1 c 2}-e_{a 0 b 0 b 1 c 1 c 2}+e_{a 0 b 0 b 1 b 2 c 2}+e_{a 0 a 1 b 1 c 1 c 2}-e_{a 0 a 1 b 1 b 2 c 2}+e_{a 0 a 1 a 2 b 2 c 2}$

Proposition 1 (Product rule for cross product) If $u \in \mathcal{R}_{p}(X)$ and $v \in$ $\mathcal{R}_{q}(Y)$ where $p, q \geq 0$, then

$$
\begin{equation*}
\partial(u \times v)=(\partial u) \times v+(-1)^{p} u \times(\partial v) . \tag{6}
\end{equation*}
$$

Cartesian product of digraphs

To simplify notation, we denote the set of vertices of a digraph by the same letter as the digraph itself.
Definition. Cartesian product $X \square Y$ of two digraphs X, Y is a digraph Z with the set of vertices $X \times Y=\{(x, y): x \in X, y \in Y\}$ and with the set of edges as follows: for $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$,

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \text { if either } x \rightarrow x^{\prime} \text { and } y=y^{\prime} \text { or } x=x^{\prime} \text { and } y \rightarrow y^{\prime} .
$$

as is shown on the following diagram:

Clearly, any regular elementary path on $Z=X \square Y$ is allowed if and only if it is step-like and its projections onto X and Y are allowed.

Proposition 2 Let $p, q \geq 0$ and $r=p+q$.
(a) If $u \in \mathcal{A}_{p}(X)$ and $v \in \mathcal{A}_{q}(Y)$ then $u \times v \in \mathcal{A}_{r}(Z)$.
(b) If $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ then $u \times v \in \Omega_{r}(Z)$. Moreover, the operation $u, v \mapsto u \times v$ extends to that for the homology classes $u \in H_{p}(X)$ and $v \in H_{q}(Y)$ so that $u \times v \in H_{r}(Z)$.

Proof. (a) It suffices to prove this for $u=e_{x}$ and $v=e_{y}$. By (5) $e_{x} \times e_{y}$ is a linear combination of e_{z} with $z \in \Pi_{x, y}$. If x and y are allowed then any $z \in \Pi_{x, y}$ is allowed, which implies that $e_{x} \times e_{y} \in \mathcal{A}_{r}(Z)$.
(b) We already know that $u \times v$ is allowed. Hence, it suffices to prove that $\partial(u \times v)$ is allowed, which follows from the product rule:

$$
\begin{equation*}
\partial(u \times v)=\partial u \times v+(-1)^{p} u \times \partial v \tag{7}
\end{equation*}
$$

as the right hand side is allowed by (a). For the second claim it suffices to verify two properties. Firstly, if u and v are closed then $u \times v$ is closed, which is obvious from (7). Secondly, if one of u, v is exact then also $u \times v$ is exact: indeed, if, for example, $u=\partial w$ then

$$
\partial(w \times v)=\partial w \times v+(-1)^{p+1} w \times \partial v=u \times v
$$

so that $u \times v$ is exact.

Theorem 3 Let X, Y be two finite digraphs and $Z=X \square Y$. Then we have the following isomorphism of the chain complexes:

$$
\begin{equation*}
\Omega_{*}(Z) \cong \Omega_{*}(X) \otimes \Omega_{*}(Y) \tag{8}
\end{equation*}
$$

which is given by the map $u \otimes v \mapsto u \times v$ with $u \in \Omega_{*}(X)$ and $v \in \Omega_{*}(Y)$.
The right hand side of (8) is the tensor product of the two chain complexes. More explicitly (8) means that, for any $r \geq 0$,

$$
\begin{equation*}
\Omega_{r}(Z) \cong \bigoplus_{\{p, q \geq 0: p+q=r\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right) \tag{9}
\end{equation*}
$$

Isomorphism (8) and an abstract theorem of Künneth yield

$$
\begin{equation*}
H_{*}(Z) \cong H_{*}(X) \otimes H_{*}(Y) \tag{10}
\end{equation*}
$$

The latter is called the Künneth formula for homologies. The Künneth formula is known for simplicial and singular homologies of products. For Cartesian product of digraphs we have a stronger isomorphism (8), which can be referred to as the Künneth formula for chain complexes. It has no analogue in algebraic topology.

