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INTRODUCTION

The education of the mathematics major begins with the study
of three basic disciplines: mathematical analysis, analytic geo-
metry and higher algebra. These disciplines have a number of points
of contact, some of which overlap; together they constitute the
foundation upon which rests the whole edifice of modern mathema-
tical science.

Higher algebra—the subject of this text—is a far-reaching
and natural generalization of the basic school course of elementary
algebra. Central to elementary algebra is without doubt the problem
of solving equations. The study of equations begins with the very
simple case of one equation of the first degree in one unknown.
From there on, the development proceeds in two directions: to
systems of two and three equations of the first degree in two and,
respectively, three unknowns, and to a single quadratic equation
in one unknown and also to a few special types of higher-degree
equations which readily reduce to quadratic equations (quartic
equations, for example).

Both trends are further developed in the course of higher algebra,
thus determining its two large areas of study. One—the foundations
of linear algebra—starts with the study of arbitrary systems of
equations of the first degree (linear equations). When the number
of equations equals the pumber of unknowns, solutions of such
systems are obtained by means of the theory of determinants. Howe-
ver, the theory proves insufficient when studying systems of linear
equations in which the number of equations is not equal to the
number of unknowns. This is a novel feature from the standpoint
of elementary algebra, but it is very important in practical appli-
cations. This stimulated the development of the theory of matrices,
which are systems of numbers arranged in square or rectangular
arrays made up of rows and columns. Matrix theory proved to be
very deep and has found application far beyond the limits of the
theory of systems of linear equations. On the other hand, investiga-
tions into systems of linear equations gave rise to multidimensional
(so-called vector or linear) spaces. Ta the nonmathematician, mul-
tidimensional space (four-dimensional, to begin with) is a nebulous
and often confusing concept. Actually, however, the notion is
a strictly mathematical one, mainly algebraic, and serves as an
important tool in a variety of mathematical investigations and
also in physics.

The second half of the course of higher algebra, called the algebra
of polynomials, is devoted to the study of a single equation in one
unknown but of arbitrary degree. Since there is a formula for solving
quadratic equations, it was natural to seek similar formulas for
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higher-degree equations. That is precisely how this division of
algebra developed historically. Formulas for solving equations
of third and fourth degree were found in the sixteenth century.
The search was then on for formulas capable of expressing the roots
of equations of fifth and higher degree in terms -of the coefficients
of the equations by means of radicals, even radicals within radicals.
It was futile, though it continued up to the beginning of the nine-
teenth century, when it was proved that no such formulas exist
and that for all degrees beyond the fourth there even exist specific
examples of equations with integral coefficients whose roots cannot
be written down by means of radicals.

One should not be saddened by this absence of formulas for
solving equations of higher degrees, for even in the case of third
and fourth degree equations, where such formulas exist, computa-
tions are extremely involved and, in a practical sense, almost useless.
On the other hand, the coefficients of equations one encounters in
physics and engineering are usually quantities obtained in measu-
rements. These are approximations and therefore the roots need
only be known approximately, to within a specified accuracy. This
led to the elaboration of a variety of methods of approximate solu-
tion of equations; only.the most elementary methods are given
in the course of higher algebra.

However, in the algebra of polynomials the main thing is not
the problem of finding the roots of equations, but the problem of
their existence. For example, we even know of quadratic equations
with real coefficients that do not have real-valued roots. By extending
the range of numbers to include the collection of complex numbers,
we find that quadratic equations do have roots and that this holds
true for equations of the third and fourth degree as well, as follows
from the existence of formulas for their solution. But perhaps there
are equations of the fifth and higher degree without a single root
even in the class of complex numbers. Will it not be necessary,
when seeking the roots of such equations, to pass from complex
numbers to a still bigger class of numbers? The answer to this ques-
tion is contained in an important theorem which asserts that any
equation with numerical coefficients, whether real or complex, has
complex-valued (real-valued, as a special case) roots; and, generally
speaking, the number of roots is equal to the degree of the equation.

Such, in brief, is the basic content of the course of higher algebra.
It must be stressed that higher algebra is only the starting point of
the vast science of algebra which is very rich, extremely ramified
and constantly expanding. Let us attempt, even more sketchily,
to survey the various branches of algebra which, in the main, lie
beyond the scope of the course of higher algebra.

Linear algebra, which is a broad field devoted mainly to the
theory of matrices and the associated theory of linear transforma-
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tions of vector spaces, includes also the theory of forms, the theory
of invariants and tensor algebra, which plays an important role
in differential geometry. The theory of vector spaces is further
developed outside the scope of algebra, in functional analysis
(infinite-dimensional spaces). Linear algebra continues, so far,
to occupy first place among the numerous branches of algebra as to
diversity and significance of its applications in mathematics, physics
and the engineering sciences.

The algebra of polynomials, which over many decades has
been growing as a science concerned with one equation of arbitrary
degree in one unknown, has now in the main completed its develop-
ment. It was further developed in part in certain divisions of the
theory of functions of a complex variable, but basically grew into
the theory of fields, which we will speak of later on. Now the very
difficult problem of systems of equations of.arbitrary degree (not
linear) in several unknowns—it embraces both divisions of the
course of higher algebra and is hardly touched on in this text—actual-
ly has to do with a special branch of mathematics called algebraic
geometry.

An exhaustive treatment of the problem of the conditions under
which an equation can be solved in terms of radicals was given
by the French mathematician Galois (1811-1832). His investiga-
tions pointed out new vistas in the development of algebra and led,
in the twentieth century, after the work of the German woman-
algebraist E. Noether (1882-1935), to the establishment of a fresh
viewpoint on the problems of algebraic science. There is no doubt
now that the central problem of algebra is not the study of equa-
tions. The true subject of algebraic study is algebraic operations,
like those of addition and multiplication of numbers, but possibly
involving entities other than numbers.

In school physics one deals with the operation of composition
of forces. The mathematical disciplines studied in the junior courses
of universities and teachers’ colleges provide numerous examples
of algebraic operations: the addition and multiplication of matrices
and functions, operations involving vectors, transformations of
space, etc. These operations are usually similar to those involving
numbers and bear the same names, but occasionally some of the
properties which are customary in the case of numbers are lost.
Thus, very often and in very important instances, the operations
prove to be noncommutative (a product is dependent on the order
of the factors), at times even nonassociative (a product of three
factors depends on the placing of parentheses).

A very systematic study has been made of a few of the most
important types of algebraic systems (or structures), that is, sets
composed of entities of a certain nature for which certain algebraic
operations have been defined. Such, for example, are fields. These
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are algebraic systems in which (like in the systems of real and com-
plex numbers) are defined the operations of addition and multipli-
cation, both commutative and associative, connected by the distri-
butive law (the ordinary rule of removing brackets holds) and pos-
sessing the inverse operations of subtraction and division. The theory
of fields was a natural area for the further development of the theory
of equations, while its principal branches—the theory of fields of
algebraic numbers and the theory of fields of algebraic functions—
linked it up with the theory of numbers and the theory of functions
of a complex variable, respectively. The present course of higher
algebra includes an elementary introduction to the theory of fields,
and some portions of the course—polynomials in several unknowns,
the normal form of a matrix—are presented directly for the case
of an arbitrary base field.

Broader than a field is the concept of a ring. Unlike the field,
division is not required here and, besides, multiplication may be
noncommutative and even nonassociative. The simplest instances
of rings are the set of all integers (including negative numbers),
the set of polynomials in one unknown and the set of real-valued
functions of a real variable. The theory of rings includes such old
branches of algebra as the theory of hypercomplex numbers and
the theory of ideals. It is related to a number of mathematical
sciences (functional analysis being one) and has already made
inroads into physics. The course of higher algebra actually contains
only the definition of a ring.

Still greater in its range of applications is the theory of groups.
A group is an algebraic system with one basic operation, which
must be associative but not necessarily commutative, and must
possess an inverse operation (division if the basic operation is mul-
tiplication). Such, for example, is the set of integers with respect
to the operation of addition and also the set of positive real num-
bers with respect to the operation of multiplication. Groups were
already important in the theory of Galois, in the problem of the
solvability of equations in terms of radicals; today groups are a power-
ful tool in the theory of fields, in many divisions of geometry, in
topology, and also outside mathematics (in crystallography and
theoretical physics). Generally speaking, within the sphere of
algebra, group theory takes second place after linear algebra as to
its range of applications. Our course of higher algebra contains
a chapter on the fundamentals of the theory of groups.

In recent decades an entirely new branch of algebra—lattice
theory—has come to the fore. A lattice is an algebraic system with
two operations—addition and multiplication. These operations
must be commutative and associative and must also satisty the
following requirements: both the sum and the product of an element
with itself must be equal to the element; if the sum of two elements
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is equal to one of them, then the product is equal to the other, and
conversely. An example of a lattice is the system of natural num-
bers relative to the operations of taking the least common multiple
and the greatest common divisor. Lattice theory has interesting
ties with the theory of groups and the theory of rings, and also
with the theory of sets; one old branch of geometry (projective
geometry) actually proved to be a part of the theory of lattice.
It is also worth mentioning the expansion of lattice theory into
the theory of electric circuits.

Certain similarities between parts of the theories of groups,
rings and lattices led to the development of a general theory of
algebraic systems (or universal algebras). The theory has only taken
a few steps but its general outlines are evident and certain links
with mathematical logic that have been perceived point to a rich
future in this area.

The foregoing scheme does not of course embrace the whole
range of algebraic science. For one thing, there are a number of
divisions of algebra bordering on other areas of mathematics, such
as topological algebra, which deals with algebraic systems in which
the operations are continuous relative to some convergence defined
for the elements of the systems. An example is the system of real
numbers. Closely related to topological algebra is the theory of
continuous (or Lie) groups, which has found numerous applica-
tions in a broad range of geometrical problems, in theoretical physics
and hydrodynamics. Incidentally, the theory of Lie groups is chara-
cterized by such an interweaving of algebraic, topological, geome-
tric and function-theoretic methods as to be more properly conside-
red a special branch of mathematics altogether. Next we have the
theory of ordered algebraic systems which arose out of investigations
into the fundamentals of geometry and has found applications
in functional analysis. Finally, there is differential algebra which
has established fresh relationships between algebra and the theory
of differential equations.

Quite naturally, the flowering of algebraic science so evident
today is not accidental, but is an organic part of the general advance
of mathematics and is due, in large measure, to the demands made
upon algebra by the other mathematical sciences. On the other hand,
the development of algebra itself has exerted a far-reaching influence
on the elaboration of allied branches of science; this influence has
been particularly enhanced by the spread of applications so chara-
cteristic of modern algebra. One is often tempted to speak of an
“algebraization” of mathematics.

We conclude this rather sketchy survey of algebra with a gene-
ral historical background.

Babylonian and, later, ancient Greek mathematicians studied
certain problems of algebra, in particular the solution of simple
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equations. The peak of algebraic investigations during this period
was reached in the works of the Greek mathematician Diophantos
of Alexandria (third century). These studies were then extended by
mathematicians of India: Aryabhata (sixth century), Brahmagupta
(seventh century), and Bhaskara (twelfth century). In China, alge-
braic problems got an early start: Ch’ang Ts’ang (second century
B.C.), Ching Chou-chan (first century A.D.). An outstanding Chinese
algebraist was Ch’in Chiu-shao (thirteenth century).

A major contribution to the development of algebra was made
by scholars of the Middle East whose writings were in Arabic, par-
ticularly the Uzbek scholar Muhammad al-Khowarizmi (ninth cen-
tury) and the Tajik mathematician and poet Omar Khayyam (1040-
1123). In particular, the very term “algebra” came from the title
of al-Khowarizmi’s treatise Hisdb al-jabr w’al-muqd-balah.

The above-mentioned studies of Babylonian, Greek, Indian,
Chinese, and Central-Asian algebraists have to do with those pro-
blems of algebra which constitute the present school course of ele-
mentary algebra and only occasionally touch on equations of the
third degree. That, in the main, was the range of problems that
interested medieval European algebraists and those of the Renais-
sance, such as the Italian mathematician Leonardo of Pisa (Fibo-
nacci) (twelfth century) and the founder of present-day algebraic
symbolism, the Frenchman Vieta (or Viéte) (1540-1603). We have
already mentioned that in the sixteenth century methods were
found for solving equations of the third and fourth degree; here
we must mention the names of the Italians Ferro (1465-1526), Tar-
taglia (1500-1557), Cardano (1501-1576) and Ferrari (1522-1565).

The seventeenth and eighteenth centuries saw an intensive ela-
boration of the general theory of equations (or the algebra of poly-
nomials) in which outstanding scholars of the time participated:
Descartes (1596-1650), Sir Isaac Newton (1643-1727), d'Alembert
(1717-1783) and Lagrange (1736-1813). In the eighteenth century,
the Swiss mathematician Cramer (1704-1752) and Laplace (1749-
1827) of France, laid the foundation of the theory of determinants.
At the turn of the century, the great German mathematician Gauss
(1777-1855) proved the earlier mentioned fundamental theorem on
the existence of roots of equations with numerical coefficients.

The first third of the nineteenth century stands out in the history
of algebra as the time when the problem of the solvability of equa-
tions by radicals was resolved. Proof of the impossibility of obtain-
ing formulas for the solution of equations of degree five or higher was
obtained by the Italian mathematician Ruffini (1765-1822) and in
more rigorous form by the Norwegian Abel (1802-1829). As already
mentioned, an exhaustive treatment of the problem of the conditions
under which an equation admits of solution in terms of radicals
was given by Galois:
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Galois’ theory spurred the advance of algebra in the latter half
of the nineteenth century. There appeared the theory of fields of
algebraic numbers and of fields of algebraic functions and the asso-
ciated theory of ideals. Here, mention should be made of the German
mathematicians Kummer (1810-1893), Kronecker (1823-1891), and
Dedekind (1831-1916), and the Russian mathematicians E. I. Zolo-
tarev (1847-1878) and G. F. Voronoi (1868-1908). Particular advances
were made in the theory of finite groups which grew out of the research
of Lagrange and Galois; this work was carried out by the French
mathematicians Cauchy (1789-1857) and Jordan (1838-1922), the
Norwegian Sylow (1832-1918), the German algebraists Frobenius
(1849-1918) and Holder (1859-1937). The investigations of the Nor-
wegian S. Lie (1842-1899) initiated the theory of continuous groups.

The works of Hamilton (1805-1865) and the German mathemati-
cian Grassmann (1809-1877) laid the foundations for the theory
of hypercomplex systems or, as we now say, the theory of algebras.
A prominent role in the development of this branch of algebra was
played (at the end of the century) by the Russian mathematician
F. E. Molin (1861-1941).

Linear algebra attained great heights in the nineteenth century
primarily due to the work of the English mathematicians Sylvester
(1814-1897) and Cayley (1821-1895). Work continued on the algebra
of polynomials; we note only the method of approximate solution
of equations found by the Russian geometer N. I. Lobachevsky
(1792-1856) and the work of the German Hurwitz (1859-1919). Alge-
braic geometry was begun in the latter part of the nineteenth century,
particularly in the works of the German mathematician M. Noether
(1844-1922).

In the twentieth century, algebraic studies expanded considerab-
ly and algebra, as we already know, occupies a very special place
of honour in mathematics. New divisions of algebra have sprung
up, including the general theory of fields (in the 1910’s), the theory
of rings and the general theory of groups (1920’s), topological algebra
and lattice theory (1930’s), the theory of semigroups and the theory
of quasigroups, the theory of universal algebras, homological algebra,
the theory of categories (all in the 1940’s and 1950’s). Prominent
mathematicians are presently engaged in all spheres of algebra, and
in a number of countries (in the Soviet Union, for example) whole
schools of algebra are in evidence.

Among the prerevolutionary Russian algebraists, noteworthy
contributions to algebra were also made by S.0. Shatunovsky
(1859-1929) and D. A. Grave (1863-1939). However, it was only
after the Great October Revolution of 1917 that algebraic investiga-
tions in the Soviet Union reached high peaks. These studies now
embrace practically all divisions of modern algebraic science and
* in some the work of Soviet algebraists is of a leading nature. Suffice
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it to name only two algebraists: N. G. Chebotarev (1894-1947), who
worked in the theory of fields and Lie groups, and O. Yu. Schmidt
(1891-1956), the famous polar explorer who was also a noted algeb-
raist and founded the Soviet school of group theory.

We conclude this brief survey of the historical background and
modern state of algebra with the remark that most of the fields of
research mentioned here lie beyond the scope of the present course
of higher algebra. The aim of the survey was to help the reader to
find the proper place for this text in algebraic science as a whole
within the edifice of mathematics.



CHAPTER 1

SYSTEMS
OF LINEAR EQUATIONS.
DETERMINANTS

{. The Method of Successive Elimination of Unknowns

We begin the course of higher algebra with a study of systems
of first-degree equations in several unknowns or, to use the more
common term, systems of linear equations.*

The theory of systems of linear equations serves as the foundation
for a vast and important division of algebra—linear algebra—to
which a good portion of this book is devoted (the first three chapters
in particular). The coefficients of the equations considered in these
three chapters, the values of the unknowns and, generally, all num-
bers that will be encountered are to be considered real. Incidentally,
all the material of these three chapters is readily extendable to the
case of arbitrary complex numbers which are familiar from elemen-
tary mathematics.

In contrast to elementary algebra, we will study systems with
an arbitrary number of equations and unknowns; at times, the
number of equations of a system will not even be assumed to coincide
with the number of unknowns. Suppose we have a system of s linear
equations in n unknowns. Let us agree to use the following symbo-
lism: the unknowns will be denoted by z and subscripts: z4, z,, . . -
.+ ., Zz; we will consider the equations to be enumerated thus:
first, second, . . ., sth; the coefficient of z; in the ith equation will
be given as a;;**. Finally, the constant term of the ith equation will
be indicated as b;.

# The term “linear” stems from analytic geometry, where a first-degree
equation in two unknowns defines a straight line in a plane.

** We thus use two subscripts, the first indicates the position number of
the equation, the second the position number of the unknown. They are to be
read: a;; “a sub one one”™ and not “a eleven”; a3, “a sub three four” and not
“g thirty-four”, and are not separated by a comma.
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Our system of equations will now be written as follows:
@y + @y + . .0+ @z, = by,
anx; + Q99Xo +...+ AonZp = b21

1)
ATy + ATy + . .. F A2, = by
The coefficients of the unknowns form a rectangular array:
Q1143 - . - Q4
A21Qgy - - - Qo
(2)
Bs1lss - - . Qg

called a matriz of s rows and n columns; the numbers a;; are termed
elements of the matrix.* If s=nr (which means the number of rows
is equal to the number of columns), then the matrix is called a square
matriz of order n. The diagonal of the matrix from upper left corner
to lower right corner (i.e., composed of the elements a4, @y, . . ., @gn)
is called the principal diagonal. We call a square matrix of order
n a unit matriz of order n if all the elements of its principal diagonal
are equal to unity and all other elements are zero.

The solution of the system of linear equations (1) is a set of n

numbers k4, k,, . . ., k, such that each of the equations (1) becomes
an identity upon substitution of the corresponding numbers Z%;,
i=1, 2, ..., nfor the unknowns z;. **

A system of linear equations may not have any solutions; it is
then called inconsistent. Such, for example, is the system

z + 5z, =1,
2y + bz, =T

The left members of these equations coincide, but the right members
are different and so no set of values of the unknowns can satisfy
both equations simultaneously.

If a system of linear equations has solutions, it is termed con-
sistent. A consistent system is called determinate if it has a unique
solution—only such are considered in elementary algebra—and inde-
terminate if there are more solutions than one. As we shall learn
later on, there may even be an infinity of solutions. For instance,

* Thus, if the matrix (2) is regarded by itself (not connected with the
system (1)), then the first subscript ofg element a;; indicates the number of the
row, the second the number of the column at the intersection of which the
element is positioned.

** We stress the fact that the numbers %4, ks, . .., k, constitute a single
solution of the system and not r solutiocns.
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the system
X4 "{— 2.772 = 7,
zt+z, =4
is determinate: it has the solution z; = 1, z, = 3 and, as may readily

be verified by the method of elimination, this solution is unique.
On the other hand, the system

3z, — x2=1,}

6zy — 22, = 2
is indeterminate since it has infinitely many solutions of the torm
2=k, oz =3k —1 3)

where k is an arbitrary number; the solutions obtained using for-
mulas (3) exhaust the solutions of the system.

The problem of the theory of systems of linear equations consists
in elaborating methods to determine whether a given system of equa-
tions is consistent or not and, in the case of consistency, to establish
the number of solutions and also to indicate a procedure for finding
the solutions.

We begin with the most convenient practical method for finding
solutions to systems with numerical coefficients, namely, the method
of successive elimination of unknowns, or Gauss’ method.

First, a preliminary remark. In future we will manipulate systems
of equations in the following manner: both members of one of the
equations of the system multiplied by one and the same number will
be subtracted from the corresponding members of some other equation
of the system. For the sake of definiteness, let us subtract both
members of the first equation of system (1), multiplied by a number
¢, from the corresponding members of the second equation. We obtain
a new system of linear equations:

ayry + @%, + . . -+ T, = by,
anzTy + Aty + ...+ ayz, = b,

a3y + 32, + . . .+ anz, = by, (4)
a5 + @y + - . - F Aun = bs
where
ab; = ay; —cay; for j=1,2, ..., n by=>b, —ch

The systems (I) and (4) are equivalent, which is 1o say they are
either both inconsistent or they are both consistent and have the same
solutions. Indeed, let ky, k,, ..., k, be an arbitrary solution of
system (1). Obviously, these numbers satisfy all the equations of (4)
except the second. However, they likewise satisfy the second equa-

2--5760



18 CH. 1. SYSTEMS OF LINEAR EQUATIONS. DETERMINANTS

tion of the system (4). It will suffice to recall how this equation
is expressed in terms of the second and first equations of system (1).
Conversely, any solution of (4) will also satisfy (1). Indeed, the
second equation of (1) is obtained by subtracting, from both members
of the second equation of (4), the corresponding members of the
first equation of the system multiplied by the number —c.

Quite naturally, if manipulations of this kind are applied several
times to system (1), the newly obtained system of equations will remain
equivalent to the original system (1).

It may happen that as a result of such manipulations, there
will appear in our system an equation whose coefficients in the
left-hand member are equal to zero. Now if the constant term of this
equation is zero, then the equation is satisfied for any values of the
unknowns and so by discarding this equation we arrive at a system of
equations equivalent to the original system. But if the constant term
of the equation at hand is nonzero, then the equation cannot be
satisfied for any values of the unknowns and for this reason the system
obtained (and the equivalent original system as well) will be inconsistent.

Let us now examine Gauss’ method.

We are given an arbitrary system of linear equations (1). To be
specific, suppose that the coefficient a;; =0, though in reality it
may of course be equal to zero and then we would have to start with
some other, nonzero, coefficient of the first equation of the system.

Let us now transform system (1) by eliminating the unknown
z4 from all equations except the first. To do this, multiply both mem-

bers of the first equation by the number ! and subtract from the
corresponding members of the second equatlon then subtract both
members of the first equation, multiplied by , from the corre-

sponding members of the third equation, and so on
We thus arrive at a new system made up of s linear equations
in n unknowns:

@z + @19y + Qaxs + . . .+ Az = by, )
zzxz + a23.1:3 + ..+ aénxn = b,
32:62 =+ a33x3 + ...+ a;nxn = b;, )]
Aoy + @y ...+ agx, = b

We do not need to write out explicitly the expressions of the new
coefficients ai; and the new constant terms b; via the coefficients
and constant terms of the original system (1).

As we know, the system of equations (5) is equivalent to (1).
Now transform (5). We no longer involve the first equation and
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manipulate only that portion of (5) consisting of all equations
except the first. We of course assume that there are no equations
with all coefficients of the left members zero (such would have been
rejected if their constant terms were likewise zero, and if that were
not so, we would have proved the inconsistency of our system).
Thus, among the coefficients ai;there are some different from zero;
for definiteness, we put a,, = 0. Now transform (5) by subtracting
from both members of the third and of each of the succeeding equa-
tions both members of the second equation multiplied respectively
by the numbers .

ay a7 ay
In this way we eliminate the unknown z, from all equations, except
the first and second, and arrive at the following system of equations
which is equivalent to (5) and hence to (1):

AnZy - Ay - A3xg - . E AT = by,
] ’ | ’ . ’
Aoy T Aoy + o o o T Aupn — by,

gy + o o - Qprn, = by, ’}

a3z + ...+ a3, = by

Our system now conlains ¢ equations, ¢ < s, since some of the equa-
tions were possibly discarded. Naturally the number of equations
of the system could already have diminished after eliminating
the unknown z,. Subsequently, only a portion of the system obtained
(that containing all equations except the first two) will be subject
to transformations.

The question arises as to when this process of successive elimi-
nation of unknowns will stop.

If we arrive at a system in which one of the equations has a non-
zero constant term and all the coefficients of the left member are
equal to zero, then, as we know, our original system was incon-
sistent.

If that is not the case, then we obtain the following system of
equations which is equivalent to system (1):

ATy + @1pZp + - o+ A, hesZhoy T ARTR -+ o F AynT = by,
a29To+ + .. + a2 h—1Thog+ aoTn 4+ . .. + @iz, = b,
.(h—._z.) “ e . - | . (h—z) ....... (};7:2). e . (;—.2). (6)
Ar—1, k—1ATh-y T @h—1, RZR+ + .. + A1, nZTn =bp_{ ",

R—1 R—1 R—1
an Vzh 4.+ akn Dzg = b
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Here a0, a3, %0, . . ., aﬁ'f’.]z,)k_t # 0, a2 5= 0. Note also that
k < s, and, obviously, &k < n.

In this case system (1) is consistent. It will be determinatefor k =n
and indeterminate for k << n.

Indeed, if # = n, then system (6) has the form

auZ(taps+ ... Aty =by,
a;2x2+ R a;nxn =blzv (7)
a’(lT:L—I)xn —_ b;ln—-l)

From the last equation we obtain a quite definite value for the
unknown z,. Substituting it into the next to the last equation, we
find a uniquely defined value for the unknown z,_,. Continuing in
similar fashion, we find that system (7) and, for this reason, system
(1) as well have a unique solution, that is to say, they are consistent
and determinate.

But if & << n, for the “free” unknowns z,.4, ..., 2, we take
arbitrary numerical values, then, moving, in system (6) from bot-
tom to top, we find quite definite values for the unknowns
Zp, Tp-1, - - -, g, 21 (as above). Since .he values for the free
unknowns may be chosen in an infinity of ways, our system (6) and,
hence, (1) as well are consistent but indeterminate. It is easy to
verify that by using the foregoing method (given all possible choices of
values for the free unknowns) we can find all the solutions of system (1).

At first glance, yet another form to which a system of linear
equations may be reduced by the Gaussian method would appear
possible, namely, the form obtained by adjoining to system (7) a num-
ber of equations containing only the unknown z,. Actually, however,
in this case the transformations have simply not been completed:
since a{7;1 £ 0, the unknown z, may be eliminated in all equations
from the (n + 1)th on.

Note that the “triangular” form of the system of equations (7)
or the “trapezoidal” form of system (6) (for &k << n) resulted from the
assumption that the coefficients ay4, a,,, etc. are different from zero.
In the general case, the system of equations which we arrive at after
completing the process of elimination of unknowns takes on a trian-
gular or trapezoidal form only after an appropriate alteration in the
numbering of the unknowns.

To summarize, then, we find that the Gaussiarn method is applicable
to any system of linear equations. The system is inconsistent if after
the transformations we obtain an equation in which the coefficients of
all unknowns are zero and the constant term is nonzero; but if no such
equation is encountered, the system is consistent. A consistent system of
equations is determinate if it reduces to the triangular form (7) and
indeterminate if it reduces to the trapezoidal form (6) for k <C n.
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Let us apply what has been said to the case of a system of Zomo-
geneous linear equations, that is, equations whose constant terms
are zero. Such a system is always consistent since it has a zero solu-
tion (0, 0, ..., 0). Suppose that in the system at hand the number
of equations is less than the number of unknowns. Then our system
cannot reduce to the triangular form since in the Gaussian elimina-
tion process the number of equations of the system can diminish
but not increase; hence, it reduces to the trapezoidal form and so
is indeterminate.

To put it otherwise, if in a system of homogeneous linear equations
the number of equations is less than the number of unknowns, then this
system has, in addition to the zero solution, nonzero solutions, that is,
solutions in which the values of some (or even all) unknowns are
nonzero. There is an infinity of such solutions.

In practical solutions of a system of linear equations by the
Gatussian method, one should write down the matrix of the coeffi-
cients of the system and adjoin a column made up of the constant
terms, which, for the sake of convenience, are separated by a vertical
line, and then perform all the manipulations on the rows of this
“augmented” matrix.

Example 1. Solve the system
zy + 2z5 + 5z3 = —9,
zy — Zg+ 3z3 = 2,}
3y — 6xy — 3= 25

Transform the augmented matrix of the system:

1 2 519 1 2 5(—9 i 2 5
(1 —1 3 2) > (0 —3 —2 11) — (O —3 —2
3 —6 —11 25 0 —12 —16{ 52 0 0 -8

We thus arrive at the following system of equations:

zy + 2z + Six3 —9,
—3I2 —2.Z3= 1'1, :

——8.1?3: 8

—9
11)
8

which has the unique solution
Ty = 2, Ty = —3, T3 = —1

The original system proved to be determinate.
Example 2. Solve the system

Ty — 9z3 — 8z3+ =z, = 3,
3z + 22— 3z3 — 5z, = 1,
x4 — Tz3 + 2z, = —5,
1zy + 2023 — 9z, = 2

ot et e e’
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We transform the augmented matrix of the system:

(1 —5—8 1 3\ 1 —5-8 1] 3
3 1-3 —5| 1 0 16 21 —8|—8
\1 0—7 2/—5)7to 5 1 1{—s8
0 11 20 —9 z) 0 11 20 —9i 2
(1 —5_-8 1] 3 1 —5 -8 1| 3

L[o—8 o-—20160) fo0—80 o0—20/160
0 5 1 1|-8 0 5 1 1|-—s8
\0——89 0 29162/ 0 0 0 0] 2

We arrive at a system containing the equation 0 = 2. Consequently, the original
system is inconsistent.
Example 3. Solve the system

bry + xp — 313 — x2,= 0,
2z; + 3z + z3 — 5z, = 0, }
zy — 229 — 223+ 32, =0
This is a system of homogeneous equations, and the number of equations
is less than the number of unknowns; it must therefore be indeterminate. Since

all the constant terms are zero, we perform manipulations solely with the mat-
rix of the coefficients of the system:

4 1 -3 -1 0 9 5-—13 0o 2 0 -2
(2 3 1 —5) - (0 7 5 ——11) — (O 7 5 ——M)
1 -2 -2 3 1 -2 -2 3 1 -2 -2 3

We arrive at the following system of equations:
2y — 2z, =0,

Tzy 4 523 — 14, = O,

zy — 229 — 223+ 3z, =0

We can take either one of the unknowns z, or z, for the free unknown.
Let z; = a. Then from the first equation it follows that z, = e, and from

the second equation we get x3 = % a and, finally, from the third equation z; =

3
= -s-a.. Thus,
3

- oc-é-aa
5a7 151

is the general form of the solutions of the given system of equations.

2. Determinants of Second and Third Order

The method of solving systems of linear equations given in
Sec. 1 is extremely simple and requires the performance of the same
kind of computations, which are readily carried out on computing
machines. Its drawback, however, is that it does not enable us to
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state the conditions of consistency or determinacy of the system by
means of coefficients and constant terms of the system. On the other
hand, even in the case of a determinate system, this method does
not permit finding formulas that express the solution of the system
in terms of its coefficients and constant terms. However, all this
proves to be necessary in theoretical problems, in particular, in geo-
metrical investigations; for this reason, the theory of systems of
linear equations has to be elaborated by different and more profound
methods. The general case will be pursued in the next chapter; for
the present, we consider determinate systems having an equal num-
ber of equations and unknowns. We begin with the systems in two
and three unknowns of elementary algebra.

Let there be given a system of two linear equations in two unknowns:

ay1xy + g%y = by,
_ (1)
A1 Tt + gaTy = by
whose coefficients form the second-order square matrix
asy ayp
(o o) @
21 a2

Applying to system (1) the miethod of equalizing the coefficients,
we obtain

(@11895 — @1551) Ty = b1Gyy — Qy3by,
(@11a90 — @19841) T, = @11by — biay

Suppose that ayiay, — @450, 0. Then

= biazs—aygby T, = ag1by—bragy (3)
P o — 0102 — 01891
Q11855 — a15@p1 a118y; — A1a54

1t is easy to show, by substituting the values of the unknowns into
(1), that (3) is a solution of system (1). The question of the umque-
ness of this solution will be considered in Sec. 7.

The common denominator of the values of the unknowns (3) is
very simply expressed in terms of the elements of matrix (2): it is
equal to the product of the elements of the principal diagonal minus
the product of the elements of the secondary diagonal. This number
is called the deferminant of the matrix (2); we call it a second-order
determinant since the matrix (2) is a second-order matrix. To symbo-
lize a determinant, we use vertical lines in place of parentheses:

ay ay
= Q443 —— Q12094 (4)

Aoy 123}
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Examples.
37
(1) Ii 4|_3-4—7-1_5,
1 —2
2 —1.5—(—2)-3=11
@) ’3 5’ 1.5—(—2)-3=1

It is worth stressing once again, that while a matrix is an array
of numbers, a determinant is a number associated in a definite way
with a square matrix. The products ay;a,, and a;,a,, are called the
terms of a second-order determinant,

The numerators of expressions (3) have the same form as the
denominators, that is, they are also determinants of second order;
the numerator of the expression for z; is the determinant of the
matrix obtained from matrix (2) by replacing its first column by the
column of constant terms of system (1), the numerator of the expres-
sion for z, is the determinant of the matrix obtained from matrix

(2) by replacing its second column. We can now write formula (3)
as follows:

by ag ayy by

by asy az by
e e e (5)

11 12 a1 Q2

Q1 Qaap Q1 Az

This rule for the solution of a system of two linear equations
in two unknowns (called Cramer’s rule) is formulated as follows.

If the determinant, (4), of the coefficients of a system of equations,
(1), is different from zero, we obtain the solution of system (1) by taking
for the values of the unknowns the fractions whose common derominator
is determinant (4) and whose numerator for the unknown z; (i =1, 2)
is a determinant obtained by replacing in determinant (4) the ith column
(that is, the column of coefficients of the desired unknown) by the column
of the constant terms of system (1).*

Example. Solve the system
2z 4 ;= 7, }

Iy — 3x5 =
The determinant of the coefficients is
2 1)
d= 1 3|= 7

It is different from zero and, for this reason, Cramer’s rule is applicable.
The determinants

71
dy = =19, dy=
1 I_z ‘—BI 2

2
7’=_11
1 —2

* For brevity we speak here of replacing columns “in the determinant”.
In the same way, we will in future, if it is more convenient, speak of rows and
columns of a determinant, of its elements and diagonals, etc.
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are the numerators for the unknowns. Thus, the following set of numbers is the
solution of our system:

VO T
=TT T
The introduction of second-order determinants does not sub-
stantially simplify the solution of a system of two linear equations
in two unknowns, which does not present any difficulties as it is.
However, for the case of systems of three linear equations in three
unknowns, similar methods are of practical utility. Suppose we
have a system

a2y + Qyp%y + 4373 = by, )
ATy + Agay + A7z = by, j (6)
A Ty -+ A3y + Q3323 = by

with the coefficient matrix

agy Qyy ay3
(229 Ay Qo3 (7)
a3y a3y ass

If we multiply both sides of the first equation of (6) by the num-
ber a,,a3; — ays3a3,, both sides of the second equation by aysa;, —
-— @4,a33, both sides of the third equation by ai,a,3 — a;3a,,, and
then add all three equations, it is easy to verify that the coefficients
of z, and z; will turn out to be zero, that is, these unknowns are
eliminated simultaneously and we obtain the equation

(@11@05033 + Q19893031 + Q13031835 — 13009031 — Q19lg1 Q33
— G41853035) T4 = b1@ge33 - A19093b3 - ag3byaz, — @43859b3
— Qypbyt3s — byaysas, (8)

Here, the coefficient of z, is called a third-order determinant cor-
responding to matrix (7). The symbolism is the same as in the case
of second-order determinants; thus,

Ay Q1 Qg3

Qo1 gy Q3| = Gy1Q99033 |+ A1ala3d3q |+ A13051a3, (9)
— A13Q99l31 — Q1oloilz3 — A11As3a
a3i a32 a33 13Waate 34 1991433 113U 39

The expression for a third-order determinant is rather involved,
but the rule for its formation from the elements of matrix (7) is extre-
mely simple, as witness: one of the three terms (of the determinant)
in (9) with the plus.sign is the product of the elements of the prin-
cipal diagonal, each of the other two is a product of the elements
lying parallel to this diagonal, with the third factor added from
the opposite corner of the matrix. The terms with the minus sign
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in (9) are constructed in a similar manner but relative to the secon-
dary diagonal. We obtain a technique for computing determinants
of the third order that produces quick results (after a certain amount

B TR

Fig. 1

of practice). Fig. 1 gives a schematic view of computing the positive
terms (left) and the negative terms (right) of a third-order deter-
minant.

Examples.
212

—431 ' =2.3.54+11.2 4+ 2:(—4%)-3

(1)
: —2.3:2 —1-(—4)-5 —2.1-3

235‘ — 30422k —124+20—6=10
2 R PP, 0-21 4+ (—5)+(—2)+(—2)
@ —2 3 2| T R E 0 Ty

1 -2 0|=-—-20+15+4= —1

The right-hand side of (8) is also a third-order determinant, name-
ly, the determinant of the matrix obtained from matrix (7) by
replacing its first column by the column of constant terms of system
(6). If we denote determinant (9) by the letter d and the determinant
obtained by replacing its jth column (j = 1, 2, 3) by the column
of constant terms of system (6) by the symbol d;, then equation (8)
becomes dx; = d;, whence, for d =« 0, it follows that

2=t (10)

In exactly the same way, by multiplying equation (6) by the
numbers Ag3031 — A91Q33, Q11433 — a43a31, 1&1'3421 — (1.“023., respec-
tively, we obtain for z, the following expression (again for d = 0):

d
12=72 (11)
Finally, multiplying these equations, respectively, by aga3; — 22851,
Qygl3g — Qy1d39, Q11095 — G190y1, We arrive at the expression for z;:

2= (12)
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Substituting expressions (10) to (12) into equation (6) (it is
of course assumed that the determinants d and all d; are written
in expanded form), we would find —after cumbersome computations,
all, however, well within the grasp of the reader—that all these
equations are satisfied, that is, that the numbers (10)-(12) consti-
tute the solution of system (6). Thus, if the determinant of the coef-
ficients of a system of three linear equations in three unknowns is nonzero,
then the solution of this system may be found by Cramer’s rule as stated
for the case of a system of {wo equations. In Sec. 7 the reader will find
a different proof of this assertion (one that does not rely on the cal-
culations we have omitted here) and also a proof of the uniqueness
of the solution (10)-(42) of system (6) for the more general case.

Example. Solve the system of equations
22y — x3+ z23= 0,
3zy + 225 — 523 = 1, }
z; + 3z — 223 = 4

The determinant of the coefficients is nonzero:

2 —1 1
d=|[3 2 -5|=28
1 3 -2
so the Cramer rule is applicable. The numerators for the unknowns are
0 —1 1 20 1
=11 2-5/=13, dy=|31 —5]|= 47,
4 3 =2 14 —2
2 —10
da=|3 21|=21
1 34
Hence, the following numbers constitute the solution of the system:
SPNEC S S |
287 28" 28 4

3. Arrangements and Permutations

In the study of determinants of order » we will need certain
concepts and facts relating to finite sets. Suppose we have a certain
finite set M consisting of » elements, which may be enumerated by
using the natural numbers 4, 2, . . ., »n; since the properties of the
elements of the set M will not play any role whatsoever, we simply
say that the elements of M are the numbers 1, 2, . . ., n.

Besides the natural order of 1, 2, ..., n, we can arrange the
numbers in many other ways. Thus, we can arrange the numbers
1,2,3,4as3,4,2,40r2, 4 1, 3 and so on. Every rearrangement
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of the numbers 4, 2, ..., » in any definite order is called a per-
mutation (or arrangement)®* of n numbers (or n» symbols).

The number of distinct arrangements of n symbols is equal to the
product 1-2 . . . n, denoted by r! (read “n factorial”). Indeed, the
general form of an arrangement of » symbols is iy, iy, . . ., i, Where
each of the i, is one of the numbers 4, 2, . . ., n, without repetitions.
Use any one of the numbers 1, 2, . . ., n for i;; this yields n distinct
possibilities. But if i, has been chosen, then for i, we can only take
one of the remaining n — 1 numbers; that is, the number of diffe-
rent ways of choosing the symbols i, and i, is equal to the product
n (r — 1) and so on.

Thus, the number of arrangements of 7z symbols forn = 2 is 2! =
= 2 (the arrangements 12 and 24; in examples where n<9, we
do not separate the symbols by commas); for » = 3 this number is
3! =6, forn = 4 it is 4! = 24. As n increases, the number of arran-
gements increases very fast: for n = 5 it is 5! = 420, and for n = 10
it is already 3,628,800.

If in a certain arrangement we interchange any two symbols
(not necessarily adjacent) and leave all the remaining ones fixed, we
obtain a new arrangement. This operation is called a transposition.

All n! arrangements of n symbols may be ordered so that each is ob-
tained from the preceding one via a single transposition; any arrange-
ment can serve as the starting point.

This assertion holds true for n = 2: if it is required to begin
with the arrangement 42, the desired order will be 42, 24; if we
begin with the arrangement 24, then the order will be 24, 12. Sup-
pose our assertion has already been proved for » — 4, and we prove
it for n. Let us begin with the arrangement

ih i27 e e ey in (1)

We consider all arrangements of n symbols starting with i;. There
are (n — 1)! such arrangements and they may be ordered in accord
with the requirements of the theorem, beginning with (1) since this
actually reduces to an ordering of all arrangements of » — 1 sym-
bols; this ordering, by the induction hypothesis, may be initiated
from any arrangement, say, i,, . . ., i,. In the last of the arrange-
ments of » symbols thus obtained we perform a transposition of i,
and any other symbol (say i,) and, again beginning with the arran-
gement obtained, we appropriately order all the arrangements with
i, in first place, and so forth. It is thus obviously possible to enume-
rate all arrangements of n» symbols.

* Translator’s note: the term «arrangement” will be used, since permuta-
tion is reserved in this text for a different concept.
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From this theorem it follows that it is possible to pass from any
arrangement of n symbols to any other arrangement of the same sym-
bols by means of several transpositions.

We say that in a given arrangement the numbers i and j consti-
tute an inversiorn if i > j but i comes before j in the arrangement.
An arrangement is termed ever if its symbols form an even number
of inversions, otherwise it is odd. Thus, the arrangement 1, 2, .. ., n
is even for any n since the number of inversions here is zera. The
arrangement 451362 (r = 6) contains 8 inversions and so is even.
The arrangement 38524671 (r = 8) contains 15 inversions and so is
odd.

Every transposition changes the parity of the arrangement.

To prove this important theorem let us first consider the case
where the symbols i and j being interchanged are adjacent; in other
words, the arrangement is of the form ..., i, j, ..., where the
dots stand for symbols unaltered by the transposition. The trans-
position converts our arrangement into the arrangement .. ., j,
i,. . ., it being understood that in both cases each of the symbols i, j
constitutes the same set of inversions with the symbols which remain
fixed. Whereas earlier i and j did not constitute an inversion, in the
new arrangement there is a fresh inversion; hence, the number of
inversions has increased by unity; contrariwise, if they originally
formed an inversion, then the inversion now vanishes, the number
of inversions being diminished by unity. In both cases the parity
of the arrangement is altered.

Now let us suppose that there are s symbols, s > 0, between
i and j; that is, the arrangement is of the form

oy gy Ry By oy B Gy 2)

The symbols i and j may be interchanged by means of a succession
of 2s + 1 transpositions of adjacent elements. These are transpo-
sitions interchanging the symbols i and k;, then interchanging i
(now in the place of k) and %,, and so on until i occupies the site
of symbol %k,. These s transpositions are then followed by a trans-
position that interchanges the symbols i and j and then s transposi-
tions of the symbol j with all k’s; as a result, j occupies the place of
i and the symbols % return to their original sites. We have thus
changed the parity of the arrangement an odd number of times
and for this reason the arrangements (2) and

o Jo ks Eay ooy R 0, L. 3)
are of different parity.
For n > 2, the number of even arrangements of n symbols is equal

to the number of odd arrangements, i.e., —;— n!
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Indeed, proceeding from the foregoing, order all arrangements
of n symbols so that each one is obtained from the preceding one
by a single transposition. Adjacent arrangements will have oppo-
site parity, that is, the arrangements are ordered so that even and
odd arrangements alternate. Our assertion now follows from the
obvious remark that for n >> 2 the number n! is even.

Let us now define a new concept, that of a permutation of degree n.
Write down two arrangements of » symbols, one under the other,
and place parentheses around them; for example, for n = 5,

(b2a41)

52341 (4)

In this example,* 5 stands under 3, 2 under 5, etc. We say that
number 3 goes into 5, 5 goes into 2, 1 goes into 3, and the number
4 goes into 4 (or remains fired) and, finally, 2 goes into 1. Thus,
two arrangements written one under the other in the form shown in
(4) define a certain one-to-one mapping of the set of the first five natural
numbers onto itself, that is, a mapping in which each of the natu-
ral numbers 1, 2, 3, 4, 5 is associated with one of these same natural
numbers, distinct numbers corresponding to distinct numbers. And
since there are only five numbers (a finite set), eackh one corresponds
to one of the five numbers 1, 2, 3, 4, 5, namely, that one into which
it “goes”.

It is clear that the one-to-one mapping of the set of the first
five natural numbers which we obtained by means of (4) could be
obtained by writing certain other pairs of arrangements of five sym-
bols one under the other. These are obtained from (4) by means of
several transpositions of the columns, such as, for instance,

21534 15243 25143) .
(13254)’ (32145)’ (12345 ()
In all these groups, 3 goes into 5, 5 into 2, etc.

Similarly, two arrangements of » symbols written one under the
other define a one-to-one mapping of the set of the first » natural
numbers onto itself. Any one-to-one mapping A of the set of the
first » natural numbers onto itself is termed a permutation of degree n.

Obviously, any permutation 4 may be written with the help of two
arrangements, written one under the other:

4 - (u, igy « + oy In ) (6)

Ajyy gy v+ -y o 77%

* This array looks like a matrix of two rows and five columns, but its
meaning is quite different.
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Here, «; denotes the number into which i (i =1, 2, ..., n) goes
in the permutation A.

The permutation A4 possesses many different notations of the
form (6). For instance, (4) and (5) are different ways of denoting
one and the same permutation of degree 5.

It is possible to pass from one mode of notation of the permuta-
tion 4 to another simply by performing a number of transpositions
of the columns. It is then possible to obtain (6) in a mode such that
the upper (or lower) row is any preassigned arrangement of » symbols.
In particular, any permutation A of degree » may be written as

12 ... n
4 = (M

Qg Qg - - - Qg
that is, with the numbers in the upper row arranged in their natural
order. Given this notation, various permutations differ in the arran-
gements of the lower row, and for this reason the number of permuta-
tions of degree n is equal to the number of arrangements of n symbols,

or nl.
An instance of an nth-degree permutation is the identity permu-

tation
5 12...n
_('12...n

in which all symbols remain fixed.

It is well to point out that the upper and lower rows of the per-
mutation 4 in notation (6) play different roles so that if interchanged
the result would be a different permutation. Thus, the permutations

of degree 4
2143 q 4312
(4312) an (2143)

are different: in the first, 2 goes into 4, in the second it goes into 3.

Let us take some permutation A4 of degree » in the arbitrary
notation (6). The arrangements constituting the upper and lower
rows in this mode can have either identical or opposite parities.
As we know, we can proceed to any other mode of permutation 4 by
means of successive transpositions in the upper row and correspond-
ing transpositions in the lower row. However, by performing one
transposition in the upper row of (6) and one transposition of the
corresponding elements in the lower row, we simultaneously alter
the parities of both arrangements and therefore preserve the coinci-
dent or opposite nature of these parities. From this it follows that
in all modes of notation of the permutation A, the parities of the upper
and lower rows either coincide or are opposite. In the former case, A4 is
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called even, in the latter, odd. In particular, the identity permuta-
tion is even.

If the permutation 4 is written as (7) (that is, with the even arran-
gement 1, 2, .. ., n in the upper row), then the parity of permuta-
tion A is determined by the parity of the arrangement a4, oy, . . ., oy,
of the lower row. Whence it follows that the number of even permuta-

tions of degree n is equal to the number of odd permutations, that is. é nl.

The definition of parity of a permutation may be cast in the follo-
wing modified form. If, when written in mode (6), the parities of
both rows coincide, then the number of inversions is either even
in both rowsor is odd in both, that is, the total number of inversions
in both rows of (6) is even; but if the parities of the rows in mode
(6) are opposite, then the total number of inversions in these two
rows is odd. Thus, permutation A is even if the total number of inver-
sions in the two rows in any mode of notation is even, it is odd otherwise.

Example. Let there be given a permutation of degree 5:
(3 145 2)
25431

There are 4 inversions in the upper row, and 7 inversions in the lower row.
The total number in the two rows is 14, and so the permutation is odd.
Rewrite this permutation as
(1 234 5)

51243

The number of inversions in the upper row is 0, in the lower, 5; that is, the
total number is again odd. Though the modes of notation differ, the permuta-
tions preserve the parity of the total number of inversions, but not the actual
number of them.

We wish to indicate other ways, equivalent to those given above,
of defining parities of permutations.* For this purpose we define
multiplication of permutations, which is of great interest in itself.
As we already know, a permutation of degree n is a one-to-one map-
ping of the set of numbers 1, 2, . . ., n onto itself. The result of a suc-
cessive execution of two one-to-one mappings of theset1, 2, .. ., n
onto itself will obviously again be a certain one-to-one mapping of
the set onto itself, that is to say, a successive execution of two permu-
tations of degree n leads to a certain very definite third permutation
of degree n called the product of the first by the second. Thus, if we
have the permutations of degree four,

1234 1234
A=(3142)’ B“(1342’

* This material may be omitted in a first reading since it will be required
only in Chapter 14.
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B 1234

B (4 12 3)

In the permutation 4, the symbol 1 goes into 3, but in B the symbol

3 goes into 4, and so for AB the symbol 1 goes into 4, etc.
Multiplication is only possible with permutations of the same

degree. Multiplication of permutations of degree n for n >> 3 is non-
commutative. Indeed, using A and B, the product BA yields

1234
BA = (3 42 1)
which shows that the permutation BA differs from the permutation
AB. Such examples may be chosen for all n, n > 3, although for
certain pairs of permutations, commutativity may accidentally be
valid.

The multiplication of permutations is associative; that is, we can
speak of the product of any finite number of permutations of degree
n taken (because of noncommutativity) in a definite order. Let there
be given permutations 4, B and C and let the symbol i;, 1 << iy < n,
go to i, in A, i, to izin B and to i, in the permutation C. Then in
the permutation AB, i; goes to i3, in BC the symbol i, goes to i,
and therefore the symbol i, goes to i, whether we perform (4B) C
or A (BC).

It is obvious that the product of any permutation A by the identity
permutation E (and also the product of E by A) is equal to A:

AE =EA =4

then

Let us now define the inverse of the permutation 4 as the permuta-
tion A-! of the same degree such that

AA™l = A14 = E

It is easy to see that the inverse of
1 2 ...n
A =
oy Qg « . . Op

ai az - s . th
-1
4 (1 2 ...n )
obtained from A by interchanging the upper and lower rows.
Let us now examine permutations of a special kind which are

obtained from the identity permutation £ by means of a single
transposition performed in the lower row. Such permutations are

is the permutation

3—5760
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odd: they are termed transpositions and are of the form

R S BTN
(]z) @
where the dots stand for symbols that remain fixed. Let us agree
to denote this transposition by the symbol (i, j). Application of the
transposition of symbols i, j to the lower row of (7) of an arbitrary
permutation A is equivalent to multiplying 4 on the right by the
permutation (8), that is by (i, j). We know that all arrangements
of n symbols may be obtained from one of them, say from 1, 2, . ..
. ., n, by successive transpositions, and so any permutation may
be obtained from the identity permutation by successive transposi-
tions in the lower row, that is, by successive multiplication by per-
mutations of the form (8). It can therefore be asserted (omitting
the factor E) that any permutation can be represented as a product of
transpositions.

Any permutation may be factored into a product of transposi-
tions in many different ways. It is always possible, for example, to
add two identical factors of the form (i, j) (i, j), which when mul-
tiplied yield E, that is to say, cancel out. Let us take a somewhat
less trivial instance:

12345
(25431

This new way of defining the parity of a permutation is based
on the following theorem.

For all factorizations of a permutation into a product of transpo-
sitions, the parity of the number of these transpositions is the same and
coincides with the parity of the permutation.

Thus, in the example given above, the permutation is odd, as
may also be verified by counting the number of inversions. -

This theorem will be proved if we demonstrate that the product
of any k transpositions is a permutalion whose parity coincides with
the parity of the number k. For k = 1 this is true because a transpo-
sition is an odd permutation. Let our assertion be proved for the
case of & — 1 factors. Then its validity for 4 factors follows from
the fact that the numbers ¥ — 1 and % are of opposite parity and
the multiplication of a permutation (in this case, the product of
the first £ — 4 factors) by a transposition is equivalent to this trans-
position performed in the lower row of the permutation, which
is to say, it changes the parity.

Decomposition into cycles is a convenient way of writing permu-
tations which makes it easy to find their parity. Any permutation
of degree n can leave certain symbols 1, 2, ..., » fixed while
moving others. A cyclic permutation (or, simply, a cycle) is a permu-

) = (12) (15) (34) = (14) (24) (45) (34) (13)
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tation such that when it is repeated a sufficient number of times
any one of the symbols can be transformed into any other symbol.
Such, for instance, is the permutation of degree eight

12345678
(18645273)

It transfers the symbols 2, 3, 6, and 8, with 2 going into 8, 8 into
3, 3 into 6, and 6 again into 2.

All transpositions belong to cycles. By analogy with the earlier
used abbreviated notation for transpositions, the following notation
is used for cycles: the symbols being transferred are enclosed in
parentheses in the order in which they go into one another when the
permutation is repeated; any transferable symbol can serve as the
starting point, and the last one is that which goes into the first.
Thus, for the example given above, this notation has the form

@ 8 3 6)

The number of symbols transferred by a cycle is called the cycle
length.

Two cycles of degree r are called disjoint if they do not have any
common symbols subject to transfer. It is clear that in multiplica-
tion of disjoint cycles, the order of the factors does not affect the
result.

Any permutation can be factored uniquely inlo a product of pair-
wise disjoint cycles. The proof is simple and so we omit it. In actual
practice, the factorization is accomplished in the following manner:
begin with any one of the symbols subject to transfer, write out
those symbols into which it goes in a new permutation until you
arrive at the original symbol. After thus “closing” the cycle, begin
with one of the remaining transferable symbols to obtain the second
cycle, and so on.

Examples.
12345
W (3 512 4) = (13) (259)
123456178
@ (5 28 ; 61 4 3) = (156) (38) (47)

Conversely, for-any permutation specified by a decomposition into disjoint
cycles, it is possible to find a notation in ordinary form, provided that the
degree of the permutation is known. For example,

1234567)
3175462

if it is known that the permutation is of degree 7.
" Let there be given a permutation of degree » and let s be the number of
disjoint cycles in its decomposition plus the number of symbols which it holds

®3) (1372) (45) = (

3%
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fixed*. The difference n — s is called the decrement of this permutation. The
decrement is obviously equal to the number of actually transferable symbols
diminished by the number of disjoint cycles entering into the decomposition
of the permutation. For Examples 1, 2, and 3 above, the decrement will be
equal to 3, 4, and 4, respectively.

The parity of a permutation coincides with the parity of the decrement of the

permutation.
Indeed, any cycle of length k may be represented in the following manner

as the product of ¥ — 1 transpositions:
(B1y B2y v oy ) = (i1, d2) (845 13) o oo (i, Ip),

Let us now suppose we have an expansion of permutation 4 into disjoint cyc-
les. If each one of the cycles is factored by the indicated method into a pro-
duct of transpositions, we get a representation of permutation A in the form
of a product of transpositions. The number of these transpositions will obviously
be less than the number of symbols actually transferable by 4 by a number
equal to the number of disjoint cycles in the decomposition of the permutation.
Whence it follows that the permutation 4 may be factored into a product
of transpositions whose number is equal to the decrement, and for this reason
the parity of the permutation is determined by the parity of the decrement.

4. Determinants of 7th Order

We now wish to generalize the results obtained in Sec. 2 forn = 2
and n = 3 to the case of an arbitrary n. For this purpose, we have
to introduce determinants of order n. However, it is not possible
to do that the way we introduced determinants of order two and
three, that is by solving a system of linear equations in the general
form: as n increased, the computations would become progressively
more unwieldy, and totally unmanageable for arbitrary n. We choose
a different approach. Considering the determinants of order two
and three which we are already familiar with, let us attempt to
establish a general law expressing these determinants in terms of
the elements of the corresponding matrices, and then let us apply
that law as a definition for an nth-order determinant. After that we
will prove that Cramer’s rule holds true under such a definition.

Recall the expressions for determinants of order two and three:

a14 Ay | = Q14Q93 — G2l
Q21 Qoo
ayq @y Q43
Aot Qg Qg3 | == Q11039033 + Q1as3A3; + A130a1sy
@y Gz, Q33 T Q43099Q31 — Q1291033 — Q1303

We see that any term of a second-order determinant is a product
of two elements which lie in different rows and also in different co-

* With every symbol which the permutation holds fixed it is possible
to associate a “cycle” of length 1, i.e., say, in Example 2 above we could write:
(156) (38) (47) (2). But we shall not do that.
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lumns, and also that all products of this type that may be formed
from the elements of a second-order matrix (two altogether) are
utilized as terms of the determinant. Similarly, every term of a
third-order determinant is a product of three elements, also taken
one in each row and each column; again, all such products are utilized
as terms of the determinant.

Let us now take a square matrix of order n:

ay Qg - - - A
Qg1 Qg - - . Q2n

)
Ay Qpg + - - Qup

We consider all possible products of the » elements of this matrix
located in different rows and different columns, that is, products
of the form

Aoy 203 - - ¢+ %non (2)
where the subscripts oy, a,, ..., a, constitute an arrangement of
the numbers 1, 2, ..., n. The number of such products is equal

to the number of different arrangements of n symbols, or n!. We con-
sider all these products as terms of the future nth-order determinant
associated with the matrix (1).

To determine the sign affixed to product (2) in the determinant,
note that, using the subscripts of this product, we can form the

permutation
(1 2 ...n ) 3
Ay Ag . . . Uy (

where i goes into «; if an element in the ith row and «;th column
of matrix (1) enters into the product (2). Examining expressions
of determinants of second and third order, we note that the plus
sign is affixed to the terms whose subscripts constitute an even
permutation, and the minus sign to those terms with an odd permu-
tation of subscripts. It is also natural to retain this regularity in the
definition of a determinant of order r.

We thus arrive at the following definition: the nih-order deter-
minant associated with matrix (1) is the algebraic sum of ! terms
which is constructed in the following fashion: the terms are all
possible products of the n elements of the matrix taken one in each
row and each column, the term having a plus sign if its subscripts
form an even permutation, and a minus sign otherwise.

For the notation of the nth-order determinant associated with
matrix (1) we will, as in the case of determinants of order two and
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three, use the symbol

ayy 49 - . . Qn
Qg1 Qg2 - - . Uop @)
ny Qpg - - - Opp

Determinants of the nth order become determinants of order two
and three, for » = 2 and n = 3; for » = 4, that is, for matrices
consisting of a single element, the determinant is equal to that
element. So far we do not know whether it is possible, for n > 3,
to use the nth-order determinant for solving systems of linear equa-
tions. That will be shown in Sec. 7. It will be necessary first to subject
the nth-order determinants to a detailed study and, in particular,
it will be necessary to find procedures for evaluating them, since
to compute a determinant directly (via its definition), even for n
not very large, would be extremely complicated.

For the present let us establish some of the simpler properties
of nth-order determinants that refer mainly to one of the two follow-
ing problems: on the one hand, we are interested in the conditions
under which a determinant is equal to zero, on the other, we will
indicate certain matrix transformations which leave its determi-
nant unchanged or result in readily perceivable alterations.

The transpose operation with respect to matrix: (1) is a transfor-
mation of the matrix in which its rows become columns with the
same subscripts; in other words, it is a transition from matrix (1)
to the matrix

ayq Qoy -« - Qng
A9 Qoo . -« -« anz

ST ()
Qip Qop « - - Qpp

or we can say that a transposition is obtained by flipping matrix (1)
over the principal diagonal. Accordingly, we say that the determinant

Q14 QAgq - -« - Qpy
Qg Qoo +» « - Qpg (6)
Ay Qo » -« Qpn

sebtained by taking the transpose of the determinant (4).
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Property 1. Taking the transpose does not change the determinant.
Indeed, every term of determinant (4) is of the form

Qigy B205 + + » Onan )

where the second subscripts form an arrangement of the symbols
1, 2, ..., n. However, all the factors of product (7) remain in
different rows and different columns in determinant (6) as well;
hence, (7) serves as a term of the transpose of the determinant too.
The converse is also obviously true and for this reason the deter-

minants (4) and (6) consist of the same terms. The sign of the term
"~ (7)in determinant (4) is determined by the parity of the permutation

1 2 ...n
( B
Ay Ay .« oo Tp
In determinant (6) the first subscripts of the elements indicate the

column, the second subscripts the row, and so term (7) in determi-
nant (6) is associated with the permutation

Qg Qg + - - Op
(1 5 ...n ) ©)
In the general case, the permutations (8) and (9) are different but
they obviously have the same parity and so term (7) has the same
sign in both determinants. Thus the determinants (4) and (6) are
sums of the same terms taken with the same signs, that is, they are
equal.

From Property 1 it follows that any assertion about rows holds
true for the columns of a determinant and conversely; in other words,
in contrast to a matrix, in a determinant the rows and columns are of
equal status. We will therefore formulate and prove Properties 2 to 9
only for the rows of a determinant; analogous properties for columns
will not require special proof.

Property 2. If one of the rows of a determinant consists of zeros,
the determinant is zero.

Indeed, let all the elements of the ith row of a determinant be
zeros. Every term of the determinant must have, as a factor, one
element of the ith row, and so in our case all the terms of the deter-
minant are zero.

Property 3. If a determinant is obtained from another one by
interchanging two rows, then all terms of the first determinant will
be terms of the second but with signs reversed; which means that inter-
changing two rows of a determinant only changes the sign.

Suppose, in determinant (4), the ith and jth rows (i % j) are
interchanged and all other rows remain fixed. We get the deter-
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minant
ayy Q9 . - . Qyp
Qi djg . . - Qfp (L)
(10)
i1 @y L ain (])
Qnt Qpng - - - Qpp

(row numbers indicated on the right). If
Qigy B2p - - - Cnon 11

is a term of (4), then all its factors in (10) as well obviously remain
in different rows and different columns. Thus, determinants (4)
and (10) consist of the same terms. Term (11) in determinant (4) is
associated with the permutation

1 2 ...i ...j] ...n
( ) (12)
oy Ag o« o0 Gj o6 o Aj o o« Uy
and in determinant (10) with the permutation
1 2 ...j7j ...0 ...n
( ) (13)
QU Olg e vo O «ow O « o Qp

since, for example, element a;,. now lies in the jth row but remains

T
in the old a;th column. The permutation (43) however is obtained
from (12) via a single transposition in the upper row; it thus has
opposite parity. Whence it follows that all terms of determinant (4)
enter into determinant (10) with opposite signs. Determinants (4)
and (10) differ in sign alone.

Property 4. A determinant containing two identical rows is equal
to zero.

Indeed, let a determinant be equal to the number d and let
the corresponding elements of its ith and jth rows (i 5% j) be equal.
By Property 3, after an interchange of these two rows, the determi-
nant will be equal to the number —d. But since identical rows are
interchanged, the determinant does not actually change; thus, d =
= —d, whence d = 0.

Property 5. If all the elements of some row of a determinant are
multiples of some number k, then the determinant itself is a multip-
le of k.

Let all elements of the ith row be multiplied by k. Each term
of the determinant contains exactly one element of the ith row,



4. DETERMINANTS OF nTH ORDER 41

therefore every term acquires the factor %, which means the deter-
minant itself is a multiple of %.

This property admits of the following formulation as well:
a common factor of all elements of some row of a determinant may be
factored out of the determinant.

Property 6. A determinant with two proportional rows is equal
to zero.

Let the elements of the jth row of a determinant differ from the
corresponding elements of the ith row (i = j) by one and the same
factor k. Factoring this common factor & out of the jth row of the
determinant, we obtain a determinant with two identical rows, which
by Property 4 is zero.

Property 4 (and also Property 2 for n > 1) is obviously a spe-
cial case of Property 6 (for ¥ = 1 and & = 0).

Property 7. If all the elements of the ith row of a determinant
of order n are given as a sum of two terms:

a;; = b; + ¢, i=1...,n

then the determinant is equal to the sum of two determinants in which
all rows (except the ith) are the same as in the given determinantand
the ith row in one of the summands consists of the elements b; and in
the other, of the elements c;.

Indeed, any term of the given determinant may be represented
in the form

Q1033203 - + - Bigy; + - - Ona, = A10y02s - - - (bai—l— c“i) cee lng

= @10, 0203 - - + b“i co Gng - B10y020 - - - Coy »++ Ona

Collecting together the first summands of these sums (with the same
signs as the corresponding terms had in the given determinant)
we evidently obtain an nth-order determinant which differs from
the given determinant solely in the fact that the ith row has ele-
ments b; in place of elements @;;. Accordingly, the second summands
form a determinant in the ith row of which are the elements c;. Thus

aqy (/27 SR ain ayy Qg ... Qqp ayq aiz e Qypn
bi+eibyteo. . byten|=1b, by bai+1{cy o Cn
Qnyq Qno «+« Apn Any Qng -+« Apn Qpy Qny --- Qnn

Property 7 is readily extended to the case when any element of
the ith row is a sum of m summands, not two, m > 2.

We shall say that the ith row of a determinant is a linear combi-
nation of the remaining rows if for every row with subscript 7,
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i=1,...,i—1,i+1, ., n, there exists a number %; such
that when the jth row is multlphed by k; and then all the rows
except the ith are added together (addition of rows is to be under-
stood in the sense that the elements of the row are added in each
column separately), we obtain the ith row. Some of the coefficients
k; may be zero, that is the ith row will actually be a linear combina-
tion not of all but only of a few of the remaining rows. In particu-
lar, if only one of the coefficients %; is different from zero, we get the
case of proportionality of two rows. Finally, if the row consists
entirely of zeros, it will always be a linear combination of the
remaining rows—the case when all %; are zero.

Property 8. If one of the rows of a determinant is a linear combi-
nation of the other rows, then the determinant is zero.

For example, let the ith row be a linear combination of s other
rows, 1 <{s<Cn — 1. Then every element of the ith row will be
a sum of s summands, and for this reason, using Property 7, we can
represent our determinant in the form of a sum of determinants in
each of which the ith row will be proportional to one of the other
rows. By Property 6, all these determinants are zero; hence the
given determinant is zero as well.

This property is a generalization of Property 6 and, as will be
proved in Sec. 10, it provides the most general case of a zero deter-
minant.

Property 9. A determinant remains unchanged if to the elements
of one of its rows we add corresponding elements of another row mul-
tiplied by the same number.

Suppose to the ith row of determinant d we add the jth row,
j 7 i, multiplied by the number %; that is, in the new determinant
every element of the ith row will be of the form a;, + kaj,, s =
=1, 2, ..., n. Then, by Property 7, this determinant is equal
to the sum of two determinants, the first of which is d and the second
of which contains two proportional rows and is therefore zero.

Since the number & may also be negative, the determinant does
not change even if we subtract from one of its rows a tow multiplied
by some number. Generally, a determinant remains unchanged if to
one of its rows we add any linear combination of the other rows.

Let us consider an example. A determinant is called skew-symmetric if the
elements symmetric about the principal diagonal differ in sign alone, that

is, if for all ¢ and j it is true that ¢j; = — a;;, whence it follows that for all
i it is true that a;; = — a;; = 0. Thus, the determinant is of the form
0 ag a3 ... Qp
—ay; O a3 - .. ag,
d=|—a;3 —ay 0 ... ag
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Multiplying each row of this determinant by —1, we obtain the transpose of the
determinant, which is again equal to d, whence, by Property 5, it follows that
(—)nd=d

It then follows, for odd n, that —d = d, or d = 0. Thus eny skew-symmetric
determinant of odd order is equal to zero.

9. Minors and Their Cofactors

We have already pointed out that it would be difficult to com-
pute an rth-order determinant by applying the definition directly,
that is every time writing out all n! terms, determining their signs,
etc. There are simpler methods for evaluating determinants. They
are based on the fact that a determinant of order » may be expressed
in terms of a determinant of lower order. For this purpose we intro-
duce the following notion.

Let there be a determinant d of order n. Take an integer & which
satisfies the condition 1 <Lk <Crn — 1, and in the determinant d
choose arbitrary %k rows and k columns. The elements which lie at
the intersection of these rows and columns, that is, which belong
to one of the chosen rows and to one of the chosen columns will
obviously form a matrix of order 4. The determinant of this matrix
is called a minor of order k of the determinant d. We can also say
that the Ath-order minor is a determinant obtained by striking out
n — k rows and n — k£ columns in d. In particular, after striking
out one row and one column in the determinant we obtain a minor
of (n — 1)th order; on the other hand, separate elements of deter-
minant d will be minors of the first order.

Let us take a minor M of order %k in a determinant d of order =.
If we strike out the rows and columns at the intersection of which
this minor stands, we obtain the minor M’ of order (» — k) which
is called the complementary minor of the minor M. If, on the con-
trary, we strike out the rows and columns which contain elements of
the minor M’, then what remains is obviously minor M. Thus, we
can speak of a pair of complementary minors of the determinant. In
particular, the element «;; and the minor of order (n — 1) obtained
by striking out the ith row and the jth column in the determinant
will form a pair of complementary minors.

If a kth-order minor M is located in rows with the position num-
bers (indices) iy, iy, . . ., ix and in columns with the position num-
bers jy, ja . - ., Jau, then we use the term cofactor of the minor M
for the supplementary minor M’ taken with a plus or minus sign
according as the sum of the position numbers of all rows and columns
in which M is located is even or odd, that is, the sum

sy =i+l +. .. FGpt+jFlet . n (1)
In other words, the cofactor of M is the number (—1)*M".
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The product of any minor M of order k by its cofactor in a determi-
nant d is the algebraic sum, whose summands, which are obtained by
multiplying the terms of the minor M by the terms of the supplementary

minor M’ taken with the sign (—1)°M, are certain terms of the determi-
nant d; their signs in this sum coincide with the signs they have in
the determinant.

We begin the proof of this theorem with the case when the minor
M is located in the upper left corner of the determinant:

d“ e [lih ai, R+1 e d‘n
M .o
apy e (2293 Ap, ht1 -+ OQpn
d =
Ahi1, 1 Art1, k| Arey, k41 + - Qhig'n
M’
Qny -.. Qnk Qn,k+1 - -+ Qnn
that is, in rows with position numbers 1, 2, . . ., %k and in columns

with the same position numbers. Then the minor M’ will occupy
the lower right corner of the determinant. The number s, will then
be even:

su=1424 ... +hkt1424+ . dk=2(1+24 ... +Fk

therefore, the minor M’ itself will serve as the cofactor of M.
Take an arbitrary term

Qa, A2a, © * * Choy, (2)

of minor M; its sign in M is (—1)" if ! is the number of
inversions in the permutation

(1 2k) 3)

040y ... Op
In this minor, the arbitrary term
i1, By, @ht2, By o On, (4)

of minor M’ has the sign (—1) where !’ is the number of
inversions in the permutation

(Ic—{—i E+2 ... n )

Brr1 PBage ... Bn ®)

Multiplying the terms (2) and (4), we obtain a product of n
elements

511051612052 - Qno Qe 1, Bk+1ah+2' Buiz " (lnﬂn (6)

located in different rows and different columns of the determinant.
It is therefore a term of determinant d. The sign of term (6) in the
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product MM’ is a product of the signs of terms (2) and (4), i.e.,
(=D (=) = (=1, However, term (6) has the same sign in
the determinant d as well. Indeed, the lower row of the permutation

(1 2 ok B+ EL2 ... n)
o % .. O Brey Prez oo. Pa

made up of the subscripts of this term contains only [ ++ I’ inver-
sions, since no o can form an inversion with any one of the §§; all «
do not exceed %, all f are not less than & 1.

This proves the particular case of the theorem that we have
considered. Let us now take up the general case. Suppose that the
minor M lies in the rows with position numbers iy, i,, ..., iy and
in the columns with position numbers j;, j;, ..., j5, with the
condition that

I <<dg<<...<<ip, J1<p<<...<jn

Let us attempt, by interchanging rows and columns of the determi-
nant, to move the minor M to the upper left corner and let us try
to do this so that the complementary minor is not changed. For
this purpose, interchange the i;th row with the (i; — 1)th, then
with the (i — 2)th and so on until the i;th row occupies the first
row; this requires interchanging the rows iy — 1 times. Then we
successively interchange the i,th row with rows located above it
until it lies directly under the ijth row (that is, in the position of
the original second row); this, as can readily be verified, will require
interchanging the rows i, — 2 times. Similarly, we move the isth
row to the third row, and so on, until the i,th row takes up the
position of the kth row. In all, we will have to perform

G =D+ GC—-2)+...+ @ —Fk
=Gy Fig+ ...+ —A+2+...+k

transpositions of rows.

The minor M is thus located in the first £ rows of the new deter-
minant. We will now successively interchange the columns of
the determinant, the j;th column with all preceding ones, until it
occupies first place, then the j,th column until it occupies second
place, and so forth. In all, the columns will be interchanged

Gitijet . -+ —Q+2+...+Fk)
times.

All these transformations lead us to a new determinant d' in which
the minor M occupies the upper left corner. Since each time we
interchanged only adjacent rows or columns, the mutual positions of
the rows and columns containing the minor M’ in the determinant d
remain without change, and so the minor /' remains complementary
to the minor M in the determinant d’; however, it now occupies the
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lower right corner. As was proved above, the product MM’ is the
sum of some number of terms of the determinant d’ taken with the
same signs as they had in d’. However, the determinant d’ is obtained
from the determinant d by means of

Gy +ig+ ...+ — 1 +2+...+ k)]
+lGi+it. .+ —00+2+... 4+ k)]

transpositions of rows and columns, and so, as we know from Sec. 4,
the- terms of determinant d' differ from the corresponding terms of

determinant d in sign alone, (—1)°M [naturally, the even number
2142 4+ ... 4+ k) will not affect the sign]. From this it follows
that the product (—1)°™ MM’ consists of a certain number of terms
of the determinant d taken with the same signs as they have in that
determinant. The theorem is proved.

Note that if the minors M and M’ are complementary, then
the numbers sp; and sp- have the same parity. Indeed, the position
number of any row and any column enters as a summand in one and
only one of these numbers, and therefore the sum sy - sy is equal
to the total sum of the position numbers of all rows and columns of
the determinant, i.e., it is equal to the even number 2 (1 + 2 +
4+ ...+ n).

6. Evaluating Determinants

The results of the preceding section enable us to reduce computing
an nth-order determinant to the computation of several determi-
nants of order (n — 1). Let us first introduce notation: if a;; is an
element of determinant d, then M ;; denotes the complementary minor,
or, simply, the minor of that element, that is, the minor of order
(n — 1) obtained by striking out the ith row and the jth column of
the determinant. 4;; will denote the cofactor of the element a;;; thus,

Ay = (—1)i+’Mij

As was proved in the preceding section, the product a;;4;; is
the sum of several terms of the determinant d which enter into this
sum with the same signs as they have in the determinant d. It is
easy to count these terms: the number is equal to the number of
terms in the minor A;;, or (n — 1)L

Let us now choose any ith row of the determinant d and take
the product of each element of the row by its cofactor:

a;1 Ay, @ipdia, - - - @pdin (1)
No term of the determinant d can be in two different products of

those given in (1): all the terms of the determinant which enter
into the product a;,4;; contain the element a;; of the ith row and
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for this reason differ from the terms which enter into the product
a;,A4;,, that is, those which contain the element g;, of the ith row,
and so on.

On the other hand, the total number of terms of determinant d
which appear in all the products of (1) is equal to

(n —1N!n = n!

Generally, this exhausts all the terms of the determinant d. We have
thus proved that there is an expansion of the determinant d in terms
of the ith row:

d = aydy + @A + . . . + @l ()
The determinant d is thus equal to the sum of the products of all the
elements of an arbitrary row by their cofactors. A similar expansion
of the determinant can also be obtained about any column.

By replacing the cofactors in the expansion (2) by corresponding
minors with a plus or a minus sign, we reduce computation of an
nth-order determinant to the computation of several determinants
of order (n — 1). Note that if some of the elements of the ith row
are zero, then naturally the corresponding minors need not be
evaluated. It is therefore useful, first, to transform the determinant,
using Property 9 (see Sec. 4), so that a large enough number of
elements in one of the rows or in one of the columns are replaced
by zeros. Actually, Property 9 enables us to replace all elements,
except one, by zeros in any row or any column. Indeed, if a;; == 0,
then any element a;;, j =% k, of the ith row will be replaced by

a zero after subtracting the kth column multiplied by - 24 from

the jth column. Thus, evaluating a determinant of the nth order
may be reduced to computing a single determinant of order (r — 1).

Example 1. Evaluate the fourth-order determinant

3 1 -1 2
g —5 1 3 —4
2 0 11
1 —5 3 -3
Expand it about the third row by using the zero in that row:
11 2
d=(—1)3+1.2.1 1 3 —4
—5 3 =3
3 1 2 3 1 -1
4 (=131 =5 1 —4 | (—1)8e(—1)-[—5 1 3
1 -5 -3 1 -5 3

Evaluating the third-order determinants thus obtained, we get
d=2 .16 — 40 + 48 = 40
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Example 2. Evaluate the fifth-order determinant
—2 5 0-—-1 3
1 0 3 7 =2
d= 3— 0 5 -5
2 6—-4 1 2
0-3 -1 2 3
Adding three times the fifth row to the second and subtracting four times the
fifth row from the fourth row, we get
—2 5 0 -1 3
1 -9 0 13 7
d= 3— 0 5 —5
2 18 0 —7 —10
0—-3—-1 2 3

Expanding this determinant in terms of the third column, which contains only
one nonzero element (with the sum of subscripts, 5 4 3, being even), we get

—2 54 3
1 -9 13 7
d==0 5 4 5 s
2 18 —7 —10

We now transform this determinant by adding two times the second row to
the first row and subtracting three times the second from the third row, and two
times the second from the fourth:

0 —13 25 17
1 —9 13 7
0 26 —34 —26
0 36 —33 —24

and then expand it in terms of the first column. Noting that the only nonzero
element of this column is associated with an odd sum of subscripts, we get

d= —

—13 25 17
d= 26 —34 —26
36 —33 —24

Let us compute this third-order determinant after expanding it in terms of the
third row:

25 17 —13 17 13 25
4=36" 34 6 ' - (_33)'| 26 —26 |+ <_24)'| 26 —34'
= 36-(—72) — (—33)-(—104) 4 (—24)-(—208) = —1032

Example 3. If all the elements of a determinant located on one side of the
principal diagonal are equal to zero, then the determinant is equal to the product
of the elements on the principal diagonal.

This assertion is obvious for a second-order determinant. We therefore
prove it by induction, that is, we assume that for determinants of order (n — 1)
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it has been proved, and then we consider the nth-order determinant

ayy a4 443 - - - Qip
0 Qs azsz . - - azp
d= 0 0 a3z . .. a4gp
0 0 0 ...ap,
Expanding it in terms of the first column, we get
Q2 azs ... azp
0 ass ... asp

= ay4°

0 0 ... ap

But the induction hypothesis is applicable to the minor on the right-hand side:
it is equal to the product azass ... a,, and so

d = aya22a33 - . . Gyp

Example 4. The Vandermonde deicrminant is the determinant

1 1 1 1

a a; ag an

d=| a} a2 a2 a?
a1 D1 gf-1 a1

We shall prove that for any n the Vandermonde determinant is equal to the
product of all possible differences aj — aj, where 1 < j << i < n. Indeed, for
n = 2 we have -

a; az

= gy — ay

Suppose our assertion has already been proved for Vandermonde determinants
of order (n — 1). We transform determinant d as follows: subtract from the
nth (last) row the (n — 1)th row multiplied by ay, then from the (n — 1)th
row subtract the (n — 2)th also multiplied by a4, etc. Finally, from the second
row subtract the first multiplied by a;. We obtain

1 1 1 e 1

0 ay—ay ag—ay an—ay
d=10 a2—aja, a}—agag ... a}—aqa,

0 aB1—a4a}? all—a4a]? a1l —qg.alt~?

Expanding this determinant in terms of the first column, we arrive at a deter-
minant of order (n — 1); after factoring out common factors from all columns,

4—5760
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it will take the form

1 1 |
ay as an
d=(a,—ay) (a3—ay) ... (@n—a)-| o} @} ... a}
ap-? gp-? an—2

The last factor is the Vandermonde determinant of order (n — 1), that is, by
hypothesis, it is equal to the product of all the differences a; — a; for 2 <j <
<<t <€ n. Using the symbol I to denote a product, we can write

d=(az—ay) (a3—ay) ... (an—ay) H @—a)= [[ (ai—ay

2gi<lign 1<j<i<n
Using the same method, we can prove that the determinant
a1 a1 o}t ., af?
d'=| a} a} a} a}
2 a; 4ag an
1 1 1 1

i;equal 2o the product of all possible differences a; — aj, where 1 L1 <<} < n,
that is,

d'= [I (a;—-aj)
igi<jsn

Generalizing the above-obtained expansions of a determinant
about a row or a column, we prove the following theorem which
has to do with the expansion of a determinant in terms of several rows
or columns.

Laplace’s theorem. Let there be arbitrarily chosen, in a deter-
minant d of order n, k rows (or k columns), 1 < k< n — 1. Then
the sum of the products of all kth-order minors contained in the
chosen rows by their cofactors is equal to the determinant d.

Proof. Suppose, in determinant d, we choose rows with position
numbers iy, iy, ..., ip. We know that the product of any minor M of
order k located in these rows by its cofactor consists of a certain
number of terms of the determinant d taken with the signs they
have in the determinant. The theorem will consequently be proved
if we demonstrate that by making M run through all kth-order
minors located in the chosen rows we obtain all the terms of the
determinant, none being repeated.

Let

210,22az + « + @nan (3)
be an arbitrary term of the determinant d. We separately take

the product of those elements of the term which belong to the rows
we have chosen with position numbers iy, iy, ..., ix. This is the
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product
Biyaz, Aisag, - - - Ligay, (4)

The k factors of this product lie in %k distinct columns, namely,
in the columns with position numbers o;;, @, . . ., @;,. These

position numbers of the columns are consequently determined by
specifying the term (3). If by M we denote the kth-order minor
lying at the intersection of the columns with these position numbers
Oyyy Qigy « « oy Oy and of the earlier chosen rows with the position
numbers iy, i, ..., iz, then the product (4) is one of the terms
of the minor M, and the product of all the elements of the term (3)
not in (4) is a term of its complementary minor. Thus, any term
of the determinant enters into the product of a certain (quite definite)
minor of order k£ made up of the chosen rows multiplied by its comple-
mentary minor, and is a product of quite definite terms of these
two minors. Finally, in order to obtain the term that we took of
the determinant with the sign which it has in the determinant,
it remains, as we know, to replace the complementary minor by the
cofactor. This completes the proof of the theorem.

"It is possible to give a slightly different proof, namely,
the product of any kth-order minor M located in the chosen rows
by its cofactor consists of k! (» — k)! terms, since the kth-order
minor M consists of k! terms and its cofactor, differing- possibly
from the minor of order » — k in sign alone, contains (r — k)!
terms. On the other hand, the number of kth-order minors contained
in the chosen rows is equal to the number of combinations of » taken
k at a time, that is, it is equal to the number

n!
k! (n—k)!

Multiplying out, we find that the sum of the products of all
kth-order minors of the chosen rows by their cofactors consists
of n! summands. Such, however, is the total number of terms of the
determinant d. The theorem will thus be proved if we demonstrate
that any term of the determinant d appears at least once (and,
in that case, exactly once) in the sum at hand of the products
of the minors by their cofactors. It is left to the reader to repeat
(with slight simplifications) the reasoning given in the first proof.

The Laplace theorem enables one to reduce the computation
of an nth-order determinant to the computation of several deter-
minants of orders k and n — k. Generally speaking, there are very
large number of such new determinants and so it is advisable to
apply the Laplace theorem only when it is possible to choose k& rows
(or columns) in the determinant so that many of the kth-order
minors located in these rows are zero.

LES
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Example 1. Suppose we have a determinant, all elements of which in the
first ¥ rows and the last n — % columns are zero:

aqyy ... ain

ary ... 1333
Gh4+4,1 +++ Ch+1, B Ch44,h+i -+ Ch+i, n

d—=

any ... Qpp An, k41 +.« @Gpp
This determinant is then equal to the product of two of its minors:

a4 ... @4p Chii, ki -+ Gk, n

apy ... Qpp An,k+i -.- Qnn

To prove this, it suffices to expand the determinant about the first & rows.
Example 2. Suppose we have a determinant d of order 2n, in the upper
left corner of which is an nth-order minor composed entirely of zeros. If the
nth-order minors lying in the upper right and lower left and lower right corners
of the determinant are denoted, respectively, by M, M’ and M”, so that

hen d =

M
the determinant may be written symbolically as d = I aTat t

= (—)"MM'.
To prove this, expand the determinant in terms of the first » rows and
note that

sy=A0+24+ ...+ Fr+ D)+ n+2+...4 2n)=n+ 2n2

that is, sy and n are of the -same parity.
Example 3. Evaluate the determinant

—4 12-2 1
0 30 1 -5
d= 2-31-3 1
-4 -13-1 0
0 40 2 5

Expanding it about the first and third columns which contain nicely located
zeros, .we get

3 1 -5
—4 2
d= (_1)1+3+143’ : 1 ‘. —1 —1 0
4 2 5
3 1 -5
4 (—1)r+a+143 —4 2 ‘, -3 -3 1
o 4 2 5
1 -2 1
2
4 (_1)3+4+1+3 l 1 | 3 1 —5
- 4 2 5

= (—8)+(—20) — (—10)-(—62) — 7-87 = —1069
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7. Cramer’s Rule

«. The foregoing theory of determinants of order 7 allows us to show
that these determinants, which were introduced only by analogy
with second- and third-order determinants, may, like the latter,
be used to solve systems of linear equations. Let us first make one
additional remark regarding expansions of determinants in terms
of a row or a column; this remark will often come in handy in the
sequel.

Expand the determinant

ayq Ay Ay
a Ao ; a
21 25 2n
d =
ani .- o anj - o ann

about the jth column:
d = ar1inj + aszzj “‘l" PN + anjAnj

Then, in this expansion, replace the elements of the jth column by
a set of n arbitrary numbers b,, b,, ..., b,. The expression

bidy; + byda; + . . . + bpdny

which you obtain will obviously serve as an expansion about the
jth column for the determinant

2T by Q1n

(121 bZ Qop
d =

ny bn . Ann

which is obtained from the determinant d by replacing its jth column
by a column of the numbers by, b,, . . ., b,. Indeed, replacing the
jth column of d does not affect the minors of the elements of the
column, and for this reason does not affect their cofactors.

Let us apply this to the case when for the numbers by, b,, . . ., b,
we take elements of the kth column of the determinant d when
k 5~ j. The determinant resulting from such a replacement will
contain two identical columns (jth and kth) and therefore will be
zero. Hence, the expansion of this determinant about its jth column
will also be zero, that is

Ay + agpdgy + .o+ apdn; =0 for j £k

Thus, the sum of the products of all elements of a certain column
of a determinant by the cofactors of the corresponding elements of
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another column is zero. The same result of course holds true for the
rows of a determinant.

Let us now examine systems of linear equations; we will confine
ourselves for the time being to systems in which the number of equations
is equal to the number of unknowns, i.e., systems of the form

@3y + 3%y + . . .+ G = by,
Aoy + @gozy + . . .+ Ay, = by,

)

1Ty + g2y + . . o Gy = by

We also assume that the determinant d made up of the coeffi-
cients of the unknowns of the system (called, for short, the deter-
minant of the system) is nonzero. Given these assumptions, we will
prove that the system (1) is consistent and even determinate.

In Sec. 2, when we solved a system of three equations in three
unknowns, we multiplied each of the equations by a factor, and
then added the equations; the coefficients of two of the unknowns
proved to be zero. We now see immediately that the factors which
we used were cofactors, in the determinant of the system, of the
element which was the coefficient of the desired unknown in the
given equation. We now use this device to solve system (1).

First suppose that system (1) is consistent and oy, ¢t,, . . ., Oy

is one of its solutions. Hence, the following equations hold true:
a0y + Ay + . ..+ apa, = by,

Aoty + g0ty + . . . F Byn0, = by, @)

@y + Gu0 + . . .+ apuo, = by
Let j be any one of the numbers 1, 2, . . ., 7. Multiply both sides
of the first equation of (2) by A,;, that is, by the cofactor of the
element a;; in the determinant d of the system. Multiply both
sides of the second equation by A,;, and so on. Finally, multiply
both sides of the last equation by A4,;. Adding together separately

the left and right sides of all equations, we arrive at the following
equation:

(aHAij + a'ziAzj + ...+ aniAnj) ay
+ (apdi; + @yAs; + . oo+ Gnpdny) ay

.......................

.......................

+ (ainAij + a’znAzj + .. . + a‘nnAnj) Gt,;
= blAij —I—' bzAzj + .. + bnA,,J
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The coefficient of a; in this equation is d, the coefficients of
all other « will, due to the remark made above, be zero, and the
constant term will be the determinant obtained from the determinant
d after replacing ‘the jth column in it by a column of the constant
terms of system (1). If, as in Sec. 2, we denote this latter determinant
by d;, then our equation takes the form

d&j = dj

whence, because d %0,
: &
%=

This proves that -if system (1) is consistent, then it possesses the
unique solution

dy dz dn

a1=—d", a2=—a—, c ey an=—l-1—- (3)

We will now show that the set (3) of numbers actually satis-
fies system (1) of equations, that is, that (1) is consistent. We will
make use of the following commonly employed symbolism.

Any sum of the form ay 4+ a, + ... + a, will be denoted

briefly by 2 a;. But if we consider a sum whose terms a,; are labelled
=1

with two subseripts, and i=1, 2,...,n,j=1,2,..., m,
then we can first take the sums of the elements with fixed first

subscript, that is, the sums Eau, where i =1, 2, ., n, and

then add all the sums. We then obtain the followmg notation for
the sum of all elements a;;:

However, we could first add the summands a;; with fixed second
subscript and then combine the resulting sums. Thus

2 2 aij = 2 2 aiy
i=1 =1 =1i=1

i.e., in a double sum the order of summation may be reversed.
Now put the values of the unknowns (3) into the ith equation
of system (1). Since the left Slde of the ith equation may be written

as Ealjx, and since d; = ZbkAh_,, we get

2 %_,_?;%é 0 (é by - }_‘_, bk(gauAu)

i=1 =1 j=1
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With regard to these manipulations, note that the number % turned

out to be a common factor in all summands and was therefore taken
outside the summation sign; besides, after changing the order of
summation, the factor b, was factored out of the inner sum since
it is not dependent on the subscript j of the inner summation.

We know that the expression 2 @A = Ay + 045, + . ..

.+ amA;m will be equal to d for k. = i and to O for all other
k's. Thus, in our outer sum with respect to % there will be only
one summand left, namely, b;d; i.e.,

Zaz ———— bid=b1

This is proof that the set (3) of numbers is indeed a solutlon to the
system (1) of equations.

We have obtained the following important result.

A system of n linear equations in n unknowns, the determinant
of which is nonzero, has a unique solution. This solution is obtained
from formulas (3), that is by means of Cramer’s rule. The formula-
tion of this rule is the same as in the case of a system of two equa-
tions (see Sec. 2).