Example. Consider the digraph $Z=X \square Y$, where

For $r=4$ we obtain from (9) that

$$
\Omega_{4}(Z) \cong \bigoplus_{\{p, q \geq 0: p+q=4\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right)=\Omega_{2}(X) \otimes \Omega_{2}(Y)
$$

because on both digraphs X, Y we have $\Omega_{p}=\{0\}$ for $p \geq 3$.

We know that $\Omega_{2}(X)=\operatorname{span}\left(e_{a b c}\right)$ and $\Omega_{2}(Y)=\operatorname{span}\left(e_{013}-e_{023}\right)$, whence it follows that $\Omega_{4}(Z)$ is spanned by a singe 4 -path

$$
\begin{aligned}
& e_{a b c} \times\left(e_{013}-e_{023}\right)=e_{a 0 b 0 c 0 c 1 c 3}-e_{a 0 b 0 b 1 c 1 c 3}+e_{a 0 b 0 b 1 b 3 c 3} \\
& +e_{a 0 a 1 b 1 c 1 c 3}-e_{a 0 a 1 b 1 b 3 c 3}+e_{a 0 a 1 a 3 b 3 c 3} \\
& -e_{a 0 b 0 c 0 c 2 c 3}+e_{a 0 b 0 b 2 c 2 c 3}-e_{a 0 b 0 b 2 b 3 c 3} \\
& -e_{a 0 a 2 b 2 c 2 c 3}+e_{a 0 a 2 b 2 b 3 c 3}-e_{a 0 a 2 a 3 b 3 c 3} .
\end{aligned}
$$

Similarly one can compute $\Omega_{r}(Z)$ for other values of r. For example,

$$
\Omega_{3}(Z) \cong \Omega_{1}(X) \otimes \Omega_{2}(Y) \bigoplus \Omega_{2}(X) \otimes \Omega_{1}(Y)
$$

which implies $\operatorname{dim} \Omega_{3}(Z)=3 \cdot 1+1 \cdot 4=7$ and the generators of $\Omega_{3}(Z)$ are

$$
\begin{aligned}
& e_{a b} \times\left(e_{013}-e_{023}\right), e_{a c} \times\left(e_{013}-e_{023}\right), e_{b c} \times\left(e_{013}-e_{023}\right) \\
& e_{a b c} \times e_{01}, e_{a b c} \times e_{13}, e_{a b c} \times e_{02}, e_{a b c} \times e_{23}
\end{aligned}
$$

Since all the homology groups of X, Y are trivial except for H_{0}, we obtain that the same is true for homologies of Z.

Example. Consider $Z=X \square Y$ where X, Y are cyclic digraphs:

Note that X is not a triangle and Y is not a square.
One can show that all homologies $H_{p}(X)$ and $H_{q}(Y)$ are trivial for $p, q \geq 2$ whereas

$$
\begin{aligned}
H_{1}(X) & =\operatorname{span}\left(e_{a b}+e_{b c}+e_{c a}\right) \\
H_{1}(Y) & =\operatorname{span}\left(e_{01}+e_{12}+e_{23}+e_{30}\right)
\end{aligned}
$$

It follows from (10) that

$$
H_{2}(Z) \cong \bigoplus_{\{p, q \geq 0: p+q=2\}}\left(H_{p}(X) \otimes H_{q}(Y)\right)=H_{1}(X) \otimes H_{1}(Y)
$$

in particular, $\operatorname{dim} H_{2}(Z)=1$. The generating element of $H_{2}(Z)$ is

$$
\left(e_{a b}+e_{b c}+e_{c a}\right) \times\left(e_{01}+e_{12}+e_{23}+e_{30}\right) .
$$

For any digraph X, define the cylinder over X by

$$
\mathrm{Cyl} X:=X \square Y \text { with } Y=\left({ }^{0} \bullet \rightarrow \bullet^{1}\right) .
$$

Assuming that the vertices of X are enumerated by $0,1, \ldots, n-1$, let us enumerate the vertices of Cyl X by $0,1, \ldots, 2 n-1$ as follows: the vertex $(i, 0)$ of $\mathrm{Cyl} X$ receives the number i, while $(i, 1)$ receives $i+n$.