Example. Solve the system of linear equations
2z + z—5:m+ = 8,
zy — 3zo — bz, = 9,
2z — z3 4 2z = —5,
2y + 4dag — Tzg+ 6z, = O
The determinant of the system is different from zero:

2 15 1
1 -3 0—6

= =2

d= o 24 2 7
1 4-7 6

and so Cramer’s rule is applicable. The values of the unknowns will have as
numerators the determinants

8 1 —5 1 2 85 1
9 -3 0 —6 1 9 0—6
d — =81 = = — 108,
! -5 2 -1 2 v B=1 -5 1 2
0 4—7 6 1 0—7 6
2 1 8 1 2 15 8
1 -3 9—6 1 -3 0 9
=10 25 2 [ Sl PRSI bl

1 4 0 6 1 4-—-7 0
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Thus,
2 =3, 2= —4, 3= —1, z,=1

will be the unique solution set of our system.

We did not consider the case when the determinant of a system
of n linear equations in » unknowns (1) is zero. It will be discussed
in Chapter 2, where it will find its place in the general theory of
systems involving any number of equations in any number of
unknowns.

One more remark is in order with respect to systems of » linear
equations in 7 unknowns. Given a system of » homogeneous linear
equations in 7 unknowns (see Sec. 1):

ayxy + apzr, + ... + apz, =0,
Qo 2y + Gpoz, + . ..+ gz, = 0,
(4)
@p1 2y + ppzy + ... Gz, =0
In this case, all determinants d;, j =1, 2, ..., r, contain

a column made up of zeros and are therefore equal to zero. Thus,
if the determinant of system (4) is nonzero, that is if Cramer’s rule
is applicable, then the only solution of system (4) will be the trivial
solution

z1=0, 2,=0,...,2,=0 (5)

Whence follows the result:

If a system of n homogeneous linear equations in n unknowns has
nonirivial solutions, thern the determinant of the system is necessarily
2ero.

In Sec. 12 it will also be shown that, conversely, if the determi-
nant of such a system is indeed equal to zero, then the system will
have solutions other than the trivial solution, the existence of
which is obvious for every system of homogeneous equations.

Example. For what values of & can the system of equations
kxl + z=0,
zy + kzy = 0

have nontrivial solutions?
The determinant of this system

k1
= k2 —1
1)
will be zero only when & = =+ 1. It is easy to see that for each one of these
two values of & the given system will indeed have nontrivial solutions.

The significance of Cramer’s rule lies mainly in the fact that
for cases when it is applicable it offers an explicit expression of
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the solution of the system in terms of the coefficients of the system.
However, Cramer’s rule involves very unwieldy computations; in
the case of a system of n linear equations in n unknowns, one has
to compute n -+ 1 determinants of the nth order. The method of
successive elimination of unknowns given in Sec. 1 is much more
convenient in this respect since the computations involved here
are actually equivalent to those required in the evaluation of a single
determinant of the nth order.

In applications, we often encounter systems of linear equations
whose coefficients and constant terms are real numbers obtained
in measurements of physical quantities and as such are known only
approximately, to within a specified accuracy. The foregoing methods
are then sometimes rather inconvenient because they lead to results
with poor accuracy. A variety of iterative procedures have taken
their place. These are methods which yield solutions of systems
of equations via successive approximations of the unknowns. The
interested reader will find such methods described in texts dealing
with the theory of approximate calculations.



CHAPTER 2

SYSTEMS OF LINEAR
EQUATIONS
(GENERAL THEORY)

8. n-Dimensional Vector Space

To construct a general theory of systems of linear equations
we will need more than the apparatus that sufficed with such success
in the solution of systems to which Cramer’s rule was applicable.
Besides determinants and matrices we will need a new concept,
which, perhaps, is of still greater general mathematical interest—
that of multidimensional vector spaces.

First a few preliminary remarks. From the course of analytic
geometry we know that any point in a plane is determined {for
specified coordinate axes) by its two coordinates, which is to say,
by an ordered set of two real numbers. Any vector in a plane is
determined by its two components, which again is an ordered set
of two real numbers. Similarly, a point in three-dimensional space
is determined by three coordinates, a vector in space, by three
components.

In geometry and also in mechanics and physics we often encoun-
ter objects whose specification requires more than three real numbers.
For instance, let us consider a collection of spheres in three-dimen-
sional space. To specify a sphere completely we need the coordinates
of its centre and the radius; this amounts to an ordered set of four
real numbers, of which, incidentally, the radius can only assume
positive values. On the other hand, let us consider various positions
of a solid in space. The position of a solid will be fully defined if
we indicate the coordinates of its centre of gravity (this requires
three real numbers), the direction of some fixed axis passing through
the centre of gravity (two numbers—two out of three direction
cosines), and, finally, the angle of rotation about this axis. Thus,
the position of a solid body in space is determined by an ordered
set of six real numbers.

These examples suggest considering collections of all possible
ordered sets of n real numbers. After introducing the operations
of addition and multiplication by a scalar (this will be done later
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on by analogy with appropriate operations involving vectors in
three-dimensional space expressed in terms of components), we call
this collection an n-dimensional vector space. Thus, n-dimensional
space is only an algebraic structure which retains certain of the
simplest properties of collections of vectors of three-dimensional
space emanating from a coordinate origin.

An ordered set of n numbers (an ordered n-tuple)

a = (ay, @, ..., @) (1)
is called an n-dimensional vector. The numbersa;, i =1, 2, ..., n,
will be called the components of the vector a. The vectors o and
B = (biv bm L] bn) (2)
will be considered equal if their components, in the same places,
coincide, that is, if a; = b;, i =1, 2, ..., n. Lower-case Greek

letters will be used to denote vectors and lower-case Latin letters to
denote scalars.

Examples of vectors are: (1) Vector segments (directed line-
segments) emanating from the coordinate origin in a plane or in
three-dimensional space will, given a fixed system of coordinates,
be two- and three-dimensional vectors in the meaning of the definition
given above. (2) The coefficients of a linear equation in » unknowns
constitute an n-dimensional vector. (3) Any solution of a system
of linear equations in n unknowns is an n-dimensional vector.
(4) If an s by » matrix is given (s rows and » columns), then its
rows are n-dimensional vectors, its columns, s-dimensional vectors.
(5) The s by n matrix itself can be regarded as an sn-dimensional
vector: all we need to do is read the elements of the matrix one
after the other, row by row; in particular, any square matrix of
order » may be regarded as an n*-dimensional vector, and it is
quite obvious that any nr?-dimensional vector may be obtained
in this way from a matrix of order .

The sum of vectors (1) and (2) is the vector

a+ﬂ=(a'i+bha2+b27---ian+bn) (3)

whose components are sums of the corresponding components of the
vectors being added. Addition of vectors is commutative and associa-
tive because of the commutativity and asseciativity of the addition
of numbers.

The role of zero is played by the zero vector:

0=(,0,...,0 (4)
Indeed,
a+0=(a +0,a+0,..., a,-+0)
= (a4, Qg . « -, an)ia
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We use the same symbol 0 for the zero vector as for the number 0.
There is never any difficulty in deciding whether it is the number
zero or the zero vector we are talking about at any time. However,
from now on the reader should bear in mind the possibility of diffe-
rent interpretations of the symbol O.

We use the term opposite vector (negative) of the vector (1) for
the vector

—C = (_a'h —Qgy . . .y —0:,.,) (5)

It is obvious that a 4 (—a) = 0. It is now easy to see that for
the addition of vectors there is an inverse operation—subtraction:
the difference between the vectors (1) and (2) is the vector & — p =

=a+(_ﬁ)’ or
o—PB=1(— by, @y — by, ., ., @ — by) ©)

The addition of n-dimensional vectors defined by formula (3)
arose out of the geometric addition of vectors in the plane or in
three-dimensional space performed by the parallelogram rule. In
geometry we have to do with the multiplication of a vector by a real
number (“scalar”): the multiplication of a vector a by a scalar &
signifies, for k¥ > 0, a stretching of o. by a factor k (it is compression
if k<<1), and for k << 0 a stretching by a factor | k| and reversal
of direction. Expressing this rule in terms of the components of the
vector o and passing to the general case at hand, we obtain the
following definition.

The product of a vector (1) by a scalar k is the vector

ka = ak = (kay, ka,, . . ., ka,) Q)

whose components are equal to the product of the corresponding
components of the vector o by k.

From this definition there follow important properties which
may be verified by the reader:

k(o £ B) = ka =+ K, ®
(k+)a =k * la, (9
k(loa) = (k) o, (10)
la=a (11)

The following properties are just as easy to verify but they may
also be obtained as corollaries to Properties (8)-(11):

0-a = 0, (12)
(—1).a = —a, (13)
k-0 =0, (14)

if ko = 0, then either k¥ = 0, or a = 0. (15)
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The collection of all z-dimensional vectors with real components
regarded in conjunction with the operations of addition of vectors
and multiplication of a vector by a scalar is called an n-dimensional
vector space.

Note that the definition of an n-dimensional vector space does
not include multiplication of a vector by a vector. It would be
easy to define multiplication of vectors—assume, say, that the
components of a product of vectors are equal to the products of the
corresponding components of the factors. However, such multiplica-
tion would not find any serious applications. Thus, vector segments
emanating from a coordinate origin in the plane or in three-dimen-
sional space constitute (for a fixed system of coordinates) a two-
dimensional and, respectively, a three-dimensional vector space.
The addition of vectors and the multiplication of a vector by a scalar
are, as we have pointed out above, geometrically important, whereas
it is impossible to give any reasonable geometrical interpretation
to the componentwise multiplication of vectors.

Let us consider another example. The left side of a linear equation
in » unknowns, that is, an expression of the form

f=ax + apzy, + .. . + az,

is called a linear form in the unknowns z;, z,, . .., z,. The linear
form f is obviously defined completely by the vector (a4, a5, . . ., a,)
of its coefficients; conversely, any n-dimensional vector uniquely
determines some linear form. The addition of vectors and the multi-
plication of a vector by a scalar become corresponding operations
involving linear forms; these operations were extensively used
in Sec. 1. Componentwise multiplication of vectors in this instance
is meaningless. :

9. Linear Dependence of Vectors

A vector B of n-dimensional vector space is proportional to
vector a if there exists a number k& such that p = ko [see formula (7)
of the preceding section]. In particular, the zero vector is propor-
tional to any vector o due to the equality 0 = 0-c. But if f = ka
and P 5= 0, whence k== 0, then o = k~!f, that is, for nonzero
vectors, proportionality possesses the property of symmetry.

A generalization of the concept of proportionality of vectors
is the following concept which we have already (in the case of rows
in a matrix) encountered in Sec. 4; a vector P is called a linear
combination of the vectors oy, oty ..., o, if there exist numbers
ly, 1y ..., ls such that

B =lag 4 lyas + ... + L,
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Thus the jth component of the vector f, j =1, 2, . .., n, is equal
(because of the definition of a sum of vectors and a product of a vector
by a scalar) to the sum of the products of the jth components of
the vectors oy, ag, . . ., &g by Uy, I, ... , ls, respectively.

A system of vectors )

Clgy, Olgy = « oy Cp_g, O (r >2) ¢))

is linearly dependent if at least one of the vectors is a linear combi-
nation of the remaining vectors of the system; it is called linearly
independent otherwise.

We give another form of this extremely important definition:
a system of vectors (1) is linearly dependent if there exist numbers
ki, kg, . . ., k., atleast one of whick is nonzero, such that the equation

koy + ko + ..o+ ko, =0 (2)
holds true.
Proof of the equivalence of these two definitions is not difficult.

For example, let the vector a, of system (1) be a linear combination
of the remaining vectors:

Cp = liaj + lgag + - + l,_ia,_i
From this there follows the equation
liai + lzaz + e + l,_ioc,_i — U, = 0

which is like (2), where k; =1, for i =1, 2, ..., r—1 and
» = —1 that is k. 54 0. Conversely, let the vectors (1) be connected
by the relation (2) in which, say, k., = 0. Then

o= (=)t () et o () o

Vector o, has proved to be a linear combination of the vectors
ALy, Agy « & oy ar—i’

Example. The system of vectors
ay=(5, 2, 1), ag=(—1, 3,3), as=1(9, 7, 5), au=(3, 8, 7
is linearly dependent, since the vectors are connected by the relation
doy — g — 3otz + 204, = 0

In this relation all the coefficients are different from zero. However, there are
other linear dependences between the vectors, dependences in which some of
the coefficients are zero, for instance

20y + oy —ag =0, 3a; + a3 — 20, = 0

The latter definition of a linear dependence given above is also
applicable to the case of r = 1, that is, to the case of a system
consisting of one vector a: this system is linearly dependent if and
only if o« = 0. Indeed, if ¢ = 0, then, say, for X = 1 we will have
ka = 0. Conversely, if ko = 0 and k % 0, then o = 0.
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Note the following property. of the concept of linear dependence.

If some subsystem of. the system (1) of vectors is linearly dependent,
then the whole system (1) is linearly dependent. - f

Indeed, let the vectors ay, as, ..:, o, of system (1), where
s <<r, be connected by the relation .

kiay + ko 4 . .o F ko= 0
in which not all coefficients are zero. It then follows that the relation
k‘jai + k2a2 + « v + ksas + 0'a8+1 + « .. + O'Ctr =0

or system (1) is linearly dependent. ~

From this property follows the linear dependence of any system
of vectors containing two equal or, generally, two proportional
vectors and also of any system containing the zero vector. The
property we have just proved can also be stated as follows: if a system
" (1) of vectors is linearly independent, then any subsystem of (1) is also
linearly independent.

The question arises as to how many vectors a linearly indepen-
dent system of n-dimensional vectors can contain and, in particular,
whether there exist systems with an arbitrarily large number of
vectors. To answer this question, let us consider the following
vectors in an n-dimensional vector space:

gy = (17 Ov 0’ . o0y O)a
=(,1,0...,0),
nT O ®
e, = (0,0, 0, ..., 1)
They are called unit vectors of that space. The system of unit vectors
will be linearly independent: let

k181+k282+...+kn8n=0

Since the left side of this equation is equal to the vector (ky, ks . .
. .y k), it follows that

(Fyy Kyy -« » K) =0

ork,=0,i=1,2,...,n, since all the components of the zero
vector are zero, and equality of vectors is equivalent to equality
of their corresponding components.

Thus, in n-dimensional vector space we have found one linearly
independent system consisting of n vectors. The reader will learn
later on that there actually exist an infinite number of distinct
systems of that kind in this space.

On the other hand, let us prove the following theorem.

For s > n, any s vectors of an n-dimensional vector space constitute
a linearly dependent system.



© 9. LINEAR DEPENDENCE OF VECTORS 65

Let there be given the vectors

Tay = (ay, @iz, -+ - -y Q1n),
Qg = (Ba1, Bagy . . +» Ggp),
‘ s = (@Bgq, Gogy - - -y Agn) :
We have to choose scalars ky, k,, . . ., kg, not all zero, such that
kiog + kporg + o0 0+ kgog =0 (%)

Passing from (4) to the corresponding equations between the compo-
nents, we get

ayky + ayks + . . . + agk, = 0,

ek + ks + .. .+ @gks = 0, )

a'inki + agnkz + [N + asnks =0
However, equations (5) constitute a system of n» homogeneous
linear equations in s unknowns ki, ks, ..., k. The number of
equations in this system is less than the number of unknowns, and
therefore, as proved at the end of Sec. 1, the system has nontrivial
solutions. We can thus choose scalars ki, k,, ..., k, (not all

zero) which will satisfy requirement (4). The theorem is proved.

Let us call a linearly independent system of r-dimensional
vectors

Qy, Clgy = . -y Uy (6)

a mazimal linearly independent system if by adjoining to this
system any n-dimensional vector § we obtain a linearly dependent
system. Since in every linear dependence relating the vectors
Qy, Clgy « - -, Op, P, the coefficient of B must be nonzero—otherwise
system (6) would be linearly dependent—it follows that the vector
B is expressed linearly in terms of the vectors (6). Therefore the
system (6) of vectors is a maximal linearly independent system if
and only if the vectors (6) are linearly independent and any n-dimen-
sional vector P is a linear combination of them.

From the results obtained above it follows that in an n-dimensional
space any linearly independent system consisting of n vectors is mazimal
and also that any maximal linearly independent system of vectors of
this space consists of at most n vectors.

Every linearly independent system of n-dimensional vectors is
contained in at least one mazimal linearly independent system. Indeed,
if a given system of vectors is not maximal, then one vector may
be added to it so that the resulting system remains linearly inde-
pendent. If this new system is still not maximal, then another vector

5—5760
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may be added to it, and so on. However, this process cannot continue
endlessly because every system of n-dimensional vectors consisting
of n 41 vectors is linearly dependent.

Since every system consisting of one nonzero vector is linearly
independent, we find that any nonzero vector is contained in some
mazximal linearly independent system, and for this reason there are
infinitely many different mazimal linearly independent systems of
vectors in an n-dimensional vector space.

The question arises: do there exist, in this space, maximal
linearly independent systems with a smaller number of vectors
than n or is the number of vectors in any such system invariably
equal to n? The answer to this important question will be given
below after a few preliminary investigations.

If vector P is a linear combination of the vectors

Olgy Olgy o « oy Cp )

it is often said that B is expressed linearly in terms of system (7).
Naturally, if vector f is linearly expressed in terms of some subsystem
of this system, then it will be linearly expressed in terms of (7)
as well—it would be sufficient to take the remaining vectors of the
system with coefficients equal to zero. Generalizing this terminology,
we say that the system of vectors

617 62’ ce ﬁs (8)

is expressed linearly in terms of system (7) if every vector f;, i = 1, 2,
.., 8, is a linear combination of the vectors of (7).
We prove the transitivity of this concept: if system (8) is expressed
linearly in terms of (7), and the system of vectors

Yir Yoo « « «» Yt (9)

is expressed linearly in terms of (8), then (9) is expressed linearly in
terms of (7) as well. ;
Indeed,

8
v= 2 bbo  J=12 (10)
T
but pi= 2 kimOm, i=1, 2, ..., s. Substituting these expressions
m=1

into (10), we get

s T r 8

vi= 2 L (D kimom)= 2 (X Liikim) om
i=1 m=1 m=1 i=1

In other words, every vector vy, j = 1, 2, ..., t, is a linear com-
bination of vectors of system (7).
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Two systems of vectors are termed equivalent if each one of them
can be expressed linearly in terms of the other. From the proof
given here of the transitivity of the property of systems of vectors
to be expressed linearly in terms of each other there follows the
transitivity of the concept of equivalence of systems of vectors and
also the following assertion: if two systems of vectors are equivalent
and if some vector is expressed linearly in terms of one of these systems,
then it will be expressed linearly in terms of the other too.

One cannot assert that if one of two equivalent systems of vectors
is linearly independent, then the other system also possesses this
property. But if both systems are linearly independent, then an
important statement can be made with respect to the number of
vectors entering into them. First let us prove the following theorem
which, because of the role it will play in the future, it will be con-
venient to term a fundamental theorem.

If in an n-dimensional vector space we have two systems of vectors:

(I) iy Loy « « oy CUpy
(II) ﬁi’ 527 R ﬁs

the first being linearly irdependent and expressible linearly in terms
of the second, then the number of vectors in the first system does not
exceed that in the second system, or r < s.

Let r>s. By hypothesis, each vector of system (I) can be expressed
linearly in terms of system (II):

oy = a’iiﬁi + ‘11252 L + aisﬁsv
0y = Ggifs + Py + . . . + agfs (1)
or = Py 4 Crafs + . . .+ arsfs
The coefficients of these linear expressions constitute a system of
r s-dimensional vectors:
Y1 = (@11, Q1g, - - -, Gy,
Y2 = (@21, Ggoy - - -, Gg4),

Y = (@1, @roy - - -, 8rg)
Since r > s, these vectors are linearly dependent, that is,

kype + kgve + - .. + Ry =0

where not all coefficients ky, k,, . . ., k, are zero. Whence we arrive
at certain equations between the components:

r
‘g‘kiau——*o, i=1,2, ..., s (12)
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Let us now consider the following linear combination of vectors
of system (1):

kia, + koo, + . —|— k.o,

or, more compactly, Z kiag Utilizing (11) and (12), we get
&

r

3 k=3 b (S ap) = 3 (3 biaw) py=0

But this runs counter to the linear independence of system (1).

From the fundamental theorem just proved we have the following
result.

Any two equivalent linearly independent systems of vectors contain
an equal number of vectors.

Any two maximal linearly independent systems of n-dimensional
vectors are evidently equivalent. They therefore consist of one and
the same number of vectors, and since (as we know) there exist
systems of that kind consisting of » vectors, we finally get the answer
to the earlier posed question: every maximal linearly independent
system of vectors of an n-dimensional vector space consists of n vectors.

Some corollaries follow.

If in a given linearly dependent system of vectors we take two
maeximal linearly independent subsystems, that is, subsystems to
which no vector of our system can be adjoined without spoiling the linear
independence, then these subsystems contain an equal number of vectors.

Indeed, if in the system of vectors

Qg Olgy = o oy Oy (13)
the subsystem
Olgy Qlgy « = vy Qg s<r (14)

is a maximal linearly independent subsystem, then any one of the
vectors cers, . . ., @, is expressible linearly in terms of system (14).
On the other hand, any vector a; of system (13) is linearly expressible
in terms of this system: it is only necessary to take the coefficient
1 for the vector o;, and the coefficient O for all the other vectors.
It is now easy to see that systems (13) and (14) are equivalent. From
this it follows that (13) is equivalent to any one of its maximal
linearly independent subsystems, and therefore all the subsystems are
equivalent; i.e., being linearly independent, they contain the same
number of vectors each.

The number of vectors in any maximal linearly independent
subsystem of a given system of vectors is termed the rarnk of the
system. Taking advantage of this concept, we derive yet another
corollary from the fundamental theorem.
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Suppose there are two systems of n-dimensional vectors:
Ogy gy + « «y Oy (15)
and '

ﬂh 627 MR ﬁs (16)

which are not necessarily linearly independent; the rank of system (15)
is equal to the number k, the rank of system (16), to the number 1. If
the first system is expressed linearly in terms of the second, then k < 1.
But if these systems are equivalent, then k = I.
In fact, let
Qligy Oigy - - -y aih (17)

and

ﬁfn ﬁ.iz LR | ﬁil (18)

be, respectively, any maximal linearly independent subsystems
of (15) and (16). Then systems (15) and (17) are equivalent and
the same holds true for (16) and (18). From the fact that (15) is
linearly expressible in terms of (16) It now follows that (17) is
also linearly expressible in terms of (16) and therefore in terms of the
equivalent system (18). It then remains, utilizing the linear indepen-
dence of system (17), to apply the fundamental theorem. The second
gssertion of the corollary being proved follows directly from the
rst.

10. Rank of a Matrix

If we are given a system of n-dimensional vectors, it is natural
to ask whether this system of vectors is linearly dependent or not.
One cannot hope to find that in every specific instance the question
will be resolved without difficulty: a superficial examination of the
system of vectors

x = (21 _5y 11 —1)’ B = (1’ 3a 6’ S)a Y = (""17 47 17 2)

fails to reveal any linear dependences in it, though in reality these
vectors are connected by the relation

Tao — 3p + 14y =0

One way of settling this issue is given in Sec. 1. Since the com-
ponents of the given vectors are known, we consider as unknown
the coefficients of the desired linear dependence and obtain a system
of homogeneous linear equations, which we solve by the Gaussian
method. In this section we suggest a different approach, which will
also bring us closer to our principal objective—the solution of arbitra-
ry systems of linear equations.



70 CH. 2. SYSTEMS OF LINEAR EQUATIONS

Suppose we have an s by n matrix (s rows and n columns)

ayq diz ... Qip

Aoy Agg . . . Qgp
A =

Agy Ago - « - Qg

the numbers s and n not being related in any way. Regarded as
s-dimensional vectors, the columns of this matrix may, generally
speaking, be linearly dependent. The rank of the system of columns,
that is the maximal number of linearly independent columns of
matrix A (more precisely, the number of columns in any maximal
linearly independent subsystem of the system of columns) is called
the rank of the matrix.

Naturally, in the same way the rows of matrix 4 may be regarded
as n-dimensional vectors. It appears that the rank of the system
of rows of the matrix is equal to the rank of the system of its columns,
that is, it is equal to the rank of the matrix. The proof of this extre-
mely unexpected assertion will be obtained after we point out
yet another way of defining the rank of a matrix (which at the same
time indicates a practical method of evaluation).

Let us first generalize the concept of a minor to the case of rectan-
gular matrices. In matrix A we choose arbitrary k rows and % columns,
k < min(s, n). The elements at the intersection of these rows and
columns constitute a square matrix of order %k, the determinant of
which is called the kth-order minor of matrix 4. We will now be
interested in the orders of those minors of A which differ from zero,
namely, the highest one of these orders. In searching for it, it is well
to bear in mind the following: if all kth-order mirors of matriz A
are zero, then so also are all minors of higher order. Indeed, expanding
any minor of order k£ 4 j, 2 <k -+ j < min (s, n), by the Laplace
theorem in terms of any k& rows, we represent this minor as a sum
of minors of order & multiplied by certain minors of order j, thus
proving that it is zero.

Let us now prove the following theorem on the rank of a matrix.

The highest order of nonzero minors of matriz A is equal to the
rank of the matriz.

Proof. Let the highest order of nonzero minors of matrix 4
be r. Let us assume—there is no loss of generality— that the rth-order
minor D in the upper left corner of the matrix

Gy .-+ @Qr| Q151 -+ O \
D ...} ....... ...
ar Qry ar, r+ Qrn
A= i 1
Grig, 1 >0 Qreq, v Qrig, r41 Qriq, n
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is:different from zero, D=4 0. Then the first r columns of 4 will
be linearly independent: if the dependence were linear, then, since
corresponding components are combined in the addition of vectors,
this same linear dependence would exist among the columns of
minor D and therefore D would be zero.

Now let us prove that each Ith column of 4, r << I < n, is a linear
combination of the first r columns. We take any i, 1 << i <s, and
construct an auxiliary determinant of order (r 4 1):

Qg - - - Qg Qg
Ai =

Ary -« v Gpr Ay

;g « . Qip Q3

obtained by “bordering” the minor D by appropriate elements «f the
I th column and the ith row. Determinant A; is zero for any i. Indced,
if i >r, then A, is a minor of order (r + 1) of our matrix 4 and
therefore is zero due to the choice of the number r. But if "<r,
then A; can no longer be a minor of matrix 4 since it ca: ot be
obtained by deleting from this matrix certain of its rows and coiamns;
however, determinant A; now has two equal rows and, hcrce, is
again zero.

Let us examine the cofactors of the elements of the last row
of determinant A;. Obviously, the cofactor of the element a;; is
minor D. But if 1 <{j<r, then for the cofactor of element a;;
in A, we have the number

P G
Qry oeo Qr, j—q Qr, j4g - QAry Ayl

It is not dependent on i and therefore is denoted by A ;. Thus, expand-
ing determinant A; about its last row and equating this expansion
to zero, since A; = 0, we get

aydi+ apdy + ... +a, A, +a; D =0
whence, because D 540,

Ai Az Ar
A= —p 0y —pig— ...~ Ur
This equation holds true for all i, i =1, 2, ..., s, and since

its coefficients are not dependent on i, we find that the entire Ilth
column of 4 is a sum of the first r columns taken, respectively, with

the coefficients — it 4z Ar

D'—j""’ D"
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in the system of columns of matrix A we have thus found a maxi-
mal linearly independent subsystem consisting of r columns. This
is proof that the rank of matrix 4 is equal to r, and it completes the
proof of the rank theorem. L :

This theorem provides a practical method ‘for computing- the
rank of a matrix and therefore for settling the question of the exi-
stence of linear dependence in a given system of vectors; forming
a matrix for which the given vectors serve as columns and computing
the rank of the matrix, we find the maximum number of linearly
independent vectors of our system.

The method of finding the rank of a matrix based on the rank
theorem requires computing a finite but perhaps very large number
of minors of the matrix. The following remark suggests a way of
substantially simplifying this procedure. If the reader will again
look through the proof of the rank theorem, he will notice that in
the proof we did not take advantage of the fact that all minors of
order (r - 1) of matrix A are equal to zero; actually, we used only
~ those minors of order (r + 1) which border the given nonzero rth-
order minor D (that is, those which contain it completely within
themselves); for this reason, from the fact that only these minors
are equal to zero it followsthatristhe maximum number of linearly
independent columns of matrix A; this implies that all minors of
order (r - 1) of this matrix are zero. We arrive at the following
rule for evaluating the rank of a matrix.

In computing the rank of a matriz, move from minors of smaller
order to minors of greater order. If a nonzero kth-order minor D has
already been found, then only the (k + 1)th-order minors bordering
minor D need be computed; if they are all zero, the rank of the matrizx
is k.

Example 1. Find the rank of the matrix

2 —-4 3 10
1 -2 1 —-42
0o 1 -1 31
4—7 4—45

The second-order minor in the upper left corner of this matrix is zero. Howe-
ver, the matrix also contains nonzero minors of order two, for instance,

—4 3
d= 0
—21 >
The third-order minor
2 —4 3
d=11-2 1

o 1 -1
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bordering minor d is different:from zero, d’ = 1, but both fourth-order minors
bordering minor d’ are zero:

2 —4 3 1 2 -4 30
1 2 1 —4 1 -2 12
0 1—1“3_0’ 0 1 —11 =0
4T 4 —4 47 45

Thus, the rank of matrix A is three.
; Example 2. Find the maximal linearly independent subsystem in the system
of vectors

ay = (2, —2, —4), ax= 1, 9, 3), ag=(—2, —4, 1), o, =3, 7, —1)

Form the matrix
21 -2 3
(—2 9 —4 7)
—43 141

in which the given vectors are columns. The rank of this matrix is two: the
second-order minor in the upper left corner is nonzero, but both third-order
minors bordering it are zero. From this it follows that the vectors ay, oy form
in the given system one of maximal linearly independent subsystems.

As a corollary to the rank theorem, we now prove an assertion
that was stated earlier.

The maximum number of linearly independent rows of any matriz
is equal to the mazximum number of its linearly independent columns,
which means that it is equal to the rank of the matriz.

To prove this, take the transpose of the matrix (that is, inter-
change rows and columns retaining the subscripts of the elements).
In taking the transpose, the maximal order of nonzero minors of
the matrix cannot change since taking transposes does not change
the determinant, and for any minor of the original matrix the minor
obtained from it by taking the transpose is in the new matrix, and
conversely. Whence it follows that the rank of the new matrix is
equal to the rank of the original matrix; it is also equal to the maxi-
mum number of linearly independent columns of the new matrix
(or the maximum number of linearly independent rows of the ori-
ginal matrix).

Example. In Sec. 8 we introduced the concept of a linear form in n un-
knowns and defined addition of linear forms and their multiplication by a sca-
lar. This definition permits extending to linear forms the concept of linear
dependence with all its properties.

Let there be a system of linear forms

fi= =+ 2z2+ 23+ 3,
fo= bxy — x5 — Sz5 — b2y,
fa= z — 3zp — 43 — Tz,
fi=2z+ zm— 33

In it we have to choose a maximal linearly independent subsystem.
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Form - the matrix of the coefficients -of these forms:.

1 2 1 3
4 —1 —5 —6
1 —3 —4 —17
2 1—1 0

and find its rank. The second-order minor in the upper left corner is nonzero,
but, as can easily be verified, all four third-order minors bordering it are zero.
Whence it follows that the first two rows of our matrix are linearly independent,
and the third and fourth are linear combinations of them. Hence, the system
f1, f2 is the desired subsystem of the given system of linear forms.

There is yet another important consequence of the rank theorem.

An nth-order determinant is equal to zero if and only if there is
a linear dependence among its rows.

- This assertion has already been proved in one direction in Sec. 4
(Property 8). Now let there be given an nth-order determinant equal
to zero; in other words, suppose we have a square matrix of order
n whose only minor having maximal order is zero. It then follows that
the highest order of the nonzero minors of this matrix is less than n,
that is, the rank is less than r, and so, on the basis of the foregoing
proof, the rows of this matrix are linearly dependent.

Quite naturally, this corollary can be stated with columns taken
instead of rows.

There is yet another way to compute the rank of a matrix which
is not connected with the rank theorem and does not require evaluat-
ing determinants. Incidentally, it is only applicable when we wish
to know only the rank itself and are not interested in precisely which
columns (or rows) comprise the maximal linearly independent system.
The procedure is this.

We use the term elementary transformations of a matrix A for the
following transformations:

(a) interchange (transposition) of two rows or two columns;

(b) multiplication of a row (or a column) by an arbitrary non-
zero scalar;

(c) addition of a multiple of one row (or column) to another row
(column).

Clearly, elementary transformations do not change the rank of a
matriz. Indeed, if these transformations are applied, say, to the
columns of a matrix, the system of columns (regarded as vectors) is
replaced by an equivalent system. We prove it for transformation (c)
since for (a) and (b) it is obvious. Let the jth column multiplied by
a number k& be added to the ith column, If, prior to the manipulation,
the vectors

Ciy o ey Oy = o oy Cjy o s oy CUp (1)
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served as columns of the matrix, ‘then after the manipulation the
vectors
Aty « ooy g =y + Koy, ..., Apy ...y g 2)

will form the columns of the matrix. System (2) is expféésible
linearly in terms of system (1), and the equation

oy = ai — ko

shows that (1), in turn, is linearly expressible in terms of (2). Conse-
quently, these systems are equivalent and for this reason their maxi-
mal linearly independent subsystems consist of the same number of
vectors.

Thus, when computing the rank of a matrix, the matrix may
first be simplified by means of a combination of elementary trans-
formations.

We say that an s by » matrix has diagonal form if all its clements
are zero except the elements ayy, @5y, ..., a,, [where 0 L r<
< min (s, n)], which are equal to unity. The rank of this matrix
is obviously r.

Using elementary transformations, it is possible to reduce any
matriz to diagonal form.

Indeed, suppose we have a matrix

Agq « « « Ap
A=1. . ...
Agq « - - Agn

If all the elements are zero, then it already has diagonal form. But
if there are nonzero elements, then an interchange of rows and
columns will change element @14 to a nonzero element. Then by
multiplying the first row by a;}, we convert element a,; to unity.
And if we now subtract from the jth column, j > 1, the first column
multiplied by «,;, then element a;; will be replaced by a zero.
Manipulating in similar fashion all columns beyond the first, and
also all rows, we arrive at a matrix of the form

10 ...0
A =10 . a
0ay,... a,

Performing the same manipulations with the submatrix that remains
in the lower right corner, and so on, we finally—after a finite number
of manipulations—arrive at a dlagonal matrix with the same rank
as the original matrix 4. -
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~ Thus, to find the rank of a’matriz it is necessary to convert the
matriz, by means of elementary transformations, to diagonal form and
count the number of units in the principal diagonal.

Example. Find the rank of the matrix

0 2 —4

—4 —4 5

A= 3 1 7
0 5 =10

2 3 0

Interchanging the first and second columns and multiplying the first row

by the number i, we get the matrix

2
1 0 =2
—4 —1 5
1 3 7
5 0 —10
3 2 0

Adding two times the first column to the third column and then adding some
multiple of the new first row to each of the remaining rows, we get the matrix

1 0 O
0 —1 =3
0o 3 9
0 0 O
0 2 6

Finally, multiplying the second row by —1, subtracting from the third column
three times the second column, and then subtracting from the third and fifth
Eows certain multiples of the new second row, we arrive at the desired diagonal
orm

0o

SO OO

SO O =
OO OO

The rank of the matrix A is thus two.

In Chapter 13 we will again encounter elementary transformations and
diagonal matrices; true, these will be matrices in which the elements are poly-
nomials, not numbers.

11. Systems of Linear Equations

We now begin the study of arbitrary systems of linear equations
without any assumptions concerning the number of equations of
a system being equal to the number of unknowns. Incidentally, the
results we achieve will be applicable to the case (not considered
in Sec. 7) when the number of equations is equal to the number of
unknowns, but the determinant of the system is zero.
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Supposé we have a system of linear equations

ayxy + @y + o L+ @ = by,
Apxy + Appxy + . o . + Aguzn = by, )

Ay + Aoy + . . .+ Asuzn = by

As we know from Sec. 4, the first thing is to decide whether the
gystem is consistent or not. For this purpose, take the coefficient
matrix A4 of the system and the augmented matrix 4 obtained by
adjoining to 4 a column made up of the constant terms,

Qq4 Q1 . . - Q4 Ay Qgz - - - A1 by
Aoy Aoy . . . G 7 — 1 @y gy . .. agb,
A: 21 22 an , A_ 21 22 nv2
g Agp -+ . Qg Qgy Agg . . . Qg bs

and evaluate the ranks of these matrices. It is easy to see that the
rank of matriz A is either equal to the rank of matriz A or exceeds the
latter by unity. Indeed, take a certain maximal linearly independent
system of columns of matrix 4. It will also be linearly independent
in matrix A. If it also retains the property of maximality, that is,
the column of the constant terms is expressible linearly in terms of it,
then the ranks of matrices 4 and A are equal; otherwise, adjoining
to this system a column made up of constant terms yields a linearly
independent system of columns of matrix 4, which is maximal in it.

The question of consistency of a system of linear equations isfully
resolved by the following theorem.

Kronecker-Capelli theorem. A system of linear equations (1) is
consistent if and only if the rank of the augmented matriz A is equal
to the rank of the matriz A.

Proof. 1. Let system (1) be consistent and let ky, k,, .. ., k,
be one of its solutions. Substituting these numbers, in place of the
unknowns,_into (1), we get s identities, which show that the last
column of 4 is the sum of all the remaining columns taken, respecti-
vely, with the coefficients ky, k,, . . ., k,. Any other column of 4 is
also in A4 and therefore is expressible linearly in terms of all the
columns of this matrix. Conversely, any column of matrix 4 is
a column of A as well, that is, it is linearly expressible in terms of
the columns of this matrix. From this it follows that the systems

of columns of matrices 4 and A are equivalent and therefore, as
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proved at the end of Sec. 9, both these systems of s-dimensional
vectors have one and the same rank; in other words, the ranks of
the matrices 4 and A are equal.

2. Now suppose that the matrices A and A have equal ranks.
It then follows that any maximal linearly independent system of
columns of A remains a maximal linearly independent system in
matrix 4 as well. For this reason, the last column of A can be expres-
sed linearly in terms of this system and therefore, generally, in terms
of the system of columns of matrix 4. Consequently, there exists
a system of coefficients ky, k,, ..., k, such that the sum of the
columns of A taken with these coefficients is equal to the column of
constant terms, and therefore the numbers %4, &,, . . ., k, constitute
a solution of system (1). Thus, coincidence of the ranks of matrices 4

and A implies that system (1) is consistent.

The proof is complete. In practical situations, it is first necessary
to compute the rank of matrix 4; to do this, find one of the nonzero
minors of the matrix such that all the minors bordering it are zero.
Let it be the minor M. Then compute all the minors of matrix 4
bordering M but not contained in A [the so-called characteristic
determinants of system (1)]. If they are all zero, then the rank of
matrix A is equal to the rank of matrix 4 and therefore system (1)
is consistent, otherwise it is not consistent. Thus, the Kronecker-
Capelli theorem may be stated as follows: a system of linear equations
(1) is consistent if and only if all ils characteristic determinants are
equal to zero.

Let us now suppose that system (1) is consisternt. The Kronecker-
Capelli theorem which we used to establish the consistency of this
system states that a solution exists. However, it does not give us
any practical method for finding all the solutions of the system. We
shall now investigate this problem.

Let matrix 4 have rank r. As was proved in the preceding section,
r is equal to the maximum number of linearly independent rows
of matrix 4. To be specific let the first r rows of 4 be linearly indepen-
dent, and let each of the remaining rows be a linear combination
of them. Then the first r rows of A will also be linearly independent:
any linear dependence between them would also be a linear depen-
dence among the first r rows of A (recall the definition of addition

of vectors!). From coincidence of the ranks of matrices A and 4 it

follows that the first r rows of A constitute, in it, a maximal linearly
independent system of rows; in other words, any other row of this
matrix is a linear combination of them.

It follows, then, that any equation of system (1) can be represent-
ed as a sum of the first r equations taken with certain coefficients
and therefore any general solution of the first r equations will satisfy
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all the equations of (1). Consequently, it suffices to find all the solu-
tions of the system

auzy + 81,7 + . . .+ @z, = by,
Aoy Ty + QooZs + . . . + Quz, = by, @)
arizy + Gy + . . .+ @Gz, = b,

Since the rows of coefficients of the unknowns in equations (2)
are linearly independent, that is the matrix of the coefficients has
rank r, it follows that » < n» and, besides, that at least one of the
minors of order r of this matrix is nonzero. If r = n, then (2) is
a system with an equal number of equations and unknowns and
with a nonzero determinant; that is, it, and for this reason system (1)
as well, has a unique solution, namely, that which is calculable
by the Cramer rule.

Now let r << n and, for definiteness, let the rth-order minor
made up of the coefficients of the first r unknowns be different from
zero. In each of the equations of (2), transpose to the right side all

terms with the unknowns z,44, ..., z, and for these unknowns
select certain values¢,.q, . . ., ¢,. We obtain a system of r equations:
apxy + a7, + ...+ GpZ = by — @y, p44Cr 4t — - . . — ynly,

ApZy F ooy + . o o F Qyrzy = by — @y, p11Crp1 — . . . — QoypCy,

ATy + QrpZy . . o+ G = bp — Gy r 4 1Cr gt — o o = Gy
3)

in the r unknowns 2y, z,, . . ., z,. Cramer’s rule is applicable and
therefore the system has a unique solution ¢y, ¢,, . .., ¢,; it is
obvious that the set of numbers ¢y, ¢4, . . ., €5y Crags -« -, € Will
serve as a solution of system (2). Since the values ¢,yq, . .., ¢,
for the unknowns z,44, ..., z,, called free unknowns, can be cho-
sen in arbitrary fashion, we obtain an infinity of distinct solutions
of system (2).

On the other hand, any solution of (2) may be obtained in the
indicated way: if some solution ¢y, ¢,, . . ., ¢, of (2) is given, then
we take the numberse, .y, . . ., ¢, for the values of the free unknowns.
Then the numbers ¢y, ¢,, . . ., ¢, will satisfy system (3) and there-
fore will constitute the only solution of the system, which solution
is computed by Cramer’s rule.

The foregoing may be combined into a rule for the solution of
an arbitrary system of linear equations.

Let there be a consistent system of linear equations (1) and let the
matriz A of the coefficients have rank r. In A we choose r linearly inde-
pendent rows and leave irn (1) only those equations whose coefficients
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lie in the chosen rows. In these equations we leave in the left members
r unknowns such that the determinant of their coefficients is nonzero,
the remaining unknowns are called free and are transposed to the right
sides of the equations. Assigning arbitrary numerical values to the free
urknowns and computing the values of the remaining unknowns by
Cramer’s rule, we obtain all the solutions of system (1).

We also state the following result that we have obtained.

A consistent system (1) has a unigue solutior if and only if the rank
of matriz A is equal to the number of unknowns.

7,
. }
0

. The rank of the coefficient matrix is two: the second-order minor in the upper
left corner of this matrix is nonzero, but both third-order minors bordering it
are zero. The rank of the augmented matrix is three, since

Example 1. Solve the system
S5y — x4 23+ =z

2z; + xp + bzz — 2z,
zy — 3z5 — 6z3 + 5z,

|

5 —1 7
2 11(= —35%0
1 -30

The system is thus inconsistent.
Example 2. Solve the system

Tz, + 3z, = 2,
zy — 213 = ——-3, }
431 + 912 = 11

The rank of the coefficient matrix is two, i.e., it is equal to the number
of unknowns; the rank of the augmented matrix is also two. Thus, the system
is consistent and has a unique solution. The left-hand sides of the first two
equations are linearly independent; solving the system of these two equations,
we get the values

5 23

mr 2=

Ty=
for the unknowns. It is easy to see that this solution also satisfies the third
equation.

Example 3. Solve the system

zy+ 2y — 223 — 1+ T =1,
3z — =z + x5+ 4z + 325 = 4,
zy 4+ 525 — 923 — 82y + z5= 10

The system is consistent since the rank of the augmented matrix (like
the rank of the matrix of coefficients) is two. The left members of the first and
third equations are linearly independent since the coefficients of the unknowns
z; and z, constitute a nonzero minor of order two. Solve the system of these
two equations, the unknowns zj, z, z5 being considered free; transpose them
to the right members of the equations and assume that they have been given
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. certain numerical values. Using Cramer’s rule, we get

5 1 .. 3.
=7+ z3— 7 I— 5,

These equations determine the general solution of the given system: assign-
ing arbitrary numerical values to the free unknowns, we obtain all the solu~
tions of our system. Thus, for example, the vectors (2, 5, 3, 0, 0), (3, 5,

2,1, —2), (O, -7 —1,1, -Z) and so on are solutions of our system. On the

other hand, substituting the expressions for z; and z, from the general solution
into any one of the equations of the system, say the second, which was earlier
rejected, we obtain an identity.

Example 4. Solve the system

bxy 4+ 2, — 2234+ = 3,

zy — 212 - X3 + 21‘ = 2,
2z, + 5z» —_ = —1
3z + 32— 23 =3z, = 1

Although the number of equations is equal to the number of v inowns,
the determinant of the system is zero and. therefore. Cramer’s rule is nut appli-
cable. The rank of the coefficient matrix is equal to three—in the upper right
corner of this matrix is a nonzero third-order minor. The rank of the augmented
matrix is also three, so the system is consistent. Considering only the first
three equations and taking the unknown z; as free, we obtain the general solu-
tion in the form . ]

8,9
By=—F—gf HB=—x+tg 7=0

N

Example 5. Suppose we have a system consisting of n 4 ‘1 equations in n

unknowns. The augmented matrix A of this system is a square matrix of order
n -+ 1. If our system is consistent, then, by the Kronecker-Capelli theorem,

the determinant of 4 must be zero.
Thus, let there be a system

ry — 812 = '3,
22y + zm= 1,
by + Top = —4

The determinant of the coefficients and the constant terms of these equations
is different from zero:

1 -8 3
2 1 1|=-T
4 7 —4

The system is therefore inconsistent.
The converse, generally speaking, is not true: from the determinant of

matrix 4 being zero it does not follow that the ranks of matrices 4 and 4
coincide.

6—5760
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12. Systems of Homogeneous Linear Equations

Let us apply the findings of the preceding section to the case of
a system of homogeneous linear equations:

ayxy + a2y + . . .+ anz, =0,
azlxl + agzxz ‘“i_‘ . e + a/Zn.Z'n - 0’ (1)

a2y + Aoy + . . . aga, =0

From the Kronecker-Capelli theorem it follows that this system
is always consistent, since adding a column of zeros cannot raise
the rank of the matrix. This incidentally is evident by a simple
inspection—system (1) definitely has a trivial solution (0,0, . . ., 0).

Let the coefficient matrix A of system (1) have rank r. If r = n,
then the trivial solution will be the only solution of (1); for r << n,
the system has also nontrivial solutions; to find all these solutions, use
the same technique as above in the case of an arbitrary system of
equations. In particular, a system of n homogeneous linear equations
in n unknowns has nontrivial solutions if and only if the determinant
of the system is zero.* Indeed, the fact that the determinant is zero
is equivalent to the assertion that the rank of matrix A is less than #n.
On the other hand, if in a system of homogeneous equations the number
of equations is less than the number of unknowns, then the system must
definitely have solutions different from zero, since in that case the rank
cannot be equal to the number of unknowns. This was already
obtained in Sec. 1 by other reasoning.

Let us, for example, examine the case of a system consisting of
r — 1 homogeneous equations in n» unknowns; assume that the left
members of these equations are linearly independent among them-

selves. Let

On-1,1 Qpn-1y g « «+ An_q4, n

be the matrix of the coefficients of this system. Denote by M; the
minor of order » — 1 obtained by deleting the ith column from A4,

i =1, 2, ..., n Then for one of the solutions of our system we have
the set of numbers
M, —M,, M,, —M,, ..., (=1)"M, (2)

and any other solution is proportional to it.

* One half of this assertion was already proved in Sec. 7.
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Proof. Since, by hypothesis, the rank of matrix 4 is n — 1,
one of the minors J/; must be nonzero; let it be M,. Assume the
unknown z, to be free and transpose it to the right side of each of the
equations. We then get

anzy + QyoZy - o0 o T Gy, paTpa = —QypTn,
A212y + AooZy + . o+ 8 aTua = — Q9 Ty »
Anot, 121 F Gnoy, 222+ o o0 F Gy, naaZnoy T — oy, 1Ty

Applying Cramer’s rule, we obtain the general solution of the given
system of equations, which, after simple manipulations, becomes

.Zl—(—i)n-i 1":!4: Tn, l=1, 2, ey n—1 (3)
Setting z, = (—1)""'M,, we obtain: z, = (—1)**"M;, i =1,
2, ..., n—1, or, since the difference (2n — i —1) — (i — 1) =

= 2n — 2i is an even number, z; = (—1)"1M;, that is, the set
of numbers (2) will indeed be a solution of our system of equations.
Any other solution of this system is obtained from formulas (3)
for a different numerical value of the unknown z, and so is propor-
tional to solution (2). This assertion clearly holds true for the case
when M, = 0, but one of the minors M;,1 <{i <{n»n — 1, is nonzero.

Solutions of a system of homogeneous linear equations have
the following properties. If the vector P = (by, b,, . .., b,) is
a solution of system (1), then for any scalar £ the vector iff =
= (kby, kb,, . .., kby) is also a solution of the system. This is veri-
fied directly by substitution into any one of the equations (1). If the
vector y = (¢4, €y . . -+ C,) i another solution of (1) then the vector
B+ v=(bs+c1, by + €5 ..., by + c,) is also a solution of the
system:

‘Zia”(bj—i—c;)=.Eiaijbj—!-.ziaijcj:O i=1,2, ..., s
= = = .

Thus, generally, any linear combination of solutions of the homogeneous
system (1) is a solution of the system. Note that in the case of a ron-
homogeneous system, that is, a system of linear equations whose
constant terms are not all equal to zero, no such assertion is true:
neither the sum of two solutions of a system of nonhomogeneous
equations nor the product of a solution of the system by a scalar can
serve as solutions of the system.

From Sec. 9 we know that any system of n-dimensional vectors
congsisting of more than n vectors will be linearly dependent. Whence
it follows that from a number of solutions of the homogeneous system
(1), which solutions, as we know, are n-dimensional vectors, it is

6*
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possible to choose a finite maximal linearly independent system,
that is, maximal in the sense that any other solution of system (1)
will be a linear combination of the solutions that enter into the chosen
system. Any maximal linearly independent system of solutions of
the homogeneous system of equations (1) is called its fundamental
system of solutions.

Let us once again stress the fact that an n-dimensional vector is
a solution of system (1) if and only if it is a linear combination of vectors
comprising the given fundamental system.

Quite naturally, the fundamental system exists only if system (1)
has nontrivial solutions, that is, if the rank of its matrix of coeffi-
cients is less than the number of unknowns. Then system (1) can
have many different fundamental systems of solutions. All these
systems are equivalent however, since each vector of any one of the
systems is linearly expressible in terms of any other system, and
for this reason the systems consist of one and the same number of
solutions.

The following theorem is valid.

If the rank r of the coefficient matriz of the system of homogeneous
linear equations (1) is less than the number of unknowns n, then any
fundamental system of solutions of (1) consists of n — r solutions.

To prove this, note that » — r is the number of free unknowns
in system (1); let the unknowns z,.4, Z,44, ..., Z, be free. We
consider an arbitrary nonzero determinant d of order » — r, which
we write as follows:

C1, 741y C1, r420 <+ -y Cin
d=|Cr+  C2,r+2 - Con
Cn—r, r+1sy Cn—r, r420 + + 1+ Cn—r, n

Taking elements of the ith row of this determinant, 1 <i<<n —r,
for the values of the free unknowns, we get unique values for the
unknowns zj, zj, - - ., Zr. 1N other words, we arrive at a quite defi-
nite solution of the system (1) of equations. Let us write the solution
in the form of a vector:

a; = (Ci1y Cizr - - -1 Cirs Ciyrdts Ciyrgar « - v Cin)

The set of vectors oy, ¢y, ..., &t; -, that we have obtained
serves as a fundamental system of solutions for the system (1) of
equations. Indeed, this set of vectors is linearly independent since
the matrix made up of them (as rows) contains a nonzero minor d
of order n — r. On the other hand, let

ﬁ = (biv b27 Y brv br+1v br+2. e e ey bn)
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be an arbitrary solution of system (1). We will prove that the vector §
can be expressed linearly in terms of the vectors ay, by, . . ., @y _p

Denote by ai, i = 1, 2, ..., n — r, the ith row of the determi-
nant d; regard this row as an (z — r)-dimensional vector. Then set

B’ = (br+i, br+27 LY bn)
The vectors aj, i =1, 2, ..., n —r, are linearly independent
since d % 0. However, the system of (» — r)-dimensional vectors

7 7 ’ ’
Oyy Olgy « v oy Op s B

is linearly dependent since the number of vectors in it is greater than
their dimensionality. Hence there are scalars ky, %y, . . ., k-, such

that
B' = kg + kooty + . . . knosan %)
Now consider the n-dimensional vector
6 = kiai + kzaz + . .. + kn_ran_r - ﬁ

Since the vector 8 is a linear combination of the solutions of the
system (1) of homogeneous equations, it will be a solution of the
system. From (4) it follows that in the § solution the values of
all the free unknowns are zero. However, the unique solution of
system (1) which is obtained for zero values of the free unknowns
will be a trivial solution. Thus, § = 0, that is,

P =rloy + ks + ...+ kysotny

which proves the theorem.

Note that the foregoing proof permits us to assert that we will
obtain all the fundamental systems of solutions of the system (1)
of homogeneous equations by taking for d all possible nonzero deter-
minants of order n — r.

Example. Given the following system of homogeneous linear equations:

3z, + x2— 8xzzt+ 274 25 =0,
2zy — 2zp — 323 — Ty + 225 = 0,
2y -+ 41zy — 1223 + 342, — Sz5 = 0, }
zy — 9z2 -+ 2z3 — 16z, + 325 =0
The rank of the coefficient matrix is two, the number of unknowns is equal
to five; therefore every fundamental system of solutions of this system of equa-
tions consists of three solutions. We solve the system confining ourselves to the
first two linearly independent equations and considering zs, z;, z5 as free un-
knowns. We obtain the general solution in the form

19 3 1
n=% ot+g T4 — 55

7 2 1
Ty=g T3 —g Tt5 T

Then we take the next three linearly independent three-dimensional vectors
1, 9, 0), (0, 1, 0), (0, 0, 1). Substituting the components of each of them
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into the general solution as values for the free unknowns and computing the
values for z; and z,, we get the following fundamental system o1 solutions
of the given system of equations:

19 7 3 25
o= ?' §' 1' 0, 0)' a2=(_8-' _.§'0' 1' 0)'

1 1
¢3=(-—-§—, —2—, 0, 0, 1) ‘
We conclude this section by considering the relationship between
the solutions of nonhomogeneous and homogeneous systems. Suppose
we have a system of nonhomogeneous linear equations

ayxy + 1920 + . . . F Ay = biv )
Ao1xy + Aoy + . . . + Aguzn = by, (5)
By + gy + . . . + gz, = by )
The system of homogeneous linear equations
ayxy + A2y + . ..+ Gz, = 0, )
oy + Qgoxy + . . . + gz, = 0, (6)

AZy + g2y + . . .+ Agpan, = 0
obtained from (5) by replacing the constant terms by zeros is called
the reduced system of (5). There is a close connection between the
solutions of (5) and (6), as the following two theorems indicate.

I. The sum of any solution of system (5) and any solution of the
reduced system (6) is again a solution of system (5).
Indeed, lot ¢4, ¢y, . . ., ¢, be a solution of (5), and dy, d,, . . ., d,
a solution of (6). Take any one of the equations of system (5), say
the kth, and substitute into it the numbers ¢4 + dy, ¢, + ds, .
« «» ¢n + dy in place *of the unknowns. We get

,21 arj(cj+dj) = _Ei arjcj + _21 arjd;j="by +0="b,
= = j=

I1. The difference between any two solutions of (5) is a solution of (6).
Indeed, let ¢y, ¢y, ..., ¢n and ¢j, ¢;, . . ., cn be solutions of

system (5). Take any one of the equations of (6), say the kth, and

substitute into it in place of the unknowns the numbers

’ ’ ’
€y — €y €3 — Coy « « oy Cp — Cp

This yields

n n n
-21 arj (cj—cj) = 21 anjcy — Zﬁ apjci=bp—bp=0
== = ==

It follows from these theorems that by finding one solution of the
system (5) of nonhomogeneous linear equations and adding it to every
solution of the reduced system (6), we obtain all solutions of (5).



CHAPTER 3

THE ALGEBRA
OF MATRICES

13. Matrix Multiplication

In the preceding chapters the concept of a matrix was utilized
as an essential auxiliary tool in the study of systems of linear equa-
tions. Numerous other applications have made it the subject of a
large independent theory, many branches of which go beyond the
limits of this course. We shall now discuss the fundamentals of this
theory which starts with the fact that two algebraic operations,
addition and multiplication, are defined in the set of all square matri-
ces of a given order in a very peculiar but fully motivated fashion.
We begin with the multiplication of matrices; addition will be intro-
duced in Sec. 15.

From the course of analytic geometry we know that when the
axes of a rectangular coordinate system in the plane are rotated
through an angle a, the coordinates of a point are transformed accord-
ing to the following formulas:

z =21 coso — y sin a,
y=2zsina + y' cosa

where z and y are the old coordinates of the point, and z’, y’ are the
new coordinates. Thus, x and y are expressed linearly in terms of
z' and y’ with certain numerical coefficients. There are also many
other instances of the substitution of unknowns (or variables) in
which the old unknowns are linearly expressed in terms of the new
ones. Such a substitution of unknowns is ordinarily called a linear
transformation (or linear substitution). We thus arrive at the follow-
ing definition.

A linear transformation of unknowns is a transition from a set
of n unknowns z,, z,, . . ., &, to a set of » unknowns yy, ys, . . ., ¥n
such that the old unknowns are expressed linearly in terms of the
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new ones with certain numerical ,coefﬁvc:ients:
Ty = ayys + apy; + . . - + anlh,
Ty T QoY + QoY + - -« T+ on¥n, (1)

= GniY1 + Tn2Ys +- .« + @nnyn
The linear transformatlon (1) is fully determined by its coef-
ficient matrix
gy Qg - . .« Qp

A =] %1 %2 ... am
Gni Gng -+ . Gpn
since two linear transformations of the same matrix can differ only
in the letters denoting the unknowns; we take it, however, that the
choice of these designations is wholly in our own "hands. Conversely,
specifying an arbitrary matrix of order », we can immediately write
the linear transformation for which this matrix serves as the coef-
ficient matrix. Thus, there is a one-to-one correspondence between
the linear transformations of n unknowns and the square matrices
of order n. Therefore, every concept involving linear transformations
and every property of these transformations must be associated with
a similar concept or property involving matrices.
Let us examine the problem of a successive performance of two
linear transformations. Suppose that following the linear transfor-
mation (1) there is effected a linear transformation like

Y1 = byzs + b2y + . . .+ binZn,

Yo = bagzs + b2y + . . < 4+ bonzn,s (2)

Yn = bnizi + bn222 + ...+ b,mz,,
which takes the set of unknowns y;, ¥, ..., ¥ into the set
24, Zg, . . «5 Z,; denote the matrix of this transformation by B.
Substituting into (1) the expressions for yi, y,, . .., yn from (2),
we get linear expressions for the unknowns zy, z,, . . ., z, in terms
of the unknowns 3z, 2,, ..., z,. Thus, the result of a successive

execution of two linear transformations of unknowns will again be
a linear transformation.

Example. The result of the successive performance of linear transformations
=3y — Yy n= n+t+ un
z3= yi1+ Sy2, ya= 4z + 2z,
is the linear transformation
=32+ 2) — (han+2z)=—u+ n
zz= (21 + 7) + 5 (481 + 22,) = 21z + 11z
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Denote by C: the matrix of the linear transformation which
is the result of the successive performance of transformations (1)
and (2) and find the law by which its elements ci, i, k=1, 2, ..., n
are expressed in terms of the elements of the matrices 4 and B.
Wntmg down the transformations (1) and (2) succinctly in the form

Eau, y.,, l=1, 2, es.y I, yJ—ijkZh, ]—1 2 n

we obtaln

x;=2a1j(2 b,-hzk)=2(2 a,-,-b,-k)zh, l=1 2, ..., n

Thus, the coefﬁcwnt of z, in the expressmn for z; (that is, the element
¢;p of matrix C) is of the form ,

Cin = _Ei @ibjn=aisbsn + @izbop + . - . + Ainbnr (3)
j=

The element of matriz C in the ith row and kth column is equal to
the sum of the products of the corresponding elements of the ith row
of matriz A and the kth column of matriz B.

Formula (3), which expresses the elements of matrix C in terms
of the elements of matrices A and B, permits us to write down C
immediately, given 4 and B, without having to examine the linear
transformations corresponding to the matrices A and B. In this
fashion, a one-to-one correspondence is set up between any pair
of square matrices of order n and a definite third matrix. We can
say that in the set of all square matrices of nth order we have
defined an algebraic operation which is called matriz multiplica-
tion, and matrix C is called the product of the matrix A4 by the
matrix B:

C =AB

Let us once again formulate the relationship between linear
transformations and matrix multiplication.

A linear transformation of unknowns obtained as a result of the
successive performance of two linear transformations of matrices A and
B has as its coefficient matriz the matriz AB.

Examples.

49 1 -3 41 4 9(—2) ( 3) + 9-1
@) (—13)'(—2 ) (( —1)1 + 3+(—2) (—1)+(—3) + 3 1)
—14 —3
_ 7 6)
2 01 -3 10 —6 1 3
© (—2 32).( 0 21)—_-( 6 2 9)
—1 5 0 —13 —12 -3 14
2

4 1
® I R R e
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(4) Find the result of the successive performance of the hnear transforma-
tions

zy = 5yy — Yo + 3ys,

z3= Y — 2,
z3 = Ty — s
and
v1=28 + 1,
Y2 = 32 — 513,
Ys = 22,

Multiplying the matrices, we obtain

5 —-1 3 20 1 10 5 10
(1 -2 O)o(O 1 —5) = ( 2 -2 11)
0 7 -1 02 0 0 5 -3

The desired linear transformation is therefore of the form
zy = 102y + 529 + 10z,
2y = 223 — 2239 + 11z,
Ty = - Bzg — 3525

Take one of the above examples of matrix multiplication,
say (2), and find the product of the same matrices, but in reverse

order:
-3 10 2 01 —8 3 —1
0 21}.{—2 32} = 0O 5 9
0 —13 4 —1 5 14 —6 13

We see that the product of the matrices depends on the order
of the factors; in other words, matriz multiplication is noncommuta-
tive. Actually, this is something we should have expected, if only
because the matrices A and B are not of equal status in the
definition of matrix C given above by means of formula (3): in 4
we take the rows and in B the columns.

Examples of noncommutative matrices of order z, that is, matri-
ces whose product changes with an interchange of the factors, may
be given for all » beyond » = 1 [second-order matrices in Example
(1) are noncommutativel. On the other hand, two given matrices
may accidentally turn out to be commutative, as witness the follow-
ing example:

7 —12\ (26 45\ (26 45 7T —12\ (23
—4 1) \1526) \1528)'\—4 7) \12
Matriz multiplication is associative; one can therefore speak of
a uniquely defined product of any finite number of matrices of
order » taken in a definite order (because of the noncommutativity
of multiplication).
Proof. Suppose we have three arbitrary matrices of order n, 4,

B and C. In abbreviated notation (which indicates the general
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aspect of their elements) we have A = (a;;), B = (b;;), C = (¢;j).
We also introduce the following designations:

AB =U = (l'ij), BC =V = (Ugj),
AB)C =8 = (s, ABC) =T = (k)

We have to prove the truth of the equations (4B) C = A (BC), that
is, § = T. However

i n LN
wir= 2 ambay, vrj= 2 bucy
=1 =1

and, therefore, because of the equations S = UC, T = AV,
n n

n
uicy= 2 ) anbuicy,
1 B=1

Sij=—
i i

=1
n n n
tig= D) aibhy= 2 2 Gubucy;
=1 =115

That is to say, s;; = ¢;; for i,j=1,2, ..., n

To go deeper into the properties of matrix multiplication we
have to study their determinants. For the sake of brevity, we agree
to denote the determinant of matrix A by | 4 |. If in each of the
above examples the reader will take the pains to count the deter-
minants of the matrices being multiplied and to compare the product
of these determinants with the determinant of the product of the
given matrices, he will detect an extremely curious regularity
which is expressed as the following very important theorem on the
multiplication of determinants.

The determinant of a product of several matrices of order n is equal
to the product of the determinants of these matrices.

It will suffice to prove this theorem for the case of two matrices.
Let there be given the nth-order matrices A = (a;;) and B = (b;))
and let AB = C = (c;;). Construct the following auxiliary deter-
minant A of order 2x: in the upper left corner put matrix 4, in the
lower right corner, matrix B, the entire upper right corner will be
occupied by zeros, finally, put the number —1 along the principal
diagonal of the lower left corner and zeros elsewhere. Determinant
A will then look like this:

Qy Ay ap, 0 0 0

Aoy 12 Qon 0 0 0

Ae| @ Gn2 @n 0 O 0
=1 0 0 by by bin
0 —1 0 by by bon

0 O - 1 bn,j an bnn
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Applying the Laplace theorem to the determinant A—expansion
about the first n rows—we get the following equation:

A=]41-|B] (%)
Now let us attempt to transform the determinant A, without
changing its value, so that all elements by, i, j =1, 2, . ., n,

are replaced by zeros. To do this, add to the (n 4 1)th column
of A its first column multiplied by by, the second multiplied by &,,
and so on, and finally, the nth column, multiplied by b,;. Then
add to the (n 4 2)th column of determinant A the first column
multiplied by by,, the second multiplied by b,,, and so on. Gene-
rally, we add to the (» + j)th column of the determinant A, where
i=1, 2, ..., n,the sum of the first n columns taken, respectively,
with the coefficients b5, b,j, . .., byy.

It is easy to see that these manipulations do not change the
determinant and actually result in the replacement of all ele-
ments b;; by zeros. At the same time, in place of the zeros in the
upper right corner of the determinant there appear the following.
numbers: at the intersection of the ith row and the (» + j)th column
of the determinant, i, j =1, 2, ..., n, will stand the number
a;1bys + a39be5 + . . . + @;,b,; equal [because of (3)] to the element
¢;; of matrix C = AB. The upper right corner of the determinant
is now occupied by matrix C:

‘,1“ Qg ... Qyn Cyy Cg2 -+ Cyn

Aoy Aoy . .. Qan Coq4 Cop +.. Cop

A= Qpng Qno Gnn Cny Cag - Cnn
—1 0 0 0 0 0

0 —1 0 0 O 0

0 0 —-1 0 0 0

Apply the Laplace theorem once again, expanding the deter-
minant about the last » columns. The complementary minor of
the minor | C | is equal to (—1)", and since the minor | C | is located
in rows with position numbers 1, 2, .. ., #» and in columns with
position numbers » + 1, n 4+ 2, ..., 2rn, and

1+2+.. . +n+@+)+Em+2)+...+22=22+n
it follows that
A=(—1)¥ " (— )| C|=(—1)*" ™ (|

or, due to the evenness of the number 2 (n2? 4 n),
A=|C| (3)
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Finally, from (4) and (5) follows the equation we set out to prove:
ICl=1411B|

The multiplication theorem for determinants could be proved
without invoking the Laplace theorem. One such proof is given
at the end of Sec. 16. :

14. Inverse Matrices

A square matrix is called singular if its ‘determinant is zero,
otherwise it is nonsingular. Accordingly, a linear transformation
of unknowns is called singular or ronsingular depending on whether
the coefficient determinant of this transformation is zero or not.
The following assertion follows from the theorem proved at the
end of Sec. 13.

The product of matrices, at least one of which is singular, is a singu-
lar matrix.

The product of any nonsingular matrices is a nonsingular matriz.

From this there follows the assertion (because of the relationship
existing between matrix multiplication and the successive perfor-
mance of linear transformations): the result of a successive perfor-
mance of several linear transformations is a ronsingular transforma-
tion if and only if all the givern transformations are nonsingular.

The role of unity in matriz multiplication is played by the unit
(identity) matriz

10...0
g-lot...0
00...1

It commutes with any matrix A of a given order,

AE =EA =4 1)
These equalities are proved either by direct application of the
rule for multiplying matrices or on the basis of the remark that the

unit (identity) matrix corresponds to an identical linear transfor-
mation of unknowns:

Ty = Yy,

Ty = Ya»

I = Yn

the performance of which, either prior to or following any other
linear transformation, obvmusly does not alter that transformation.



94 CH, 3. THE ALGEBRA OF MATRICES

Note that matriz E is the only matriz which satisfies condition (1)
for any matriz A. Indeed, if there were also matrix E’ with this
property, we would have
E'E =E', E'E=E
whence E' = E. ’

The question of whether a given matrix A has an inverse turns
out to be more complicated. Since matrix multiplication is not
commutative, we will now speak of the right inverse matrix, that
is a matrix A-! such that postmultiplication of 4 by this matrix
yields the identity matrix:

AA1 = E )

Suppose matrix A is singular; then if matrix 4 - existed, the product
on the left of (2) would, as we know, be a singular matrix, whereas
in actual fact the matrix E in the right member of this equation
is nonsingular since its determinant is equal to unity. Thus a singular
matrix cannot have a right inverse matrix. Simijlar reasoning shows
that it cannot have a left inverse matrix either, and for this
reason, a singular matrixz has no inverse at all.

Passing to the case of a nonsingular matrix, let us first introduce
the following auxiliary concept. Suppose we have an nth-order
matrix

(‘111 Qg - - - Qp
A =] %t G ... 0n
\ani Gpg « -« Gpp
The matrix
(A“ Ay ... Ay
A% = Aty Ags .. Apy

\Am Ao ... Ay

which consists of the cofactors of the elements of A (note that the
cofactor of element a;; lies at the intersection of the jth row and
the ith column) is called the adjoint of matrix A.

Let us find the products AA* and A*A. Using the familiar for-
mula (see Sec. 6) for the expansion of a determinant about a row
or column, and also the theorem (see Sec. 7) on the sum of the pro-
ducts of the elements of any row (column) of a determinant by the

cofactors of the corresponding elements of another row (column)
and denoting by d the determinant of the matrix A4,

d= |4 |
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we get the following equations: .
d0...0

AA* = A*x4 =|0¢-.- 0 (3)
00...d

From this it follows that if matrizx A is nomsingular, then its
adjoint A* will also be nomsingular; note that the determinant d*
of matriz A* is equal to the (n — 1)th power of the determinant d of
matriz A.

Indeed, passing from (3) to the equality between the determi-

nants, we get
: dd* = a*

whence, because d 0,
d* = dr-1

(We could prove that if matrix A is singular, then its adjoint
A* is also singular and has rank which does not exceed 1.)

It is now easy to prove the existence of an inverse matrix for
any nonsingular matrix 4 and to find its form. Note first that if
we consider the product of two matrices AB and if we divide all
the elements of one of the factors, say B, by one and the same
number d, then this number also divides all elements of the product
AB: to prove this all we need to do is recall the definition of matrix
multiplication. Thus, if '

d= |4 |0

then from (3) it follows that the inverse of A is a mairix obtained from
the adjoint A* by means of division of all its elements by the number d:

Ay Ay An1

d d ' d

Ay Ajp Anz

Al= d d "' . d
Ain Azn Ann

d d d

Indeed, from (3) follow the equalities
AA' = AU — E @)

We stress once again that the ith row of matrix A-! contains
the cofactors of the elements of the ith column of determinant | 4 |
divided by d = | 4 |.

It is easy to prove that matrizr A~ is the only matriz which
satisfies condition (4) for a given nonsingular matriz A. True enough,
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if matrix C is such that
AC =CA =E
then
CAAr=C(C (A47Y) = CE = C,
CAA-Y = (CA) A ' =EA'= A"
whence C = 41,
From (4) and the multiplication theorem for determinants it

follows that the determinant of matrizx A~' is equal to f%—l so that

this maitriz is also nonsingular; its inverse is the matriz A.

Now, if we have square matrices A and B of order n, of which 4
is nonsingular and B is arbitrary, then we can perform the right
and left divisions of B by A, that is, we can solve the matrix equations

AX =B, YA =B ‘ (5)

To do this, it will suffice (because of the associativity of matrix
multiplication) to set

X =A-1B, Y = BA-1

These solutions of equations (5) will, in the general case (because
matrix multiplication is not commutative), be distinct.

Example 1. Given a matrix

3—-190
‘ A=(—2 11)
2 —14

Its determinant | 4 | = 5, and so the inverse matrix Afl exists:
e
ot 4

Example 2. Given the matrices

=(3) 2= (3

The matrix A is nonsingular, and

as=(_; 73)

Therefore the following matrices are solutions of the equations AX = B,
YA = B: :
o 3 =2y (—171 *(_9 11)
X“(_4 3)( 55) = (713 —13)

r=(T55)- (L0 79) = (G %)
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Multiplication of rectangular matrices. Although in the preceding
section matrix multiplication was only defined for square matrices
of the same order, it carries over to the ease of rectangular matrices A
and B, pr0v1ded it is possible to apply formula (3) of the preceding
section, i.e., if any row of matrix A4 contains as many elements
as there are in any column of matrix B. In other words, ore can
speak of the product of rectangular matrices A and B if the rumber
of columns of matriz A is equal to the number of rows of matriz B,
the number of rows of matrix AB being equal to the number of rows
of A, and the number of columns of matriz AB to the number of columns
of B.

Examples.
—13 0
51 314y | —21 1 10 15 —5
() (2 0 —1 4) 30 —2 (11 10 10)
41 2
—3 1 3
(2722 ()= ()
—4 0 2
2 0
@) (510 —3). ; i‘) = (11 —1)
1

Multiplication of rectangular matrices may be related to a
successive performance of linear transformations of the unknowns,
provided only that in the definition of the latter we give up the
assumption that the number of unknowns is preserved under the
linear transformation.

It is also easy to verify, by repeating word for word the proof
given above for the case of square matrices, that associativity holds
true also for the multiplication of rectangular matrices.

We now take advantage of the multiplication of rectangular
matrices and of properties of the inverse matrix for a new deriva-
tion of Cramer’s rule, which does not require the involved compu-
tations that were carried out in Sec. 7. Let there be given a system
of n linear equations in » unknowns:

@yxy + Gy + . ..+ agqz, = by,

Aoy + AgaZy + . . . T @pun = by, (6)
A2y + Guoxyg + . . . F apnx, = b,

The determinant of this system is different from zero. Denote by 4

the coefficient matrix of system (6); this matrix is nonsingular

7—5760
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since, by hypothesis, d = | 4 | = 0. Denote by X the column of
unknowns, by B the column of constant terms of (6); thus
Zy b,
z b
X= :2 , B= :2
Zn b,

The product AX is meaningful since the number of columns of
matrix A is equal to the number of rows of matrix X; this product
will be a column composed of the left-hand sides of the equations
of system (6). Thus, (6) may be written in the form of a single matrix

equation
AX =B (7

Multiplying both sides of (7) on the left by the matrix A, the
existence of which follows from the nonsingular nature of the square

matrix 4, we get
X =4-B (8)

The product on the right is a matrix of one column; its jth
element is equal to the sum of the products of the elements of the
jth row of matrix 4! by the corresponding elements of matrix B,
that is, it is equal to the number

Agj Ay Ap
bt T bt e b g b= (Agby - Augby - Angbi)
The parenthesis on the right is, however, an expansion about the
jth column of determinant d;, which is obtained by replacing the
jth column of d by the column B. Thus, formulas (8) are equivalent
to formulas (3), Sec. 7, which express the solution obtained by
Cramer’s rule to system (6). -

It remains to show that the values of the unknowns thus obtained
are indeed the solution of system (6). To do this, put expression (8)
into the matrix equation (7); it obviously yields the identity B = B.

The rank of a product of matrices. In the case of singular matrices,
the multiplication theorem for determinants does not lead to any
utterance beyond the fact that their product will also be singular,
although singular square matrices can be distinguished according
to rank as well. Note that there is no completely definite relation-
ship between the ranks of the factors and the rank of the product,
as is evident from a glance at the following examples:

(00)(60)=(00)
(00)(65)=()
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In both cases, matrices of rank 1 are multiplied, but in one case
the product has rank 1, in the other, rank 0. It is only the following
theorem which holds true (and not only for square but for rectangular
matrices as well).

The rank of a product of matrices does not exceed the rank of each
of the factors.

It will suffice to prove this theorem for the case of two factors.
Suppose we have matrices 4 and B for which the product AB is
meaningful: AB = C. We consider formula (3), Sec. 13, which
yields an expression for the elements of matrix C. Taking this
formula for the given % and for all possible i (i =1, 2, D,
we find that the kth column of matrix C is the sum of all the columns
of matrix A taken with certain coefficients (namely, with the coef-
ficients by, byp, . . .). This is proof that the system of columns of
matrix C is expressed linearly in terms of the system of columns
of matrix 4 and, therefore, as shown in Sec. 9, the rank of the first
system is less than or equal to the rank of the second system; in
other words, the rank of matrix C does not exceed the rank of matrix
A. On the other hand, since from this same formula (3), Sec. 13,
there follows, for a given i and for all %, that each ith row of matrix
C is a linear combination of the rows of matrix B, we find by analo-
gous reasoning that the rank of C is not greater than the rank of B.

A more precise result is obtained in the case when one of the
factors is a nonsingular square matrix.

The rank of the product obtained by pre- or postmultiplication
of an arbitrary matrizx A by a nonsingular square matriz Q is equal
to the rank of matriz A.

For example, suppose

AQ=C (9)

From the precedfng theorem it follows that the rank of matrix C
is not greater than the rank of matrix 4. However, multiplying (9)
on the right by Q-', we arrive at the equation

A =CQ?
and for this reason, again on the basis of the preceding theorem,

the rank of 4 does not exceed that of C. A comparison of these two
results proves the coincidence of the ranks of matrices A and C.

15. Matrix Addition and Multlphcatlon
of a Matrix by a Scalar

For square matrices of order n, addition is defined as follows.
The sum A + B of two square matrices A = (a;;) and B = (b,;)
of order n is the matrix C = (¢i;), each element of which is equal

7*
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to the sum of the corresponding elements of matrices 4 and B:
¢ij = az5 + by;*

The addition of matrices thus defined will obviously be
commutative and associative. The inverse operation also exists;
the difference between the matrices A and B is a matrix composed
of the differences of the corresponding elements of the given matrices.
The role of zero is played by the zero matriz, composed entirely
of zeros; this matrix will from now on be denoted by the symbol 0.
There is no real danger of confusing a zero matrix and the number
zero.

The addition of square matrices and their multiplication as defined
in Sec. 13 are related by the distributive laws.

Indeed, suppose we have three matrices of order n, 4 = (a;;),
B = (b;;), C = (¢;;)- Then for any i and j we have the obvious
equality

n n n
21 (@15 bis) €s5 = Z‘i aisCsj + 21 bisCsj
8= 8= 8==

However the left side of this equation is an element in the ith row
and jth column of the matrix (4 4 B) C, the right side is an element
in the same position in the matrix AC -4 BC. This proves the
equation

4+ B)C = AC + BC

The equation C (4 + B) = CA 4 CB is proved in exactly the
same way: the noncommutativity of matrix multiplication quite
naturally requires proof of these two distributive laws.

Let us introduce the following definition of multiplication of
matrices by a scalar.

The product kA of a square matrix A = (a;;) by a scalar k is the
matrix 4’ = (a'y;) obtained by multiplying all elements of the
matrix 4 by k:

ai; = ka;;

We have already encountered (Sec. 14) one such example of
multiplication of a matrix by a scalar: if matrix A is nonsingular,
and | A | = d, then its inverse, 47!, and the adjoint A* are connect-
ed by the equation

A1 = d-14*

As we know, any square matrix of order » may be regarded
as an n2-dimensional vector: this correspondence between matrices

* Of course, one could define the matrix product in just as natural a way
multiplying the corresponding elements. However, such multiplication,
unlike that defined in Sec. 13, would not find any serious applications.
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and vectors is one-to-one. The addition of matrices and the multi-
plication of a matrix by a scalar defined here are then converted
into the addition of vectors and the multiplication of a vector
by a scalar. Thus, the collection of square matrices of order n may be
regarded as an n®-dimensional vector space.

From this follows the truth of the following equations (here,
A and B are matrices of order »n; k, [ are scalars and 1 is the number
unity):

k(A -+ B) = kA + kB, 1)
(k+ DA =rkA+ 14, )
k(1A) = (kI) A, (3)
1.4 =4 (4)

Properties (1) and (2) connect multiplication of a matrix by
a scalar with addition of matrices. At the same time, there is a very
important relationship between the multiplication of a matrix by
a scalar and multiplication of the matrices alone, namely,

(kA) B = A (kB) = k (AB) (5)

In words, if one of the factors in a product of matrices is multiplied
by a scalar k, then the whole product is multiplied by k.

Let there be matrices A = (¢;;) and B = (b;;) and a scalar k.
Then for any i and j,

n n
2 (kai) by =k 2| aishs;
s=1 s=1

The left side of this equation, however, is an element in the ith
row and the jth column of matrix (kA4) B, the right side is an element
in the same place in matrix % (4B). This proves the equation

(kA) B = k (AB)

The equation A (kB) = k (AB) is proved in the same way.

The operation of multiplication of a matrix by a scalar permits
introducing a new mode of matrix notation. Denote by E;; the
matrix in which unity lies at the intersection of the ith row and
the jth column, all other elements being zero. Settingi = 1, 2, ...
..o n,and j=1, 2, ..., n we obtain n? such matrices E;;,
which are connected, as may easily be verified, by the following
multiplication table:

EisEsj = Eij, EisEtj = (0 for s £t

The matrix kE;; differs from the matrix E;; solely in the fact
that it has the scalar k& at the intersection of the jth row and the
jth column. Taking this into consideration and using the definition
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of matrix addition, we get the following notation for an arbitrary
square matrix A:

(L“ aiz .« ain

n n
Ll @
A= gy Qoo 2n =2 E dijEij (6)

........ 24
ani anz e .. Qpn
The matrix A obviously possesses only the notation (6).
The matrix kE, where E is the unit matrix, has, by the defini-
tion of multiplication of a matrix by a scalar, the following form:

k 0
k

kE =
0k
that is to say, one and the same scalar £ on the principal diagonal

and all other elements zero. Such matrices are called scalar matrices.
The definition of matrix addition leads to the equation

kE+1E=(k+)E (7)

On the other hand, using the definition of matrix multiplication
or proceeding from (5), we get

KE-1IE = (k) E @®)

Multiplication of matrizx A by a scalar k may be interpreted as
multiplication of A by a scalar matriz kE in the meaning of multi-
plication of matrices. Indeed, by (5),

(kE) A = A (kE) = kA

The conclusion to be drawn here is that every scalar matriz
commutes with any matriz A. It is very important to point out that
scalar matrices are the only ones with this property.

If a matriz C = (c;;) of order n commutes with any matriz of the
same order, then C is a scalar matriz.

Indeed, set i =% j and consider the products CE;; and E;;C
(which by hypothesis are equal; see above definition of the matrix
E;;). 1t is clear that all columns of matrix CE;;, except the jth,
consist of zeros, and the jth column coincides with the ith column
of matrix C; in particular, element ¢;; lies at the intersection of
the ith row and the jth column of matrix CE;; Similarly all the
rows of matrix E;;C, except the ith, consist of zeros, and the ith
row coincides with the jth row of matrix C; at the intersection of
the ith row and the jth column of matrix E;; C lies the element ¢;;.
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Using the equality CE;; = E;;C, we find that ¢;; = ¢;; (as elements
in the same positions of equal matrices), which is to say that all
elements of the principal diagonal of matrix C are equal. On the
other hand, element ¢;, lies at the intersection of the jth row and
the ith column of matrix CE;; but in matrix E;;C we have a zero
at this site (because i 5% j), and therefore ¢;; = 0, or every off-diago-
nal element of matrix C is zero. The theorem is proved.

16. An Axiomatic Construction
of the Theory of Determinants

An nth-order determinant is a number which is uniquely defined
by a given square matrix of order n. The definition of this concept
given in Sec. 4 points to a rule by which a determinant can be
expressed in terms of the elements of the given matrix. This construc-
tive definition may, however, be replaced by an axiomatic definition.
In other words, it is possible to point out, among the properties
of a determinant that were established in Secs. 4 and 6, such - roper-
ties that the determinant is the sole function of a real matrix aving
these properties.

The simplest definition of this kind consists in utilizing the
expansion of a determinant in terms of a row. Let us consider square
matrices of any order and let us assume that any such matrix M
is associated with a number d); and the following conditions hold.

(1) If the matrix M is of order one, that is, if it consists of
a single element @, then dy = a.

(2) If the first row of a matrix M of order n is made up of the
elements a4y, @45, - . ., @p and if M;, i =1, 2, ..., n, denctes
a matrix of order » — 1 which remains after deleting from M the
first row and the ith column, then

dM = d“dMl -— amsz + aiSdMa — .. . + (—1)“‘la1ndMn

Then for any matrizx M, the number dy is equal to the determinant
of that matriz. We leave it to the reader to carry out the proof of
this assertion, which is done by induction with respect to » and
utilizes the results of Sec. 6.

Much more interesting are some other forms of an axiomatic
definition of a determinant which refer solely to the case of a given
order n and have for a basis some of the simplest determinant pro-
perties that were established in Sec. 4. Let us examine one of these
definitions.

Let any square matrix M of order n be associated with a number
dyr, and let the following conditions hold true.

1. If one of the.rows of matriz M is a multiple of k, then the number
dy is also a multiple of k.
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I1. The number dy is not changed if to one of the rows of M we
add another row of this matriz.

I11. If E is the unit matriz, then dg = 1.

We shall prove that for any matrix M the number dy is equal
to the determinant of the matriz.

Let us first derive from the conditions I to III certain properties
of the number d), that are analogous to the corresponding properties
of a determinant.

(1) If one of the rows of matrix M consists of zeros, then dy = 0.

Indeed, by multiplying a row consisting of zeros by the number 0,
we do not change the matrix, but because of Condition I, the number
dy acquires the factor 0. Therefore

(2) The number dy does not change if to the ith row of matriz M
we add its jth row, j =% i, multiplied by a scalar k.

If & = 0, then that is the proof. If &£ 5= 0, then we multiply
the jth row by % and obtain a matrix M’ for which, because of
Condition I, dy = kdy. Then to the ith row of matrix M’ we
add the jth row and obtain the matrix M ", and, because of Condi-
tion 11, dy» = duy-. Finally, we multiply the jth row of matrix M”
by the scalar £*. We arrive at matrix M"™, which is actually
obtained from M by the transformation indicated in the formula-
tion of the property being proved; note that

Appr =k Vdpgr =K Vdppr =k kdpy = dpr

(3) If the rows of matrix M are linearly dependent, then dy = 0.

Indeed, if one of the rows, say the ith, is a linear combination
of the other rows, then, applying transformation (2) several times,
it is possible to replace the ith row by a row of zeros. Transforma-
tion (2) does not change the: number dy and so, by Property (1),
dM = 0.

(4) If the ith row of matriz M is a sum of two vectors § and y and
if matrices M' and M" are obtained from M by replacing its ith row
by the vectors B and vy, respectively, then

dM = dMI + dM”

Let S be the system of all rows of matrix M, except the ith.
If there is a linear dependence in S, then the rows of each one of
the matrices M, M’, M” are linearly dependent, and therefore,
by Property (3), duy = du» = dy~ = 0, whence in that case
follows the truth of the property being proved. Now if a system §
consisting of n — 1 vectors is linearly independent, then as the
results of Sec. 9 show, a vector oo may be adjoined to form a maximal
linearly independent system of vectors of n-dimensional vector
space. It is possible to express the vectors § and vy linearly in terms
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of this system. Let vector o enter these expressions with the coef-
ficients k and [, respectively; vector o will then enter the expression
for the vector p + vy, that is, for the ith row of matrix M, with
the coefficient & 4 I. Matrices M, M’ and M " can now be transformed
by subtracting from their ith rows certain linear combinations of
other rows so that the vectors (¢ + [) o, ko and la will serve respec-
tively as their ith rows. Therefore, denoting by M° the matrix
obtained from matrix M by replacing its ith row by the vector o
and taking into account Properties (2) and I, we arrive at the equa-
tions
dyr = (k- l) Aro, Ay =kdago, dyr = ldppo

The proof of Property (4) is complete.

(5) If matric M is obtained from matricx M by interchanging
two rows, then dy = —dy.

Suppose it is necessary in matrix M to interchange the rows
with subscripts i and j. This can be achieved by a chain of trans-
formations: first add to the ith row of M its jth row and get matrix
M’; by Condition II, dp = dpr. Then from the jth row of M’ sub-
tract its ith row and arrive at the matrix M ", for which, by Property
(2), we have dy» = dpr; the jth row of M” will differ in sign from
the ith row of M. Now add to the ith row of M” its jth row. For
matrix M™, which this manipulation yields, we have, by Condi-
tion I1I, dy+» = dy~, and the ith row of this matrix coincides with
the jth row of matrix M. Finally, multiplying the jth row of M”

by —1, we arrive at the desired matrix M. Therefore, by Condition I,
dﬂ= -—de = -—dM

(6) If matrizx M’ is obtained from matriz M by interchanging rows,
the a;-th row of matrix M serving as the ith row of matriz M', i =
=1, 2, ..., n, then

dy = Fdy

The plus sign corresponds to the case when the permutation
1 2 ...n
aj az e . an

is even; the minus sign, to the case when it is odd.

Indeed, matrix M’ may be obtained from matrix M by a number
of transpositions of two rows, and for this reason we can take advan-
tage of Property (5). The parity of the number of these transposi-
tions determines, as we know from Sec. 3, the parity of the above-
given permutation.

Now let us consider the matrices M = (a;i;), N = (by;) and

their product Q = MN in the meaning of Sec. 13. We find the
number dg. We know that any ith row of matrix Q is the sum of
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all the rows of matrix N taken, respectively, with the coefficients
a5, Qjq, - - -, @;n (See, for example, Sec. 14). Replace all the rows
of Q by their indicated linear expressions in terms of the rows of
matrix N and take advantage of Property (4) several times. We
find that the number dy will equal the sum of the numbers dr for
all possible matrices T of the following kind: the ith row of T,
i=1, 2, ..., n,is equal to the &; th row of matrix N multiplied
by a scalar a;y;. Here, because of Property (3), we can disregard
all matrices 7 for which there exist subscripts i and j, i 5= j, such
that o; = aj;; in other words, what remain are only matrices T
for which the subscripts oy, Cy, ..., Cp constitute an arrangement
of the numbers 1, 2, ., n. Because of Properties I and (6), the
number dr for such a matrlx is of the form

dp = +a40,805 - - - aﬂandN

where the sign is determined by the parity of the permutation formed
from the subscripts. Whence we arrive at the expression for the
number dg: after factoring the common factor dy out of all summands
of the type dr, what we obviously have left in the parentheses is the
determinant | M | of the matrix M in the sense of the constructive
definition as given in Sec. 4, i.e.,

= |M|.dy (*)

If we now take the unit matrix E for the matrix N, then Q = M,
and, by Property III, dy = dg = 1, that is for any matric M we
have the equality

dy = | M|

which is what we set out to prove. At the same time, once again,
and without the use of the Laplace theorem, we have proved the
multiplication theorem for determinants: all that needs to be done
is, in equation (*), to replace the numbers dg and dy by the deter-
minants of the respective matrices.

We conclude these axiomatic considerations with proof of the
independence of Conditions I to III, that is proof that none of
these conditions is a consequence of the other two.

To prove the independence of Condition III, assume that dyy = 0
for any matrix M of order n. Conditions I and II will obviously
be fulfilled, but III breaks down.

To prove the independence of Condition II assume that for
any matrix M the number dy is equal to the product of the elements
in the principal diagonal of the matrix. Conditions I and III are
fulfilled, Condition II breaks down.

Finally, to prove the independence of Condition I, assume that
dy = 1 for any matrix M. Conditions IT and III will be fulfilled
but Condition I fails.



CHAPTER 4

COMPLEX NUMBERS

17. The System of Complex Numbers

During the course of elementary algebra the range of numbers
is expanded several times. The beginning student of algebra brings
with him from arithmetic a knowledge of positive integers and
fractions. Algebra actually begins with the introduction of negative
numbers, thus establishing the first of the important number
systems, the system of integers, which consists of all the positive
and all the negative integers and zero, and the broader system of
rational numbers consisting of all integers and all fractions (both
positive and negative).

A further extension of the number realm is the introduction
of the irrational numbers. The system consisting of all rational and
all irrational numbers is the system of real numbers. A university
course of mathematical analysis usually contains a rigorous construc-
tion of the system of real numbers; however, for our purposes in this
course the knowledge of the real numbers that the reader has when
he takes up the study of higher algebra will suffice.

Finally, at the very end of the course of elementary algebra,
the system of real numbers is extended to the system of complex
numbers. Of course this system of numbers is less common than the
system of real numbers, though actually it possesses many very
good properties. In this chapter we recapitulate with sufficient
completeness the theory of complex numbers.

Complex numbers are introduced in connection with the following
problem. We know that the real numbers do not suffice for us to
solve every quadratic equation with real coefficients. The simplest
of the quadratics that does not have any roots in the class of real

numbers is
22 4+1=0 (1)

We will only be interested in this equation for the present. The
problem confronting us is: fo extend the system of real numbers to
a system of numbers that will supply us with a root for equation (1).
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As construction material for this new system of numbers, let
us take advantage of points in a plane. It will be recalled that the
"depicting of real numbers by points of the straight line (this is
based on the fact that we obtain a one-to-one correspondence between
the set of all points of the line and the set of all real numbers if, for
a given origin of coordinates and a scale unit, every point of the
line is associated with an abscissa) is systematically utilized in all
divisions of mathematics and is so customary that ordinarily
we do not make any distinction between a real number and the
point that depicts it. ‘

Thus, we wish to define a system of numbers correlated with all
points in the plane. Up till now we have not had to add or multiply
points of a plane, and so we can define the operations involving
points, taking care only that the new system of numbers should
possess all the properties intended for it. These definitions, parti-
cularly for products, will at first appear to be rather artificial.
In Chapter 10, it will be shown however that no other definitions
of operations, which at first glance may seem more natural, would
give us what we want; that is, they would not result in the construc-
tion of an extension of the system of real numbers containing the
root of equation (1). It will also be demonstrated there that replacing
the points of a plane by any other material would not have led
to a system of numbers whose algebraic properties differ from the
system of complex numbers which we will construct below.

We have a plane and we choose a rectangular system of coordi-
nates. Let us agree to denote points of the plane by the letters
a, B, ¥, ... and write a point o with abscissa ¢ and ordinate b
as (a, b), that is, departing somewhat from what is accepted in
analytic geometry, and write & = (a, b). If we have points o = (a, b)
and fp = (c, d), then the sum of these points will be a point with
abscissa @ + ¢ and ordinate b + d, or

(@, B) + (c, ) = (@ +¢, b+ d (2)

For the product of the points & = (a, b) and p = (¢, d) we will have
the point with abscissa ac — bd and with ordinate ad + be, or

(a, b) (¢, d) = (ac — bd, ad + be) (3)

We have thus defined two algebraic operations on the set of
all points in the plane. We will show that these operations have
all the basic properties possessed by operations in the system of real
numbers or in the system of rational numbers; both are commutative
and associative, connected by the distributive law, and have inverse
operations—subtraction and division (except by zero).

Commutativity and associativity of addition are obvious (more
precisely, they follow from the corresponding properties of the
addition of real numbers) since in the process of adding points of
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the plane we separately add their abscissas and their ordinates.
The commutativity of multiplication is based on the fact that the
points a and B enter the definition of a product symmetrically.
The following equations prove associativity of multiplication:

[(a, b) (¢, d) (e, f) = (ac — bd, ad + be) (e, f)
= (ace — bde — adf — bef, acf — bdf + ade + bee),
(a, b) le, d) (e, N1 = (a, b) (ce — df, cf + de)
= (ace — adf — bcf — bde, acf -+ ade + bce — bdf)
The distributive law follows from the equations
@ b))+ (c, Dl (e, ) =(@+c, b+ d)(e])
= (ae + ce — bf — df, af + cf + be + de),
(a, B) (e, f) + (c, d) (e, f) = (ae — bf, af + be) + (ce — df, cf + de)
= (ge — bf + ce — df, af 4+ be 4 ¢f + de)
Let us examine the inverse operations. If we have the points
o = (a, b) and B = (c, d), then their difference is a point (z, y)
such that
(¢, @) + (2, y) = (a, b)
Whence, by (2),
c+zxz=4a, d+y=5b
Thus, the difference of the points a = (a, b) and B = (¢, d) is the
point
a—p=(—c b—d (4)
and this difference is defined in unique fashion. In particular, zero

is the coordinate origin (0, 0); the opposite point of a = (a, b)
is the point

—a = (—a, —b) (5)

Now, suppose we have the points a = (a, b) and p = (¢, d),
and suppose point f is nonzero; that is, at least one of coordinates ¢,
d is nonzero, and therefore, ¢® 4+ d® % 0. The quotient of o divided
by B must be a point (z, y) such that (¢, d) (z, y) = (a, b). Whence,
by (3),

cx — dy = a,
dr +cy=25
Solving this system of equations, we obtain
ac}bd bc—ad

“axe YTaxa
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Thus, for 40 the quotient % exists and is unambiguously defi-

ned :

a _ factbd be—ad
B ( c2tg2 c2+d2) (6
Assuming p=o, we find that in our multiplication of points unity
is a point (1, 0) lying on the axis of abscissas at a distance 1 to the
right of the origin. Also assuming in (6) that a =1 = (1, 0),
we find that for f 5= 0, the inverse of B is

b= (e a5a) Y

We have thus constructed a system of numbers that can be depicted
by points in the plane, and the operations on these numbers are
defined by formulas (2) and (3). This system is called the system
of complex numbers.

Let us now show that the system of complex numbers is an extension
of the system of real numbers. To do this, we consider points lying
on the axis of abscissas, or points of the form (a, 0); associating
a real number a with the point (a, 0), we evidently get a one-to-one
correspondence between the set of points under consideration and
the set of all the real numbers. Applying to these points formulas
(2) and (3), we get

(2,0) + (b,0) = (a + b, 0),
(a, 0)-(b, 0) = (ab, 0)

i.e., points (a, 0) may be added and multiplied in the same way
as the corresponding real numbers. Thus, the set of points on the
azis of abscissas, considered as a part of the system of complex numbers,
does not differ in its algebraic properties from the system of real numbers
as ordinarily depicted by points on a straight line. This will enable
us, in the future, to equate the point (a, 0) and the real number g,
i.e., we will always assume (a, 0) = a. In particular, zero (0, 0)
and unity (1, 0) of the system of complex numbers turn out to be
the real numbers 0 and 1.

We now have to demonstrate that the complex numbers contain
the root of equatiorn (1), that is, a number whose square is equal
to the real number —1. This is the point (0, 1), i.e., a point lying
on the axis of ordinates at a distance 1 upwards from the origin.
Indeed, using (3), we get

©, 1-0,1) = (-1, 0 = —1
Let us agree to denote this point by the letter i, so that i* = —1.

Finally, let us show how the customary notatiorn of the complex
numbers we have constructed can be obtained. First find the product
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of a real number b and the point i:
bi = (b, 0)-(0, 1) = (0, b)

This is a point, consequently, which lies on the ordinate axis and
has ordinate b; all points of the ordinate axis may be represented
by such products. Now if (a, b) is an arbitrary point, then because
of the equation

(a, b) = (a, 0) + (0, b)
(a, b) = a + bi

In other words we have arrived at the customary notation of complex
numbers; the product and sum in the expression @ -+ bi are to
be understood, of course, in the sense of operations defined in the
system of complex numbers we have constructed. :

Now that we have constructed the complex numbers, the reader
will have no difficulty in verifying that all the preceding chapters
of this book—the theory of determinants, the theory of systems of
linear equations, the theory of the linear dependence of vectors,
and the theory of matrix operations—carry over without anry restric-
tions from real numbers to all complex numbers.

Note, in conclusion, that the foregoing construction of the system
of complex numbers raises the following question. Is it possible
to define addition and multiplication of points in three-dimensional
space so that the collection of these points becomes a system of num-
bers containing within it the system of complex numbers or at
least the system of real numbers? This question goes beyond the
scope of the present text, but the answer is no.

On the other hand, noting that the addition of complex numbers
as defined above actually coincides with the addition of vectors
(in a plane) emanating from a coordinate origin (see following
section), it is natural to pose the question: is it possible, for a cer-
tain n, to define the multiplication of vectors in an n-dimensional
real vector space so that, relative to this multiplication and to
ordinary addition of vectors, our space proves to be a number system
containing the system of real numbers? It may be demonstrated
that this cannot be done if we require the fulfillment of all the proper-
ties of the operations which are valid in the systems of rational,
real and complex numbers. However, if we reject commutativity
of multiplication, then such a construction is possible in four-dimen-
sional space; the resulting system of numbers is called the system
of quaternions. A similar construction is also possible in eight-
dimensional space. This yields what is called the system of Cayley
numbers. In this case, however, we have to give up not only the
commutativity of multiplication but also associativity, and replace
the latter by a weaker requirement.

we get
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18. A Deeper Loock at Complex Numbers

In keeping with historically evolved traditions, we call the
complex number { the imaginary urit, and numbers of the form
bi, pure imaginaries, although we have no doubt about the existence
of such numbers and we can indicate points of the plane (points
on the axis of ordinates) which depict these numbers. In the complex
notation of the number «, as a = a 4 bi, the a is called the real part
of o and bi is called its imaginary part. A plane with points identified
with complex numbers as indicated in Sec. 17 is called the complex
plane. The axis of abscissas (z-axis) is called the azis of reals since
its points depict the real numbers, and the axis of ordinates (y-axis)
of the complex plane is termed the azis of imaginaries.

The addition, multiplication, subtraction and division of complex
numbers written in the form a 4 bi are performed in the following
manner, as follows from formulas (2), (4), (3) and (6) of the preceding

section:
(@ +bi)+ (c+di)y=(a+c)+ (b+d)i,
@+b)—(+d)=(a—c)+(®—4di
(e + bi) (¢ + di) = (ac — bd) + (ad + be)i,
a4-bi ac-}+bd bc—ad ,
Ta - ara T areE !

In the addition of complex numbers, add separately the real parts and
the imaginary parts. Similarly for subtraction. The formulas for
multiplication and division would be too involved if given verbally.
The last formula need not be memorized; simply bear in mind that
it may be derived by multiplying the numerator and denominator
of the given fraction by a number different from the denominator
solely in the sign of the imaginary part. Indeed,

at-bi _ (atbi)(c—di) _ (actbd)+(bc—ead)i ac-t+bd bc—adi
ctdi = (cHdi)(c—di) c2-d2 T c2taz + c24-a2
Examples.
M) C+5)+U—-T=C+1)+6E—7i=38— 2.
2 =9 —(T+0=06—7+ (=8 —1)t=—4&—10i
@ @+208—)=013—=2(-DI+1(—1)+2:3}1= 5+ 5i&.
@ Bti_B+nB—n_70-200
) 3T BN 06—h 10
The portrayal of complex numbers as points in a plane result
in a natural desire to have a geometric interpretation of the opera-
tions involving complex numbers. For addition, this interpretation

is simple. Suppose we have the numbersa = a 4 biand § = ¢ + di.
Join the corresponding points (a, b) and (¢, d) with line segments

7—2i.,
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to the origin and construct a parallelogram on these segments,
as sides, as shown in Fig. 2. The fourth vertex of the parallelogram
will obviously be the point (2 + ¢, b 4+ d). Thus, the addition
of complex numbers geometrically is accomplished in accord with
the parallelogram rule, which is to say by the rule of addition of vectors
emanating from the coordinate origin., Also, the number opposite
to o = a -+ bi is a point in the complex
plane that is symmetric to o about the origin Im
(Fig. 3). This gives the geometric interpre-
tation of subtraction.

" The geometric meaning of multiplica- a+p

tion and division of complex numbers will B

become clear only after we introduce a new

notation for them that differs from that g I
a

used heretofore. The notation of a as ¢
o = a + bi makes use of the Cartesian .
coordinates of a point corresponding to that Fig. 2
number. However, the position of a point
in the plane is also completely defined by specifying its polar coor-
dinates: the distance of r from the origin to the point and the angle
@ between the positive z-axis (axis of abscissas) and the direction
from the origin to the point (Fig. 4).

The number r is a nonnegative real number which is zero only
at the point 0. For a on the real axis (that is to say, for o a real

Im

0 a Reals
Fig. 8 Fig. 4

number), the number r is the absolute value of o; for this reason,
for any complex number o, the number r is sometimes called the
absolute value of a; more often, however, the number r is called
the modulus of the number o and is denoted by |a |.

The angle @ is called the argument of the number o and is denoted
by arg o [we thus dispense with the customary names of the polar
coordinates of a point: the radius vector and the polar (or vectorial)
angle]. The angle ¢ can take on any real values (positive or nega-
tive), the positive angles being reckoned counterclockwise. But
if the angles differ by 25t or a multiple of 2z, then the points they
depict in the plane will be coincident.

o e ZaTa)
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Thus, the argument of a complex number o has an infinity
of values differing by integral multiples of the number 2nx; from
the equality of two complex numbers specified by their moduli
and arguments one can only conclude, consequently, that the argu-
ments differ by an integral multiple of 25, whereas the moduli are
the same. It is only for the number 0 that the argument is not defined.
However, this number is fully determined by the equation |0 | = 0.

The argument of a complex number is a natural generalization
of the sign of a real number. The argument of a positive real number
is zero, the argument of a negative real number is ;. There are
only two directions out of the origin on the axis of reals and they
may be distinguished by two symbols: + and —. Now in the complex
plane, there are infinitely many directions issuing from the point O,
and they differ in the angle formed with the positive direction of
the real axis.

The Cartesian and polar coordinates of a point are connected
by the following relation which holds true for any position of points
in the plane:

a =rcos Q, .b=rsinq> 1)
Whence
r= 4 VETE @

Let us apply formulas (1) to an arbitrary complex number
o = a -+ bi:
a=a-+ bi =rcosqg -+ (rsin ¢) i

or
=r (cos ¢ 4 isin @) 3)

Conversely, let the number & = a + bi admit a notation of the
form a = rq (cos o + i sin®,), where ry and @, are certain real
numbers and ro > 0. Then rycos®, = a, ro sin ¢, = b, whence
ro=-+V a® b, that is, by (2), ro=|c |. Whence, using (1), we
get cos ¢, = €os @, sin @, = sin @, that is o, =arg a. Thus, any complex
number o is uniquely defined by (3), where r = |a |, ¢ = arg a
(the argument ¢ being of course defined only to within multiples
of 2xm). This notation of the number o is called the trigorometric
form and will be used very often in the sequel.

The numbers

n Lo T 19 .. 19
a=3(cos-4—+zsmf), B=cos§n+zsm-§n

and

v=V3[eos (=) +isin (—7)]
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are given in trigonometric form; here |a|=3, |B|=1, |y|=V 3
n 19 n n 13
arg a=-—r, arg[3=§-n, argy= — - (orargﬁ::?, argy:Tn‘).
On the other hand, the complex numbers

a'=(—2) (cos%—kisin—g), [5’=3(cos—§-n—isin%n),

. ’ . ; 3
v’=2(cos—’-§——{—ism~2—n), ) =s1n%n+zcoszn
are not given in trigonometric form, although their notations resem-
ble that of (3). In trigonometric form, these numbers look like

, 6 .. 6 ., 4 4
o —2(cos—5-n+zsmgn), p'=3 (cos§n+zsm—3—n),

6':cos—1—n—[—isin%n
Finding the trigonometric form of a number 9’ involves difficulties
that are almost always encountered when passing from the customary
notation of a complex number to its trigonometric notation and
vice versa: with the exception of a few cases, it is impossible to
find the exact angle on the basis of given numerical values of the
sine and cosine, and it is impossible for a given angle to write the
exact values of its sine and cosine.
Let the complex numbers o and B be given in trigonometric
form: o« =r (cos¢ + ising), P =r' (cosP’ 4 isin ¢'). Multi-
plying these numbers together, we get

ap = [r (cos ¢ + i sin @)]-[r’ (cos ¢" + i sin ¢)]
= rr’ (cos ¢ cos ¢’ +i cos @ sin ¢’ - i sin ¢ cos ¢'—sin @sin ¢’)

or
ap = rr’ [cos (p + @) + i sin (¢ + ¢')] (4)
We have the product af written in trigonometric form and so
laB | =r" or
lap | = la||B | ()

In words, the modulus of a product of complex numbers is equal to the
product of the moduli of the factors. Also, arg (af) = ¢ + ¢’ or

arg (af) = arg o + arg p (6)

The argument of a product of complex numbers is equal to the sum
of the arguments of the factors (note that equality here means to within
a multiple of 2m). These rules obviously carry over to any finite
number of factors. Asapplied to real numbers, formula (5) yields
the familiar property of absolute values of the numbers, and
(6), as can readily be verified, turns into the rule of signs in the
multiplication of real numbers.

8*
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Analogous rules are valid in the case of a quotient. Indeed, let
a =r(cos ¢ 4 isin ¢), B = r' (cos ¢" + isin ¢'); f 5= 0; that is
r' = 0. Then
r(cosp4-ising)  r(cos ¢--isin @) (cos ¢’— isin g’)
r’ (cos @’ +ising’) r’ (cos2 ¢’ J-sin2 ')

&
B
r

-

- (cos @ cos ¢’ 4 isin ¢ cos ¢’ —icos @ sin ¢’ +sin @sin @)

or
r
"

5 =7 [c0s (¢— o)+ isin (p—9)] )

Whence it follows that I% !:rl, or
‘ 2 ! —lel (8)

B |81
The modulus of a quotient of two complex numbers is equal to the modu-
lus of the dividend divided by the modulus of the divisor. Also, arg (%) =
=¢—¢ or

arg (%) =arga—argp 9)
The argument of a quotient of two complex numbers is obtained by

subtracting the argument of the divisor from the argument of the dividend.

I
ap ){’" m

! _p Reals

a1
Fig. 5 . Fig. 6

It is not difficult now to grasp the geometric meaning of multi-
plication and division. Because of (5) and (6), we get a point depicting
the product of the number a by the number f=r’ (cos ¢’ -+ isin¢’)
if the vector from 0 to o (Fig. 5) is rotated counterclockwise through
an angle ¢’ = argP and then stretched by a factor r’ = | | (for
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0<<r' <<t it will be a compression instead of a dilation). Also,
. from (7) it follows that for o = r (cos ¢ + i sin ¢)== 0 we have

a~! = r-1[cos (—¢) + i sin (—o)] 4 (10)

ie, |at]|=|a | arg (@7') = —arg a. We thus obtain point o~?
if from point o we go to point o’ at a distance r~! from zero on the
same half-line emanating from zero as is point a (Fig. 6),* and then
go to a point symmetric to o’ about the real axis.

A sum and difference of complex numbers given in trigonometric
form cannot be expressed by formulas similar to (4) and (7). However,
for the modulus of a sum we have the following important inequa-
lities:

fa l—IBI<la+BbI<|al+|f] (11)

In words, the modulus of a sum of two complex numbers is less than
or equal to the sum of the moduli of the terms but greater than or equal
to the difference of these moduli. Inequalities (11) follow from the
familiar theorem of elementary geometry concerning the sides of
a triangle because | o + p | is, as we know, equal to the diagonal
of a parallelogram with sides |« | and | § |. Incidentally, the case
for points o, p and O lying on one straight line requires a special
investigation, which we leave to the reader. It is only in this case
that the equalities are attained in formulas (11).
From (11), because @ — f = @ 4 (—P) and

|—B1=161I (12)

(this equation follows at the very least from the geometric inter-
pretation of the number —f), also follow the inequalities

la|—IBI<le—BI<lal+[B]| (13)

That is, the same inequalities hold for the modulus of a difference
as for the modulus of a sum.

Inequalities (11) might be obtained in the following manner.
Let a =r(cosg +-ising), p=r" (cos®’ + isin®’) and let
the trigonometric form of the number a + f be a 4 f =
= R (cosy + i sin ¢). Adding the real and imaginary parts separa-
tely, we obtain

rcos ¢ + r’ cos ¢ = R cos v,

rsin ¢ 4+ r’ sin ¢’ = Rsin ¢

* |la’| = |« | if and only if |a] = 1, that is, if the point o lies on the
circumference of the unit circle. If o lies inside the unit circle, then a’ will be
outside it, and vice versa. In this way we obviously obtain a one-to-one cor-
respondence between all points of the complex plane outside the unit circle
and all nonzero points within the unit circle.



118 CH. 4. COMPLEX NUMBERS

Multiplying both sides of the first equation by cos ¢ and both sides
of the second by sin and then adding, we get

r (cos @ cos P 4 sin @ sin ) 4 r’ (cos ¢’ cos P 4 sin ¢’ sin )
= R (cos? ¢ + sin? )
That is,
rcos (p —¢) 4+ r' cos (¢ —¢Y) =R

Whence, since the cosine is never greater than unity, follows the
inequality r +r' > R, or |a |+ |B | > | + p | On the other
hand, ¢ = (@ + B) — B = (¢ + B) + (—P), whence, by what has
been proved and by virtue of (12),

le |<la+Bl+|-Bl=la+pl+ 18]
From this, |a |— |[f|< |a+ B |

It is well to note that for complex numbers the concepts of
“more than” and “less than” cannot be reasonably defined because
these numbers, in contrast to the real numbers, are not located
on a straight line, whose points are naturally ordered, but in a plane.

For this reason, complex numbers as such (rot
Im their moduli) can never be connected by an
/ inequality sign.
a Conjugate numbers. Suppose we have
a complex number o = a + bi. The number
b a — bi, which differs from o« solely in the
$ a »  sign in front of the imaginary part, is called
0| ¢ Reals 4he conjugate of o and is denoted by a.
r It will be recalled that when considering
> the division of complex numbers we resorted
to conjugate numbers but did not introduce
Fig. 7 that term. _
The conjugate number of a is obviously
o; in other words, we can speak of a pair of
conjugate numbers. The real numbers are the only numbers which
are conjugate to themselves.

Geometrically, conjugate numbers are points symmetric about

the real axis (Fig. 7). Whence follow the equations

la|=]ol, arg o = —arg o (14)
The sum and product of conjugate complex numbers are real numbers.

Indeed,
a4+ a = 2a, } (15)

ao = a? 4+ b2 = |a |?
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The last equation shows that the number aa is positive even
for a = 0. In Sec. 24 we will derive a theorem which shows that

the property proved here is characteristic of conjugate numbers.
The equation )

(@a—b))+(c—diy=(a+c)—(b+d)i

shows that the conjugate of a sum of two numbers is equal to the sum
of the conjugates of the numbers:

a+p=a+pP (16)
Similarly, from the equation
(¢ — bi) (¢ — di) = (ac — bd) — (ad -} be) i

it follows that the corjugate of a product is equal to the product of the
conjugates of the factors:

ap =a-B (17)
Direct verification also shows the following formulas to be valid:
a—Pp=a—p, (18)

3

a
( p ) B

We will now prove the following assertion: if a number a is in
some way expressed in terms of the complex numbersB 4, By, . - -, PBn
by means of addition, multiplication, subtraction and division, then
by replacing all the numbers P, ir this expression by their conjugates,
we obtain the conjugate of o; in particular, if o is a real number, it
does not change when all the complex numbers f§, are replaced by
their conjugates.

We shall prove this assertion by means of induction with respect
to n, since for n = 2 it follows from formulas (16)-(19).

Let the number o be expressed by the numbers B, By, - - ., Pn
not necessarily distinct. This expression gives a definite order in
which the operations of addition, multiplication, subtraction and
division are applied. The last step will be to apply one of these opera-
tions to the number y; expressed in terms of the numbers f4, B,, . . .
..+, Pan, where 1 <k <{n —1, and to the number y, expressed
in terms of the numbers P4, . . ., Pa. By the induction hypothesis,
replacement of the numbers By, fs, . .., pr by their conjugates
implies a replacement of the number y; by the number ;, and
a replacement of the numbers P11, Pryss - - -, Pa by their conju-
gates implies substitution of y, by y,. However, by one of the for-
mulas (16)-(19), the transition from ¢y, and y, to y; and y, converts
the number o to a.

(19)
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19. Taking Roots of Complex Numbers

Let us now examine the raising of complex numbers to a power
and the taking of roots. To raise a number oo = a 4 bi to a positive
integral power n, it suffices to apply Newton’s binomial theorem
to the expression (a -+ bi)" (this formula holds true for complex
pumbers as well, since its proof is based solely on the distributive

law) and then take advantage of the equations i? = —1, {8 = —i,
i* = 1, whence, generally,
i4k=1, i4k+1=i, jak+e -1, jaRts —

If a number « is given in trigonometric form, then for a positive
integral n, there follows from (4) of Sec. 18 the following formula
called De Moivre’s formula:

[r (cos ¢ + i sin @)I* =r" (cos ng + i sin ng) 1)
In raising a complex number to a power, raise the modulus to that power
and multiply the argument by the exponent. Formula (1) holds true
for negative integral exponents as well. Indeed, since a-" = (a"1)",

it is sufficient to apply the De Moivre formula to the number -2,
the trigonometric form of which is given by (10), Sec. 18.

Examples.
() #7=i, 2= _1,
(2) (24 5i)3 = 28 4- 3.22.5{ 4 3.2.522 4 533
= 8 + 60i — 150 — 125 = —142 — 65i.

(3) ['l/é (cos %-}-isin %)]4=(V§)4(cos n+isinn)= —4.

(4) [3 (cos -g—-l-isin %)]—3

=32 [cos (——% n) ~+isin (—% n)]=2—17- (cos % n+isin% n) .

A special case of De Moivre’s formula, namely, the equation
(cos @ 4 isin @)" = cos ng - i sin ne
permits finding with ease formulas for the sine and cosine of a mul-
tiple angle. Indeed, expanding the left member of this equation
by the binomial formula and equating the real and imaginary parts
of both sides separately, we obtain
€08 np = cos"p— ( ;) cos" 2 @.sin? g4 ( Z ) cos" % g-sintp—...,

sinnp= ( ’Z ) cos™ ! p.sin p— ( g ) cos™ 3 @+sind @

n

+ ( 5)o:os"""q>sin5qa—...
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Here, (2) is the usual notation for a binomial coefficient:

ny _ n{n—1)(n—2)...(n—k-41)
(k)‘ 1.2.3... &k

For n = 2 we arrive at the familiar formulas
cos 2¢ = cos? ¢ — sin? g,
sin 2¢ = 2 cos @ sin ¢
and for n = 3 we obtain the formulas
cos 3¢ = cos® ¢ — 3 cos ¢ sin? g,
sin 3p = 3 cos? ¢ sin ¢ — sin® ¢
Extracting roots of complex numbers is a far more difficult task.
Let us start with the square root of the number & = a 4 bi. As yet
we do not know whether there exists a complex number whose
square is equal to «. Let us assume that such a number u + vi
exists; that is, using conventional symbols, we can write
Va + b =u 4 vi
From the equation
(w + vi)?2 = a + bi
it follows that
u?— v? =g, 5
2uv = b @)
Squaring both sides of each of the equations of (2) and then adding,
we get
(u2 — vz)z +4u2v2 — (u2 + v2)2 = g2 -+ b2
whence
ut vt = + VE TR

The plus sign is taken because the numbers u and v are real and
therefore the left member of the equation is positive. From this
equation and from the first of the equations of (2), we get

w=o(a+VET0),
2= (—a+V @ LB

Thus, extracting the square roots we get two values for u which
differ in sign and also two values for v. All these values will be real
since the square roots are extracted from positive numbers for any
a and b. The values obtained for u and v cannot be combined in arbi-
trary fashion, since, by the second equation of (2), the sign of the
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product uv must coincide with the sign of b. This yields two possible
combinations of values of u and v, that is, two numbers of the form
u -+ vi which can serve as values of the square root of the number o;
these numbers differ in sign. An elementary though unwieldy check
(squaring the resulting numbers separately for the case b > 0 and
b << 0) shows that the numbers we found are indeed the values of the
square root of the number a. Thus, taking the square root of a com-
plex number is always possible and yields two values which differ in sign.

In particular, it now becomes possible to extract the square root
of a negative real number; the values of this root will be pure ima-

ginaries. Indeed, if a << 0 and b = 0, then Va2 + b? = —a, since
this root must be positive, but then u? = (a — a) = 0, that
is, u = 0, whence }/ a = =vi.

Example. Let o = 21 — 20i. Then /a? F 2= /441 + 400 = 29. There-
fore, u?= % (21 4+ 29) = 25, v?= —5(—21 + 29) = 4, whence u = =45,
v = =+ 2. The signs of u and v must be different since & is negative, therefore

V21 = 20i = +(5 — 2i)

Attempts to extract higher (than second) roots of complex num-
bers given in the form & J- bi encounter insuperable difficulties.
Thus, if we wished to extract the cube root of a number a -+ bi,
we would first have to solve some auxiliary cubic equation, which
we are as yet unable to do, and which in turn would require, as we
shall see in Sec. 38, the extraction of the cube root of a complex
number. On the other hand, the trigonometric form is extremely well
suited to extracting roots of any degree. Using the trigonometric
form we will now exhaust this problem completely.

Let it be required to extract the nth root of a number o =
=r (cos ¢ + i sin ¢). Let us assume that this is possible and that
we get the number p (cos 8 + i sin 8), that is

[p (cos 8 4 i sin 6)]" = r (cos ¢ + i sin ¢) (3)

Then, by De Moivre's formula, p™ = r, that is p = VT, where
the right member contains a uniquely determined positive value
of the nth root of the positive real number r. On the other hand, the
argument of the left member of (3) is »8. We cannot assert, however,
that n8 is equal to ¢, since these angles may actually differ by some
integral multiple of 2x. Therefore, n® = ¢ + 2kn, where k is an
integer, whence

_ 94-2kn
§=—"—

Conversely, if we take the number {/F (cos cf#u- isin hjlm) )
then for any integral %, positive or negative, the nth power of
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this number is equal o «. Thus
" n Q+2kn . . @--2kn
Vr(costp-{-lsm(p):,/?(cos————n——{—zsm———n—) (4)

Assigning different values to %, we will not always get distinct
values of the required root. Indeed, for

E=0,42,...,n—1 (5)

we get n values of the root, all distinct, since increasing & by unity

implies increasing the argument by -2n1 Now let & be arbitrary.
f k=ng+r, 0r<<n—1, then

‘P+n2kﬂ - <P+2(r;q+r)ﬂ _ <P-i-n2rﬂ + 2gm
In other words, the value of the argument for our % differs from the
value of the argument for £ = r by a multiple of 2r. We thus obtain
the same value of the root as for the value of &k equal to r, that is,
such as lies in the set (5).

Thus, extracting the nth root of a complex number o is always
possible and yields n distinct values. All values of the nth root lie on
a circle of radius y/ [a | with centre at zero and divide the circle into
n equal parts.

In particular, the nth root of a real number a also has n distinct
values, of which two, one, or none will be real, depending on the
sign of ¢ and the parity of =n.

Examples.
3 in_;.z;m iﬂ—}-zkﬂ
1) p= I/Z (cosin—}-isinin) =i/§ cos 4 +isin4 ;
4 4 3 3 !
k=0 [30=%/_ (cos—}-&-isin%) ;
5 11 11
=37 e —
k=1 Bi_yz(cos 1231—}-tssln12 n) ;
g g3 19\ sin1
k=2: B,=y2 (cos i tising n) .
n n
_ — & §+2kn . —2-+2kn
2 p=Vi= €08 -~ sin - =cos 5~ +isin 5 H

. 2, V2 5 .. 5
ﬁo=cos%—{—ism %=—"g— zlz-; Bi=cosz-n+zsmzn=—ﬁo.
J— —_— k
(3) p=y —8=V8(cosntisinm)=2 (cos n+32kn+isin n+32 n) ;
Bo=2 (cos%—}-isin %):1—[41/3;

B1=2(cosn+isinmy= —2;

Ba=2 (cos Eg—t-—}-isin -%E-) =1—i V3.
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Roots of unity. Of particular importance is the case of extracting
the nth root of unity. This root has n values, and, because of the
equation 1 = cos 0 + ¢ sin 0, and formula (4), all these values or,
as we shall say, all the nth roots of unity, are given by the formula

VT —cos 22y isin 28 k=0,1,...,n—1 (6)

The real values of the nth root of unity are obtained from formula (6)
for the values k = 0, and =2 - if n is even, and for k = 0 if » is odd.

In the complex plane, the nth roots of unity are located on the cir-
cumference of the unit circle and divide it into n equal arcs: one
of the division points is the number 1. From this it follows that
those of the nth roots of unity which are not real are situated sym-
metrically about the real axis (that is, are pairwise conjugate).

The square root of unity has two values: 1 and —4; the
fourth root of wunity has four values: 4, —1, i and —i. It is
advisable for what follows to memorize the values of the cube

root of unity. By (6), the roots are cos 21‘31‘ + i sin 2 '§" where & =
=0, 1, 2; that is, besides unity, the conjugate numbers

ai=cos —I—zsn —--—-——l— V3

4m 1 , 13 (7)
2

az—cos +zsm 3= —5 1
as well.

All values of the nth root of a complex number o may be obtained
by multiplying one of these values by all the nth roots of unity. Indeed,
let B be one of the values of the nth root of the number «, i.e.,
B™ = a and let & be an arbitrary value of the nth root of unity, that
is, e® = 1. Then (fe)" = f"e™ = a. Thus fPe is also one of the
values for Voc. Multiplying § by each of the nth roots of unity, we
get n distinct values of the nth root of the number ¢, that is, all
the values of this root.

Example 1. One of the values of the cube root of —8 is —2. The two others

a;‘)e by (7), the numbers —2¢,=1 —i VS and —2e,=1-41i V— 3 (see Example 3
above).
Example 2. /81 has four values: 3, —3, 3i, —3i.

The product of two nth roots of unity is itself an nih root of unity.
Indeed, if &" =1 and 0™ = 4, then (en)” = e™" = 1. Also, the
reciprocal of an nth root of unity is itself that root. Let & = 1. Then
from e-e-! =1 it follows that e"-(e~)® = 1, that is, (e”)* = 1.
Generally, any power of the nth root of unity is also an nth root of
unity.
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Any kth root of unity will also be an Ith root of unity for any
that is a multiple of .. Whence it follows that if we regard the entire
collection of nth roots of unity, then some of these roots will already
be n’-th roots of unity for some »’ which are divisors of the number #.
However, for any n, there exist nth roots of unity such that they
are not any lesser roots of unity. These roots are termed primitive
nth roots of unity. Their existence follows from formula (6): if the
value of a root corresponding to a given value of % is denoted by e,
(so that go = 1), then on the basis of De Moivre’s formula (1),

eh=¢g
Thus, no power of g, less than the nth will be equal to 4, that is

€, = COS éy—? + i sinz—n—IL is a primitive root.

An nth root ¢ of unity is a primitive nth root if and only if its powers
e®, k=0,1, ..., n—1, are distinct, that is, if they exhaust all
the nth roots of unity.

Indeed, if all the indicated powers of the number e are distinct,
then e is obviously an nth primitive root. But if, for example, e* =
=g for0 <k <<l<<n —1, then g~" = 1; that is, because of the
inequalities 1 <C I — £ << r — 4, the root & will not be primitive.

The number &; found above is not, in the general case, the only
primitive nth root. The following theorem is used to find all of these
roots.

If e is a primitive nth root of unity, then the number e* is a pri-
mitive nth root if and only if k is relatively prime to n.

Let d be the largest common divisor of the numbers & and r.
Ifd>1and &k = dk', n = dn’, then

(ek)'n» — Sknl — Ek'n — (En)h' -1
that is, the rootl €* is an n’-th root of unity.

On the other hand, let d = 1 and at the same time let the number
e® be an mth rool of unity, 1 <<m < n. Thus,

(Eh)m — Ehm = 4

Since the number ¢ is a primitive nth root of unity, that is, only its
powers with exponents that are multiples of # can be equal to unity,
it follows that the number Zm is a multiple of n. But since 1 < m <
< n, the numbers % and n cannot be relatively prime; this con-
tradicts the assumption.

Thus, the number of primitive nth roots of unity is equal to the
number of positive integers k less than r and relatively prime to n.
The expression for this number, which is ordinarily denoted by
@ (n), may be found in any course of number theory.

If p is a prime number, then all these roots except unity itself
will be primitive pth roots of unity. On the other hand, i and —i
(not 1 and —1) will be among the primitive fourth roots of unity.



CHAPTER 5

POLYNOMIALS
AND THEIR ROOTS

20. Operations on Polynomials

The content of the first two chapters of this book—the theory
of determinants and the theory of systems of linear equations—
grew out of the elementary school course of algebra which proceeds
from one equation of the first degree in one unknown to systems of
two and three equations of the first degree in two and three unknowns
respectively. The second branch of elementary algebra, which in that
setting appeared to be the more important one, consisted in passing
from first-degree equations in one unknown to an arbitrary quadratic
equation again in one unknown, and on to certain special types
of equations of the third and fourth degree. This trend is further
developed into a very extensive and rich branch of higher algebra
devoted to the study of arbitrary equations of the nth degree in one
unknown. This division of algebra, which is historically the earlier
one, is treated in the present chapter and in some of the later chap-
ters of this text.

The general form of an nth-degree equation (n a positive inte-
ger) is

™ + a2+ ...+ a4+ a, =0 1

The coefficients ay, ay, . . ., @n-1, an of this equation will be
considered to be arbitrary complex numbers and the leading coef-
ficient ay must be nonzero.

If an equation like (1) is written, it is assumed that we have to
solve it. In other words, we have to find numerical values for the
unknown z that satisfy the equation, that is, values, which, when
substituted in place of the unknown and after all indicated opera-
tions have been carried out, reduce the left member of (1) to zero.

However, it is advisable to replace the problem of solving equa-
tion (1) by the more general one of studying the left member of this
equation:

apx™ + a ™t + ...+ a2z + a, (2)
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which is called a polyromial of degree n in the unknown xz. Remember
that only expressions like (2) are polynomials, that is, only the sum
of integral nonnegative powers of the unknown x taken with certain
numerical coefficients, and not just any sum of monomials, as was
the case in elementary algebra. In particular, we will not consider
as polynomials expressions which contain negative or fractional

powers of the unknown z, such as 222 —% + 3 or ax™® 4 bx? +

1
4+ cx ! 4+ d -+ ex 4 fa® or a2 + 1. For brevity, we will denote
polynomials by the symbols f (z), g (z), ¢ (), and so on.

Two polynomials f () and g («) will be considered equal (or
identically equal), f (z) = g (z), only when the coefficients of like
powers of the unknown are equal. To be specific, no polynomial can
be equal to zero if at least one coefficient is nonzero and for this
reason, the equality sign used in the notation (1) of an nth-degree
equation has no connection with the above-defined equality of poly-
nomials. The = sign connecting polynomials will always be under-
stood in the sense of an identical equality of these polynomials.

Thus, we look upon the nth-degree polynomial (2) as a certain
formal expression, fully defined by the set of its coefficients a,,
a4, . .., an, where a; 5= 0. The exact meaning of these words will
be explained in Chapter 10. Note that aside from the notation of
a polynomial given in (2) (in descending powers of the unknown z),
we may use other notations obtainable from (2) by a rearrangement
of the terms, say, in ascending powers of the unknown.

There is of course the possibility of regarding the polynomial
(2) from the viewpoint of mathematical analysis and of considering
it to be a complex function of a complex variable z. However, we
have to bear in mind that two functions are considered equal if
their values for all values of the variable z are equal. It is clear
that two polynomials which are equal in the above-mentioned formal
algebraic sense will also be equal as functions of z. The converse
will be proved only in Sec. 24 however. After that the algebraic
and function-theoretic viewpoints on the concept of a polynomial
with numerical coefficients will indeed be equivalent. For the time
being, however, each time we have to indicate precisely which sense
is meant. In the present section and the two following sections we
will look upon the polynomial as a formal-algebraic expression.

Naturally, there are nth-degree polynomials for any natural
number n. We consider all possible polynomials of this kind: first-
degree (or linear), quadratic, cubic, etc. We will also encounter
polynomials of degree zero, which are nonzero complex numbers. The
number zero will also be taken to be a polynomial. This is the
only polynomial whose degree is not defined.

For polynomials with complex coefficients we now define the ope-
rations of addition and multiplication. These operations will be
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introduced using the pattern-of operations involving polynomials
with real coefficients, which are familiar from the course of ele-
mentary algebra.

If we are given polynomials f (z) and g (z) with complex coef-
ficients (written, for convenience, in ascending powers of z):

f(z) =ay+ axz + ...+ apog2™t + a2,  a, 540,
. g(x) =by+ bz + ...+ b2t + ba®, b, 5£0
and if, for example, » > s, then their sum is the polynomial
fl@+g@=ct+eaxt+...4+ g™+ 2"

whose coefficients are obtained by adding the coefficients of the
polynomials f (z) and g (2) of like powers of the unknown, i.e.,

ci=ai+bi’ i=0,1,...,n (3)

For n > s, the coefficients b,41, by4y, - . ., b, are to be taken equal
to zero. The degree of the sum will be equal to » if » is greater than
s, but for n = s it may accidentally prove less than n, namely,
when b, = —a,. i

The product of polynomials f (z) and g (z) is the polynomial

f(x)-g(2) = do + dyz + . .. + dpyerZ™ 1+ dyy 2™

whose coefficients are determined as follows:

di= > axby, i=01,...,n+s—1, nis (4)
hf =i
That is, the coefficient d; is the result of multiplying those coeffi-
cients of the polynomials f (z) and g (z) whose sum of indices is
equal to i and of adding all such products; in particular, d, =
= agby, dy = aoby + ayby, .. ., dyts = apb,. From the latter
equality follows the inequality d,,,=4 O and therefore the degree
of the product of two polynomials is equal to the sum of the degrees
of these polynomials.

From this it follows that the product of polynomials different
from zero can never be equal to zero.

What properties do these operations that we have introduced
for polynomials have? The commutative and associative laws for
addition follow immediately from the validity of these properties
for addition of numbers, since we add the coefficients of each power
of the unknown separately. Subtraction is possible: the role of zero
is played by the number zero, which we have included in the class
of polynomials, and the opposite of f (z) will be the polynomial

—f(2) = —ay —ayx — ... — a,_;2"™! — a,z"

The commutative law for multiplication follows from the com-
mutativity of multiplication of numbers and from the fact that
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in the definition of a product of polynomials, the coefficients of
both factors f (x) and g (x) are of an equal status. The associativity
of multiplication is proved as follows: if besides the above-written
polynomials f (z) and g (), we are given the polynomial

hz) =co+ e1z+ ... 4 ezt + ciaf, e 0

then the coefficient of z*, i = 0, 1, ..., n 4 s + ¢, in the product
lf () g ()] 2 (2) is the number ,

(Z ahbl)cm——- 2 anbiem

jHm=i R{l=j 4 l4+m=1i
and in the product f(z) lg (x) 2 (z)] the equivalent number

2 ah( 2 bzcm) Z agbiem
h4-j=1 1+m=j A-l4m=i
Finally, the validity of the distributive law follows from the
equation

! (ar+br) cr= > arc;+ 2 buey
BiT=i [ nlt} k

=1

since the left-hand member of this equation is the coefficient of 2*
in the polynomial [f () + g (2)] 2 (x) and the right-hand member
is the coefficient of the same power of the unknown in the poly-
nomial f (z) h (2) + g (2) k (2).

It will be noted in the multiplication of polynomials that the
role of unity is played by 41, which is regarded as a polynomial of
degree zero. On the other hand, a polyromial f (z) has an inverse

7 (2), :
f@f'(x)=1 (5)

if and only if f (z) is a polynomial of degree zere. Indeed, if f (x) is
a nonzero number a, then the inverse polynomial is the number a-.
But if f () has degree n > 1, then the degree of the left side of (5)
would not be less than n if the polynomial f-! (z) existed, whereas
the polynomial on the right is a polynomial of degree zero.

Consequently, the multiplication of polyromials has no inverse
operation (division). In this respect, the set of all polynomials with
complex coefficients resembles the set of all integers. The analogy
may be continued in that polynomials, like the integers, have
a division algorithm (with remainder). Elementary algebra describes
this algorithm for the case of polynomials with real coefficients.
However, since we are dealing with polynomials with complex
coefficients, it is well to review once again all the statements and
to carry out the proofs.

For any two polynomials f (z) and g (z) we car find polynomials
q (z) and r (z) such that

f@=8g@q(x)+r(2) (6)

9—5760
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the degree of r (z) being less than the degree of g (x), or r (z) = 0.
The polynomials q (x) and r (z) satisfying this condition are defined

uniquely.
Let us first prove the latter half of the theorem. Let there also

be polynomials ¢ (z) and r (z) such that likewise satisfy the equation

fl@=¢@q@ +r@ (7
the degree of r (z) again being less than the degree of g (z)*. Equa-
ting the right sides of (6) and (7), we obtain

g(2) g (@) —q @] =r(@ —r(
The degree of the right side of this equation is less than the degree
of g (z), but the degree of the left side would be greater than or equal
to the degree of g (z) for ¢ (z) —q (z) 5= 0. Therefore, it must be
true that ¢ () — ¢ (z) = 0, that is, ¢ () = ¢ (z), but then r (z) =
= F(a:), which is what we set out to prove.
We now prove the first part of the theorem. Let the polynomials
f (z) and g (z) have degrees n and s, respectively. If n <<s, then we
can putq (z) = 0, r () = f (z). Butif n > s, then we take advantage
of the same method by which in elementary algebra we divide
polynomials with real coefficients (in descending powers of the
unknown). Suppose
f(x) = aex™ + a2™ ' + . .. + apqx + an, ap 0,
g (.1:) = box’ -+ bix“'l 4+ ...+ bs—-ix + bs, bo #0

Setting

f(2) =322 g (@)= [ (a) t)

we get a polynomial whose degree is less than n. Denote this degree
by n; and the leading coefficient of the polynomial f, (z) by a.
Now, if we still have n; > s, set

f1@) —F2am=1g (@)= f,(z) (8)
Denoting by n, the degree and by a,, the leading coefficient of the
polynomial f, (z), we set _

fo(@) — 2w g (@) = f3 () (8)

and so forth. .
Since the degrees of the polynomials f, (z), f; (z), ... decrease,
n>>n; > n, > ..., wefinally arrive (after a finite number of steps)

at the polynomial f, (z),
fany(2) — 22 217" (2) = f () (8-

* Or r(z) = 0. This case will not be specifically stated in the sequel.
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the degree of which, n,, is less than s. Our procedure has come to
a halt. Now adding (8), (81), - .., (8s-1), we get

fl@)—(gamt - GRam 4 4+ L") g (2) = fi ()

Thus, the polynomials

g(x)_—_%z-xn~a+%‘o-°xm—8+ ... +i’r£"—° T
r(z)=fr (x)

do indeed satisfy (6), and the degree of r () is in fact less than the
degree of g (z).

Note that the polynomial ¢ (z) is called the quotient obtained
from the division of f (z) by g (z), and r (z) is the remainder.

From this consideration of the division algorithm, it is easy
to establish that if f (z) and g () are polynomials with real coefficients,
then the coefficients of all polynomials f; (z), f, (%), . . . and therefore

also the coefficients of the quotient q (z) and the remainder r (z) will
be real.

21. Divisors. Greatest Common Divisor

Suppose we have nonzero polynomials f (z) and ¢ (z) with com-
plex coefficients. If the remainder after dividing f (z) by ¢ (z) is
zero, we then say that f (z) is divisible (exactly divisible) by ¢ (z).
Here, the polynomial ¢ (z) is called the divisor of the polynomial
f (@).

( The polynomial ¢ (x) is a divisor of the polynomial f (z) if and
only if there exists a polynomial { (x) such that satisfies the equation

f (@) = o@) V(2 1)

Indeed, if ¢ (z) is a divisor of f (z), then for ¢ (z) we should take
the quotient of f (x) divided by ¢ (z). Conversely, let there be a poly-
nomial ¢ (z) which satisfies (1). From the proof given in the pre-
ceding section on the uniqueness of the polynomials ¢ (z) and r ()
which satisfy the equation

f@) =9 @) q(x)+r ()

and the condition that the degree of r () be less than the degree
of ¢ (z), it follows in our case that the quotient of f (z) by ¢ (z)
is equal to ¢ (z), and the remainder is zero.

Naturally, if equation (1) holds, then ¢ (z) is also a divisor
of f (). Furthermore, it is obvious that the degree of ¢ (x) does not
exceed the degree of f (z).

Note that if the polynomial f (z) and its divisor ¢ (z) both have
rational or real coefficients, then the polynomial ¢ (z) as well will

g%
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have rational or, respectively, real coefficients since it is sought
by means of the division algorithm. Of course, a polynomial with
rational or real coefficients can also have divisors, not ali the coef-
ficients of which are rational (or real). This is shown for example
by the equation

2241 =(x—i)(x+1i

We indicate a few basic properties of divisibility of polynomials
that will be very useful later on.

I. If f (2) is divisible by g (), and g (z) is divisible by h (z), then
f (x) is divisible by h ().

Since, by hypothesis, f () = g (2) ¢ (z) and g (z) = k (x) ¥ (2),
it follows that f (z) = & (z) Y (z) ¢ (2)].

II. If f (x) and g (z) are divisible by @ (z), then their sum and
difference are also divisible by ¢ ().

Indeed, from the equations f(z) = ¢ ()¢ (z) and g (z) =
— ¢ (2) x (@) it follows that f (2) &= g (2) = @ (@) ¥ (2) = 7 (2)].

II1. If f (x) is divisible by ¢ (z), then the product of f (z) by any
polynomial g (z) is also divisible by ¢ (z).

True enough, if f(z) = ¢ ()¢ (x), then it follows that
f(z) g (z) = o (2) [y (2) g ()]

From II and III we have the following property.

IV. If each of the polynomials f; (z), fs (®), . . ., fi (@) is divi-
sible by @ (x), then the following polynomial will also be divisible
by ¢ (2):

f1 () gy (@) + 1, (2) & (@) + . . . + [ (2) g (2)

where gy (x), g (x), - . ., & (z) are arbitrary polynomials.

V. Any polynomial f (z) is divisible by any polynomial of degree
zero. :
Indeed, if f (z) = aoz™ + a12®! + ... + a, and ¢ is an arbit-
rary number not equal to zero, that is, an arbitrary polynomial of
degree zero, then

foyme (S0 4 2amip )

VI. If f (z) is divisible by ¢ (x), then f (z) is divisible by co (z)
as well, where ¢ is an arbitrary number different from zero.

From the equation f (z) = @ (z) ¢y (z) follows the equation
(@) = log (@)1-Lc @)

VII. The polynomials cf (), ¢ %= 0, and only such polynomials
are divisors of the polynomial f (x) that have the same degree as f ().
Indeed, f (z) = ¢! lcf (z)], or f (z) is divisible by cf (z).

If, on the other hand, f () is divisible by ¢ (z), and the degrees
of f (r) and g (z) coincide, then the degree of the quotient of f (z)
by(;pl(x)( r)nust be zero, i. e., f (¥) = dy (), d 5% 0, whence ¢ (z) =
= d-1f (z).
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. From this we get the following property.

VIII. The polynomials f (z), g (z) are simultaneously divisible
one by the other if and only if g (z) = ¢f (z), ¢ % 0.

Finally, from VIII and I we get the property

I1X. Any divisor of one of two polynomials f (z), cf (z), where
¢ 0, is a divisor of the other polynomial as well.

Greatest common divisor. Suppose we have arbitrary polyno-
mials f () and g (z). The polynomial ¢ () is called the common
divisor of f (z) and g (z) if it is a divisor of each of them. Property V
(see above) shows that the common divisors of the polynomials
f (z) and g (z) include all polynomials of degree zero. If there are
no other common divisors of these two polynomials, then the poly-
nomials are called relatively prime.

But in the general case, the polynomials f () and g (z) may have
divisors which depend on x; we wish to introduce the concept of the
greatest common divisor of these polynomials.

It would be inconvenient to take a definition stating that the
greatest common divisor of the polynomials f (z) and g () is their
common divisor of highest degree. On the one hand, as yet we do
not know whether f (z) and g (z) have many different common
divisors of highest degree which differ not only in a zero-degree
factor. In other words, isn’t this definition too indeterminate?
On the other hand, the reader will recall from elementary arithme-
tic the problem of finding the greatest common divisor of integers
and also that the greatest common divisor 6 of the integers 12
and 18 is not only the greatest among the common divisors of these
numbers but is even divisible by any other of their common divi-
sors; the other common divisors of 12 and 18 are 1, 2, 3, —1, —2,
—3, —6.

That is why, for polynomials, we have the following definition.

The greatest common divisor of the nonzero polynomials f (z)
and g (z) is a polynomial 4 (z), which is their common divisor and,
also, is itself divisible by any other common divisor of these poly-
nomials. The greatest common divisor of the polynomials f (z) and
g () is symbolized as (f (z), g ().

This definition leaves open the question of whether there exists
a greatest common divisor of any polynomials f (z) and g (z). We
will now answer this question in the affirmative. At the same time.
we will give a practical method for finding the greatest common
divisor of the given polynomials. Quite naturally, we cannot carry
over the procedure used for finding the greatest common divisor
of integers, since we do not as yet have anything analogous in poly-
nomials to the decomposition of an integer into a product of prime
factors. However, for integers there is also another method called
the algorithm of successive division, or Euclid’s algorithm. This pro-
cedure is quite applicable to polynomials.
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Euclid’s algorithm for polynomials consists in the following.
Let there be given the polynomials f (z) and g (z). We divide f (x)
by g (z) and obtain, generally speaking, a remainder r; (z). Then
divide g (z) by ry (z) and get a remainder r, (z), divide r; (z) by
r, (x) and so on. Since the degrees of the remainders decrease con-
tinuously, there will come a time in this sequence of divisions when
the division is exact and the procedure terminates. The remainder
ry (x) which divides ezactly the preceding remainder r,_; (x) is the
greatest common divisor of the polynomials f (z) and g ().

By way of proof, let us write the contents of the preceding para-
graph in the form of a chain of equations:

f(2) = g (2) g1 (2) + ry (2),
g (2) =1 (2) g, (2) + 13 (2),

............... (2)

-3 () = rp_p (2) gy (2) + oot (2),
Th-g (X) = Tp_q (2) @ (T) + 1}, (2),
Tr-1 (2) = 7 (X) Gpst (2)

The last equation shows that r, (z) is a divisor of r,_4 (z).
Whence it follows that both terms of the right member of the second
last equation are divisible by rj, (z) and so r, (z) is also a divisor
of ry_, (x). Rising upwards in this fashion, we find that r, (z) is
also a divisor of ry_3(z), ..., ry (z), r1 (). Whence, by virtue
of the second equation, it will follow that r, (z) is a divisor of g ()
and therefore, on the basis of the first equation, a divisor of f (z)
as well. Thus, r, (z) is a common divisor of f (z) and g ().

Now let us take an arbitrary common divisor ¢ (z) of the poly-
nomials f (x) and g (x). Since the left side and the first term of the
right side of the first of the equations (2) are divisible by ¢ (),
it follows that ry (z) is also divisible by ¢ (z). Passing to the second
and successive equations, we find in the same way that the polyno-
mials r, (2), r3(z), ... are divisible by ¢ (z). Finally, if it is
proved that r,_, () and rj_4 (2) are divisible by ¢ (z), then from
the second last equation we find that r, (z) is divisible by ¢ ().
Thus, r, (z) is indeed the greatest common divisor of f (z) and g ().

We have thus proved that any two polynomials have a greatest
common divisor, and we have a procedure for computing it. This
method shows that if the polynomials f (x) and g (x) both have rational
or real coefficients, then the coefficients of their greatest common divisor
will also be rational or real, though of course these polynomials
may also have other divisors, not all coefficients of which are rational
(real). Thus, the polynomials with rational coefficients

f@=2%—32*—2zx+6, gz)=2%+ 22— 2z — 2




21. DIVISORS. GREATEST COMMON DIVISOR 135

have as greatest common divisor the polynomial with rational coef-
ficients z2 — 2, though they have a common divisor z — }/2, not
all the coefficients of which are rational.

If d (x) is the greatest common divisor of the polynomials f (z)
and g (z), then, as Properties VIII1 and IX (see above) show, for
the greatest common divisor of these polynomials we could also
choose the polynomial ¢d (z), where ¢ is an arbitrary number diffe-
rent from zero. In other words, the greatest common divisor of two
polynomials is only determined to within a factor of degree zero. In view
of this fact we can agree that the leading coefficient of the greatest
common divisor of two polynomials will always be considered equal
to unity. Using this condition, we can say that two polynomials are
relatively prime if and only if their greatest common divisor is unity.
Indeed, for the greatest common divisor of two relatively prime
polynomials we can take any number different from zero; but mul-
tiplying it by the inverse, we get unity.

Example. Find the greatest common divisor of the polynomials
f(z) = 24 + 32% — 22 — 4z — 3, g () = 32% + 1022 + 22 — 3

Applying Euclid’s algorithm to polynomials with integral coefficients,
we can (to avoid fractional coefficients; mv!tiply the dividend or reduce the
divisor by any nonzero number (this may be done either at the start or at any
other time in the division). Quite naturally, this will distort the quotient,
but the remainders that interest us will only acquire some factor of zero degree,

which as we know is quite permissible when seeking the greatest common divi-
sor.

We divide f (z) by g (z) but first multiply f (z) by 3:
z4+1
32941022+ 22— 3 | 3244929 — 322 — 12— 9
32411028 4- 222— 3z
—2%9—522—9z—9

(multiply by —3)
‘ 323 - 1522 + 27z - 27
323+ 1022 4+ 2z — 3
5z2 +4 25z 4 30

Thus, the first remainder, after dividing by 5, will be ry (2) = 22 + 5z 4 6.
We divide the polynomial g (z) by it:
224 5246 3281-1022+ 22 —3
328415224182
—5z2—16z—3
—522—252— 30
9z 127

The second remainder, after dividing by 9, is thus r, (z) = 2z 4+ 3. Since

i (2) =ra () (z + 2)
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it follows that r; (z) will be the last remainder which exactly divides the prece-
ding remainder. It will consequently be the desired greatest common divisor:

(f(2), g(2)) =2+ 3

We use the Euclidean algorithm to prove the following theorem.
If d(z) is the grealest common divisor of the polynomials f (z)
and g (z), then it is possible to find polynomials u (z) and v (z) such that

f@)u) + g @ v(x) =d@) 3)

If the degrees of the polynomials f (z) and g (z) exceed zero, we can
then take it that the degree of u (x) is less than the degree of g (z), and
the degree of v () is less than the degree of f ().

The proof rests on the equations (2). If we take into considera-
tion that r, () = d (z) and if we put uy (z) = 1, vy (z) = —qx (2),
then the second last of the equations (2) yields

d(z) = rp 2 (2) ug () + -1 (2) Vg (2)

Substituting the expression r,_; () in terms of r,_3 () and r,-, ()
from the preceding equation (2), we get

d (z) = rp-3 (z) Uy (2) + T2 (2) Vg (2)
where, obviously, u,(z) = v; (z), ve (2) = wy (2) — v1 (2) grg (2).
Continuing upwards through the equations of (2), we finally arrive
at the equation (3) being proved.

To prove the second assertion of the theorem, assume that the
polynomials u (z) and v (z) which satisfy (3) have already been
found, but that, say, the degree of u (z) is greater than or equal to
the degree of g (). Divide u (x) by g (z):

u(z) =g (@) q @ +r(2)

where the degree of r (z) is less than the degree of g (z), and substitute
this expression into (3). We get the eguation

f@r@ +g@ @ +fEq@) =d@

The degree of the factor of f (z) is now less than the degree of g (2).
The degree of the polynomial in square brackets will in turn be
less than the degree of f (z), since otherwise the degree of the second
summand in the left-hand member would not be less than the degree
of the product g (z) f (2), and since the degree of the first summand
is less than the degree of this product, the entire left side would
have a degree greater than or equal to the degree of g (z) f (z), whe-
reas the polynomial d (z) is definitely (given our assumptions) of
lower degree.

This proves the theorem. At the same time we see that if the
polynomials f (z) and g (z) have rational or real coefficients, then
we can also choose the polynomials u (z) and v (z), which satisfy
(3), so that their coefficients are rational or real.



21. DIVISORS. GREATEST COMMON DIVISOR 137

Example. Find the polynomials u (z) and v (x) which satisfy (3) for
f(z) = 2% — 224 32 — 10, g (z) = 2% + 622 — 92 — 14

Apply Euclid’s algorithm to these polynomials. This time, when perfor-
ming the divisions, we cannot allow for any distortion of the quotients since
these quotients are used to find the polynomials u (z) and v (z). We obtain
the following system of equations:

fla) =g (2) + (—T2* + 12z 4 4),
g () =(—T22+ 1221 4) (———%— x_%) —}-%’%5(37—2%
—T7z2 + 12z + 4= (z — 2) (— Tz — 2)
Whence it follows that (f(z), g (z)) = z — 2 and that

7 54 7 5
u(z)—ﬁx—i—m, U(.‘)})-———55.1!:——-2?-5

Applying the above-proved theorem to relatively prime polyno-
mials, we get the following result.

The polynomials f (z) and g (z) are relatively prime if and only
if it is possible to find polynomials u (z) and v (z) such that satisfy
the equation

f@u@ +g@v =1 (4)

Proceeding from this result, we can prove a number of simple
but important theorems on relatively prime polynomials:

(@) If a polynomial f (z) is relatively prime to each of the polyno-
mials ¢ (z) and ¢ (z), then it is also relatively prime to their product.

Indeed, by (4), there are polynomials u (x) and v (z) such that

f@u@ +o@v@E =1

Multiplying this equation by v (z), we get
f@) @y @ +le@y @ vE)=1vI@

whence it follows that any common divisor f (z) and o (z) ¥ (2)
would also be a divisor of ¢ (z); however, it is given that

(f (@), ¥ (z)) = 1.
(b) If the product of the polynomials f (z) and g (x) is divisible by
@ (z) but f (z) and ¢ (x) are relatively prime, then g (z) is divisible
by ¢ (z).
This is true since by multiplying the equation
f@u@ +o@v =1
by g (z), we get ‘

[/ () ¢ @] u @)+ ¢ (@) v (2) g @)] = g ()
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Both terms of the left-hand member of this equation are divisible
by ¢ (z); hence g (z) is divisible by ¢ (z).

(c) If the polyromial f (z) is divisible by each of the polyromials
@ (z) and ¢ (x), which are relatively prime, then f (z) is also divisible
by their product.

Indeed, f () = @ (z) ¢ () so that the product on the right is
divisible by v (z). Therefore, by (b), ¢ () is divisible by ¥ (z),
¢ (2) = (2) ¥ (2), whence f (z) = [ (z) ¥ (2)] ¥ (2).

The definition of greatest common divisor may be extended to
the case of any finite system of polynomials: the greatest common
divisor of the polynomials f; (z), f; (2), . . ., fs (z) is that common
divisor of these polynomials which is divisible by any other com-
mon divisor of these polynomials. The existence of a greatest common
divisor for any finite system of polynomials is a consequence of the
following theorem, which also provides a procedure for calculat-
ing it.

The greatest common divisor of the polynomials f, (z), f, (z), .
<o+, [s (2) is equal to the greatest common divisor of the polynomial

fs (@) ?nd the greatest common divisor of the polynomials f, (z), f5 (2), . . .
e 09 [g-1 (.Z‘).

Indeed, for s = 2 the theorem is obvious. We thus assume that
for the case s — 1 it holds true, that is, in particular, we have already
proved the existence of the greatest common divisor d (z) of the
polynomials fy (), f5 (), . .., fs-1 (z). Denote by d (z) the grea-
test common divisor of the polynomials d (z) and f, (z). It will
obviously be a common divisor of all the given polynomials. On the
other hand, any other common divisor of these polynomials will
also be a divisor of d (z) and, for this reason, of d (z) as well.

In particular, the system of polynomials f; (z), f, (2), .
<« fs (2) is called relatively prime if only zero-degree polyno-
mials are the common divisors of these polynomials; that is to say,
if their greatest common divisor is unity. If s > 2, then these poly-

nomials may not be pairwise relatively prime. Thus, the system
of polynomials

f@) =2%— T2+ Tx + 15, g (z) = 2 — z — 20,
h(z) = 28 + z* — 122
is relatively prime, although |
(@), g@)=z—35 (@)k@)=2—23, (¢@)h() =zt4
The reader will readily obtain a generalization of the above-

proved theorems (a) to (c) on relatively prime polynomials to the
case of any finite number of polynomials.
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22. Roots of Polynomials

We have already (Sec. 20) dealt with the values of a polynomial
when we spoke of the function-theoretic approach to the concept
of a polynomial. Let us recall the definition.

If
f@ =aa"™+ a1+ ...+ a, (1)
is some polynomial and ¢ is a number, then the number

fle) =ae™ + ayc™ '+ ...+ a
obtained by replacing in (1) the unknown z by the number ¢ and
by subsequent performance of all indicated operations, is called
the value of the polynomial f () for x = ¢. Quite naturally, if f (z) =
= g (z) in the sense of an algebraic equality of polynomials as
defined in Sec. 20, then f (¢) = g (c) for any ec.
It is also easy to see that if

p@ =f(2) +g(), V@) =f(@ g
o) =f@ +¢g() ) =7F()g)

In other words, the addition and multiplication of polynomials
defined in Sec. 20 become—from the function-theoretic approach
to polynomials—the addition and multiplication of functions, to be
understood in the sense of addition and multiplication of the appro-
priate values of these functions.

If f(c) =0, that is, the polynomial f () vanishes when the
number ¢ is substituted in place of the unknown, then ¢ is termed
a root of the polynomial f (z) [or of the equation f (z) = 0]. It will
now be shown that this concept applies completely to the theory
of divisibility of polynomials, which was the topic of discussion
in the preceding section.

If we divide the polynomial f (z) by an arbitrary polynomial
of degree one (or, as we shall say from now on, by a linear polyromial),
then the remainder will either be a polynomial of degree zero, or
zero, which is to say some number r. The following theorem allows
us to find this remainder without performing the division itself
when we divide by a polynomial of the form z — ¢.

The remainder resulting from the division of a polynomial f (z)
by a linear polynomial z — ¢ is equal to the value f (¢) of f (z) for
z=c.

Let

then

f@=@—cq@+r
Taking the values of both sides of this equation when z = ¢, we get

fleg=(—cgl)+r=r

which proves the theorem.
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An exceedingly important corollary follows from this fact.

The number ¢ is a root of the polynomial f (z) if and only if f (z)
is divisible by x — ¢.

On the other hand, if f (x) is divisible by some linear polynomial
ax + b, then evidently it is also divisible by the polynomial

x—(—%), that is, by a polynomial of the form z — ¢. Thus,

finding the roots of a polynomial f (z) is equivalent to finding its linear
divisors.

In view of the foregoing, it is of interest to examine the method
of dividing a polynomial f () by a linear binomial z — ¢, which
is simpler than the general algorithm for dividing polynomials.
This method is called the Horner method. Let

@ = au™ + a12™! + ax™ %+ ... + a, (2)
and let
f@)=(z—c)q(@)+r (3)
g () = bez™ ! 4 by2™ 2 4 bpz™ 3 4 ... + by
Comparing the coefficients of like powers of z in (3), we get

where

Ay = bo,

ay = bi _ Cbo,

a2 = b2 _ Cbig
ap-y = bn-i - Cbn-zv

ap =71 — cby_y

From this it follows that by = ag, by = cbp_y + a3, k =1, 2, . ..
..., n —1, that is, the coefficient b, is obtained by multiplying
the preceding coefficient b,_; by ¢ and by adding the corresponding
coefficient a,; finally, r = ¢b,_4 + a,, that is, the remainder r,
which as we know is equal to f (¢), is also obtained by the same
rule. Thus, the remainder and the coefficients of the quotient may be
successively obtained by computations of the same type, which
can be arranged in a scheme, as the following examples demonstrate.

Example 1. Divide f(x) == 225 — 24— 323+ z — 3 by z — 3.

Form an array in which the coefficients of the polynomial f (x) are located
above the bar, and the corresponding coefficients of the quotient and-the rema-
inder (computed successively) are located below the bar; on the left is the value
of ¢ in the given example:

2 —1 -3 0 1 —3
3|12.3:2—1=5.3:5—3=12.3-12+4+0=36.3-36}-1=109.3-109— 3 =324
Thus, the desired quotient will be,

g (z) =224 4523 112221362 - 109
and the remainder will be r= f (3)=2324.
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Example 2. Divide f(z)=x4—823+224-42—9 by z{-1.
1 —8 1 4 —9
—1}{1 —9 10 —6 —3
The quotient will therefore be
g (zx)=23—9221+10z—6
and the remainder r=f(—1)= —3.

These examples show that the Horner method may also be used
for quick computation of the value of a polynomial for a given value
of the unknown.

Multiple roots. If ¢ is a root of the polynomial f (z), i.e., f (¢) =
= 0, then f (z) is, as we know, divisible by z — ¢. It may turn out
that the polynomial f (z) is not only divisible by the first power
of the linear binomial z — ¢, but by higher powers of it as well.
In any case, there will be a natural number & such that f (z) is exact-
ly divisible by (z — ¢)*, but is not divisible by (z — ¢)"*.

Therefore,
f@)=@—cto@

where the polynomial ¢ (z) is no longer divisible by 2z — ¢, that
is, does not have ¢ as its root. The number % is called the multiplicity
of the root ¢ in the polynomial f (x), and the root ¢ is the k-fold root
of this polynomial. If £ = 1, then we say that the root ¢ is simple.

The concept of a multiple root is closely related to the concept
of the derivative of a polynomial. However, we are studying poly-
nomials with any complex coefficients and for this reason we cannot
simply take advantage of the concept of a derivative as introduced
in the course of mathematical analysis. What follows is to be regar-
ded as a definition of the derivative of a polynomial which is inde-
pendent of that given in the course of analysis.

Suppose we have an nrth-degree polynomial

f@) =ap" +az™ + ...+ a4z + a0
with arbitrary complex coefficients. Its derivative (first derivative)
is a polynomial of degree n — 1:
f'(x) =naex™t 4+ (n — 1) qa™? + ... + 28,2 + @y,

The derivative of a polynomial of degree zero and the derivative
of zero are taken to be equal to zero. The derivative of the first
derivative is called the second derivative of the polynomial f(x)
and is denoted by f” (z), etc. It is obvious that

1™ (z) = nlay

and therefore f("*1) (z) = 0; i.e., the (n + 1)th derivative of a poly-
nomial of degree n is equal to zero.
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In our case of polynomials with complex coefficients, we cannot
make use of the properties of a derivative as proved in the course
of analysis for polynomials with real coefficients; we have to prove
these properties once again using the definition of a derivative given
above. We are interested in the following properties, which are
called formulas for differentiating a sum and a product:

fl@)+g@) =7 () +¢ (2 (4)
(f (x)-g @) =1 () g () +f (2) g (), (5)

These formulas can easily be verified, incidentally, by direct
computation, by taking for f (z) and g (z) two arbitrary polynomials
and applying the above definition of a derivative; we leave this
to the reader.

Formula (5) can readily be extended to the case of a product
of any finite number of factors and therefore we can in the ordinary
fashion derive a formula for the derivative of a power

(* @) = kf** (@) f' (2) (6)

Our aim will be to prove the following theorem.

If the number c is a k-fold root of the polynomial f (z), then for
k> 1 it will be the (k — 1)-fold root of the first derivative of this
polynomial; but if k = 1, then ¢ will not be a root of f' (z).

Let
f@=@@—0c"¢@, k>1 (M)

where ¢ (z) is no longer divisible by z — ¢. Differentiating equa-
tion (7), we get

flo)=@—c"¢ @+ k(x — o) g (2)
= (@ — )"z — ) ¢' (2) + ko (2)]

The first term of the sum in the square brackets is divisible by
z — ¢, the second is not divisible by 2 — ¢; therefore, the whole
sum is not divisible by x — ¢. Taking into account that the quotlent
of f (z) by (z — ¢)*! is uniquely defined, we find that (z — ¢)*-?
is the highest power of the binomial # — ¢ which divides the poly-
nomial f' (). The proof is complete.

Applying this theorem several times, we find that the k-fold
root of polynomial f (z) is the (k — s)-fold root in the sth derivative
of this polynomial (k > s) and for the first time will not be a root of the
kith derivative of f (z).

23. Fundamental Theorem

In examining the roots of polynomials in the preceding section
we did not pose the question of whether every polynomial possesses
roots. We know that there are polynomials with real coefficients
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that do not have real roots; z? 4 4 is such a polynomial. It might
be expected that there are polynomials which do not have roots
even in the class of complex numbers, particularly if we consider
polynomials with arbitrary complex coefficients. If this were the
case, then the system of complex numbers would require a further
extension. Actually, however, the following fundamental theorem
of the algebra of complex numbers is valid.

Every polyrnomial of degree at least one with arbitrary numerical
coefficients has at least one root, which in the general case is complex.

This theorem is one of the greatest attainments of the whole
of mathematics and finds application in the most diverse spheres
of science. In particular, it is the starting point of everything in the
theory of polynomials with numerical coefficients and for this
reason it was once called (and sometimes still is) the “fundamental
theorem of higher algebra”. Actually, however, the fundamental
theorem is not purely algebraic. All its proofs—and since Gauss
first proved the theorem at the end of the eighteenth century a very
large number have been found —are forced, in one degree or another,
to make use of the so-called topological properties of the real and
complex numbers, that is properties associated with continuity.

In the proof which we now give, the polynomial f (z) with com-
plex coefficients will be regarded as a complex function of a complex
variable x. Thus, z can assume any complex values, or, taking
into account the mode of constructing complex numbers given
in Sec. 17, the variable z ranges over the complex plane. The values
of the function f (x) will also be complex numbers. We may consider
that these values are plotted on a second complex plane, as in the
case of real functions of a real variable where the values of the
independent variable are plotted on one number line (axis of abscis-
sas) while the values of the function are plotted on the other line
(axis of ordinates).

The definition of a continuous function as given in the course
of mathematical analysis is carried over to functions of a complex
variable (in the formulation of the definition, absolute values are
replaced by moduli).

Namely, the complex function f (z) of a complex variable z is
continuous at a point z, if for any positive real number e there is
a positive real number § such that no matter what (generally speak-
ing, complex) the increment %, the modulus of which satisfies the
inequality | & | << 8, the inequality

[f (2o +B) —f(zo) [ <2

holds true. A function f (z) is called continuous if it is continuous
at all points z, at which it is defined, that is, if f (z) is a polynomial
on the entire complex plane.
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The polyromial f (x) is @ continuous function of the complex vari-
able z.

The proof of this theorem could be given as it is in the course
of mathematical analysis, namely, by showing that the sum and
the product of continuous functions are themselves continuous and
then noting that a function which is constantly equal to one and
the same complex number is continuous. However, we shall take
‘a different approach.

We first prove the particular case of the theorem when the con-
stant term of the polynomial f (z) is zero; and we will only prove
the continuity of f (x) at the point zo = 0. In other words, we will
prove the following lemma (in place of % -we write x).

Lemma 1. If the constant term of the polynomial f (x) is zero

f@) =ax" + a4 ...+ apz

that is, f (0) = 0, then for any e > O there is a 8§ > 0 such that for
all x for which | x | << 8 it is true that |f (z) | < &.
Indeed, let

A=max(|ao l’ 'ai la LS ] |a'n-i |)

We are already given the number . Let us show that if for the num-
ber & we take

&
b=—r1v (1)
then it will satisfy the required conditions.
Indeed,
lf@I<lallz"+lallz"™ '+ ...+ |ty ||z]
<A(zP+lz"+...+ |z
that is,

[2|—|= |

Since |z | << 8 and, by (1), 8§ << 1, it follows that

|z|—|z|nH [=]
1—|=z| 1—|z]|
and therefore
A &
A|z] 4 “Axe
@) <=7 <1—6"1_ e °
A-t-g

which completes the proof.
Let us now derive the following formula. Suppose we have the
polynomial

f(2) =2" + a@™ 4 ...+ an gz +an
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with arbitrary complex coefficients. Substitute in place of =z the
sum z + h, where h is the second unknown. Using the binomial
theorem, expand each of the powers (z + h)*, k < n, in the right-
hand member and collect terms with like powers of h. This yields
(as the reader can readily verify) the equation

fadh)=F @) +hf @)+ 7@+ .. o (™ (2)

In other words, we prove Taylor’s formula, which gives the expan-
sion of f (z + k) in powers of the “increment” h.

The continuity of an arbitrary polynomial f () at any point z,
is now proved as follows. By Taylor’s formula,

F@o+h) —f(x) =cih +ch®+ ...+ cxh"™ = o (h)

where
' 1 1
€= f (xo)» Co= 51 f (.Z’o), cevy Cp= 7l f(") (-zo)

The polynomial ¢ (k) in the unknown % is a polynomial without
a constant term, and so, by Lemma 4, for any € > O thereisa § >0
such that for |k | << 6 it is true that | ¢ (k) | <, i.e.,

[f(zo+h) —f(x) | <&

which completes the proof.
From the inequality

F(@e+h) | — 1f@) | < |f(@o+ k) —f(zo) |

based on formula (13), Sec. 18, and from the continuity, just proved,
of a polynomial there follows the continuity of the modulus | f (z) |
of the polynomial f (z); this modulus is obviously a real nonnegative
function of the complex variable z.

Woe shall now prove the lemmas that are used in the proof of the
fundamental theorem.

Lemma on the modulus of the highest-degree term. If we have
an nth-degree polynomial, n > 1,

f@ =aux" 4+ a@™! +ax™ 2+ ...+ a,
with arbitrary complex coefficients and if k is any positive real number,

then for sufficiently large (in modulus) values of the unknown x the
inequality

| @pz™ | >k | ayz™ + agz™* + .. . + @, | )]
is true, that is, the modulus of the highest-degree term is greater than
the modulus of the sum of all the remaining terms; it is an arbitrary
number of times greater.

10—5760
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Indeed, let A be the largest of the moduli of the coefficients
Ay, dg, . . .y, Ay:
4 =max(|a1 l, laz Lheoor lan l)
Then (see, in Sec. 18, the properties of the moduli of a sum and
a product of complex numbers)

lax™! fapx™ 24 ... fa,|<]a]|2|"t 4| ay]|z[*2
+oHlan| <Az e ) —a =t
Assuming |z | > 1, we get

[z|—1 [z]®
[z]—1 ~Tz|—1

whence

@™t +apx™ 2+ ... tan | <A ILTE1
Thus, inequality (2) will be fulfilled if z satisfies the condition
|z |>1 and also the inequality

|=»

kA'|T|_T<|“oxn|=‘ao||xIn
that is, if
kA
|z|>—+1 (3

80|

Since the right side of inequality (3) is greater than 1, it may be
asserted that, for values of z satisfying this inequality, inequality
(2) holds true. This proves the lemma.

Lemma on the increase of the modulus of a polynomial. For
every polynomial f (z) of degree not less than unity with complex coef-
ficients, and for any arbitrary large positive real number M, it is pos-
sible to find a positive real number N such that for |z| > N it will be
true that |f (z)| > M.

Let
f@ =a™ +a™t+...+ a,
By formula (11), Sec. 18,
1f @ | = | a@a® + (@™ + . .. + an) |
> lar" | — et + ... +a | (4

Apply the lemma on the modulus of the highest-degree term, putting
k = 2; there is a number N, such that for |z | > N, it is true that

lagz" | >2 |aa™ 4. .. + a, |
whence
- 1
la@™t + ...t an| <5 |apz"|
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that is, by (4),
| £ (@) > | a62™ | — 5 | ao2™ | = 5 | 867" |
The right side of this inequality is greater than M for
T /I
|2{> N, = [aol
Thus, for | z| > N = max (N4, N,) we have [f (z) | > M.

The meaning of this lemma may be illustrated geometrically

(we will frequently make use of this illustration). Suppose that at
every point z, of the complex plane a per-
pendicular is erected whose length (for
the given scale unit) is equal to the mo-
dulus of the value of the polynomial
f (z) at this point, that is, is equal to
|7 (zo)|. The endpoints of the perpendi-
culars will, in view of the above-proved .
continuity of the modulus of a polyno- 0
mial, constitute some continuous curved Fig. 8
surface situated above the complex plane.
The lemma on the increase of the modulus of a polynomial shows that
as | z, | increases this surface recedes from the complex plane, though
quite naturally the recession is not in the least monotonic. Fig. 8
is a schematic view of the line of intersection of this surface with
a plane perpendicular to the complex plane and passing through
the point O.

The following lemma plays a crucial rele in the proof.

D’Alembert’s lemma. If for z = z, the polynomial f (z) of degree
n, n > 1, does not vanish, f (zo) = 0 and therefore |f (o) | > O, then
it is possible to find an increment h (complex in the general case) such

that
[ (zo+R) | <<I|f(2o) |

If the increment k is as yet arbitrary, then Taylor’s formula
yields

f(@o+By= f (@0) -+ B’ (@0) + 7 1" (@) + - .- + - F™ ()

‘By hypothesis, z, is not a root of f (z). It may, however, fortuitously
be a root of f' (z) and perhaps also of certain other higher deriva-
tives. Let the kth derivative (kK > 1) be the first that does not have
z, for a root, that is,

' (@)=1" (@)= ...= feo (%) =0, fo (zg) 5= 0

Such a k exists since if g, is the leading coefficient of the polynomial
f (z), then

f™ (o) = nlag 5£0
10
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Thus,
f(xo+h)y=f (x,) + f‘h’ (Zo) + 7 (k—H)‘ fED (o) +-“f‘"’ (%)
Some of the numbers f**1 (z), . f™ (zo) may also be zero,

but this does not affect our reasomng in any way
DlVldlIlg both sides of the equation by f (z,), whlch by hypothe-
sis, is different from zero, and introducing the notatlon

19 (zg) ;
=TT o) i=k, E+1, ..., n
we get

h n
f(ﬁj;) L — 14 cph+ N I

or, because ¢ %0,
f(zo+h) k k { Cret fn pn-k
Lot — (1 o)+ ol (L pop . 2 )
Taking moduli, we get

flzotP) k k| Chet cn yn-k
LoD | < 11+ | euh® || Bt 2 | (5)
Up to this point we have not made any assumptions concerning
the increment k. Now we will choose h: we choose the modulus and
he argument separately. We choose the modulus of % in the follo-
wing manner. Since

Chii ’n pn-h
o h++...+ o R

is a polynomial in 2 without the constant term, it follows by Lemma 1
(setting e = —;—) that there is a 8; such that for |k | << 6, it will
be true that

Ch+t c Y 1
L L 1<7 6)
On the other hand, for
|h]<8=y Tex [
we have
el | <1 (7
Assume that the modulus of & is chosen in accord with the inequality
R | < min (8, 8,) 8)
Then, because of (6), inequality (5) becomes the strict inequality
l f(30+k) '< l 1+Ckhk|+ lckhkl (9)

1 (zo)
We will use Condition (7) later on.
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To choose the argument of k we require that the number c,h"
! be a negative real number. In other words,
o arg (cxh*) = arge, +kargh =15
whence
s argh:t%ﬁ (10)
In this choice of &, the number ¢,#* will differ from its absolute value
in sign:

el = — | enh” |
and therefore, using inequality (7),
11+ o | = 11— ek || =1 — [eal® |

| Thus, for /~ chosen on the basis of the Conditions (8) and (10),
inequality (9) takes the form -
h L1 1
f—(—;%)—!<1—[chhh]+?|ckhh|=1——7]ckh’*l

énd all the more so

flxo+h) | |f(z+h)|
| T |~ Tl <!
whence it follows that

1f @+ h) | << |f (o) |

This completes the proof of d’Alembert’s lemma.

Using the geometric interpretation given earlier, we can describe
d'Alembert’s lemma in the following fashion. Given that | f (z¢) | >
> 0. This means that the length of the perpendicular erected to the
complex plane at point z, is nonzero. Then, by d’Alembert’s lemma,
there is a point z; = x, + h such that | f (z,)| <<|f (z¢)|; that is,
the perpendicular at the point z; will be shorter than at the point
zo and, consequently, the surface formed by the endpoints of the
perpendiculars will at this new point be somewhat closer to the
complex plane. As the proof of the lemma shows, the modulus
of » may be taken as small as we wish; in other words, the point z,
may be chosen arbitrarily close to the point z,. However, we will
not take advantage of this remark in the future.

Obviously, the roots of the polynomial f (x) will be those com-
plex numbers (or those points of the complex plane) at which the
surface formed by the endpoints of the perpendiculars touches this
plane. It is impossible to prove the existence of such points by
relying on d’Alembert’s lemma alone. Indeed, using this lemma it is
possible to find an infinite sequence of points x4, x1, Z,, - - -
such that

@) [ > 1f) | >1f)>... (11)
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However, it does not follow from this that there exists a point z

such that f (z) = 0, all the more so that the decreasing sequence
of positive real numbers (11) does not necessarily have to tend
to zero.

The considerations that follow are based on a theorem from the
theory of functions of a complex variable that generalizes the
Woeierstrass theorem, which is familiar to the reader from the course
of mathematical analysis. It has to do with real functions of a com-
plex variable, that is with functions of a complex variable that
take on only real values. The modulus of a polynomial is an instance
of such functions. For the sake of simplicity, in the statement of
this theorem we will speak about a closed circle E to be understood
as a circle in the complex plane with all boundary points included.

If a real functior g (z) of a complex variable x is continuous at all
points of a closed circle E, then there exists in E a point x, such that
for all x in E the inequality g (z) > g (zo) holds. Consequently, the
point z, is the minimum point of g (z) in the circle E.

The proof of this theorem is given in all courses of complex
function theory and so we omit it.

We confine ourselves to the case when the function g (z) is non-
negative at all points of E—only this case is of interest to us—and
will try to explain this theorem geometrically with the aid of the
illustration used earlier. Draw a perpendicular of length g (z,) at
every point x4 of the circle E. The endpoints of these perpendiculars
constitute a piece of a continuous curved surface, and due to the
closed nature of the circle E the existence of minimum points of this
piece of surface is geometrically clear. This illustration does not
of course take the place of a proof of the theorem.

We can now take up the proof of the fundamental theorem itself.
Let there be given a polynomial f (x) of degree n, n > 1. If its
constant term is a,, then obviously f (0) = a,. Let us apply to our
polynomial the lemma on the increase of the modulus of a polyno-
mial, assuming M = | f (0)) = | a,|. Consequently, there exists
an N such that for |z| > N it will be true that |f (x) | > |f (0)].
It is then obvious that the above-indicated generalization of the
Weierstrass theorem is applicable to the function |f (z) | for any
choice of the closed circle E. For E we take a closed circle of radius
N with centre at 0. Let point z, be the minimum point of | f (x)
in E; whence, in particular, it follows that |f (z¢) | << |f (0) |

1t is easy to see that xz, will actually serve as minimum point of
| f (z) | over the entire complex plane: if the point z’ lies outside E,
then | ' | > N and for this reason

@) 1> 110 |2 |f (=) |

Whence it follows, finally, that f (z;) = 0, or that z, serves as a root
of f (z). If we had had f (z,) = 0, then, by d’Alembert’s lemma, there
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would be a point z; such that |f (z;) | << |f (z¢) |- However, this
contradicts the property of point x, that we have just established.

Another proof of the fundamental theorem will be given in
Sec. 55. i

24. Corollaries to the Fundamental Theorem

Suppose we have a polynomial of degree n, n > 1,
f@ =ax" + a2zt 4 ...+ Gpayz + 4y (1)

with arbitrary complex coefficients. We again regard it as a formal-
algebraic expression which is fully defined by the set of its coeffi-
cients. The fundamental theorem on the existence of a root that
was proved in the preceding section permits asserting the existence
of a complex or real root o, of f (z). Therefore, the polynomial f (z)
has the factorization

f @)= (z—0a) e @

The coefficients of the polynomial ¢ (z) are again real or complex
numbers, and therefore ¢ (x) has a root o, whence

f@)=(—a)(r—a)P (@

Continuing in similar fashion, we arrive—after a finite number
of steps—at a factorization of the nth-degree polynomial f (z) into
a product of n linear factors,

f@=ag@—a)(z—ay)...(x—a,) . )
The coefficient a, is a result of the following: if we had a coeffi-
cient b on the right of (2), then after removal of parentheses the
highest-degree term of the polynomial f (z) would be of the form
bz", though in reality, by (1), it is the term aoz™. Therefore, b = a,.
For the polyrnomial f (z), expansion (2) is, to within the order of
the factors, a unique expansion of that type.
Let there be yet another expansion

f(@) =a (z—PBy)(—Ba) -.. (z— Ba) @)
From (2) and (3) follows the equation
(z—a)@—oay)...(—on) =(@—p) @—Bg)...(@x—ps) 4

If the root a; were different from all f;, j = 1, 2, ..., n, then,
substituting o; in place of the unknown into (4), we would have
zero on the left and a nonzero number on the right. Thus, every
root a; is equal to some root B; and conversely.

From this it does not yet follow that the expansions (2) and
(3) are coincident. Indeed, there may be equal roots among the
roots o;, i =1, 2, ..., n. For example, let s of these roots be
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equal to oy and, on the other hand, let there be ¢ roots equal to the
root o; among the roots f;, j =1, 2, ..., n. We have to show that
s =1

Since the degree of a product of polynomials is equal to the
sum of the degrees of the factors, the product of two polynomials
different from zero cannot be zero. It then follows that if two pro-
ducts of polynomials are equal, then a common multiple can be can-
celled from both sides of the equation: if

@) o) =g (@) o)
and ¢ (z) 550, then from
f@—g@ @@ =0

fx) —g(@) =0

f(z) = g (2)

Let us apply this to equatmn (4). 1f, for instance, s > f, then
by cancelling the factor (z — a;)' out of both sides of (4) we arrive
at an equation whose left side contains the factor x — o, and whose
right side does not contain it. But it has been shown that this is
a contradiction, which proves the uniqueness of the expansion (2)
of the polynomial f ().

Collecting like factors, we can write (2) as

@) =ao(z—a)" (z—a)?... (@& —a)h (5)

it follows that

that is,

where

ki—i—k—i—..—i—k,:n

It is now assumed that there are no equal roots among the roots
ai, az, DY (Z

We will prove that the number k; of (5), i =1, 2, . 1, is the
multiplicity of the root a; in the polynomial f (x). Indeed it this mul-
tiplicity is equal to s;, then k; < s;. However, let k; << s;. By virtue
of the definition of multiplicity of a root of f (x), we have the expan-
sion

fl@)=(z—a) o

Replacing in this expansion the factor ¢ (z) by its factorization
into linear factors, we would get for f (z) a factorization into linear
factors that is definitely different from (2); in other words, it would
contradict the above-proved uniqueness of the expansion.

We have thus proved the following important result.

Any polyrnomial f (x) of degree n, n > 1, with arbitrary numerical
coefficients has n roots if each of the roots is counted to the degree of its
multiplicity.
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- = Note that this theorem holds true for » = 0 as well, since a poly-
nomial of zero degree quite naturally has no roots. This theorem
is not applicable only to the polynomial 0, which has no degree
and is equal to zero for any value of z. We use this last remark in
the proof of the following theorem. .

If the polynomials f (x) and g (z) whose degrees do not exceed n have
equal values for more than n distinct values of the unknown, then
f(x) = g (2).

- Indeed, the polynomial f (x) — g (x) has, by hypothesis, more
roots than n, and since its degree does not exceed n, the equation
f(z) — g (x) = 0 must be true.

Thus, taking into account that there is an infinity of different
numbers, we can assert that for any two distinct polynomials f (x)
and g (x) there will be values ¢ of the unknown x such that f (¢) 5%
= g (c). Such ¢ may be found not only among the complex numbers
but also among the real numbers, rational numbers and even the

integers.

' Consequently, two polynomials with numerical coefficients
having different coefficients of at least one power of the unknown z
will be distinct complex functions of the complex variable z. Finally,
this proves the equivalence, for polynomials with numerical coefficients,
of the two definitions of equality of polynomials given in Sec. 20: the
algebraic definition and the function-theoretic definition.

The theorem proved above permits us to assert that a polynomial
whose degree does not exceed n is completely determined by its values
for any distinct values of the urnknown whose number is greater than n.
Can these values of the polynomial be specified arbitrarily? If we
assume that the values of a polynomial are given for » 4 1 distinct
values of the unknown, then the answer is yes: there always exists
a polynomial of degree not higher than n which takes on preassigned
values for n 4 1 specified distinct values of the unknown.

Indeed, let it be necessary to construct a polynomial of degree
not higher than n, which, for values of the unknown a,, a,, . ..

. +» Gn4+1 (assumed distinct), takes on, respectively,. the values

€1y Cpy + » 5y Cnyy. The polynomial will be
"G el (E—ay) ... G—aig) G—aya) ... (2 pg)
_ Ci{\T—ay) ..\ T—834) \T—Rj4q) ... (T—Cpyy
/(@)= i§1 (@i—ay) ... (@a;—ap 1) (@1—a449) ... (G1—ap4y) (6)

Indeed, its degree does not exceed n and the value of f (a;) is equal
to ¢;.