For any regular path v on X, the lifted path \widehat{v} on $\operatorname{Cyl} X$ by $\widehat{v}=v \times e_{01}$. For example, if $v=e_{i_{0} \ldots i_{p}}$ then

$$
\begin{equation*}
\widehat{v}=e_{i_{0} \ldots i_{p}} \times e_{01}=\sum_{k=0}^{p}(-1)^{p-k} e_{i_{0} \ldots i_{k}\left(i_{k}+n\right) \ldots\left(i_{p}+n\right)} \tag{11}
\end{equation*}
$$

Since $e_{01} \in \Omega_{1}(Y)$, we see that if $v \in \Omega_{p}(X)$ then $\widehat{v} \in \Omega_{p+1}(\mathrm{Cyl} X)$.

Example. Let us define the digraph Cube $_{n}$ inductively: Cube $_{0}=\{0\}$ and

$$
\text { Cube }_{n}=\text { Cyl Cube }_{n-1} .
$$

For example, Cube $_{1}$ is

Cube_{2} is a square

and Cube_{3} is shown here:

Since Cube ${ }_{n}=$ Cube $_{n-1} \times Y$, where $\Omega_{q}(Y)$ is non-trivial only for $q=0,1$, and $\Omega_{n}\left(\operatorname{Cube}_{n-1}\right)=\{0\}$, we obtain from (9)

$$
\Omega_{n}\left(\text { Cube }_{n}\right) \cong \Omega_{n-1}\left(\operatorname{Cube}_{n-1}\right) \otimes \Omega_{1}(Y)
$$

Since $\Omega_{1}(Y)$ is generated by a single element $v_{1}=e_{01}$, we obtain by induction that $\operatorname{dim} \Omega_{n}\left(\right.$ Cube $\left._{n}\right)=1$. A generating element v_{n} of $\Omega_{n}\left(\mathrm{Cube}_{n}\right)$ can be computed inductively by

$$
v_{n}=v_{n-1} \times e_{01}=\widehat{v_{n-1}} .
$$

By (11) we obtain successively

$$
\begin{aligned}
& v_{2}=\widehat{v_{1}}=e_{013}-e_{023}, \\
& v_{3}=\widehat{v_{2}}=e_{0457}-e_{0157}+e_{0137}-e_{0467}+e_{0267}-e_{0237},
\end{aligned}
$$

In general, v_{n} is an alternating sum of n ! elementary paths that correspond to partitioning of a solid n-cube into n ! simplexes.

By (10) all homology groups of Cube $_{n}$ are trivial except for H_{0}.

Sketch of proof of Theorem 3. The main difficulty is to show that each ∂-invariant path w on $Z=X \square Y$ can be represented as a linear combination of the products $u \times v$ where u is ∂-invariant on X and v is ∂-invariant on Y.

For any $r \geq 0$ consider the space

$$
\widetilde{\Omega}_{r}(Z)=\operatorname{span}\left\{u \times v: u \in \Omega_{p}(X), v \in \Omega_{q}(Y), p+q=r\right\}
$$

By Proposition 2 we have $\widetilde{\Omega}_{r}(Z) \subset \Omega_{r}(Z)$, but we have to prove the opposite inclusion. It suffices to prove that

$$
\operatorname{dim} \Omega_{r}(Z) \leq \operatorname{dim} \widetilde{\Omega}_{r}(Z)
$$

In the next argument we take $\mathbb{K}=\mathbb{R}$ (a general field \mathbb{K} requires a more complicated argument). Consider the space

$$
\widetilde{\mathcal{A}}_{r}(Z)=\operatorname{span}\left\{u \times v: u \in \mathcal{A}_{p}(X), v \in \mathcal{A}_{q}(Y), p+q=r\right\} .
$$

By Proposition 2 we have $\widetilde{\mathcal{A}}_{r}(Z) \subset \mathcal{A}_{r}(Z)$.
We prove separately, that any element from $\Omega_{r}(Z)$ is a linear combination of $e_{x} \times e_{y}$ with allowed x, y, which implies

$$
\begin{equation*}
\Omega_{r}(Z) \subset \widetilde{\mathcal{A}}_{r}(Z) \tag{12}
\end{equation*}
$$