Formula (6) is called the Lagrange interpolation formula. The
term “interpolation” is due to the fact that, using this formula and
knowing the values of the polynomial at » 41 points, it is possible
to compute its values at all other points.
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Vieta’'s formulas. Let there be given a polynomial f (z) of degree
n with leading coefficient 1,

f@ =2"+ aa™ + a2™ 2 + ... + apz + a, (7
and let ay, @y, ..., &, be its roots (counting multiplicities). Then
f (z) has the following expansion:

f@=@—a)(x—oay) ... (& —a,)

Multiplying out the parentheses on the right, and then collecting
like terms and comparing the resulting coefficients with the coeffi-
cients of (7), we get the following equations, called Vieta's formulas,
which express the coefficients of a polynomial in terms of its roots:

ay = —(as +oa, + ...+ ay),

ay = 040y + g0z + . .. + o, + Az + ...+ Apogay,

as = —(o4@a03 + 0400l + . . o Tt GpogQnay0y),
n g = (—1)" (@10p « « « Any

4 Qg e o s Apagllny o o o - OOz . o 4 Oy,

a, = (—1)"aa, . .. 0,
Thus, the right side of the kth equation, £k =1, 2, ..., n, con-
tains a sum of all possible products of k roots taken with the plus
sign or minus sign, according as k is even or odd.

For n = 2, these formulas become the familiar (from elementary
algebra) relationship between the roots and the coefficients of a quad-
ratic polynomial. For n = 3, that is, for a cubic polynomial, these
formulas take the form

as = —(ay + a; + 053). @y = 00y | Q403 + Qlgllg, B3 = —OL10L0L3

The Vieta formulas simplify writing a polynomial, given its
roots. For instance, find the fourth-degree polynomial f (x) which
has the simple roots 5 and —2 and the double root 3. We get

@ =—(6—2+3+3) =9,
ay =5-(—2) +5-3 4+ 53+ (—2)-3 4+ (—2)-343:3 =17,
ag = —|5-(—2)-3 + 5-(—2)-3 + 5-3-3 4 (~2)-3-3] = 33,
a; = 5:(—2)-3-3 = —90
and therefore
f(x) =a* — 92® + 172% + 33z — 90

If the leading coefficient a, of the polynomial f (z) is different
from unity, then in order to make use of Vieta’s formulas, it is first
necessary to divide all the coefficients by a,; this has no effect on
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the roots of the polynomial. Thus, in, this case the Vieta formulas
yield an expression for the relation of all coefficients to the leading
coefficient.

Polynomials with real coefficients. We now derive some corolla-
ries to the fundamental theorem of algebra which refer to polyno-
mials with real coefficients. Actually, it is precisely from these
corollaries that the great significance of the fundamental theorem
of the algebra of complex numbers stems.

Let the following polynomial with real coefficients

f@ =ax" +a2™ 4 ...+ apuz + a,
have a complex root ¢, that is,
a2 + a4 ... a0 t+a, =0

We know that this equation is unaffected by changing all the num-
bers to their conjugates; but all the coefficients ay, a4, . . ., @,_4, @,
and also the number 0 on the right, being real, will remain unchan-
ged in such a substitution, and we arrive at the equation

a,oan—i—a‘a"'l-}-... +an—1a+a’n =0
that is, _
f(@)=0

Thus, if a complex (but not real) number o serves as a root of a poly-
nomial f (z) with real coefficients, then the conjugate number a will
also be a root of f ().

Consequently, the polynomial f () will be divisible by the
quadratic trinomial

) =@F—a)(z—a) =2~ (@« + a)z + aa (8)

whose coefficients, as we know from Sec. 18, are real. Taking advan-

tage of this fact, we will prove that the roots a arnd o have one and
the same multiplicity in the polynomial f (x).

Indeed, let these roots have, respectively, the multiplicities &
and / and, say, let & > I. Then f (z) is divisible by the /th power
of the polynomial ¢ (),

f@ =¢" (24 @

The polynomial ¢ (z), as a quotient of two polynomials with real
coefficients, also has real coefficients, but, in conflict with what
was proved above, it has the number & for its (& — [)-fold root,
whereas the number « is not one of its roots. This means that k = 1.

Now we can say that the complex roots of any polynomial with
real coefficients are pairwise conjugate. From this fact and from the
~earlier proved uniqueness of expansions of type (2) follows the
final result.
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Any polynomial f (x) with real coefficients can be expressed uni-
quely (to within the order of the factors) in the form of a product of its
leading coefficient ao and several linear polynomials with real coef-
ficients—of the form x — a that correspond to its real roots—and
quadratic polynomials of the form (8) that correspord to pairs of conju~-
gate complex roots.

For what follows it will be useful to stress that among polyno-
mials with real coefficients and leading coefficient 1, only linear
polynomials of the form x — o and quadratic polynomials of the
form (8) are irreducible (that is, cannot be decomposed into factors
of lower degree).

25. Rational Fractions

The course of mathematical analysis deals with integral rational
functions (which we have called polynomials) and also fractional
rational functions. The latter are quotients g%of two integral
rational functions, where g (z) 54 0. Algebraic operations are per-
formed on these functions in accord with the same laws as are used
to manipulate rational numbers, that is to say, fractions with inte-
gral numerators and denominators. The equality of two fractional
rational functions, or, as we will now term them, rational fractions,
is to be understood in the same sense as the equality of fractions
in elementary arithmetic. For the sake of definiteness, we consider
rational fractions with real coefficients. The reader will easily note
that this whole section can almost literally be extended to the case
of rational fractions with complex coefficients.

A rational fraction is in lowest terms (simplified) if the numerator
is relatively prime to the denominator.

Any rational fraction is equal to some fraction in lowest terms
which is uniguely defined to within a zero-power factor common to both
numerator and denominator.

Indeed, any rational fraction may be reduced by dividing nume-
rator and denominator by the greatest common divisor; this yields
an equivalent fraction in lowest terms. If, moreover, we have two

simplified fractions %3 and :%%;that are equal, that is

@) (@) =g (@) o (2) M

then it follows from the relative primality of f (z) and g (z) [by
Property (b) of Sec. 21] that f (z) divides ¢ (z), and from the rela-
tive primality of ¢ () and ¢ (z) that ¢ () divides f (z). Thus,
f () = co (z), and then from (1) it follows that g (z) = ey (2).

A rational fraction is proper if the degree of the numerator is
less than the degree of the denominator. If we include the polyno-
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mial zero in the set of proper fractions, then the following theorem
holds.

Any rational fraction may be represented uniquely in the form of
a sum of a polynomial and a proper fraction.

If there is a rational fractloné(( )) and if, dividing the numerator
by the denominator, we get the equation

fl@)=¢g@q @ +r@
where the degree of r (z) is less than the degree of g (), then it is
easy to check that
f (=) r(z)

g(x) =1@+ g ()
If we also have the equation

;fz 4z )+“’
where the degree of ¢ (2) is less than the degree of ¢ (z), then we
obtain the equation

. ola) r(a)  ¢(z)g@—y(z)r(z)
1@ 1@ =G = VO @

Since the left-hand side is a polynomial, and the right, as is easily
seen, is a proper fraction, we get q (z) — ¢ (z) = 0 and

Q) ri)
P (x) gz
Proper rational fractions can be studied further. As was pointed
out at the end of the last section, irreducible real polynomials are
polynomials of the form z — a, where the number o is real, and
polynomials of the form z® — (f + §) = 4+ pB, where p and P are
a pair of conjugate complex numbers. It is easy to verify that in the
complex case a similar role is played by polynomials of the form

z — a, where a is any complex number.

A proper rational fraction f—(i—) is called a partial fraction if

its denominator g (z) is a power of the irreducible polynomial p (z),
g =rp"(@), k>1

and the degree of the numerator f (z) is less than that of p (z).
The following fundamental theorem holds.
Anry proper rational fraction can be decomposed into a sum of par-
tial fractions. )
f(z

Proof. We first consider the proper rational fraction FDAE’

where the polynomials g (z) and h (z) are relatively pnme
(g @), h(2) =1
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Thus, by Sec. 21, there are polynomials u (z) and v (z) such that

g@u@ +r@vE =1
Whence _ B
g @ [u@f@+hr@lEif @ =7FfkE (2)

Suppose, in dividing the product @ (z) f (z) by & (x), we get a remain-
der u (z) whose degree is less than the degree of 4 (z). Then (2) may
be rewritten in the form

g@u@ +h@v@ =7 (3)

where v (z) is a polynomial whose expression could readily be writ-
ten. Since the degree of the product g (z) u (z) is less than the degree
of the product g (z) 2 (z) and this, by hypothesis, is true for the
polynomial f (z), it follows that the product % (z) v (z) also has
degree less than that of g (x) 2 (z), and therefore the degree of v (z)
is less than that of g (x). From (3) there now follows the equation

1@ v@ | u@
@HhE — @ TR

the right member of which is a sum of proper fractions.

If even one of the denominators g (z), 2 (z) can be factored into
a product of prime factors, then a further decomposition is possible.
Continuing in the same manner, we find that any proper fraction
can be decomposed into a sum of several proper fractions, each of which
has for the denominator a power of some irreducible polynomial. More

precisely, if we are given a proper fraction ;—(é—)) , whose denominator
can be factored into the irreducible factors

g@=p"@ @ ...n @

(of course, one can always say that the leading coefficient of the
denominator of a rational fraction is unity), and p,; (z) = p; (z)
for i = j, then it follows that

flz)  wi(2) | usl2) u (z)

8@ ph)  phe (x)+ +pf’ (2)

All the terms on the right of this equation are proper fractions.
“@  where

It remains to consider a proper fraction of the form

pr(x
p (z) is an irreducible polynomial. Applying the division algorithm,
divide u (z) by p** (z), divide the remainder by p*? (z), and so on.
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We arrive at the following equalities:
u (z) = p** (2) & (2) + uy (2),
uy (z) = p*? () 55 (2) + us (2),

.................

Up-z (2) = p (2) sp-1(x) + up-t (2)

Slnce the degree of u (z) is, by hypothesis, less than the degree of
p (z), and the degree of each of the remainders u; (z),i =1, 2,
, k — 1, is less than the degree of the correspondmg d1v1sor
k i (x) it follows that the degrees of all quotients s; (z), s, (2),
.+ ., Sp-1 (z) will be strictly less than the degree of the polynomla}
p (z). The degree of the last remainder u,—; (z) is also less than the
degree of p (z). It follows from the equations obtained that

u (@) = p* (2) 81 (2) + p"* (2) 85 (2) + .

-+ + p (%) 8p-1 (2) + up-y (x)
whence we arrive at the desired representation of the rational frac-
tion 2@ o5 g sum .of partial fractions:

PR (2)

ufz)  upq(®) | sp_1(®)
pR(z) " ph(z) +p"‘ (av)+

The proof of the fundamental theorem is complete. It may be
supplemented by the following uniqueness theorem.

Every proper rational fraction has a unigque decomposition into
a sum of partial fractions.

Let some proper fraction be decomposable into sums of partial
fractions in two ways. Subtracting one of these representations
from the other and collecting like terms, we get a sum of partial
fractions identically equal to zero. Let the denominators of the
partial {ractions which constitute this sum be certain powers of
distinct irreducible polynomials p; (), ps (2), - . ., ps (2) and let
the highest power of the polynomial p; (z), i = 1, 2, . . ., s, which
is one of these denominators, be phi (z). Multiply both sides of the

equality at hand by the product ph—1 (z) p¥ (z) . . . pis (2). Then
al(l ;he terms of our sum, except one, become polynomlals The term
ulx

PY(z)
and whose numerator is the product u (z) p* (z) ... p.s(z). The
numerator is not exactly divisible by the denominator since the
polynomial p, (z) is irreducible, and all the factors of the numerator
are relatively prime to it. Performing division with a remainder,
we find that the sum of a polynomial and a nonzero proper fraction
is equal to zero, which is impossible.

p2 (z)

is converted into a fraction whose denominator is p; (z)
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Example. Decompose into a sum of partial fractions the real proper frac-

tion ):—(f—) where
g (z)
f(z) = 223 — 1023 4 72% + 42 4 3,

g (x) = 28 — 225 + 222 — 32 + 2

It is easy to check that
g@=(+2)(z —-D*(z2+ 1)

Each of the polynomials z + 2, x — 1, z? 4 1 is irreducible. From the foregoing
theory it follows that the desired decomposition should be of the form

flz) A B c Dz-E
g (2) —x+2+ (x—1)2 +x—1+ 241
where the numbers 4, B, C, D and E have still to be found.
From (4) follows the equation

f@=A@E—1)22+1)+B(x+ 2) (224 1)+ C(z+ 2) (z — 1) (2341)

4+ Dz(z+ 2)(x —1)2+ E (z + 2) (z — 1)2 (5)
Equating coefficients of like powers of the unknown z in both members of (5),
we would get a system of five linear equationsin fiveunknowns 4, B, C, D, E;

and, as follows from what has been said, this system has a unique solution.
However, we will take a different approach.

(4)

Assuming z =—2 in (5), we get the equation 454 = 135, whence

A4=3 ’ (6)
Putting z=1 in (5), we get 6B = 6, or

B=1 (M
Now, in succession, set x = 0 and z = —1 in (5). Using (6) and (7), we get the
equations

— 2C + 2E = -2,
—4C—4D+4E=—8} (8)

whence

D=1 (9)

Now, finally, set z = 2 in (5). Using (6), (7), and (9), we arrive at the equation
20C + 4E = —52
which, together with the first equation of (8), yields
C=—2, E=—3
Thus,

flz) 3 1 2 z—3
g (2) _a:+2+ (z—1)2 x——1+x2+1




CHAPTER 6

QUADRATIC FORMS

26. Reducing a Quadratic Form to Canonical Form

The genesis of the theory of quadratic forms lies in analytic
geometry, namely, in the theory of quadric curves and surfaces.
It will be recalled that the equation of a central quadric curve
in a plane, after translating the origin of the rectangular coordinate
system to the centre of the curve, is of the form

Az?® 4+ 2Bzy + Cy? = D 1)

It is also possible to perform a rotation of the coordinate axes through
an angle a, such that we have the following transformation from
the coordinates z, y to the coordinates z’, y':

= 2’ cos & — ¥’ sin a,
y =2 sina + y’ cos a

(2)

Then the equation of our curve in the new coordinates will be of
“canonical” form:

A2+ C'y't =D (3)

In this equation, the coefficient of the product of unkno wns z'y’
is, thus, zero. The transformation of coordinates (2) may obviously
be interpreted as a linear transformation of the unknowns (see
Sec. 13); the transformation is nonsingular since the determinant
of its coefficients is equal to unity. This transformation is applied
to the left side of (1) and for this reason we can say that the left
member of (1) is converted into the left side of (3) by the nonsingular
linear transformation (2).

Numerous applications required the construction of a similar
theory for the case when the number of unknowns is equal to an
arbitrary » instead of two, and the coefficients are either real or any
complex numbers.

Generalizing the expression on the left of (1), we arrive at the
following concept.

11—5760
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A quadratic form f in r unknowns z;, z,, . . ., Z, is a sum, each
term of which is either a square of one of the unknowns or a product
of two different unknowns. A quadratic form is called real or complex
according as its coefficients are real or complex numbers.

If we take it that like terms in the quadratic form f have already
been collected, we can introduce the following notations for the
coefficients of this form: we denote by a;; the coefficient of 2%, and
by 2a;; [compare with (1)!] the coefficient of the product z;z; for
i = j. However, since z;z; = zjr;, the coefficient of this product
could be written as 2aj;, that is, the designations we have proposed
presume the validity of the equality

aj; = ayy (4)
The term 2a;;r,z; may now be written as
2dij$i.’ltj = AT X + aj;Xixy
and the entire quadratic form f may be written in the form of a sum

of all possible terms a;;z;x;, where i and j independently take on the
values from 1 to n:

3

f=2
i=1j

In particular, for i = j we have the term a;;z%.

Obviously, we can construct a square matrix 4 = (a;;) of order
n out of the coefficients a;;; it is called the matriz of the quadratic
form f, and its rank r is called the rank of the quadratic form. If,
say, r = n, that is, the matrix is nonsingular, then the quadratic
form f is termed ronsingular too. Due to (4), the elements of matrix 4
which are symmetric about the principal diagonal are equal; that
is, matrix A is a symmetric matrix. Conversely, for any symmetric
matrix A of order n there is a definite quadratic form (5) in n
unknowns having for coefficients the elements of the matrix A.

The quadratic form (5) may be written differently by using the
multiplication of rectangular matrices introduced in Sec. 14. Let
us make the following convention: if we have a square or, generally,
rectangular matrix A, then A’ will denote the transpose of A. If
matrices 4 and B are such that their product is defined, then we
have the equality

1aijxixj (5)

[

(AB) = B'A’ (6)

Thus, the transpose of a product of matrices is equal to the product
of the transposes of the matrices in reverse order.

Indeed, if the product AB is defined, then, as may easily be
verified, the product B’A’ will also be defined: the number of columns
of matrix B’ is equal to the number of rows of matrix A’. The ele-
ment of matrix (AB)" in the ith row and jth column lies in the jth
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row and ith column of the matrix AB. It is therefore equal to the
sum of the products of the corresponding elements of the jth row
of matrix 4 and the ith column of matrix B, which is to say it is
equal to the sum of the products of the corresponding elements of
the jth column of matrix A’ and the ith row of matrix B’. This
proves (6).

Note that the matriz A is symmetric if and only if it coincides
with its transpose, i.e., if

A=A
Now denote by X the column made up of the unknowns:
Zy
z
x={
Zn

X is a matrix with » rows and one column. Its transpose is the matrix
’r
X' = (‘zia Tas + « =y xn)

comprising a single row.
The quadratic form (5) with matrix A = (a;;) may now be written
as a product:

f=XA4X (7
Indeed, the product 4X will be a matrix consisting of one column:
2 ayjZj
=1
n
AX — 21 2T
.
]_gi Qnj;

Multiplying this matrix on the left by the matrix X’, we get a “mat-
rix” consisting of one row and one column, namely, the right side
of (5).

What will happen to the quadratic form f if the unknowns
Xy, Ty, - - ., Tp in it are subjected to the linear transformation

xi:k21 qirYr, "':’,1) 2’ e, (8)

with the matrix Q = (g;,)? We will assume here that if the form f
is real, then the elements of the matrix Q must be real. Denoting

11*
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by Y the column of unknowns y,, y,, . . ., ¥,, let us write the linear
transformation (8) in the form of a matrix equation:

X =QY 9
whence, from (6),
X =Y (10)
Substituting (9) and (10) into (7), we get '
=Y (Q4Q Y
or
f=Y'BY

where
B =Q'AQ

The matrix B is symmetric since, because of (6), which is
obviously true for any number of factors, and due to the equality
A’ = A, which is equivalent to the symmetry of matrix 4, we have

B = Q'A'Q =Q4Q = B

This is proof of the following theorem. ,

A quadratic form in n unknowns having a matriz A is converted
(after performing a linear transformation of the unknowns with matriz
Q) into a quadratic form in new unknowns, the product Q' AQ serving
as the matriz of this form.

Now assume that we perform a nonsingular linear transforma-
tion; that is, Q and, therefore, Q' too are nonsingular matrices.
In this case, the product Q’AQ is obtained by multiplying matrix 4
by the nonsingular matrices; for this reason, as follows from the
results of Sec. 14, the rank of this product is equal to the rank of
matrix 4. Thus, the rank of a quadratic form does not change under
a nonsingular linear transformation.

By analogy with the geometric problem, indicated at the begin-
ning of this section, of reducing the equation of a central quadric
curve to canonical form (3), let us now consider the question of
reducing an arbitrary quadratic form (by some nonsingular linear
transformation) to a sum of squares of the unknowns, that is to say,
to a form where all coefficients of products of distinct unknowns are
zero. This special form of the quadratic form is called canonical.
First, let us suppose that a quadratic form f in » unknowns z,, z,, . .
..., x has already been reduced (via a nonsingular linear trans-
formation) to the canonical form

f=10byl+ byys+ ...+ byp (11)

where y;, y,, - .., Yo are the new unknowns. Some of the coeffi-
cients by, by, ..., b, may of course be zeros. We will prove that
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the number of nonzero coefficients in (11) is invariably equal to the
rank r of the form f.

Indeed, since we reached (11) by means of a nonsingular trans-
formation, the quadratic form on the right of ({l'l) must also be of
rank r. But the matrix of this quadratic form is diagonal:

b, 0
by

0 bn
and a requirement that this matrix have rank r is equivalent to
supposing that its principal diagonal contalns exactly r nonzero
elements.

We now take up the proof of the followmg fundamental theorem
on quadratic forms.

Anry quadratic form may be reduced to canonical form by means
of a nonsingular linear transformation. If a real quadratic form is under
consideration,; then all the coefficients of this linear transformatwn may
be taken to be real.

This theorem is true for the case of quadratlc forms in one un-
known since every such form has the form ax?, which is canonical.
We can therefore carry out the proof by induction with respect to
the number of unknowns; that is, we can prove the theorem for
quadratic forms in » unknowns, assuming it proved for forms with
a smaller number of unknowns.

Suppose we have the quadratic form

f=

M=
s

aijTixj (12)

P

1

]

1

in the n unknowns z, z,, ..., 2,. We try to find a nonsingular
linear transformation that isolates from f a square of one of the
unknowns, that is, such that reduces f to the form of a sum of this
square and some quadratic form in the remaining unknowns. This
is readily achieved if among the coefficients a;y, azy, . . ., @np in
the principal diagonal of the matrix of the form f there are some
nonzero coefficients, that is to say, if the square of at least one of the
unknowns z; enters into (12) with a nonzero coefficient.

For example, let a;y = 0. Then it will be easy to see that the
expression ai (@yxy + @15%3 + - . . + a4,2,)%, which is a quadra-
tic form, contains the same terms with the unknown z; as our form
f, and so the difference

f—ajl (anpxy + apzy + .« + apxy)? = ¢
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is a quadratic form containing only the unknowns z,, ..., Z,,
but not z;. Whence

f=a; (anzy + apry, + .. . + anzy)? + g
If we introduce the designations

Y1 = a7y + [120% + « . —[— AinZn, Yi = Ty

for i =2,3,...,n (13)

we obtain .
f=any + ¢ (14)
where g is now a quadratic form in the unknowns y,, y3 - .., Un.

Expression (14) is the desired expression for the form f, since it was
obtained from (12) by a nonsingular linear transformation, namely,
by a transformation inverse to the linear transformation (13), which
has a4 for its determinant and is therefore not singular.

However, if we have the equalities a;; = @,y = ... = @pn = 0,
then we first have to perform an auxiliary linear transformation
that leads to the appearance, in our form f, of squares of the un-
knowns. Since there must be nonzero coefficients among those in
(12) of this form—otherwise there would be nothing to prove—
suppose, say, that a,, = 0, i.e., f is the sum of the term 2a,,2;z,
and of terms such that each contains at least one of the unknowns
T3 -« .y Zn.

Let us now perform the linear transformation

Ty =38y — 2y, Ty =2 + 24, x; =2; for i =3, ..., n (15)
It will be nonsingular since it has the.determinant

4 —-10...0

1 10...0}

0 01...0{=2=0

0 00...1
As a result of this transformation, the term 2a,,z,z, of our form
becomes

2a511xy = 2a45 (21 — 23) (21 + 25) = 2a;20 — 2a,,7;

In other words in form f there will appear the squares of two un-
knowns at once with nonzero coefficients; what is more, they do
not cancel with any one of the remaining terms, since each one
of the latter contains at least one of the unknowns z;, ..., z,.
We are now in the conditions of the case that has already been
considered; one more nonsingular linear transformation will reduce
the form f to the form (14).
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To conclude the proof, note that the quadratic form g depends
on a smaller (than »n) number of unknowns and for this reason, by
the induction hypothesis, it is reducible to the canonical form by
means of a nonsingular transformation of the unknowns y,, y;, . ..

., Yn. This transformation, which we regard as a (ponsingular,
quite obviously) transformation of all » unknowns under which
ys remains unchanged, consequently reduces (14) to canonical form.
Thus, by means of two or three nonsingular linear transformations,
which may be replaced by a single nonsingular transformation
(their product), a quadratic form f may be reduced to a sum of squa-
res of the unknowns with certain coefficients. And, as we know, the
number of such squares is equal to the rank r of the form. If, besides,
the quadratic form f is real, then the coefficients both in the cano-
nical form of f and in the linear transformation which reduces f
to this canonical form will be real; indeed, both the linear trans-
formation which is inverse to (43) and the linear transformation
(15) have real coefficients.

The proof of the fundamental theorem is complete. The method
employed in this proof can be used in specific examples for an actual
reduction of a quadratic form to canonical form. It is only necessary,
in place of the induction we used in the proof, to isolate the squares
of the unknowns successively by the method given above.

Example. Reduce to canonical form the quadratic form

f= 22425 — 62025 + 2x31, (16)

Since there are no squares of the unknowns in this form, we first perform
a nonsingular linear transformation

Ty =y1 — Y2, T2= Y1+ Y2, T3= Ya

110
A=(1 10)
0 01

f= 2y} — 2y — 4y1ys — 8yays

Now the coefficient of y? is nonzero, and so we can isolate the square of one
unknown. Setting

with the matrix

This yields

2y = 2yy — 2y3, Z2= Y2, Za= U3
that is, performing a linear transformation, the inverse of which has the matrix

we reduce f to the form
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So far only the square of the unknown z; has been isolated, since the form
still contains the product of two other unknowns. Using the fact that the coef-
ficient of z3 is nonzero, we again apply the method described above. Performing
the linear transformation

ty= 2y, ty= —2z5 — 433, t3= 123

the inverse of which has the matrix

1 0 0

1
=10 —5 =2
0 0o 1

we finally reduce the form f to canonical form:
1 1 .
f=g t}—— 134613 a7

The linear transiormation that immediately reduces (16) to (17) will have
for its matrix the product

1 1

7z 7 38
apc=| 1 1 |

2 2

0 0 1

It is also possible, by direct substitution, to verify that the nonsingular

(since the determinant is equal to —-—;—) linear transformation

1 1

2p=5 t1+ 5l 303,
1
2

1
h— la—1l3
z3= t3

converts (16) into (17).

The theory of reducing a quadratic form to canonical form is
based on an analogy with the geometric theory of central quadric
curves but it cannot be considered a generalization of this latter
theory. Actually, in our theory we are allowed to use any nonsin-
gular linear transformations, whereas reducing a quadric to canoni-
cal form is achieved by applying linear transformations of a very
special kind (2); these transformations are rotations of the plane.
However, this geometric theory can be generalized to the case of
quadratic forms in » unknowns with real coefficients. The genera-
lization, which goes by the name of reduction of quadratic forms
to principal axes, will be given in Chapter 8.
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27. Law of Imertia’

The canonical form to which a given quadratic form is reduced
is by no means uniquely determined: any quadratic form may be
reduced to canonical form in many different ways. Thus, the quad-
ratic form f = 2z2, — 6z,2z3 + 2z3z, that was considered in the
preceding section can, by the followmg ponsingular linear trans-
formation,

Xy — ti + 3t2 + 2t3,
' xzztl_ t2_2t37
T3 = 2
be reduced to the canonical form
f = 24 + 61; — 8¢;

which is. different from the earlier obtained form.

The question arises as to what these different canonical quad-
ratic forms to which the given form f is reduced have in common.
As we shall see, this question is closely connected with the following
one: under what condition can one of the two given quadratic forms
be carried into the other by a nonsingular linear transformation?
The answer depends on whether we are considering complex or real
quadratic forms.

First suppose we are considering arbitrary complex quadratic
forms; at the same time, let us assume we admit the use of nonsin-
gular linear transformations also with arbitrary complex coeffi-
cients. We know that any quadratic form f in » unknowns having
rank r can be reduced to the canonical form

f=cyi +cy; +...+ vt

where all the coefficients ¢y, ¢y, . . ., ¢, are nanzero. Using the fact
that we can take the square root of any complex number, let us
perform the following nonsingular linear transformation:

=Vciy,~f0rl=1, 2,..., 1} z,u=yjfor]=r—l—1,...‘,n
It reduces f to the form ‘
f=zn4+2z2+4...4+2" (1)

which is called normal. This is simply the.sum of the squares of r
unknowns with coefficients equal to unity.

The normal form depends solely on the rank r of the form f,
that is, all quadratic forms of rank r can be reduced to one and the
same normal form (1). Consequently, if forms f and g in » unknowns
have the same rank r, then we can transform f to (1) and then (1)
to g; in other words, there exists a nonsingular linear transformation
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that takes f into g. Since, on the other hand, no nonsingular linear.
transformation alters the rank of the form, we arrive at the following
result.

Two complex quadratic forms in n unknowns can be carried one
into the other by means of nonsingular linear transformations with
complex coefficients if and only if these forms have one and the same
rank.

It very easily follows from this theorem that any sum of squares
of r unknowns with any nonzero complex coefficients can serve as the
canonical form of a complex quadratic form of rank r.

The situation is somewhat more complicated if we consider
real quadratic forms and—this is particularly important—if we
allow only for linear transformations with real coefficients. Now
not every form can be reduced to (1), since this might require taking
the square root of a negative number. However, if we now use the
term rormal form of a quadratic form for the sum of squares of seve-
ral unknowns with coefficients 41 or —4, then it is easy to show
that any real quadratic form f may be reduced to the normal form via
a nonsingular linear transformation with real coefficients.

Indeed, the form f of rank r in »n unknowns can be reduced to
a canonical form that can be written as follows (the numbering
of the unknowns may be changed if necessary):

— 2 2 2 : 2
f=cyi+ .- Fcrlr — Chttlhay — -+ —C¥n 0Er
where all the numbers ¢y, ..., ¢, ¢444, - - ., ¢, are nonzero and

positive. Then the nonsingular linear transformation with real
coefficients

zi=Vciyi for i=14,2,...,r, z;=y; for j=r41,...,n
reduces f to normal form:

f=24+...+z —z4y—... — 2
The total number of squares here is equal to the rank of the form.

A real quadratic form may be reduced to normal form by many
different transformations; however, to within the numbering of the
unknowns, it can be reduced only to one normal form. This is demon-
strated by the following important theorem, which is called the
law of inertia of real quadratic forms.

The number of positive and the number of negative squares in the
normal form to which a given quadratw form with real coefficients
can be reduced by a real nonsingular linear transformation is inde-
pendent of the choice of the transformation.

Indeed, let a quadratic form f of rank r in » unknowns z,, z,, . .

o Zn be reduced to the following normal form in two ways:

f=n+.- . +vi—vhip— ... —y 2
=24 ... Fa—z—...—2 *
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Since the transition from the unknowns z;, z,, ..., 2, to the
unknowns yy, ¥, - .., Yo Was a nonsingular linear transformation,
it follows, conversely, that the second set of unknowns will also

be expressed linearly in terms of the first set with a nonzero deter-
minant:

n
y,=2(zisxs, i=1,2,...,n (3)
s=1
Similarly,
n-
Zj=t§ bjixe,  j=1,2,...,n (4)

the determinant of the coefficients again being different from zero.
The coefficients are real numbers both in (3) and in (4).
Now suppose that & << . Write the system of equalities

y1=0,.. ., y.=0,2,4, =0, ...,z =0,...,2, =0 (9

If the left members of these equalities are replaced by their expres-
sions taken from (3) and (4), we get a system of » — I 4+ % homo-
geneous linear equations in » unknowns z,, z,, ..., z,. The num-
ber of equations in this system is less than the number of unknowns.
For this reason, as we know from Sec. 1, our system has a nonzero
real solution a,, o,, ..., a,

Now in (2) let us replace all y's and all z's by their expressions
(3) and (4), and then let us substitute for the unknowns the numbers
oy, %y, . .., Op. If for brevity the values of the unknowns y; and
z; obtained in this substitution are denoted by y; (@) and z; (@),
then, by (5), (2) becomes

—yhpr (@) — ... —yi(a) =zi(a) + ...+ 2z} (@) (6)

Since all the coefficients in (3) and (4) are real, all the squares in
(6) are positive and for this reason (6) implies that all these squares
are zero, whence follow the equalities

21 (@) =0, ...,z () =0 (7
On the other hand, by the very choice of the numbersay, a,, . . ., a,,
Zip (@) =0, ..., 2 @)=0,...,2, (=0 (8)

Thus, the system of » homogeneous linear equations
Zi=0, i='1,2,...,n

in » unknowns z;, z,, ..., 2, has, by (7) and (8), the nontrivial
solution a,, a,, ..., a,; that is, the determinant of this system
must be zero. This however contradicts the fact that the transfor-
mation (4) was presumed to be nonsingular. We have the same con-
tradiction for [ <C &, whence follows & = [ which provés the theorem.
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The number of positive squares in the normal form to which
a given real quadratic form f is reduced is called the positive index
of inertia of this form; the number of negative squares is termed
the negative index of inertia, and the number of positive indices
diminished by the numbers of negative indices of inertia is the
signature of the form f. Clearly, if we are given the rank of a form,
any one of the three numbers just defined will fully determine the
other two, and for this reason, we can speak of any one of the three
numbers in subsequent formulations.

We now prove the following theorem.

Two quadratic forms in n unknowns with real coefficients are carried
one into the other by real nonsingular linear transformations if and
only if the forms have the same ranks and the same signatures.

Indeed, let a form f be carried into 4 form g by a real nonsin-
gular transformation. We know that this transformation does not
alter the rank of the form. Neither can it change the signature, for
then f and g would reduce to different normal forms, but then f
would reduce—in conflict with the law of inertia—to both these
normal forms. Conversely, if the forms f and g have the same ranks
and the same signatures, then they reduce to one and the same nor-
mal form and therefore can be carried into one another.

If we have a quadratic form g in canonical form with nonzero
real coefficients

g ="buyy+ byz+ ...+ byt (9)

then the rank of this form is obviously equal to r. Taking advantage
of the procedure used earlier of reducing such a form to the normal
form, it is easy to see that the positive index of inertia of form g
is equal to the number of positive coefficients in the right member
of (9). From this and from the preceding theorem we obtain the
following result.

A quadratic form f has form (9) as ils canonical form if and only
if the rank of f is equal to r and the positive index of inertia of this
form coincides with the number of positive coefficients in (9).

Decomposable quadratic forms. By multiplying any two linear
forms in n unknowns,

¢ = aqxy + Xy + . . .+ 07, o= byzy + byzs + ...+ bpz,

we obviously get another quadratic form. Not every quadratic form
can be represented as a product of two linear forms and we wish
to derive the conditions under which this occurs, that is, the con-
ditions under which a quadratic form is decomposable.

A complex quadratic form f (zy, zs ..., Zp) is decomposable
if and only if its rank is less than or equal to two. A real quadratic
form f (24, x4, . . ., zp) is decomposable if and only if either its rank
does not exceed unity or the rank is equal to two and the signature is zero.



27. LAW OF INERTIA 173

Let us first consider the product of the linear forms ¢ and .
If at least one of them is a zero form, then their product will be
a quadratic form with zero coefficients, which means it has rank 0.
If the linear forms ¢ and v are proportional,
Y =cQ
and ¢ =0 and the form ¢ is nonzero, then, for example, let the coef-
ficient a, be different from zero. Then the nonsingular linear trans-
formation
Yr=aty + ...+ 0z y;=2x2; for i=2,3 ...,n
reduces the quadratic form q¢ to
oY = cy;

On the right is a quadratic form of rank 1, and so the quadratic
form ¢y has rank 1. Finally, if the linear forms ¢ and 1 are not
proportional then, say, let

ay a2
by b,
Then the linear transformatién

0

Y = axy + a2y + . . . + @pzn,
Yo = byzy + bozy + . . . + bpan,
yy=z3fori =3, 4, ..., n

will be nonsingular; it reduces the quadratic form @y to

oY = yiYs

On the right is a quadratic form of rank 2, which in the case of real
coefficients has a signature of 0.

Let us now prove the converse. A quadratic form of rank 0 can
of course be regarded as a product of two linear forms, one of which
is a zero form. Next, a quadratic form f (21, x5, . . ., z,) of rank 1
is reduced by a nonsingular linear transformation to

f= cyf, c %0
that is, to the form
f=1{(y)u

Expressing y; linearly in terms of zy, z,, . .., z,, We get a repre-
sentation of the form f as a product of two linear forms. Finally.
the real quadratic form f (zy, z,, . . ., zn) of rank 2 and signature 0
is reduced by a nonsingular linear transformation to

f=v—un
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Any complex quadratic form of rank 2 can be reduced to this same
form. However,

i — vz = (y1 — ¥s) (y1 + ¥

but after replacing y; and y, by their linear expressions in terms
of 2y, x5, . .., 7, we will have on the right a product of two linear
forms. This proves the theorem.

28. Positive Definite Forms

"A quadratic form f in » unknowns with real coefficients is called
positive definite if it can be reduced to a normal form consisting
of n positive squares, that is, if both the rank and the positive
index of inertia of this form are equal to the number of unknowns.

The following theorem enables us to characterize positive definite
forms without reducing them to normal form or canonical form.

A quadratic form f in n unknowns z1, x4, . . ., x, With real coef-
ficients is positive definite if and only if for all real values of the un-
knowns, at least one of which is nonzero, the form receives positive
values.

Proof. Let the form f be positive definite, i. e., reducible to the
normal form

f=ni+unnt+...+um 1)
and let

n
Yi= Z a;;%; i=1, 2, ey 2 (2)
j=1

with a nonzero determinant of the real coefficients a;;. If we want
to substitute, into f, arbitrary real values of the unknowns axy,
Zgy - - -y Iy, at least one of which is nonzero, then we can first
substitute them into (2) and then substitute the values obtained
for all y; into (1). It will be noted that the values obtained from (2)
for y4, Y3 . . -» Yn cannot all be zero at once, for then we would
have that the system of homogeneous linear equatious

n
52 aijxj=0, i=1, 2, cesy, 2
=1

has a nontrivial solution, though its determinant is different from
zero. Substituting the values found for yy, y,, . .., yn into (1), we
get the value of the form f equal to the sum of the squares of n
real numbers, not all zero. This value will consequently be strictly
positive.

Conversely, suppose the form f is not positive definite, that is
either its rank or the positive index of inertia is less than n. This
means that in the normal form of f, to which it is reduced, say, by
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the nonsingular linear transformation (2), the square of at least one
of the new unknowns, say y,, is either absent altogether or is pre-
sent with a minus sign. We will show that in this case it is possible
to choose real values for the unknowns zy, z,, ..., 2,, not all
zero, such that the value of the form f for these values of the un-
knowns is equal to zero or is even negative. Such, for instance, are
the values for zy, z,, . .., z, which we obtain when solving, by
Cramer’s rule, the system of linear equations obtained from (2) for
Yp =Yy = ...=Ypqy =0, y, = 1. Indeed, for these values of
the unknowns zj, z,, . .., Zn, the form f is zero if yi does not
enter into the normal form of f, and is equal to —1 if y3 enters into
the normal form with a minus sign.

The theorem that has just been proved is used wherever positive
definite quadratic forms are employed. However, it cannot be used
to establish from the coefficients whether a form is positive definite
or not. This is handled by a different theorem which we will state
and prove after introducing an auxiliary notion.

Suppose we have a quadratic form f in » unknowns with the
matrix 4 = (a;;). The minors of order 1, 2, ..., n of this matrix
situated in the upper left corner, that is, the minors

a1 Q49 - - . Qg g Qg . - . Qin
11 Qg9 Aoy Aoy - . . Qo Aoy gy . . . Qo
a4, 3} LS ]
azi 022 . . - . . . .
Qpy Apg - - - Qpp Gny Gpg . . . Gpp

of which the last obviously coincides with the determinant of mat-
rix A are called the principal minors of the form f.

The following theorem holds true.

A quadratic form f in n unknowns with real coefficients is posi-
tive definite if and only if all its principal minors are strictly positive.

Proof. For n = 1, the theorem is true since the form then is az®
and therefore is positive definite if and only if @ > 0. For this rea-
son, we prove the theorem for the case of » unknowns on the assump-
tion that it has already been proved for quadratic forms in » — 1
unknowns.

Note the following.

If a quadratic form f with real coefficients constituting a mat-
rix A is subjected to a nonsingular linear transformation with a real
matrix Q, then the sign of the determinant of the form (that is, the
determinant of its matriz) remains unchanged.

Indeed, after the transformation we obtain a quadratic form
with the matrix Q"AQ; however, due to | Q' | = | Q]|,

[QAQ | =1Q [-]1A]-]1Q|=]4]-]Q

that is, the determinant | A4 | is multiplied by a positive number.
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Now suppose we have the quadratic form

n
/= iz | B

» 1=
It can be written as

n—1
=0 @y T3 v vy Tnag)+2 2;1 WinZiTn +nnTh 3)

where @ is a quadratic form in » — 1 unknowns composed of those
terms of form f which do not contain the unknown a,. The principal
minors of the form ¢ evidently coincide with all principal minors
of the form f except the last.

Let the form f be positive definite. Then the form ¢ will also be
positive definite: if there existed values of the unknowns z,
Zgy + « +» Tn-1, DOt all zero, for which the form ¢ receives a nonstrictly
positive value, then, additionally assuminmg z, = 0, we would also
obtain, by (3), a nonstrictly positive value of the form f, although
not all the values of the unknowns zy, x5, . . ., Tn-1, T, are equal
to zero. For this reason, by the induction hypothesis, all the prin-
cipal minors of the form ¢ that is, all the principal minors of the
form f, except the last, are strictly positive. As for the last principal
minor of f (that is the determinant of the matrix A4 itself), its posi-
tivity is a consequence of the following reasoning: because of its
positive definiteness, form f is reduced by a nonsingular linear trans-
formation toa normal form consisting of n positivesquares. The deter-
minant of this normal form is strictly positive, and so, by the remark
made above, the determinant of the form f itself is positive.

Now let all the principal minors of the form f be strictly positive.
From this follows the positivity of all the principal minors of the
form g, that is, by the induction hypothesis, the positive definiteness
of this form. Therefore, there is a nonsingular linear transformation
of the unknowns z;, z,, ..., Z,-y such that reduces the form ¢
to a sum of » — 1 positive squares in the new unknowns yy, y,, - . .
.« s Ynt- By setting z, = y,, this linear transformation may be
completed to form a (nonsingular) linear transformation of all the
unknowns zy, Zy, . .., Zn- By (3), form f is reduced by the indica-
ted transformation to

n—1 n—1
f= E y%‘{"z 21 binyiyn+bnny$t (4)

i=1
The exact expressions of the coefficients b;, are not essential to us
Since

Yt + 2binyiyn = (Ui + binyn)® — bhivh
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it follows that the nonsingular linear transformation
z2; =Y; + b, i=1,2, ..., 0n—1,
2, = Yn

reduces the form f by (4) to the canonical form

n—1
f= 2 2t 4czd (5)
=
To prove the positive definiteness of the form f, it remains to
prove that the number ¢ is positive. The determinant of the form
in the right member of (5) is equal to ¢. However, this determinant
should be positive since the right side of (5) is obtained from f by
two nonsingular linear transformations, and the determinant of
the form f was positive (being the last of the principal minors of
this form).
This completes the proof of the theorem.

Example 1. The quadratic form
f= 5x§ + x% —|- 5x§ —|- 4.1:4.1:2 -— 82213:3 —_ 4.‘!2.1‘3

is positive definite since its principali minors

5 2 —4
5,]2?]:1, 2 1 —2|=1
—4—2 5

are positive.
Example 2. The quadratic form

f= 32} + 2% + 52% + 4xj2p — 8zy33 — baprs
is not positive definite since its second principal minor is negative:

32
21

Note that by analogy with positive definite quadratic forms we
can introduce negative definite forms, that is, nonsingular quadratic
forms with real coefficients whose normal form contains only nega-
tive squares of the unknowns. Singular quadratic forms whose
normal form ccnsists of the squares of one sign are sometimes termed
semidefinite. Finally, indefinite quadratic forms are those whose
normal form contains both positive and negative squares of the
unknowns.

= —1

12—5760



CHAPTER 7

LINEAR SPACES

29. Definition of a Linear Space. An Isomorphism

The definition of an n-dimensional vector space given in Sec. 8
began with a definition of an n-dimensional vector as an ordered
set of n numbers (rn-tuple). For n-dimensional vectors we then intro-
duced addition and multiplication by scalars, which is what led
to the concept of an n-dimensional vector space. The first instances of
vector spaces are collections of vector segments emanating from a
coordinate origin in the plane or in three-dimensional space. Howe-
ver, when we encounter such cases in geometry, we do not always
find it necessary to specify the vectors via their components in some
fixed system of coordinates, since both addition of vectors and their
multiplication by a scalar are determined geometrically, irrespec-
tive of the choice of any coordinate system. Namely, the addition
of vectors in the plane or in space is accomplished by the paralle-
logram rule, while the multiplication of a vector by a scalar o signi-
fies a stretching of the vector by the factor o (the direction is rever-
sed if a is negative). It is advisable to give a “coordinateless” de-
finition of a vector space in the general case as well. By this is meant
a definition which does not require specifying vectors by ordered
sets of numbers. We now give such a definition. This definition is
axiomatic; nothing will be said about the properties of a separate
vector, but we will enumerate the properties of operations invol-
ving vectors. '

Suppose we have a set V. We denote its elements by lower-case
Latin letters: a, b, ¢, . . ..* Now, in set V we define the operation
of addition, which associates every pair of elements a, b in V with
a uniguely defined element a 4 b in V, called the sum,-and the
operation of multiplication by a real number (scalar); the product aa
of element a by a scalar o is uniquely defined and belongs to V.

The elements of V will be termed vectors, and V itself will be
called a real linear (or vector, or affine) space if the indicated opera-
tions have the following properties (I to VIII).

* In contrast to Chapter 2, here and in the sequel, vectors will be desig-
nated by lower-case Latin letters, scalars by lower-case Greek letters.



29. DEFINITION OF A LINEAR SPACE. AN ISOMORPHISM 179

I. Addition is commutative: a + b = b + a.
Il. Addition is associative: (@ + b) + ¢ =a + (b + ¢).
III. There is a zero element O in V which satisfies the condition:
a4+ 0=aqaforall ain V.
Using I it is easy to prove the unigueness of the zero element: if
0; and 0, are two zero elements, then

0; + 03 = 0y,
O+ 0, = 0, + 0y = 0,

whence 0; = 0,. .

IV. For any element a in V there exists an opposite (inverse) ele-
ment —a, which satisfies the condition: a¢ 4 (—a) = 0.

Using II and I, it is easy to prove the uniqueness of the inverse
element: if (—a), and (—a), are two inverse elements of a, then

(—a) + la + (—a)]l = (—a)s + 0 = (—a),,
[(—a); + al + (—a); = 0 + (—a), = (—a),

whence (—a); = (—a),.
From axioms I to IV we deduce the ezistence and uniqueness of the
difference a — b, that is, an element which satisfies the equation

b+tz=a 1)
We can set
a—b=a-+ (—b
since

b+lat+(—b))=[b+(—bl+a=0+a=a.
Now if there is an element ¢ such that satisfies (1),
b+c=a
then, by adding to both sides an element —b, we get
¢ =a-+ (—b)

Axioms V to VIII (cf. Sec. 8) relate multiplication by a scalar
to addition and to operations involving scalars. Namely, for any ele-
ments a, b in V, for any real numbers a, P, and for the real number 1,
the following equalities must hold:

V. a(a+ b) = aa + ab,

VI. (@ + B) ¢ = aa + Ba,

- VIL. (aB) a = & (Pa),

VIII. 1-a = a.

12%*
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Elementary corollaries to these axioms are:
(1] a-0=0
For some a in V,
ae =a(a+ 0) =aa+a-0-
that is ‘
¢0=oae—aa =oaa+ [—(2a)] =0
(2] 0-a=0
where the zero on the left is the number zero and the zero on the

right is the zero element of V,
To prove this, take any scalar «. Then

ae =(a+0)a=caa+ 0-a
whence
0a =aa —aa =0
(3] If aa = 0, then either ¢ =0 or a = 0.
If & 540, that is the scalar ¢~ exists, then
a=1a=(@@)a=al(a) =a1-0=0

(4] a(—a)= —oa
Indeed,

aa +a(—a) =ale+ (—a)l =a-0 =20
that is, the element o« (—a) is the inverse of «a.
[5] (—a)a = —aa
Indeed,
aa + (—a)a =[a+ (—a)la=0.a =0
that is, the element (—o) a is the inverse of aa.
{61 (@ —0b) =aa —ab
By (4],
o (e —b) =ala+ (=b)] =oaa+ a(—b)
= aa + (—ab) = aa — ab
[7] (@ —P)a =aa— Pa
Indeed,
(@ —B)a=1la+ (—P)la=oaz+(—B)a
= aa + (—pa) = aa — Pa

These axioms and their corollaries will be used from now on with-
out any special reservations.
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The definition given above is for a real linear space. If we assu-
med, in ¥V, multiplication not only by real numbers but also by arbi-
trary complex numbers, then, retaining Axioms I to VIII, we would
have the definition of a complex linear space. For the sake of defi-
niteness, we will consider real linear spaces; however, everything
in this chapter can be extended word for word to the case of com-
plex linear spaces.

Examples of real linear spaces come to mind immediately. They
include the n-dimensional real vector spaces composed of row vec-
tors that were studied in Chapter 2, also sets of vector segments
emanating from a coordinate origin in the plane or in three-dimen-
sional space if the operations of addition and multiplication by
a scalar are understood in the geometric sense stated at the begin-
ning of this section.

We also have linear spaces that are infinite-dimensional. Let
us consider all possible sequences of real numbers; they have
the form

@ = (Qg, Qgy = « vy Oy + « )

We perform operations on sequences componentwise: if

b= Py, Basr -+ «» Bry -+ -)

then
a+b=(al+ﬁh oc2+f32,..., an+ﬁnv'~~)

On the other hand, for any real number 7,
Ya = (Yol1, YCay . « .y Pn, - - )

All the axioms from I to VIII are fulfilled, which means we have
a real linear space.

Another instance of an infinite-dimensional space is the set of
all possible real functions of a real variable if the addition of func-
tions and their multiplication by a real number are to be understood
as is conventional in the theory of functions, that is, as the addition
or multiplication by the number of values of the functions for each
value of the independent variable.

Isomorphisms. Qur immediate aim is to select from all linear
spaces those which it will be natural to call finite-dimensional.
First let us introduce a general concept. ,

In the definition of a linear space we spoke about the properties
of operations involving vectors, but we said nothing about the pro-
perties of the vectors themselves. Thus, it may happen that although
the vectors of two given linear spaces are quite different as to their
nature, the two spaces are indistinguishable from the standpoint of
the properties of the operations. The exact definition is as follows.

Two real linear spaces V and V' are called isomorphic if a one-
to-one correspondence can be set up between their vectors: every
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vector a of V is associated with a vector a’ of V', the image of the
vector a; different vectors from V possess different images and every
vector in V' serves as an image of some vector in V; and if in this
correspondence the image of a sum of two vectors is the sum of the
images of the two vectors,

(@+b) =a +0 (2)

and the image of a product of a vector by a scalar is the product
of the image of the vector by that scalar,

(xa) = aa’ 3)

The one-to-one correspondence between spaces V and V' which
satisfies the conditions (2) and (3) is called an isomorphic correspon-
dence.

Thus, the space of vector segments (in a plane) emanating from
a coordinate origin is isomorphic to a two-dimensional vector space
made up of ordered pairs of real numbers: we obtain an isomorphic
correspondence between these spaces if in the plane we fix some sy-
stem of coordinates and associate with every vector segment an or-
dered pair of its coordinates.

Let us prove the following property of an isomorphism of linear
spaces: the image of zero of the space V is the zero of the space V' in
an isomorphic correspondence between V and V'.

Let a be some vector in V and a’ its image in V’. Then, by (2),

' =(@+0 =ada +0

That is to say, 0’ is a zero of the space V'.

30. Finite-Dimensional Spaces. Bases

As the reader can verify without difficulty, the two definitions
of linear dependence of row vectors given in Sec. 9, and also the
proof of the equivalence of these definitions, employ only operations
on vectors and for this reason can be carried over to the case of any
linear spaces. Consequently, in axiomatically defined linear spaces
we can speak of linearly independent systems of vectors, of maxi-
mal linearly independent systems, if such exist, and so on.

If the linear spaces V and V' are isomorphic, then the system of
vectors ay, @y, . .., @y in V is linearly dependent if and only if the
system of their images a,, ay, ..., ax in V' is linearly dependent.

Note that if the correspondence a —> a’ (for all a in V) is an
isomorphic correspondence between ¥ and V', then the reverse cor-
respondence a’ — a will also be isomorphic. It is therefore suf-
ficient to consider the case when the system ay, @, . . ., @ is linearly
dependent. Let there be scalars ay, o, . . ., ay, Dot all zero, such
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that
ayay + gty + ... +agay =0

In the isomorphism under consideration, the image of the right
member of this equation is, as we know, the zero 0’ of space V.
Taking the image of the left member and applying (2) and (3) several
times, we get

a1 + agay + .. .+ apan =0’

Thus, the system a;, a3, ..., ar is also linearly dependent.

Finite-dimensional spaces. A linear space V is called finite-di-
mensional if in it we can find a finite maximal linearly independent
system of vectors; any such system of vectors will be termed the
basis of the space V.

A finite-dimensional linear space can have many different bases.
Thus, in the space of vector segments in the plane, any pair of vec-
tors different from zero and not lying on one straight line can serve
as a basis. Note that so far our definition of a finite-dimensional
space does not specify whether there can exist, in this space, bases
consisting of a different number of vectors. What is more, it might
even be assumed that in some finite-dimensional spaces there exist
bases with an arbitrarily large number of vectors. Let us investigate
this situation.

Suppose a linear space V has a basis

€1y €9y « « +y €p (1)
consisting of n vectors. If a is an arbitrary vector in V, then from the
maximality of the linearly independent system (1) it follows that
a is expressed linearly in terms of the system:

a = o4e; + agey + ...+ ane, (2)

On the other hand, due to the linear independence of (1), expres-
sion (2) will be unique for the vector a: if

a=oe + ey + ...+ anep

then
(0 —a)es+ (g —a)eg+ ... + (o —an)e, =0

whence
a; = ai, i=1,2, ..., n
Thus, the vector a is associated one-to-one with the row
(ah azv e ey an) (3)

of coefficients of its expression (2) in terms of the basis (1) or, as
we shall say, the row of its coordinates in the basis (1). Conversely,
every row of type (3), that is, any n-dimensional vector in the sense
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of Chapter 2 serves as a row of coordinates in basis (1) for some vector
of space V, namely, for the vector written in the form (2) in terms
of the basis (1).

We have thus obtained a one-to-one correspondence between all
vectors of the space V and all vectors of an n-dimensional vector
row-space. We will show that this correspondence, which quite natu-
rally is dependent on the choice of the basis (1), is isomorphic.

In space V let us, in addition to vector @, which is expressed in
terms of the basis (1) in the form (2), also take a vector b whose
expression in terms of the basis (1) is

b= PBies + Bz + . .. + Pren
Then

d—{‘b_—“(o‘i"‘ﬁi)ei+(°‘2+|32)32+---+(an+5n)en

that is, the sum of the vectors a and b corresponds to the sum of the rows
of their coordinates in the basis (1). On the other hand,

ya = (yoy) eg + (yag) e + . . . . (y2,) €n
that is, fo the product of a vector a by a scalar v corresponds the product
of the row of its coordinates in the basis (1) by the same scalar ¥.

The foregoing proves the following theorem.

Any linear space with a basis consisting of n vectors is isomorphic
to an n-dimensional vector row-space.

As we know, in an isomorphic correspondence between linear
spaces, a linearly dependent system of vectors goes into a linearly
dependent system and conversely; for this reason, a linearly inde-
pendent system goes into a linearly independent system. From this
it follows that irn an isomorphic correspondence, a basis goes into a basis.

Indeed, let a basis e, ey, . . ., e, of a space V go (under an iso-
morphic eorrespondence between the spaces ¥V and V') into a system
of vectors e, €, . .., en of space V', which, though it is linearly
independent, is not maximal. Consequently, in V' we can find a
vector ' such that the system e¢;, ¢, ..., e, f remains linearly
independent. However, the vector ' in this isomorphism serves as
an image of some vector f in V. We find that the system of vectors
ey, €3, . . -, €5, must be linearly independent, which is in contra-
diction to the definition of a basis.

Further, we know (see Sec. 9) that in an n-dimensional vector row-
space, all maximal linearly independent systems consist of n vec-
tors, that any system of n + 1 vectors is linearly dependent, and
that any linearly independent system of vectors is contained in some
maximal linearly independent system. Using the above-established
proplerties of isomorphic correspondences, we arrive at the following
results.

All bases of a finite-dimensional linear space V consist of one and
the same number of vectors. If this number is equal to n, then V is
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called an n-dimensiornal linear space, and the number n is the
dimension of this space.

Any system of n+41 vectors of an n-dimensional linear space is
linearly dependent.

Any linearly independent system of vectors of an n-dimensional
linear space is contained in some basis of that space.

It is now easy to verify that the above-indicated examples of
real linear spaces—the space of sequences and the space of func-
tions—are not finite-dimensional spaces: in each of these spaces the
reader will easily find linearly independent systems consisting
of an arbitrarily large number of vectors.

Relationships between bases. We are interested in finite-dimen-
sional linear spaces. Clearly, when studying n-dimensional linear
spaces we are actually studying the n-dimensional vector row-space
that was introduced back in Chapter 2. Earlier, however, we extrac-
ted one basis from this space, namely, the basis composed of unit
vectors (these are vectors, one coordinate of which is equal to unity
and all others are zero), all the vectors of the space were specified
by the rows of their coordinates in that basis. Now, however, all
bases of a space have equal status.

Let us see how many bases can be found in an n-dimensional
linear space and how these bases are interrelated.

Suppose in an n-dimensional linear space ¥V we have the bases

€y, €3 .., € (4)
and
€, €y -+ -y €n (5)
Each vector of basis (5), like any vector of the space V, is unambi-
guously written in terms of basis (4) as

n
e’i=§ Tije, i=1,2,...,n (6)
The matrix =
Tyg o o - Tin
T =
The - « - Tnn

whose rows are the rows of the coordinates of the vectors (5) in basis
(4), is called the change-of-basis matriz from basis (4) to basis (5).

Because of (6), we can write the relationship between bases (4)
and (5) and the change-of-basis matrix 7 in the form of a matrix
equation:

’

e Ty Tyg -+« Tyn ey

’

82 721 1:22 .. Tzn ez (7)

’
en ThiTha - - Tan en
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or, denoting by e and ¢’, respectively, the bases (4) and (5) as columns:
e = Te
On the other hand, if 7’ is the change-of-basis matrix from (5)
to (4), then

e= T'e
whence
e = (I'T) e,
e = (TT") ¢

or, because of the linear independence of the bases e and ¢’,
T"T =TI"=E .
whence
I'=7T"1
This proves that the change-of-basis matriz is always a nonsingular
matriz.

Any nonsingular square matriz of order n with real elements can
serve as a malriz for changing from a given basis of an n-dimensional
real linear space to some other basis.

Suppose we have a given basis (4) and a nonsingular matrix T
of order n. For (5) take a system of vectors for which the rows of
matrix T serve as the rows of coordinates in basis (4); thus, we have
equation (7). The vectors (5) are linearly independent (linear depen-
dence would have implied a linear dependence of the rows of mat-
rix T, in conflict with its nonsingularity). Therefore, system (5),
as a linearly independent system consisting of n vectors, is a basis
of our space, and the matrix 7 serves as a change-of-basis matrix
from basis (4) to basis (5).

We see that in an n-dimensional linear space we can find as many
distinct bases as there are distinct nonsingular square matrices of
order n. True, here, two bases consisting of the same vectors but
written in a different order are considered distinct.

Transformation of vector coordinates. Suppose in an rn-dimen-
sional linear space we have the bases (4) and (5) given with the chan-
ge-of-basis matrix T = (1),

e’ = Te

Let us find the connection between the coordinate rows of an arbitra-

ry vector a in these bases.
Let

a= jgi ey, (8)

n
= E cciez'
i=1
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Using (6) we find
n n n n
a= 2-1 055(,21 Tije5) = 21 (,21 aitij) €
i= j= =1 i=

Comparing with (8) and using the uniqueness of vector notation in
terms of a basis, we obtain

n
ocj=21a{t”, i=1,2, ..., n
1=

Thus we have the matrix equation
(0tg, gy - v vy Op) = (0, Agy «« oy Op) T

Thus, the row of coordinates of the vector a in the basis e is equal
to the row of coordinates of this vector in the basis e’ multiplied on the
right by the change-of-basis matriz from the basis e to the basis e'.

Whence clearly follows the equation

(a;n a'zv o . ey a‘;l) = (aiy 0527 ..y an) T_l
Example. Consider a three-dimensional real linear space with the basis

ey, e, €3 9
The vectors

> 2eq + 3ez,
ey = —2e; + e2+ e3

also form a basis in this space, the matrix

5 —1 —2
T=( 2 3 0)
-2 1 1

serving as the change-of-basis matrix from (9) to (10). We then have

31 6
T-1= (--2 1 —4 )
8 —3 17

a= e; + 4de; — e3

(10)

o
»
I

ey = Dey — ey — 2es, }

The vector

therefore has, in basis (10), the row of coordinates

' 31 6
(o, aj, af) = (1, 4 —1) (_z 1 _4) = (—13, 6, —27)
8 —3 17

or
a = —13e] + 6ej — 27¢;
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31. Linear Transformations

In Chapter 3 we dealt with the concept of a linear transforma-
tion of unknowns. The concept we now introduce bears the same
name but is different in character. True, certain relationships could
be established between these two notions.

Let there be given an n-dimensional real linear space, which
we denote by V,. We consider a transformatiorn of this space, that
is a mapping which takes every vector a of V, into some vector a’
of the same space. The vector a’ is called the image of a under the
given transformation.

If we use @ to denote the transformation, then the image of vec-
tor a will be written as ag instead of the more customary ¢ (a) or
¢a. Thus,

’

a' = ag

A transformation @ of a linear space V), is called a linear transfor-
mation of this space if it takes the sum of any two vectors a, b into
the sum of the images of these vectors:

(@ + b) ¢ = ap + bo (1)

and the product of any vector a by any scalar o into the product
of the image of the vector ¢ by that same scalar a:

(2a) ¢ = a (ag) (2
From this definition, it immediately follows that a linear trans-
formatiorn of a linear space carries any linear combination of given
vectors ay, @y, - . ., ay into a linear combination (with the same coef-
ficients) of the images of the vectors:
(aidi + Qoly + PR + ochah) Q@
= o (a19) + @3 (2,9) + . . . + ar (@rg) (3)
Let us prove the following assertion.

Under any linear transformation ¢ of a linear space Vy,, the zero
vector 0 remains fized,

O0p =0
and the image of the inverse of the given vector a is a vector that is inverse
to the image of a:
(—a) ¢ = —ag
ludeed, if b is an arbitrary vector, then, by (2),
0p = (0-5) ¢ = 0-(bg) = 0
On the other hand,
(—a) ¢ = [(—1) al ¢ = (—1) (a9) = —ag
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The concept of a linear transformation of a linear space arose
as a generalization of the familiar analytic geometry concept of
the affine transformation of a plane or of three-dimensional space.
Indeed, conditions (1) and (2) are fulfilled under affine transforma-
tions. These conditions are also fulfilled for projections of vectors
on a plane or, in three-dimensional space, on a straight line (or a
plane). Thus, for example, in a two-dimensional linear space of
vector segments emanating from the origin of the plane, the trans-
formation carrying a vector into its projection on some axis passing
through the origin is a linear transformation.

Examples of linear transformations in an arbitrary space V,
are the identity transformation e, which leaves every vector a fixed,

ag = a
and the zero transformation ®, which maps every vector a into zero,
an =0

We will now obtain a survey of all linear transformations of

a linear space V,. Let
€1, €3, » . ., €p : (4)

be a basis of this space. As we have already done, denote by e the
basis (4) arranged in a column. Since any vector a of the space V,
is uniquely represented as a linear combination of vectors of the
basis (4), it follows, by (3), that the image of vector @ with the same
coefficients can be expressed in terms of the images of the vectors (4).
In other words, any lirear transformation ¢ of V, is uniquely deter-
mined by specifying the images e, e,9, . . ., en® of all vectors of
the fized basis (4).

No matter what the ordered system of n vectors of V,,

Ciy Cgr - «y Cn (9)

there is a unique linear transformation ¢ of this space such that (5)

serves as the system of images of the vectors of basis (4) under this trans-

formation,

| e;p = ¢, =12 ..., n (6)

The uniqueness of the transformation ¢ has already been proved;

it remains to prove its existence. Let us define the transformation g
as follows: if a is an arbitrary vector of the space and

n
a= 2 ae;
i=1
is-its notation in the basis (4), then put

n
ap = Z a;c; (7)
i=1



190 CH. 7. LINEAR SPACES

Let us prove the linearity of this transformation. If

n
b= 2\ Pies
=1
is any other vector of the space, then

(a+b)p= [éi (@ +By) &1l (P=§}i (4B

n n
= {21 aicy - igi Bici =ap+bo

But if y is any scalar, then

(va) o=} (vou) er] o= D} (yau) cr=7y X, aici =y (ag)
i=1 i=1 i=1

The correctness of (6) follows from the definition (7) of the trans-
formation ¢, since all coordinates of the vector ¢; in the basis (4)
are zero (except the ith coordinate, which is equal to unity).

We have thus established a one-to-one correspondence between all
linear transformations of the linear space V, and all ordered systems
(0) made up of n vectors of this space.

However, every vector c¢; has a definite notation in the basis (4):

ci=2aijej, i=1, 2., PRI (4 (8)
=1

We can form a square matrix of the coordinates of the vector ¢;
in the basis (4)

A = (o) 9
taking for its ith row the row of coordinates of the vector ¢;, i=
=1, 2, ..., n. Since system (5) was arbitrary, the matrix 4 will

be an arbitrary square matrix of order n with real elements.

We thus have a one-to-one correspondence between all linear trans-
formations of the space V, and all square matrices of order n; this cor-
respondence is of course dependent on the choice of basis (4).

We shall say that the matrix A specifies a linear transformation ¢
in the basis (4) or, more succinctly, that 4 is the matriz of the linear
transformation @ in the basis (4). If by ep we denote a column com-
posed of the images of the vectors of (4), then from (6), (8) and (9)
there follows a matrix equation which completely describes the re-
lationships existing between the linear transformation ¢, the basis ¢
and the matrix A specifying the linear transformation in that basis:

ep = Ae (10)
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Let us show how, knowing the matrix 4 of a linear transforma-
tion ¢ in basis (4), it is possible, via the coordinates of the vector a
in this basis, to find the coordinates of its image agq. If

n
a= 2 ¢ F14]
i=1

then

n
ap= .21 o (e19)
1=
which is equivalent to the matrix equation
ap = (0g, Qg « + ., Op) €Y

Utilizing (10) and taking into account that the associativity of
matrix multiplication is easy to verify when one of the matrices
is a column made up of vectors, we obtain

ap = [(otg, Ay « o -y d,,) Ale

Whence it follows that the row of coordinates of a vector ag is equal
to the row of the coordinates of the vector a multiplied on the right by
the matriz A of the linear transformation ¢, all in the basis (4).

Example. Let there be a linear transformation ¢ given by the following
matrix in a basis e, e;, e3 of three-dimensional linear space:

-2 10
A=(1 32)
0—41

If
: a = 5e¢; + e — 2e3
then
-2 10
o, 1, —2)( 1 3 2)= (-9, 16, 0)
0—41
that is,

ap = ——981 + 1692

Relationships between matrices of a linear transformation in
different bases. Quite naturally, a matrix specifying a linear trans-
formation is dependent on the choice of the basis. We will show
what the relationship is between matrices that specify one and the
same linear transformation in different bases.

Let there be given the bases e and ¢’ with change-of-basis

matrix 7,
e’ = Te (11)
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and let the linear transformation @ be given in these bases by matri-
ces A and A’, respectively,

ep = Ae, e'p=A4Ae (12)

By (11), the second equation of (12) reduces to
(Te) g = A’ (Te)
However,
(Te) 9 = T (eq)
Indeed, if (T34, Tip + .+ ., Tin) is the ith row of matrix 7, then
(Tites + Tizey + - - - + Tintn) @
= Ty (e19) + tiz/(ezfp) oot 4 Tin (e )
Hence, by (12),
(Te) o = T (eq) = T (Ae) = (T4) e,
A’ (Te) = (A'T) e
that is,
(TA)e=(4'T) e

If for at least one i, 1 << i << n, the ith row of the matrix TA4 is
different from the ith row of the matrix 4’7, then two distinct
linear combinations of vectors ey, e,, . . ., e, will be equal to each
other, which contradicts the linear independence of the basis e.
Thus,

TA = A'T

whence, due to the nonsingularity of the change-of-basis matrix 7,
A" = TAT, A =T14'T (13)

Note that the square matrices B and C -are called similar if they
are connected by the equation

¢ = QB0

where Q is some nonsingular matrix. We say that the matrix C is
obtained from B by a transformation by the matrix Q.

The equations (13) proved above may be formulated as an impor-
tant theorem.

Matrices which represent one and the same linear transformation
in different bases are similar. And the matrix of the linear transfor-
mation @ in the basis ¢’ is obtained by transforming the matriz of this
linear transformation in the basis e via the change-of-basis matrixz
from basis e’ to basis e.
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Let us piont out that if a matrix A represents a linear transfor-
mation @ in the basis e, then any matrix B, similar to 4,

B = Q-14Q

also represents the transformation ¢ in some basis, namely, in the
basis obtained from e by means of the change- of-basis matrix o~
Operations on linear transformations. Assomatlng to every linear
transformation of the space V, its matrix in a fixed basis, we obtain
(as was proved above) a one-to-one correspondence between all li-
near transformations and all square matrices of order n. It is natural
to expect that the operations of addition and multiplication of ma-
trices and also matrix multiplication by a scalar will be associated
with analogous operations involving linear transformations.
Suppose we have the linear transformations ¢ and ¢ in a space V,,.
The sum of these transformations is the transformation ¢ -+ ¢ de-
fined by the equation

a (e + %) =ap -+ ap (14)

It thus carries any vector a into the sum of its images under the trans-
formations ¢ and .

The transformation @ -+ ' is linear. Indeed, for all vectors a
and b and any scalar «,

(@+b(e+¥)=(@@+b o+ (@+bd
=ap+bop+ap+ by =a(p+ 1Y)+ b(e+ V),
(@a) (¢ + V) = (aa) ¢ + (2a) ¥ = o (ag) + a (ay)
=a (29 + ay) = ala (¢ + ¥)]

On the other hand, we use the term “product” of linear transfor-
mations ¢ and ¥ for the transformation ¢y defined by the equation

a (g¥) = (a9) ¥ (15)

that is, the transformation obtained by successive application of the
transformations ¢ and . .
The transformation @ is linear:

(@ + b) () = [(a + b) ¢l = (ap + bg) ¢
= (ag) Y + (bg) ¥ = a (p¥) + b (9¥),
(aa) (p¥) = [(aa) 9] $ = [a (ap)] b = o [(a9) ] = a [a (pP)]

Finally, we use the term “product” of a linear transformation ¢
by a scalar % for the transformation »¢ defined by

a (xg) = x (ag) (16)

Thus, in the g-transformation of all vectors, the images are multi-
plied by the scalar «x.

13—5760
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The transformation wg¢ is linear:
@+ b) (x9) = % [(a + b) ¢l = « (agp + bo)
= % (ag) + % (bg) = a (xg) + b (%)
(aa) (v@) = %[(aa)@] = x[a (a)] = ‘ '
= afx(ag)] = ala(xg)]
Let the transformations ¢ and ¢ be given in the basis e, ¢,, . . .
., €y, by the matrices A = (a;;) and B = (B;;), respectively,
ep = Ae, e = Be
Then, by (14), .

e (9 +Y)=eip+ep= 521 oize;+ ’,gi Bijes= 21 (cuij+Bug)ej

j=
that is,
e(@+¥)=(A+B)e
Thus, the matriz of a sum of linear transformations in any basis is
equal to the sum of the matrices of these transformations in the same

basis.
On the other hand, by (15),

i (P) = (e:19) = (]_Z]i )b = J_gi oij (es%)
= X ai; (2 Binen) = D) (2 i) e
j=1 R=1 k=1 j=1

that is,

e () = (4B)e
In other words, the matriz of a product of linear transformations in
any basis is equal to the product of the matrices of these transformations

in the same basis.
Finally, due to (16),

n n
e1 (%p) =% (e19) =% 21 e = 21 (%0ij) e
= i=
that is,
e (xg) = (vd) e

Consequently, a matriz which in some, basis specifies the product of
a linear transformation @ by a scalar % is equal to the product of the
matriz of the transformation ¢ in this basis by the scalar %.

From the results obtained it follows that operations on linear
transformations possess the same properties as operations on matri-
ces. Thus, the addition of linear transformations is commutative
and associative, while multiplication is associative but is not com-
mutative for » > 1. For linear transformations there exists unique
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subtraction. Also note that in linear transformations, the identity
transformation e plays the role of unity, and the zero transformation o,
the role of zero. In any basis, the transformation & is given by the
unit matrix, and the transformation o is given by the zero matrix.

32. Linear Subspaces

A subset L of a linear space V is called a linear subspace of this
space if it is a linear space with respect to the operations defined
in V of addition of vectors and the multiplication of a vector by
a scalar. Thus, in three-dimensional Euclidean space, the collection
of vectors emanating from the coordinate origin and lying in some
plane (or on some straight line) passing through the origin is a linear
subspace.

For a nonempty subset L of space V to be a linear subspace of V,
the following requirements must be met.

1. If the vectors a and b lie in L, then the vector a + b also belongs
to L. .

2. If the vector a belongs to L, then the vector aa, for any value of
the scalar o., belongs to L too.

Indeed, by Condition 2, the set L contains the zero vector: if
vector a belongs to L, then L also contains 0-a'= 0. Furthermore,
again by Property 2, L contains a vector a and the inverse vector
—a = (—1)-a, and therefore, due to Property 1, L also contains
the difference of any two vectors in L. As to all the other require-
ments that enter into the definition of a linear space, we can say that
if they are fulfilled in V, then they will likewise be fulfilled in L.

. Instances of linear subspaces of the space V are: the space V
itself and also the set consisting of a single zero vector, the so-called
zero subspace. A more interesting example is the following: in the
space V take any finite system of vectors

ag, gy + v ., A 1)

and denote by L the set of all those vectors which are linear combina-
tions of the vectors of (1). We will prove that L is a linear subspace.
Indeed, if

b=oya; + axay, +...+ara, c=pa+ Boa, + ...+ prar
then
b+ec=1(u+ PBr)ar+ (@ + B)a,+ ...+ (@ + B)ar
that is, the vector b 4 ¢ belongs to L; also in L is the vector
vo = (youq) @ + (voo) @y + . . . + (ya,) ar
for any scalar y.

We say that this linear subspace L is generated by the system of
vectors (1); in particular, the vectors (1) themselves belong to L.

13*
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Incidentally, any linear subspace of a finite-dimensional linear
space is generated by a finite system of vectors, for if it is not a zero
subspace, then it possesses a finite basis. The dimension of the linear
subspace L is not greater than the dimension » of the space V,, itself
and is equal to » only when L = V,. The dimension of the zero
subspace is of course the number 0.

For any k, 0 << k << n, in the space V, there are linear subspaces
of dimension k. 1t is sufficient to take a subspace generated by any
system of % linearly independent vectors.

Let there be given linear subspaces L; and L, in the space V.
The collection L, of vectors belonging both to L, and to L, will
be a linear subspace, as can readily be verified. 1t is the intersection
of the subspaces L; and L, On the other hand, another linear sub-
space is the sum L of the subspaces L; and L,, or the collection of all
those vectors in V which can be represented as a sum of two terms,
one from L, and the other from L,. If the dimensions of the subspa-
ces Ly, Ly, Ly and L are, respectively, dy, d,, dy and d, then the
following formula holds:

d=dy +dy, —dp 2)
which is to say that the dimension of the sum of two subspaces is equal
to the sum of the dimensions of these subspaces diminished by the dimen-
sion of their intersection.

To prove this, let us take an arbitrary basis

ay, Gy . . ., 44, (3)
of subspace L, and augment it to obtain the basis

Ay, Aoy « - +y Agy, bd0+17 . ..y bdl (4)

of the subspace L, and also augment it to obtain the basis
Ay, Qgy « . -y A4y, Cdg+1y » « +1 Cdg (5)
of the subspace L,. Utilizing the definition of the subspace L, it is
easy to see that this subspace is generated by the system of vectors
Ay, Qgy « « o A4y, bd0+17 “eey bdly Cdg+-1» « « +» Cda (6)
Formula (2) will thus be proved if we demonstrate the linear inde-

pendence of system (6).
Suppose the equation

gy + Gty + . . o Qay@ay + Pagt1bagr1 + - o o+ Baybay
+ Vdo+1€dgt1 + + o+ Vata, = 0
with certain numerical coefficients is true. Then
d = oy + %@y + . - . + CGdglay + Bagr1bag+1 + . . o 4 Bayba,
= — Vdo+1Cdo+1 — -« - — Vds€dy (7)

The left member of this equation lies in L,, the right member in L,,
therefore vector d (which is equal both to the left and to the right
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member of this equation) belongs to L, and, consequently, can
be expressed linearly in terms of the basis (3). However, the right
member of (7) shows that the vector d can also be expressed lingarly
in terms of the vectors cgyq1, ..., ¢5,. Whence, by the 11.near
independence of system (5), it follows that all the coefficients
Ydo+1» - - +» Yd, are zero, that is, that d = 0; but then, because of
the linear independence of system (4), all the coefficients oy, . . ., cg,,
Bds+1, - « ., Pag, are also zero. This proves the linear independence
of system (6).

The reader can verify that our proof holds true for the case when
the subspace L, is a zero subspace, i.e., dy = O.

The range of values and the kernel (null space) of a linear trans-
formation. Suppose we have a linear transformation ¢ in a linear
space V,. If L is any linear subspace of the space V,, then the col-
lection Lo of images of all vectors of L under the transformation @
will also be a linear subspace, as follows directly from the definitions
of a linear subspace and a linear transformation. In particular, the
collection V,¢ of images of all vectors of the space V, is a linear sub-
space. It is called the range of values of the transformation ¢. Let
us find the dimension of the range. To do this, note that since all
matrices representing the transformation ¢ in different bases are
similar, it follows, due to the last theorem of Sec. 14, that they all
have one and the same rank. This number can therefore be termed
the rank of the linear transformation ¢. _

The dimension of the range of values of a linear transformation ¢
is equal to the rank of the transformation.

Indeed, let @ be represented in the basis e, €3, - - ., en by the
matrix A. The subspace V,q is generated by the vectors

eiq)’ ez(P7 LX) enq) (8)

and therefore, as a particular case, any maximal linearly indepen-
dent subsystem of system (8) will serve as a basis of the subspace
Vn9. However, the maximum number of linearly independent vec-
tors in system (8) is equal to the maximum number of linearly inde-
pendent rows of the matrix 4, i.e., it is equal to the rank of the
matrix. The theorem is proved.

We know that under the linear transformation ¢ the zero vector
goes into itself. The collection N () of all vectors of the space V,
which under ¢ are mapped into the zero vector is consequently non-
void and is evidently a linear subspace. This subspace is termed
the null space of the transformation g, and its dimension is called
the nullity of this transformation.

For any linear transformation ¢ of space V,, the sum of the rank
and of the nullity of the transformation is equal to the dimension n of
the whole space.
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Indeed, if r is the rank of the transformation: ¢, then the sub-
space V,¢ has the following basis of r vectors:

ay, ayy . .., 4 9
In V, we can select the vectors
by by ..., by (10)
such that
b = ay, i=1,2,...,r

The choice of vectors (10) is not unambiguous, naturally. If some
nontrivial linear combination .of vecters (10) were mapped into
zero by the transformation g, in particular, if the vectors (10) were
linearly dependent, then the vectors (9) would themselves be linearly
dependent, but this runs counter to our assumption. And so the
linear subspace L generated by the vectors (10) has dimension r
and its intersection with the subspace N (¢) is zero.

On the other hand, the sum of the subspaces L and N (¢) coin-
cides with the entire space V,. Indeed, if ¢ is any vector of the space,
it follows that the vector d = c¢ of course belongs to the subspace
Vo9p. Then in the subspace L there will be a vector b such that

bp = d

The vector b is written in terms of system (10) with the same coeffi-
cients as is the vector d in terms of the basis (9). From this we have

c=b+ (c —b)
and the vector ¢ — b is contained in the subspace N (¢), since
c—bp=cp—bp=d—d=20

The assertion of the theorem follows from the results obtained
and from the formula (2) that was proved earlier.

Nonsingular linear transformations. A linear transformation ¢
of a linear space V, is called nonsingular if it satisfies any one of
the following conditions, the equivalence of which follows directly
from the theorems proved above.

1. The rank of the transformation ¢ is equal to n.

2. The entire space V, serves as the range of values of the trans-
formation ¢. :

3. The nullity of the transformation ¢ is zero.

There are many other definitions of nonsingular linear transfor-
mations that are equivalent to those given above, for instance,
definitions 4 to 6.

4. Distinct vectors of the space V, have distinct images under
the transformation .
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- Indeed, if a transformation ¢ has Property 4, then the null space
of this transformation consists of the zero vector alone, i.e., Pro-
perty 3 holds. But if the vectors @ and b are such that a = b, but
ap = bg, then a — b= 0, but (¢ — b) ¢ = 0, or Property 3 does
not hold.

From 2 and 4 there follows

5. The transformation ¢ is a one-to-one mapping of the space V,
onto this whole space.

From 5 it follows that a nonsingular linear transformation ¢
has an inverse transformation ¢~ which carries any vector ag into the
vector a,

(ag) ' =a
The transformation @' is linear since
(ap + bg) o' = (@ + ) 9l 97 = a + b,
lo (aq)] @71 = [(aa) @l 97! = @a

From the definition of the transformation ¢-! it follows that

o9l =oglp=c¢ (11)
The equalities (11) can themselves be viewed as a definition of an
inverse transformation. Then from this and from the last results of
the preceding section it follows that if a nonsingular linear transfor-
mation @ is represented in some basis by the matrizx A (which is non-
singular due to Property 1), then the transformation ¢! is represented
in that basis by the matriz A 1.

We thus arrive at the following definition of a nonsingular linear
transformation.

6. A transformation ¢ has an inverse linear transformation ¢-'.

33;‘*Characberiétic Roots and Eigenvalues

Let A = (a;;) be a square matrix of order » with real elements.
On the other hand, let A be some unknown., Then the matrix 4 — AE,
where E is a unit matrix of order rn, is called the characteristic matriz
of the matrix A. Since in the matrix AE the principal diagonal is
occupied by A and all other elements are zero, we have

Cyg — A Cyo . e (¢ 2T
o Ooy — A . .. o
A. — 7\,E — 21 22 o2n
Olny Ong «++ Opp — A

The determinant .of the matrix A — AE is a polynomial in A
of degree n. Indeed, the product of elements on the principal dia-
gonal is a polynomial in A with highest-degree term (—1)"A™; all
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the other terms.of the determinant do not contain at least two of the
number of elements on the principal diagonal; therefore, their degree
in A does not exceed n — 2. It is easy to find the coefficients
of this polynomial. For instance, the coefficient of A" is equal to
(—1)" (a4 4 cys + . . . + ann) and the constant term coinci-
des with the determinant of matrix A.

The polynomial | 4 — AE | of degree n is called the .characteri-
stic polynomial of matrix 4, and its roots (which may be real or
complex) are termed the characteristic roots of the matrix.

Similar matrices have the same characteristic polynomials, and,
consequently, the same characteristic roots.

To see this, let

B = Q740
Then, taking into accouﬁt that the matrix AE commutes with the
matrix Q, and |Q | = |Q|, we have
|B—AE | = |QAQ —AE | = | Q7 (4 — AE) Q |
=[QI" A —RrE[-|Q]= |4 —LrE|

The proof is complete.

From this result it follows (by the theorem proved in Sec. 31
on the relationship between matrices representing a linear trans-
formation in different bases) that although the linear transformation
@ may be represented in different bases by different matrices, all the
matrices have one and the same set of characteristic roots. These roots
can therefore be called the characteristic roots of the transformation g.
The set of these characteristic roots, each root being taken with
the multiplicity that it has in the characteristic polynomial, is
called the spectrum of the linear transformation ¢.

Characteristic roots play a very important role in the study of
linear transformations, as the reader will have ample opportunity
to see. We now investigate one of the applications of characteristic
roots.

Let there be given a linear transformation ¢ in a real linear space
V,. If a vector b (nonzero) is carried by the transformation ¢ into
a vector proportional to b,

b = Aob ' 1)

where Ay is some real number, then the vector b is called the eigen-
vector of the transformation @, and the number A, is the eigenvalue
of this transformation. We say that the eigenvector b corresponds
to the eigenvalue A,.

Note that since b %= 0, the number A, which satisfies Condi-
tion (1) is uniquely defined for the vector b. Also bear in mind that
the zero vector is not considered to be an eigenvector of the trans-
formation ¢, although it satisfies Condition (1) for any A,.
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Rotation of the Euclidean plane about the origin through an
angle that is not a multiple of st is an example of a linear transfor-
mation which has no eigenvectors. An instance of another extreme
case is the stretching of a plane in which all vectors issuing from
the origin are stretched, say, five times. This is a linear transforma-
tion and all nonzero vectors of the plane are its eigenvectors; all
of them correspond to the eigenvalue 5.

Only the real characteristic roots (if they exist) of a linear transfor-
mation ¢ serve as eigenvalues of the transformation.

Let a transformation ¢ have a matrix A = (a;;) in the basis ¢,
€s ..., e, and let the vector

n
b= 2 Bies
i=1
be an eigenvector of the transformation ¢
be = hod (2)
As was proved in Sec. 31,
- be = [(Bs, B2y « «+s Ba) Ale (3)
Equations (2) and (3) lead to the system of equations
Bicss + Botos + . oo 4 PnGas = Aoy,
Biotsz + Paltor + . . . + Badny = AoBs, (%)
Biotsn + BoOon 4+ ... + Brltnn = AoPn
Since b 0, not all the numbers By, By, . . ., Bn are zero. Thus,
by (4), the system of homogeneous linear equations
(@1g — M) 24 + @ozy + . . . + Oqyz = 0,
oy + (Clgy — Ao) 2o + . . . + Opozn = 0, 5)
CAinZt + ConZy + . . o + (Gpn — Ag) 2 = 0
:las a nontrivial solution and for this reason its determinant is equal
0 zero:

Q4 — ?"07 2 290 , Ony
%2 Oye — Ao, ’ Ons -0 6)
Cin, Con, v vy Opp — A'0

Taking the transpose, we get
|A —ME | =0 (7
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that is to say, the eigenvalue Ay actually does prove to be a charae-
teristic root (and, quite naturally, a real root).of the matrix A and,
hence, of the linear transformation ¢. .

Conversely, let Ay be any real characteristic root of the trans-
formation ¢ and, consequently, of the matrix A. Then we have
equation (7) and therefore equation (6), which was obtained from
(7) by taking the transpose. From this it follows that the system of
homogeneous linear equations (5) has a nontrivial solution, and even
a real one, since all the coefficients of the system are real. If we denote
this solution by

(ﬁiv 521 MRS ﬂn) (8)

we have equations (4). Use b to denote the vector of space Vy, having
in the basis e, ey, . .., ¢, the coordinate row (8). It is clear that
b = 0. Then equation (3) holds and from (4) and (3) follows (2).
Thus, vector b has proved to be an eigenvector (of the transforma-
tion (p) corresponding to the eigenvalue Ay. This proves the theorem.

Note that if we considered a complex linear space, then the
demand that the characteristic root be real would be superfluous.
In other words, we would have proved the following theorem:
The characteristic roots of a linear transformation of a complex linear
space, and only these roots, serve as eigenvalues of the transformation.
Whence it follows that irn a complex linear space, any linear trans-
formation has eigenvectors.

Returning to our real case, note that the collection of eigenvectors
of the linear transformation ¢ which correspond to the eigenvalue A,
coincides with the collection of nontrivial real solutions of the
system of homogeneous linear equations (5). Whence it follows that
the collection of eigenvectors of the linear transformation ¢ which cor-
respond 1o the eigenvalue Ay will, after the zero vector has been adjoined
to it, be a linear subspace of the space V,. Indeed, from what was
proved in Sec. 12, it follows that the collection of (real) solutions
of any system of homogeneous linear equations in n unknowns is a li-
near subspace of the space V.

Linear transformations with a simple spectrum. In many cases
it is necessary to know whether a given linear transformation ¢ can
have a diagonal matrix in some basis. As a matter of fact, by far
not every linear transformation can be represented by a diagonal
matrix. The necessary and sufficient conditions for this will be indi-
cated in Sec. 61. In the meantime we wish to indicate one sufficient
condition.

We will first prove the following auxiliary results.

A linear transformation ¢ is represented by a diagonal matriz
in a basis ey, ey, . . ., e, if and only if all the vectors of the basis are
eigenvectors of the transformation .
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Indeed, the equation
e:p = he;

is equivalent to the fact that in the ith row of the matrix repre-
senting the transformation ¢ in the indicated basis all off-diagonal
elements are zero and the principal diagonal has the number A; (in
the ith position).

The eigenvectors by, by, ..., by of the linear transformation ¢
which correspond to different eigenvalues constitute a linearly inde-
pendent system.

We shall prove this assertion by induction with respect to %,
since for & = 1 it holds true: a single eigenvector, being nonzero,
constitutes a linearly independent system. Let

b;p = MAb;, i=12,...,k
and
A =A; for i 5]
If there exists a linear dependence
by + by + ...+ apby =0 (9)

where, for example, o, 540, then, applying the transformation ¢
to both sides of (9), we- get

ai?"ibi + a27»2b2 + ...+ ah}"hbh =0
Subtracting equation (9) multiplied by A, we get
oy (Ay — Ag) by + ag (Ag —Ap) by + o .o+ Gy Apy — Ag) by =0

which yields a nontrivial linear dependence between the vectors by,
b2, ey bh-i since (¢ 2] (?\/1 — Kh) EE 0.

We say that a linear transformation ¢ of a real linear space V,
has a simple spectrum if all its characteristic roots are real and di-
stinct. Consequently, the transformation ¢ has n distinct eigenva-
lues and therefore, by the theorem just proved, the space V, has a
basis composed of the eigenvectors of this transformation. Thus,
any linear transformation with a simple spectrum may be represented
by a diagonal matriz.

Passing from the linear transformation to the matrix represen-
ting it, we obtain the following result.

Any matrixz whose characteristic roots are all real and distinct is
similar to a diagonal matriz, or we say that such a matriz can be re-
duced to diagonal form (diagonalized).



CHAPTER 8

EUCLIDEAN SPACES

34. Definition of a Euclidean Space.
Orthonormal Bases

The concept of an n-dimensional linear space does not by any
means fully generalize the concept of a plane or three-dimensional
Euclidean space: in the n-dimensional case, for n > 3, neither
the length of a vector nor the angle between vectors is defined and
it is therefore impossible to develop the rich geometrical theory so
familiar to the reader for » = 2 and n = 3. It turns out, however,
that we can rectify the situation in the following manner.

From analytic geometry we know that for two-dimensional
(a plane) and three-dimensional space we can introduce the concept
of scalar multiplication of vectors. It is defined by means of the
lengths of the vectors and the angle between them; it appears, howe-
ver, that both the length of a vector and the angle between vectors
can, in turn, be expressed in terms of scalar products. We will
therefore define the concept of scalar multiplication (we will define
it axiomatically) for any n-dimensional linear space. This will be
done with the aid of certain properties which we know the scalar
multiplication of vectors in the plane or in three-dimensional space
actually possesses. Considering the immediate reasons for this mate-
rial being included in the course of higher algebra, we dispense
with the definitions of the length of a vector and the angle between
vectors. The reader interested in the construction of geometry in r-
dimensional spaces is referred to the special literature, in particu-
lar, to more exhaustive texts on linear algebra.

The reader should bear in mind that, with the exception of the
end of this section, the whole chapter deals solely with real linear
spaces.

We shall say that scalar multiplication is defined in an n-di-
mensional real linear space V, if to every pair of vectors a, b there
is associated a real number denoted by the symbol (a, b) and called
the scalar product of the vectors a and b. The following conditions
are satisfied (here, @, b, ¢, are any vectors of the space V,, and a
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is any real number, or scalar):

I. (a, b) = (b, a).
I1. (@ + b, ¢} = (a, ¢) + (b, c).
II1. (aa, b) = a (a, b).

IV. Ifa =£0, then the scalar square of the vector a is strictly
positive
(a, a) >0
Note that from III we have, for @ = 0, the equation
0, b =0 (1)

which states that the scalar product of the zero vector by any vector b
is zero: in particular, the scalar square of the zero vector is also zero.
‘ From II and III there immediately follows a formula for the

scalar product of linear combinations of two systems of vectors:

3 l R l
(gi oia;, ,;1 Bibj) = gl El aif;(ai, by) (2)

If scalar multiplication is defined in an n-dimensional linear
space, then the space is termed rn-dimensional Euclidean space.