If digraphs X, Y are such that $\Omega_{p}(X)=\mathcal{A}_{p}(X)$ and $\Omega_{q}(Y)=\mathcal{A}_{q}(Y)$ for all $p, q \geq 0$ then also $\widetilde{\Omega}_{r}(Z)=\widetilde{\mathcal{A}}_{r}(Z)$. Substitution into (12) yields $\Omega_{r}(Z) \subset \widetilde{\Omega}_{r}(Z)$, which finishes the proof in this case. However, the main difficulty lies in the fact that in general $\Omega_{p} \varsubsetneqq \mathcal{A}_{p}$.

In the general case we use the inner product for regular paths u, v on a digraph:

$$
[u, v]=\sum_{x} u^{x} v^{x}
$$

for which we need $\mathbb{K}=\mathbb{R}$. We prove that if u, u^{\prime} are allowed paths on X and v, v^{\prime} are allowed paths on Y then

$$
\begin{equation*}
\left[u \times v, u^{\prime} \times v^{\prime}\right]=C\left[u, u^{\prime}\right]\left[v, v^{\prime}\right] \tag{13}
\end{equation*}
$$

where C is a constant depending on the lengths of the paths.
Define the following subspaces:

$$
\begin{aligned}
& \Omega_{p}^{\perp}(X) \text { - the orthogonal complement of } \Omega_{p}(X) \text { in } \mathcal{A}_{p}(X) . \\
& \Omega_{q}^{\perp}(Y) \text { - the orthogonal complement of } \Omega_{q}(Y) \text { in } \mathcal{A}_{q}(Y) . \\
& \Omega_{r}^{\perp}(Z) \text { - the orthogonal complement of } \Omega_{r}(Z) \text { in } \widetilde{\mathcal{A}}_{r}(Z) .
\end{aligned}
$$

We use (13) in order to prove that, for $p+q=r$,

$$
\begin{array}{ll}
u \in \Omega_{p}^{\perp}(X), & v \in \mathcal{A}_{q}(Y) \Rightarrow u \times v \in \Omega_{r}^{\perp}(Z) \\
u \in \mathcal{A}_{p}(X), & v \in \Omega_{q}^{\perp}(Y) \Rightarrow u \times v \in \Omega_{r}^{\perp}(Z) \tag{14}
\end{array}
$$

Since

$$
\mathcal{A}_{p}(X)=\Omega_{p}(X) \oplus \Omega_{p}^{\perp}(X)
$$

any $u \in \mathcal{A}_{p}(X)$ admits a decomposition $u=u_{\Omega}+u_{\perp}$ where $u_{\Omega} \in \Omega_{p}(X)$ and $u_{\perp} \in \Omega_{p}^{\perp}(X)$. Using also a similar decomposition $v=v_{\Omega}+v_{\perp}$ for $v \in \mathcal{A}_{q}(Y)$, we obtain

$$
u \times v=u_{\Omega} \times v_{\Omega}+u_{\Omega} \times v_{\perp}+u_{\perp} \times v_{\Omega}+u_{\perp} \times v_{\perp}
$$

where $u_{\Omega} \times v_{\Omega} \in \widetilde{\Omega}_{r}(Z)$, while by (14) all other terms in the right hand side belong to $\Omega_{r}^{\perp}(Z)$. It follows that

$$
u \times v \in \widetilde{\Omega}_{r}(Z)+\Omega_{r}^{\perp}(Z)
$$

Since $\widetilde{\mathcal{A}}_{r}(Z)$ is spanned by the products $u \times v$ where u, v are allowed, we obtain that

$$
\widetilde{\mathcal{A}}_{r}(Z) \subset \widetilde{\Omega}_{r}(Z)+\Omega_{r}^{\perp}(Z)
$$

Comparing with the decomposition

$$
\widetilde{\mathcal{A}}_{r}(Z)=\Omega_{r}(Z) \oplus \Omega_{r}^{\perp}(Z),
$$

we obtain $\operatorname{dim} \Omega_{r}(Z) \leq \operatorname{dim} \widetilde{\Omega}_{r}(Z)$, which was to be proved.