It is possible to define scalar multiplication in an n-dimensional
linear space V, for any n, which is to say that we can convert this space
into a Euclidean space.

Indeed, in V, take any basis e, e; ,- .., e, If

n n
a= 2 ae;, b= D Pies
i=1 i={
then put

n
(a, b)= 21 oifs (3
=
It is easy to see that Conditions I-IV will be fulfilled, that is, equa-
tion (1) defines scalar multiplication in the space V,.

Generally speaking, we see that in n-dimensional linear space
it is possible to specify scalar multiplication in many different
ways. Naturally, definition (3) depends on the choice of the basis,
but as yet we do not know whether it is possible to introduce scalar
multiplication in any other fundamentally different manner or not.
Our immediate purpose is to survey all possible modes of converting
n-dimensional linear space into Euclidean space and of establishing
the fact that in a certain sense there is only one n-dimensional Eu-
clidean space for any n.

Suppose we have an arbitrary rn-dimensional Euclidean space E,,,
which means that scalar multiplication has been introduced in some
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fashion into an n-dimensional linear space. The vectors a and b
are orthogonal if their scalar product is zero,

(a, ) =0

From (1) it follows that the zero vector is orthogonal to any vector;
however, there can be nonzero orthogonal vectors too.

A set of vectors is called an orthogonal system if all the vectors
are pairwise orthogonal.

Every orthogonal system of nonzero vectors is linearly independent.

Indeed, let there be a system of vectors ay, a,, . .., a; in E,
and let ;= 0,i=1,2, ..., kand
(aiv af) = O’ i %j (4)

If .
oLy +‘a2a2 “+ ... + apa, =0

then by forming the scalar pi‘oduct of both sides of this equation by
the vector a;, 1 <Ci <<k, we get [by (1), (2) and (4)]

0= (0, ai)A = (ayay + sy + . . . + Apay, a;)
= ay (a1, @;) + % (@3, @;) + . . . + O (@, ;)

= o; (a;, a;) ,
Whence, since (a;, a;) > 0 by IV, it follows that a; =0, i =1,
2, ..., k, which is what we set out to prove.

We now describe the orthogonalization process, which is a means
of passing from any linearly independent system of k& vectors

ay, gy . .., G (5)

of Euclidean space E, to an orthogonal system, also consisting of &
nonzero vectors. We denote these vectors by by, b,, ..., by
Let us put b; = a;, which is to say that the first vector of sy-
stem (9) will enter into the orthogonal system we are building.
After that, put
by = asb; + a,

Since b; = a; and the vectors a; and a, are linearly independent,
it follows that the vector b, is different from zero for any scalar a;.
We choose this scalar remembering that the vector b, must be ortho-
gonal to the vector by:

‘0 = (b, by) = (by, asby + ay) = &y (by, by) + (by, ay)
whence, by IV
(biv a2)
(by, by)
Suppose an orthogonal system of nonzero vectors by, by, ..., bl
has already been constructed; we also assume that for any i, 1 <<

oy = —
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<{i <<, the vector b; is a linear combination of the vectors a,
@y, - .., @;. Then this assumption will also hold for some vector b; 4
if it is chosen in the form

bl+i = aibi + a2b2 4+ ... + albl + A4y

The vector b;.; will then be different from zero, since system (5)
is linearly independent and the vector a;.; does not enter into the
notation of vectors by, by, ..., b;. We choose the coefficients o;,
i=1, 2, I, from the fact that the vector b;+1 must be ortho-
gonal to all the vectors b;, i = 1, 2,

0 = (biy bya). = (by, asdy + aghy + . . . + by + a144)
= ay (by, by) + aq (byy by) + . .. + &, (by, b))
+ (b1, a141)

whence, since the vectors by, by, ..., b, are mutually orthogonal,

a; (b, b)) + (bi, a144) =0
or

(b ag) :
o; = by i=1,2,...,1

Continuing this process, we can construct the desired orthogonal
system by, by, .. ., by

Applying the orthogonalization process to an arbitrary basis
of the space E,, we obtain an orthogonal system of n nonzero vec-
tors, that is to say, an orthogonal basis, since (as has been proved)
this system is linearly independent. Now, using the remark made
in connection with the first step of the process of orthogonalization,
and also taking into account the fact that any nonzero vector may
be included in some basis of the space, we can even make the follo-
wing assertion.

Every Euclidean space possesses orthogonal bases, and any nonzero
vector of this space enters into some orthogonal basis.

In what follows, an important role will be played by a special
type of orthogonal basis. Basis of this kind correspond to the rectan-
gular Cartesian systems of coordinates used in analytic geometry.

We shall call a vector b normalized if its scalar square is equal
to unity

b, b)) =1

If a 540, whence (a, a) > 0, then the transition to the vector
1

b =
Vi o

a
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is termed normalization of the vector a. The vector b is normalized
since

®. b= v(t 2" v(i 2) “)=(1/(1T)2(“’ =1

A basis e, €y, . .., e for the Euclidean space E, is called ortho-
rormal if it is orthogonal and all its vectors are normahzed that is,

(s €5) =0, iz&j
(e;, ) =1, i=1,2,...,n (6)

Every Euclidean space has orthonormal bases.

To prove this, it will suffice to take any orthogonal basis and
to nermalize all its vectors. The basis will remain orthogonal, since
for any o and f it follows from (2, b) = O that

(aa, pb) = ap(a, b) =0

A basis eq, ey, ..., e, of a Euclidean space E, is orthonormal if
and only if the scalar product of any two vectors of the space is equal
to the sum of the products of the corresponding coordinates of the vectors
in the indicated basis; that is, from

a= igj adil;, b= jgj ﬁjej . (7)
follows )
= tgi oy . | ()]

Indeed, if equations (6) hold for our basis, then

(a, b)= (2 e, 2 5131) = 2 aiBy (er, €5) = 2 o
i, j=1
Conversely, if our basis is such that for any vectors a and b written
in this basis in the form (7), equation (8) holds true, then, taking
for a and b any two vectors e; and e; in the basis, which are distinct
or the same, we can derive (6) from (8).

Comparlng the result just obtained with the earlier given proof
of the existence of n-dimensional Euclidean spaces for any n, we can
make the following assertion: if an arbitrary basis is chosen in an n-
dimensional linear space V,, then in V, we can specify scalar multi-
plication so that in the resulting Euclidean space the chosen basis will
be one of the orthonormal bases.

Isomorphism of Euclidean spaces. Euclidean spaces E and E’
are termed isomorphic if we can establish between the vectors of
these spaces a one-to-one correspondence such that the following
requirements are met.
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(1) The correspondence is an isomorphic correspondence be-
tween E and E’, which are regarded as linear spaces (see Sec. 29).

(2) In this correspondence the scalar product is preserved; in
other words, if for the images of the vectors a and b in E we have
the corresponding vectors a’ and ' in E’, then

(a, b) = (d', b’) (9)

From Condition (1) it follows immediately that isomorbhic Eu-
clidean spaces have one and the same dimension. We will prove the
converse.

Any Euclidean spaces E and E’ having the same dimension n are
isomorphic to each other.

In the spaces E and E’, choose the orthonormal bases

T eq, €3y . - ., €y (10)
and, respectively, z ‘
€1, €3y « « oy En (11)

If we associate every vector

n
a =L§1 [« 717}

n .
a' =’,Z OC,;@;
=1
in E’, having in the basis (11) the same coordinates as the vector a
in the basis (10), we will obviously get an isomorphic correspondence

between the linear spaces E and E’. We will show that (9) holds as
well: if

in‘E‘,with a veclor.

b= D Bier, b'= D) Pue
i=1 i=1
then, by (8) [use the fact that the bases (10) and (11) are ortho-

normal!],
n

(a, b) =§1 afi=(a’, b')

It is natural not to consider isomorphic Euclidean spaces as
distinct, and so for every n there exists a unique n-dimensional Eu-
clidean space in the same sense that for every n there exists a
unique r-dimensional real linear space.

The concepts and results of this section may be extended to
the case of complex linear spaces in the following manner. A com-
plex linear space is called a unitary space if scalar multiplication
is given and (a, b) is, in general, a complex number. Axioms II-IV

14—5760
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must hold true (note, in the statement of Axiom IV, that the scalar
square of a nonzero vector is real and is strictly positive), and Axiom
I is replaced by the axiom

r (a, b) = (b, a)

where, as usual, the bar denotes the complex conjugate.
Consequently, scalar multiplication will no longer be com-
mutative. Still, an equation that is symmetric to Axiom II holds true,

I’ (a, b +¢) = (a, b) + (a, ¢)
since
@ b+4c)=(0b+c a)=(b a)+ (c a)
= (b1 a) + (C, a) = (al b) + (a1 C)

On the other hand
Ry « (a, ab) = a (a, b)

since
(a, ab) = (abd, a) = a (b, a) = a (b, a) = o (a, b)

The concepts of orthogonality and of an orthonormal system of
vectors are carried over to the case of unitary spaces without any
alterations. As before, proof is given of the existence of orthonormal
bases in any finite-dimensional unitary space. Here, however, if
ey, s, - - -, €n i8 an orthonormal basis and the vectors a, b have the
notations (7) in this basis, then

n
(al b) = izi aiﬁi

The results of the other sections of this chapter can also be ex-
tended from Euclidean to unitary spaces, but we will not do this
and will refer the interested reader to special books on linear algebra.

35. Orthogonal Matrices, Orthogonal Transformations
Let there be given a real linear transformation of n unknowns:

n
zi= D) qulr, §=1,2,...,n )
K=1

Denote the matrix of the transformation by Q. This transformation
carries the sum of the squares of the unknowns zy, z,, . . ., z,, that is
the quadratic form z} + z2 + ... + zi, which is the normal form
of positive definite quadratic forms (see Sec. 28), into a certain qua-
dratic form in the unknowns y, ¥Ys, ..., Yn. Quite accidentally,
this new quadratic form may itself turn out to be a sum of the
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squares of the unknowns yy, ys, . . ., ¥a; that is, we can have the

equation '
Bn4+an+...+am=vi+ty+...+u (2)

which, after replacing the unknowns z;, x5, ..., z, by their ex-

pressions (1), becomes an identity. The linear transformation of
unknowns (1) which has this property (or, as we say, such as leaves
the sum of the squares of the unknowns invariant) is called an ortho-
gonal transformation of the unknowns. Its matrix Q is an orthogonal
matrizx.

There are many other definitions of an orthogonal transformation
and an orthogonal matrix which are equivalent to those given above.
We now give some of them that will be needed in the sequel.

In Sec. 26 we gave a rule for the transformation of the matrix
of a quadratic form under a linear transformation of the unknowns.
Applying it to our case and taking into account that the unit ma-
trix E is the matrix of a quadratic form (being the sum of the squares
of all the unknowns), we find that equation (2) is equivalent to the
matrix equation

QEQ=E
that is,
' QQ=E )
Whence

Q" = Q™ (4
and so the following equation holds true too:

Q' =E ' (5)

Thus, by (4), ar orthogonal matriz Q may be defined as a matriz
for which the transpose Q' is equal to the inverse matriz Q~'. Each one
of the equations (3) and (5) can also be taken as a definition of an
orthogonal matrix.

Since the columns of Q* are the rows of Q, it follows from (5) that
the square matriz Q is orthogonal if and only if the sum of the squares
of all elements of any one of its rows is equal to unity, and the sum of
the products of the corresponding elements of any two distinct rows is
zero. From (3) follows an analogous assertion for the columns of a
matrix Q. :

Taking determinants in (3), we get (since |Q' | = |Q |)

Q=1
Whence it follows that the determinant of an orthogonal matriz is
equal to +1. Thus any orthogonal transformation of unknowns is
a nonsingular transformation. We cannot, quite naturally, assert the
converse: also note that by far not every matrix with determi-
nant 41 is orthogonal.

14*
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A matriz that is inverse to an orthogonal matrix will itself be ortho-
gonal. Indeed, taking transpoeses in (4), we obtain

@) =@y == (@

On the other hand, a product of orthogonal matrices is orthogonal.
Indeed, if matrices @ and R are orthogonal, then, using (4), and
also (6) of Sec. 26 and an analogous equation which is true for in-
verses, we get

(QR) = R'Q" = R'Q' = (OR)™*

In Sec. 37, use will be made of the following assertion.

The change-of-basis matrix from an orthonormal basis of a Eucli-
dean space to any other of its orthonormal bases is orthogonal.

In a space E,, let there be given two orthonormal bases e,
., enand e, €, . . ., en with the change-of-basis matrix Q = (g;;),

e = Qe

Since the basis e is orthonormal, the scalar product of any two vectors
(of any two vectors from the basis e’, for instance), is equal to the
sum of the products of the corresponding coordinates of these vectors
in the basis e. However, since basis e’ is also orthonormal, the scalar
square of each vector of ¢’ is equal to unity, and the scalar product
of any two distinct vectors of ¢" is equal to zero. Whence, for the
rows of coordinates of the vectors of basis e’ in basis e (i.e., for the
rows of matrix Q), follow the assertions which, as derived above
from (5), are characteristic of an orthogonal matrix.

Orthogonal transformations of "Euclidean space. It will be
well at this point to make a study of an interesting special type of
linear transformations of Euclidean spaces, though such transfor-
mations will not be used in the sequel.

A linear transformation ¢ of a Euclidean space E, is called an
orthogonal transformation of that Euclidean space if it preserves the
scalar square of every vector, that is, for any vector g,

(a@, ag) = (a, a) (6)

€9y - -

From this we derive the following more general assertion, which
quite naturally can also be taken as a definition of an orthogonal

transformation.
An orthogonal transformation ¢ of a Euclidean space preserves
the scalar product of any two vectors a, b:

(ag, bp) = (a, b) (M
Indeed, by (6),
(@ +b)g (a+d)g) =(a+ b a+d
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However,
((a + b) 9, (@ + b) ¢) = (ap + by, ap + by)
= (ag, ag) + (ag, bg) + (b, ag) + (be, be),
(a'"f“b' a+b)=(av a)+(a1 b)+(b7 a)+(b1 b)

Whence, using (6) both for a and for b, and taking into account the
commutativity of scalar multiplication, we obtain

2 (ag, bg) = 2 (a, b)

and so (7) holds true. :

In an orthogonal transformation of a Euclidean space, the images
of all vectors of any orthonormal basis themselves form an orthonormal
basis. Conversely, if a linear transformation of a Euclidean space car-
ries at least one orthonormal basis again into an orthonormal basis,
then the transformation is orthogonal.

Indeed, let @ be an orthogonal transformation of the space E,,
and let e;, e,, . . ., e, be an arbitrary orthonormal basis of this space.
Due to (7), there follow from the equations

(eii ei) = 11 i = 1, 21 LEE Y n,
(e;, ) =0 for i &)
the equations
(e:9, €;9) =1, i=1,2 ...,n
(e:9, ej9) = 0, i £j

That is, the system of vectors e,q, e,p, . . ., e, proves to be ortho-
gonal and normal; for this reason it is an orthonormal basis of the
space E,.

Conversely, let a linear transformation ¢ of the space E, carry

the orthonormal basis e;, e,, ..., ¢, again into an orthonormal
basis; that is, the system of vectors e,, e,@, . . ., e, is an orthonor-
1 al basis of the space E,. If
N n
a = 2 ail;
i=1

is an arbitrary vector of the space E,, then

ap = 2, cu(e:9)
i=

The vector ag has the same coordinates in the basis eg as the vector a
has in the basis e. However, both these bases are orthonormal, and
for this reason the scalar square of any vector is equal to the sum
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of the squares of its coordinates in any one of these bases. Thus

(a, @) = (a9, ap) = 2 o

Equation (6) indeed holds true.

An orthogonal transformation of a Euclidean space in any ortho-
normal basis is represented by an orthogonal matriz. Conversely, if
a linear transformation of a Euclidean space in at least one orthonormal
basis is represented by an orthogonal matriz, then the transformation
is orthogonal.

Indeed, if the transformation ¢ is orthogonal, and the basis ey,
ey, - - -, €, is orthonormal, then the system of vectors e, e,p, . .

. -+ e,@ will also be an orthonormal basis. The matrix 4 of the
transformation ¢ in the basis e,

ep = Ae 8)
will thus be the transition matrix from the orthonormal basis e to
the orthonormal basis eg, i.e. (as proved above), it will be orthogonal.

Conversely, let a linear transformation ¢ be represented in an
orthonormal basis e;, e, ..., e, by the orthogonal matrix A4;
then (8) holds. Since the basis e is orthonormal, the scalar product
of any vectors (in particular, any vectors of the system e,
es®, . . ., e,9) is equal to the sum of the products of the correspon-
ding coordinates of these vectors in the basis e. Therefore, since ma-
trix A4 is orthogonal,

(e;p, e;) = 1, i=1,2,...,n

(e;p, e59) = 0 for i o]
That is to say, the system eg is itself an orthonormal basis for the
space E,. Whence follows the orthogonality of the transformation .

As the reader will recall from analytic geometry, of all the affine
transformations of a plane that leave the coordinate origin fixed,
rotations (combined perhaps with mirror reflections) are the only
ones that preserve the scalar product of the vectors. Thus, orthogonal
transformations of n-dimensional Euclidean space may be regarded
as “rotations” of this space.

Obviously, one of the orthogonal transformations of Euclidean
space is the identity transformation. On the other hand, the rela-
tionship we have established between orthogonal transformations
and orthogonal matrices, and also the relationship (presented in
Sec. 31) between operations on linear transformations and on matrices,
permit deriving, from familiar properties of orthogonal matrices,
the following properties of orthogonal transformations of Euclidean
space, which can be verified directly.

Every orthogonal transformation is nonsingular and its inverse
is also orthogonal.

The product of any orthogonal transformations is orthogonal.
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36. Symmetric Transformations

A linear transformation ¢ of n-dimensional Euclidean space is
called symmetric (or self-adjoint) if for any vectors @, b of this space

we have the equality
(ap, b) = (a, bo) M

That is, in scalar multiplication the symbol of symmetric trans-
formation may be carried from one factor to the other.

Obvious instances of symmetric transformations are the iden-
tity transformation e and the zero transformation ®. A more gene-
ral example is the linear transformation in which each vector is
multiplied by a fixed scalar e,

ap = aa
Indeed, in this case
(ap, b) = (aa, b) = a (a, b) = (a, ab) = (a, by)

The role of symmetric transformations is extremely great and
calls for a detailed study.

A symmetric transformation of a Euclidean space in any orthonor-
mal basis is represented by a symmetric matriz. Conversely, if a linear
transformation of a Euclidean space is represented in at least one ortho-
rormal basis by a symmetric matrixz, then the transformation is sym-
metric.

Indeed, let the symmetric transformation ¢ be represented in
an orthonormal basis e;, ey, . .., €, by the matrix 4 =(a;;). Ta-
king into account that in an orthonormal basis the scalar product
of two vectors is equal to the sum of the products of the correspon-
ding coordinates of these vectors, we obtain

n
(19, e)=( D) cunen, €7) =y
k=1

n
(€1, €19) = (eh ‘21 G'rjkek) =0ji

That is, due to (1),
Oyy = Ay

for all { and j. The matrix 4 is thus symmetric.
Conversely, let a linear transformation ¢ be represented in the
orthonormal basis e, €5, . . ., €, by the symmetric matrix A = (a;;),

a;; = ay; for all i and j (2)
It

Yi€s

]

g

bzizi Bleiy c=
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are any vectors of the space, then
N n n n
b= D\ Bi (e:;9)= 2 (X Busj) e;
i=1 =1 i=1
cp= 2 pi(es0)= 2 (X vjees) ex
=1 i=1 j==1

Using the fact that the e-basis is orthonormal, we get
n
(bCP, C)= 2_ ﬁic‘i.i?i’

(b, cp) = E By jousi

i, i=1 .
By (2), the right sides of the latter equalities coincide, and therefore
(bg, ¢) = (b, co)

which completes the proof.

The result obtained yields the following property of symmetric
transformations that can readily be verified directly.

The sum of symmetric transformations and also the product of a sym-
metric transformation by a scalar are again symmetric transformations.

We now prove the following important theorem.

All characteristic roots of a symmetric transformation are real.

Since the characteristic roots of any linear transformation co-
incide with the characteristic roots of the matrix of this transforma-
tion in any basis, and a symmetric transformation is represented
in orthonormal bases by symmetric matrices, it suffices to prove
the following assertion.

All the characteristic roots of a symmetric matriz are real.

Let Ay be a characteristic root (possibly complex) of the sym—
metric matrix 4 = (a;5),

Then the system of homogeneous linear equations with complex
coefficients

n .
Ziaij$j=7uoxi, i=1,2 ..., n
J=

has a zero determinant, which is to say, it has a nontrivial solution
By Bay - - .. Pn (generally complex). Thus,

n

2 al]ﬁf“'%ﬁh i=17 27 e, (3)

j=1
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Multiplying both sides of each ith equation of (3) by a scalar f,,
the conjugate of f§;, and adding separately the left and right members
of all the resulting equations, we get the equation

n n

32_1 i = ho 2, Bib: (4)

The coefficient of Ao in (4) is a nonzero real number since it is

the sum of nonnegative real numbers, of which at least one is strictly
positive. The real nature of the number Ay will therefore be proved
if we prove the real nature of the left-hand side of (4); to do this,
it suffices to show that this complex number coincides with its con-
jugate. Here, for the first time, we make use of the symmetric nature
of the (real) matrix 4.

n n n

_ Ziauﬁjﬁt.-=‘ Ziauﬁfﬁ: = 21051!6!5:

1, 1= » = » 1=

n T

= i . BB =, X aBhy= . > , cu BB

i, j=

= y 1=

’

Note that the second last equality is obtained by a simple interchange
in the summation indices: j is put in place of i, i in place of j. Hence,
the theorem is proved. '

A linear transformation ¢ of the Euclidean space E, is symmetric
if and only if there exists in E, an orthonormal basis composed of the
eigenvectors of the transformation. '

In one direction, this assertion is almost obvious: if there exists
in E, an orthonormal basis ey, e,, - . ., e, and

e,cp=7»ie,-, l=1., 2,...,n

then in the e-basis the transformation ¢ is represented by the diagonal
matrix
Ay 0
Ay

4 0 A

‘A diagonal matrix, however, is symmetric, and so the transforma-
tion ¢ is represented in the orthonormal basis e by a symmetric ma-
trix, hence it is symmetric.

- The basic inverse assertion of the theorem we prove by induction
with respect to the dimension n of the space E,. Indeed, for n = 1,
-any linear transformation ¢ of E; invariably carries any vector into
a proportional vector, whence it follows that any nonzero vector a
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is an eigenvector for ¢ (incidentally, it also follows that any linear
transformation of the space E; is symmetric). Normalizing the vec-
tor a, we obtain the desired orthonormal basis of the space E,.

Let the assertion of the theorem be proved for an (n — 1)-di-
mensional Euclidean space and let a symmetric transformation ¢
be given in the space E,. From the above-proved theorem follows
the existence, under @, of a real characteristic root A,. Consequently,
this number is an eigenvalue of the transformation ¢. If a is an
eigenvector of the transformation ¢ corresponding to this eigenvalue,
then any nonzero vector proportional to the vector a will (under ¢)
be an eigenvector corresponding to the same eigenvalue A,, since

(@0) ¢ = @ (a9) = @ (o) = Ao (20)

In particular, normalizing the vector @, we obtain a vector ¢, such
that

e1p = heey,
(61, ei) = 1

As was proved in Sec. 34, the nonzero vector e¢; may be included
in the orthogonal basis

€4, €3 -+« €n ' (5)

of the space E,. Those vectors whose first coordinate in the basis (5)
is zero, that is, vectors of the form a.e; + ... + @ en obviously
constitute an (n — 1)-dimensional linear subspace of the space E,,
which we will designate by L. It will even be an (n — 1)-dimensio-
nal Euclidean space, since a scalar product, being defined for all
vectors in E,, is in particular defined for vectors in L and possesses
all the requisite properties.

The subspace L consists of all the vectors of E, which are ortho-
gonal to the vector ¢;. Indeed, if

a = aje; + 0y + . .. + Onen

then, by the orthogonality of the basis (5) and the normalized charac-
ter of the vector ey,

(e1, @) = ay (e1, 1) + oy (€4, €2) + . . . + an (&1, €n) = 0y

‘that is to say, (e, @) = 0 if and only if a; = 0.

If the vector a belongs to the subspace L, i.e., (¢;, @) = 0, then
the vector ag too lies in L. Indeed, because of the symmetry of the
transformation ¢,

(es, a@) = (19> @) = (hoess @) = Ao (64, @) = 400 =0

That is, the vector ag is orthogonal to e; and therefore lies in L.
This property of the subspace L, which is called its invariance under
the transformation ¢, enables us to consider ¢ (regarded solely with
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respect to the vectors in L) as a linear transformation of this (n — 1)-
dimensional Euclidean space. It will even be a symmetric transfor-
mation of the space L, since equation (1), which holds for any vectors
in E,, will hold (as a particular case) for vectors lying in L.

By virtue of the induction hypothesis, space L has an orthonormal
basis consisting of the eigenvectors of the transformation ¢; denote
it by e,, . .., e,. All these vectors are orthogonal to the vector ¢,
and so ey, €5, . . ., e, is the desired orthonormal basis of the space E,,
consisting of the eigenvectors of the transformation ®. The theorem
is proved.

37. Reducing a Quadratic Form to Principal Axes
Pairs of Forms

Let us apply the last theorem of the preceding section to prove
the following matrix theorem.

For every symmetric matriz A it is posszble to find an orthogonal
matriz Q which diagonalizes matrix A, that is, the matriz Q1AQ
obtained by transforming matriz A by matriz Q will be diagonal.

Let there be given a symmetric matrix A of order n. If ¢
€9y - - -y € 18 some orthonormal basis of an n-dimensional Eucli-
dean space E,, then matrix A represents in this basis a symmetric
transformation ¢. As has been proved, there is in £, an orthonormal
basis fi, f5, - . -, f» made up of the eigenvectors of the translorma-
tion ¢. In this basis, ¢ is represented by the diagonal matrix B
(see Sec. 33). Then, by Sec. 31,

B = Q'4Q 1)
where Q is the change-of-basis matrix from the f-basis to the e-basis,
e = Qf )

This matrix, as a matrix for changing from one orthonormal basis
to another similar basis, will be orthogonal (see Sec. 35). The theorem
is proved.

Since the inverse of orthogonal matrix Q is equal to its trans-
pose, Q7! = Q’, equation (1) may be rewritten as

= Q'AQ

From Sec. 26, however, we know that such precisely is the trans-
formation of the symmetric matrix 4 of a quadratic form subject
to a linear transformation of the unknowns with the matrix Q.
However, taking into account that a linear transformation of un-
knowns with an orthogonal matrix is an orthogonal transformation
(see Sec. 35) and that a quadratic form reduced to canonical form
has a diagonal matrix, we arrive, on the basis of the preceding theo-
rem, at the following theorem on the reduction of a real quadratic
form to principal axes.
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Every real quadratic form f (1, 4, . . ., Z,) can be reduced to
canonical form by an orthogonal transformation of the unknowns.

Although there may be many different orthogonal transforma-
tions of the unknowns which reduce the given quadratic form to
canonical form, the canonical form itself is actually determined

uniquely.
No matter what the orthogonal transformation that reduces to ca-
nonical form the quadratic form f (zy, x5 . . ., z,) with matriz A, the

coef ficients of this canonical form are the characteristic roots of the
matriz A (counting multiplicities).

Suppose an orthogonal transformation reduces form f to the ca-
nonical form

f (24, Tyy oo vy Tp) = “iy?+ szz“l‘- < +“ny121

This orthogonal transformation preserves the sum of the square
of the unknowns and so, if A is a new unknown,

F(Zey Zyy o v o yZn) — xizi 2i= 2]1 wiyi— A _21 g
—_— 1= 1=

Taking determinants of these quadratic forms and taking into ac-
count that after completing the linear transformation the determi-
nant of the quadratic form is multiplied by the square of the deter-
minant of the transformation (see Sec. 28), and the square of the
determinant of an orthogonal transformation is equal to unity (see
Sec. 35), we get the equation

p,—A 0 ... 0
0 —A ... .
| A—AE|= & = 1 =2

.............

0 0 ...pa—A7

from which follows the assertion of the theorem.

This result may be stated in matrix form as well.

No matter what the orthogonal matriz which diagonalizes the sym-
metric matrix A, the principal diagonal of the resulting diagonal ma-
triz will exhibit the characteristic roots of the matriz A taken with
their multiplicities.

Finding the orthogonal transformation that reduces a quadratic
form to principal axes. In certain problems it is not only necessary
to know the canonical form to which a real quadratic form is re-
duced by an orthogonal transformation, but also the orthogonal
transformation itself which accomplishes the reduction. It would be
rather difficult to find this transformation by using the principal-
axis theorem so we shall point out a different way. Namely, all we
need to know is how to find the orthogonal matrix Q which diagona-
lizes the given symmetric matrix 4, or, what is the same thing, to
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find its inverse matrix Q1. By (2), this is the change-of-basis matrix
from the e-basis to the f-basis; that is, its rows are coordinate rows
(in the e-basis) of an orthonormal system of n eigenvectors of the
symmetric transformation ¢ defined by the matrix A in the e-basis.
It remains to find such a system of eigenvectors.

Let A, be any characteristic root of the matrix A and let its
multiplicity be equal to k. From Sec. 33 we know that the collection
of coordinate rows of all eigenvectors of the transformation ¢ cor-
responding to the eigenvalue Ay coincides with the set of nonzero
solutions of the system of homogeneous linear equations

(A —2E)X =0 ®)

Here, the symmetric nature of the matrix A enables us to write 4
in place of A’. From the above-proved theorems on the existence of
an orthogonal matrix that diagonalizes the symmetric matrix A4,
and on the uniqueness of this diagonal form, it follows that for sy-
stem (3) it is at least possible to find %k, linearly independent solu-
tions. We seek such a system of solutions by the methods taken from
Sec. 12, and then we orthogonalize and normalize the resulting sy-
stem in accord with Sec. 34.

Taking in turn, for Ay, all the different characteristic roots of
the symmetric matrix A and noting that the sum of the multipli-
cities of these roots is equal to n, we obtain a set of n eigenvectors
of the transformation ¢ represented by their coordinates in the e-
basis. To prove that this is the desired orthonormal system of eigen-
vectors, it remains to prove the following lemma.

The eigenvectors of the symmetric transformation ¢ which corres-
pond to distinct eigenvalues are mutually orthogonal.

Suppose that

bp = Mb, cp = Ay

and Ay £ A, Since '

(b, ¢) = (Mb, ¢) = M (b, ©),

(b, c@) = (b, Aye) = Ay (b, ©)
it follows from

(b9, ¢) = (b, cg)
that
A (b, e) = Ay (b, )
or, because A; £ A,,
(b,e) =0

which is what we set out to prove.
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Example. Reduce to principal’ axes the quadratic form
f (x4, T2y T3, 7)) = 22425 + 22423 — 22,7, — 2xp73 - 2x0x;, - 2237,

The matrix A of this form looks like ’

0 1 1 —1
1 0-—-1 1
A=1 1.1 o0 1
-1 1 1 0
Let us find its characteristic polynomial:
—A 1 1 -1
1 —A —1
la—rEi=| TV l=e—1ats
—1 1 1 =)

Thus, the matrix A has a triple characteristic root 1 and a simple characteristic
root —3. Hence, we can already write the canonical form to which the form f
is reduced by an orthogonal transformation:

f=1yi+ yi+ v§ — 34k
Let us find the orthogonal transformation that accomplishes this reduction-
The system of homogeneous linear equations (3) becomes, for A, = 1,
—zy + 22+ 23 — 2, = 0,
zy — 2z — 23+ 2 = 0,
zy— 23 — 23+ 2, = 0,
-z + 22t 23 —z,=0
The rank of this system is unity and so we can find three linearly independent
solutions for it. For example, the vectors

by=( 1,1, 0, 0),
bp=( 1,0,1, 0),

bg=(—1, 0, 0,1

will be such solutions.

vect 3§§hogonalizing this system of vectors, we obtain the following system of

a=b=(1,1, 0, 0),
B )
. 03=—;' 01+%- ci-+by= (—‘%' , %, %- 1)
for {)n the %ther hand, the system of homogeneous linear equations (3) becomes,
° ’ 3zy+ 23+ 3 — =0,
zy+ 3z — 23+ =0,

zy— 22+ 3x3 4+ 2z =0,
—zy+ 224 23+ 35, =0
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This system has rank 3. Its nontrivial solution is the vector
6 = (1' '—17 '—1-1 1-)
The system of vectors ¢y, ¢z, ¢3, ¢; is orthogonal. Normalizing it, we arrive
at the orthonormal system of vectors

q=(i- J:.moy

V2 V2
, 1 1 2
(g5~ V0
4=(_ LB SR ,ygy
23’ 23 23 2
im(d 4 4 )
Thus, the form f is reduced to principal axes by the orthogonal transformation

A

1
yi—vi IH——_V'E Zg

RS U TP VL

2 -‘/E 1 —VE 2 3 3

1 1 1 V3
TRV RPEV: RLLEV: SR

—1.1 Lx i- +1-$
y4—2 1—2 2_23“3 2 4

It is well to note that the choice of a system of linearly independent eigen-
vectors corresponding to a multiple eigenvalue is extremely ambiguous, and
so there are many different orthogonal transformations which reduce the form f
to canonical form. We found only one of them.

Pairs of forms. Let there be a pair of real quadratic forms in n
unknowns, f (x4, Z4y . .., Z,) and g (zy, s, . . ., Zz). Does there
exist a nonsingular linear transformation of the unknowns z,
Zg, + - -, Tp Such that will simultanequsly reduce both forms to ca-
nonical form?

In the general case, the answer is no. Let us examine the pair

of forms

f (xi’ -732) = x:v g (xi, xg) = T4Zy
Let there be a nonsingular linear transformation
Zy = ¥y + C1alss } %
Ty = Ca1Y1 + C30Ys

which reduces both forms to canonical form. For f to be reduced by
transformation (4) to canonical form, one of the coefficients ¢y,
¢, must be zero, otherwise the term 2cys¢q,y4y5 Would occur. Renum-
bering, if necessary, the unknowns y;, y,, we can set ¢, = 0 and
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80 ¢44 %= 0. However, we now find that

g (21, @) = cuys (Car¥t + Casla) = C1iCaryy + C11Casli¥a

Since the form g was also to become canonical, it follows that
€11Cq9 = 0, that is, ¢,, = 0, which, together with ¢y, = 0, cortradicts
the nonsingularity of the linear transformation (4).

The situation is different if we assume that at least one of our
forms, say g (z1, 3, . .., ) 18 positive deﬁnite.* Namely, the
iollowmg theorem holds.

If f and g form a pair of real quadratw forms in n unknowns, and the
second one is positive definite, then there exists a nonsingular linear
transformation which simultaneously reduces g to normal form and f
lo canonical form.

For proof, first perform the nonsmgular linear transformation
of the unknowns z4, z,, - .., Zn,

X=7Y
which reduces the positive definite form g to normal form,
gy, Ty .-, )=y i+ ¥+ ...+
Then f will go into some form ¢ in new unknowns,
fley 2 oo ) = @ (U1s Yoo - - - Un)
Now perform an orthogonal transformation of the unknowns

Yty Y25 « o o Yn,
Y =0z

-which reduces ¢ to principal axes,
@ (U1 Yo -+ o Yn) = Mzl + hozy + ...+ Mgy

This transformation (see definition in Sec. 35) carries the sum of the
squares of the unknowns yy, y,, . . ., Y into the sum of the squares
of the unknowns z, z,, ..., 2,. As a result we get

F @y, 2 ooy @) = Mgy + Mgz + . .0 4 Mzd,
g(xy 29 -y p) =224+ 224+...+ 4
That is, the linear transformation
=(TQ)Z

is the required one.

* This condmon is not of course necessary; thus, both the forms =} +
+ 23 — 2} and z}{ — 2§ — 2§ now have canonical form, though none is posi-
tive definite.



CHAPTER 9

EVALUATING ROOTS
OF POLYNOMIALS

38. Equations of Second, Third, and Fourth Degree

The fundamental theorem proved in Sec. 23 establishes the exi-
stence of » complex roots for any polynomial of degree n with nume-
rical coefficients. The proofs (both ours and any other existing proofs)
do not however indicate any methods for finding these roots. They
are thus pure “existence proofs”. The search for such methods began
naturally in attempts to derive formulas similar to the one used in
the solution of quadratic equations for the case of real coefficients so
familiar from school algebra. We will now show that this formula
holds true for quadratic equations with complex coefficients as well,
and that analogous formulas (though much more involved) can be
derived for equations of the third and fourth degree.

. Quadratic equations. Suppose we have a quadratic equation

x z*+pr+qg=0
with arbitrary complex coefficients, the leading coefficient may,

without loss of generality, be considered equal to unity. This equation
may be written as

(+4)"+ (s=5) -0
As we know, it is possible to take the square root of the complex
number ‘P; — g without going outside the complex-number system.
The two values of this root which differ in sign alone can be written

That is, the roots of the given equation may be found via the usual

formula
P p?
/ T=—5+ ]/ v

155760\
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Example. Solve
22 —3z4+3—1i)=0

Using the formula derived above, we get
:i:]/ —(3—1)—-——:|: V —3+44i

Applying the methods of Sec. 19, we find

V= Fdi=+(1+20)

zy = 24 i, zo=1—1

Cubic equations. Unlike the case of quadratic equations, we have
not had a procedure for solving cubic equations even in the case of
real coefficients. We will now derive a formula for cubic equations
similar to the formula used for quadratic equations, and we will
assume from the start that the coefficients can be any complex num-

bers.
Suppose we have the cubic equation

Pratby Fe=0 (1)

with arbitrary complex coefficients. Replacing in (1) the unknown
y by a new unknown z related to y by the equation

and therefore

y=z—3 @)

we get an equation in the unknown z, which, as can readily be veri-
fied, does not contain the square of the unknown; that is, we have
an equation of the form

22+ pr+q=0 (3)

If the roots of (3) are found, then, by (2), we will get the roots of the
given equation (1) as well. Qur job, therefore, is to learn to solve
the “incomplete” cubic equation (3) with arbitrary complex coef-

ficients.
By the fundamental theorem, equation (3) has three complex
roots. Let zy be one of them. We introduce an auxiliary unknown u

and consider the polynomial
f(w) =u?® — zou —%

Its coefficients are complex numbers and therefore it has two complex
roots o and P; by Vieta’s formulas,

a+ p =2 (4

-—3 (5)
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Substituting expression (4) of the root z, into (3), we get
@+p*+pl+p) +g9g=0

a®+ p*+ Bap +p) (@ +p) +9=0
However, from (5) it follows that 3af + p = 0, and so we have

or

o + p2 = —q (6)
On the other hand, from (5) it follows that
3'33_, __P_'l (7)

Equations (6) and (7) show that the numbers o2 and f? are roots
of the quadratic equation

24 g— 5 =0 (®)

with complex coefficients.
Solving (8), we get

=7 il/ +&
whence*

“_I/ 2+]/'—+27, p= ‘/"_ ]/ g o

We arrive at the following formula (Cardan's formula) which

expresses the roots of equatlon (3) in terms of its coefficients by means
of radicals of index 2 and index 3:

To=atp= l/ +l/ *— +27

Since a cube root has three values in the field of complex num-
bers, formulas (9) yield three values for o and three for p. However,
when using Cardan’s formula, one cannot combine just any value
of the root o with any value of the root B; for a given value of a
we have to take only that one of the three values of § which satis-
fies condition (5).

Let o4 be any one of the three values of the root «. Then the two
others may be obtained, as was proved in Sec. 19, by multiplying «,
by the cube roots € and &2 of unity:

Oy = 048, o3 = o8l

Denote by B; that one of the three values of the root f which corres-
ponds to the value a4 of the root « on the basis of (5), that is, a,f; =

* Tt is immaterial which of the roots of (8) we take for «® and which one
for B® since o and P enter in symmetrical fashion into (6) and (7) and also into
the expression (4) for z,.

15*
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=—§-- The two other values of B are
Bs = Bie,  Ps = Pse?
Since, by &3 =1,
afs=oae-pe?=ape=af,= —%
it follows that the value a, of root o is associated with the value

B3 of root B; similarly, to the value o3 there corresponds the value ,.
Thus, all three roots of equation (3) can be written as follows:

zy = oy + Pus 3
zy = oy + B3 = o1& + B,e?, j (10)
z3 = az + P = 8% + Pie

Cubic equations with real coefficients. Let us see what can be
said about the roots of the reduced cubic equation

2 +pr+q=0 (11)

if its coefficients are real. It turns out that in this case the main role
2 3

is played by the sign of the expression qz -+ ’2’—7 , which in Cardan’s

formula is under the square-root sign. Notice that the sign of this
expression is the opposite of the sign of the expression

D= —4p?—21gt = —108 (142-4-‘_2";

which is called the discriminant of equation (11) (see Sec. 54, below).
The sign of the discriminant will be used in subsequent statements.

(1) Let D << 0. In this case, there is a positive number under
each of the square-root signs in Cardan’s formula, and so each of the.
cube roots involves real numbers. However, a cube root of a real
number has one real and two conjugate complex values. Let o, be
the real value of the root o; then the value B; of the root g, corres-
ponding to oy on the basis of formula (5), will also be real because
the number p is real. Thus, the root z; = a; + By of equation (11)
is real. We find the other two roots by replacing, in formulas (10)
of this section, the roots of unity € = &, and €* = g, by their ex-
pressions (7), Sec. 19:

z, =g+ pet=oy (——;'4“#) +B4 (——;‘—'i @)
- ai—;ﬁi +iV3 ‘11-2-51

2

zy=oe? +Pig =0y _%_12:73 + B4 —‘1"+iﬁ
2 2
_id'ﬁ__ilfg_"_‘i_;ﬁ
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Since the numbers o, and P, are real, these two roots turn out to be
conjugate complex numbers, the coefficient of the imaginary part
being different from zero; since oy 5= P, these numbers are the values
of distinct cube roots.

Thus, if D << 0, then equatior (11) has one real and two conjugate

complex roots.
3 S 3 /7
— 9 = A
“= 20 PT l/ 2

(2) Let D=0. Then
Let o, be the real value of the root «; then B, will also, by (5), be
a real number, and a; = B,;. Replacing, in formulas (10), B; by o,

and using the obvious equality & 4 &> = —1, we get
g =20y, 2, =04 (e + &) = —a;, 23=0a4(@€F &) =—a
Thus, if D = 0, then all roots of (14) are real and two of them are
equal.

(3) Finally, let D > 0. Then in Cardan’s formula there is a ne-
gative real number under the square root sign. Therefore, under the
signs of the cube roots we have conjugate complex numbers. Thus,
all the values of the roots o and § will now be complex numbers.
However, there must be at least one real root among the roots of
equation (11). Let this root be

zy = g 1+ Po
Since both the sum of the numbers o, and f, and their product, equal
to -—% ,arereal, it follows that the numbers oy and f, are conjugate

as roots of a quadratic equation with real coefficients. But then the
numbers ooe and Poe? and likewise the numbers ooe® and foe are
also conjugate, whence it follows that the roots of equation (11)

Ty = ot + Po€?, z3 = o8 + Pt

are real numbers too.
We thus see that the three roots of (11) are real, and it is easy
to show that they are all distinct, for otherwise the choice of a
root z; might be accomplished so that we would get the equality z, =
= 13, whence
ao (e — &%) = P, (e — &%)

or g = f¢, which is clearly impossible.
Thus, if D > 0, then equation (11) has three distinct real roots.
The last case that we have just considered shows that Cardan’s
formula is of slight practical value. Indeed, although for D > 0
all roots of (11) with real coefficients are real numbers, to find them
using Cardan’s formula requires extracting the cube roots of com-
plex numbers, which is only possible if the numbers are represented
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in trigonometric form. That is why there is no practical value in
writing the roots as radicals. Using methods that go beyond the
scope of this book, we could demonstrate that in the case at hand
the roots of equation (11) cannot, in general, be expressed in terms
of coefficients by means of radicals with real radicands. This case
of the solution of (11) is called the irreducible case (not to be confu-
sed with the irreducibility of polynomials).

Example 1. Solve the equation
y34-3y2—3y—14=0
The substitution y = z — 1 reduces this equation to

B —6z—9=0 (12)
Here, p = —6, ¢= —9, and so
¢, 4
7t =%>0

That is, equation (12) has one real and two conjugate complex roots. By (9),

—— g — . 3 =
o = iz/%+% = l/-8, = 1 %__;_z 1/1. For this reason, a;=2,

Bi=1, i.e., zy = 3. The other two roots can be found by using formulas

e 3, .V3 3 .V3
10): 2= — +z_2_,,3=_?_,_§_.
This implies that the roots of the given equation are the numbers

V3 5 . V3

5 .
y1=2, yz=—-2'+’T, V3= —5 i —5—

Example 2. Solve
23 — 12z + 16 =0

Here, p= —12, ¢=16, and so

T
Tt =0
Whence o=y —8, or ;= —2. And therefore
2= —4, zp=2x3=2

Example 3. Solve
#8—1921-30=0

Here, p=— 19, ¢=230, and so
¢ P T8

st =" <0
Thus, Cardan's formula cannot be applied to this equation if we remain in the
domain of real numbers, although the roots are the real numbers 2, 3, —S3.

Quartic equations. The solution of the quartic equation
y* +ay+by*+cy+d=0 (13)
with arbitrary complex coefficients reduces to a solution of some

auxiliary cubic equation. This is achieved by a procedure due to Fer-
rari.
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First, the substitution y = .z—-iZ— reduces equation (13) to the

form
2?4+ pxtqgr+r=0 (14)

The left member of this equation is then identically transformed with
the aid of the auxiliary parameter o:

2t patt-qztr= (xz—l—%-—}- a)2+qx+r— —I;—z——ocz—-2ocx2——pa
or
(xz—i-%—{— a)z—[?.axz—qx + (az—[-pa—r—{-—l;i)]:O (15)

Now choose a so as to complete the square in the square brackets.
This requires that it have one double root; in other words, we must
have the equation

¢ —4-2a (a2+poc—r+p72)=0 (16)

Equation (16) is a cubic equation in the unknown o with complex
coefficients. As we know, this equation has three complex roots.
Let o be one of them; it is expressed, by Cardan’s formula, with
the aid of radicals in terms of the coefficients of equation (16), that
is, in terms of the coefficients of equation (14).

Given this choice of value for o, the polynomial in the square

brackets in (15) has the double root 4%0 , and so equation (15) takes
the form
2 2
(.zz-{-%—l— ao) —2ay, ("32_4%0) =0
Hence it decomposes into two quadratic equations:
2 2a, 2 7 _\_
o= Bt (5 + oot g7e=) =0 } (17)

2+ ooz + (F o0 —57 =) =0

Since we passed from (14) to (17) by means of identity transfor-
mations, the roots of (17) will serve as roots for equation (14) as
well. At the same time, it is easy to see that the roots of (14) are
expressed in terms of coefficients by means of radicals. We will
not write out the appropriate formulas because they are exceedingly
unwieldy and of no practical use. Neither will we investigate sepa-
rately the case when (14) has real coefficients.

Remarks on higher-degree equations. Whereas the ancient Greeks
knew the methods for solving quadratic equations, the above-des-
cribed methods for solving cubic and quartic equations were disco-
vered only in the 16th century. This was’ followed by almost three
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centuries of unsuccessful attempts to find formulas expressing by
radicals the roots of any quintic equation (an equation of the fifth
degree with literal coefficients) in terms of its coefficients. These
attempts ceased only after Abel demonstrated, in the 1820’s, that
no such formulas can be found for nth-degree equations where
n =9, .

This result of Abel’s however did not preclude the possibility
that the roots of a concrete polynomial with numerical coefficients
could, in some way, be expressed in terms of the coefficients by
some combination of radicals, or, as we usually say, that any equa-
tion is solvable by radicals. In the 1830’s, Galois made a complete in-
vestigation of the conditions under which a given equation is sol-
vable by radicals. It turned out that for any » equal to or greater
than 5 there are nth-degree equations even with integral coefficients
that are not solvable by radicals. Such, for instance, is the equation

2 — 4 —2=0

The investigations of Galois exerted a decisive influence on the
subsequent development of algebra, but they lie outside the scope
of this text.

39. Bounds of Roots

We know that there is no method by which we can find the exact
values of the roots of polynomials with numerical coefficients. Ne-
vertheless, a vast range of problems in mechanics, physics and engi-
neering at large reduce to the problem of the roots of polynomials,
which at times are of very high degree. This circumstance spurred
numerous investigations to find ways of describing the roots of
a polynomial with numerical coefficients without actually know-
ing the roots. For example, studies have been made of the location
of roots in the complex plane (the conditions under which all roots
lie within the unit circle, that is, are less than unity in absolute
value, or the conditions prescribing all roots to lie in the left half-
plane, that is, to have negative real parts, etc.). For polynomials
with real coefficients, methods have been elaborated for determi-
ning the number of their real roots, for finding the bounds within
which these roots may be located, etc. Finally, much research has
been done into methods of approximation of roots: in engineering
situations, it is ordinarily enough to know only certain approxi-
mate values of the roots to within a specified accuracy, and if, say,
the roots of a polynomial were even written as radicals, the latter
would in any case be replaced by their approximations.

At one time, such studies constituted the basic content of higher
algebra. We include here only a very small portion of the pertinent
results, and taking into account the primary demands of applica-
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tions we confine ourselves to the case of polynomials with real coef-
ficients and real roots. In only a few instances will we go farther
afield. We will consider the polynomial f (z) with real coefficients
as a (continuous) real function of a real variable 2 and wherever
advisable we will take advantage
of the results and methods of ma- yﬁ
thematical analysis.

A good way to begin the study
of the real roots of a polynomial
f (z) with real coefficients is to exa-
mine the graph of the polynomial:
obviously, only the abscissas of the
points of intersection of the graph and
the z-azis are the real roots of the
polynomial.

To take an example, let us con-
sider the fifth-degree polynomial

h(z) =25 + 22* — 52% + 8z*— Tz— 3

On the basis of the results of Sec.
24, we can assert the following
concerning the roots of this polyno-
mial: since its degree is odd, & (z)
has at least one real root; but if 01/2
the number of real roots is greater . \
than unity, then it is equal to three ~4] =3 =2 -1
or five, since complex roots are
pairwise conjugate.

An examination of the graph ]
of the polynomial k (z) enables us .
to say a good deal more about the Fig. 9
roots. We construct the graph
(Fig. 9; note that the scale on the z-axis is ten times that on the
y-axis), taking only integral values of z and computing the corres-
ponding values of & (z), say by the Horner method:

-

—

{!

x h (x)
—4|—39
—3 | 144
—2 83
—1 18

0] —3
1] —4
2 39




234 CH. 9, EVALUATING ROOTS OF POLYNOMIALS

We see that the polynomial % (z) has in any case three real roots—
the positive root o; and two negative roots «, and as,

<oy <2, —1<a,<h,
—'4<a3<—'3

Ordinarily, the information on the (real) roots of a polynomial
that we get by examining the graph is very satisfactory in a practical
sense. However, the doubt always remains as to whether we have
indeed found all the roots. For instance, in the case at hand we did
not show that to the right of z = 2 and to the left of + = — 4 there
are no roots of the polynomial. What is more, since we only took
integral values of x, we can assume that the graph we constructed
does not very accurately reflect the true behaviour of the function
h (z); it may not, say, take into account the smaller fluctuations
and so loses some roots.

True, we could have taken values down to 0.1 or 0.01, in addi-
tion to the integral values of z. But then the computations would
have been severely complicated and doubts would still remain.
On the other hand, we could apply mathematical analysis to test
the function % (z) for maxima and minima and thus compare our
graph with the true behaviour of the function; but this brings us to
the problem of the roots of the derivative 2’ (z), which is the same
kind of problem we are dealing with right now.

The need is evident for more sophisticated procedures enabling
us to find the bounds within which lie the real roots of a polynomial
with real coefficients and to determine the number of the roots. We
shall examine the problem of the bounds of real roots and leave
the question of the number of roots to later sections.

The proof of the lemma on the modulus of the highest-degrée
term (see Sec. 23) already provides a certain bound for the absolute
values of the roots of a polynomial. Indeed, setting & = 1 in inequa-
lity (3), Sec. 23, we find that for

|23 1+ o ™)

where a, is the leading coefficient and A is the maximum of the
absolute values of the remaining coefficients, the absolute value
of the highest-degree term of the polynomial is greater than the
absolute value of the sum of all the other terms, and so no value of
z which satisfies inequality (1) can be a root of this polynomial.
Thus, for a polynomial f (z) with arbitrary numerical coef ficients,

the number 1 + /:) serves as an upper bound of the moduli (absolute

values) of all zts roots, real and complex. For the case above of the
polynomial % (z), this bound, since a4 = 1, A = 8, is the number 9.



39. BOUNDS OF ROOTS 235

However, this bound is usually too high, particularly if we are
only interested in the bounds of the real roots. We now give certain
more precise methods. It is well to bear in mind that if the bounds
are indicated within which the real roots of a polynomial are to be
found, this does not in the least mean that such roots actually exist.

Let us first demonstrate that it is sufficient to be able to find only
the upper bound of the real roots of any polynomial. Let there be given
a polynomial f (z) of degree » and let NV, be the upper bound of its
positive roots. We consider the polynomials

P4 (x)= " f (%‘) ’

Qg (x) = f (-—-:C),

% () =a"f (- )

and find the upper bounds of their positive roots. Suppose these are
the numbers, respectively, N,, Ny, N3 Then the number 7\,1—1 will be
the lower bound of the positive roots of the polynomial f (2): if a is
a positive root of f (x), then i—will be a positive root of ¢; () and

from 1&< N, follows o > 7\% Similarly, the numbers —N, and

—7—\1,- serve, respectively, as the upper and lower bounds of the negative
roots of the polynomial f (z). Thus, all positive roots of f (z) satisfy
the inequalities Ni1<a:< Ny, all negative roots, the inequalities

—N2<x<—1-\%.

To determine the upper bound of the positive roots we can use
the following method. Suppose we have the polynomial

f@ =aa" +aa™*+ ...+ a,

with real coefficients, and 4, > 0. Let a,, &k >>1, be the first of the
negative coefficients; if there were no such coeffiéients, then the
polynomial f (z) could not have any positive roots at all. Finally,
let B be the greatest of the absolute values of the negative coeffi-
cients. Then the number
a:E
1+1/ L

serves as the upper bound for the positive roots of the polyromial f (z).

Indeed, setting x > 1 and replacing each of the coefficients
ay, a9, . .., Qp_y by the number zero, and each of the coefficients
@y, Ap4q, - - ., Gp by the number —B, we can only diminish the
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value of the polynomial, that is,

f(@>aa"—B(z" "4 z"* 1+ ...+ 2+ 1)=0a"— B %#1
or, because z>1,
f(x)>a0x"—£§_‘_:%ﬂ= f;'_;"_;f [ao2"-t (z— 1) — B @
If
z>1 —f—‘lk/% (3)
then, since

a1l (x—1)—B>a,(z—1)*—B

the expression in square brackets in formula (2) will prove to be
positive; thus, by (2), the value of f (x) will be strictly positive.
Thus, the values of z which satisfy the inequality (3) cannot be roots
of f (), which is what we set out to prove.

Taking the above-considered polynomial % (z), this method
(since k = 2, B = T) yields for the upper bound of the positive
roots the number 1 4+ }/7, which can be replaced by the nearest
greater integer 4.

Of the many other methods of finding the upper bound of positive
roots, we give Newtor’s method. It is more involved than the one we
just gave above, but ordinarily it yields a very good result.

Suppose we have a polynomial f (z) with real coefficients and
positive leading coefficient a,. If, for x = ¢, the polynomial f (z)
and all its successive derivatives f' (z), " (), . . ., ™ (x) take on
positive values, then the number c serves as the upper bound of the posi-
tive roots.

True enough, by Taylor’s formula (see Sec. 23),

@ =f O+ @0 [ @+ @t g (pmoy L2

We see that if 2 > ¢, then on the right we get a strictly positive
number, that is, such values of z cannot be the roots of f (z).

When seeking the appropriate number ¢ for a given polynomial
f (z), it is useful to do as follows. The derivative f™ (z) = nla, is
a positive number, and so the polynomial f™-? (z) is an increasing
function of z. Consequently, there is a number ¢, such that for
z > ¢, the derivative f"-V(z) is positive. Whence it follows that
for > ¢, the derivative f*~?(z) will be an increasing function of
z and therefore there exists a number ¢,, c, > ¢y, such that for
z > c, the derivative -2 (z) is also positive. Continuing thus, we
finally arrive at the desired number c.
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Applying Newton’s method to the polynomial % (z) considered
above, we have

h (x) = 28 + 22 — 5a% 4 822 — Tz — 3,
k' () = 52% 4 82% — 15z% + 16z — 1,
k" (z) = 2023 4 24z — 30z + 16,
R" (z) = 60x% 4 48z — 30,
B (z) = 120z + 48,
BY (z) = 120 |
It is easy to verify (say, by the Horner method) that all these
polynomials are positive for £ = 2. Thus the number 2 is the upper
bound for the positive roots of the polynomial h (z). This result
is much more exact than those obtained by other methods.

To find a lower bound for the negative roots of polynomial & (z),
let us consider the polynomial @, (z) = — h (—=z) *. Since

¢y () = 2 — 224 — 523 — 822 — Ta + 3,
¢a (x) = 5zf — 82° — 1522 — 16z — 7,
¢, () = 2023 — 242? — 30z — 16,
¢y (z) = 602® — 48z — 30,
oIV (z) = 120z — 48,
oY (2) = 120
and all these polynomials are positive (as may readily be checked
for z = 4), the number 4 serves as an upper bound for the positive
roots of @, (z), and so the number —4 will be a lower bound for the

negative roots of & (z).
Fipally, let us consider the polynomials

9y (1) = — 2% (-}) =328 4 T2t —8a®+ 5a? —2x—1,

5 (2) = — 2% (~i) =325 — Tzt —82% — 52— 2z 41

x

For them, again using the Newton method, we find the numbers 1
and 4 as upper bounds for the positive roots and so the number

1 . ers
7 =1 is the lower bound for the positive roots of % (z) and the
- X 1. .
number —7 I8 the upper bound for the negative roots.
* —h(—z2) in place of h(—z) because Newton's method is applicable

only if the leading coefficient is positive. This change of sign of course has no
effect whatsoever on the roots of the polynomial P2 ().
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Thus, the positive roots of 2 (z) lie between 41 and 2 and the nega-
tive roots lie between the numbers —4 and —21&— . This result is in

very good agreement with what we found earlier when we examined
the graph.

40. Sturm’s Theorem

We now come to the question of the number of real roots of a poly-
nomial f (z) with real coefficients. We will be interested both in the
total number of real roots, and, separately, the number of positive
and the number of negative roots and the total number of roots in
the interval between specified bounds a and b. There are several
methods for finding the exact number of roots and all of them are
very cumbersome; the most convenient one is the Sturm method,
which we now discuss.

First let us introduce a definition that will be needed in the
next section as well.

Suppose we have a finite ordered sequence of real numbers
different from zero, say

1a 3’ —27 17 —4’ —87 —3a 47 1 (1)
Write down the signs of these numbers in succession:
+’ +a — +a T Ty T +a + (2)

We see that there are four variations of sign in (2). We then say that
in the ordered sequence (1) there are four variationsin sign. The num-
ber of variations in sign can of course be counted for any finite orde-
red sequence of nonzero real numbers.

Now let us consider the polynomial f (z) with real coefficients;
we will assume that f (z) does not have multiple roots, for then we
could divide it by its greatest common divisor and its derivative.
The finite ordered sequence of nonzero polynomials with real coef-

ficients
fF@ =fo(a), f1 (@) fo (@), ..., fs (a:) (3)

is called the Sturm sequence for the polynomial f (z) if the following
requirements are met:

(1) Successive polynomials of (3) do not have common roots.

(2) The last polynomial, f, (z), does not have real roots.

(3) If @ is a real root of one of the intermediate polynomials
fk (a:) of (3), 1 < k < s — 1, then fh -1 (a) and .fh+i (a) have diffe-
rent signs.

(4) If o is a real root of f (z) , then the product f (z) f; (z) changes
sign from minus to plus when z increases and passes through the
point a.
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The question of whether every polynomial has a Sturm sequence
will be considered later on, for the present let us suppose that f (z)
does have such a sequence and let us show how it can be used to
find the number of real roots.

If a real number ¢ is not a root of the given polynomial f (z)
and (3) is a Sturm sequence for this polynomial, then take the set of
real numbers

f(c)1 fl (c)» fz (c)s o = oy fs (c)

delete all numbers equal to zero and denote by W (¢) the number

of variations in sign in the remaining sequence; we call W (c) the

number of variations in sign in the Sturm sequence (3) of polynomial
z), r=-c.*

P ?I‘he following theorem holds.

Sturm’s theorem. If the real numbers a and b, a << b, are notthe
roots of a polynomial f (x) which does not have any mul-
tiple roots, then W(a) > W(b) and the difference W(a) —
— W(b) is equal to the number of real roots of f (z) in the interval be-
tween a and b.

Thus, to determine the number of real roots of a polynomial
f (z) lying between a and b [recall that f (z) does not, by hypothesis,
have multiple roots], it suffices to establish the reduction in the
number of variations of sign in the Sturm sequence of this polyno-
mial when moving from a to b.

To prove this theorem, let us see how the number W (z) varies
with increasing z. So long as z, as it increases, does not encounter any
of the roots of the Sturm sequence (3), the signs of the polynomials
of the sequence do not change and so the number W (r) remains
unaltered. For this reason, and also because of Condition (2) of the
definition of a Sturm sequence, it remains for us to consider two
cases: the passage of x through a root of one of the intermediate poly-
nomials fy (z), 1 <k <s — 1, and the passage of z through a root
of the polynomial f (x) itself.

Let o be a root of the polynomial f, (z), 1 <<k < s — 1. Then,
by Condition (1), fr -1 (&) and fr4+4 (o) are different from zero. We
can thus find a positive number ¢, which may be very small, such
that in the interval (@ — e, a + &) the polynomials f, _; (z) and
fr+1 (z) do not have any roots and therefore preserve constant signs;
Condition (3) states that these signs are distinct. From this it fol-
lows that each of the sequences of numbers

fret (@ — &), fr (@ — &), fres (@ — &) (4)

* Quite naturally, the variations in sign in the Sturm sequence of the
polynomial f(z) have nothing in common with the variation in sign of the
polynomial f (z) itself, which variation occurs when z passes through a root
of the polynomial.
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and

fo-1 (@ 4+ &), fr (@ + &), frys (@ + &) (5)

has exactly one variation in sign, irrespective of the signs of the
numbers f, (@ — &) and fy (@ + e). Thus, for instance, if the poly-
nomial f, _, (z) is negative on the interval in question and f, 4+, (z) is
positive and if f, (@ — &) >0, fi (¢ + &) << 0, then the sequences
(4) and (5) are associated with the sign sequences

it ] +: +; T Ty +

Thus, when z passes through a root of one of the intermediate poly-
nomials in Sturm’s sequence, the variations in sign in the sequence
can only shift position, but do not disappear or reappear, and so the
number W (z) does not change in such a transition.

On the other hand, let o be a root of the given polynomial f (z).
By Condition (1), @ will not be a root of f; (x). Hence, there is a posi-
tive number e such that the interval (@ — €, @ + &) does not contain
any roots of the polynomial f; (z), and therefore f; (z) preserves its
sign over this interval. If the sign is positive, then, by Condition
(4), the polynomial f (z) itself changes sign from minus to plus when
x passes through a, ie., f (o — &) <0, f (@ 4 &) > 0. Hence, to
the number sequences

f(e—¢), fi (@ —¢) and f(a + &), fi (@ + €) (6)
there correspond the sign sequences
] + and +’ +

Thus, the Sturm sequence loses one variation in sign. But if the
sign of f, (z) is negative on the interval (& — &, o + g), then again,
by Condition (4), the polynomial f (z) changes sign from plus to
minus as x passes through «, ie., f(a — &) >0, f (& + &) <<O.
To the number sequences (6) there now correspond the sign sequences

+, — and —, —

The Sturm sequence again loses one variation in sign.

Thus, as z increases, the number W (x) changes only when x passes
through a root of the polynomial f (z), ir this case it is diminished exact-
ly by unity.

This obviously proves the Sturm theorem. To use it for finding
the total number of real roots of a polynomial f (z), it is sufficient
to take, for a, the lower limit of the negative roots, and for &, the
upper limit of the positive roots. It is simpler however to do as fol-
lows. By the lemma proved in Sec. 23 there exists a positive number
N, which may be very large, such that for | z | > N the signs of all
polynomials of the Sturm sequence will coincide with the signs of
their highest-degree terms In other words, there exists a positive
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value of the unknown z which is so large that the signs of the corres-
ponding values of all the polynomials of the Sturm sequence coincide
with the signs of their leading coefficients. This value of z, which
need not be computed, can be denoted by co. On the other hand, there
exists a negative value of x which is so large in absolute value that
the signs of the corresponding values of the polynomials of the
Sturm sequence coincide with the signs of their leading coefficients
for polynomials of even degree and are opposite to the signs of the
leading coefficients for polynomials of odd degree. Let us agree
to denote this value of £ by —oo. In the interval (—oo, co) we obvio-
usly have all the real roots of all the polynomials of Sturm’s sequence
and, in particular, all the real roots of the polynomial f (z). Applying
the Sturm theorem to this interval, we find the number of these
roots; application of the Sturm theorem to the intervals (—oo, 0)
and (0, oo) yields, respectively, the number of negative and the
number of positive roots of the polynomial f (z).

It remains to demonstrate that any polyrnomial f (z) with real
coefficients and without multiple roots has a Sturm sequence. Of a varie-
ty of methods used for constructing such a sequence, we give the
most widely used one. Set f; () =f (z), thus ensuring fullfilment
of Condition (4) of the definition of a Sturm sequence. Indeed, if
a is a real root of the polynomial f (z), then f' (o) 5= 0. If f' (a) > O,
then ' (z) > 0 in the neighbourhood of the point o and therefore
f (z) changes sign from minus to plus when z passes through «; this is
then also true for the product f (z) fi (2). Similar reasoning is like-
wise valid for f' (&) << 0. Then divide f (z) by f; () and take the
remainder (with reversed sign) for f, (2):

f@) = fi(2) g4 (@) — f5.(2)

Generally, if the polynomials f,—y (z) and f, () have already been
found, then f,.4 () will be the remainder after dividing f..; ()
by f. (z) taken with reversed sign:

fro-1 (2) = [ (@) g (2) — fr11 (2) (M

This method differs from the Euclidean algorithm as applied
to the polynomials f () and f' (z) solely in the fact that the sign
of the remainder is reversed every time, and the next division
is performed by the remainder with reversed sign. Since such a varia-
tion in sign is inessential when seeking the greatest common divisor,
our process will terminate at some f, (z), which is the greatest
common divisor of the polynomials f (x) and f' (z); since f (z) has
no multiple roots [it is prime to /' (z)] it will follow that f, (2) is
actually some nonzero real number.

This implies that the sequence of polynomials we have construc-

ted,
f(x) :fO (.Z'), fl (.Z') = fi (1‘), f2 ('7:)’ LS fs (.Z‘)

16—5760
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also satisfies Condition (2) of the definition of a Sturm sequence.
To prove that Condition (1) is met, assume that the consecutive
polynomials f, (z) and f, 44 (z) have a common root a. Then, by (7),
a will also be a root of the polynomial f, _; (x). Passing to the equa-
tion

fams (@) = fr-1 (2) gr-1 (2) — fo (2)

we find that « is a root of f, _, () as well. Continuing, we find that

@ is a common root of f (z) and f' (z), which is in conflict with our

assumptions. Finally, fulfillment of Condition (3) follows directly

from equation (7); if fp (@) = 0, then f, 4 (&) = — fri1 (@)-
Let us apply the Sturm method to the polynomial

h(z) =2%+ 22t — 523 4 822 — T2z — 3

which we considered in the preceding section. We will not make
a preliminary check to see that h (z) does not have any multiple
roots, because the method of constructing a Sturm sequence as
given above is a simultaneous check on the relative primality of the

polynomial and its derivative.

Let us find a Sturm sequence for 2 (z) by using this method. In
the division process, we will (in contrast to the Euclidean algorithm)
multiply and divide only by arbitrary positive numbers since the
signs of the remainders play a fundamental role in the Sturm method.

We obtain the following sequence:
h(z) = 2® + 2z* — 523 + 82 — Tz — 3,
hy (2) = 528 4 82% — 1527 4 162 — 7,
h, (z) = 66z* — 1502% 4- 172z + 61,
h; () = —4642® + 11352 4 723,
h, (z) = —32,599,457x — 8,486,093,

ks (z) = —1
We determine the signs of the polynomials of this sequence for
r = — ocoand z = oo; to do this, we (as indicated above) only

examine the signs of the leading coefficients and the degrees of the
polynomials. We get the following table:

Number of
h (x) ki (%) h2 (%) hg (x) hyq (x) hs (x) | variations in
sign
—w | — | + - — + ~ 4

% + + + — — - 1
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Thus, when z passes from —oo to oo, the Sturm sequence loses
three variations in sign and so the polynomial % (z) has exactly
three real roots. It will be recalled that when we constructed the
graph of this polynomial (in the preceding section) we did not lose
a single root.

Let us apply the Sturm method to a simpler polynomial:

f@ =28+ 322 —1

Let us find the number of its real roots and also the integral bounds
within which each of the roots is located. We shall not construct
the graph of this polynomial.

The Sturm sequence associated with the polynomial f (z) is

fl) =2+ 328 — 1,
fi (x) = 3z% + 6z,

f2 () = 2z + 1,

fa(x) =1

Let us find the number of variations of sign in this sequence
for 2 = — 00 and 2z = =

£ (@) ) f2 (x) fagxy | Nl of yarla-
—oo - + -~ + 3
= + + + + 0

;'anséquently, the polynomial f (z) has three real roots. For a more
precise location of the roots, continue the above table:

16+

£ (@) [ f1 e | s | Nions i sen
z=—3 - + - + 3
r=—2 -+ 0 — -+ 2
z=—1 + - - + 2
z=0 — 0 + + 1
e=1 + |+ | o+ |+ 0
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Thus, the Sturm sequence of the polynomial f (z) loses one varia-
tion of sign each time x moves from —3 to —2, from —1 to 0 and
from 0 to 1. The roots oy, o, and a3 of this polynomial thus satisfy
the inequalities

—3<a1<—~2, —-1<a2<0, O<a3'<i

41. Other Theorems on the Number of Real Roots

The Sturm theorem completely resolves the question of the num-
ber of real roots of a polynomial, but it has one essential defect and
that is the cumbersome computations involved in constructing a
Sturm sequence, as the reader could see after performing all the
computations of the first example above. We now prove two theorems
which do not yield the exact number of real roots but only bound
the number from above. These theorems are employed after a graph
has been used to bound the number of real roots from below and at
times enable us to find the exact number of real roots without resor-
ting to the Sturm method.

Suppose we have an nth-degree polynomial f (z) with real coef-
ficients; we assume it can have multiple roots. Let us consider a se-
quence of its consecutive derivatives:

f @ =[O (), ' (), [" (&), ..., 770 (2), [ (2) (1)

of which the last one is equal to the leading coefficient a, of f (z)
multiplied by n! and for this reason preserves sign at all times. If
a real number ¢ is not a root of any one of the polynomials of the
sequence (1), then by S (c) we denote the number of variations in
sign in the ordered sequence of numbers

f@), f @) ")y .« P (), f™ (c)

Thus, we can consider the integer-valued function S (z) defined
for those values of z which do not make any one of the polynomials
in (1) vanish.

Let us see how § (x) varies with increasing z. The number § (z)
remains unchanged until z passes through a root of one of the poly-
nomials of (1). We thus have two cases to consider: the passage of x
through a root of the polynomial f (z) and the passage of x through
a root of one of the derivatives f® (x), 1 <k <<n = 1.

Let o be an I-fold root of the polynomial f (x), { > 1, i.e.,

fl@=F7(@=...=fP(@ =0, f"(@) %0

Let a positive number € be so small that the interval (¢ — e, o + &)
does not contain any roots of the polynomials f (z), ' (z), .
. . ., fU=1P (z), different from o and does not contain any root of the
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polynomial f) (x) either. We will prove that in the number sequence
f(a - 8), .f, (CC - 8)’ ooy f(l_“ (a - 8)’ f(l) (CL - 8)

any two consecutive numbers have opposite signs, whereas all the
numbers

fla+e),f (@+e, ... 0= (@-+e), fO @ ¢

have the same sign. Since each one of the polynomials of (1) is a
derivative of the preceding polynomial, all we have to prove is that
if z passes through the root a of polynomial f (z), then, irrespective
of the multiplicity of this root, f (z) and f' (z) had different signs
prior to the passage and have coincident signs after the passage.
If f (@ — €)> 0, then f (z) diminishes on the interval (@ — &, ),
and so f' (& — &) << 0; but if f (0« — &) << 0, then f (z) increases and
so f' (¢ — &) > 0. Hence in both cases the signs differ. On the
other hand, if f (¢ + &) > 0, then f (z) increases on the interval
(@, o + &) and so f' (& -+ &) > 0; similarly, from f (¢ + &) << 0
it follows that f* (o - e) << 0. Thus, after the passage through the
root a, the signs of f (z) and f’ () must coincide.

From what has been proved it follows that when x passes through
an [-fold root of the polynomial f (x) the sequence

f(a), (@) ooy [ (2), fO ()

loses I variations in sign.
Now let o be a root of the derivatives

O (2), fE (2), ..., fEH-D(2), 1<k<<n—1, I>1

but not a root of f* (z) or of f**" (z). By what has been proved
above, the passage of z through @ implies a loss in the sequence

f(h) (:c), f(k+1> (x), C e f(h+l—1) (.r), ot (.r)

of I variations in sign. True, this passage possibly creates a new
variation in sign between f*—1) (z) and f® (z); however, because
{ > 1, the number of variations in sign, when z passes through « in
the sequence

f(h—i) (x), f(h) (), f(H—i) (x), .. f(h+l--1) (x), f+D (x)

either does not change or decreases. It can then decrease only by an
even number since the polynomials f*~P (z) and f"+" (z) do not
change sign when z passes through the value a.

These results imply that if the numbers a and b, a << b, are not
rootsof any one of the polynomials of the sequence (1), then the number of
real roots of the polynomial f (z) lying between a and b (each counted
according to its multiplicity) is equal to the difference S (a) — S ()
or is less than this difference by an even number.
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In order to relax the restrictions imposed on the numbers a and
b, let us introduce the following notations. Suppose the real number
¢ is not a root of the polynomial f (z), though it may be a root of some
of the other polynomials of the sequence (1). Denote by S, (c) the
number of variations in sign in the number sequence

Fe) £ (e)s £}y « v os )y f™ (o) (2)
which is computed as follows: if
f® () = fo (€) =...=f®H-"D () =0 (3)
but
fA=1 (c) 5£0, f™MD () %0 (4)

then we take it that f*® (), f+D )y -« fr+-D (c) have the
same sign as f#+b (c); this is obviously the same as deleting the zeros
in a count of the number of variations of sign in the sequence (2).
On the other hand, by S _ (¢) we denote the number of variations of
sign in the sequence (2), which is counted as follows: if conditions
(3) and (4) hold, then we take it that f*+» (¢), 0 << i << I — 1, has
the same sign as f**) () if the difference I — i is even, and opposite
sign if this difference is odd.

If we now desire to determine the number of real roots of the
polynomial f (z) between @ and b, ¢ << b, and a and b are not roots
of f (x) but, possibly, are roots of the other polynomials of the se-
quence (1), then we do as follows. Let & be so small that the interval
(a, a + 2g) does not contain any roots of f (x), or any roots (distinct
from a) of the other polynomials of the sequence (1); on the other
hand, let n be so small that the interval (b — 2v, b) also fails to con-
tain any roots of f (x) and any roots (distinct from b) of the other
polynomials of the sequence (1}. Then the number we want of real
roots of the polynomial f (z) will be equal to the number of the real
roots of this polynomial between a + & and b — y, that is, from
what has been proved, it will be equal to the difference S (a + &) —
— 8§ (b — 1) or less than this difference by an even number. Howe-
ver, it is easy to see that

S(a+e) =54, Sb—n=S5_(0)

This is proof of the following theorem.

Budan-Fourier theorem. If the real numbers a and b, a << b, are
nrot the roots of a polynomial f (x) with real coefficients, then the number
of real roots of this polynomial between a and b, each counted according
to its multiplicity, is equal to th. difference S (@) — S . (b) or is
an even number less than this difference.

Use the symbol oo to denote a positive value of the unknown z
so large that the signs of the associated values of all the polynomials
of the sequence (1) coincide with the signs of their leading coeffi-
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cients. Since these coefficients are, sequentially, the numbers a,,
nay, n (n — 1) ag, . . ., nlag, whose signs coincide, it follows that
S (00) = § . (00) = 0. On the other hand, since

FO)=an, 0 =ty " 0) = an 2!,
f" (0) = a’n—33!1 - f(‘") (0) = ao'n!

where ag, a4, . .., a, are coefficients of the polynomial f (z), then
S+ (0) coincides with the number of variations in sign in the sequence
of coefficients of f (), zero coefficients being deleted. Thus, applying
the Budan-Fourier theorem to the interval (0, oo) we arrive at the
following theorem.

Descartes’ theorem (Descartes’ rule of signs). The number of
positive roots of a polynomial f (x), a root of multiplicity m being
counted as m roots, is equal to the number of variations in sign in the
sequence of coefficients of this polyromial (zero coefficients are not
counted) or is less by an even number.

To determine the number of negative roots of the polynomial
f (z) it is obviously sufficient to apply Descartes’ theorem to the
polynomial f (—z). If none of the coefficients of f (z) is zero, then,
obviously, changes of sign in the sequence of coefficients of the poly-
nomial f (—z) will be associated with preservation of signs in the
sequence of coefficients of the polynomial f (z), and conversely. Thus,
if the polynomial f (x) does not have zero coefficients, then the number
of its negative roots (counting multiplicities) is equal to the number of
preservations of signs in the sequence of coefficients or is less by an even
number.

We give another proof of the Descartes theorem that does not
i‘ely on the Budan-Fourier theorem. We first prove the following
emma.

If ¢ > 0, then the number of variations of sign in the sequence of
coefficients of the polynomial f (x) is less than the number of variations
of sign in the sequence of coefficients of the product (x — c) f (z) by an
odd number.

Indeed, enclosing in parentheses successive terms of the same
sign, we can write the polynomial f (z), the leading coefficient a,
of which can be considered positive, as follows:

f (@)= (apz™+ ...+ bahtty— (g 2k ...+ byxket?)

F oo (=) (@she - L beTt)  (5)
Here, a4 >0, a; >0, ..., a; > 0, whereas b,, b,, ..., b, are
positive or zero, but b, is considered strictly positive, that is, zf,

where ¢ > 0, is the smallest power of the unknown z that enters into
the polynomial f (z) with a nonzero coefficient. The parenthesis

(@pz™ + . .. + bxhrt?)
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may accidentally consist of a single term, namely, when k; + 1 = n.
An analogous remark is applicable to the other parentheses of formu-
la (5).

Now write a polynomial equal to the product (x — ¢) f (z); we will
single out only those terms which contain z to the powers n + 1,
ky+1, ..., kg 4+ 1, and £&. We obtain

(x—c) f () = (@gz™* + . ..) — (azhrtti .. ))
o (1) (a4 L —cbgga’)  (6)

where a; = a; + ¢b;, i =1, 2, ..., s, and therefore, since ¢ > 0,
all the ai are strictly positive. Thus, there was one change of sign
in the sequence of coefficients of the polynomial f (z) between the
terms aoz” and —a.z™1 (also between the terms —ayz* and a,z*2,
etc.), whereas in the polynomial (z — ¢) f (z) there will either be
one change of sign between the corresponding terms aez™*' and
—a;zm1*! (respectively between the terms —a;z *1*! and a,z*2*!, etc.)
or more changes (but always more by an even number). We are not
interested in the exact places of these changes in sign. It may happen,
for example, that the coefficient of z*1*? in (6) is negative, like the
coefficient —a;, and so there is no change of sign between these two
successive coefficients; that is to say, the change in sign in the first
parenthesis is located at some previous position. Now notice that
the last parenthesis in (5) did not have any variation in sign, whereas
the last parenthesis in (6) did have variations in sign—an odd num-
ber of them: it suffices to note that the last nonzero coefficients of
the polynomials f () and (z — ¢) f (), that is, (—1)%b,4; and
(—1)°*tbg4qc have different signs. Thus, between f (z) and
(x — ¢) f (z) the total number of variations of sign in the sequence
of coefficients invariably increases and by an odd number (the sum
of several terms, one of which is odd and the others even, will natu-
rally be odd!). The lemma is proved.

To prove Descartes’ theorem, denote all the positive roots of the
polynomial f (z) by o4, @, ..., ay. Then

f@=@—a)@—a)...(&—o) @

where ¢ (z) is a polynomial with real coefficients which now has
no positive real roots. This implies that the first and the last non-
zero coefficients of the polynomial ¢ (x) are of the same sign, which
means that the sequence of coefficients of this pelynomial centains
an even number of variations of sign. Applying the above-proved
lemma to the polynomials

¢ (x)7 (.2: - ai) P (‘z)v (.12 - ai) (x - O‘z) P (x)v LIRS ] f(x)

in succession, we find that the number of variations of sign in the
sequence of coefficients increases each time by an odd number, that
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is to say, by unity plus an even number, and so the number of varia-
tions of sign in the sequence of coefficients of the polynomial f (x)
is greater than k by an even number.
Let us apply the theorems of Descartes and Budan-Fourier to
the earlier considered polynomial

h(z) = 2% + 22* — 52% { 82 — Tz — 3

The number of variations of sign in the sequence of coefficients
is three, and so by Descartes’ theorem, & (z) can have three positive
roots or one. On the other hand, % (z) has no zero coefficients, but
since the sequence of coefficients has two preservations of sign,
h (z) either has two negative roots or none. We compare with the
results obtained earlier with the aid of the graph and see that two
is the exact number of negative roots of our polynomial.

To determine exactly the number of positive roots, use the Budan-
Fourier theorem, applying it to the interval (1, oo), since in Sec. 39
it was demonstrated that 1 serves as a lower bound to the positive
roots of the polynomial % (). The successive derivatives of k (z)
were also written out in Sec. 39. Let us find their signs for z =1
and x = oo:

Number of
R(x) | h'(x) | h"(x) | hm(x) | BRIV (x) &Y (x) |variations in sign
z=1 | — | + + + + + 1
z=oo | + |+ | + | + | + + 0

From this it follows that when z moves from 1 to oo the sequence
of derivatives loses one change of sign, and so % (z) has exactly one
positive root.

In connection with this example, it should be noted that, gene-
rally speaking, when seeking the number of real roots of a polyno-
mial it is best to begin by constructing a graph and applying the
theorems of Descartes and Budan-Fourier, and then only in extreme
cases to go on to construct a Sturm sequence.

The Descartes theorem admits of a certain refinement in the
special case when we know beforehand that all the roots of the poly-
nomial are real, as for instance in the case of the characteristic
polynomial of a symmetric matrix. Namely,

If all the roots of a polynomial f (x) are real, and the constant term
is nonzero, then the number ki of positive roots of the polynomial is
equal to the number s, of variations in sign in the sequence of its coeffi-
cients, and the number k, of negative roots is equal to the number s,
of variations in sign in the sequence of coefficients of the polynomial

f (—2).
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Indeed, under our assumptions,
ky +ky=n (M
where n is the degree of the polynomial f (z), and, by Descartes’
theorem,
by sy by <05, 8
We will prove that
s+ (9)
We will prove it by induction with respect to =, since for n = 1,
due to @y 520, a; =£0, only one of the polynomials
f(x) =apx+ a, f(—2) = —apx+ a
has a change of sign; that is, for this case, s, + s, = 1. Let formu-
la (9) be proved for polynomials whose degree is less than n. If
f@) = aw" + @z’ + ... + a,
where I <<n — 1, a,.; %0, we assume
g(z)=a’n-1xl+---+an
Then
f(z) = aez™ + g (), f(—2) = (—1)" apz" + g (—2)
If s; and s; are, respectively, the numbers of variations in sign in

the sequences of coefficients of the polynomials g (z) and g (—az),
then, by the induction hypothesis (it is clear that I > 1),

s+ s <<
If I = r — 1, then the variation in sign in the first place, i.e., for

f (), between a, and a; = a, _; will occur only in the case of one of
the polynomials f (z), f(—=z), and so

s+ =85+s+1<I+1=n
But if I s{n — 2, then variations of sign are possible in the first

places of each of the polynomials f (z), f (—z); however, in this case
as well,

i F<sts+t2<<li+t2<(n—2)+2=n
Comparing (7), (8) and (9), we see that
ky = s, ky=s,
The proof is complete.

42. Approximation of Roots

The methods described in the preceding sections enable us to
isolate the real roots of a polynomial f (x) with real coefficients,
that is to say, they permit indicating for each root the interval
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containing it alone. If the interval is small enough, then any number
in the interval may be taken as an approximation of the desired
root. Thus, after it has been demonstrated by the Sturm method
(or any other more efficient method) that there is only one root of
the polynomial f (z) between the rational numbers ¢ and b, the
problem remains of narrowing this interval so that the new limits
a’ and b’ possess a prescribed number of coincident first decimals.
The desired root will thus be computed to the needed accuracy.
There are many methods which per-
mit us to speedily approximate the value ¢
of a root with any desired accuracy. We
will describe two. They are simple theo-
retically and general enough so that when f(@)
used in conjunction they quickly yield ab
results. The methods we are about to 4 . cNf(b) x
B

A

describe can be applied not only to poly-
nomials but also to the broader classes
of continuous functions.

From here on we assume that o is Fig. 10
a simple root of a polynomial f (z), since
we can always dispose of multiple roots, and that the root o is
isolated between the limits @ and b, a << @ << b; this implies, for one
thing, that f (2) and f (b) have different signs.

The method of linear interpolation (also called the method of
false position or regula falsi). For an approximate value of the root
b at+b
)

o. we could take, say, the half sum of the limits a and , 1.e.,

the midpoint of the interval from a to b. It is more natural, however,
to assume that the root is closer to that endpoint of the interval
(a, b) which corresponds to the smallest absolute value of the poly-
nomial. The method of linear interpolation consists in taking a
number ¢ for the approximate value of the root o, such that divides
the interval (a, b) into parts proportional to the absolute values
of the numbers f (a) and f (b); that is,
' c—ae {9
== T

The sign of the right member is minus because f (a) and f (b) have
different signs. Whence
__bf(a)—af (b)
C= =10 @
Geometrically, as Fig. 10 indicates, the method of linear inter-
polation consists in replacing the curve y = f (z) on the interval
(a, b) by its chord connecting the points A4 (a, f (a)) and B (b, f (b));
for the approximate value of the root o we take the abscissa of the
point of intersection of the chord and the z-axis.
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Newton’s method. Since o is a simple root of the polynomial
f (z), it follows that f (o) 5= 0. We also assume that f” (a) =0
since otherwise the problem would reduce to computing the root of
the polynomial f” (z) of lower degree than f (z). We likewise assume
that the interval (a, b) does not contain roots of f (z) different from
«, neither does it contain any root of the polynomial f' (z) or the
polynomial f” (z).* Thus, as follows from mathematical analysis,
the curve y = f (z) is either monotonic increasing on the interval

7 YA
B B
ad a a,
0 W by o F 0 l//d b
4 A
Fig. 11 Fig. 12
Y
YA 2
A
@ b
x
d b 2 0l a d \l
gl a 3
B B
Fig. 13 Fig. 14

a, b) or monotonic decreasing; also, it is either convex up at all
points of the interval or convex down at all points. Consequently,
there are four cases (shown in Figs. 11 to 14) of the location of the
curve on the interval (a, b).

Denote by a, the endpoint a or b in which the sign of f (z) coin-
cides with the sign of f” (2). Since f (@) and f (b) have different signs,
and f” (x) preserves sign throughout the interval (a, b), such an «,
can be indicated. In the cases given in Figs. 11 and 14, ¢, = q,
in the other two cases, ap = b. At the point of the curve y = f (2)

* There is wusually no difficulty in narrowing the interval so that this
condition is satisfied, since the methods given earlier permit establishing the
number of roots of polynomials f'(z) and 7”(x) in any interval.
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with abscissa a4, that is, at the point with coordinates (a,, f(aoil),
draw a tangent line to this curve and denote by d the abscissa of the
intersection point of this tangent with the z-axis. Figs. 11 to 14
show that the number d may be taken as an approximate value of
the root a. The Newton method thus consists in replacing the curve
y = f (z) on the interval (a, b) by its tangent at one of the endpoints
of the interval. The condition imposed on the choice of the point

¥
A
b d —p
0| a aw o~
B
Fig. 15

a, is very essential. Fig. 15 shows that if this condition is not obser-
ved, the intersection point of the tangent line and z-axis may not
at all give an approximation to the desired root.

Let us derive a formula for finding the number d. We recall that
the equation of the tangent to the curve y = f (z) at the point (a,,
f (a¢)) may be written as ‘”

Yy — [ (a) =f (ao) (z — ao)

Substituting the coordinates (d, 0)
of the point of intersection of the
tangent line with the z-axis, we
get

=]

— [ (a0) = [ (ao) (d — ao)

whence

d=go—L0 (9

Fig. 16

If in Figs. 11-14 the reader connects A4 and B by chords, he will
see that in all cases the methods of linear interpolation and of Newton
yze{d approximations to the true value of the root a from different sides.
It is therefore advisable, if the interval (a, b) is such as required
by Newton’s method, to combine the two methods. In this way we
obtain much closer endpoints ¢ and d for the root ¢. If the accuracy
of the approximation is not sufficient, apply both methods (see
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Fig. 16) once again to the interval, and so on. We can-demonstrate
that this process does indeed permit computing the root o to any
desired accuracy.

Let us apply these methods to the polynomial

h(x) =2° + 20 — 52% 4 82 — Tz — 3

which we dealt with in preceding sections.

We know that this polynomial has a simple root o, lying between
1 and 2. We can say right off that these limits are too broad for the
methods of linear interpolation and of Newton, used only once each,
to yield a decent result. However, let us employ them so as to have
one example that does not require involved computations.

As we saw in Sec. 41, for z = 1 the derivatives A’ (z), " (), . . .
..., BY (x) receive positive values. This implies, on the basis of the
results of Sec. 39, that the value £ = 1 serves as an upper bound of
the positive roots for A’ (z) and also for 2” (). Hence, the interval
(1, 2) does not contain any roots of these derivatives and so we can
apply the Newton method. Besides, A” (z) is positive everywhere
in the interval, and since

h(l) = —4, k(2 =39

we have to take g, = 2. Seeing that A’ (2) = 109, we get, by formu-
la (2),
39 179

o=1.64...

dzz_ﬁé_wg_

On the other hand, formula (1) yields

and, consequently, the root o; lies within the interval
1.09 < oy < 165

This narrowing of the interval that we obtained is too slight
to consider the result satisfactory. We could of course apply our
methods to the new interval, but it is more advisable from the very
beginning to find a sufficiently small interval for a4, say to within
0.1 or even 0.01, and only then apply the methods. Quite naturally,
this at once makes all the computations very cumbersome, but in
the solution of concrete problems requiring exact knowledge of the
roots of a polynomial, this has to be done.

Let us return to our polynomial % (z) and its root a,; note that
all values of the polynomials given below are computed by the
Horner method. Since

h(1.3) = —0.13987, h (1.31) = 0.0662923851
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it follows that

13 <y <<1.31

that is, we have the value of the root a; to an accuracy of 0.01. Now
let us apply the method of linear interpolation to the new interval:

__ 1.31.(—0.13987) —1.3.0.0662023851 __ 0.26940980063 _ 4 a10c
€= —0.13987— 0.0662923851 = 0.2061623851 oo

We also apply Newton’s method to this interval, setting g, =

= 1.31. Since
k' (1.31) = 20.92822405

it follows that

d=1.31—
Thus,

0.0662923851  27.3496811204
30.92820405 — 20.92829405 — 1.30683 . ..

1.30678 << oy << 1.30684

and therefore, setting oy = 1.30681, we have an error of less than
0.00003.

We have not yet shown that the foregoing methods actually
‘permit computing a root to any desired accuracy, that is to say we
have not proved the convergence of these methods. Let us do so at
least with respect to Newton’s method.

As above, let the simple root e of the polynomial f (z) lie in the
interval (@, b) chosen as required by the Newton method. For one
thing, this implies the existence of positive numbers A and B such
that everywhere on the interval (a, b),

[f @) |>A4, [f"@|<B &)

‘We introduce the notation

B
‘ C=%7
and assume that
Chb—a<1 (4)

To fulfil this inequality it may be necessary to replace the interval
(a, b) of the root a by a smaller one; but this will not affect the vali-
dity of inequalities (3). Let a, be the endpoint of the interval (a, b)
at which Newton’s method is to be applied. On the basis of formula
(2) we get a succession of approximate values of the root a.: a4, a,, . .
.« @y, - - ., lying in the interval (@, b) and related by the equah-
ties
_ __f(any) —

ap = p—y ey’ k=1, 2, ...
Let

a=ak+hk, k=0,1,2,... (6)
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Then

0= (&)= (ar) + huf” (@) + 222 (a5 -+ Oly)

where 0 << 0 << 1. Since f' (@) =0 due to the condition imposed
on the interval (a, b), we get, taking into account (5) and (6),

hkf (ap -+ Ohy) — Ry flaw) (ak_ f(ap)

2 fla) 7 (en) F (ax )) = ars =hass
Whence
[ B | =R Wl<hhy Chi, k=0,1,2,...
Thus
| sy | <Chy < COh_y <CThi_p < ... < C2*"=1p3"
or, since |k | = |@ —a, | < b — a,

|| <CLC(h—a)®™™, k=0, 1, 2, o)

Whence, because of condition (4), it follows that the dzﬁerence hy
between the root a and its approxzimate value a, obtained by successive
application of the Newton method tends to zero with increasing k. The
proof is complete.

Note that (7) gives an estimate of the error for the (k + 1)th
step; this is essential if the Newton method is used by itself and
not in conjunction with the method of linear interpolation.

Texts dealing with the theory of approximations give procedures
with better arranged computations (that simplify their use) than
those we have given. Such courses also describe many other methods
for approximating roots. These include the method of Lobachevsky
(sometimes erroneously called the Graeffe method). This method
enables one to find at once the approximate values of all roots, inclu-
ding complex roots, and does not require a preliminary isolation
of the roots. However, the computations are extremely unwieldy.
Underlying this method is the theory of symmetric polynomials,
which we describe in Chapter 11 below.



CHAPTER 10

FIELDS
AND POLYNOMIALS

43. Number Rings and Fields

In the earlier parts of this book we have frequently been in a
position where we investigated complex numbers or only real numbers
with the proviso that the results obtained hold true if we restrict
ourselves to the real numbers (or, correspondingly, that they carry
over word-for-word to the case of any complex numbers). As a rule,
in all these cases it might be noted that the theory would hold true
completely if we confined ourselves solely within the scope of the
rational numbers. The time has now come to indicate the reasons
for this parallelism and thus enable us to present the material
(which follows) in its natural generality, that is to say, in accepted
algebraic language. To do this, we introduce the concept of a field,
and also the broader concept (which plays a subsidiary role in our
course) of a ring.

Evidently, the systems of all complex, real and ratioral numbers,
like the system of all integers, have one property in common: they are
all closed not only under addition and multiplication, but under sub-
traction as well. This property of the enumerated number systems
distinguishes them, say, from the system of positive integers or posi-
tive real numbers.

Any system of numbers, complex or (in the particular case)
real, containing a sum, a difference and a product of any two of its
numbers is termed a number ring. Thus, the systems of all integers,
and of rational, real and complex numbers are number rings. On
the other hand, no system of positive numbers is a ring since if a
and b are two different numbers, then either ¢ — b, or b — a is
negative. Neither is a system of negative numbers a ring because
the product of two negative numbers is positive.

The four examples given above do not by any means exhaust
the range of number rings. A few more instances will now be given;
each time it is left to the reader to verify that the number system
is indeed a ring.

17—5760
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The even numbers form a ring; generally, for any natural number
n the collection of integers exactly divisible by » is a ring. The
odd numbers do not constitute a ring since the sum of two odd numbers
is an even number.

Another instance of a ring is the collection of rational numbers
whose denominators, in lowest terms, are powers of 2. This collec-
tion includes, for example, all integers, since when simplified their
denominators are 1, that is, two to the power zero. In this example,
in place of 2 we can of course take any prime number p. Generally,
taking any (finite or infinite) set of prime numbers and considering
the system of rational numbers whose simplified denominators are
divisible only by primes belonging to the given set, we again get a
ring. On the other hand, the collection of rational numbers whose
simplified denominators are not divisible by the square of any prime
will not be a ring, since the indicated property of the numbers is not
preserved in their multiplication.

Let us now examine number rings that do not lie entirely in the
ring of rational numbers. A collection of numbers of the form

a+bV2 (1)

where a and b are any rational numbers, is a ring; in particular,
thisring includes all rational numbers (for b = 0) and also the number

/2 itself (for a = 0, b = 1). We would also have obtained a ring
if we had confined ourselves to numbers of the form (1) with inte-
gral coefficients a, b. In these examples, we could of course have

taken }/3 or /5, etc. in place of /2.
The system of numbers of the form

o+ b3 @)

with rational (or only integral) coefficients a, b is not a ring because

the product of ﬂ by itself cannot, as can easily be checked, be
written as (2).* However, the system of numbers of the form

a+by2+cY% 3)

* Indeed, let
Vi=atby2 (2')
where the numbers a and b are rational. Multiplying both sides of this equation

by 372, we get B
2=ay/24+bY%

Substituting the expression (2) for }/ 4, we arrive (after some obvious manipula-
tions) at the equation

(a-+0%) Y 2=2—ab (2%)
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with arbitrary rational coefficients a, b, ¢, is a ring, and this is
also true if we confine ourselves to the case of integral coefficients.

Let us now consider all real numbers obtainable by applying
several times the operations of addition, multiplication and sub-
traction to the familiar number pi (n) and any rational numbers.
These will be numbers that can be written as

ay + aym + an® - ...+ a,n” (4)

where ag, a4, a5, - . ., a, are rational numbers, » > 0. Note that
no number can have two distinct notations of the type (4), for other-
wise, by taking their difference, we would find that the number =
satisfies some equation with rational coefficierits; now methods of
mathematical analysis tell us that actually n cannot satisfy any
equation with rational coefficients, which is to say that n is trans-
cendental. Incidentally, even without taking advantage of this
result, that is, assuming that the notation of a number in the form
(4) is unique, we can show that numbers like (4) constitute a ring.

Another ring is the collection of numbers obtained from s and
rational numbers via operations of addition, multiplication, sub-
traction and division applied several times. To prove this, there is
no need to seek a particularly suitable notation for these numbers
(though it may possibly be found). If the numbers o and § are obtai-
ned from m and some rational numbers by the indicated operations,
then quite naturally it will be true of the numbers o 4 f, & — B,

ap and also (for f = 0) of the number % .

Finally, if we take the collection of complex numbers a -+ bi
with arbitrary rational a, b, we get a ring; this will also be true
if we confine purselves to integral coefficients a, b.

The examples given above do not give a full picture of the great
diversity of number rings. But we will not now continue the list
of examples and will examine one special and very important type
of number ring. We of course know that in the systems of rational,
real, and complex numbers, division (except by zero) is unlimited,
whereas these number systems are not closed under division of inte-
gers. Up to now we paid but slight attention to this difference. Actu-
ally, it is very essential and brings us to the following definition.

A number ring is called a number field if it contains the quotient
of any two of its numbers (the divisor is of course assumed to be

If a + b2=~0, then
_Vz_ 2—ab
RN
which is impossible since the number on the right is rational. But if ¢ + 82 =
=0, then, by (2”) we have 2 — ab = 0. From these two equations follows the

fact that b%= —2 which is again out of the question since the number & is
rational.

17+
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different from zero). We can thus speak of the field of rational num-
bers, the field of real numbers, the field of complex numbers,
whereas the ring of integers does not constitute a field.

Some of the earlier considered examples of number rings are
actually fields. To begin with, notice that there do not exist number
fields different from the field of rational numbers and entirely embed-
ded in it (we do not consider the system of zero alone to be a field).

Even the following more general assertion holds true.

The field of rational numbers lies entirely within any number field.

Indeed, let there be some number field, call it P. If a is any
number of P different from zero, then P also contains the quotient
of the division of a by itself, that is, the number 1. Adding unity
to itself several times, we find that all the natural numbers lie in
the field P. On the other hand, P must also contain the difference
a — a, which is the number 0, and so P contains the result of sub-
tracting any natural number from zero, which is to say, any negative
integer. Finally, P contains the quotients of all integers, or, gene-
rally, all rational numbers.

The field of complex numbers contains many different fields, and
the field of rational numbers is only the smallest in it. Thus, the
ring, considered above, of numbers like

at+b)2 (5)

with arbitrary rational (and not only integral) coefficients a, b is
a field. To see this, consider the quotient of two numbers of the
form (5), a + b V2 and ¢ + d)/2; cqusider the second number to
be different from zero, hence the number ¢ — d }/2 is also nonzero,
and so

a+bV2  (a+b2) (c—d/2) _ac—2bd+ be—ad V3
crdV2 (c+dV2)(c—d)32) 224 ' c2-2d?

We again have a number of type (5), and the coefficients remain
rational. In this example, the number }/ 2 may naturally be repla-
ced by the square root of any rational number whose square root
cannot be taken in the field of rational numbers. Thus, the field is
made up of numbers of the form ¢ + bi with rational a, b.

44, Rings

In various divisions of mathematics, and also in applications
of mathematics to science and engineering, one often has to perform
algebraic operations with a variety of nonnumerical entities. The
preceding chapters of this book afford numerous examples: the
multiplication and addition of matrices, the addition of vectors,
operations involving polynomials, operations on linear transforma-
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tions. The general definition of an algebraic operation that is sati-
sfied by the operations of addition and multiplication in number
rings, and also by operations in the indicated examples, consists
in the following.

A set M is given that consists either of numbers or of objects
of a geometrical nature, or, generally, of certain things which we
will call elements of the set. We say that an algebraic operation is
defined on the set M if a law is indicated according to which any
two of elements a, b of the set are uniquely associated with some
third element ¢ which also belongs to M. This operation may be
called addition, then ¢ is termed the sum of the elements a and b and
is denoted by the symbol ¢ = a + b; the operation may be called
maultiplication, then c is the product of the elements ¢ and b, ¢ = ab;
finally, it may be that a new terminology and symbolism will be
introduced for an operation defined on M.

In each of the number rings are defined two independent opera-
tions, addition and multiplication. Subtraction and division will
not be considered new operations since they are the inverses of addi-
tion and multiplication if we accept the following general defini-
tion of an inverse operation.

Let an algebraic operation, say addition, be defined on the set
M. Then we say that there is an inverse operation called subtraction
if for any two of elements a, b of M there exists in M an element d
that is unique and that satisfies the equation b 4 d = a. The ele-
ment d is then called the difference between the elements a and b
and is denoted by the symbol d = a — b.

It is obvious that in number fields, both addition and multipli-
cation have inverses. True, there is one restriction relative to multi-
plication: the divisor must be different from zero. Now in number
rings that are not fields (say, in the ring of integers), only addition
has an inverse operation.

On the other hand, in the system of all polynomials in the un-
known z, whose coefficients belong to a fixed number field P, there
are also defined two operations: addition and multiplication, addi-
tion having the inverse operation of subtraction.

As we know, both in number rings and in the system of polyno-
mials, the operations of addition and multiplication have the follo-
wing properties (a, b, ¢ are arbitrary numbers in the number ring
Endg;‘ consideration or are arbitrary polynomials in the system at

and):
I. Addition is commutative: a + b = b + a.
II. Addition is associative: @ + (b +¢) = (¢ + b) + .

ITI. Multiplication is commutative: ab = ba.

IV. Multiplication is associative: a (bc) = (ab) c.

V. Multiplication is distributive over addition:

(¢ + b) ¢ = ac + be.
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We are now prepared for a general definition of the concept of
a ring, one of the most important concepts of algebra.

A set R is called a ring if on it are defined two operations: addi-
tion and multiplication, both commutative and associative and also
related by the distributive law, addition having the inverse opera-
tion of subtraction.

We thus have the following examples of rings: number rings,
rings of polynomials in the unknown z with coefficients from the
given number field or even from the given number ring. Let us take
one more example which illustrates the breadth of the ring
concept.

The course of mathematical analysis begins with a definition
of a function of a real variable z. Let us consider the collection of
functions that are defined for all real values of x and that take on
real values; let us define algebraic operations in this collection as
follows: the sum of two functions f (z) and g (z) is a function whose
value for any z = z, is equal to the sum of the values of the given
functions, that is, it is equal to f (z0) + g (zo)- The product of these
functions is a function whose value for every x = z, is equal to the
product f (zo) - g (zo)- For any two functions of the collection at hand,
there obviously exists a sum and a product. The truth of Proper-
ties I to V is verified without ahy difficulty. The addition and multi-
plication of functions reduce to the addition and multiplication
of their values for any z, which is to say, they reduce to operations
on real numbers, for which the Properties I to V hold. Finally, ta-
king for the difference of the functions f (z) and g (z) a function whose
value for any z = z, is equal to the difference f (z;) — g (x), we
arrive at the operation of subtraction, the inverse of addition. This
proves that the collection of functions defined for all real x becomes
a ring as soon as we introduce (as indicated above) the operations of
addition and multiplication.

Other examples of rings of functions may be obtained by conside-
ring otherwise defined functions, while preserving the definitions
of operations on functions given above: functions defined, say, only
for positive values of the unknown z, or functions defined for values
of z over the interval [0, 1]. Generally, a system of all the functions
having some given domain of definition is a ring. We could also obtain
rings by regarding not all the functions defined in a given domain,
but only the continuous functiens studied in the course of mathema-
tical analysis. On the other hand, we could consider the complex
functions of a complex variable. Generally speaking, there are very
many different function rings, just as there are a great diversity of
number rings.

Let us now establish some of the more elementary properties
of rings which follow directly from the definition of a ring. For
numbers, these properties are quite ordinary, but the reader will
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possibly be surprised to find that they are consequences only of the
Conditions I to V and the existence of unique subtraction.

First a few remarks regarding the significance of Conditions I
to V. The role of the commutative laws is evident enough. The signi-
ficance of the associative laws consists in the following: the defini-
tion of an algebraic operation speaks of the sum or product of only
two elements. If we attempt to define the product of, say, three
elements a, b, ¢, then we have the difficulty that the products au
and ve, where bc = u, ab = v, may, generally speaking, not coin-
cide, that is, a (bc) 5= (ab) c. The associative law demands that
these products be equal to one and the same element of the ring:
it is natural to take this element for the product abe, written without
brackets. What is more, the associative law permits defining uniquely
the product (sum) of any finite number of elements of the ring; that
is, it permits proving that a product of any r elements is independent
of the original arrangement of parentheses.

Let us prove this assertion by means of induction with respect
to the number n. It has already been proved for n = 3, and so let
us assume 7 > 3 and also that for all numbers less than » our asser-
tion has already been proved. Let there be elements a4, a,, . . ., a,
and let there be some kind of arrangement of parentheses in this
system indicating the order in which multiplication is to be perfor-
med. The last step will be the multiplication of the product of the
first k& elements aia,...ay (where 1<k <n — 1) by the pro-
duct ap18p4, . . . a,. Since these products consist of a smaller,
than n, number of factors and for this reason, by hypothesis, are
uniquely defined, it remains to prove the following equation for
any k and I:

(@185 . . . @) (@n44@ntg - - - Gn) = (@8y - . . @) (@410 145 - - - Oy)

To do this, it will suffice to consider the case [ = k -+ 1. But then,
setting

diaz...dk=b, Ap4olpa3 « « « Ap = C
we get, by the associative law,
b (an+1c) = (bapy4) ¢

Which proves our assertion.

We can speak, in particular, about the product of » equal ele-
ments; that is, we can introduce the concept of a power, a”, of the
element a with positive integral exponent n. It is easy to verify that
all the ordinary rules for operating with exponents hold true in any
ring. Analogously, the associative law of addition leads to the
concept of a multiple, na, of the element a by a positive integral
coefficient n.
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The distributive law, that is, the usual rule for removing brackets,
is the only requirement in the definition of a ring that connects addi-
tion and multiplication; it is only through this law that the joint
study of the two indicated operations yields more than could be
obtained in their separate study. The statement of the distributive
law involves the sum of only two terms. However, it can readily
be proved that the equality

(a,+a2+...—i—ah)b;aib—l—azb—l—...—|—akb

holds for any % and that the general rule of multiplication of a sum
by a sum is true.

Also, the distributive law holds true in any ring for a difference as
well. Indeed, by the definition of a difference, the element ¢ — b
satisfies the equality

b+(@a—0>b =a

Multiplying both sides of this equation by ¢ and applying the distri-
butive law to the left member, we get

be + (a — b)c = ac

Element (@ — b) ¢ is consequently the difference of the elements ac
and be:

(@ —b)c =ac— b

Very important properties of rings follow from the existence
of subtraction. If & is an arbitrary element of a ring R, then the
difference ¢ — a will be some quite definite element of the ring.
Its role is similar to that of zero in number rings, but, by definition,
it may depend on the choice of the element a and therefore we will
provisionally denote it by 0,.

We will prove that actually the elements 0, are equal for all a.
Indeed, if b is some other arbitrary element of a ring R, then by
adding the element 0, to both sides of the equation

a+(b—a)=b

and using the equation 0, + @ = a, we get
Og +-b=0+a+®b—a)=a+(b—a) =10
Thus, 0, = b — b = 0,.

We have proved that ary ring R possesses a uniquely defined ele-
ment which when added to element a of that ring is a. We call this
element the zero element of the ring R and we denote it by 0. We
believe there is no real danger of confusing it with the number zero.
Thus,

a+0=a for all ain R
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To continue, in any ring there exists for any element a uniquely
defined inverse element —a which satisfies the equation

¢+ (—a) =0

Namely, this element is the difference 0 — a; the uniqueness follows
from the uniqueness of subtraction. It is obvious that —(—a) = a.
The difference b — ¢ of any two elements of a ring may now be
written as
b—a=2b-+ (—a)
Indeed,
b+ (—a)l+a=b+(—a)+al=b+0=0>

For any element a of the ring and for any positive integer n we

have the equality
n(—a) = —(na)

And true enough, grouping the terms we get
na+n(—a) =nla+ (—a)l =n-0=20

We are now in a position to define regative multiples of an ele-
ment of a ring: if » > 0, then the equal elements n (—a) and —(ra)
will be denoted by (—n) a. Let us finally agree to use the term zero
multiple 0-a of any element a for the zero element of the ring under
consideration.

We have defined zero solely by means of the operation of addi-
tion and its inverse, that is to say, without using multiplication.
However, in the case of numbers, the number zero has a characte-
ristic and very important property with respect to multiplication
too. It turns out that this property is possessed by the zero element
of every ring: in any ring the product of any element by zero is zero.
The proof rests directly on the distributive law: if a is an arbitrary
element of a ring R, then no matter what the auxiliary element z
of this ring, we get

a0 =a(x—2)=ar —ax =0

Using this property of zero, we can prove that in any ring the
following equality holds for any elements a, b:

(—a) b = —ab
True enough,
ab + (—a)b=1la+ (—a)lb=0b=0

Which implies that the familiar yet somewhat mysterious rule
for the multiplication of negative numbers, “two negatives make
a positive”, also follows from the definition of a ring, that is, in
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any ring we have the equality
(—a) (—b) = ab
Indeed,
(—a) (—b) = —la (—b)] = —(—ab) = ab

The reader will not find any difficulty now in proving that in any
ring all the rules for operating with the multiples of any number hold
true for the multiples (including negative multiples) of any element.

Thus, the algebraic operations in an arbitrary ring have many
of the familiar properties of operations on numbers. However, one
should not think that every property of addition and multiplica-
tion of numbers is preserved in any ring. For instance, the multi-
plication of numbers has a property which is the converse of the
one considered above: if a product of two numbers is equal to zero,
then at least one of the factors is zero. This property cannot be
carried over to all rings. In some rings we can find pairs of nonzero
elements whose product is equal to zero, that is, a 54 0, b 5= 0, but
ab = 0; elements ¢ and b with this property are called divisors
of zero.

Naturally, among the number rings one cannot find any instances
of rings with zero divisors. Likewise there are no zero divisors among
the rings of polynomials with numerical coefficients. However, many
function rings have zero divisors. First of all, let us note that in any
function ring a zero is a function equal to zero for all values of the
variable z. Let us now construct the following functions f (z) and
g {z) defined for all real values of z:

f@ =0 for 20, f(@) =2z for >0,
g@ =2 for 2<<0, g(x =0 for >0

Both functions are nonzero since their values are not equal to zero
for all values of z, but the product of these functions is zero.

Not all the requirements I to V that enter into the definition
of a ring are necessary in equal measure. The development of mathe-
matics shows that whereas the properties I and II of addition and
the distributive law V occur in all applications, the inclusion of
the multiplication properties 111 and IV in the definition of a ring
is too confining and narrows the sphere of application of this con-
cept. Thus, when the set of square matrices of order » with real
elements is regarded with the operations of addition and multipli-
cation of matrices, it satisfies all the requirements in the definition
of a ring, with the exception of the commutative law of multipli-
cation. Noncommutative multiplications are encountered so often
and in such important instances that the term “ring” is now usually
interpreted to mean a noncommutative ring (or, more precisely, a not
necessarily commutative ring, in the sense of possible noncommuta-
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tivity of multiplication), and the special type of ring in which requi-
rement 111 is fulfilled is termed a commutative ring.

There has also been much interest recently in rings with nonas-
sociative multiplication and the general theory of rings under con-
struction is now a theory of nonassociative (that is to say, not neces-
sarily associative) rings. An elementary instance of such a ring is
the set of vectors of three-dimensional Euclidean space under the
operations of the addition and (taken from the course of analytic
geometry) the vector multiplication of vectors.

45. Fields

In the set of number rings, we singled out and gave the name
number fields to those rings which admit division (except by zero).
It is natural to do this in the general case as well. First note that
no ring admits division by zero in virtue of the above-proved property
of zero under multiplication: to divide an element ¢ by zero means
to find, in that ring, an element z such that 0-z = a, which for
a == 0 is impossible, since the left-hand side is equal to zero.

Let us introduce the following definition.

A ring P is termed a field if it consists of more than zero alone
and if division can be performed uniquely in all cases except divi-
sion by zero; that is to say, for any elements ¢ and b in P, b =% 0,
there is in P a unique element ¢ which satisfies the equality bg = a.
The elcment g is called the quotient of the elements a and b and is

denoted by the symbol ¢ = »';—.*

Quite naturally, all number fields are instances of fields. A ring
of polynomials in the unknown z with real coefficients and, gene-
rally, with coefficients taken from some number field, is not a field.
The division with a remainder that polynomials have differs of
course from exact division, which is assumed in the definition of
a field. On the other hand, it is easy to see that the set of all fractional
rational functions with real coefficients (see Sec. 25) will be a field
containing the ring of polynomials, just like the field of rational
numbers contains the ring of integers.

We could point to certain other instances of fields within the
ring of functions, but instead we will examine examples of quite
a different sort.

All the number rings, and in general all the rings we have con-
sidered so far, contain infinitely many elements. There are, however,

* The uniqueness of division in a field, just like the assumed uniqueness
of subtraction in the definition of a ring, can actually be proved without any
difﬁcult}; by means of the requirements that enter into the definition of a field
{or ring).



268 CH. 10, FIELDS AND POLYNOMIALS

rings and even fields consisting only of a finite number of elements.
The simplest examples of finite rings and finite fields which are essen-
tial objects in the theory of numbers are constructed in the follo-
wing manner.

Take any natural number » different from 1. The integers ¢ and b
are called congruent modulo n,

a = b (mod nr)

if these numbers yield the same remainder when divided by =,
that is to say, if their difference is exactly divisible by n. The entire
ring of integers is separated into » mutually exclusive (noninter-

secting) classes
CO) C:ln « e ey Cn-l (1)

of numbers congruent modulo », theclass Cp, £k = 0,1, . . ., n — 1,
consists of numbers which yield, upon division by n, the remainder
k. Tt turns out that it is possible, in a very natural way, to define
the addition and multiplication of these classes.

For this purpose, let us take any (not necessarily distinct) classes
C, and C; from the system (1). Adding any number of class C; to
any number of class C;, we obtain numbers lying in one very defi-
nite class, namely, in the class Cy .y, if £ + [ << n, or in the class
Criin if K+ 1> n. This leads to the following definition of the
addition of classes:

Ck + Cl = Ck+l for & + l< n, (2)
Ch +C,=Chytn for k+12>n

On the other hand, multiplying any number of class C;, by any
number of class C; we get numbers lying in a definite class, namely
the class C,, where r is the remainder left after dividing the product
kIl by n. We thus have the following definition of the multiplication
of classes:

Cp-C; = C,, where kl=ng -+ r, or<n (3)

The system (1) of classes of integers congruent modulo n is a ring
with respect to the operations defined by the conditions (2) and (3).
Indeed, the requirements I-V are readily seen to be valid from the
definition of a ring, but this validity also follows from the truth of
these requirements in the ring of integers and from the relationship,
indicated above, between operations on integers and operations
on classes. Zero is obviously the class C, consisting of numbers exactly
divisible by n. The class opposite to Cy, k=1, 2, ..., n — 1, is
the class C,-,. In the system (1) of classes it is thus possible to
define subtraction, that is, this system satisfies all the requirements
of the definition of a ring. Let us agree to denote the resulting ring
by Z..
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. If the number n is a composite number, then the ring Z, possesses
zero divisors and therefore, as will be shown below, it cannot be a
field. Indeed, if » = kI where 1 <<k <<n, 1 <<I < n, then the classes
C, and C; are different from the zero class Cy, but by the definition
of the multiplication of classes [see (3)], C\-C; = C,.

But if the number n is prime, then the ring Z, is a field.

To see this, let there be classes Cp and C,,, Cp 5= Cy, ie., 1 <
< k<< n— 1. We have to show that it is possible to divide C,, by
Cy, or to find a class C; such that C,-C; = Cp,. If C,, = C,, then
C: = (Cyaswell. But if C,, = Cy, then we consider the set of numbers

k, 2k, 3k, ..., (n — 1)k (4)

All these numbers lie outside the zero class C,, since the product of
two natural numbers less than a prime » is not divisible by n. Also,
no two numbers sk and #& from (4), s << ¢, can be in one class, for
then their difference

th —sk=(t—s)k

would be divisible by » , which again is in conflict with the primality
of the number n. Thus every nonzero class contains exactly one num-
ber from the set (4). For instance, in the class C,, there is the number
Ik, where 1<l <Cn — 1, that is, C;-C, = C,, and then class C;
will be the desired quotient resulting from the division of C,, by C,.

We have thus obtained an infinity of distinct finite fields: the
field Z,, consisting of only two elements, and also the fields Z,, Z;,
Z,, Zy, and so on.

Let us examine some properties of fields that follow from the
existence of division. These properties are similar to those of rings
based on the existence of subtraction and are demonstrated by the
same arguments, and so the proof will be left to the reader.

Every field P has a uniquely defined element whose product by any
element a of the field is equal to a. This element, which coincides with

equal quotients g- for all nonzero a is called the yrity (unit) element
of the field P and is denoted by 1. Thus,

a-1=a for all a in P

For every nonzero element a, there is, in every field, a unique inverse
element a~' which salisfies the equality

a-al =1

namely, a! = % It is obvious that (2~!)~! = a. The quotient TI:-
may now be written in the form
b

—=ph-a1
a
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For any element a different from zero and for any positive inte-
ger n we have the equality

(a—l)n — (an)—l

Denoting these equal elements by a~", we arrive at negative powers
of an element of the field for which the ordinary operating rules hold.
Let us finally agree that a® = 1 for all a.

The existence of a unit element is not a characteristic property
of fields: the ring of integers, for instance, has a unit element. Yet
the example of the ring of even numbers shows that not all rings pos-
sess a unit element. On the other hand, any ring possessing a unit ele-
ment and an inverse for every nonzero element is a field. Indeed, in

this case for the quotient % , @ %= 0, we have the product ba~!. It

is easy to prove the uniqueness of this quotient.

Notice that no field has zero divisors. Let ab = 0, but a = 0.
Multiplying both sides of the equality by the element a~!, we get
(¢7*a) b = 1-b = b on the left and -0 = 0 on the right, or b = 0.
From this it follows that in any field any equality may be divided by a
common nonzero factor. This is so, since if ac = be and ¢ 5= 0, then
(@ —b)c=0, whence a — b =0, or a =b.

From the definition of the quotient %— (where b =% 0) and from

the above-proved possibility of writing it as the product ab~?, it is
easy to see that all the ordinary rules for handling fractions hold true
in any field, namely:

i:% if and only if ad=bc,

b
a c ad ~+ be
TET=T "
a c ac
BdT v
—a a
)

The characteristic of a field. Not all properties of number fields
hold true in the case of arbitrary fields. Say, if we take 1 and add 1
to it several times, that is, if we take any positive integral multiple
of one, we will never get zero, and, generally, all these multiples
(that is, all natural numbers) are distinct. But if we take integral
multiples of unity in some finite field, then there will invariably be
equal integral multiples, since the field has only a finite number of
distinct elements. If all the integral multiples of unity of a field P
are distinct elements of P, that is, k-1 % 1.1 for k =~ [ then we say
that the field P has characteristic zero. Such for example are all the
number fields. But if there exist integers & and [ such that & > I,
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but in P we have the equality %-1 = [.1, then (¢ — )1 =0,
i.e., there exists in P a positive multiple of unity which is equal
to zero. In this case P is called a field of a finite characteristic, namely
of the characteristic p, if p is the first positive coefficient with which
the unit element of the field P vanishes. All finite fields are examples
of fields of a finite characteristic. Incidentally, there also exist infi-
nite fields having a finite characteristic.

If a field P has a characteristic p, then the number p is prime.

Indeed, from the equality p = st, where s << p, ¢ << p, would
follow the equality (s-1) (£-1) = p-1 = 0, that is to say, since a
field cannot have zero divisors, then either ss1 =0 o0r t1 =0,
which, however, runs counter to the definition of a characteristic as
the least positive coefficient which makes the unit element of the
field vanish.

If the characteristic of a field P is equal to p, then for any element a
of the field we have the equality pa = 0. But if the characteristic of
the field P is 0 and a is an element of the field, n an integer, then from
a0 and n =0 it follows that na == 0.

Indeed, in the first case the element pa (that is, the sum of p
terms equal to @) can, by factoring out a, be represented as

pe=a(p-1) =a-0=0

In the second case, from the equality na = 0, that is, a (n-1) = 0,
we would get n-1 = 0, a =% 0; that is,  since the characteristic of
the field is zero, n == 0.

Subfields, extensions. Suppose in the field P a portion of the
elements (some set P’) is itself a field with respect to the operations
defined in P; that is to say, for any two elements @, b in P’, the

elements (in the field P) a 4 b, ab, a — b, and, for b = 0, %— belong

to P’ (the laws I to V will of course hold in P’ since they hold in P).
Then P’ is a subfield of the field P, and P is an extension of the field P’.
Quite naturally, the zero and unity of P will lie in P’ as well and
will also serve in P’ as zero and unity. Thus, the field of rational
numbers is a subfield of the field of real numbers; all number fields
are subfields of the field of complex numbers.

Let there be given in the field P a subfield P’ and an element ¢
exterior to P’ and suppose we have a minimum subfield P" of P
which contains both P’ and ¢. There can only be one such minimum
subfield, since if P” were one more subfield with these properties,
then the intersection of subfields P” and P” (i.e., the collection
of elements common to both subfields) would contain P’ and the
element ¢ and, together with any two of its elements, it would
contain their sum (this sum must lie both in P” and in P” , and so
also in their intersection) and likewise their product, difference and
quotient; in other words the intersection would itself be a subfield,
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but this contradicts the minimality of the subfield P”. We will say
that the field P" is obtained by adjoining an element ¢ to the field P’
symbolically, we write P" = P’ (¢).

The field P’ (¢) naturally contains, besides the element ¢ and
all the elements of the field P’, also all the elements which are
derived from them by the operations of addition, multiplication,
subtraction and division. By way of illustration, recall the extension
(considered in Sec. 43) of the field of rational numbers consisting

of numbers of the form @ + b )/ 2 with rational a, b; this extension

results from adjoining the number /2 to the field of rational num-
bers.

46. Isomorphisms of Rings (Fields).
The Uniqueness of the Field of Complex Numbers

The concept of an isomorphism plays an important role in the
theory of rings. Namely, the rings . and L' are called isomorphic if
a one-to-one correspondence can be set up between them such that
for any elements @, b in L and for the corresponding elements a’, b’
in L', the sum a + b corresponds to the sum a’ + &', and the pro-
duct ab corresponds to the product a’'b’.

Suppose an isomorphic correspondence exists between the rings
L and L'. In this correspondence, the zero O of L corresponds to the
zero 0' of L'. Indeed, suppose the element Ois associated with an ele-
ment ¢’ of L'. Take an arbitrary element & of L and the associated
element a' of L'. Then to the element a + 0 there has to correspond
the element a’ + ¢'; but a + 0 = 4, and so &' + ¢’ = a’, whence
¢’ = ('. Furthermore, the element —a is associated with the element
—a’'. Indeed, let the element —a be associated with the element d'.
Then to the element ¢ + (—a) = 0 there will have to correspond
the element a' + d', that is, @’ + d' = 0’, whence d' = — a’. This
implies that fo a difference of elements in L there corresponds a diffe-
rence of the corresponding elements of L'. By similar arguments it
may be shown that if the ring L has a unit element, then the image
of this element (i.e., the element corresponding to it in L’ under
the given isomorphism) will be the unit element of the ring L',
and if the element @ from L has the inverse a~1, then in L' the image
of a™ is the inverse element of a'.

This implies that a ring isomorphic to a field is itself a field. It
is also easy to see that the property of a ring not to have zero divi-
sors also holds in an isomorphic correspondence. Generally speaking,
isomorphic rings can differ as to the nature of their elements, but
they are identical with respect to their algebraic properties. Any
theorem which has been proved relative to some ring will hold true
for all rings isomorphic to that ring, provided that the proof does
not involve any individual properties of the elements of the ring
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but only the properties of the operations. For this reason we will
not consider isomorphic rings or fields to be distinct; for us they will
simply be different copies of one and the same ring or field.

Let us apply this concept to the problem of constructing the
field of complex numbers. The construction, given in Sec. 17, of
the field of complex numbers was based on the use of points in the
plane. This is not the only possible construction. In place of points,
we could have taken line segments (vectors) in the plane that emanate
from the coordinate origin, and by specifying these vectors via their
components a, b on the coordinate axes, we could have defined addi-
tion and multiplication of the vectors with the aid of the same formu-
las (2) and (3) of Sec. 17, as in the case of points in the plane. We
could have gone further still and dispensed with geometrical mate-
rial altogether: noting that points in a plane and also vectors in a
plane can be represented by ordered pairs of real numbers (a, &), we
could simply take the collection of all such pairs and introduce
addition and multiplication via formulas (2) and (3) of that section.

With respect to their algebraic properties, all these fields would
be indistinguishable, as witness the following theorem.

All extensions of the field D of real numbers derived by adjoining
to D a root of the equation

2B+ 1=0 )

are isomorphic among themselves.

Indeed, suppose we have a field P which is an extension of the
field D and contains an element satisfying equation (1). The choice
of denoting this element is up to us, and we use the letter i. We thus
get the equation i® 4+ 1 = 0 (whence i? = — 1), where involution
and addition are to be understood in the sense of the operations
defined in the field P. We now want to find the field D (i) obtained
by adjoining the element i to the field D, that is, we wish to find the
minimal subfield of the field P containing both D and the element i.

For this purpose, let us examine all the elements a of the field
P which can be written in the form

a =a + bi (2)

where a and b are arbitrary real numbers, and the product of the
number b by element i and the sum of the number a¢ and this pro-
duct are to be understood in the sense of the operations defined in
the field P. No element & of P can possess two different representa-
tions of that form: from

a=a-+bi=a-+ bi
and b s£b there would follow

18—5760 |
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That is, i would be a real number, but if b = b, then ¢ = a. In
particular, the elements of P written as (2) include all real numbers
(the case b = 0) and also the element i (the case a = 0, b = 1).

We will now show that the collection of all elements of type (2)
constitutes a subfield of the field P. This will then be the desired
field D (i). Suppose we have the elements o« = a + bi and f =
= ¢ -+ di. Then, using the commutativity and associativity of addi-
tion and the distributive law, all of which hold in P, we get

a -+ p = (a+ bi) + (c + di) = (@ + c) +(bi + di)
whence
a+p=(@+e)+(b+adi 3
Thus, this sum again belongs to the set of elements under considera-
tion. Furthermore,

—B=(=) + (=9

since, by (3), the equality f 4+ (—p) =0 -+ 0i = 0 holds true.
Therefore

a—f=a+ (P =@—0c+0®-di (3
That is to say, this set is also closed under subtraction. Again using
properties from I to V, which hold for operations in the field P
(see Sec. 44), and relying on the equality i? = — 1, we get
afy = (a + bi) (¢ + di) = ac + adi + bci + bdi?
that is,
af = (ac — bd) + (ad + be) i (4)

Thus the product of any two elements of the type (2) is again an ele-
ment of this type. Finally, suppose that B 540, i.e., at least one of
the numbers ¢, d is nonzero. Then we will also have ¢ — di 540 and

(¢ + di) (c — di) = ¢® — (di)? = ¢® — d%?2 = ¢ + 4°

and ¢? 4- d?® 5= 0. Therefore, using the assertion (stated in the pre-
ceding section) that all the ordinary rules of handling fractions
hold true in any field, and thus, in particular, that a fraction remains
unchanged when the numerator and denominator are multiplied
by the same nonzero element, we obtain

o a+bi _ (atbi)(c—di) _ (acbd)+(be—ad)i

BT cxdi T (cxd)(e—di) c24-d2
That is to say, the element
o act+bd | bc —ad . ,
BT Era + i aqs 9]

again has the form (2).
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We will now show that the subfield D (i) which we have derived
from the field P is isomorphic to that field of points in a plane that was
constructed in Sec. 17. Associating with the element a -+ bi of the
field D (i) a point (2, b), we obtain [due to the uniqueness—just
proved —of the notation (2) for elements of the field D (i)] a one-to-
one correspondence between the elements of this field and all the
points in the plane. In this correspondence, the real number a is
associated with the point (a, 0) because of the equality a = a + 0i,
and the element i = 0 4 1-i is associated with the point (0, 1). On
the other hand, comparing formulas (3) and (4) of this section with
formulas (2) and (3) of Sec. 17, we find that the sum and product of
the elements o and P of the field D (i) are correlated with the points
which are the sum and, respectively, the product of points associa-
ted with the elements a and f.

This completes the proof of the theorem, since all fields that are
isomorphic to some given field are isomorphic among themselves.
For one thing, we see that the choice (in Sec. 17) of formulas (2) and
(3) for determining operations involving points was not accidental
and cannot be altered.

There are many other ways of constructing the field of complex
numbers. Let us examine one which uses the addition and multi-
plication of matrices.

We consider a noncommutative ring of second-order matrices
over the field of real numbers. It is obvious that the scalar matrices

(a 0
0a
constitute in this ring a subfield that is isomorphic to the field of
real numbers. It turns out, however, that in the ring of second-order
matrices over the field of reals, we can also find a subfield that is isomor-

phic to the field of complex numbers. Indeed, associate with every
complex number a 4 bi the matriz

(-a)

—ba

In this way, the entire field of complex numbers is mapped one-to-one
onto a part of the ring of second-order matrices, and from the equa-

tions
ab cd at+c bl-d
(o) +(af)-(Catnatd)
ab cd ac—bd ad-+ be
(—b a).(—d c)z(—(ad—{—bc) ac—-—bd)

18+
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it follows that this mapping is isomorphic, since the matrices in
the right-hand members correspond to the complex numbers
(@+c)+(b+d)i = (a+ bi)+ (c + di)and (ac — bd) + (ad +
~+ bc) i = (a + bi) (c + di). In particular, the role of the imagi-
nary unit i is played by the matrix

( 01
—10
The foregoing result indicates yet another possible way of con-

structing the field of complex numbers that is just as satisfactory
as those considered earlier.

47. Linear Algebra and the Algebra of Polynomials
over an Arbitrary Field

In the earlier chapters of this book devoted to linear algebra, the
base field was the field of real numbers. It is easy to verify, however,
that much of what was written in those chapters can be carried over
word for word to the case of an arbitrary base field.

Thus, for an arbitrary base eld P, the Gaussian method for solving
systems of linear equations, the theory of determinants and Cramer’s
rule, which were given in Chapter 1, all hold true. 1t is only the remark
concerning skew-symmetric determinants (at the end of Sec. 4)
which requires the assumption that the characteristic of the field
P is different from two. Incidentally, the proof of Property 4 (same
section) also breaks down if the characteristic of the field P is equal
to two, though the property itself holds true.

It is also useful to note that the assertion (mentioned repeatedly
in Chapter 1) on the existence of an infinity of distinct solutions to
an indeterminate system of linear equations holds true in the case
of any infinite base field P, but ceases to hold if P is finite.

The following carry over completely to the case of an arbitrary
base field: the theory of linear dependence of vectors, the theory of the
rank of a matriz and the general theory of systems of linear equations
(see Chapter 2), and also the algebra of matrices (Chapter 3).

The general theory of quadratic forms constructed in Sec. 26 is
carried over to the case of any base field P whose characteristic is different
from two. As can be readily demonstrated, the fundamental theorem
of this section ceases to hold without this restriction.

For example, let P = Z,, that is, let P be a field consisting of
two elements 0 and 1; let 1 4 1 = 0, whence —1 = 1, and let there
be a quadratic form f = z;z, over this field. If there exists a linear
transformation

zy = byys -+ bigyas
Z, = byys + byl
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which reduces f to canonical form, then in the equation

f = (buy1 + biays) (bauys + baoye)
= bubziy: + (bygboy + bizbzi) Y1Ya + biaboyy

the coefficient by;b,, + by,b,y of the product y,y, must be equal to
zero. But this coefficient is equal to the determinant of the linear
transformation that we took, since irrespective of whether b,,b,; = 1
or by,byy = 0, we have bjpb,y = — byebyy in both cases. Our linear
transformation turned out to be singular.

The rest of Chapter 6 is largely devoted to quadratic forms with
complex or real coefficients.

Finally, the entire theory of linear spaces and their linear trans-
formations which was constructed in Chapter 7 holds true for the case
of an arbitrary base field P. Incidentally, the concept of a characteri-
stic root is connected with the theory of polynomials over an arbi-
trary field (this will be discussed below). Notice that the theorem,
in Sec. 33, on the relationship between characteristic roots and
eigenvalues will now be formulated as follows: the characteristic
roots of a linear transformation ¢ which lie in the base field P, and
they alone, serve as the eigenvalues of this transformation.

Now the theory of Euclidean spaces (Chapter 8) is essentially
connected with the field of real numbers.

We can also extend to the case of an arbitrary base field P certain
of the above-discussed sections of the algebra of polynomials. Howe-
ver, it is first necessary to make precise the meaning of the concept
of a polynomial over an arbitrary field.

In Sec. 20 we indicated two viewpoints concerning the concept
of a polynomial: the formal-algebraic view and the function-theore-
tic view. Both can be transferred to the case of an arbitrary base
field. However, though they are equivalent in the case of number
fields (see Sec. 24), and, as can readily be verified, of infinite fields
in general, they cease to be equivalent in the case of finite fields.

Consider, for instance, the field Z, introduced in Sec. 45 and
consisting of two elements 0 and 1 with1 4 1 = 0. The polynomials
z 4+ 1 and 2? 4+ 1 with coefficients from this field are distinct;
that is to say, they do not satisfy the algebraic definition of equality
of polynomials. Yet, for z = 0, both these polynomials become 1,
and for x = 1 they have the value 0, that is to say, they must be
considered equal as “functions” of the “variable” z, which takes on
values in the field Z,. In the field Z,, consisting of three elements:
0, 1, 2, with 1 4+ 2 = 0, the situation is the same relative to the
polynomials 2® 4+ 2 + 1 and 2z + 1. Examples of this type can,
generally, be indicated for all finite fields.

Thus, in the theory of an arbitrary field P, one cannot accept the
function-theoretic view of polynomials. It consequently becomes
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necessary to make explicit the formal-algebraic definition of a poly-
nomial. For this purpose, we will construct a ring of polynomials
over an arbitrary field P such that dispenses, from the very start,
with the ordinary notation of polynomials in terms of an “unknown”
z.

Consider all possible ordered finite systems of elements of the
field P having the form
(aO'r ay, .« ., Qp-y, an) (1)

Here, n is arbitrary, n > 0, but for n > 0 it must be true that
a, 5= 0. Defining addition and multiplication for systems of the form
(1) in accord with formulas (3) and (4), Sec. 20, we convert the col-
lection of these systems into a commutative ring; the necessary proofs
of the properties repeat word for word what was accomplished for
number polynomials in Sec. 20.

In the ring we have constructed, systems of the form (a) (the
case n = () constitute a subfield isomorphic to the field P. This
permits identifying such systems with corresponding elements a
of the field P, that is, setting

(@) =a for all a in P (2)
On the other hand, denote the system (0, 1) by the letter z,
z=(0,1)

Then, applying the above-indicated definition of multiplication, we
find that z? = (0, 0, 1) and, generally,

=(0,0,...,0,1) 3)
N —
k times

Now using the definitions of addition and multiplication of
ordered systems, and also equalities (2) and (3), we get
(a0, ay, Qyy . . .y Gy_y, Gy)
= (a)) + 0, a3) + (0, 0, a))

+...+(0,O,..‘,O,%-1)“[‘(070,---107 an)
W—_/ e, e’

n—1 times n times
= (a0) + (a1) 0, 1) + (a9 (0, O, 1)
+-' . +(an—1) (07 Oa-"707 1) “{_(an) (07 0""70i 1)
N, e’ \_W—/

n—1 times n times
=ay + ax + ax? + . . . + apg2™t + az2"
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Thus, any ordered system of type (1) can be written as a poly-
nomial in z with coefficients from the field P, and this notation will
evidently be unique. Finally, starting with the already proved com-
mutativity of addition, we can go over to the notation in descending
powers of z.

Consequently, we construct a commutative ring which it is na-
tural to call a ring of polynomials in the unknown z over the field P.
This ring is symbolized as P [z].

The ring P lz] contains the field P itself, as was demonstrated
above. Now, as in the case of rings of polynomials over number fields
(see Sec. 20), the ring P lx] has a unit element, does not have zero di-
visors and is not a field.

If the field P is contained in a greater field P, then the ring P [z]
is a subring of the ring P [z]: any polynomial with coefficients from
P can of course be considered a polynomial over the field P too;
now the sum and product of polynomials depend solely on their
coefficients, and for this reason they do not change when passing
to a larger field.

To get a still better picture of the true extent of the concept
of a “ring of polynomials over a field P”, let us examine it from yet
another angle.

Let the field P be contained as a subring in some commutative
ring L. The element o of ring L is called algebraic over the field P
if there exists an equation of degree n, n > 1, with coefficients from
the field P that is satisfied by the element . If there is no such equa-
tion, then the element a is termed transcendental over the field P. Natu-
rally, the element 2 of the ring P [z] is transcendental over the
field P.

The following theorem holds true.

If the element a of ring L is transcendental over the field P, then
the subring L' obtained by adjoining the element o to the field P (i.e.,
the minimal subring of the ring L containing the field P and the
element a) is isomorphic to the ring P [z] of polynomials.

Indeed, any element p of the ring L which can be written as

p=aw" +aa"™* ...+ aqpya+a, n>0 (4)

with coefficients aq, a4, . . ., an_4, a, from the field P will be con-
tained in the subring L’. The element p cannot have two distinct
notations of the form (4), since by subtracting one from the other we
would find that there exists an equation over the field P satisfied
by the element ¢, but this is in conflict with the transcendental
nature of this element. Combining the elements of type (4) by the
rules of addition in the ring L, it is of course possible to combine
coefficients of like powers of a; but this coincides with the rule for
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adding polynomials. On the other hand, by multiplying elements
of form (4) by the rules for multiplication in the ring L, we can,
using the dis ibutive law, perform termwise multiplication and
then collect like terms. This evidently leads to the familiar law of
multiplication of polynomials. This proves that elements of the
type (4) constitute, in the ring L, a subring containing the field P
and the element o (that is, a subring coinciding with L’), and that
this subring is isomorphic to the polynomial ring P [z].

We see that the choice of definitions for operations on polyno-
mials we made above was not accidental; it is fully determined by
the fact that the element z of the ring P [z] must be transcendental
over the field P.

Note that in constructing the polynomial ring P [z] we never
used the division of elements of the field P and only once (namely,
in proving the assertion on the degree of a product of polynomials)
had to refer to the absence of zero divisors in the field P. It is there-
fore possible to take an arbitrary commutative ring L and, repea-
ting the foregoing construction, derive a polynomial ring L lz] over
the ring L; if in this case the ring L does not contain divisors of zero,
the power of the product of the polynomials will be equal to the sum
of the powers of the factors and therefore the polynomial ring L [z]
will not contain divisors of zero either.

Returning to polynomials with coefficients from an arbitrary
field P, notice that actually the entire theory of divisibility of
polynomials (described in Secs. 20-22 of this book) is carried over
to this case. Namely, in the ring P [x] we have the division algorithm,
and both the quotient and the remainder will themselves belong
to the ring P [z]. Also, the concept of a divisor is meaningful in the
ring P [x] and all its basic properties are preserved. The fact that the
division algorithm does not take us outside the base field P, permits
us to assert that the property of a polynomial ¢ (x) to be a divisor of
f (z) does not depend upon whether we consider the field P or any exten-
sion of it

Also preserved in the ring P |z] are the definition and all the proper-
ties of a greatest common divisor, together with the Euclidean algorithm
and the theorem proved in Sec. 21 with the aid of this algorithm. Notice
that since the division algorithm is, as we know, independent of the
choice of the base field, we can assert that the greatest common divi-
sor of two given polynomials is likewise independent of whether we con-

sider the field P or an arbitrary extension of it, P.

Finally, for polynomials over the field P, the concept of a root is
meaningful and the basic properties of roots hold true. Likewise pre-
served is the theory of multiple roots. Incidentally, we will return
to this question at the end of the next section.

These remarks will enable us, in our subsequent study of poly-
nomials over any field P, to refer to Secs. 20-22.
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48. Factorization of Polynomials
into Irreducible Factors

On the basis of the theorem on the existence of a root, we
proved in Sec. 24 the existence and uniqueness of factorization of a
polynomial into irreducible factors for fields of complex and real
numbers. These results are particular cases of general theorems
referring to polynomials over an arbitrary field P. The present sec-
tion is devoted to this general theory, which parallels the theory
of the prime factorization of integers.

First let us define those polynomials which play the same role
in the polynomial ring as primes play in the ring of integers. We
stress from the start that in this definition we deal solely with poly-
nomials whose degree is greater than or equal to unity. This is in
full accord with the fact that in the definition of prime numbers and
in the study of the factorization of integers into prime factors, the
numbers 1 and —1 are ruled out.

Suppose we have a polynomial f (z) of degree n, n > 1, with
coefficients from the field P. By Property V, Sec. 24, all polynomials
of zero degree are divisors of f (z). On the other hand, by Property
VII, all polynomials ¢f (z), where ¢ is a nonzero element of P, will
also be divisors of f (z); note that these polynomials exhaust all
the divisors (with degree n) of the polynomial f (z). As to divisors
(of f (x)) whose degree is greater than O but less than n, it w’ll be seen
that they may or may not be in the ring P [z]. In the foimer case,
the polynomial f () is called reducible in the field P (or over the
field P), in the latter case, irreducible over this field.

Recalling the definition of a divisor, we may say that a polyno-
mial f (z) of degree n is reducible over the field P if it can be factored
over this field (i. e., in the ring P [z]) into a product of two factors
of degree less than n:

f()=9@)(2) 1

and f (z) is irreducible over the field P if in any factorization of the
type (1), one of its factors is of degree O and the other is of degree n.

Note particularly that one can speak of reducibility or irredu-
cibility of a polynomial only as regards a given field P, since a poly-
nomial that is irreducible over one field may prove to be reducible
over some extension P of that field. Thus, the polynomial 22 — 2
with integral coefficients is irreducible over the field of rational
numbers: it cannot be factored into a product of two linear factors
with rational coefficients. However, this polynomial is reducible
over the field of real numbers, as the following equation shows:

.1:2‘——2=(x——V§)(x—|—V§)
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The polynomial 2 + 1 is irreducible not only over the field of ratio-
nal numbers but also over the field of real numbers. It becomes redu-
cible however in the field of complex numbers, since

224+ 1 =(@x—1i)(z+1i)

Let us point to certain basic properties of irreducible polyno-
mials, bearing in mind that we will be speaking of polynomials
irreducible over the field P.

(a) Any polynomial of degree one is irreducible.

This is rather evident since if the polynomial could be factored
into a product of factors of lower degree, then they would have to
be of degree 0. But the product of any polynomials of zero degree
is again a polynomial of zero degree and not first degree.

(b) If a polynomial p (z) is irreducible, then any polynomial cp (),
where ¢ is a nonzero element of P, is also irreducible.

This property follows from Properties I and VII of Sec. 21. It
will permit us, where necessary, to confine our consideration to
irreducible polynomials whose leading coefficients are unity.

(¢) If f (z) is an arbitrary polynomial and p (z) is an irreducible
polynomial, then either f (z) is divisible by p (z) or the polynomials
are coprime (relatively prime).

If (f (z), p (z))=d (z), then d (z), being a divisor of the irreducible
polynomial p (z) is either of degree O or is a polynomial of the form
¢p (x), ¢ %= 0. In the former case, f (z) and p (z) are coprime, in the
latter, f (z) is divisible by p (z).

(d) If the product of the polynomials f (x) and g (z) is divisible by an
irreducible polynomial p (x), then at least one of these polynomials
is divisible by p (z).

Indeed, if f (z) is not divisible by p (z), then, by (c), f (x)and
p (z) are coprime, and then, by Property (b) of Sec. 21, the poly-
nomial g (z) must be divisible by p (z).

Property (d) is readily carried over to the case of a product of any
finite number of factors.

The two theorems which follow are the main purpose of this
whole section.

Any polynomial f (z) in the ring P lz] having degree n, n > 1,
can be factored into a product of irreducible factors.

Indeed, if a polynomial f (2) is itself irreducible, then the indi-
cated product consists of only one polynomial. But if it is reducible,
then it can be factored into a product of factors of lower degree. If,
among these factors, we again find irreducibles, then we decompose
them into factors again, etc. This process will cease after a finite
number of steps, since in any factorization of f (z) into factors, the
sum of the degrees of the factors must be equal to » and therefore
the number of factors dependent on z cannot exceed r.
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The factorization of integers into prime factors is unique if we
confine our consideration to positive integers. However, in the
ring of all integers, uniqueness only occurs to within sign: thus,
—6 = 2.(—3) = (—2)-3, 10=2.5=(—2)-(—5) and so on.
A similar situation obtains in the polynomial ring as well. If

f@ =pi@py(2) ... ps(2)

is a factorization of the polynomial f (z) into a product of irreducible
factors and if the elements ¢y, ¢,, . . ., ¢, from the field P are such
that their product is equal to 1, then

f (2) = lesps @)]-leaps (@)] - . - leep, (2)]

will also. by (b), be a factorization of f (x) into a product of irre-
ducible factors. It turns out that this exhausts all factorizations
of f ().

If a polynomial f (z) from a ring P [zl can be decomposed in two
ways into a product of irreducible factors;

f@=p1@p@)...ps@0)=0@e0E... (2
then, s = t, and, with appropriate numbering, we have the equalities
q; ('r) = CiPy (.Z'), S 11 27 cvey S (3)

where c; are nonzero elements from the field P.

This theorem holds for polynomials of degree one, since they
are irreducible. We will therefore argue by induction with respect
to the degree of the polynomial, that is, we will prove the theorem
for f (z), assuming that for polynomials of lower degree it is already
proved.

Since g4 () is a divisor of f (z), it follows, by Property (d) and
equality (2), that g, () will be a divisor of at least one of the poly-
nomials p; (z), say of p; (z). However, since the polynomial p; ()
is irreducible and the degree of g; () is greater than zero, there exists
an element ¢; such that

g1 (z) = e1py (2) (4

Substituting this expression of ¢, (z) into (2) and cancelling p, (z)
(which is permissible since there are no zero divisors in the ring
P [z]), we obtain the equation

P2 @) p3 (@) ... ps (@) = lege (@) g3 (@) . . . 1 (2)

Since the degree of the polynomial equal to these products is lower
than that of f (z), then it is already proved that s — 1 =1t — 1,

whence s = ¢, and there exist elements ¢;, ¢3, ..., ¢, such that
capa (2) = €1g, (), Whence g, () = (') pa (z) and epi (2) =
=gq;(z), i =3, ..., s. Assuming c{'c, = ¢, and taking into ac-

count (4), we get the equations (3) completely.
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The theorem we have just proved may be stated more succinctly:
every polynomial may be uniquely decomposed into irreducible factors
to within zero-degree factors.

Incidentally, it is always possible to consider the following
special type of factorization which will be quite unique for every poly-
nomial: take any factorization of the polynomial f (z) into irreducible
factors and factor out of each the leading coefficient. We get the
factorization

f (@) = aopy (2) p2 (2) . . . ps (*) (5)

where all the p; (z), i =14, 2, ..., s, are irreducible polynomials
with leading coefficients equal to unity. The factor ao will be equal
to the leading coefficient of the polynomial f (z), as can readily be
verified by multiplying out the right member of (5).

The irreducible factors in (5) do not necessarily have to be di-
stinct. If an irreducible polynomial p (z) appears several times in
the factorization (5), it is called a multiple factor of f (z), namely
a k-fold (double, triple, etc.) factor if (5) contains exactly & factors
equal to p (z). But if the factor p (z) appears in (5) only once, then
it is called a simple (or single) factor of f ().

If in the factorization (5) the factors p; (z), ps (2), . . ., pi (?)
are distinct and any other factor is equal to one of them and if p; (),
i=1,2, ..., 1 is a k;-fold factor of the polynomial f (z), then
(5) may be rewritten as

f(z) = aoph () p¥2 (2) . . . Pi(z) (6)

This is the notation that we will ordinarily make use of without spe-
cifying that the exponents are equal to the multiplicities of the
corresponding factors, i.e , that p; (z) %= p; (z) for i 5~ j.

If we are given the factorizations of the polynomials f (x) and g ()
into irreducible factors, then the greatest common divisor d (z) of these
polynomials is equal to the product of the factors appearing in both
factorizations at the same time, and each factor is taken to the power
equal to the least of its multiplicities in the two given polynomials.

Indeed, the indicated product will be a divisor of each of the
polynomials f (2), g (z) and therefore also of & (z). If this product
were different from d (z), then the factorization of d (z) into irredu-
cible factors would either contain a factor that does not appear in
the factorization of at least one of the polynomials f (z) and g (),
which is impossible, or one of the factors would have a higher power
than it has in the factorization of one of the polynomials f (z) and
g (z), which is again impossible.

This theorem is similar to the rule ordinarily used to find the
greatest common divisor of integers. However, in the case of poly-
nomials, it cannot replace the Euclidean algorithm, for, since there
is only a finite number of primes less than a given positive integer,
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the factorization of an integer into prime factors is attained by
a finite number of trials. This is not the case in a polynomial ring
over an infinite base field, and, in the general case, one cannot
offer a method for factoring polynomials into irreducible factors.
What is more, it is very hard even to decide in the general case the
question of whether a polynomial f (z) is irreducible over a given
field P. Thus, the description of all irreducible polynomials for the
case of the fields of complex and real numbers was obtained in Sec. 24
as a corollary to a very profound theorem on the existence of a root.
As to the field of rational numbers, only a few assertions of a spe-
cific nature concerning polynomials that are irreducible over this
field will be made in Sec. 56.

We have shown that in the polynomial ring (as in the ring of
integers) we have a factorization into “prime” (irreducible) factors
and that this factorization is in a certain sense unique. The question
arises as to whether it is possible to carry over these results to broader
classes of rings. We confine ourselves here to the case of such commu-
tative rings as have a unit element and do not-have divisors of zero.

We will use the term divisor of unity for an element a of the ring
such that in this ring there exists an inverse element a~1:

aa™! =1

In the ring of integers, these are the numbers 1 and —1, in the ring
P [x] of polynomials, all the polynomials of zero degree (that is;
nonzero numbers from the field P). The element ¢, which is nonzero
and is not a divisor of unity, will be called a prime element of the
ring if in any decomposition of it into a product of two factors,
¢ = ab, one of the factors is invariably a divisor of unity. In the
ring of integers, the prime elements are prime numbers, in the poly-
nomial ring they are irreducible polynomials.

Will every element of the ring under consideration that is non-
zero and is not a divisor of unity be decomposable into a product
of prime factors? If it is, will the factorization be unique? This is
to be understood as follows: if

a =pPy - .. Ppr =G93 - - . q;

are two factorizations of the element a« into prime factors, then
k =1 and (possibly after a change in the numbering)
g; = Pici, i=12 ...,k
where ¢; is a divisor of unity.
It turns out that in both instances the answer is no. We give
one example, namely, we indicate a ring in which factorization

into prime factors is possible but not unique.
Consider complex numbers of the form

o=a-+bY =3 (7N
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where a and b are integers. All such numbers form a ring without
divisors of zero and containing a unit element; indeed,

(@Y =3) (c4+d ¥V =3) = (ac—3bd)+(bc+ad) V=3 (8)
We use the term norm of a number & = a 4 b }/ —3 for the positive
integer
N (o) = a® + 3b®
By (8), the norm of a product is equal to the product of the norms
N (ap) = N () N () (9)
Indeed,
(ac — 3bd)?2 + 3 (be + ad)? = a%? + 9b%d? + 3b%? + 3a2d?
= (a® + 3b?) (c?® + 3d?
If in our ring the number « is a divisor of unity, that is the num-
ber o1 is also of the form (7), then, by (9),
N@-N@)=N(@e?)=N{1)=1

and therefore N (o) = 1, since the numbers N (o) and N (a~') are

integers and are positive. If @ = a + b}/ —3, then from N () = 1
it follows that

N (@) = a® + 3% = 1

which, however, is possible only when b=0, ¢ = + 1. Thus, in
our ring, as in the ring of integers, only the numbers 1 and —1 will
be divisors of unity, and only these numbers have a norm equal to unity.

The equation (9) for the norm of a product can naturally be
extended to the case of any finite number of factors. It is thus easy
to conclude that any number o in our ring can be factored into a pro-
duct of a finite number of prime factors. We leave the proof to the reader.

However, we cannot assert that the factorization into prime factors
is unique. For example, the following equations hold true:

4=22=0+V=3) 01 —-V=3

In our ring there are no other divisors of unity except 1 and —1,

and so the number 1 + )/ —3 (like the number 1 — }/—3) cannot
differ from the number 2 solely by a factor which is a divisor of unity.

It remains to show that each one of the numbers 2, 1 +V —3, 1 —
- V——_S will be prime in the ring under consideration. Indeed, the
norm of each of these three numbers is equal to 4. Let o be any one
of these numbers and let

a = Py
Then, by (9), one of the following three cases is possible:
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MNP =4NW=LERANPB =1, Ny =4Q@NEP=
= N (y) = 2. In the first case, the number y will, as we know, be
a divisor of unity; in the second case, p will be a divisor of unity.
The third case is impossible due to the impossibility of the equality

a® 4 3b% = 2

where a and b are integers.

Multiple factors. Although, as has been demonstrated above,
we are not able to decompose polynomials into irreducible factors,
there exist methods which enable us to determine whether a given
polynomial has multiple factors or not and, if it does, to reduce
the study of that polynomial to the study of polynomials that do not
contain multiple factors. True, these methods require that we impose
certain restrictions on the base field. In the rest of this section we
will assume that the field P has characteristic 0. Without this
restriction, the theorems on multiple factors that will be proved
below break down. At the same time, the case of fields of characte-
ristic zero is the most important one from the viewpoint of appli-
cations since, for one thing, all number fields are included here.

To begin with, notice that we can extend to this case both the
concept of a derivative of a polynomial (introduced in Sec. 22 for
polynomials with complex coefficients) and the basic properties
of this concept.* Let us now prove the following theorem.

If p (z) is a k-fold irreducible factor of the polynomial f (z), k > 1,
then it will be the (k — 1)-fold factor of the derivative of this poly-
rnomial. In particular, a prime factor of the polynomial does not enter
into the factorization of the derivative.

Indeed, let

f (@) =p" ()¢ @ (10)
g (z) is no longer divisible by p (z). Differentiating (10), we get
f(z)=p"(2) & (@) + k" (@) P’ (2) & (2)
=p"' (2) [p (2) & (2) + kp’ (2) g (2)]
The second term in'the brackets is not divisible by p (z); indeed,
g (z) is not divisible by p (z) by hypothesis, p’ (z) is of lower degree,
i.e., it is not divisible by p (z) either; hence, due to the irreducibi-
lity of the polynomial p (z) and Property (d) of this section and
Property IX of Sec. 24, our assertion follows. On the other hand,
the first term in the sum in the square brackets is divisible by p ()
and so the entire sum cannot be divisible by p (2); which is to say

that the factor p (z) does indeed appear in f' (z) with a multiplicity
of £ — 1.

* For fields of a finite characteristic, the assertion that the derivative of
a polynomial of degree n is of degree n—1 fails.
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From our theorem and from the above-indicated method of fin-
ding the greatest common divisor of two polynomials it follows that
if a factorization of the polynomial f (z) into irreducible factors is
given,

f (@)= oD (2) Pi2 () - .. P () (11)

then the greatest common divisor of f (z) and of its derivative has the
following factorization into irreducible factors:

(f @), f' (@)= ptr~1(z) =t (z) ... pp~ " (x) (12)

where the factor p?i i(.1:) should naturally be replaced by unity
for k; = 1. In particular, a polyromial f (z) does not contain multi-
ple factors if and only if it is relatively prime to its derivative.

We now know how to answer the question of the existence of
multiple factors in a given polynomial. What is more, since neither
the derivative of a polynomial nor the greatest common divisor of
two polynomials depend on whether we are considering the field
P or any extension P of it, we obtain the following corollary to
the result that has just been proved.

If a polynomial f (z) with coefficients in a field P of characteristic
zero does not have multiple factors over this field, then neither will
there be any multiple factors over any extension P of the field P.

In particular, if f (z) is irreducible over P and P is some exten-
sion of P, then, although f (z) can be reducible over P, it will defi-
nitely not be divisible by the square of an irreducible (over P)
polynomial.

Isolating multiple factors. If we have a polynomial f (z) with
the factorization (11) and if by d, () we denote the greatest com-
mon divisor of f (z) and of its derivative f’ (z), then (12) will be a
factorization of d; (x). Dividing (11) by (12), we get

vy ()= dfi ((i)) =aop; () P2 () ... pi(2)

That is, we obtain a polynomial without multiple factors, and any
irreducible factor of vy (x) will also be a factor of f (z). In this way,
finding the irreducible factors of f (z) is reduced to finding them for
the polynomial vy (z) which, generally speaking, is of lower degree
and, at any rate, contains only prime factors. If the problem is
solved for vy (z), then it only remains to determine the multiplicity
of the irreducible factors found in f (z); this is done by means of the
division algorithm.

A more sophisticated variant of this method enables us to con-
sider several polynomials without multiple factors; also, having
found the irreducible factors of these polynomials, we not only
find all the irreducible factors of f (z), but also their multiplicities.
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Let (11) be a factorization of f (z) into irreducible factors, the
greatest multiplicity of the factors being s, s >> 1. Denote by F; (z)
the product of all single factors of f (z), by F, (z) the product of all
double factors, but taken only once at a time, and so forth; finally,
denote by F, (x) the product of all s-fold factors taken once at a
time, as before. If under these conditions, for some j in f (z), there
are no j-fold factors, set F; (z) = 1. Then f (z) will be divisible by
the kth degree of the polynomial Fy (z), k=1, 2, ..., s, and
the factorization (11) becomes

f (@) = aoFy (2) Fy () F3 (@) ... F3(z)
and the factorization (12) for d; (z) = (f (z), f' (z)) will be rewrit-

ten as
@ =F@FRE ... @

Denoting by d, () the greatest common divisor of the polynomial
d; (z) and of its derivative, and generally by d, (z) the greatest com~
mon divisor of the polynomlals dy-4 (z) and dp— (), we obtain
in the same fashion
d(z) =Fs @ FL@ ... F* @),
ds (z) = F; (z) F” @@ ... F7 (x)’

--------------

d, @ =
Whence
1 (&) = 1 = 0ol (@) Fy () F (2) - . Fo (@)
0 (2) = LD =F @ F3 (@) ... i (@)
dz(x)

v; (x) = 3@ =F3(x) ... Fs(x)

.................

dsy (x
v (@) =228~ F, (a)

and, therefore, finally,

Dy (T U .’t

Fy(x)= 71;:7—(3);)_ F,(z)= v” Ex) oy Fy (2) =05 (2)
Thus, using only procedures that do not require a knowledge

of the irreducible factors of the polynomial f (z), namely, taking

the derivative, using the Euclidean algorithm and the division

algorithm, we can find the polynomials F, (z), F, (z), . F(x)

w1thout multiple factors, every irreducible factor of the polynomlal
Fp(z), k=1, 2, ..., s will be k-fold for f (z).

19—5760
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This method cannot, of course, be regarded as a procedure for
factoring a polynomial into irreducible factors, since for the case
of s =1 (that is, for a polynomial without multiple factors) we

only get f (z) = Fy ().

49. Theorem on the Existence of a Root

Quite naturally, the fundamental theorem (proved in Sec. 23)
on the existence, for every numerical polynomial, of a root in the
field of complex numbers cannot be extended to the case of an arbi-
trary field. In this section we will prove a theorem which in the
general theory of fields replaces to some extent the afore-mentioned
fundamental theorem of the algebra of complex numbers.

Let there be given a polynomial f (z) over a field P. A natural
question arises: if the polynomial f (z) does not have any roots at all
in the field P, then does there exist an extension P of P in which there
will be at least one root of f (z)? We can assume that the degree of
the polynomial f (x) is greater than unity: the question is meaning-
less for a zero-degree polynomial, and every polynomial of degree

one, az 4 b, has the root — % in the field P itself. On the other

hand, we can evidently confine ourselves to the case of f (x) being
irreducible: if it is reducible over P, then the root of any one of its
irreducible factors will be a root of f (z) itself.

The answer to the question that interests us is given by the
following theorem on the existence of a root.

For every polynomial f (z) that is irreducible over the field P there
is an extension of the field such that contains a root of f (z). All mini-
mal fields containing the field P and a root of this polynomial are
isomorphic among themselves.

Let us first prove the second part of the theorem.

Suppose we have a polynomial irreducible over P:

/() = apr" + a;x T4 tanzta, (1)
and n > 2, that is, f (z) has no roots in the field P itself. Suppose
that there is an extension P of P which contains a root a of f ().
Let us prove the following lemma which will be needed later on but
which is of interest in itself.

If a root o, in P, of a polynomial f (x) which is irreducible over
P serves also as a root of some polynomial g (z) in the ring P [z] then
f (z) will be a divisor of g (z).

Indeed, the polynomials f (z) and g (z) over the field P have
a common divisor x — a and so are not relatively prime. The pro-
perty of polynomials not to be relatively prime does not, however,
depend on the choice of the field. It is therefore possible to pass
to the field P and apply Property (c) of Sec. 48.
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Now let us find the minimal subfield P (a) of 2 which contains
the field P and the element c. It definitely includes all elements of

the form
p=0by+ b + bya*+ ...+ bt 2)

where by, by, by, . . ., by are elements of P. No element of P can
have two distinct notations of the form (2); if it is also true that

B=rco+ e +et®+...4 ¢
and for at least one k&, ¢, =& by, then a will be a root of the polynomial
g (®) = (bo — co) + (by —¢p) z+ (by — ¢y) 2°
t.oo F (oot — caeg) 2™
which runs counter to the lemma proved above since the degree

of g (z) is lower than the degree of f (z).

The elements of the field P having the form (2) include all the
elements of the field P (for by = b, = ... = b,y = 0), and also
the element a itself (for b, =1, bo=0b,=... = b,y = 0).
We now prove that elements of the form (2) constitute the entire sought-
for subfield P (). Indeed, if we are given elements f [with ngtation
(2)] and

Y = €o + [oF1e] + cza" —"‘ [ + Cn_ian_l
then, on the basis of the properties of operations in the field B,
Bty = (boL co) + (by & ¢1) @ + (b, = ¢5) &?
o o0 F (buoy £ cpey) @™
That is to say, the sum and difference of any two elements of the
type (2) are again elements of that type.

If we multiply f and y, we get an expression containing o™ and
other higher powers of a. However, it follows from (1) and the equa-
lity f (2) = 0 that a™ and therefore a™?', a™? and so on can be

expressed in terms of lower powers of the element .. The simplest
way of finding an expression for fy is this: let

¢ (@) = by + bz + . . . + bpgz™
Y(x) =co+ecix+, ..+ cpgz™?

whence ¢ (@) = p, ¥ (@) = y. Multiply the polynomials ¢ (z) and
VP (z) and divide the product by f (z). This yields

e @)Y (@) =f(2)q @) +r () @)
where
r@ =dy+dix+ ...+ dy 2"t
Taking the values of both sides of (3) for x = @ we find that

@Y () =f(2)q (@ +r (2
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That is to say, by f(a) = 0,
By =dy +dio + ... + dpo™?

Thus, the product of two elements of the type (2) will again be an

element of this type.
Finally, we will show that if element f is of the type (2), f 5= 0,

then the element B-! existing in the field P can also be written as
(2). To do this, take the polynomial

@@ =0b+bx+ ...+ bp_a™?

in the ring P [z]. Since the degree of ¢ (z) is lower than the degree
of f (z), and the polynomial f (z) is irreducible over 2, it follows that
¢ (z) and f (z) are relatively prime and therefore, by Secs. 21 and
47, there exist in the ring P [z] polynomials u (z) and v () such

that
g@ulx)+f@vE =1
We can assume here that the degree of u (x) is less than n:
u@) =sy+ sz + ...+ st
Whence, by f(a) =0, it follows that
@ u@=1

and therefore, by the equality ¢ () = B, we have

Pl =u(a) =s + si2a + ...+ sq0™?

Thus, the collection of elements of the field P having the form
(2) constitutes a subfield of P, which is the desired field P (a). Fur-
thermore, since we saw that in seeking the sum and product of the
elements f and y of the type (2) we need only know the coefficients
of the expressions of these elements in terms of powers of ¢, we can
assert the truth of the following result. If besides P there is another
extension P’ of the field P, which also contains a root o’ of the
polynomial f (z), and if P (a') is a minimal subfield of the field P’
containing P and «' then the fields P (&) and P (a') are isomorphic.
To obtain the isomorphic correspondence between them, it is neces-
sary to associate with the element p of type (2) in P (a) an element

B’ = by + bya’ + bya’® + ...+ b_ya'™?

in P (a’) having the same coefficients. This completes the proof
of the second part of the theorem.

Let us now prove the basic first part of this theorem. The fore-
going will help to point the way. We have a polynomial f (z) of de-
gree n > 2 that is irreducible over the field P and it is required to
construct an extension of P containing a root of f (z). To do this,
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let us take the entire polynomial ring P [z] and partition it into
disjoint classes, combining in one class the polynomials which yield
the same remainders upon division by the given polynomial f (z).
In other words, the polynomials ¢ (x) and ¢ (z) belong to the same
class if their difference is exactly divisible by f (z).

We agree to denote the resulting classes by the letters 4, B, C
and so on and to define the sum and product of classes in the following
natural manner. Take any two classes A and B; choose in 4 a poly-
nomial ¢; (z), in B a polynomial v, (z) and denote by y; (z) the sum
of these polynomials:

X1 (@) = @1 (2) + ¥4 (2)

and by O, (z) their product:
By (z) = @1 (&) Y1 (2)

Now choose any other polynomial ¢, () in A and any polynomial
VP, (z) in B and denote by yx, () and O, (x) their sum and product,
respectively:

%2 (2) = @, (2) + ¥, (),

0, (z) = @, (2) ¥, (2)

By hypothesis, the polynomials ¢; () and ¢, (z) are in the same
class A and therefore their difference ¢, (zr) — @, (z) is exactly
divisible by f (z); the difference y; (z£) — ¥, (z) has the same pro-
perty. From this it follows that the difference

X (@) — A2 (@) = [01 (2) + 1 (2)] — g, (2) + ¥, ()]
=lp1 (@) — @ @] + 1 (@) — ¥, ()] (4)

is also exactly divisible by the polynomial f (z). This is also true
of the difference 0, (x) — 8, (z) since

0, (z) — 0, (z) = @1 (2) Py (2) — @, (@) ¥, (2)
= @y (2) P1 (2) — @1 (2) P2 (2) + @4 (2) P, (2) — @, (2) P, (2)
= @1 (2) [Py (@) — b, (@)] + [ (2) — @, ()] VP, () )

Equation (4) shows that the polynomials y, (z) and %, (z) lie
in the same class. In other words, the sum of any polynomial from
class 4 and any polynomial from class B belongs to a very definite
class C, which does not depend on what polynomials are chosen as
“representatives” in classes 4 and B. We call this class C the sum
of the classes 4 and B:

C=4+B

Similarly, because of (5), there is a class D which is independent
of the choice of representatives in classes 4 and B and in which lies
the product of any polynomial of A by any polynomial of B. We
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call this class the product of the classes A and B:
D = AB

We shall show that the collection of classes into which we have
partitioned the ring P [z] of polynomials is converted into a field
after the indicated introduction of the operations of addition and
multiplication. Indeed, the validity of the associative and commu-
tative laws for both operations and of the distributive law follows
from the validity of these laws in the ring P [z], since operations
on classes reduce to operations on the polynomials lying in these
classes. The role of zero is evidently played by the class composed of
polynomials divisible exactly by the polynomial f(x). We call
this the zero class and denote it by the symbol 0. The opposite of
class 4, which is made up of polynomials that yield the remainder
¢ (2) upon division by f (x), is the class made up of polynomials
which yield the remainder —¢ (z) upon division by f (z), whence it
follows that subtractior is unique on the set of classes.

To prove that divisior is possible on the set of classes, we have
to show that there exists a class playing the role of unity and that
for any class different from zero there is an inverse class. The class
of polynomials which upon division by f (z) yields a remainder 1
will obviously be unity. We call this the unit class and denote it
by the symbol E.

Now suppose we have a class A different from zero. A polynomial
¢ (x) chosen in A4 as a representative will thus not be exactly divi-
sible by f (z) and therefore, because of the irreducibility of f (),
these two polynomials are relatively prime. Thus, in the ring P [x]
there exist polynomials u (z) and v (z) that satisfy the equation

p@u@+7@vE =1

whence
@ u@ =1~f(@)v@ (6)

Upon division by f (z), the right member of (6) yields a remain-
der 4, which means it belongs to the unit class E. If the class to
which the polynomial u (z) belongs is denoted by B, then (6) shows
that

AB =E

whence B = A~ This is proof of the existence of an inverse class
for every nonzero class; in other words, this completes the proof
that classes form a field.

We will denote this field by P and will show that it is an extension
of the field P. With every element g of the field P is associated a class
composed of polynomials which upon division by f (z) yield a remain-
der a; the element a itself, regarded as a zero-degree polynomial,
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belongs to this class. All classes of this special type constitute, in
the field P, a subfield that is isomorphic to the field P. Indeed, the
one-to-one nature of the correspondence is obvious; on the other
hand, for representatives in these classes we can choose elements
of the field P and therefore with the sum (product) of elements of
P is associated a sum (product) of corresponding classes. Consequen-
tly, in the future we will not need to distinguish between the ele-
ments of a field P and the classes corresponding to them.

Finally, use X to denote the class made up of polynomials
which upon division by f () yield the remainder x. This class is
a definite element of the field P, and we wish to demonstrate that
it is a root of the polynomial f (x). Let

flz) =ax™ + a@a™t 4 ... + aypyz + a,

We denote by A; the class corresponding, in the foregoing sense, to
the element a; of the field P, i = 0,1, ..., n, and will find out
what the element

AX® 4+ A X"V 4 A X 4, (7)

of the field P is equal to. Assuming elementsa;, i = 0,1, ..., n,
to be representatives of the classes A; and the polynomial x to be
a representative of the class X, and using the definition of addition
and multiplication of classes, we find that the polynomial f (x)
is itself contained in class (7). However, f (z) is exactly divisible
by itself and therefore class (7) turns out to be the zero class. Thus,
by replacing in (7) the classes 4; by the elements a; of P correspon-

ding to them, we find that the following equality holds in the field P:
X" +a X" + ... apyX +a, =0

That is to say, the class X is indeed a root of the polynomial f (z).

This completes the proof of the theorem on the existence of a
root. Note that by taking the field of real numbers for 2 and setting
f (z) = 2* + 1, we obtain yet another method for constructing the
field of complex numbers.

Certain corollaries can be derived from the theorem on the exi-
stence of a root similar to those derived in Sec. 24 from the funda-
mental theorem of the algebra of complex numbers. One remark is
in order first, however. Since any linear factor x — ¢ of a polyno-
mial f (z) is irreducible, it must appear in the unique factorization
of f (z) into irreducible factors.

However, the number of linear factors in the factorization of
f (z) into irreducible factors cannot exceed the degree of the poly-
nomial. We get the following result.

A polyrnomial f (x) of degree n cannot have more than n roots in
the field P, even if each of the roots is counted with its multiplicity.
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We use the term splitting field of a polynomial f (x) of degree
n over the field P for an extension Q of P such that contains n roots
of f (z) (counting multiplicity in the case of multiple roots). Con-
sequently, over the field Q the polynomial f () will decompose into
linear factors, and no further extension of the field Q can make new
roots appear for f ().

For every polynomial f (z) in the ring P [x] there is a splitting
field over the field P.

Indeed, if a polynomial f () of degree n, n >> 1, has n roots in
the field P itself, then P will be the desired splitting field. But if
f (z) does not decompose into linear factors over P, then we take
one of its nonlinear irreducible factors ¢ (z) and, on the basis of the
theorem of the existence of a root, we extend P to the field P’, which
contains a root of ¢ (x). If the polynomial f (z) still does not break
up into linear factors over P’, we again extend the field, thus crea-
ting a root for one more of the remaining nonlinear irreducible
factors. In a finite number of steps we will obviously arrive at the
splitting field for f ().

Quite naturally, f (z) can have many.different splitting fields.
One can prove that all the minimal fields containing the field P
and n roots of the polynomial f (z) (where n is the degree of the
polynomial) are isomorphic. However, we will not make use of this
assertion and will therefore not give the proof.

Multiple roots. In the previous section we proved that a polyno-
mial f (z) over a field P of characteristic 0 does not have multiple
factors if and only if it isrelatively prime to its derivative; it was also
noted that the absence, in f (z), of multiple factors over P implies

the absence of such factors over any extension P of the field P.

Let us apply this to the case when P is a splitting field for f (z);
recalling the definition of a miltiple root, we arrive at the following
result.

If a polynomial f (x) over a field P of characteristic O does not have
multiple roots in the given splitting field, then it is relatively prime
to its derivative ' (z). Conversely, if f (z) is relatively prime to its deri-
vative, then it does not have multiple roots in any one of its splitting
flelds.

Whence, in particular, it follows that a polyromial f (x) which
is irreducible over a field P of characteristic 0, cannot have multiple
roots in any extension of the field. This assertion does not hold in
fields of a finite characteristic. This circumstance plays a perceptible
role in the general theory of fields.

Note in conclusion that for an arbitrary field, the Vieta formulas
hold too (see Sec. 24); here, the roots of the polynomial are taken
in some splitting field of this polynomial.
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50. The Field of Rational Fractions

The theory of rational fractions described in Sec. 25 holds in full
for the case of an arbitrary base field as well. However, when passing
from the field of real numbers to an arbitrary field P, the view taken

f( ) as a function of the variable z must be rejected,

of the expression —— Iz
for, as we know, it is not applicable to polynomials. Our job here
is to figure out the meaning of these expressions for the case when
the coefficients belong to an arbitrary field P. More precisely, we
want to construct a field containing the polynomial ring P [z]
and in such a way that the operations of addition and multipli-
cation defined in the new field coincide, as applied to polynomials,
with the operations in the ring P [z]; in short, the ring P [x] must
be a subring of this new field. On the other hand any element of
the new field must be representable (in the sense of division as defined
in this field) in the form of a quotient of two polynomials. As will
now be shown, such a field can be constructed for any P. We denote
it by P (z) (the unknown is in the parentheses) and call it the field
of rational fractions over the field P.

First assume that the ring P [2] is already a subring of some field
Q. 1If f(z) and g (z) are arbitrary polynomials from P [z], and
g (z) 5= 0, then there is, in the field Q, a uniquely defined element
equal to the quotient obtained by the division of f (2) by g (z). Deno-

ting this element by 1) ) , as is the usual way in the case of a field,

we can write the followmg equation on the basis of the definition
of a quotient:

f (@) =g (2)- 12 (1)

g (z)
where the product is to be understood in the sense of multiplica-
tion in the field Q. It may happen that some quotients 1) and

g (@)
ig ; are one and the same element of Q. The condition for this is

the ordmary condition of equality of fractions:

L8 28 i and only if £ (2) ¥ () = @ (@) ¢ (o)

Indeed, if . g; j;g; a, then, by (1),

f@=¢g@a 0@ =1v@a

whence
@Y =8@ @) a=2¢g@q¢@

Conversely, if f (z) ¥ (x) = g (z) ¢ (z) = u (z) in the sense of multi-
plication in the ring P [z], then, passing to the field Q, we obtain
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the equalities
@ __ul@ _ ol
gl@)” gl@v( (2

Furthermore, it is easy to see that the sum and product of any ele-
ments of Q, which are quotients of polynomials in P [z], can again
be represented in the form of such quotients, and the ordinary rules
of addition and multiplication of fractions hold true:

1) | 9(2)_ 1% +el=) o)
o tve— @ve @)
[@) 9@ _{@-9() 3)

e@ v 2@

Indeed, multiplying both sides of these equations by the pro-
duct g (z) ¥ (z) and applying (1), we get equalities which hold true
in the ring P [z]. The validity of (2) and (3) now follows from the
fact that, thanks to the absence of zero divisors in the field Q, both
sides of each of the resulting equalities may be reduced by a nonzero
element g (z) ¢y (z) without spoiling the equalities.

These preliminary remarks suggest the path we should take in
constructing the field P (z). Suppose we have an arbitrary field P
and over it a polynomial ring P [z]. With every ordered pair of po-
lynomials f (z), g (z), where g (z) % 0, we associate the symbol
é——g—; , called a rational fraction with numerator f (x) and denominator
g (). We stress the fact that this is only a symbol corresponding
to the given pair of polynomials, since, generally speaking, divi-
sion of polynomials in the ring P [z] itself is impossible, and so far
the ring P [z] is not contained in any field. Even if g (z) is a divisor
of f (z), the new symbol g(é-) should for the time being be distingui-

shed from the polynomial obtained as the quotient in the division
of f (z) by g (z).
We now call the rational fractions & and ()
f(z) _o(z) e v
§@ 9@ )
if in the ring P [x] we have the equality f (2) ¢ (z) = g (z) ¢ (2).
It is obvious that any fraction is equal to itself and that if one frac-
tion is equal to another, then the second one is equal to the first.
Let us prove the transitive property of this concept of equality. We
are given equalities (4) and
9 (2)
P (2)

bs]

equal,

~

(=

zr

Iy

—

()

<
—
~

From the equalities

f@b@=g@e@, o@vkE =p@u@
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equivalent to them in the ring P [x] it follows that
f@rv@v@=¢g@e@vi)=2¢@u@d@
and therefore, after cancelling out the nonzero (as the denominator
of one of the fractions) polynomial ¥ (z), we get
f@vx) =g u ()
whence, by the definition of the equality of fractions,

flz) _ul(2)
g(x)  v(z)

This completes the proof.

Now let us combine into one class all fractions equal to some
one given fraction, and therefore (by virtue of the transitivity of the
equality) equal among themselves. If one class has even a single
fraction not contained in another class, then, as follows from the
transitivity of the equality, these two classes do not have a single
element in common.

Thus, the collection of all rational fractions written by means
of polynomials from the ring P [z] breaks up into disjoint classes of
fractions equal among themselves. We would now like to define
algebraic operations in this set of classes of equal fractions so that
it becomes a field. To do this, we will define operations on rational
fractions and will each time verify that the replacement of summands
(or factors) by fractions equal to them replaces the sum (or product)
also by an equal fraction. This will enable us to speak of the sum
and product of classes of equal fractions.

First, let us make the following remark which will be used re-
peatedly in what follows. A rational fraction becomes an equal frac-
tion if its numerator and denominator are multiplied by one and the
same nonzero polynomial, or reduced by any common factor. Indeed,

f(z) _ f(@)h(z)
g(x)  g(x)h(z)

since in the ring P [x]
f@Ig@h@)] =g@lf (@]

We define the addition of rational fractions by formula (2),
since from g (z) % 0 and ¢ (z) 5= 0 it follows that g (z) ¢ (z) = 0,
the right member of this formula is indeed a rational fraction.
Furthermore, if it is given that

f@ _f@ 9@ _ 9l
g@  g@' P  Po(2)

that is,
f(2) g0 () = g (@) fo (x), @ (2) Vo () =V (2) o (2) (6)



300 CH. 10. FIELDS AND POLYNOMIALS

then, by multiplying both members of the first of the equalities (6)
by ¢ (z) Yo (z), both members of the second equality by g (z) go (2)
and then adding these equalities termwise, we obtain :

lf (@) ¢ (2) + 2 (2) @ (2)] & (2) Yo (2)
= [fo () Yo (2) + o (2) 9o (2)] g (2) ¥ (2)
which is equivalent to the equation
[@)p () +e @) Q@) _ folz) o (@) 180 (2) Po(2)
g (@) V() 8o (%) o (2)

Thus, if we have two classes of equal fractions, the sum of any
fraction of one class and any fraction of the other class is equal to
any other such sum, that is to say, such sums lie in some definite
third elass. This class is called the sum of the two given classes.

The commutativity of this addition follows directly from (2);
the associativity is proved as follows:

+ cP(ﬂv)]_l_ u@ @y @)+e(@ o) + % (z)

g(a:) g (z) P () v (z)
f(z)ll’(:t) v (z)+g4{z) @ (z) v(2) -4 (2) Y (2) u(2)
g(2) P (z)v(z)
_t@  e@v@mt+v@u@ _ f() P(x) | ula)
ot e = L v (o)

From the definition of equality of fractions it is easy to derive
that all fractions of the form —0;7 , i.e., fractions with zero numerator,

are equal and that they form a complete class of equal fractions.
We call this class the zero class and we will prove that in our addition
9 (z)

it plays the part of zero. Indeed, if we have an arbitrary fraction -2/ v’

then
+q>( _L0v@te@o) _g@el 9l
£@ g (z) ¢ (2) g@)P(x) ¢

From the equatlon

f@  —f@_ 0
(@ T E@ 2@

the right side of which belongs to the zero class, it now follows that
—f (@)

g (=)
class of fractions equal to the fraction 1@ Prom this, as we know,

g() "

follows the validity of unique subtractwn
We define multiplication of rational fractions by formula (3);
since g (z) ¢ (z) 5= 0, the right member of this formula will indeed

the class of fractions equal to the fraction will be opposite to the
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be a rational fraction. Furthermore, if

1@ _ fole)  9(2) @)
g(@)  go(@’ V@) bo(2)

that is,
f(2) % (2) = g (@) fo (@), @ (2) %o (2) =¥ (2) Qo (2)
then, by multiplying out these latter equations termwise, we get
f () &o () @ (2) Yo (z) = g (2) fo (2) ¥ (2) o (2)
which is equivalent to the equation

1(2)9(2) _ fol2) 9o (2)
@ V@ 2@ Yo (@)

Thus, by analogy with the above-defined sum of classes, we can speak
of a product of classes of equal fractions.

The commutativity and associativity of this multiplication follow
immediately from (3) and the validity of the distributive law is
proved as follows:

[f (z) +€P(<¢) u(@ _ f@Y@)+e@o@) ulz)

V@) vl g (x) P () v (2)
_ @@ te@oe@)u@) _ f@b@ul@)+e@) e (@) ul=
g (x) % (2) v(x) g(I)\P()"(I)

_I@Ov@u@v@te@e@uz)vE _ (= +€P(I)u(¢)

g (@)% () v? (2) g (x) U(x) P (@) v ()
_ 1@ u(=) +CP (=) i
TE@® vE  vE @
It is easy to see that fractions of the type ';E )) , i.e., fractions whose

numerators are equal to the denominators, are equal and constitute
a separate class. This class is termed the unit class and in our multi-
plication plays the role of unity:

@ o@_@eE@ o

z)
@' v @ f@vE v

Finally, if the fraction gi(%—)) does not belong to the zero class,
i.e., f (z) 540, then there is a fraction g—((:—)) . Since
@ g@ _f@egh
€@ @) @ 1@

and the right member of this equality belongs to the unit class, the
g (z)

class of fractions equal to the fraction 252, will be inverse to the class

f (=)
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/(=)

g @)

sion. 2

Thus, the classes of equal rational fractions with coefficients from
the field P constitute, in our definition of operations, a commultative
field. This is the desired field P (z). Incidentally, we still have to
prove that this field which we have constructed contains a subring
isomorphic to the ring P [z] and that every element of the field can
be represented as a quotient of two elements of this subring.

If we associate with an arbitrary polynomial f (x) from the ring

f (2)

P [z] a class of rational fractions equal to the fraction ~— (among all

of fractions equal to --—2 . Whence follows the validity of unique divi-

these fractions there are of course fractions whose denominators
are equal to unity), we obtain a one-to-one mapping of the ring P [z]
into the field we have constructed. Indeed, from the equality

[@)__e@

1~ 1

it would follow that f (2)-1 = 1-¢ (z), that is to say, f (z) = ¢ ().
This mapping will even be isomorphic, as the following equations
show:
)‘(_ﬂﬂ)_I g __ 1(2)- 1+g($) A _f(@+el

1 1 !
f(=® (1)_ (z)-2 ()
1 1 1
Thus, the classes of fractions equal to fractions of form ==

f()

tute, in our field, a subring that is isomorphic to the ring P [z]. The
f ( @

consti-

fraction can therefore be denoted simply as f (z). And finally,

since for g (z)=% 0, the class of fractions equal to the fraction :)
is the inverse of the class of fractions equal to the fraction 5—?—),

it follows from the equality
1@, 1t
1 g gla)
that all elements of our field may be considered (in the sense of
operations defined in this field) fo be quotients of polyromials of the
ring P [z].

Over an arbitrary field P we constructed the field of rational
fractions P (z). Using this same method, we can construct the field
of rational numbers by taking the ring of integers in place of the
ring of polynomials. Combining these two cases and using the same
kind of method, we could prove a theorem asserting that, generally,
any commutative ring without divisors of zero is a subring of some
field.



CHAPTER 11

POLYNOMIALS
IN SEVERAL UNKNOWNS

51. The Ring of Polynomials in Several Unknowns

One often has to consider polynomials that depend on two, three,
and, generally, several unknowns. In the first chapters of this book
we studied linear and quadratic forms, which are examples of such
polynomials. Generally speaking, a polyromial f (2, z, . .., )
in n unknowns zy, Zy, . .., I, over some field P is the sum of a finite
number of terms of the form z1, zk2, .. |, xﬁn, where all k; > 0,
with coefficients from the field P. It is assumed, quite naturally,
that the polynomial f (z;, z,, . . ., xz,) does not contain like terms
and that only terms with nonzero coefficients are considered. Two
polynomials in » unknowns, f(zy, 24, ..., 2;) and g (x1, 24, . - -
. . ., Z,) are called equal (or identically equal) if the coefficients of
like terms are equal.

If a polynomial f (x;, x5, . . ., 2,) is given over a field P, then
its degree with respect to the unknown z;, i =1, 2, ..., n, is the
highest exponent with which z; appears in the terms of the polyno-
mial. By chance, the power may be 0, which means that although f

is considered a polynomial in » unknowns z;, z5, . . ., Ziy - . -y Zn-
the unknown z; does not actually appear in the notation.
On the other hand, if we call the number k&, + &k, + ... + k&,

(that is, the sum of the exponents of the unknowns) the degree of the
term

k1R k
P S

then the degree of the polynomial f (x4, 25, . . ., z,) (that is, the degree
of the unknowns taken together) is the highest degree of its terms.
In particular, as in the case of one unknown, only nonzero elements
from the field P will be polynomials of degree zero. On the other
hand, as in the case of polynomials in one unknown, zero will be the
only polynomial in » unknowns whose degree is not defined. Of cour-
se, a polynomial can in the general case contain several highest-



304 CH. 11, POLYNOMIALS IN SEVERAL UNKNOWNS

degree terms and therefore one cannot speak of the highest-degree
term of a polynomial.

The operations of addition and multiplication are defined as
follows for polynomials in » unknowns over a field P. The sum of the
polynomials f (zy, 24, . . ., x,) and g (zg, Z5, . . ., z,) is a polyno-
mial whose coefficients are obtained by adding the corresponding
coefficients of the polynomials f and g; if some term occurs in only
one of the polynomials f, g, then its coefficient in the other polyno-
mial is naturally taken to be zero. The product of two “monomials”
is defined by the equation

azi2r Lz palal L. Zn= (ab) ghithghetlz  pkatin
after which the product of the polynomials f (zy, z,, . . ., z,) and
g (x4, x4, . . ., ) is defined as the result of a termwise multiplica-

tion and subsequent collecting of like terms.

Given this definition of operations, the collection of polynomials
in n unknowns over the field P becomes a commutative ring, which does
not contain divisors of zero. Indeed, for n = 1 our definitions coincide
with those which were given in Sec. 20 for the case of polynomials
in one unknown. Let it already be proved that the polynomials in
n — 1 unknowns zy, z,, . . ., x, -y With coefficients from the field
P constitute a ring without divisors of zero. Any polynomial in n
unknowns zy, Zg, . . ., Tn_1, Z, May be uniquely represented as a po-
lynomial in the unknown z, with coefficients which are polynomials
in z;, 24, . .., Z,_1; conversely, any polynomial in z, with coeffi-
cients from the ring of polynomials in zy, z,, ..., 2,1 over the
field 2 may of course be regarded as a polynomial over this same
field P with respect to the entire collection of unknowns zy, z,, . . .

. +y In-1, Zp. 1t may readily be verified that the one-to-one corre-
spondence we have obtained between the polynomials in #» unknowns
and the polynomials in one unknown over the ring of polynomials
inn—1 unknowns is isomorphic with respect to the operations of addi-
tion and multiplication. The assertion being proved follows now from
the fact that polynomials in one unknown over the ring of polyno-
mials in n--1 unknowns themselves constitute a ring, and, as a ring
of polynomials in one unknown over the ring without zero divisors,
it does not itself contain any divisors of zero (see Sec. 47).

Consequently, we have proved the existence of a ring of polynomials
in n unknowns over the field P. This ring is denoted by the symbol
P [-Zh Loy - - < xn]

The following considerations permit regarding the ring of poly-
nomials in » unknowns from a somewhat different angle. Let a field
P be contained in some commutative ring L as a subring. In L take
n elements oy, @, ..., o, and find the minimal subring L’ of the
ring L which contains these elements and also the entire field P,
that is, the subring obtained by adjoiring the elements a4, ay, . .., 0p
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to the-field P. The subring L' consists of all elements of the ring L
which are expressed in terms of the elements a4, o5, . . ., @, and the
elements of the field P by means of addition, subtraction and mul-
tiplication. It is easy to see that what we have are precisely those
elements of the ring L which may be written (with the aid of the ope-
rations occurring in L) in the form of polynomials in o, ey, . . ., @y
with coefficients from P; these elements, being elements of the ring
L, will add and multiply precisely in accord with the rules of addi-
tion and multiplication of polynomials in » unknowns.

Of course, speaking generally, a given element f of the subring L’
will possess many different notations in the form of a polynomial
in a4, oy, . . ., 0, with coefficients from the field P. If for any B in
L’ such a notation is unique, i.e., if the different polynomials in
Cyy Qg - . ., O are distinct elements of the ring L’ (and, hence, of
the ring L), then the system of elements a4, @,, . . ., o, is called
algebraically independent over the field P, otherwise it is algebraically
dependent.* From this we can draw the following conclusion.

If the field P is a subring of a commutative ring L and if the sys-
tem of elements a4, &y, . . ., On 0f L is algebraically independent over
P, then the subring L' of the ring L generated by adjoining to P the
elements ai,]az, . .., Oy is isomorphic to the polynomial ring P [z,
R

Of the other properties of the ring P [z, x5, . . ., z,] of polyno-
mials in » unknowns we indicate the following: this ring may be
included in the field P (zy, x4, . . ., ) of rational fractions irn n
unknowns over the field P. Every element of this field ean be written

f

as - where f and g are polynomials of the ring P [z, z,, . . ., 2,];

then%=l if and only if fp = go. Addition and multiplication

of these rational fractions is performed by the rules which, as indi-
cated in Sec. 45, hold true for quotients in any field. The existence
proof of the field P (x, 25, . . ., x,) is carried out just as it was in
Sec. 50 for the case n = 1.

We can construct a theory of divisibility for polynomials in se-
veral unknowns that generalizes the theory of divisibility for polyno-
mials in one unknown, which we studied in Chapters 5 and 10.
However, since we do not intend to go into a detailed study of the
ring of polynomials in several unknowns, we will confine ourselves
to the problem of factoring a polynomial into irreducible factors.

First let us introduce the following concept: if all terms of a po-
lynomial f (2, 25, ..., zn) have one and the same degree s, then

* The appropriate concepts for the case of n = 1 were introduced in
Sec. 47: there, an element o, algebraically independent over the field P in the
sense of the foregoing definition, was called transcendental over P, otherwise
it was algebraic over P.

20—5760
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it is called a homogeneous polynomial or, briefly, a form of degree s;
we are acquainted with linear and quadratic forms, and we could
consider cubic forms, all terms of which are of degree 3 in the unknowns
taken together, etc. Any polynomial in » unknowns can be uniquely
represented as a sum of several forms in these unknowns, the latter
having various degrees. To obtain the desired representation, all
we need to do is combine all terms of the same degree. For example, a
polynomial of degree four f (z, z,, x3)=3z2; — 12323+ 2, — SxyT 275
+ 2{—2x3 — 64 2} is the sum of the quartic form % — 72222, the
cubic form 3z 2} — Sxyx,xs + 23, the linear form z, — 2z; and the
constant term (a form of degree:zero) —6.

Let us now prove the following theorem.

The degree of a product of two nonzero polyromials in n unknowns
is equal to the sum of the degrees of the polynomials.

First suppose that we have the forms ¢ (z, z,, . . ., z,) of degree
sand ¢ (x4, &y, . . ., &n) of degree t. The product of any term of the
form ¢ by any term of the form ¢ will obviously have the degree
s + t, and so the product ¢ will be a form of degree s 4 ¢, since
collecting like terms cannot make all the coefficients of this product
vanish due to the absence of divisors of zero in the ring B [z, z,, . . .

. Znl.
If we are now given arbitrary polynomials f (zy, 25, . . ., x,) and
g (x4, g, - . ., ) of degrees s and ¢, respectively, then, by represen-

ting each of them as a sum of forms of different degrees, we get

F@y gy o oo X)) =@ (Tgy Tgy + oy Tp) + - - -y
g(‘zhzw"-a xn)=\])($1,x2,..., Z?n)+...

where ¢ and v are, respectively, forms of degrees s and ¢, and the
dots stand for sums of forms of lower degrees. Then

fe=op+...

By what has been proved, the form @y is of degree s + ¢, and since
all terms replaced by dots are of lower degree, the degree of the pro-
duct fg will be equal to s 4 ¢ The theorem is proved.

The polynomial ¢ is called the divisor of the polynomial f, and f
is the dividend which is divided by ¢, if in the ring P [z, z,, . . ., z,]
there is a polynomial ¢ such that f = . It is easy to see that the
divisibility properties I-IX (Sec. 21) are preserved in this general
case as well. A polynomial f of degree k, k > 1 is called reducible
over a field P if it can be decomposed into a product of polynomials

from the ring P [x,, z,, ..., z,] whose degrees are less than .
Otherwise it is an irreducible polynomial.
Any polynomial in the ring P lzy, z,, . . ., x,] having a nonzero

degree can be decomposed into a product of irreducible factors. This
decomposition (factorization) is unique to within factors of degree zero.



51. THE RING OF POLYNOMIALS IN SEVERAL UNKNOWNS 307

This theorem generalizes the corresponding results of Sec. 48
which refer to polynomials in one unknown. The first assertion is
proved by repeating exactly the reasoning of Sec. 48. The proof of
the second assertion is much more difficult. Before attempting it,
we note that from the second assertion of this theorem there follows
a corollary: if the product of two polynomials f and g from the ring
P [xy, zg, . . ., 7] is divisible by an irreducible polynomial p, then at
least one of these polynomials is divisible by p. This is so, for other-
wise we would have, for the product fg, two decompositions into
irreducible factors, one of which contains p and the other does not.

Suppose the theorem has been proved for polynomials in » unk-
nowns and we wish to prove it for a polynomial in » 4+ 1 unknowns
Zy Ty, Xgy » -« Tp. Write this polynomial as ¢ (z). Its coefficients
will consequently be polynomials in =z, z, ..., x,. For these
coefficients the theorem has already been proved, that is to say, each
of them can be uniquely decomposed into a product of irreducible
factors. Let us call ¢ (z) a primitive polynomial (more exactly, pri-
mitive over the ring P [z, x,, . . ., z,l), if its coefficients do not con-
tain a single common irreducible factor, that is to say, are all rela-
tively prime, and let us prove the following lemma (Gauss’ lemma).

The product of two primitive polynomials is itself primitive.

Indeed, suppose we have the primitive polynomials

f@) =a@" + aat 4+ ..+ gzt 4L+ oa,
g(x)=b0$l+b1$1'1+--- +bjxl°j+...+bl
with coefficients from the ring P [z, x5, ..., z,] and let
f(@) g @ =cox™ +e@ht T Fopattith oy

If this product is not primitive, then the coefficients cq, ¢y, . . .

.+, cp41 will have a common irreducible factor p = p (zy, x5, - - .
.-« Zp). Since all the coefficients of the primitive polynomial
f (z) cannot be divisible by p, let the coefficient a; be the first that
is not divisible by p; similarly, by b; denote the first coefficient of
the polynomial g (z) that is not divisible by p. Multiplying f (z)
and g (z) termwise and collecting terms in z™*-¢+)  we get

Cirj=aibj 4 aisbjrs 4 G1gbja+ - o FGuasbjoy +a1i0bj 4. . -

The left member is divisible by the irreducible polynomial p. All
terms of the right member (except the first) are also definitely divi-
sible by p. Indeed, by the conditions imposed on the choice of i and
j, all coefficients a;_y, a;—,, . . ., and also bj_y, bj_,, ... are divi-
sible by p. From this it follows that the product a;b; is also divisible
by p and therefore, as noted above, at least one of the polynomials
a;, b; must be divisible by p, which however is not the case. This

20*
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completes the proof of the lemma, under the assumption that the
fundamental theorem for polynomials in » unknowns holds true.

As we know, the ring P [z, z,, . . ., z,;] is contained in the field
of rational fractions P (z,, z,, . . ., ;) which we will denote by Q:

Q =Pz, Ty - . -, %)

Let us consider the polynomial ring Q [z]. If the polynomial ¢ (z)
belongs to this ring, then each coefficient of it can be represented
as a quotient of polynomials from the ring P [z, z,, ..., z,]).
Taking out the common denominator of these quotients and then
removing the common factors from the numerators, we can represent

¢ (z) as
¢ (2) =771 (z)

Here, a and b are polynomials of the ring P [z, z,, . .., z,] and
f (z) is a polynomial in z with coefficients from P [z, z,, . . ., z,];
it is even a primitive polynomial since its coefficients do not have
common factors.

In this way, we associate with every polynomial ¢ (z) of the ring
Q [z] a primitive polynomial f (z). For the given polynomial ¢ (z),
the polynomial f(x) is defined uniquely to within a nonzero factor in the
field P. Indeed, let

p@=5f@=7e@
where g (z) is again a primitive polynomial. Then
adf (x) = beg (x)

Thus, ad and bc are obtained by taking out all common factors from
the coefficients of one and the same polynomial over the ring P [z,
Zg . .., T,]. Whence it follows, due to the validity, in this ring
(on the induction hypothesis), of the unique factorization theorem,
that ad and be can differ only by a factor of degree zero. Hence, the
primitive polynomials f (z) and g () differ by the same factor.

The product of two polynomials from the ring Q |zl is associated
with the product of the primitive polynomials corresponding to them.
Indeed, if

@) =31, Y@=78()
where f (z) and g (z) are primitive polynomials, then
P @)% (@) =21 (2)g (2)

But, as was proved above, the product f (z) g (z) is a primitive poly-
nomial.
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Furthermore, note that if the polynomial ¢ (x) from the ring Q [x]
is irreducible over the field Q, then the corresponding primitive polyno-
mial f (z), regarded as a polynomial in z, x4, Z,,. . ., Zn, is also irredu-
cible, and conversely. Indeed, if the polynomial f is reducible, f =
= f4fs, then both factors must contain the unknown z, since other-
wise the polynomial f would not be primitive, whence follows the
decomposition of the polynomial ¢ (z) over the field Q:

P@=51@=(51) %

Conversely, if the polynomial ¢ (z) is reducible over Q, ¢ (z) =
@1 (z) @, (z), then the primitive polynomials f, (z) and f, (z), corre-
sponding to the polynomials @, (z) and @, (z), will both contain z,
but their product, as was proved above, is equal to f (z) (to within
a factor from the field P).

Now let us take a primitive polynomial f and factor it into irredu-
cible factors, f =f,-f, . . . fx. Not only must all these factors contain
the unknown z, they will even be primitive polynomials, for other-
wise the polynomial f would not be primitive. This factorization of
the primitive polynomial f is unique to within factors from the field P.
True enough, due to the preceding lemma, we can regard this facto-
rization as a factorization of f (z) into irreducible factors over the
field Q, but we already know of the uniqueness of factorization of
polynomials in one unknown over some field; this uniqueness occurs
to within factors from Q. However, in our case, due to the primitivi-
ty of all factors f;, it will be to within factors from P.

After these lemmas, proved by induction, the proof of our funda-
mental theorem does not present any difficulties. Indeed, any irre-
ducible polynomial in the ring P [z, 2y, z,, . .., 2,] will either
be an irreducible polynomial from the ring P [z, z, ...
.« +, xp] or an irreducible primitive polynomial. From this it follows
that if we have some factorization of the polynomial ¢ (z, 3, xs, . - -

. .y Zp) into irreducible factors, then, by combining factors, we
can represent @ as

(p(x’ Z4, 332, = . vy xn) =a (xh xzy .. ey xn)f(xy T, $21 < vy xn)

where a is independent of z, and f is a primitive polynomial. However,
we know that this factorization of ¢ is unique to within factors from
P. On the other hand, since for the polynomial @ in # unknowns the
uniqueness of factorization into irreducible factors holds by the
induction hypothesis, and, for the primitive polynomial f, was pro-
ved in the preceding lemma, the proof of our theorem for the case
of n + 1 unknowns is also complete.

An interesting corollary stems from the lemmas proved above:
if @ polynomial ¢ (x) with coefficients in P [y, x,, . . ., x,) is reducible
over the field Q = P (xy, T3, . . ., &) then it can be factored into factors
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dependent on x and having, as coefficients, polynomials from the ring
P [z, x5 ..., x,]). Indeed, if to the polynomial ¢ (z) there corre-
sponds a primitive polynomial f (z), that is, @ (x) = af (z), then, as
we know, the factorability of f (x) follows from the factorability
of ¢ (z). But this latter fact leads to the factorization of ¢ (z) over
the ring P [zy, z,, ..., z,]

In contrast to the case of polynomials in one unknown, which, as
we know from Sec. 49, can be factored into linear factors over an
appropriately chosen extension of the base field under consideration,
there exist over any field P absolutely irreducible polyromials of arbi-
trary degree in several (two or more) unkrowns, that is to say, polyno-
mials that remain irreducible under any extension of the field.

Such, for instance, is the polynomial

f@y) =e@+y
where ¢ (r) is an arbitrary polynomial in one unknown over the
field P. Indeed, if there were a factorization

ey =g yhzy
in some extension P of the field P, then, by writing g and % in terms
of powers of y, we would have, say,

g y) =a @y+a (), hizy) =Db(2)
that is, & is not dependent on y; and then, because a, (z) b, (z) = 1,
we would have that by () has degree 0, i.e., & is not dependent
on z either.

Alphabetical order of the terms of a polynomial. For polynomials
in one unknown, we have two natural ways of arranging the terms —
as descending and ascending powers of the unknown. This is not
possible for polynomials in several unknowns. If we have a polyno-
mial of degree five in three unknowns,

f (@1, Ty x3) = zii37y + 2iT3 + 2373 + 27Ty
it may also be written as
f (x4, T, x3) = ix5 + Ti2y75 + 247375 + Th7y
and there is no reason to prefer one notation to the other. There is,
however, a very definite way of ordering the terms of a polynomial
in several unknowns; it depends incidentally on the manner in which
the unknowns are numbered. For polynomials in one unknown it

reduces to ordering the terms in descending powers of the unknown.
It is known as the alphabetical method.

Suppose we have a polynomial f (xzy, z, ..., 2,) in the ring
P [z, x5, . . ., z,] and two distinct terms of the polynomial
xhighe . xhn ®)

zhxly ... zln (2
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whose coefficients are certain nonzero elements of P. Since the
terms (1) and (2) are distinct, at least one of the differences of the
exponents on the unknowns

B,—1, i=12 ...,n

is nonzero. Term (1) will be considered higher than term (2) [and
term (2) lower than term (1)] if the first of these differences
(nonzero) is positive, that is, if there is an i, 1 <<i <{n, such
that

ky =1, k=1 ..., ky=1L,, but k>

In other words, term (1) will be higher than term (2) if the exponent
on z, in (1) is greater than in (2), or if these exponents are equal but
the exponent on z, in (1) is greater than in (2), and so forth. It will
readily be seen that from the fact that texm (1) is higher than term
(2) it does not follow that the degree of the former (all unknowns
taken together) is greater than that of the latter: of the terms

3 5,3
T1ZaZ3,  T4TaTy

the first is higher though it is of lower degree.

It is obvious that of any two distinct terms of the polynomial
f (x4, 235 - . ., %), one will be higher than the other. It is also easy
to verify that if term (1) is higher than term (2), and (2), in turn, is
higher than the term

™Mz ., T 3)
that is, there exists a j, 1 <<j << n, such that
li = my, l2= Mgy . . o lj_1 = Mj.q, but lj > m;

then, irrespective of whether i is greater than, equal to, or less than
Jj, term (1) will be higher than term (3). Thus, placing first that term
which is higher, we get a definite ordermg of the terms of the poly-
nomial f (z;, z,, ..., x,), which is called alphabetical.

Thus, the polynomial

f (21, @y, 3, ) = 27 + 3ajzirs — 2irry + Swywsry + 2xpt+x3x, — 4

is arranged in alphabetical order.

In the alphabetical notation of the polynomlal fzy, 29y -« oy Tn
one of its terms will occupy first place, that is, will be higher than
any of the others. This term is called the highest term of the polyromial,
in the example given above, z; is the highest term. We will now prove
a lemma concerning hlghest terms; it will be used in the proof of the
fundamental theorem of the next section.

The highest term of a product of two polynomials irn n unknowns is
equal to the product of the highest terms of the factors.
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Indeed, suppose we are multiplying the polynomials f:(zy, 5, - . .
e Z) and g (x4, g . . ., ZTa)
azftzhy ... zhn (4)
is the highest term of the polynomial f (zy, z,, . . ., z,), and
e N ()
is any other term of this polynomial, then there is an i, 1 < i < 7,

such that
k1-= Siy o o oy ki-i = 8j-1y ki >Si

If, on the other hand,

balizly .. . xln (6)
bxlizlz ... xin (7

are the highest term and any other term of the polynomial
g (zy, x4, . .., x,), then there is a j, 1 <<j <n, such that

=1, ... lj—i = Ljy, lj >t

Multiplying the terms (4) and (6) and also the terms (5) and (7),
we get
abxqﬁ-hx;a-!-lz . xin-i-ln’ (8)

a'b zorthgirtte | gentin ©)

It is easy to see, however, that term (8) is higher than term (9);
if, say, i <{j, then

By +lh=s 4+t ..., kg + ljoy = 5o + t;4 but
by + Li>s+ 4

since k; > s;, ; > t;. In the same way, we see that term (8) is hlgher
than the product of the terms (4) and (7), and also higher than the
product of the terms (5) and (6). Thus, term (8)—the product of
the highest terms of the polynomials f and g—will be higher than
all other terms obtained by termwise multiplication of the polyno-
mials f and g, and so this term does not vanish when we collect terms;
that is to say, it remains the highest term in the product fg.

52. Symmetric Polynomials

Conspicuous among polynomials in several unknowns are those
that remain unchanged no matter what rearrangements of the un-
knowns occur. Thus, all unknowns appear in these polynomials in
symmetric fashion, whence the name symmelric polyromials (or
symmetric functions). Among the simplest examples are the sum of
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all unknowns z; 4 x5+ ... + z,, the sum of the squares of
the unknowns z}+234...4z;, the product of the unknowns
1%y - .X,, &nd so on. Since any permutation on n symbols can
be represented in the form of a product of transpositions (see
Sec. 3), it is sufficient, when proving the symmetry of a poly-
nomial, to verify that it remains unchanged under any transposition
of two unknowns.

We shall now consider symmetric polynomials in » unknowns
with coefficients from some field P. It is easy to see that the sum, diffe-
rence and product of two symmetric polynomials are symmetric; that
is to say, symmetric polynomials form a subring in the ring
Plzy, x4, . - ., z,] of all polynomials in » unknowns over the field P;
this is called the ring of symmetric polynomials in n unknrowns over the
field P. It includes all elements of P (that is, all polynomials of deg-
ree zero and also zero), since they definitely do not change under any
rearrangement of the unknowns. Any other symmetric polynomial
invariably contains all » unknowns and even has one and the same
degree with respect to them: if a symmetric polynomial f (3, 25, - -
..., ;) hasa term in which the unknown z; appears with an expo-
pent k, then it also has a term obtained from the first one by a tran-
sposition of the unknowns z; and z;, that is, one containing the un-
known z; to the same power k.

The following n symmetric polynomials in #» unknowns are called
elementary symmetric polynomials:

Oy =2+ &+ ...+ 2,

Oy = 4Ty + 31Tz + . .« + Tn-1Zn,

O3 = T1Z,%3 + T1&e%i + .« - T Tn-a¥n-1Zn, L (1)
On-t =T1Tg s + » Tneg + T4y« « o« Tpeglpn + + « « + ToZ3 . « Zp,

Op = T4y i . « Xy, '

These polynomials, whose symmetry is obvious, play a very great
role in the theory of symmetric polynomials. They are suggested
by the Vieta formulas (see Sec. 24) and so we can say that the coeffici-
ents of a polynomial irn one unknown, the leading coefficient of which is
unity, will, to within sign, be elementary symmetric polynomials with
respect to ils roots. This relationship between elementary symmetric
polynomials and the Vieta formulas will be very essential for those
applications of symmetric polynomials to the theory of polynomials
in one unknown which justify their study.

Since symmetric polynomials in » unknowns z, x,, ..., Zn
over the field P constitute a ring, the following assertions are obvious:
we have a symmetric polynomial in the case of any positive integer
power of any one of the elementary symmetric polynomials, also in
the case of a product of such powers (taken with any coefficient of P),
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and, finally, in the case of any sum of these products. In other words,
any polynomial in the elementary symmetric polynomials oy, 04, . .
.« ., O, With coefficients from P, which polynomial is regarded as a
polynomial in the unknowns z, %5, . .., &, Will be symmetric. For
example, set » = 3 and take the polynomial 0,0, + 203 Replacing
04, 0, and o3 by their expressions, we get

010, + 203 = zixy, + iz + 1173 + Tpxs + T + 2,7 + Srixars

What we have on the right is obviously a symmetric polynomial
in z;, x5, 3.

An inversion of this result is the following fundamental theorem
on symmetric polynomials.

Any symmetric polynomial in the unknowns xz,, z,, . . ., x, over
the field P is a polyrnomial in the elementary symmetric polynomials
Oy, Oy ..., Op With coefficients belonging to P.

Indeed, suppose we have the symmetric polynomial

f (@i gy - - -5 Zn)
and, in the alphabetical notation, let the highest term be

agxhizhe .. . xhn (2

The exponents on the unknowns in this term must satisfy the ine-

qualities
kv >k >... 2k ©3)

Indeed, suppose, for some i, we have k; << k;+;. However, since the
polynomial f (z;, s, ..., Z,) is symmetric, it must contain the
term
h1phs Beaghi kn 4
e R AL A W 2 (4)
which is obtained from term (2) by a transposition of the unknowns
z; and z; ;4. This is a contradiction, since term (4) is higher than term
(2) alphabetically: the exponents on zy, z,, . . ., Z;-1 coincide in
both terms, but the exponent on z; in term (4) is greater than in
term (2).
Lot us now take the following product of elementary symmetric
polynomials [all exponents will be nonnegative because of inequali-
ties (3)]:

— — R —_ Rp—1— R;
@y = agofi~haghz—hs . ghn-1—hknghn (5)

This is a symmetric polynomial in the unknowns z;, z,, . . .y &,
and its highest term is equal to term (2). Indeed, the highest terms
of the polynomials o, o, 03, ..., G, are equal, respectively, to
Ty, TyLqy TyLT3s - - 3 TaTy - - « T, and since it was proved at the
end of the preceding section that the highest term of a product is
equal to the product of the highest terms of the factors, it follows
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that the highest term of the polynomial g, is

ky—k ho—k hg—h hn-1—k k
Aoyt P (TgZ) T (T TyTg) e By e Tpmg) T (@ o Z)

— g phiphy R
QT PT2 ... TP

From this it follows that when we subtract ¢, from f, the highest
terms of these polynomials cancel out, that is, the highest term of the
symmetric polynomial f — ¢; = f; will be lower than the term (2),
which is the highest one in f. Repeating this same procedure for the
polynomial f,, whose coefficients obviously belong to the field P,

we get the equality
fi=o,+fs

where ¢, is the product of the powers of elementary symmetric
polynomials with a coefficient in P, and f, is a symmetric polynomial
whose highest term is lower than the highest term in f,, whence

the equality
f=mt+ e+

Continuing this process, we get f; = 0 for some s and therefore
arrive at an expression of f in the form of a polynomial in ¢4, 0y, . . .
.., O, with coefficients in P:

8
f(xh Ty =y xn)=.2i ‘ZP:=‘P(0'1, O3y «-.y Un)
i=

Indeed, if this process were endless,* we would obtain an infinite
sequence of symmetric polynomials:

fia fza se 0y fsa L (6)

and the highest term of each would be lower than the highest terms
of the preceding polynomials, and all the more so lower than (2).

However, if
brlhizlz ... xln Q)

is the highest term of the polynomial f,, then from the symmetry
of this polynomial there follow the inequalities

L>zL>2... 20 8)
which are similar to the inequalities (3). On the other hand, since
term (2) is higher than term (7), it follows that

ky >0 (9)
* One must bear in mind that, generally Speaking, the polynomial g
also contains terms not found in the polynomial fs—; and therefore the transi-

tion from fs—q to f; = fo—y — Tls is connected not only with eliminating certain
terms from f,_; but also with the appearance of new terms. Here, s =1, 2, . . .
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It is readily seen, however, that the systems of nonnegative integers
L, Iy, ..., 1, which satisfy the inequalities (8) and (9), may be chosen
in only a finite number of ways. Indeed, even if we give up the requi-
rement (8) and only assume that all ;, i =1, 2, ..., r, do not
exceed k;, then the choice of numbers /; will be possible in only
(ky; + 1)" ways. Whence it follows that the sequence of polynomials
(6) with strictly descending highest terms cannct be infinite.

This completes the proof of the theorem.

The above-indicated relationship between elementary symmetric
polynomials and the Vieta formulas permits deriving the following
important corollary from the fundamental theorem on symmetric
polynomials.

Let f (z) be a polynomial in one unknown over the field P having the
leading coefficient unity. Then any symmetric polynomial (with coeffici-
ents from P) in the roots of the polynomial f (x), which roots belong to
some splitting field of the polyromial f (x) over P, will be a polynomial
(with coefficients from P) in the coefficients of the polynomial f (x) and
therefore will be an element of P.

The foregoing proof of the fundamental theorem also provides
us with a practical method for finding the expressions of symmetric
polynomials in terms of elementary polynomials. Let us first intro-
duce the following notation: if .

azhizh . .. zhn (10)
is some product of powers of the unknowns z;, z, ..., z, (some
of the exponents may be equal to zero), then

S (axfazl . . . xln) (11)

will denote the sum of all terms obtained from (10) by all possible
rearrangements of the unknowns. Itis obvious that this will be a sym-
metric polynomial and homogeneous too, and that any symmetric
polynomial in # unknowns containing the term (10) will also contain
all the other terms of the polynomial (11). For example, S (z;) =
= 0y, § (T1xy) = 04, S (2?) is the sum of the squares of all the
unknowns, etc.

Example. Ex{)ress the symmetric polynomial f = S (z}z;) in n unknowns

in terms of the elementary symmetric polynomials.
Here, the highest term is z}z, and therefore @, = 6}-'0, = 0,0,, that is,

1= (2 + 2+ ...t ) (@72 + T+ ot Tpeaty)
= § (z8z) + 35 (z12275)
whence
fi= f— @1 = —3S (z1z275) = —303
Therefore, f = @ + f = 0,06, — 303.

In more involved cases, it is advisable first to determine which terms can
enter into the expression of the given polynomial via elementary polynomials,
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and then to find the coefficients of these terms by the method of undetermined
coefficients,

Example 1. Find an e Fressmn for the symmetric polynomial f = § (z}z3).

We know (see the proof of the fundamental theorem) that the terms of the
desired polynomml ¢ (04, Oz, + .., Oy) are determined via the highest terms
of the symmetric polynomials fi, fa, ..., these highest terms bemg lower
than the highest term of the glven polynomial f, that is, lower than z}z3. We find
all the products z!! z3% . . ;o In that satisfy the following conditions: (1) they
are lower than the term z3x3, (2) they can serve as the highest terms of sym-
metric polynomials, i.e., they satisfy the inequalities I, > I, > . > I,
(3) with respect to all unknowns taken together they have the degree 4 (since,
as we know, all the polynomlals fi, f2, - . . have the same degree as the homo-
geneous polynomial f). Writing out onl y appropriate combinations of expo-
nents ans indicating, alongmde, those fproducts of powers of o which products
are determined by them, we get the following table:

22000 ... 0}~203-%=o03},
21100 ... o '0}to}-% =0,03,
11110 ... o}~ o} lo}-lo} 0 =04
Thus, the polynomial f has the form
f= 0§ + Aojo3 + Bo,

We set the coefficient of 0, equal to unity, since this term is determined by the
highest term of the polynomial f and, as we know from the proof of the funda-
mental theorem, has the same coefficient. The coefficients 4 and B are found
as follows.

Set 2= 2y = z3=1, zs= ... =z, = 0. It is easy to see that for these
values of the unknowns the polynomial f has the value 3, and the polynomials
04, Oz, 03 and oy, the values of 3, 3, 1, and O, respectwely Therefore,

3=9+4+4.31+ B0

whence 4 = —2. Now put zy= 25 = 23 = 5, = =..,.=gz,=0.
The values of the polynomials f, gy, 0z, 03 and o; will be 6 4 6 4,1, respectlve-
ly. Therefore,

=36 —-2-4.4+ B4
whence B = 2. Thus, for f the desired expression is
f = 0% — 20,03 + 20;
Example 2. Find the sum of the cubes of the roots of the polynomial
fl@)= 2442+ 222+ 2z 4+ 1

To solve this problem, let us find the expression for the symmetric f]oly-
nomial S (zf) in terms of the elementary symmetric polynomials. Applying
the same method as in the preceding example, we get the table

3000 . . . of,
2100 ... 0402,
1110 . .. O3

and therefore

S (z}) = o + A0102 +

First assuming zy = zp = 1, 23 = . z, = 0, and then Ty = zp =
=g3=1, m=...=z,=0, we getA —3,B 3, that is,

S (It?) = 01 —_ 30‘102 + 303 ('12)

I ll
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To find the sum of the cubes of the roots of the given polynomial f (z), it is
necessary (because of the Vieta formulas) to replace, in the above-found expres-
sion, 04 by the coefficient of 23 with sign reversed, that is, by —1, then to rep-
lace g, by the coefficient of 22, that is, by 2, and, finally, to replace o3 by the
coefficient of z with sign reversed, i.e., by —1. Thus, the sum we are interested
in (the sum of the cubes of the roots) is equal to

(—1)® — 3+(—1)-2 4 3:(—1) = 2

The reader can verify this result if he takes into account that f(z) has
asroots the numbers i, —i, ——;— -+ i—-‘/z—3 and ——;— -1 —2§ . It is also obvious

that the formula (12) does not depend on the given fpolynomial f (z) and enab-
les us to find the sum of the cubes of the roots of any polynomial.

The method, obtained in the proof of the fundamental theorem,
for expressing a symmetric polynomial f in terms of the elementary
polynomials leads to a very definite polynomial in oy, 0y, ..., Op.
It turns out that there is no way of obtaining a different expression
for f in terms of ¢y, 05, ..., 0,. This is indicated by the following
uniqueness theorem.

Every symmetric polyromial has only a unique expression in the
form of a polynomial in the elementary symmetric polynomials.

Here is the proof. If a symmetric polynomial f (zy, 25, - . ., )
over a field P had two distinct expressions in terms of g4, G5, . . ., O,

f(xi, .7:2, “ o oey .‘l:n) = q) (0'1, 02, o oy Un) = ’lp (01, 02, . e ey Un)
then the difference
% (01,00 .. ., 0n) =@ (01,05, . « ., Gr) — ¥ (04, Oy, « - ., Tp)

would be a nonzero polynomial in oy, 0, ..., 0,; that is, not all
its coefficients would be zero, whereas replacing oy, G, ..., Op
in this polynomial by their expressions in terms of zy, z,, . .., Zn
would lead to the zero of the ring P [zy, z;, ..., z,]. It therefore
remains to prove that if a polynomial y (o4, 03, . .., 0y,) is diffe-
rent from zero, that is, has at least one nonzero coefficient, then
the polynomial g (z;, ,, ..., z,) obtained from y by replacing
0y, Og, ..., O, by their expressions in terms of z;, z;, ..., Zs,

% (01, Oy -« -y Op) = g (z1, g, . . -, Tp) (13)

is also nonzero.

If achoh ... ofn is one of the terms of the polynomial ¥,
a0, then after replacing all ¢ by their expressions (1), we get
a polynomial in z;, z,, . .., z, whose highest term (in the sense of
alphabetical ordering) is, as we already know from the proof of the
fundamental theorem, the term

R 2 B O S L Ry . A
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where

L=k +k+...4k,

l2 = k2 + .. . + kn,

I, = k,
Whence

ki=li_li+17 kn=ln, i=1,2,...,n—-1

That is to say, using the exponents I;, I,, . . ., I,, we can restore the
exponents ky, ky, ..., k, of the initial term of the polynomial .
Thus, distinct terms of the polynomial ¢y, which are regarded as
polynomials in a4, z,, ..., x,, have distinct highest terms.

Let us now consider all the terms of the polynomial y: for each
one of them let us find the highest term of its representation in the
form of a polyromial in zy,°z,, . . ., z, and select that highest term
which is highest in the alphabetical-ordering sense. As has been
pointed out above, this term does not have any similar ones among
the highest terms obtained from the other terms of the polynomial ¢,
and since, by hypothesis, it is higher than each of these highest terms,
it is all the more so higher than the other terms obtained when repla-
cing in the terms of the polynomial y the elements a4, 05, . . ., O,
by their expressions (1). We have thusfound a term which, when pass-
ing from g (04, 0y, . .., 0;) to g (1, Xy + .., Z,), appears (with
nonzero coefficient) only once and for this reason cannot be cancelled
out with anything in any way. Whence it follows that not all coeffi-
cients of the polynomial g (z;, z,, . .., z,) are equal to zero, that
is, this polynomial is not a zero element of the ring P [z, x,, .”

+ « «» ). The proof is complete.

Evidently, this theorem could also be stated in the following
manner.

A system of elementary symmetric polynomials G4, G4, ..., Op
regarded as elements of the polynomial ring P [z, z,, . . ., x,) is al-
gebraically independent over the field P.

53. Symmetric Polynomials Continued

Remarks on the fundamental theorem. The proof of the fundamen-
tal theorem on symmetric polynomials given in the preceding section
admits of a number of essential supplements to the statement of the
theorem. We will make use of them in what follows. First of all,
the coefficients of the polynomial ¢ (o4, 64, . . ., 0,) which we found
as an expression for the symmetric polynomial f (z;, zg . . -» Zn)
in terms of the elementary symmetric polynomials not only belong
to the field P, but are even expressed in terms of the coefficients of the
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polynomial f by means of addition and subtraction, i.e., they belong
;‘;7 the ring L generated by the coefficients of the polynomial f inside the
eld P.

True enough, all coefficients of the polynomial ¢, [see formula
(5) of the preceding section] in the unknowns zj, z,, . . ., z, are,
as will readily be seen, integral multiples of the coefficient a, of the
highest term of the polynomial f and for this reason belong to the
ring L. Let it be already proved that L contains all coefficients (in
Zy, Ty, - - ., Ip) of the polynomials @4, ¢g, . . ., ¢r. Then the coeffi-
cients of the polynomial f; = f — @1 — @, .. — ¢ will also
belong to L, and therefore L also contains all coefﬁclents of the poly-
nomial ¢4 in zy, x,, ..

On the other hand, the d.egree of the polynomial ¢ (G4, 04, . . ., Oy)
with respect to oy, 0y, . . ., O, taken together is equal to the degree of
the polynomial f (xy, z3, . . ., x,) with respect to each of the unknowns

z;. Indeed, since (2) of Sec. 52, is the highest term of polynomial f,
it follows that %, will be the degree of f in the unknown z,, and there-
fore, by symmetry, in any other of the unknowns x; as well. However,
the degree of ¢, with respect to o jointly is, by (5) of Sec. 52, equal
to the number

by — ko) + (ke — k) + .« - + (hpeg — ) + b = Ky

Furthermore, since the leading term of the polynomial f; is lower
than the leading term of the polynomial f, it follows that the degree
of f, with respect to each one of the z; will not exceed the degree of
/ with respect to each one of these unknowns. However, for f; the
polynomial ¢, plays the same role as ¢, for f, and so the degree of
@, with respect to ¢ jointly is equal to the degree of f; with respect
to each one of z;; that is, it does not exceed k, and so on. Thus, like-
wise, the degree of ¢ (04, 65, . . ., G,) does not exceed k,. But since
no ¢; with i > 1 can contain all o;, ¢,, . . ., ¢, to the same powers
as @i, the degree of ¢ (04, G5, . .., 6,) is exactly equal to k;. Our
assertion is thus proved.

Finally, let aclol . .. olp be one of the terms of the poly-
nomial ¢ (o;, 05, ..., 0,). We give the name “weight’ of this
term to the number

L+2,+...+nl,

that is, to the sum of the exponents multiplied by the indices of the
corresponding o;. In other words, this is the degree of our term with
respect to the unknowns zy, z,, . .., z, taken together, as follows
from the theorem (proved in Sec. 51) on the degree of a product of
polynomials. Then the following assertion holds true.

If, with respect to the totality of unknowns, a homogeneous symmet-
ric polynomial f (zy, 24, . . ., Z,) has degree s, then all terms of its
expression ¢ (G4, Gy, . . ., On) Via G Will have the same weight equal fo s.
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Indeed, if (2) of Sec. 52 is the highest term of the homogeneous
polynomial f, then

S=ki+k2+...+kn
However, the weight of the term ¢, is, by (5) of Sec. 52, equal to
(ks — ko) +2 (kg — k) + ... 4 (n — 1) (kn-y — k) + 1k,
=k +k+k+... 4k

That is, it is also equal to s. Furthermore, the polynomial f;, = f —
— @4, being the difference of two homogeneous polynomials of degree
s, will itself be homogeneous of degree s, and therefore the term ¢,
of the polynomial ¢ will have weight s, etc.

Symmetric rational fractions. The fundamental theorem on
symmetric polynomials can be extended to the case of rational frac-

f

tions. Let us call the rational fraction = in » unknowns z;, z,, . . .

.« Zn symmetric if it remains equal to itself under any rearra:ge-
ment of the unknowns. It is easy to demonstrate that this definition
does not depend on whether we take the fraction % or an equival- t frac-

tion 1o Indeed, if @ is some arrangement of our unknowns, and ¢

(1]
is an arbitrary polynomial in these unknowns, then let us agree to
use ¢® to denote the polynomial into which ¢ is carried by the arran-
gement ®. By hypothesis, for any o,

I

— G

& ¢
That is, fg® = gf®. On the other hand, from

f_h
g 8o

it follows that fg, = gf,, whence fog® = g®f®. Multiplying both
sides by f, we get

ffogd =fg°fp =gf®f
whence, by cancelling out f¢, it follows that fg = gf¢ or

K_1_1
82 ¢ &
The following theorem is valid.
Any symmetric rational fraction in the unknowns x,, z,, . . ., &,
with coefficients from the field P can be represented as a rational fraction
in the elementary symmetric polynomials oy, G,, . .., Op With coeffi-

cients which again belong to P.

21—5760
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Indeed, suppose we have the symmetric rational fraction

f(xh T2y ooy xn)
g (21, %2 ..oy Zp)

Assuming it to be in lowest terms, we could prove that both f and g
are symmetric polynomials. However, a simpler way is the following.
If the polynomial g is not symmetric, multiply the numerator and
the denominator by the produet of all n! — 1 polynomials obtained
from g under all possible nonidentical permutations of the unknowns.
It is easy to check that the denominator will now be a symmetric
polynomial. From this it follows, by the symmetry of the entire
fraction, that the numerator will now also be symmetric, and so to
prove the theorem all we have to do is express the numerator and the
denominator in terms of the elementary symmetric polynomials.

Power sums. In applications we often encounter the symmetric
polynomials

sh=a:'1‘—|—x’2‘+...+xﬁ, k=1, 2, .

which are sums of the kth powers of the unknowns xz;, z,, . .
These polynomials, called power sums, must be expressed (by the
fundamental theorem) in terms of elementary symmetric polynomials.
However, for large k, it is extremely difficult to find these expres-
sions, and so of interest is the relationship between the polynomials
Sy, 8, ... and 64, Gy, ..., 0, Which we will now establish.

First of all, s;, = o,. Next, if k£ < n, then it is easy to verify the
truth of the following equalities:

k—
Spe10y =S8+ S (x4 12),*

Sp-g0p =S (a:';— 1*732) +S8 (*73,;—21?2-’”3)7

..........................

Sp-i0; =S (ac’i_iﬂzlr2 eex)+S (x'f_sz e TiTiyq) (1)

..........................

Taking the alternating sum of these equalities (that is, the sum
with alternating signs), and then transposing all terms to one side,
we get the following formula:

Sp — Sp-101 + Speg0y — . . .+ (1) U840 + (—1) ko, =0 (2)
k<n

* See (11) of Sec. 52.
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But if £ > n, then the system (1) of equations takes the form
Sp-1Gy =58+ S (x’;_ixz),

Sp—90, =S (x'f_ 2,)+ 8 (x',‘_zxzx;,),

...........................

3k~n0’n = S (x’;_n_l-ixz " . xn)
whence follows the formula
Sp — Sp10y + SpagGs — « « « + (—1)" $pn0n =0 (k>n) (3)

Formulas (2) and (3) are called Newtor’s formulas. They connect
power sums with elementary symmetric polynomials and permit one
to find, successively, the expressions for sy, s, §3 . . . in terms of
G4, Oy, . . ., Op. Thus, we know that s; = oy, which also follows from
formula (2). Furthermore, if £ = 2 < n, then, by (2), s, — 10y, +
+ 20, = 0, whence

s, = 07 — 20,

For k = 3 << n we have s;3 — s,0; + 5,06, — 303 = 0, whence, using
the expressions already found for s; and s,, we get

s3 = 0 — 30,0, + 303

which is already familiar to us [see (12) of Sec. 52]. Now if k = 3
but n = 2, then, by (3), s3 — $,04 + 516, = 0, whence s3 = o} —
— 30,0, Using the Newton formulas, we can obtain a general for-
mula expressing s, in terms of oy, vy, . .., 6,. True, this formula
is very unwieldy and so we will not give it.

If the base field P has characteristic 0 and for this reason division
by any natural number » is meaningful*, then formula (2) permits
successively expressing the elementary symmetric polynomials
oy, Gg, . .., O, in terms of the first » power sums s;, s,, . . ., $,.
Thus, o4 =s; and therefore

1 1
Oy =5 (8001 —8g) = 5 (s1—52),
1 1
O3 =3 (83— 8501 + 510p) = - (5] — 35,5, + 2s5)
and so forth., From the foregoing and from the fundamental theorem

follows the result that

* In afield of characteristic p, the expression %- is meaningless for a s 0
since in this field pz = 0 for any =z.

21



324 CH. 11, POLYNOMIALS IN SEVERAL UNKNOWNS

Any symmetric polynomial in n unknowns z,, x,, ..., %, over
a field P of characteristic zero can be represented as a polynomial in
the power sums sy, Sg, . . ., S, With coefficients belonging to the field P.
Polynomials symmetric in two systems of unknowns. In the next
section, and also in Sec. 58, use will be made of a generalization of
the concept of a symmetric polynomial. Suppose we have two sys-
tems of unknowns zy, ;, . . ., , and y, Y, . . ., yr, and suppose
their union
Ty, xzv v ey In, yh y2) L ] yr (4)

is algebraically independent over the field P. The polynomial
f (x4, gy - - -y Tny Y1, Y2, - - -, Yr) Over the field P is called symmet-
ric in two systems of unknowns if it remains unchanged under any arran-
gements of the unknowns z;, x,, . .., 7, among themselves and of
the unknowns y;, ¥s, - . ., Yr among themselves. If we denote the
elementary symmetric polynomials in #;, z,, . . ., z;, by 0y, 05, . . .

., 0, and the elementary symmetric polynomials in yy, y,, . ..
... Yr by 71, T3, . .., Tr then the fundamental theorem is genera-
lized as follows.

Any polynomial f (21, g, . . ., Tn, Y1, Y2, - - -, Yr) ovVer the field
P, which polynomial is symmelric with respect to the systems of unknowns
Zy, Ty, - . -y Zn ARA Y1, Yo, - - -, Yr, €A be Tepresented as a polynomial
(with coefficients from P) in the elementary symmetric polynomials
with respect to these two systems of unknowns:

F@is Tas <« os Tns Y1o Yo -+ s Yr) = @ (04, O3y « « +, Opy Ty, Tay o+ o Typ)

Indeed, the polynomial f may be regarded as a polynomial

Wi Ya - - ., yr) with coefficients which are polynomials in z,
Zg, . - -, Zy. Since f remains unchanged under rearrangements of the
unknowns z, Zs, . . -, Zn, it follows that the coefficients of the poly-

nomial f will be symmetric polynomials in z, x5, . . ., , and the-
refore, by the fundamental theorem, can be represented as polyno-
mials (with coefficients from P) in 0y, 6, ..., 6,. On the other
hand, the polynomial f (y1, Y2 - .., y;) regarded over the field
P (x4, g, - - ., Zp) will be symmetric with respect to ys, ys, - - -, ¥:
and therefore can be represented as the polynomial ¢ (74, 7, . . .

..., T,). The coefficients of the polynomial ¢ will, as was demonstra-
ted at the beginning of this section, be expressed in terms of the coeffi-

cients of f by means of addition and subtraction, and so they too will
be polynomials in @y, Oy, . . ., 0. This obviously leads us to the
desired expression for f in terms of oy, G2, . . ., Gn, Ty, Tgy « -+, Tre

Example. The polynomial
f (21, T2, T3, Y1» Y2) = T4ty — TaTaYt — TaTaYs — TaTsYt — TaTslYa
— Za3yy — ZTaxsYz + Tiyyz + ekl + Tay1Ya.
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is symmetric both with respect to the unknowns zy, z2, z3 and to the unknowns
Y1, Y2, but is not symmetric with respect to the five unknowns taken together,
as is evident from, say, a transposition of the unknowns z; and y;. Let us find
the expression for f in terms of ¢y, 02, 03, 71, Ta2!

[ = zyzazs — (@122 + Z123 + Toz3) Y1 — (#4722 + Z123 + 22235) Y2

+ (21 + z2 + 25) yay2 = O3 — Ozys — Opyz + Oyyrys = Oz — Oy + O1Ta

The theorem just proved can naturally be extended to the case
of three or more systems of unknowns.

For polynomials symmetrie with respect to two systems of un-
knowns, the theorem of unique representation in terms of elementary
symmetric polynomials also holds true. In other words, the follow-
ing theorem is valid.

The combined system

Oy O3y - « -y On, Ty, Ty « o o9 Tp
of elementary symmetric polynomials in the given systems of unknowns
Ziy Tgy - - -y T and Yy, Yoy . - -, Yr is algebraically independent over

the field P.
Indeed, suppose over the field P there is a polynomial

@ (G4 Ogy <« vy Ony Tty Tay o - -y Tr)

equal to zero although not all its coefficients are zeros. This polyno-

mial may be regarded as a polynomial ¢ (ty, 75 ..., T,) With
coefficients which are polynomials in oy, 05, ..., 0,. We can, con-
sequently, take it that ¢ is a polynomial in 7, ©,, . . ., 7, over the

field of rational fractions
Q =P (xi, Lgy o o oy x,,)

The system y;, y;, . . ., ¥, remains algebraically independent over
the field Q: if, in this system, there were algebraic dependence with
coefficients from Q, then, by eliminating the denominators, we would
obtain an algebraic dependence in system (4), which contradicts the
assumption. Proceeding from the uniqueness theorem of the prece-
ding section, we now find that the system t,, 15, . .., 7, must also
be algebraically independent over the field Q, and therefore all coeffi-
cients of the polynomial ¢ are equal to zero. However, these coeffi-

cients are polynomials in 64, 65, . . ., 6, and therefore, again on the
basis of the uniqueness theorem for the case of one system of unknowns
(this time, the system z, z,, . . ., ), all coefficients of these latter

polynomials are themselves zero. This proves that, in contradiction
with the hypothesis, all coefficients of the polynomial ¢ must
be zero.
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54. Resultant. Elimination of Unknown.

Diseriminant
If we have a polynomial f(z;, z,, ..., z,) from the ring
P lzy, zy, . .., z,], then its solution is a set of values of the unknowns
Ty =0y, Ty = Olg, « « +y Tn = Olp

taken in the field P or in some extension P of this field, a set that
makes the polynomial f vanish:

f(aiv 127 TE N an) =O

Every polynomial f of degree greater than zero has solutions: if the

unknown z, occursin the notation of this polynomial, then for a,, .
. .., on we can actually take any elements of the field P, provided
only that the degree of the polynomial f (z;, @,, . . ., &) is strictly
positive, and then, using the theorem on the existence of a root
(Sec. 49), take an extension P of the field P in which the polynomial
f (x4, @y, . . ., a,) in the single unknown z; has the root a;. At the
same time, we see that the property of a polynomial of degree n
in one unknown to have, in any field, not more than n roots ceases
to hold true for polynomials in several unknowns.

If we have several polynomials in » unknowns, we can pose the
question of finding solutions that are common to all these polyno-
mials; that is, solutions of the system of equations which is obtained
by equating the given polynomials to zero. A particular case of this
problem, namely the case of systems of linear equations, was consi-
dered in detail in Chapter 2. However, concerning the opposite case
of one equation in one unknown but of arbitrary degree, we know
nothing about the roots except that they exist in some extension of
the base field. Finding and studying solutions of an arbitrary non-
linear system of equations in several unknowns is, quite understan-
dably, a still more involved problem that goes beyond the scope of
our present course and constitutes a special branch of mathematics
keown as algebraic geometry. Here, we confine ourselves to a system
of two equations of arbitrary degree in two unknowns; we will show
that this case can be reduced to that of one equation in one unknown.

Let us first take up the question of the existence of common
roots of two polynomials in one unknown. Suppose we have the poly-
nomials

f(z) = ap2x™ + ay2™ + .. . + ay4x + ap, } (1)

g (x) = box’ + byt + ... + bz 4 by
over the field P, ao 5% 0, by 5= 0.
From the results of the preceding chapter, it readily follows that

polynomials f (z) and g (x) have a common root in some extension of the
field P if and only if they are not relatively prime. Thus, the question
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of the existence of common roots of the given polynomials can be
resolved by applying the Euclidean algorithm.

We will now give another method. Let P be some extension of
the field P in which f (z) has n roots a4, @y, . . ., &, and g (z) has s

roots By, Ba, . . ., Ps; for P we can take the splitting field for the
product f (z) g (x). The element

n 3

R(f, g)=ap [ II (@:i—8)) 2)

i=1 j=1

of the field P is called the resultant of the polynomials f (z) and g (z).

It is obvious that f (z) and g (z) have a common root in P if and only
if R(f, g) = 0. Since

g@=b [ c—8)

and therefore
8

g (@) =b, jLIj (et —By)
it follows that the resultant R (f, g can also be written as
R(f,g)=a; |] g ®)

The polynomials f (z) and g (z) are utilized in nonsymmetric
fashion in determining the resultant. Indeed,

R(g N=tpa; [[ [l Bs—o=(—1"R(, g (4
In accordance with (3), R (g, f) may be written as
R =0} 11 1 () (5

Expression (2) for a resultant requires a knowledge of the roots
of the polynomials f (z) and g (z) and therefore is, in a practical sense,
useless for solving the problem of the existence of a common root of
these two polynomials. However, it turns out that the resultant
R (f, g) may be represented in the form of a polynomial in the coeffi-
cients ag, @y, . . ., Gy, bo, by, . . ., byof the polynomials f (z) and g (x).

The possibility of such a representation follows readily from the
results of the preceding section. Indeed, formula (2) shows that the
resultant R (f, g) is a symmetric polynomial in two sets of unknowns:
the set a4, &y, . .., o, and the set By, Po, . .., Bs. Therefore, as
proved at the end of the preceding section, it can be represented in
the form of a polynomial in the elementary symmetric polynomials
with respect to these two systems of unknowns, that is, by the Vieta
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formulas, as a polynomial in the quotients %, i=1,2, ... n

and Z—j, i=1,2, ..., s the factor ad? included in (2) eliminates
0

ay and by from the denominators of the resulting expression. Inciden-
tally, it would be an arduous task to find the expression of the resul-
tant in terms of the coefficients by means of methods described in the
preceding sections, and so we will proceed differently.

The expression for the resultant of the polynomials (1) that we
will find will suit any pair of such polynomials. To be more precise,
we will take it that the set of roots

Ly, 0‘27 AR ] anv ﬁiv 527 L] ﬁs (6)
of the polynomials (1) is a set of » -+ s independent unknowns, that
is, a set of n + s elements which are algebraically independent over
the field P in the sense of Sec. 51.

We will get an expression for the resultant, which expression,
regarded as a polynomial in the unknowns (6) (after replacement of
the coefficients by the roots via the Vieta formulas), will be equal
to the right member of (2); this member is also regarded as a polyno-
mial in the unknowns (6).

Regarding the equality precisely in the sense of an identity
in the set of unknowns (6), we will prove that the resultant R (f, g) of
the polynomials (1) is equal to the foliowing determinant of order n + s:

Qg @y ... Ap
aoai...an $ TOWS
Gy Ay ... Gy
D=l b, ... b @)
bo by ... bs n rows
by by ... bs

(all vacancies are occupied by zeros). The structure of this determi-
nant is clear enough; it need only be noted that the coefficient g,
appears s times on the principal diagonal and the coefficient b, occurs
n times.

To prove our assertion, we compute in two ways the product
asbpDM, where M is the auxiliary determinant of order » +s

ﬁri;+s—i ﬁ12t+s—1 L. ﬁ?-H_i a’rit+s—1 ag+a—i . a2+s-—i

ﬁ?-i-s—z ﬁ"2l+l—2 . 5?4—3—2 ar;—i—s—z a121+.s—2 . a::—i—s—z
M=) v r e e

A T I S B

B4 Be - Ps oy 22 « Gn

1 1 1 1 1 1
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M is the Vandermonde determinant and so it is equal (see Sec. 6)
to the product of the differences of the elements of its second last row,
any succeeding element being subtracted from any preceding ele-
ment. Thus,

= I ¢8I [ e—a [ @—a)

1Si<i<s : = i<j<

and therefore, by (4),
appDM=D-R(g f)- Il _®:—B)- JI_(@—ap @

<i<y [ PSS
On the other hand, let us compute the product DM on the basis
of the theorem on the determinant of a product of matrices. Multi-
plying out the appropriate matrices and taking into account that all
o are roots of f () and all § are roots of g (z), we get

B f BB B - BT Bs) O 0 ... 0
T BIBY B BB O 0 ... 0
Bif Br) Bof(Ba) ---Bsf (Bs) 0 0 e 0
DM | TBY f@) .. F(Bs) 0 0 e 0
0 0 ... 0 ot g (@) a8 g () ... o g (o)
0 0 ... 0 o 2g (a)) o5 2g (o) . . a8 (@n)
SRR S EERRERE .oilé(&,; . .a;g.(az). e ('zn.gia.n)
0 o ... 0 g (o) glay) ... g(an)

Applying the Laplace theorem, then taking common factors out of
the columns of the determinants and computing the remaining deter-
minants as Vandermonde determinants, we obtain

apsDM=apy [1 1®)- [ _ @:—B)- [ gl Il _ (-

1gi<j<s 1gi<jsn
or, using (3) and (),
ap;DM =R, e)R(g N)- [I_B:i—B)- Il (=) (9

<j< Ii<jsn
We find that the right sides of (8) and (9), considered as polyno-
mials in the unknowns (6), are equal. Both sides of the resulting equa-
tion can be reduced by common factors not identically zero. The
common factor R (g, f) is not equal to zero: since ay 5= 0 and by = 0
by hypothesis, it suffices to select for the unknowns (6) nonequal valu-
es (in the base field or in some extension of it) in order to obtain from
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(4) a nonzero value for the polynomial R (g, f). In the same way, we
prove that the other two common factors are also different from zero.
Cancelling out common factors, we arrive at the equality

R(,g =D (10)
which is what we set out to prove.

Let us now give up the requirement that the leading coefficients
of the polynomials (1) be different from zero*. Concerning the true
degrees of these polynomials, it is thus possible to assert only that
they do not exceed their “formal” degrees n and, respectively, s. For
the resultant, the expression (2) is now meaningless, since it may be
that the polynomials in question have fewer roots than » or s. On the
other hand, determinant (7) can be written now as well, and since it
is already proved that for ag 5= 0, by = 0 this determinant is equal
to the resultant, it follows that in our general case too we can call
it the resultant of the polynomials f (z) and g (x) and denote it by
R (f, 8-

Hov)vever, we can no longer hope that the fact that the resultant
is zero is equivalent to our polynomials having a root in common.
Indeed, if aq = 0 and by = 0, then R (f, g) = 0, irrespective of
whether the polynomials f and g have common roots or not. It turns
out, however, that this case is the only case when one cannot conclude
that if the resultant is zero, the given polynomials have common
roots**. Namely, the following theorem is valid.

If we have polynomials (1) with arbitrary leading coefficients, then
the resultant (7) of these polynomials is zero if and only if the polyno-
mials have a common root or if their leading coefficients are both zero.

Proof. The case of ay = 0, by 5= 0 has already been considered,
and the case of ag = by = 0 is covered in the statement of the theo-
rem. It remains to consider the case when one of the leading coeffi-
cients of the polynomials (1), say a,, is nonzero and &, is equal to zero.

Ifb;,=0foralli,i=0,1, ..., s then R (f, g = O since the
determinant (7) contains zero rows. In this case, however, the poly-

nomial g (2) is identically zero and therefore has common roots
with f (z). However, if

b0=bi=...=bk_1=0, but bk%o, k<3
and if

g (2) = bpa®™* 4 bpysa® P14 LU F by + by

* This temporary rejection of the condition on the leading coefficient
of the polynomial, which was valid up to now, is due to subsequent applica-
tions: we want to consider systems .of polynomials in two ‘unknowns and we
want to regard one of the unknowns as a coefficient. Thus, the leading coeffici- .
ent can vanish for particular values of this unknown.

** The determinant (7) is of course also equal to zero when a, = b, = 0.
However, in this case the polynomials (1) have a common root 0.

q
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then, replacing the elements &y, by, . . ., by_y in (7) with zeros and
applying the Laplace theorem, we obviously get

R (f, g) = atR (f, 8) (11)

But since the leading coefficients of both polynomials f and g are diffe-
rent from zero, it follows, from what was proved above, that the

equality R (f, g) = 0 is necessary and sufficient for the polynomials
f and g to have a root in common. On the other hand, by (11), the
equalities R (f, g = 0 and R (f, g) = O are equivalent, and since

the polynomials g and g of course have the same roots, we find that
in the case at hand as well the fact that the resultant R (f, g) is zero
is equivalent to the polynomials f () and g (z) having a common
root. This proves the theorem.

Let us find the resultant of the two quadratic polynomials

f(2) = apz® + ayz + a5, g (2) = boz® + byx + b,
By (7),
ay a; a, 0

_ 10 a a4 ay
RO 8) =gy b, 5,0

0 by by by
or, computing the determinant via expansion by the first and third
rows,
R (f, 8) = (aoby — asbo)® — (aghs — asby) (a1by — azby) (12)
Thus, if we have the polynomials
f@y=22—6z+2, g)=2+2+5

then, by (12), R (f, g) = 233 and so these polynomials do not have
any roots in common. But if we have the polynomials

f@ =22 — 42 —5, g@) =a2—Tx+4+ 10

then R (f, g} = 0, which means that they have a common root, the
number 5.

Eliminating an unknown from a system of two equations in two
unknowns. Suppose we have two polynomials f and g in two unknowns
z and y with coefficients from some field 2. We write the polynomials
in descending powers of z:

flz, y) =ao(@a*+a ) 2+ ...+ gy (9) 2+ ax (), }
gy =by2 +b@d1+...4+b@z+ b
(13)
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The coefficients will be polynomials from the ring P [y]. We find the
resultant of f and g, which are regarded as polynomials in z, and deno-
te it by Rx (f, g). By (7) it will be a polynomial in the single unknown
y with coefficients from the field P:

Re (f, 8) = F (v) (14)

Let the system of polynomials (13) have, in some extension of
the field P, the common solution z = o, y = B. Substituting the
value P in place of y in (13), we get two polynomials f (z, B) and
g (z, B) in the one unknown z. These polynomials have the common
root o and therefore their resultant, which by (14) is equal to
F (B), must be equal to zero, that is, p must be a root of the resultant
R.(f, g). Conversely, if the resultant R, (f, g) of the polynomials
(13) has the root B, then the resultant of the polynomials f (z, B)
and g (z, B) is zero. That is to say, either these polynomials have a
common root or both their leading coefficients are zero,

a (B) = bo () =0

The finding of common solutions of the system (13) of polynomials
is reduced to the finding of roots of the single polynomial (14) in the
single unknown y. We say that the urknown z has been eliminated
from the system (13) of polyromials.

The next theorem relates to the question of the degree of the poly-
nomial which we obtain after eliminating one unknown from the
system of two polynomials in two unknowns.

If, taking the unknowns together, the polynomials f (z, y) anrd
g (z, y) are respectively of degrees n and s, then the degree of the poly-
nomial R (f, g) in the unknown y does not exceed the product ns, if, of
course, this polynomial is not identically zero.

First of all, if we regard two polynomials in one unknown with
leading coefficients equal to unity, then, by (2), their resultant

R (f, g) is a homogeneous polynomial in a4, &y, . . ., Op, B1y Ba - -
..., Ps of degree ns. From this it follows that if the term
Py s o 3 S

enters into the expression of the resultant via the coefficients
a4, Ggy .+ «y Gy, by, by, ..., b, and if the weight of this term is the

number
k1+2k2+...+nkn+li+2l2+--.+sl.
then all terms of R (f, g) expressed via the coefficients have the same

weight equal to ns. This assertion also holds true in the general case
for terms of the resultant (7) if the number

Oky+1ky+...+nky+00+1-14...+sl, (15
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is given as the weight of the term afeak. ... aknblbbl, ... bls
Indeed, replacing the factors ay and b, by unity in the terms of deter-
minant (7), we arrive at the case that has already been considered;
however, the exponents on these factors enter into (15) with coeffi-
cients 0.

Now write the polynomials f and g as.follows:

fl@y=a@zr+a@zrr+...+ a, (y),
gz, y)=bo(y) 8+ by (y) z#72 4 . . . 4 bs (¥)

Since n is the degree of f (x, y) in the unknowns jointly, the power
of the coefficient a, (y), r=0, 1, 2, . . ., nr, cannot exceed its index
r; this holds true for b, (y) as well. Whence it follows that the degree
of each term of the resultant R, (f, g) does not exceed the weight of
this term, which is to say it is not greater than the number ns. This
completes the proof.

Example 1. Find the common solutions to the following system of polyno-

mials:
flz,y) = 2% + 32y + 2y + 3,
gz y) =2zy —2z+2y+3
Eliminate z from this system; to do this, rewrite it as

e y) =y-2* + By z+ (2y 1+ 3), } (16)
gy =0Cy—2)z+ (2y+3)

then
y 3y 2943
Ry(fig)=|2y—22y+3 O = 2y2 4 11y + 12
0 2y —2 2y + 3
The numbers f; = —4, f3 = — %will be the roots of the resultaﬁt. The leading

coefficients of the polynomials (16) do not vanish for these values of the unknown
y, and so each of them, together with some value for z, constitutes a solution
of the given system of polynomials. The polynomials

f(z, —4) = —42? — 122 — 5,
g (z, —4) = —10z — 5

have the common root or,i:-—--:i?. The polynomials

3 3 9
A I
! (’” ) ) 7P s
g (.1:, -—-—g-) =—5z
have the common root @z = 0. Thus, the given system of polynomials has two
solutions:
1

wu=—, Bi=—4 and a,=0, 52=—‘§

w
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Example 2. Eliminate one unknown from the system of polynomials
flz,y) = 2% — zy2 4 2 4 5,
g (zyy) = 2%® + 22y — 5y + 1

Since both polynomials are of degree 2 in the unknown y, whereas one of
them is of degree 3 in z, it is advisable to eliminate y. Rewrite the system as

f(z, p) = (—2)-y* + (22%).y + (z + 5), } an
g (z, y) = (2* + 2z) y* — S5y 4+ 1

and find its resultant, applying formula (12):

Ry (f, ) = (—2)1 — (z + 5) (z* + 22))*
— [(—2) (=5) — 22® (2% + 22)] [22°1 — (z + 5) (—5)]
= 428 4 827 + 1128 4 8425 + 16124 + 15423 4 962% — 125z

One of the roots of the resultant is 0. However, for this value of the unknown
z, both leading coefficients of the golynomials (17) vanish; and, as is readily
seen, the polynomials f (0, ) and g (0, y) do not have any common roots. We do
not have any method for finding the other roots of the resultant. We can only
assert that if we found them [say in the splitting field for Ry (f, g)], then not
one of them would make both leading coefficients of the polynomials (17) va-
nish, and therefore each of these roots, together with some value for y (one
or elven several), would constitute a solution of the given system of polyno-
mials.

There are also methods for successively eliminating the unknowns
from systems with an arbitrary number of polynomials and unknowns.
They are too involved however to be included in this course.

Discriminant. By analogy with the question that led us to the
concept of a resultant, we can ask about the conditions under which
a polynomial f (z) of degree » from the ring P [z] has multiple roots.

Let
f(@) =a2™ + a2+ ... 4+ apegz + d, @y 540
and suppose that in some extension of the field P this polynomial
has the roots ay, oy, . .., &,. It is obvious that there will be equal
roots among them if and only if the following product is zero:
A=(az—oay) (@g—0y) ... (@n—0y) (@3 —0ag) (tg—0ty) - .. (Cn—0y)

...................................

X (@n—tn-)= [ (u—ay
n2i>j21

or, equivalently, if the product

D=a"* [ (ai—ayp?
n2iSi>1

called the discriminant of the polynomial f (x) is zero.
Unlike the product A, which can change sign upon a rearrange-
ment of the roots, the discriminant D is symmetric with respect to
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4, Oy, . . ., Oy and can therefore be expressed in terms of the coeffi-
cients of the polynomial f (z). To find this expression, under the assu-
mption that the field P has characteristic zero, we can take advanta-
ge of the connection between the discriminant of the polynomial
f (z) and the resultant of this polynomial and its derivative. It is
natural to expect such a connection: we know from Sec. 49 that a po-
lynomial has multiple roots if and only if it has roots in common with
the derivative f' (z) and therefore D == 0 if and only if R (f, /') = 0.
By formula (3) of this section,

R(f, )=a™ H f ()
Differentiating

a0 I —an

we get
F'@=a 2 Il (@—ay)
k=1 jh

After substitution of «; instead of z, all terms, except the ith, vanish
and so

f (e)y=a, ,-Q,- TR

whence
R(f, f)=ai*ap [] _[I (o —aty)

For any i and j, i > j, two factors enter into this product o; — aj
and a; — o;. Their product is equal to (—1)-(a; — ay)? and since

there are"—("———i) pairs of indices i, j satisfying the inequalities n >

2
>i>j>1, it follows that
n(n—1) n(n—1)
R(f, f)=(—1) % a@nt [l (@i—a)?=(—1 2 aD
n=2i>j=1

Example., Find the discriminant of the quadratic trinomial
f(z) = az® 4+ bz + ¢
Since f' (z) = 2azx + b, it follows that

a bec
R(fyf)=|2a b O0|=a(—b®4 4ac)
02
In our case, —nﬂé_—ﬂ=i and so

D = —a-lR (f, {) = b® — 4ac

This coincides with what school algebra calls the discriminant of a quadratic
equation.
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Another way of finding the discriminant is the following. Form
a Vandermonde determinant from the powers of the roots a4, a,, .
.« a,. As indicated in Sec. 6,

1 1 ... 1
oy GOy .. Qp
2 2 2 — —
@ o ... adl= [ (@—a)=A
n21>ji21
a ol ... ap?

and so the discriminant is equal to the square of this determinant
multiplied by ;"% Multiplying this determinant by its transpose
by the rule for matrix multiplication and recalling the power sums
defined in the preceding section, we get

n oS S5 ... S
S§ Sp 83 ... 8
D=a"| s 83 S ... 841 (18)

Sn-1 Sn Sn41 -+ - Son-g
where s, is the sum of the kth powers of the roots oy, a,,..., t,.

Example. Find the discriminant of the cubic polynomial f (z) = 2® 4
-+ az? 4 bz + c. By (18)
3 Sy 8
84 32 33
82 83 &

D =

As we know from the preceding section,

8 = 03 = —a,
sp= of — 20, = a® — 25,
s3 = 0} — 30,05 + 303 = —a® + 3ab — 3¢

Using Newton’s formula, we will also find that (because o, = 0)
sy = 0} — 4o}0y + 40,03 + 203 = at — 4a?b + 4ac + 2b%
Whence
D = 3sp5; + 2515353 — 8§ — sfs; — 353
= a2b? — 4b% — 4a5¢c + 18abc — 27¢2 19)
In particular, for a = 0, i.e., for an incomplete cubic polynomial, we obtain
D = —4b8 — 27¢%

in complete accordance with what was said in Sec. 38.
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55. Alternative Proof of the Fundamental Theorem
of the Algebra of Complex Numbers

The proof of the fundamental theorem given in Sec. 23 was comple-
tely nonalgebraic. Here we give another proof, which takes advanta-
ge of an extensive algebraic apparatus: essential use is made of the
fundamental theorem on symmetric polynomials (Sec. 52) and also
of the theorem on the existence of a splitting field for any polynomial
(Sec. 49). At the same time, the nonalgebraic portion of the proof
is minimal and is reduced to a single simple assertion.

First note that in Sec. 23 we proved a lemma on the modulus of
the highest-degree term of a polynomial. Taking the coefficients of
a polynomial f (z) to be real and putting & = 1, we obtain the follo-
wing corollary of this lemma.

For real values of x sufficiently large in absolute value the sign of
a polynomial f (x) with real coefficients coincides with the sign of the
highest-degree term.

From this follows the result that

A polynomial of odd degree with real coefficients has at least one
real root.

Indeed, let

f(z) = apz® + ae™ + .. . + a,

and all coefficients be real. Because of the oddness of n, the highest-
degree term a,z™ has different signs for positive and negative values
of z, and therefore, as was proved above, the polynomial f (z)
will also have different signs for positive and negative values of z
sufficiently large in absolute value. There consequently exist real
values of z, say a and b, such that

f@ <0, f(b)>0

However, from the course of analysis we know that a polynomial
(a rational integral function, that is) f (z) is a continuous function
and for this reason, because of one of the basic properties of continu-
ous functions, f (r) takes on any given value intermediate between
f (a) and f (b) for certain real values of x between ¢ and b. For
example, there is an o between a and b such that f (a) = 0.

Using this result, we will prove the following assertion.

Every polynomial of arbitrary degree with real coefficients has at
least one complex root.

Indeed, suppose we have a polynomial f (z) with real coefficients
having degree n = 2%g, where ¢ is an odd number. Since the case
k = 0 has already been considered (see above), we shall assume
k > 0, that is, we consider » an even number and we will argue by
induction with respect to k, on the assumption that our assertion has

22—5760
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been proved for all polynomials with real coefficients whose degrees
are divisible by 2*-! but not divisible by 2* *,

Let P be a splitting field for the polynomial f (z) over the field
of complex numbers (see Sec. 49), and let oy, s, . .., 0, be the
roots of f (z) in P. Choose an arbitrary real number ¢ and take the
elements of the field P having the form

Buy =ouay + (o +ay), i<j (1)
The number of elements f;; is obviously equal to
— kg (2hg—
noh) JPE=D g bg—)=2g ()

where ¢’ is an odd number.
Let us now construct from the ring P [z] a polynomial g (z)

having for its roots all the elements B;; and only these elements:

g@=_1II @—Bu
i, 3, i<j

The coefficients of this polynomial are elementary symmetric poly-
nomials in B;;. Consequently, by (1), they will be polynomials
in a4, &g, . . ., Oy with real coefficients (since the number c is real),
they will even be symmetric polynomials. True enough, a transposi-
tion of any two a, say a, and @;, implies merely a rearrangement in
the set of all B;;: every Puj, where j is different from % and from !/,
is converted into B;;, and conversely, whereas B,; and all B;;, for i
and j different from % and /, remain fixed. But the coefficients of
the polynomial g (z) remain unchanged under a rearrangement of its
roots.

From this it follows, by the fundamental theorem on symmetric
polynomials, that the coefficients of the polynomial g (z) will be poly-
nomials (with real coefficients) in the coefficients of the given poly-
nomial f () and for this reason will themselves be real numbers.
The degree of this polynomial, which is equal to the number of the
roots By, is divisible, according to (2), by 2*-1 but is not divisible
by 2*. And so, by the induction hypothesis, at least one of the roots
B;; of the polynomial g (x) must be a complex number.

Thus, for any choice of the real number ¢ there is a pair of
indices, i, j, 1 <i < n, 1 <J<n, such that the element o;0; +
+ ¢ (a; + o) is a complex number (recall that the field P contains
the field of complex numbers as a subfield). Quite naturally, for any
other choice of the number ¢ there will, generally speaking, corre-
spond to it (in the indicated sense) another pair of indices. However,
there exist an infinitude of distinct real numbers ¢, whereas we have
at our disposal only a finite number of distinct pairs i, j. Whence it

* Consequently, this degree can even be greater than n.
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follows that we can choose two distinct real numbers ¢; and ¢y, ¢; 5%
=~ ¢y, such that they are associated with one and the same pair of
indices i, j, for which

a0 + ¢ (o + o) = a, }
a0yt 6 (o +oy) = b

are complex numbers.
From equality (3) it follows that

(s — c2) oy + o) =a — b

3)

whence
a—b
C4—Cy

oy =

That is to say, this sum is a complex number. From this and at least
from the first of the equalities (3) it follows that the product e;oy
will also be a complex number. Thus, the elements ¢; and oy are
roots of the quadratic equation

2t — (o +a)z+ a0 =0

with complex coefficients and therefore, as follows from the formula
(derived in Sec. 38) for solving quadratic equations with complex
coefficients, they must themselves be complex numbers. Thus,
among the roots of the polynomial f (z) we have even found two
complex roots and the proof of our assertion is complete.

For complete proof of the fundamental theorem, we have yet
to consider the case of a polynomial with arbitrary complex coeffi-
cients. Let

f@ =aa"+aav+...+a,
be such a polynomial. Take the polynomial
f(@) =aw” + a4 ... +a,
obtained from f (r) by replacing all coefficients with conjugate
complex numbers and then consider the product
Fx)=f(x)f (@) = bpz®™ + byz® "1 + . . . + bpz®™ " + . . . +by
where, evidently,
br= 2| awa;, k=0,1,2,...,2n
i+i=h
Using the familiar properties of conjugate complex numbers (see
Sec. 18), we find that
b= aay=bs
if7=h ’
That is, all coefficients of the polynomial F (z) prove to be real.

. 29¢
29+



340 CH. 11. POLYNOMIALS IN SEVERAL UNKNOWNS

It then follows, as proved above, that the polynomial F (z) has
at least one complex root f,

FB=f@®F@® =0

That is, either f (8) =0 or f (B) = 0. In the former case, the theorem
is proved. But if the latter case occurs, that is,

ap* +afpt+...4+a, =0

then, replacing all complex numbers here by their conjugates
(which, as we know, does not affect the equality), we get

fB)=ap”+ap*t+...+a,=0

Thus, f (z) has the complex number P for its root. This completes
the proof of the fundamental theorem.



CHAPTER 12

POLYNOMIALS
WITH RATIONAL
COEFFICIENTS

56. Reducibility of Polynomials over the Field
of Rationals

The field of rational numbers, R, is the third number field of
particular interest.to us, along with the fields of real and complex
numbers. It is the smallest of the number fields: as proved in Sec. 43,
the field R is contained in its entirety in any number field. We will
now investigate the question of the reducibility of polynomials over
the field of rationals, in the next section we deal with the rational
(integral and fractional) roots of polynomials with rational coeffi-
cients. We stress once again that these are two different things: the

polynomial
2t + 222 1 = (2 + 1)?

is reducible over the field of rational numbers, though it does not have
a single rational root.

What can be said about the reducibility of polynomials over the
field R? First of all, note that if we have a polynomial f () whose
coefficients are rational but are not all integral, then, reducing the
coefficients to a common denominator and multiplying f (z) by this
denominator (equal, say, to k), we obtain a polynomial kf (z), all
the coefficients of which will now be integers. It is evident that the
polynomials f (z) and kf (x) have the same roots; on the other hand,
thclay will at the same time be reducible or irreducible over the
field R.

~ However, we are not yet entitled to confine ourselves to a consi-
deration of polynomials with integral coefficients. Indeed, let the
integral polynomial g () (i.e., a polynomial with integral coeffici-
ents) be reducible over the field of rationals, i.e., factorable into
lower-degree factors with rational (in the general case, fractional)
coefficients. Does factorability of g (z) into factors with integral
coefficients follow from this? In other words, might it not be true
that a polynomial with integral coefficients that is reducible over
the field of rational numbers is irreducible over the ring of integers?
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The answers may be obtained via considerations similar to those
carried out in Sec. 51. Let us call a polynomial f (z) with integral
coefficients primitive if its coefficients are jointly relatively prime,
that is, if they do not have any common divisors different from 1 and
—1. If we have an arbitrary polynomial ¢ (z) with rational coeffi-
cients, it may be uniquely represented in the form of a product of
a lowest-terms fraction. by some primitive polynomial:

¢ @)=+ )

To do this, factor out the common denominator of all coefficients of
the polynomial ¢ (z) and then also the common factors of the nume-
rators of these coefficients; note that the degree of f (z) is the same
as that of ¢ (z). The uniqueness (to within sign) of the representation
(1) is proved as follows. Let

P(2) =41 (@) =7 &)
where g (z) is again a primitive polynomial. Then
adf (2) = beg (2)

Thus, ad and bc are obtained by taking all the common factors
out of the coefficients of one and the same integral polynomial,
and therefore they can differ in sign alone. Whence it follows that
the primitive polynomials f (z) and g (z) can likewise differ only
in sign.

The Gaussian lemma holds true for integral primitive polyno-
mials.

The product of two integral primitive polynomials is a primitive
polynomial.

Indeed, suppose we have the integral primitive polynomials

fl@ =a +ad*t+...+aat+. ..+ a,
g(x) =boa! + bt + ...+t +. ..+ b
and let

f(@) g (@)= oD 4o L by a®hedth L ooy
If this product is not primitive, then there is a prime p such that
serves as a common divisor of all coefficients ¢y, ¢y, . . ., cx4:. Since
all the coefficients of the primitive polynomial f (x) cannot be divi-
sible by p, let the coefficient a; be the first one not divisible by p.
Similarly, denote by b; the first coefficient of the polynomial g (z)
not divisible by p. Multiplying f (z) and g (z) termwise and colle-
cting terms in z®H=+) we obtain
¢i+j = a;by + a14bgey t+ G1-9byys

Tt @by + Gigaby
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The left side is divisible by p. Also, all terms on the right are cer-
tainly divisible by p, except the first. Indeed, by the conditions impo-
sed on the choice of i and j, all the coefficients a;_4, @;—,, . . ., and
also bj_y, bj_y, . .. are divisible by p. It then follows that the pro-
duct a;b; is also divisible by p and therefore, due to the primality
of the number p, p should divide at least one of the coefficients a;,
by, which, however, is not the case. The lemma is proved.

Let us now answer the questions posed above. Let a polynomial
g (z) of degree n with integral coefficients be reducible over the field
of rational numbers:

g (z) = 94 (2) @, (2)

where @, () and @, () are polynomials with rational coefficients
and of degree less than »n. Then

q’i(x)=§!£fi(x)1 i=112

where iblii is in lowest terms and f; (z) is a primitive polynomial.
Then

g(@ =35 11@ fr (@)

The left member is an integral polynomial and so the denominator
byb, in the right member must be reducible. But the polynomial in
brackets will, by the Gaussian lemma, be primitive, and so any
prime factor from b,;b, can cancel out only with some prime factor
from aya,, and since a; and b, are relatively prime, { = 1, 2, the
number a, must be exactly divisible by b;, and a; by b,;

’ ’
a, = bia,, a3y = bya;

g (@) = diafy (2) f3 (2)

Adjoining the coefficient a;a, to any one of the factors f, (z), f, (2),
we obtain a factorization of the polynomial g () into factors of lower
degree with integral coefficients. This is the proof of the following
theorem.

A polynomial with integral coefficients that is irreducible over the
ring of integers will also be irreducible over the field of rational numbers.

We can now restrict ourselves, in questions relating to the redu-
cibility of polynomials over the field of rationals, to a consideration
of factorizations of integral polynomials into factors whose coeffi-
cients are all likewise integral.

We know that any polynomial of degree greater than unity is
reducible over the field of complex numbers, and any polynomial
(with real coefficients) of degree greater than two is reducible over
the field of real numbers. The situation regarding the field of ratio-

Whence
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nal numbers is quite different: for any n there is a polynomial of degree
n with rational (even integral) coefficients that is irreducible over the
field of rational numbers. The proof of this assertion is based on the
following sufficient criterion of the irreducibility of a polynomial
over the field R, called the Eisenstein criterion.

Suppose we have the polynomial

f(x) = apa™ + a 2™ 4. . . + apyx + a,

with integral coefficients. If there is at least one way in which we can
choose the prime number p that satisfies the following requirements:

(1) the leading coefficient a, is not divisible by p,

(2) all the other coefficients are divisible by p,

(3) the constant term is divisible by p but not by p?,
then the polynomial f (x) is irreducible over the field of rational
numbers.

Indeed, if the polynomial f (z) is reducible over the field R, then
it can be factored into two factors of lower degree with integral coeffi-
cients:

F() = (bo® + byt + ... + b)) (o + @1+, Fc)

where k<< n, I << n, k 4+ I = n. From this, comparing coefficients
in both members of the equation, we obtain

a'n = bhcl’

Ap-1 = by + bp-acyy

An-3 = bpcig + bp-1€41 + bp-aty )
@y = beeco

__ From the first of the equalities (2) it follows that, since a, is divi-
sible by p and p is prime, one of the factors b, ¢; must be divisible
by p. Both cannot be divisible by p at the same time since a,, by
hypothesis, is not divisible by p?. For instance, let p divide b;
therefore c; is prime to p. We now go over to the second of the equali-
ties (2). Its left member and also the first term in the right member
are divisible by p, and so p divides the product b,_sc; as well, but
since p does not divide c;, p does divide b,_;. In the same fashion, we
find from the third equality of (2) that p divides: bs_,, and so on.
Finally, from the (k 4 1)th equality it will be found that p divides
be; but then from the last equality of (2) it follows that p divides a,,
which contradicts our assumption.

It is extremely easy to write, for any n, integral polynomials
of degree n that satisfy the conditions of the Eisenstein criterion and,
hence, are irreducible over the field of rational numbers. Such, for
example, is the polynomial #* 4 2; the Eisenstein criterion is appli-
cable for p = 2.
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The Eisenstein criterion is only a sufficient condition for irredu-
cibility over the field R, but by no means is it a necessary condition:
if it is not possible, for a given polynomial f (z), to find a prime num-
ber p such that the conditions of the Eisenstein criterion are fulfil-
led, it may be reducible, like 2* — 5z 4 6, but it may also be irre-
ducible, like z% 4 4. There are a large number of other sufficient
criteria besides the Eisenstein criterion (though less important)
for irreducibility of polynomials over the field B. There is also a meth-
od, due to Kronecker, which permits one to decide whether any
polynomial with integral coefficients is reducible or not over R.
However, it is very unwieldy and hardly at all applicable in a
practical sense.

Example, Consider the polynomial

fp (x)=xp_1=x”'1+ﬂ"2+...+z+1

z—1

where p is a prime number. The roots of this polynomial are pth roots of unity
different from unity itself; since these roots, together with 1, divide the unit
circle of the complex plane into p equal parts, the polynomial f, (z) is called
a cyclotomic polynomial.

The Eisenstein criterion cannot be directly applied to this polynomial.
But by changing the variable, setting z = y + 1, we get

e0=rp =YX F 2 [ i L oy oy ]

=yP‘l+pyP-2+_p_(_p2%-_1.) Y I

The coefficients of the polynomial g (y) are binomial coefficients and so all,
except the leading coefficient, are divisible by p; the constant term is not divi-
sible by p?. Thus, by the Eisenstein criterion, the polynomial g (y) is irredu-
cible over the field R, whence follows the irreducibility over R of the cyclotomic
polyromial f, (z). Indeed, if

fp (@) =9 (2) $ (2)
then

eW=9o@+De+1

57. Rational Roots of Integral Polynomials

It was pointed out above that the question of the factorization
of a given polynomial over the field of rational numbers into irre-
ducible factors has no really satisfactory practical solution. Howe-
ver, the particular case referring to the isolation of linear factors of a
polynomial with rational coefficients, that is, to the finding of its
rational roots, is very simple and may be solved without exces-
sive computations. Quite naturally, the problem of finding rational
roots of a polynomial with rational coefficients does not in the least
exhaust the general problem of the real roots of these polynomials;
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that is to say, the methods and results given in Chapter 9 are valid
in toto when applied to polynomials with rational coefficients.

As we take up the question of finding the rational roots of poly-
nomials with rational coefficients, it is well to note that, asindicated
in the preceding section, we can confine ourselves to polynomials
with integral coefficients. We shall consider separately the case of
integral and that of fractional roots.

If an integer o is a root of a polynomial f (x) with integral coeffi-
cients, then o is a divisor of the constant term of the polynomial.

Indeed, let

f@=a2"+aa" ' +...+a,
Divide f (z) by z — at
f@) = (z—a) (bz" ! + b:2"? + .. . + byed)

Performing the division by the Horner method (see Sec. 22),
we find that all coefficients of the quotient, including b,-,, are integers,
and since

ap, = —Obpoy = (_‘bn-i)

our assertion is proved.*

Thus, if an integral polynomial f (x) has integral roots, they will
be found among the divisors of the constant term. It is thus necessary
to test all possible divisors (both positive and negative) of the con-
stant term. If none is a root of the polynomial, then the polynomial
has no integral roots at all.

To test all the divisors of the constant term may turn out to be
extremely complicated even if the values of the polynomial have
been computed by the Horner method and not via direct substitution
of each of the divisors in place of the unknown. The following
remarks somewhat simplify computations. First of all, since both
1 and — 1 are always divisors of the constant term, we compute f (1)
and f (—1). This presents no difficulties. Now if the integer a is a root

of f (),
f@) = (z—a)q ().

then, as indicated above, all the coefficients of the quotient ¢ (z)
will be integers, and therefore the quotients

L0 — g, D= —q(—1)

* It would be wrong to attempt to prove this theorem by referring to the
fact that the constant term a, is (to within sign) a product of the roots of the
polynomial f(z): these roots can include fractional, irrational, and complex
roots, and one cannot, therefore, assert beforehand that the product of all these
roots (except a«) will be integral.
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must be integers. Thus, only such divisors o of the constant term (from
among those which differ from 1 and —1) have to be tested, relative to

which each of the quotients o{—_(_i—)i, f—a(—_i——_%z is an integer.

Example 1. Find the integral roots of the polynomial
f(@)=a3 — 222—2—6

The numbers 4-1, +2, 3, +6 are divisors of the constant term. Since
f(1)= —8, f(—1)= —8, it follows that 1 and —1 are not roots. Furthermore,
the numbers

—8 —8 —8 —8
241’ /2—1’ B—1' —6—1

are fractions and so the divisors 2, —2, 6, —6 have to be rejected, whereas
the numbers

—8 —8 —8 —8
3—1° 351’ —3—1' =311

are integers and so the divisors 3 and —3 have yet to be tested. We apply
the Horner method:

(1 —2 —1 —6
—3[1T =5 14 —48

That is, f(—3)= —48 and so —3 is not a root of f(z). Finally,
1 —2 —1 —6
3|11 1 2 0

That is, f(3)=0: the number 3 is a root of f (z). At the same time we found
the coefficients of the quotient obtained by dividing f (z) by z—3:

f(@)=(x—3) (22 +z+2)

It is readily seen that the quotient z2 4+ z + 2 does not have 3 as its root, which
means that this number is not a multiple root of f (z).
Example 2. Find integral roots of the polynomial

f(z) = 3z¢ + 28 — 522 — 2z 4 2

Here, +1 and -2 are divisors of the constant term. Furthermore f (1) = — 1,
f(—1) =1, i.e., 1 and —1 do not serve as roots. Finally, since the numbers
—1

L and ———
211 —2—1

are fractions, it follows that 2 and —2 will not be roots either and so the poly-
nomial f (z) does not have any integral roots at all.

Let us now examine the question of fractional roots.

If an integral polynomial whose leading coefficient is unity has a ra-
tional root, then this root is an integer.

Indeed, let the polynomial

f@=2"+aa"" +ax™? ... +a
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with integral coefficients have for a root the fraction % in lowest

terms, i.e.,

pn pn-1 pn-2
wtuggte g+ +an=0

From this it follows that

2; = —ab" 1 —ab"%c— ... —a,c™?

Thus the simplified fraction is equal to an integer, which is impos-
Slbl%‘o obtain all the rational (fractional and integr;»l) roots of an integral
polyromial

f@) =ap" + ag™ + ;2" 4. L+ apr +
it is necessary to find all the integral rpots of the polynomial
o) =y" + ay™ + a0y + . .. 4 ) ap gy + @),
and divide them by a,.
Multiply f (z) by a?* and then change the unknown, putting
y = agx. Clearly,
9 () = ¢ (a2) = a}7'f ()

whence it follows that the roots of the polynomial f (z) are equal to
the roots of the polynomial ¢ (y) divided by a,. In particular, to
rational roots of f (z) there will correspond rational roots of ¢ (y);
however, since the leading coefficient of ¢ (y) is equal to unity, these
roots can only be integral, and we already have a procedure for
finding them.

Example. Find rational roots of the pelynomial

f(z)=3z4+ 52322 52 — 2
Multiplying f(z) by 3% and setting y=3z, we get

P (¥)=y*+5y® 4 3y2 4 45y — 54
We seek integral roots of the polynomial ¢ (y).
Let us find ¢ (1) by the Horner method:

15345 —54
1116 9 54 0

Thus, @ (1)==0, that is, 1 is a root of ¢ (y), and

PW=w—1aq()
where
q (y) =y3--6y2 49y 4-54

Let us find the integral roots of the polynomial ¢ y). The numbers +1,
+2, +3, +6, 49, +18, --27, +54 are g?visors of the( constant term. Here,

q(1)="10, q(—1)=50
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Computing qﬁ?l and q(ii) for every divisor a we find that all divisors,
except a== — 6, must be rejected. Test this divisor:
16954
—6{109 0

Thus, ¢ (—6) = 0, or —6 is a root of q (y) and therefore also of ¢ (y).
Consequently, the polynomial ¢ (y) has integral roots 1 and —6. Thus

the numbers 3 and —2, and only these numbers, are rational roots of the poly-
nomial f (z).

It must be stressed once again that the above-described methods
are applicable only to polynomials with integral coefficients and
only for finding their rational roots.

58. Algebraic Numbers

Every polynomial of degree n with rational coefficients has n roots
in the field of complex numbers; some of these roots (or even all of
them) can lie outside the field of rational numbers. However, not
every complex or real number serves as a root of some polynomial
with rational coefficients. The complex (or, in particular, real)
numbers which are roots of such polynomials are called algebraic
numbers in contrast to #ranscendental numbers. Algebraic numbers
include all rational numbers (as the roots of first-degree polynomials

with rational coefficients) and also any radical of the form ;/ a
with rational radicand a (as a root of the binomial " — a). On the
other hand, the more comprehensive courses of mathematical analy-
sis offer proof of the transcendence of the number e (the base of the
system of natural logarithms) and also of the familiar number n of
elementary geometry.

If a number o is algebraic, then it will even be a root of some poly-
nomial with integral coefficients and therefore a root of one of the
irreducible divisors of this polynomial, also with integral coefficients.
The irreducible integral polynomial, of which o is a root, is determined
uniguely to within a constant factor, that is to say, quite uniquely if
we require that the coefficients of the polynomial be relatively prime
jointly (i.e., that the polynomial be primitive). Indeed, if o serves as
a root of two irreducible polynomials f (z) and g (z), then the greatest
common divisor of these polynomials will be different from unity,
and therefore the polynomials, due to their irreducibility, can differ
from one another by a zero-degree factor only.

Algebraic numbers which are roots of one and the same irreducible
(over the field R) polynomial are termed conjugate.* Thus, the whole

b * Not to be confused with the concept of the conjugacy of complex num-
ers.
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set of algebraic numbers breaks up into disjoint finite classes of con-
jugate numbers. No rational number, as a root of a first-degree poly-
nomial, has conjugate numbers different from itself; this property
is characteristic of rational numbers: every algebraic number which
is not rational is a root of an irreducible polynomial of degree greater
than unity, and for this reason it has conjugate numbers different
from itself.

The set of all algebraic numbers is a subfield of the field of complex
numbers. In other words, the sum, difference, product and quotient of
algebraic numbers are algebraic numbers.

In fact, suppose we have the algebraic numbers o and f. Denote
by a;j=a, oy, . . ., o, all numbers conjugate to o, by f;=p, Ps, - -

.» Ps all numbers conjugate to f, by 7 (z) and g (), 1rreduc1ble
polynomials with rational coefficients having for roots oo and f re-
spectively. Write a polynomial whose roots are all possible sums
a; + Py this is

@ = [I Il e—(u+B)

It is obvious that the coefficients of this polynomial will not change
under rearrangements of all «; and also of all f;. Hence, on the
basis of the theorem on polynomials symmetric with respect to two
systems of unknowns (see end of Sec. 53), they are polynomials in
the coefficients of the polynomials 7 (z) and g (z). In other words,
the coefficients of the polynomial ¢ (z) prove to be rational numbers,
and therefore the number o 4+ f = ay + By, which is one of its
roots, will be algebraic.

The algebraic nature of the numbers ¢ — f§ and aff is proved
in similar fashion with the aid of the polynomials

Y@= Il tz—(u—p)

and
x@=1[] [l @—af)
i=1 j=1

To prove the algebraic nature of a quotient, it suffices to demon-
strate that if a number o is algebraic and different from zero, then
a~1will also be an algebraic number. Let o be a root of the poly-
nomial

(@) = a2 + ay2a™ 1+ ... + ap1x + @,
with rational coefficients. Then, evidently, the polynomial

g () = apa™ + ap_ 2™ 4 .. . 4 ax + a
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which also has rational coefficients, will have for a root the number
a~!, which is what we set out to prove.

It follows, from the theorem just proved, that any sum of aratio-
nal number and a radical, say 1 4 V 2, and also any sum of radi-

cals, say V'3 + ‘73, will be algebraic numbers. However, we
cannot as yet assert that numbers written asradicals within radicals,

say Vi 4+ V2, are algebraic. This will be a consequence of the

following theorem.
If the number w is a root of the polyromial

@ =a"+t+az*'+ B2+ ...+ A+ p

whose coefficients are algebraic numbers, then @ is also an algebraic

number.
Let a;, By, . . ., A pe run through numbers which are respec-

tively conjugate to o, f, ..., A, p, it being true that a; = «a,
1 =10, ..., My =A4 pg = p. Consider all possible polynomials
of the form

Qi i, ..., t(@)=2"Fa 2™t +P;2" 24 ... 4 Ao+

so that ¢4,1,...,1,1 () = ¢ (z) and take the product of all these
polynomials:
F(x)=i l  Pivis s, ¢(z)

v de ceen By

The coefficients of the polynomial F (z) are obviously symmetric
with respect to each of the systems a;, fj, . .., A, pe and there-
fore (again by the theorem of Sec. 53) are polynomials in the coeffi-
cients of those irreducible polynomials (with rational coefficients)
whose roots are, respectively, a, B, . . ., A, p; that is to say, they
are themselves rational numbers. The number ®, being a root of
¢ (z), will, consequently, be a root of the polynomial F (z) with
rational coefficients, i.e., it will be an algebraic number.

Let us apply this theorem to the number 0 = Vl 4+ V2. The

number o = 1 4 /2 is algebraic by the previous theorem and
therefore the number ® is a root of the polynomial z*—a with
algebraic coefficients; that is, it is itself algebraic. Generally,
applying several times both theorems that have just been proved,
the reader will easily arrive at the following result.

Any number written in radicals over the field of rational numbers
(that is to say, a number expressed in terms of some arbitrarily compli-
cated combinatior of radicals—radicals within radicals, in the general
case) is an algebraic number.
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Obviously, algebraic numbers written as radicals constitute
a field. One must bear in mind, however, that this field, as follows
from the remark made (without proof) at the end of Sec. 38, will
only be a part of the field of all algebraic numbers.

We have already mentioned the transcendence of two numbers:
e and m. Actually, however, there are an infinity of transcendental
numbers. What is more, using the concepts and methods of set
theory, we will show that there are, so to say, even more transcen-
dental numbers than algebraic numbers. The exact meaning of this
sentence will be clear from what follows.

An infinite set M is called countable (denumerable), if it can
be put into one-to-one correspondence with the set of natural num-
bers, that is to say, if its elements can be enumerated with the aid
of the natural numbers, otherwise it is noncountable.

Lemma 1. Every infinite set M contains a countable subset.

Indeed, take an arbitrary element a, in M and then an element
a, different from a,. Generally, let there be chosen r distinct elements
ay, ag, - .., @, in M. Since the set M is infinite, it cannot be exhau-
sted by these elements, and so we can find an element a, ;4 different
from them. Continuing this process, we will find in M an infinite
subset composed of the elements

Agy Qgy .. .5 Qp, . - .

The countability of this subset is obvious.

Lemma 2. Every infinite subset B of a countable set A is itself
countable. .

Because of its countability, the set A can be written as

ay, Qg - .y Opy ('1)

Let ag, be the first element of the sequence (1) belonging to B, ax,
the second element with this same property, etc. Assuming g, =
=b, n=1,2, ... we find that the elements of the subset B
constitute a sequence

b‘, b2, (B Y | bny.o-

It is clear that this subset is countable.

Lemma 3. The union of a countable set of finite sets which pairwise
do not have any common elements is a countable set.

Indeed, suppose we have the finite sets

Ay, Agg ooy Ay o vt

Let their union be B. We will obviously enumerate all elements of
the set B if, in arbitrary fashion, we number the elements of the
finite set A4, then continue the numbering by passing to the elements
of the set 4,, and so on.



58. ALGEBRAIC NUMBERS 353

Lemma 4. The union of two countable sets which are devoid of com-
mon elements is a countable set.
Let there be given a countable set A with elements

Gy Ggy o v vy Ay oo s
and a countable set B with elements
biy bay oo vy by o o
and let the union of these sets be C. If we put
@y = Cgn—y, by = Con, n=41,2 ...
then all elements of C will be represented as the sequence
€1, €3y + « «y Conety Cany - - »

This completes the proof of the countability of this set.

Now let us prove the following theorem.

The set of all algebraic numbers is countable.

First let us prove the countability of the set of all polynomials in
one unknown with integral coefficients. If

f(x) = a2 + ad™* 4 . . . 4+ apeiz + 4y

is such a polynomial (different from zero), let us use the term height
of the polynomial for the natural number

by =ntlao |+ o+ .+ lani |+ lan |

It is obvious that there is only a finite number of integral polyno-
mials with a given height %; denote this set by Mj. Denote the set
consisting of zero alone by M,. The set of all integral polynomials
will be the union of the countable set of the finite sets My, My,
M,, ..., My, ...; that is to say, by Lemma 3, it is countable.

From this, by Lemma 2, it follows that the set of all integral
primitive irreducible polynomials is also countable. At the same time,
we know that every algebraic number is a root of one and only one
integral primitive irreducible polynomial. Consequently, collect-
ing the roots of all such polynomials, that is, taking the union
of the countable set of finite sets, we obtain the set of all algebraic
numbers. This set will thus, by Lemma 3, be countable.

Finally, let us prove the following theorem.

The set of all transcendental numbers is noncountable.

Let us first consider the set F of all real numbers z between
zero and unity, 0 << z << 1, and let us prove that this set is noncoun-
table. We know that each of the indicated numbers z may be written
as a regular infinite decimal fraction

z2=0, a@, ... a, .

23—5760



354 CH. 12. POLYNOMIALS WITH RATIONAL COEFFICIENTS

and that this notation is unique if we do not allow for fractions
in which for all » beyond some n = N all a, = 9; conversely, any
fraction of this form is equal to some number z from the set F. Now
suppose that the set F is countable, that is, that all the numbers z
can be written as the sequence

Ty, Ty « « o3 Thy =+ » (2)

Let
xh=0, Api&pe « « « App « . .

be the notation of the number zy in the form of an infinite decimal.
Now write the infinite decimal fraction

0, BPs -+« Bn -+ 3)

assuming f; to be different from the first decimal digit of the frac-
tion z;, that is, f; %= a1, P; to be different from the second decimal
digit of the fraction z,, i.e., P, == a,, and, generally, B, %= a,,.
Besides, assume that among the digits p, there are infinitely many
that are different from the digit 9. It is clear that there is a frac-
tion (3) which satisfies all these requirements. It is thus a number
in the set F, but it is different, by its construction, from all the
numbers of the sequence (2). This contradiction proves the nonco-
untability of the set F.

Whence follows the noncountability of the set of all complex num-
bers: if the set were countable, then, by Lemma 2, it could not con-
tain the noncountable subset F. The noncountability of the set
of all transcendental numbers is now, by Lemma 4, obvious, since
the union of this set with the countable set of all algebraic numbers
is the set of all complex numbers, that is to say, it is noncountable.

The two theorems we have proved show us, due to Lemma 1,
that the set of the transcendental numbers is indeed much richer
in elements (that is to say, more “potent”) than the set of algebraic
numbers.



CHAPTER 13

NORMAL FORM
OF A MATRIX

59. Equivalence of A-Matrices

We return now to problems of linear algebra. Chapter 7 demon-
strated the important role of the concept of similarity of matrices.
Namely, two square matrices of order n are similar if and only if
they represent (in different bases) the same linear transformation
of n-dimensional linear space. However, we are not yet able to tell
whether two given specific matrices are similar or not. On the other
hand, among all matrices similar to a given matrix 4, we are not
able to indicate a matrix of elementary form (in one sense or another);
even the question of the conditions under which a matrix A4 is simi-
lar to a diagonal matrix was considered in Sec. 33 only for a parti-
cular case. These are the questions we will take up in this chapter,
(Note that they are discussed straight off for the case of an arbitrary
base field P.)

Let us first investigate square matrices of order » whose elements
are polynomials of arbitrary degree in a single unknown A with
coefficients from the field P. These are called polynomial matrices
or, briefly, A-matrices. An example of a A-matrix is the characteristic
matrix A — AE of an arbitrary square matrix 4 with elements in P,
The principal diagonal of this matrix contains first-degree polyno-
mials, all ofi-diagonal elements are zero-degree polynomials or
zeros. Every matrix with elements from the field P (for brevity, we
call them numerical matrices) is also a special case of a A-matrix:
its elements are polynomials of degree zero or zeros.

Suppose we have a A-matrix

(a“ (}\4) e+ . Qi (}\,)
AQ) = )
tny (A) - - . @an (A)

We use the term elementary transformations of this matrix for the
following four types of transformation:

23*
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(1) multiplication of any row of.the matrix 4 (A) by any scalar o
in P different from zero;

(2) multiplication of any column of A (A) by any scalar a in P
different from zero;

(3) addition, to any ith row of matrix 4 (A), of any jth row of it,
j 5 i, multiplied by any polynomial ¢ (1) in the ring P [A];

(4) addition, to any ith column of matrix 4 (), of any jth column
of it, j & i, multiplied by any polynomial ¢ (4) in the ring P [AL

It is readily seen that for every elementary transformation of the
A-matriz there is an inverse transformation which is also elementary.
Thus, the inverse of (1) is an elementary transformation consisting
in the multiplication of that row by the number a1, which exists
due to the condition a =+ 0; the inverse of (3) is a transformation
which consists in adding to the ith row the jth row multiplied by
—o¢ (A).

q)It is possible to interchange any two rows or any two columns in
a matrizx A (A) by a number of elementary transformations.

Suppose we wish to interchange the ith and jth rows of 4 ().
This can be accomplished by means of four elementary transformations
as the scheme below illustrates:

()=(77)-(2)-(L)-()

The sequence of transformations is: (a) add jth row to ith row; (b) sub-
tract the new ith row from the jth row; (c) add the new jth row to the
new ith row; (d) multiply the new jth row by —1.

We will say that the A-matrices A (A) and B (A) are equivalent
and we will write A (A) ~ B (A) if the matrix A (A) can be carried
into the matrix B (A) by means of a finite number of elementary
transformations. This equivalence relation is obviously reflexive
and transitive and also symmetric, due to the existence of an inverse
elementary transformation for every elementary transformation.
In other words, all square A-matrices of order n over the field P break
up into disjoint classes of equivalent matrices.

Our immediate aim will be to find the simplest kind of matrices
among all the A-matrices equivalent to the given matrix A (A).
To do this, we introduce the following concept. A canonical A-matrixz
is a A-matrix with the following three properties:

(a) the matrix is diagonal, that is, of the form

ey (M) V
es (A) )

0 en (M)
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(b) any. polynomial e; (\), i = 2, 3, ..., n, is exactly divisible
by the polynomial e; 4 (A);

(c) the leading coefficient of every polynomial ¢; (A), i = 1, 2,

., n, is equal to unity if the polynomial is nonzero.

Note that if among the polynomials e; (A) on the principal diago-
nal of the canonical A-matrix (1) there are some equal to zero, then,
by property (b), they invariably occupy the last positions on the
principal diagonal. On the other hand, if there are zero-degree poly-
nomials among the polynomials e; (A), then, by Property (c), they
are all equal to unity, and, by Property (b), they occupy the first
positions on the principal diagonal of the matrix (1).

The canonical A-matrices embrace, among others, the numerical
matrices, including the unit and zero matrices.

Any A-matrizx is equivalent to some canonical A-matriz, that is to say,
it can be reduced to canonical form via elementary transformations.

We will prove this theorem by induction with respect to the
order n of the A-matrices at hand. Indeed, for » = 1 we have

A4} =(a®)

If a (A) = 0, then our matrix is already canonical. But if a (A) == 0,
then it suffices to divide the polynomial a (A) by its leading coef-
ficient (this is an elementary matrix transformation) in order to get
a canonical matrix.

Suppose the theorem has been proved for A-matrices of
order n — 1. We consider an arbitrary A-matrix 4 (A) of order n.
If it is a zero matrix, it is already canonical and no proof is needed.
We therefore take it that there are nonzero elements among the
elements of matrix 4 (A).

Interchanging (if necessary) rows and columns of 4 (A), we can
move one of the nonzero elements into the upper left-hand corner.
Thus, of the A-matrices equivalent to A4 (A), there are some with
a nonzero polynomial in the upper left corner. Let us consider all
such matrices. The polynomials in the upper left corner of these
matrices may have different degrees. But the degree of a polynomial
is a natural number, and in any nonempty set of natural numbers
there is a least number. It is thus possible to find, from among all
the A-matrices equivalent to A () and having a nonzero element
in the upper left corner, one matrix such that the polynomial in the
upper left corner is of the lowest possible degree. Finally, dividing
the first row of this matrix by the leading coefficient of the indicated
polynomial, we get a A-matrix equivalent‘ to 4 (A),

eg A) b (M) ... b (A)

A () ~ bay (3') bzz (3-) . bzn (A,)

ni (7") bnz (A) . nn (A')
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such that e; (A) %= 0, the leading coefficient of this polynomial is
equal to unity, and no combination of elementary transformations
can carry the resulting matrix into a matrix in which the upper left-
hand corner would be occupied by a nonzero polynomial of lower
degree.

We now prove that all elements of the first row and first column of
the matriz obtained are exactly divisible by e; (A). Suppose, for example,

for2<<j<n,
by M =eMNg@) +r@H)

where the degree of r (A) is less than the degree of ¢ (A) if r (A) is
different from zero. Then, subtracting from the jth column of our
matrix the first column multiplied by ¢ (A) and interchanging the
first and jth columns, we obtain a matrix equivalent to 4 (A) in the
upper left corner of which is the polynomial r (A), that is to say,
a polynomial of lower degree than e, (A), which contradicts the
choice of this polynomial, whence it follows that r (A) = 0. The
proof is complete. :

Now subtracting from the jth column of our matrix the first
column multiplied by g (A), we replace the element b,; (A) by zero.

Performing such transformations for j =2, 3, ..., n, we sub-
stitute zeros for all elements b,; (A). In similar fashion we substitute
zeros for all elements by (A), i = 2, 3, . .., n. We thus arrive at

a matriz, equivalent to A (A), in the upper left corner of which is the
polynomial e, (A), all other elements of the first row and the first column

being zero:
2] (}b) O PR O

0 cn(d) ... con (A)

) 0 ¢ (M - :* Can )
By the induction hypothesis, the matrix of order n — 1 in the

lower right corner of the matrix (2) that we have obtained can be
reduced to canonical form by elementary transformations:

(cm o ... cz,,'(x)) (32 » 0)
e ® e ® N0 e

Having performed these same transformations on the corresponding
rows and columns of matrix .(2) (in the process, the first row and
first column will obviously remain unchanged), we find that
ey (A) 0

e; (M)

A M~ (2)

AN ~ (3)

0 ‘en 05
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To prove that the matrix (3) is canonical, it remains to demon-
strate that e, (A) is exactly divisible by e, (A). Suppose

ee(M) =e, Mg +r@)

where r (A) = 0 and the degree of r (A) is less than that of e, (A).
However, by adding to the second column of (3) the first column
multiplied by ¢ (A) and then subtracting the first row from the
second, we replace the element e, (A) by the element r (A). Then,
by interchanging the first two rows and the first two columns, we
transfer the polynomial r (A) to the upper left corner of the matrix,
but this contradicts the choice of the polynomial e; (A).

The theorem on the reduction of a A-matrix to canonical form
is proved. We have to supplement it with the following uniqueness
theorem.

Every A-matriz is equivalent to one canonical matriz only.

Suppose we have an arbitrary A-matrix A (A) of order n. Take
some natural number %k, 4 <{ k< n, and consider all kth-order
minors of 4 (A). Computing these minors, we obtain a finite system
of polynomials in A; we denote the greatest common divisor of this
system of polynomials with leading coefficient 1 by d, (A).

We thus have the polynomials

di (A), dy (A), - . ., dn (A) (4)

which are uniquely defined by the matrix A4 (A) itself. Here, d; (A)
is the greatest common divisor of all elements of 4 (A) with coef-
ficient 1, and d, (A) is equal to the determinant of the matrix A4 ()
divided by its leading coefficient. Also note that if the matrix 4 ()
has rank r, then

) =...=d 3 =0

whereas all the remaining polynomials of system (4) are different
from zero.

The greatest common divisor dy (M) of all minors of order k of the
A-matriz A (A), k=1, 2, ..., n, remains unchanged under ele-
mentary transformations of A (A).

This assertion is almost obvious when an elementary transfor-
mation of type (1) or (2) is performed in matrix 4 (A). For instance,
if the ith row of the matrix is multiplied by a number « in the field 2,
a = 0, then the kth-order minors through which the ith row passes
will be multiples of a, whereas all the other kth-order minors will
remain unchanged. But when seeking the greatest common divisor
of several polynomials, any one of the polynomials can be multiplied
with impunity by nonzero numbers from P.

Let us now consider elementary transformations of type (3)
or (4). Let us, say, add to the ith row of 4 (A) the jth row, j 5% i,
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multiplied by the polynomial ¢ (A); denote the resulting matrix
by 4 (A) and denote by d, (A) the greatest common divisor of all
its kth-order minors taken with leading coefficient 1. Let us see
what happens to the kth-order minors of A (A) under this transfor-
mation.

It is clear that minors through which the ith row does not pass
remain unchanged. Likewise, there is no change in those minors
through which both the ith and jth rows pass, since a determinant
is unaltered by adding a multiple of one row to another row. Finally,
let us take any kth-order minor, with the ith row passing through it,
but not the jth row; denote it by M. The corresponding minor of the

matrix 4 (7») can evidently be represented by the sum of the minor M
and the minor M’, multiplied by ¢ (A), of the matrix 4 (A), which M/’
is obtained from M by replacing the elements of the ith row af 4 (A)
by the corresponding elements of its jth row. Since both M and M’
are divisible by d, (A), it follows that M + ¢ (A) M’ will also be
divisible by dj (A).

From the foregoing it follows that all the kth-order minors of
matrix A (A) are exactly divisible by d, (A) and therefore d, (A)
too is divisible by d; (A). But since the elementary transformation
at hand has an inverse of the same type, it follows that d, (A) is

likewise divisible by d; (A). But if one takes into account that the
leading coefficients of both these polynomials are equal to unity,
then dj, (A) =dj (), which completes the proof.

Thus, all A-matrices equivalent to the matrizx A (A) are associated
with one and the same set of polynomials (4). Specifically, this refers
to any one (if there are several) canonical matrix equivalent to 4 (A).
Let (3) be such a matrix.

Let us compute the polynomial dp (M), k=1, 2, ..., n, using
matrix (3). Clearly, the kth-order minor in the upper ‘left corner of
this matrix is equal to the product

er(M)eg () ... ex (M) )
Furthermore, if we take, in matrix (3), the kth-order minor in the
rows with indices iy, ip, - .., ix, Where i; <i,...<Ci, and in

columns with the same indices, then this minor is equal to the product
e, (A e, (A) - .. e, (\) which is divisible by (5). Indeed, 1 < i,
and so e (A.) is d1v181ble by e; (A), 2 < i, and therefore e;, (A) is
divisible by e, (), and so on. Finally, if in matrix (3) we take the
kth-order minor, through which the ith row of this matrix passes for
at least one i but does not pass its ith column, then this minor con-
tains a zero row and is therefore equal to zero.

It follows from the foregoing that the product (5) will be the
greatest common divisor of all kth-order minors of matrix (3) and,
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therefore, of the original matrix A4 (), \
BN =eMNe@...e0 N, k=1,2 ...,n (6

It is now easy to show that the polynomialse, (A), k = 1, 2, . ..
. - .y n, are uyniquely determined by the matriz A (M) itself. Let the
rank of this matrix be r. Then, as we know, d, (A) 5= 0, but d, 4, (A) =
= 0, and therefore, by (6), e,+1 (A) = 0. Whence, because of the
properties of a canonical matrix, it follows generally that if the
rank r of matrix A (A) is less than n, then ‘

errt () = eraa (M) = ... =en () =0 (7)

On the other hand, for £ < r, it follows from (6), because dj, .,A 0,
that

dy (A
on () = 52005 ®

This completes the proof of the uniqueness of the canonical form
of the A-matrix. At the same time we have obtained a direct proce-
dure for finding polynomials e, (A), which are called invariant factors
of the matrix 4 (A).

Example. Reduce the A-matrix

A= (M——k 2&2)

A21-5) 3\

to canonical form. Performing a series of elementary transformations, we get

2 1,. 10
Ay~ (Aﬂ—k 2 m) N (§ —3PA— 2 o)
: M5L A A2 51 A

(% 18-7--1321‘2—1 0) (M—-ioxz—sk 0) N (k 0 )
0 A 0 A 0 A3—10A2—3A

_On the other hand, it might be possible to compute the invariant factors
of the matrix 4 (A) directly. Namely, computing the greatest common divisor
of the elements of this matrix, we obtain

dM)=e()=>

Now, computing the determinant of 4 (A) and noting that its leading coefficient
is equal to 1, we obtain

dy (M) = M — 10A3 — 3A2
and so

o3 (M) = % — AS_10A2—3)
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60. Unimodular A-matrices. Relationship Between Similarity
of Numerical Matrices and the Equivalence
of Their Characteristic Matrices

From the results of the preceding section there follows a criterion
of equivalence of A-matrices, which may be stated in either of two
almost identical formulations.

Two A-matrices are equivalent if and only if they can be reduced to one
and the same canonical form.

Two A-matrices are equivalent if and only if they have the same inva-
riant factors.

Let us derive another criterion of a different nature.

We know that the unit matrix E is a canonical A-matrix. We
call the A-matrix U (A) unimodular if it has the matrix E for its
canonical form; that is to say, if all its invariant factors are equal
to unity.

The A-matriz U (A) is unimodular if and only if its determinant is
nonzero but does not depend on A; that is, it is a nonzero number of the
base field P.

Indeed, if U (A) ~ E, then these two matrices are associated
with one and the same polynomial d, (A). However, d, (A) = 1
for the unit matrix. From this it foltows that the determinant of the
matrix U (A), which determinant differs from d,, (A) only by a non-
zero numerical factor, will be a nonzero number of the field P.
Conversely, if the determinant of the matrix U (A) is different from
zero and is not dependent on A, then for this matrix the polynomial
d, () will be equal to unity and therefore, by (6) of Sec. 59, all
invariant factorse; (A)of U (A), i = 4, 2, . . ., n, are equal to unity.

This implies that any nonsingular numerical matriz is a unimodu-
lar A-matriz. However, a unimodular A-matrix can be very compli-
cated. Thus, the A-matrix

( A A2+ 5 )
AP — A —4A — A3 —4A% 50— 5

is unimodular, since its determinant is equal to 20; that is to say,
it is different from zero and is not dependent on A.

From the theorem proved above it follows that a product of uni-
modular h-matrices is unimodular: it suffices to recall that in matrix
multiplication the determinants are multiplied together.

The A-matriz U (A) is unimodular if and only if there is an inverse
matriz which is also a A-matriz.

Indeed, if we have a nonsingular A-matrix, then in seeking the
inverse matrix in ordinary fashion we will have to divide the cofac-
tors of the elements of the given matrix by the determinant of the
matrix, i.e., by some polynomial in A. Therefore, in the general
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case, the elements of the inverse matrix will be rational fractions
in A and not polynomials in A; that is, this matrix is not a A-matrix.
But if a unimodular matrix is given, then we will have to divide
the cofactors only by a nonzero number from the field P; i.e., the
elements of the inverse matrix will be polynomials in A and therefore
the inverse matrix will itself be a A-matrix. Conversely, if the
A-matrix U (M) has an inverse A-matrix U~! (A), then the determi-
nants of both matrices are polynomials in A, their product is equal
to 1, and therefore both determinants must be zero-degree polyno-
mials.

There follows from this last remark a supplement to the theorem
just proved: A A-matriz inverse to a unimodular A-matriz is unimodular.

The concept of a unimodular matrix is used in the statement
of the following new equivalence criterion of A-matrices: Two A-matri-
ces A (M) and B (M) of order n are equivalent if and only if there exist
unimodular A-matrices U (A) and V (A) of the same order n such that

Bl =UmAMVH (1)

First, we introduce the following concept used in the proof of
this criterion. We use the term elementary matriz to denote a numeri-
cal (and, hence, A-) matrix

1 0
U - PN (i) 2)

0 1
that differs from the unit matrix in only one way: there is an arbi-
trary nonzero number o from the field P in some ith position of the

principal diagonal, 1 <{ i < n. On the other hand, we will use the
term elementary matriz for the A-matrix

1
.....1...c_;3 3)... |®

g @)

"
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which differs from the unit matrix in only one way: an arbitrary
polynomial ¢ (A) from the ring P [A] occupies the position at the
intersection of the ith row and the jth column, 1 <i<<n, 1 <j <<
<n, iss].

Every elementary matriz is unimodular. This is quite obvious
since the determinant of matrix (2) is equal to a, but, by hypothesis,
a % 0; however, the determinant of the matrix (3) is equal to 1.

Performance of any elementary transformation in the h-matriz A ()
is equivalent to multiplying this matriz on the left or on the right by
some elementary matriz.

It will be easy for the reader to verify the truth of the following
four assertions: (1) multiplication of the matrix A (A) on the left
by the matrix (2) is equivalent to multiplication of the ith row
of 4 (A) by the scalar a; (2) multiplication of 4 (A) on the right by
matrix (2) is equivalent to multiplication of the ith column of the
matrix A (A) by the scalar a; (3) multiplication of matrix 4 (A)
on the left by matrix (3) is equivalent to adding to the ith rowof 4 (A)
its jth row multiplied by ¢ (A); (4) multiplication of the matrix 4 (A)
on the right by matrix (3) is equivalent to adding to the jth column
of A (A) its ith column multiplied by ¢ (A).

Let us now take up the proof of our criterion of the equivalence
of A-matrices. If 4 (A) ~ B (A), then we can proceed from A (A)
to B (A) by means of a finite number of elementary transformations.
Replacing each of these transformations by multiplication on the
left or on the right by an elementary matrix, we arrive at the equation

where all the matrices U; (A), ..., Uy (A), Vi (A), ..., V;(A) are
elementary and, hence, unimodular. Hence, the matrices

UAR)=UN...0c), VI)=V.H) ...V, (5

which are products of unimodular matrices will also be unimodular,
and equation (4) will be rewritten as (1). Notice that if, say,
k = 0, i.e., elementary transformations are performed on columns
only, then we simply put U (A) = E.

.This portion of the proof already allows us to make the follo-
wing assertion.

A A-matriz is unimodular if and only if it is representable as a pro-
duct of elementary matrices.

True enough, for we have already taken advantage of the fact
that a product of elementary matrices is unimodular. Conversely,
if we have an arbitrary unimodular matrix W (A) then it is equiva-
lent to the unit matrix E. Applying the foregoing proof to matrices E
and W (A) instead of 4 (A) and B (A), we get from (4) the equation

WM =U@) ...UM Vi) ...V, (3
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which is to say that the matrix W (A) is represented as a product
of elementary matrices.

It is now easy to prove the converse assertion of our criterion.
Suppose that for the matrices A (A) and B () there are unimodular
matrices U (A) and V (A) such that (1) holds. From what has been
proved, the matrices U (A) and V (A) may be represented as products
of elementary matrices; let these be the representations (5). Then (1)
can be rewritten as (4) and, substituting the corresponding elemen-
tary transformation for each multiplication by an elementary matrix,
we finally obtain 4 (A) ~ B (A).

Matrix polynomials. We can take an entirely different view of the
A-matrix concept and use the term matrixz A-polyromial of order n over
the field P for a polynomial in A whose coefficients are square matrices
of the same order » with elements from the field P. Its general aspect is

AN+ AN+ L+ Aph + A4, (6)
Regarding (in accordance with Sec. 15) the multiplication of
matrix 4; by A i =0, 1, ..., k, as the mulfiplication by A*-

of all elements of the matrix 4;, and then performing matrix addi-
tion in accord with that same Sec. 15, we find that any matriz A-poly-
nomial of order n may be written as a A-matriz of order n. Thus,

( 40)1.3—{—(0 ——3)“_}_(1 2)h—l—(0 ’1)
—1 1 0 1 0 —2 00
A3 4+ A —3Ar 424 + 1
=<—x3 A3 A2 — 23, )
Conversely, any A-matrixz of order n may be written in the form of
a matriz A-polynomial of order n. Thus,

32—5 A1 OO)M 30) K —5 1
(x4+2x —3)=(10»- +(oo ““L(z 0)““( 0—3)

The correspondence between A-matrices and matrix A-polynomials
is one-to-one and isomorphic in the meaning of Sec. 46. Indeed, the
equality of A-polynomials of the form (6) as matrices is equivalent
to the equality of matrix coefficients of identical powers of A, and the
multiplication of a matrix by A is equivalent to its multiplication
by a scalar matrix with A on the principal diagonal.

Suppose we have a A-matrix 4 (A), and

AQ) =AM+ AM1 + .+ A h + 4,

where the matrix 4, is not a zero matrix. We call the number %
the degree of the A-matrix 4 (A); clearly, this is the highest power
(in A) of the elements of the matrix 4 (A).

The view taken of A-matrices as matrix polynomials permits
developing for A-matrices a theory of divisibility similar to the
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theory of divisibility for numerical polynomials, made more com-
plicated, true, by the noncommutativity of matrix multiplication
and the presence of divisors of zero. We restrict ourselves to the sole
problem of the division algorithm (with remainder).

Given, over the field P, the nth-order A-matrices

AR =AM + AM1 4 L 4 A, A+ A,
B(\) = BM + BM1+ ...+ B, A+ B,

Assume that the mairiz B, is nonsingular, i.e., there exists a mairix
B3t Then, over the field P it is possible to find h-matrices Qy (A) and
Ry (A} of the same order n such that

AMN=BMQ M+ R *) (7
The degree of Ry (A) is less than the degree of B (A) or Ry (A) = 0.

On the other hand, there are, over P, A-matrices Q, (A} and R, (A)
of order n such that

A@Q) =0, (A) BQA)+ R, (M) 8)

The degree of Ry (M) is less than the degree of B (M) or Ry (A) = 0. The

matrices Q; (A) and Ry (A) and also Q, (A) and R, (M) which satisfy
these conditions are uniquely determined.

The proof of this theorem follows the same lines as that of the

corresponding theorem for numerical polynomials (see Sec. 20). For

instance, let condition (7) be satisfied also by the matrices Q; (A)

and R, (A) and the degree of R; (A) is less than the degree of B (A).
Then

BMIQ®M— 0 W] =R (A —R (M)

The degree of the right side is less than [, but the degree of the left
side (if the square bracket is nonzero) is greater than or equal to I,
since the matrix B, is nonsingular. Whence follows the uniqueness
of the matrices Q (A) and Ry (A).

To prove the existence of such matrices, notice that for & > [
the degree of the difference

A (M) — B (A)-B*Ag0

will be strictly less than k; therefore B, 14 ,A"~! will be the highest-
degree term of the matrix A-polynomial Q@ (A). The continuation
is the same as in Sec. 20. On the other hand, the degree of the diffe-
rence

A (M) — AB;AY1.B (M)

is also strictly less than %, that is, 4,B,~'A*-! will be the highest-
degree term of the matrix A-polynomial Q, (A). We see that the
A-matrices Q; (A) and Q, (A) [and also Ry (A) and R; (A)] which satisfy
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the conditions of the theorem, will indeed be distinct in the general
case.

Fundamental theorem on the similarity of matrices. Earlier
we mentioned the fact that as yet we have no way of deciding whether
two numerical matrices A and B (that is, matrices with elements
in the base field P) are similar or not. On the other hand, their cha-
racteristic matrices 4 —AE and B — AE are A-matrices and the
question of the equivalence of these matrices is something that can
be resolved eflectively. It is therefore clear why the following theo-
rem is of such great importance.

The matrices A and B with elements in the field P are similar if
and only if their characteristic matrices A — AE and B — AE are
equivalent.

Indeed, let the matrices A and B be similar, i.e., there is, over
the field P, a nonsingular matrix C such that

B = C'AC
Then
C'(A —AE)C = C'AC — A (CEC) = B — AE

The nonsingular numerical matrices C-! and C are, however, unimo-
dular A-matrices. We see that the matrix B — AE is obtained by
multiplying the matrix A — AE on the left and on the right by uni-
modular matrices, that is, A — AE ~ B — AE.

Proof of the converse assertion is more complicated. Let

A —ME ~ B —\AE
Then there exist unimodular matrices U (A) and V (A) such that
UM (A —AE)V (M) =B — AE 9

Taking into account that unimodular matrices have inverse matrices
which are A-matrices, we derive from (9) the following equalities
which will be used in the sequel:

UM(A —AE) = (B~ AE) VL (A) }
(A—AEYV (M) = U1 (L) (B — AE)

Since the A-matrix B — AE has degree 1 in A, the nonsingular

matrix —E serving as the leading coefficient of the corresponding

matrix polynomial, it follows that we can apply the division algo-

rithm to the matrices U (A) and B — AE: there are matrices Q; (A)

and R; (the latter, if nonzero, must have degree 0 in A, i.e., it is
independent of A) such that

U@) = (B —AE)Q: (M) + Ry (1)

(10)

Similarly,
V(@A) =0, (M) (B —AE) + R, (12)
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Using (11) and (12), we get, from (9),
Ri(A—ME)R, =(B—ME) — U (@) (A4 — AE) Q, (M) (B — AE)
—(B —AE) Q; (M) (A — AE) V (4)
+ (B —AE) Qi (M) (A — AE) Qy (4) (B — AE)
or, by (10),
Ry (A —AE)R, = (B — AE) — (B — AE) V"1 (M) Q, (A) (B — AE)
—(B — AE) Q1 (A) U (1) (B — AE)
+(B — AE) Qi (4) (4 — AE) Q; () (B — AE)
=B —AME){E — V(W) QM)+ 0. (}) UT(R)
— Q1 (M) (A — AE) Q, (W] (B — AE)}
The square bracket on the right is actually zero, for otherwise,
being a A-matrix [since both V-*(A) and U-! (A) are A-matrices],
it would at least be of degree 0, but then the degree of the curly
brackets would not be less than 1 and, hence, the degree of the entire
right member would not be less than 2. But this is impossible since
on the left-hand side we have a A-matrix of degree 1.

Thus,
R, (A —AM)R, =B — AE

whence, equating the matrix coefficients of identical powers of
A we get

RAR, = B, (13)

RR, =E (14)

Equation (14) shows that the numerical matrix R, is not only non-
zero but is even nonsingular, and

R}*=R,
But then equation (13) takes the form

which proves the similarity of the matrices 4 and B.

We have at the same time learned to find the nonsingular mat-
rix R, which transforms matrix 4 into matrix B. Namely, if the
matrices A — AE and B — AE are equivalent, then a finite number
of elementary transformations carries the first into the second. Take
those transformations which refer to columns; denote by V (A) the
product of the corresponding elementary matrices taken in the
same order. Then divide V (A) by B — AE and perform the division
so that the quotient is on the left of the divisor [see (8)]. The remain-
der of this division will be just the matrix R..

Actually, this division need not be performed; one can take
advantage of the following lemma, which will also be of use in Sec. 62,
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Lemma. Let
V() = VA + Vi 4. .. 4 Vi + V,, Vo %0 (15) .

If V() = AE — B) Qu () + Ry, (16)
V(A =0 () (AME — B) + R,
then
R =BVy+B"1W, + ...+ BV, + V, (17

=VB + VBt ...+ VB4V,

It suffices to prove the first of these two assertions, because the
second is proved similarly. The proof consists in direct verification
of the validity of (16) if the polynomial V (A) is replaced by its nota-
tion (15), if (17) is substituted for Ry, and if in place of Q; (1) we
take the polynomial
Qi (A) = Vo7~s_l + (BVo + Vi) A2 + (B?Vo + BV, + V) A3

+ i B+ BTV AL V)
This verification is left to the reader.
Example. Given the matrices
—21 _{—10 —4
a=(T53) B={(Tg 1)
Their characteristic matrices are equivalent since they can be reduced to one
and the same canonical form

(012 —% —s)

The matrices 4 and B are thus similar.
To find the matrix R, that transforms 4 into B, let us find some chain
of elementary transformations that carries A — AE into B — AE. Thus,

A-AE=(_2_'7‘ 1 )N( —2—X 1 )N( 84-4A —4)

0 3—A —16—80 11—2) ~ \ —16—8% 112
4044 —4 —10—A —4\
~( —104 u_x)~( 26 11—1)—3‘”

The last two transformations refer to columns: to the first column we add the
second multiplied by —8 and then we multiply the first column by — 1 . The

4
product of the corresponding elementary matrices will be

1 1
1oy{—=>0 ——0
vo=(_49) (1) (")

This matrix does not depend on A and therefore it is the sought-for matrix R.,.
Of course, the matrix that transforms 4 into B is not by far determined
uniquely. For example, the matrix
31
(51)

will also be of that kind.
24--5760
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61. Jordan Normal Form

We will now consider nth-order square matrices with elements
in the field P. We will isolate a special type called Jordan matrices,
and it will be shown that these matrices serve as a normal form for
a very broad class of matrices. Namely, matrices, all the characteristic
roots of which lie in the base field P (and only such matrices) are similar
to certain Jordan matrices; we say that they can be reduced to a Jordan
normal form. It will then follow, if for the field P we take the field
of complex numbers, that any matriz with complex elements can be
reduced to a Jordan normal form in the field of complex numbers.

We will need some definitions. A kth-order Jordan submatriz
referring to the number A, is a matrix of order k, 1 << k << n, of the
form

Ao 1 0
Ao 1
. (1)
A |
\ 0 Ao

In other words, one and the same number A, from the field P occupies
the principal diagonal, with unity along the diagonal immediately
above and zero elsewhere. Thus,

w1 O
Ao & 0
(M), ((;’ A), (0 Ao 1 )
0 0 0 A
are, respectively, Jordan submatrices of first, second and third order.
A Jordan matriz of order n is a matrix of order n having the form

I
l_{,,_[

J= o (2)

o 7]
The elements along the principal diagonal are Jordan submatri_ces
Ji, o ., J,of certain orders, not necessarily distinct, referring

to certain numbers (not necessarily distinct either) lying in the
field P. All other positions have zeros. Here, s > 1, that is to say,
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one Jordan submatrix of order n belongs to Jordan matrices of this
order, and, naturally, s < n.

It may be noted (though this will not be used in what follows)
that the structure of the Jordan matrix can be described without
resorting to the concept of the Jordan submatrix. It is obvious,
namely, that the matrix J is a Jordan matrix if and only if it has
the form

A’i &y 0
Ay &,
' En-4
0. An
where A;, i = 1, 2, ..., n, are arbitrary numbers in P and every
ej,j=1,2,..., n—1, is equal to unity or zero; note that if

e; = 1, then A; = Aj44.
Diagonal matrices are a special case of Jordan matrices. These
are Jordan matrices whose Jordan submatrices are of order 1.
Our immediate aim is to find the canonical form of the characte-
ristic matrix J — AE of an arbitrary Jordan matrix J of order n.
We will first find the canonical form of the characteristic matrix

Ao—A 1 0
ho—A 1
. '._ 3
' 1 3
0 Ao — A

of a single Jordan submatrix (1) of order k. Computing the determi-
nant of this matrix and recalling that the leading coefficient of the
polynomial d; (A} must be equal to 4, we find that

d (M) = (A — &)

On the other hand, among the (k — 1)th-order minors of the matrix
(3) there is a minor equal to unity; this is the minor obtained by
deleting the first column and the last row of the matrix. Therefore

dpy (A) =1
From this it follows that the following kth-order A-mairiz
1 0

oy @
0 (—n)

is the canonical form of the matriz (3).
We now prove the following lemma.

24
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If the polynomials @1 (A), 95 (A), . . ., @ (A) from the ring P [A}
are pairwise prime, the following equivalence holds true:

P1 (M) 0 o 0
~ 1
‘. 0 t
0 o (M) LI‘ @i (A)

It is evidently sufficient to consider the case of ¢ = 2. Since the
polynomials @ (A) and ¢, (A) are relatively prime, there are polyno-
mials u; (A) and u, (A) in the ring P [A] such that

(W) us(A) + o M) uy A) =1

Therefore
(CPI » 0 ) o (‘Pi A) @1 (A) uy (7"))
0 oA 0 ?y (M)
- (‘Pi A) @1 (A) us (M) + @2 (A) uy (7")) _ (‘Pi » 1 )
0 P2 (A) 0 o ()

N(%%OW?M)N(é—wjﬁzﬂM)

- (é — oy 03 2 (x)) ~ ((1) 1 (x)owz (x))

which is what we set out to prove.
Let us now consider the characteristic matrix

J,—\E, 0

J,— AE,

0 Js—AE,

of the Jordan matrix J of type (2); here, E;, i =1, 2, ..., s,
is a unit matrix of the same order as the submatrix J;. Let the
Jordan submatrices of the matrix J refer to the following distinct
numbers: Ay, Ag, . .., A, Where ¢ <s. Furthermore, let there refer
to the number A;, i = 1, 2, ..., ¢, ¢; Jordan submatrices, ¢; > 1,
and let the orders of the submatrices (arranged in nonincreasing
order) be

kg > kg > - .« 2> ki, (6)
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Let it be noted (though we will not make use of this fact) that

Applying elementary transformations to the rows and columns
of matrix (5) which pass through the submatrix J;, — AE; of this
matrix, we will quite obviously not involve the other diagonal
submatrices, whence it follows that it is possible, in matrix (5),
to replace by means of elementary transformations every submatrix
J; —ME,, i =1, 2, ..., s by a corresponding submatrix of the
type (4). In other words, the matriz J — AE is equivalent to a diagonal
matriz, the diagonal elements of which consist (aside from a certain
number of units) of the following polynomials which correspond to all
Jordan submatrices of the matriz J:

Rk
(A—A)™, (A—ApH2, ..., (A—A) %, ]

kzqz

(A —A)"™, (A—2)"2, ..., (A—Ay) 2 Q)

.....................

(—2)™, =)™, .. (A=)

We do not indicate the positions of the polynomials (7) on the
principal diagonal, since the diagonal elements of any diagonal
A-matrix can be arbitrarily rearranged by interchanging rows and
like columns. This is worth bearing in mind for the future.

Let ¢ be the largest of the numbers ¢;, i = 1, 2, .. ., z. Denote
by e,_j+1 (A) the product of polynomials in the jth column of array
M, j=1,2, ..., q that is,

t

enirt () =[] (A —2)"" ®

i=1

If there are certain vacancies in the jth column—it may happen
that ¢; << j for certain i—then the corresponding factors in (8) are
considered to be wunity. Since, by hypothesis, the numbers
Ay Mgy - . ., A¢ are distinct, the powers of the linear binomials in
the jth column of array (7) are pairwise relatively prime. Therefore,
on the basis of the lemma proved above, they can, by means of
elementary transformations, be replaced in the diagonal matrix
at hand by their product e,_;,, (A) and by a certain number
of units.
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Doing this for j =1, 2, ..., ¢, we find that

1 0
'y .
J—AE ~ en—g+1(A) 9
en-y )
0 enh

This is the desired canonical form of the matrizx J — AE. Indeed, the
leading coefficients of all polynomials on the principal diagonal
of (9) are equal to unity and each of the polynomials is exactly
divisible by the preceding one, by Condition (6).

Example. Let

(T2 1 0 OW
021
002
2
J= 5 1
05
5 1
05
L 2 |

For this Jordan matrix of order 9, the polynomial array (7) is of the form
A—2)3, A—2, A—2,
(h —5)2, (b — 52
Therefore, the invariant factors of the J matrix are the polynomials
e M) = (h — 2 (A — 5)%,
es (M) = (A —2) (A — 5)%,
er (M=} —2)
whereas eg (M) =...=¢e; (A)=1. ’

Now that we have learned how, judging by the form of a given
Jordan matrix J, to write down the canonical form of its characte-
ristic matrix straightaway, we can prove the following theorem.

Two Jordan matrices are similar if and only if they consist of the
same Jordan submatrices, that is to say, if they differ at most solely
in the order of these submatrices on the principal diagonal.
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Actually, the polynomial array (7) was completely determined
by the set of Jordan submatrices of the Jordan matrix J and did
not in the least reflect the arrangement of the Jordan submatrices
along the principal diagonal of the matrix. It then follows that if
Jordan matrices J and J’' have the same set of Jordan submatrices,
then they are associated with one and the same array (7) of polyno-
mials and therefore the same polynomials (8). Thus, the characte-
ristic matrices J — AE and J' — AE have the same invariant factors,
that is to say, they are equivalent, and therefore the matrices J
and J’ are similar.

Conversely, if the Jordan matrices J and J' are similar, then
their characteristic matrices have the same invariant factors. Let
the polynomials (8) forj =1, 2, ..., g, be those invariant factors
which are different from unity. But the polynomial array (7) can be
restored from the polynomials (8). Namely, the polynomials (8)
can be factored into a product of powers of linear factors, since,
as has already been proved, this property is possessed by the inva-
riant factors of the characteristic matrix of any Jordan matrix.
Array (7) just consists of all those maximal powers of the linear
factors into which the polynomials (8) are factored. Finally, using
array (7) we can restore the Jordan submatrices of the original Jordan
matrices: to every polymomial (A — A;)*/ of (7) there corresponds
a Jordan submatrix of order k;; that refers to the number A;. This
proves that the matrices J and J' consist of the same Jordan submatri-
ces and differ at most in their order alone.

One consequence of this theorem is that a Jordan matriz similar
to a diagonal matriz is diagonal and that two diagonal matrices are
similar if and only if they can be obtained from one another by permuting
the numbers on the principal diagonal.

Reducing a matrix to Jordan normal form. If a matrix A with
elements from the field P can be reduced to a Jordan normal form,
i.e., is similar to a Jordan matrix, then, as follows from thé theorem
that was proved above, the Jordan normal form is determined uniquely
for matriz A to within the order of the Jordan submatrices on the prin-
cipal diagonal. The condition that allows a matrix A4 to be so reduced
is given in the following theorem, the proof of which offers a prac-
tical procedure for finding a Jordan matrix similar to A4 if such
a Jordan matrix exists. Note that reducibility over the field P means
that all the elements of the matrix undergoing transformation are
in P.

Matriz A with elements in the field P can be reduced over P to the
Jordan normal form if and only if all the characteristic roots of A lie
in the base field P itself.

Indeed, if matrix A is similar to the Jordan matrix J, these
two matrices have the same characteristic roots. However, the cha-
racteristic roots of J are easily found: since the determinant of the
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matrix J — AE is equal to the product of its elements on the prin-
cipal diagonal, the polynomial |J — AE | can be factored over P
into linear factors and its roots are numbers (and only these numbers)
on the principal diagonal of J.

Conversely, let all characteristic roots of matrix A be in the
field P. If the different-from-unity invariant factors of the matrix

A — ME are
enqgit Ny « - o encs (Vs en (1) (10)

|A —AE | = (—1)" engta (W) - - - eng (M) en (A)

Indeed, the determinants of the matrix 4 — AE and its canonical
matrix can only differ in a constant factor that is actually equal to
(—1)™, since such, precisely, is the leading coefficient of the cha-
racteristic polynomial | A — AE |. Thus, among the polynomials
(10) there are none equal to zero, the sum of the degrees of these
polynomials is equal to »n, and all can be factored over the field P
into linear factors, which is due to the fact that, by hypothesis, the
polynomial | A — AE | has such a factorization.

Let (8) be factorizations of the polynomials (10) into products
of the powers of the linear factors. We use the term elementary divi-
sors of the polynomial e,_j.4, j =1, 2, ..., q, for powers (diffe-
rent from unity) of the various linear binomials entering into its
factorization (8), that is,

h— A", A — A, L, (A — )

We call the elementary divisors of all polynomials (10) the ele-
mentary divisors of the matriz A and write them down in the form
of array (7).

Let us now take a Jordan matrix J of order » composed of Jordan
submatrices defined as follows: with each elementary divisor
» — A.i)hi! of matrix A we associate a Jordan submatrix of order %;;
referring to the number A;. It is evident that only the polynomials
(10) are invariant factors, different from unity, of the matrix J — AE.
Therefore, matrices A — AE and J — AE are equivalent and, hence,
matrix A is similar to the Jordan matrix J.

then

Example. Given a matrix
—16 —17 87 —108
8 9 —42 54

-3 —3 16 -—18

—1 -1 6 —8

Reducing the matrix A — AE to canonical form in the usual way, we find that

the invariant factors different from unity of this matrix are the polynomials
aM=0—120%+2),
es(M)=A—1

A=
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We see that matrix 4 can be reduced to the Jordan normal form even in the
field of rational numbers. Its elementary divisors are the poly-
nomials (A —4)2, A—1 and A4 2 and so the matrix

110 0
010 0
T=1001 o
000 —2

is the Jordan normal form of the matrix 4.
1f we wanted to find the nonsingular matrix that transforms 4 to J, we
would have to make use of the remarks made at the end of Sec. 60.

Finally, on the basis of the foregoing results we can prove the
following necessary and sufficient condition for reducing a matrix
to diagonal form, a condition that immediately yields the sufficient
criterion of reducibility to diagonal form that was proved in Sec. 33.

An nth-order matriz A with elements in the field P can be reduced
to diagonal form if and only if all the roots of the last invariant factor
en (M) of its characteristic matrix are in P (there must be no multiple
roots).

Indeed, reducibility of a matrix to diagonal form is equivalent
to reducibility to a Jordan form such that all Jordan submatrices
have order 1. In other words, all elementary divisors of matrix 4
must be polynomials of degree one. However, since all invariant
factors of the matrix A — AE are divisors of the polynomial e, (A),
the last condition is equivalent to all elementary divisors of the
polynomial e, (A) having degree one, which is what we set out to prove.

62. Minimal Polynomials
Suppose we have a square matrix A of order n» with elements in
the field P. If
CFA) = o oA L o oo
is an arbitrary polynomial in the ring P [A], then the matrix
f(A) = aoAk + OLiAk"l + TN + ah_.iA. + ahE
is called the value of the polynomial f (A) for A = A. Note, in this
respect, that the constant term of the polynomial f (A) is multiplied
by the zero power of the matrix A, that is to say, by the unit matrix E.
It can be verified readily that if
fM=90M+v@®
or
fAN) =u@v®)
then
f(4) =9 (4) + ¢ (4)
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and, respectively,
f(4) =u(4)v(4)

If the polynomial f (A) is annihilated by the matrix 4, that is,
f(4) =0

then A will be called the matriz root or (where no confusion is pos-
sible) simply the root of the polynomial f (A).

Every matriz A serves as a root of some nonzero polyromial.

We know for a fact that all square matrices of order » constitute
an n:-dimensional vector space over the field P. From this it fol-
lows that the system of »? 4- 1 matrices

A™ A™Y A E

is linearly dependent over P, that is, in P there are elements
Cgy, Oy « - ., Op2, Onp2tq, Dot all zero, such that

aoAn2+ GtiA"a_i—}— oo+ %2A+%2+1E= 0
Thus, matrix A proved to be a root of the nonzero polynomial
¢ (M) =A™ + e A L e oy

whose degree does not exceed #?..

The matrix A is also a root of certain polynomials whose leading
coefficients are equal to unity: it suffices to take any nonzero poly-
nomial that can be annihilated by A4 and divide it by its leading
coefficient. The polynomial of lowest degree with leading coefficient 1
that can be annihilated by A is called the minimal polyromial of the
matriz A. Notice that the minimal polynomial of A is uniquely defined,
since the difference of two such polynomials would have a lower
degree than each one separately, but it would also be annihilable
by the matrix A.

Any polyrnomial f (A) that is annihilable by the matrix A is ezactly
divisible by the minimal polynomial m (A) of this matriz.

Actually, if

fM=mMqg@) +rH)
where the degree of r (A) is less than the degree of m (A), then
f(A)=m(A)q (4) +r (4)

and from f(4) =m (4) = 0 it follows that r (4) = 0, which
contradicts the definition of a minimal polynomial.

Let us prove the following theorem.

The minimal polynomial of a matriz A coincides with the last
invariant factor e, (A) of the characteristic matriz A — AE.
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Proof. Retaining notations and using the results of Sec. 59,
we can write the equation

(—)" | A —AE | = dues (M) €n (1) (1)

whence it follows, for one thing, that the polynomials ¢, (A) and
dn-y (A) are not zero polynomials. Next, denote by B (A) the adjoint
of the matrix A — AE (see Sec. 14),

B (A) = (A — AE)*
As follows from (3), Sec. 14, the equation
(A—MAEYB(M) =|A —AE |E (2)

holds true. On the other hand, since the elements of B (A) are (» — 1)th
order minors (with plus or minus signs) of the matrix 4 — AE,
and only these minors, and the polynomial d,_, (A) is the greatest
common divisor of all these minors, it follows that

BM=dsMWNCMH) 3)

the greatest common divisor of the elements of matrix C (A) being
equal to 1.
From equations (2), (3) and (1) follows the equation

(A —AE)doy W C ) = (—1)"dpey (\) & (M) E

We can divide through by the nonzero factor d, _; (A), as follows
from the general remark that if ¢ (A) is a nonzero polynomial and
D () = (d;; (A)) is a nonzero A-matrix [let dg (A) = 0], then the
(s, t) position in the matrix ¢ (A) D (A) will be occupied by the
nonzero element ¢ (A) dg (A). Thus,

(A—AE)C (M) = (—1)"en (W) E
whence
en () E = (AE — A) [(—1)™ € (W) (4

This equation shows that the remainder resulting from “left”
division of the A-matrix in the left member by the binomial AE — 4
is equal to zero. From the lemma proved at the end of Sec. 60 it fol-
lows, however, that this remainder is equal to the matrix e, (4) E =
= ¢, (A). True enough, the matrix e, (A) E may be written as a mat-
rix A-polynomial whose coefficients are scalar matrices, i.e., such
as commute with the matrix A. Thus,

e, (4) =0
which is to say that the polynomial e, (A) is indeed annihilated by A.

From this it follows that the polynomial ¢, (A) is exactly divisible
by the minimal polynomial m (A) of matrix 4,

en W) =m@R)g@) (%)
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It is clear that the leading coefficient of the polynomial ¢ (A) is
equal to wunity.

Since m (4) = 0, then, by the same lemma of Sec. 60, the remain-
der after left-division of the A-matrix m (A) E by the binomial
AE — A is again equal to zero; that is,

m () E =M —A4)Q((*) (6)
The equations (5), (4) and (6) lead to the equation
(AE — A) [(—1)y™21 C (M)] = (AE — A4) [Q (M) ¢ (W]

The common factor AE — A can be cancelled out of both sides
since the leading coefficient E of this matrix A-polynomial is a non-
singular matrix. Thus,

CH =(D"eMaq®

We recall, however, that the greatest common divisor of the ele-
ments of matrix C (A) is unity. Therefore, the polynomial g (A)
must be of degree zero, and since its leading coefficient is wunity,
g (A\) = 1. Thus, by (5),

en (V) = m (})
which completes the proof.

Since, by (1), the characteristic polynomial of matrix 4 is exactly
divisible by the polynomial e, (A), there follows from the theorem
just proved the Cayley-Hamilton theorem.

Cayley-Hamilton Theorem. Every matriz is a root of its characte-
ristic polynomial.

The minimal polynomial of a linear transformation. Let us
first prove the following assertion.

If matrices A and B are similar and if the polynomial f (A) is an-
nihilated by matriz A, then it is also annihilated by matriz B.

Indeed, let
B = CAC

If
FO) = ah® + oA 4 ...+ aph + ap
then
apd* + ARt - oA+ E=0
Transforming both sides of this equation by matrix C, we get
C (od? + aA*t + . .. + apyA + 0, E) C
= oy (CTACY + a4 (CTLAC) + . . . + oy (CAC) + oiE
=B+ B+ ...+ oy B+ aE =0
i.e. f(B) =0.
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From this it follows that similar matrices have one and the same
minimal polynomial.

Now let ¢ be a linear transformation of an »n-dimensional linear
space over the field P. The matrices that represent this transforma-
tion in different bases of space are similar. The common minimal
polynomial of these matrices is termed the minimal polyromial of
the linear transformation @.

Using the operations (on linear transformations) introduced
in Sec. 32, we can introduce the concept of the value of the polynomial

FO) = ah® + A1 L+ apd +oa

from the ring P [A] for A equal to the linear transformation ¢; this
is the linear transformation

F(@) = ag® + a*t + ... + oy + aye

where & is the identity transformation.
We furthermore say that the polynomial f (A) is annihilated by the
linear transformation ¢ if

flo) =0

where @ is the zero transformation.

If the reader takes into account the relationship between opera-
tions on linear transformations and on matrices, it will be easy
for him to prove that the minimal polynomial of the linear transfor-
mation_@ is that uniquely determined polynomial of minimum degree
with leading coefficient 1 which is annihilated by the transformation .
After that the results obtained above, in particular the Cayley-
Hamilton theorem, can be rephrased in the language of linear trans-
formations.



CHAPTER 14

GROUPS

63. Definition of a Group. Examples

Rings and fields, which played so important a role in the previous
chapters, are algebraic systems with two independent operations:
addition and multiplication. However, there are many areas of mathe-
matics and its application in which we very often encounter algeb-
raic systems with only one algebraic operation defined. Thus, con-
fining ourselves to examples that have already appeared in this
book, we have the set of permutations of degree n (see Sec. 3) in
which we defined the single operation of multiplication. On the
other hand, the definition of a vector space (Sec. 8) includes the
addition of vectors, whereas multiplication of vectors was not
defined (notice that the multiplication of a vector by a scalar does
not satisfy the definition—given in Sec. 44—of an algebraic opera-
tion).

Groups form the most important type of algebraic systems with
a single operation. This concept has extensive applications and forms
the subject of a whole science—the theory of groups. The present
chapter may be regarded as an introduction to the theory of groups,
including such elementary facts about groups as are needed by every
mathematician and also, at the end, a theorem that is not so ele-
mentary.

Let us agree, as is the custom in group theory, to call the algeb-
raic operation at hand multiplication and to use appropriate symbo-
lism. It will be recalled (see Sec. 44) that an algebraic operation is
always assumed to be valid and unique: for any two elements a and b
of a given set the product ab exists and is a uniquely defined element
of the set.

A group is a set G with one algebraic operation that is associative
(though not necessarily commutative); the operation must have
an inverse.

Because of the possible noncommutativity of the group opera-
tion, the possibility of the inverse operation signifies the following:



63. DEFINITION OF A GROUP. EXAMPLES 383

for any two elements a4 and b in G there exist in G a uniquely defined
element z and a uniquely defined element y such that

ar =0b, ya=2»

If a group G consists of a finite number of elements, then it is
called a finite group, and the number of elements in it is the order
of the group. If the operation defined in G is commutative, then G
is called a commutative group or an Abelian group.

Some simple consequences follow from the definition of a group.
On the basis of reasoning already given in Sec. 44, we can assert
that the associative law permits speaking in unique fashion about
the product of any finite number of elements of a group specified (due
to the possible noncommutativity of the group operation) in a de-
finite order.

Let us examine the consequences which follow from the existence
of the inverse operation.

Let an arbitrary element a be given in a group G. From the
definition of a group there follows the existence in G of a uniquely
defined element e, such that ae, = a; thus, this element plays
the role of unity (identity) when multiplied by element a.
If bis any other element of G and if y is a group element satisfying
the equation ya=1> (its existence follows from the definition of agroup),
we get

b =ya =y (ae) = (ya) ea = beg

Thus, the element e, plays the role of a right-identity with respect
to all elements of the group G, and not only with respect to the
initial element a; we therefore denote it by ¢’. From the unambi-
guousness implicit in the definition of the inverse operation follows
the uniqueness of this element.

In similar fashion, we can prove the existence and uniqueness
in the group G of an element ¢” that satisfies the condition e”a = a
for all ¢ in G. Indeed, the elements ¢’ and e” coincide since the equa-
lities e"e’ = e¢” and e”e’ = ¢’ imply e” = ¢’. This proves that in any
group G there is a uniquely defined element e satisfying the condition

ae =ea =a

for all ¢ in G. This element is termed the unit (identity) element
of G and is ordinarily denoted by the symbol 1.

From the definition of a group there also follows the existence
and uniqueness, for a given element a, of elements ¢’ and a” such that
aad' = 1, a"a =1
Actually, the elements &’ and a” coincide; from the equalities
a”aal j— all (aal) f— aﬂ.i — all,
a'aa’ = (a"a) a’ =1-a’ =a’
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follows a” == a’. This element is called the inverse element of a and
is denoted by a-!, that is,

aa ' =ata =1

Thus, every element of a group has a unique inverse element.

From the foregoing equalities it follows that the inverse of the
element a~! is the element ¢ itself. It is readily seen that the inverse
of a product of several elements is the product of the inverses taken
in the opposite order:

(aiaz . an_ian) l—a;xa;il . azlafl
Finally, the unit element is its own inverse.

To check whether a given set with one operation is a group is
greatly simplified by the fact that in the definition of a group the
requirement that there be an inverse operation can be replaced by the
assumption of the existence of a unit (identity) element and inverse
elements (and only on one side, say, the right, and without any
assumption about their uniqueness). This follows from the theorem
which we will now prove.

A set G with a single associative operation is a group if there is at
least one element e in G with the property

ae=a for all ain G

and if among the right-identities there is at least one element e, such
that, relative lo it, any element a in G has at least one right-inverse a™*:

aa~l = ¢
Proof. Let e be one of the right-inverses of a. Then
aal = ey = epey = epaa?

That is, aa™! = eyaa~. Multiplying both sides of this equation
on the rlght by one of the elements that are right-inverse for a1,
we get aey = egae,, whence a = ¢ya, since ¢, is a right-identity of G
Thus, the element e, also turns out to be a left-identity of G. Now
if e, is an arbitrary right-identity, e, an arbitrary left-identity,
then from the equalities

e,y = e, and e,y = e,

there follows e; = e,, i.e., any right-identity is equal to any left-iden-

tity. This completes the proof of the existence and uniqueness, in the

set G, of a unit element (identity) which we denote (as before) by 1.
Furthermore,

al = a"1.1 = alga™?

That is, a~! = a~'aa"!, where a~'is one of the right-inverses for a.
Multiplying both sides of the last equality on the right by one of
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the right-inverses of a1, we get 1 = a~la, i.e., the element a™! will
also serve as a left-inverse of a. Now, if a™] is an arbitrary right-
inverse of a, a”} is an arbitrary left-inverse, then from the equalities

ay'aayt = (a;'a) a* = a7’

ayaayt = a;' (aay’) = a;’
there follows a”} = a7}, which is to say, there follows the existence
and uniqueness of the inverse a~! of any element a in G

It is now easy to show that the set G is a group. Indeed, the equa-
tions axr = b, ya = b will be satisfied, as is readily seen, by the
elements
z = a~b, y = ba?

The uniqueness of these solutions follows from the fact that if, say,
ax; = azx,, then, multiplying both sides of this equation on the
left by a™!, we get z, = z,. The theorem is proved.

We have already encountered the concept of an isomorphism :
for rings, for linear spaces and for Euclidean spaces. This concept
can be defined for groups as well, and it plays just as important
a role in group theory as it does in the theory of rings. Groups G
and G’ are termed isomorphic if a one-to-one correspondence can be
established between them such that, under it, for any elements a, b
in G and for the corresponding elements a’, b’ in G’, to the product ab
corresponds the product a’d’. As in Sec. 46 (for the zero element and
the inverse element of a ring), it may be shown that, given an iso-
morphic correspondence between groups G and G', the unit element
of G is associated with the unit element of G’, and if @ in G is asso-
ciated with ¢’ in G', then a~! is associated with a’1.

Passing now to examples of groups, we notice that if the opera-
tion in the group G is called addition, then the identity (unit) ele-
ment of the group is zero and is denoted by 0, and in place of the
inverse element we speak of the opposite element (additive inverse)
denoted by —a.

As a first instance of a group, note that, with respect to addition,
any ring (and, in particular, any field) is a group, it is an Abelian
group. This is the so-called additive group of a ring. This remark
immediately yields a wealth of concrete examples of groups: the
additive group of integers, the additive group of even numbers,
additive groups of the rational numbers, the reals, the complex
numbers, etc. Note that the additive groups of integers and of even
numbers are isomorphic with each other, although the latter is only
a part of the former: a mapping that associates with every integer &
an even number 2k is one-to-one and, as can easily be verified, is
even an isomorphic mapping of the former group onto the latter.

No ring is a group with respect to multiplication because the
inverse operation (division) is not always possible. The situation

25—5760
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does not change if we pass from an arbitrary ring to a field, since
division by zero does not hold in a field. However, let us consider
the collection of all nonzero elements of a field. Since a field does
not contain divisors of zero (that is the product of two nonzero ele-
ments is also nonzero), it follows that multiplication is an algebraic
operation for this set: it will be associative and commutative. The
set of all nonzero elements of a field will be closed under division.
Hence, the set of nonzero elements of any field is an Abelian group.
It is called a multiplicative group of the field. Instances of such groups
are the multiplicative groups of the rational numbers, the real
numbers, the complex numbers.

Obviously, all positive real numbers constitute a group with
respect to multiplication. This group is isomorphic to the additive
group of all real numbers: associating a real number ln a with an
arbitrary positive number a, we get a one-to-one mapping of the
first group onto the second group; this mapping is an isomorphism
due to the equality

In (¢b) =Ina +Inbd

Let us now take the set of nth roots of unity in the field of com-
plex numbers. In Sec. 19 we proved that the product of two nth
roots of unity and also the inverse of an nth root of unity belong
to this set of numbers. Since unity, quite naturally, belongs to this
set and since multiplication of complex numbers is associative and
commutative, we find that the nth roots of unity constitute an Abelian
group with respect to multiplication; it is a finite group of order n.
Thus, for any nratural number n there exist finite groups of order n.

The group (with respect to multiplication) of the nth roots of unity
is isomorphic to the additive group of the ring Z, constructed in Sec. 45.
Indeed, if e is a primitive nth root of unity, then all elements of the
first of these groups is of the form e*, k = 0,1, ..., n — 1. If we
associate with every number e* an element C, of the ring Z,, i.e.,
the class of integers which yield % as remainder upon division by =,
we get an isomorphic correspondence between the groups under
consideration: if 0 <k <n —1, 0K<IL<n—1and if k+ 1=
=ng +r, where 0 <<r<<n — 1, and ¢ is equal to 0 or 1, then
e*. et = ¢" and, at the same time, C, + C; = C,.

At this point, it is worth indicating some numerical sets that
are not groups. Thus, the set of all integers is not a group with
respect to multiplication, the set of all positive real numbers is
not a group with respect to addition, the set of all odd numbers is
not a group with respect to addition, the set of all negative real
numbers is not a group with respect to multiplication. All these
assertions can easily be verified.

All the numerical groups considered above are of course Abelian.
Instances of Abelian groups not made up of numbers are the linear
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spaces: as follows from their definition (see Secs. 29, 47), any linear
space over an arbitrary field P is an Abelian group with respect to the
operation of addition.

Let us now examine examples of noncommutative groups.

The set of all nth-order matrices over the field 2 is not a group
with respect to the operation of multiplication since the demand that
there be an inverse breaks down. However, if we confine our attention
to nonsingular matrices, then we get a group. Indeed, the product
of two nonsingular matrices is, as we know, nonsingular, the unit
matrix is nonsingular; every nonsingular matrix has an inverse
which is also nonsingular and, finally, the associative law, which
holds for all matrices, holds true in the particular case of nonsingular
matrices. We can therefore speak of the group of nonsingular matrices
of order n over the field P with matrix multiplication as the group
operation. This group is noncommutative for n > 2.

The multiplication of permutations introduced in Sec. 3 is
a very important example of a finite noncommutative group. We
know that in the set of all permutations of degree r» multiplication
is an algebraic operation which is associative, although for n > 3
it is noncommutative, that the identity permutation E is the iden-
tity of this multiplication and that every permutation has an inverse.
Thus, the set of permutations of degree n constitutes a group with respect
to multiplication; it is a finite group of order n!. This group is termed
a symmetric group of degree n and is noncommutative for
n > 3.

In place of the set of all permutations of degree n, let us consider
only the set of even permutations, which, as we know, consists

of %n! elements. Using the theorem, proved in Sec. 3, that the

parity of a permutation coincides with the parity of the number of
transpositions entering into some decomposition of this permutation
into a product of transpositions, we find that the product of two even
permutations is even. Indeed, we obtain the representation of AB
as a product of transpositions by writing the appropriate decompo-
sitions of 4 and B one after the other. Furthermore, the associativity
of multiplication of permutations is known, and the evenness of the
identity permutation is obvious. Finally, the evenness of the per-
mutation 4-1 for the even permutation 4 follows at least from the
fact that the notations of these permutations may be obtained one
from the other by interchanging the upper and lower rows; that
is to say, they contain an equal number of inversions. Thus, the set

of even permutations of degree n is a finite group of order % n! with

respect to multiplication. This group is called an alternating group
of degree n. It is easy to verify that it is noncommutative for n > 4,
although it is commutative for n = 3.

25%
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Symmetric and alternating groups play a prominent role in the
theory of finite groups and also in the Galois theory. Notice that
it would be impossible, by analogy with alternating groups, to con-
struct a group of odd permutations with respect to multiplication,
since the product of two odd permutations is always an even per-
mutation.

A large number of diverse examples of groups are found in the
various branches of geometry. Just one simple example of this
nature: the set of all rotations of a sphere about its centre is a group;
it is noncommutative if we call the result of two successive rotations
the product of these rotations.

64. Subgroups

A subset A of a group G is called a subgroup of this group if it
is a group with respect to the operation defined in G.

To find out whether a subset A of group G is a subgroup of G,
it is sufficient to verify that: (1) the product of any two elements
of A lies in 4; (2) 4 contains every element and the inverse of every
element of 4. Indeed, from the fact that the associative law holds
in G it follows that it holds for elements in A4; the fact that the unit
element of G belongs to A follows from (2) and (1).

Many of the groups named in Sec. 63 are subgroups of other
groups indicated there. For instance, the additive group of even
numbers is a subgroup of the additive group of all integers, and the
latter, in its turn, is a subgroup of the additive group of rational
numbers. All these groups, like the additive groups of numbers in
general, are subgroups of the additive group of complex numbers.
The multiplicative group of positive real numbers is a subgroup
of the multiplicative group of all nonzero real numbers. The alter-
nating group of degree n is a subgroup of the symmetric group of
the same degree.

There is a point to stress: the requirement contained in the
definition of a subgroup that the subset A of group G be a group
with respect to the group operation defined in G is essential. Thus,
the multiplicative group of positive real numbers is not a subgroup
of the additive group of all real numbers, although the former set
is a subset of the latter.

If we take subgroups A and B in the group G, then their intersection
A ) B, that is, the collection of elements common to A and B, is also
a subgroup of G.

Indeed, if the intersection 4 {} B contains elements z and y,
then they lie in the subgroup A and for this reason the product xzy
and the inverse z~! belong to A as well. By the same reasoning, the
elements ry and z~! belong to the subgroup B and therefore they
are contained in the intersection A | B too.
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- It is readily seen that -this result holds true not only for two
subgroups, but for any number of subgroups, whether finite or even
infinite.

The subset of group G consisting of the single element 1 is obvio-
usly a subgroup of this group. This subgroup, which is contained
in any other subgroup of G, is called the unit subgroup of group G.
On the other hand, the group G itself is one of its own subgroups.

An interesting example of subgroups are the so-called cyeclic
subgroups. Let us introduce the concept of the power of an element
a of group G. If n is any natural number, then the product of n ele-
ments equal to the element a is called the nth power of the element
a and is denoted by a™. Negative powers of element a may be defined
either as elements of group G inverse to the positive powers of this
element or as products of several factors equal to the element a-',
These definitions actually coincide:

@) =@y, rn>0 1)

To prove this, take the product of 2n factors, of which the first »
are equal to a-and the remaining ones are equal to ¢!, and perform
the cancellations. The element equal both to the left member and
the right member of (1) will be denoted by a~". Finally, let us agree
to use the term zero power a° of element a for the element 1.

Note that if the operation in the group G is called addition,
then in place of powers of a we should speak of multiples of this
element and write ka.

It is easy to show that in any group G, we have for the powers
of any element a for any exponents m and n (positive, negative,
or zero) the following equalities:

at-q™ = q™-q" = q™™, (2)
@)™ = a™ ©)

We denote by {a} the subset of G composed of all powers of
the element a, including the element a itself as its first power. The
subset {a} is a subgroup of the group G: multiplication of the elements
of {a} lies in {a} by (2); {a} has the element 1, equal to «° and,
finally, {a} contains all its elements together with all the inverse
elements, since from (3) follows the equality

(@)t = a™

The subgroup {a} is called a cyclic subgroup of the group G gene-
rated by the element a. As is evident from (2), it is always commutative,
even if the group G itself is noncommutative.

Notice that it has not been asserted above that all powers of the
element a are distinct elements of the group. If this is indeed so,
then a is called an element of infinite order. However, let there be,
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among the powers of a, some which are equal, say, a* = a' for
k == I, this is always the case for finite groups, but it may also
occur in an infinite group as well. If £ > [, then

at =1

which is to say that there are positive powers of the element g that
are equal to unity. Let n be the least positive power of the element a
equal to unity, that is,

1) a*=1, n>0,
(2) ifa* =1, £>0, then k>n

In this case we say that a is an element of finite order, namely, of
order n.
If an element a is of finite order n, then all the elements

1, a, a?, ..., a™? , (%)

will be distinct, as is clearly seen. Any other power of the element a,
whether positive or negative, is equal to one of the elements of (4).
Indeed, if % is any integer, then, dividing %4 by n, we get

k=ng +r, o<r<n
and so, by (2) and (3),
a* = (a")?-a" = a 6))

Whence it follows that if the element a is of finite order n, and
a® = 1, then k must be exactly divisible by n. On the other hand,

since
—t=n(=1)+(r—1)

it follows that for the element a of finite order n
el = g?

Since the system (4) contains » elements, it follows from the
results obtained above that for element a of finite order its order n
coincides with the order (that is to say, with the number of elements)
of the cyclic subgroup {a}.

Finally, notice that any group has one and only one element
of the first order: this is the element 1. The cyclic subgroup {1}
evidently coincides with the unit subgroup.

Cyclic groups. A group G is called a cyclic group if it consists
of the powers of one of its elements a, that is, if it coincides with
one of its cyclic subgroups {a}; here, the element a is called the
generator of the group G. It is obvious that every cyclic group is
Abelian.

An example of an infinite cyclic group is the additive group of
the integers—any integer which is a multiple of the number 1;
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that is to say, this number serves as the generator of the group at
hand. We could also take —1 for the generator.

An example of a finite cyclic group of order n is the multipli-
cative group of the nth roots of unity; in Sec. 19 it is shown that
all these roots are powers of one of them, namely, the primitive root.

The following theorem shows that, essentially, these examples
exhaust all cyclic groups.

All infinite cyclic groups are isomorphic among themselves; all
finite cyclic groups of a given order n are also isomorphic among them-
selves.

Indeed, an infinite cyclic group with generator a is mapped one-
to-one onto the additive group of the integers if every element a*
of this group is associated with the number %; this mapping is iso-
morphic, since, by (2), in multiplying the powers of the element a
we add the exponents. Now if we are given a finite ¢yclic group G
of order » with generator a, then we denote by & the primitive nth
root of unity and assomate "with every element a* of group G, 0 <<
< k < n, the number &*. This is a one-to-one mapping of the group
G onto the multiplicatlve group of the nth roots of unity, the iso-
morphic property of which follows from (2) and (5).

This theorem enables us to speak simply about an infinite cyclic
group or about a cyclic group of order n.

We now prove the following theorem.

Every subgroup of a cyclic group is itself cyclic.

Indeed, let G = {a} be a cyclic group with generator a (inﬁnite
or finite) and let A be a subgroup of G. We assume that A4 is diffe-
rent from the unit subgroup, otherwise there would be nothing to
prove. Suppose that a* is the least positive power of a contained
in A. There is such a power, since if A contains an element a~%,
s> 0, different from 4, then A also contains the inverse element a°.
Assume that A also has an element a!, I == 0, and & does not divide /.
Then if d, d > 0, is the greatest common divisor of the numbers %
and [/, there exist integers 1 and v such that

ku +lv=4d
and therefore the subgroup A must contain the element
(ak)u.(al)v —
but since under our assumptlons d << k, we are in conflict with the
choice of the element a®. This is proof that A = {a*}.
Decomposition of a group with respect to a subgroup. If we
take subsets M and N in a group G, then the product MN of these
subsets is to be understood as the collection of elements of G that

are representable in at least one way as the product of an element
of M by an element of N. From the associativity of the group opera-
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tion follows th~ associativity of multiplication of subsets of the group,
(MN)P = M (NP)

One of the sets M, N may of course consist of just the one ele-
ment a. In this case we get the product aN of the element by the set
or the product Ma of the set by the element.

Suppose in G we have an arbitrary subgroup A. If z is any ele-
ment of G, then the product zA is called the left coset (of the group
G with respect to the subgroup A) generated by element x. The element
z naturally lies in the coset A since the subgroup A contains a unit
element, but z-1 = z.

Every left coset is generated by any one of its elements, that is to
say, if an element y lies in the coset zA, then

yA = zA (6)
This is true because y may be represented as
y = za

where a is an element of the subgroup A. Therefore, for any elements
a’ and a” in 4 it will be true that

ya' = z (ad’),
za" =y (a™'a”)
which proves (6).
From this it follows that any two left cosets of the group G relative

to the subgroup A either coincide or do not have any element in common.
Indeed, if the cosets 24 and yA have a common element z, then

zA = zA = yA

Thus, the entire group G decomposes into disjoint left cosets
relative to the subgroup A. This decomposition is called the left
decomposition of the group G relative to the subgroup A.

Note that one of the left cosets of this decomposition is the
subgroup A itself; this coset is generated by the element 1 or, gene-
rally, by any element a in A4, since

ad = A

Naturally, taking the product Az as the right coset of the group
G relative to the subgroup A—this coset being generated by the ele-
ment r—we obtain, in similar fashion, a right decomposition of the
group G relative to the subgroup A. For an Abelian group, both its
decompositions (left and right) relative to any subgroup will natu-
rally coincide, so we can simply speak of the decomposition of a
group relative to a subgroup.

For instance, the decomposition of the additive group of the
integers relative to the subgroup of the multiples of the number %,
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consists of k distinct cosets generated, respectively, by the numbers
0,1, 2, ..., k—1. Here, the coset generated by the number I,
0 < I <<k —1, contains all the numbers which upon division by
k yield the remainder /.

In the noncommutative case, the decompositions of a group
relative to a subgroup may prove to be distinct.

To illustrate, let us consider a symmetric group of degree 3, S3;
as in Sec. 3, we write its elements as cycles. For the subgroup A
we take the cyclic subgroup of the element (12); it consists of the
identity permutation and the permutation (12) itself. The other
left cosets are: (13)-A, consisting of the permutations (13) and (132),
and (23)-A4, consisting of the permutations (23) and (123). On the
other hand, the right cosets of the group S; relative to the subgroup
A are: the subgroup A itself, the coset A4-(13), consisting of the
permutations (13) and (123), and the coset A4-(23), consisting of
the permutations (23) and (132). We see that in this case, the right
decomposition differs from the left decomposition.

For the case of finite groups, the existence of decompositions
of a group relative to a subgroup leads to the following important
theorem.

Lagrange’s theorem. In every finite group, the order of any sub-
group is a divisor of the order of the group itself.

Indeed, in a finite group G of order n let there be given a sub-
group A of order k. We consider the left decomposition of the group
G relative to the subgroup A. Let it consist of j cosets; the number j
is termed the index of the subgroup A in the group G. Every left
coset r4 consists of exactly k elements, since if

xay = x4y
where a; and a, are elements of 4, then a; = a,. Thus,
n=kj (7

which completes the proof.

Since the order of an element coincides with the order of its
cyclic subgroup, it follows from the Lagrange theorem that the
order of any element of a finite group is a divisor of the order of the
group.

It also follows from the Lagrange theorem that any finite group
whose order is a prime number is cyclic.

Indeed, this group must coincide with the cyclic subgroup gene--
rated by any element of it that is different from unity.

Hence, by the above-obtained description of cyclic groups,
it follows that for any prime p there is a unique, to within
isomorphism, finite group of order p.
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65. Normal Divisors, Factor Groups, Homomorphisms

A subgroup A of a group G is called a normal divisor of this group
(or an invariant subgroup) if the left decomposition of G with respect
to A coincides with the right decomposition.

Thus, all subgroups of an Abelian group are normal divisors
in it. On the other hand, in any group G both the unit subgroup and
the group itself are normal divisors: both decompositions of G with
respect to the unit subgroup coincide with the decomposition of
the group into separate elements, and both decompositions of the
group G with respect to the group itself consist of the single coset G.

Here are some of the more interesting examples of normal divisors
in noncommutative groups. In the symmetric group of degree 3, S,
the cyclic subgroup of element (123) consisting of the identity per-
mutation and the permutations (123) and (132) is a normal divisor:
in both decompositions of the group S5 with respect to this subgroup,
the second coset consists of the permutations (12), (13) and (23).

Generally, in the symmetric group S, of degree n the alternating
group A, of degree n is a normal divisor. Indeed, the group A,

is of order -;— rl, and so any coset of the group S, with respect to the

subgroup 4, must consist of the same number of elements and, con-
sequently, there is only one other such coset, namely, the collection
of odd permutations.

In the multiplicative group of nonsingular square matrices of
order n with elements in the field P, those matrices whose determi-
nants equal 1 obviously constitute a subgroup. It will even be a
normal divisor, since the class of all matrices whose determinants
are equal to the determinant of the matrix M is the coset (simul-
taneously left and right) with respect to this subgroup, which coset
is generated by the matrix M. It suffices to recall that in the multi-
plication of matrices the determinants are multiplied together.

The definition of a normal divisor given above may be rephrased.

A subgroup A of group G is a normal divisor of this group if
for any element z in G

zA = Az (1)

That is to say, for any element z in G and an element a in 4, it is
possible to choose elements &’ and a” in 4 such that

za = a'z, ar = za” (2)

There are other definitions of a normal divisor equivalent to the
original one. Thus, we call elements ¢ and b of group G conjugate
if in G there is at least one element x such that

b= zlaz ®)
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or we say that element b is the transform of element a by z. From (3)
it evidently follows that

o = gbz~' = (z~1-! bz~!

A subgroup A of a group G is a normal divisor in G if and only
if, together with any element of it, a, it also contains all elements con-
jugate to it in G.

Indeed, if A is a normal divisor in G, then, by (2), for the element
a that we chose in 4 and for any element z in G we can find in 4
an element a” such that

ar = za"
Whence
z7lax = a”

That is, any element conjugate to a lies in A. Conversely, if a sub-
group A contains, together with any element a, all elements conju-
gate to a, then in particular 4 also contains the element

z lax = a"

whence follows the second of the equalities (2). For the same reason,
A also contains the element

()t azrl=zaz! = a’

whence follows the first of the equalities (2).

Using this result, it is easy to prove that the intersectiorn of any
normal divisors of group G will itself be a normal divisor of this group.
Indeed, if A and B are normal divisors of G, then, as demonstrated
in the preceding section, the intersection A [ B is a subgroup of G.
Let ¢ be any element of A [| B and z any element of G. Then the
element z~lcx must lie both in A and B since both of these normal
divisors contain the element ¢. Whence it follows that the element
x7lex is in the intersection A [] B.

Factor group. The significance of the concept of a normal divisor
is based on the fact that it is possible, in a certain very natural way,
to construct a new group from the cosets with respect to a normal
divisor—due to (1) there is no need in this case to distinguish between
left and right cosets.

First notice that if A4 is an arbitrary subgroup of the group G,
then

AA =4 (4)

since the product of any two elements of the subgroup A4 belongs
to A and, at the same time, by multiplying all elements of A by
the unit element we already get the entire subgroup A.

Let A.now be a normal divisor of G. In this case, the product of
any two cosets of G with respect to A (in the sense of multiplying sub-
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sets of the group G) will itself be a coset with respect to A. Indeed,
using the associativity of the multiplication of subsets of a group,
and using equality (4) and

yA = Ay

fef. (1)], we get :
zA -yA = aydA = zyA (5)

for any elements z and y of G.

Equation (5) shows that in order to find the product of two given
cosets of group G with respect to the normal divisor A, we must
choose in arbitrary fashion one representative in each coset (recall
that every coset is generated by any one of its elements) and take
the coset containing the product of these representatives.

Thus is defined the operation of multiplication in the set of
all cosets of the group G with respect to the normal divisor 4. We
will show that all the requirements that enter into the definition of
a group are thus fulfilled. The associativity of multiplication of
cosets follows from the associativity of the multiplication of sub-
sets of the group. The role of the unit element is played by the
normal divisor 4 itself, which is one of the cosets of the decomposi-
tion of G with respect to 4: namely, by (4) and (1), it is true that
for any z in G,

rA-A = 24, A-z4A = zAA = A
Finally, the coset z~'4 is the inverse of the coset zA since
zA-xz7'4A =1.4 = A4

The group thus constructed is called the factor group of the group
G with respect to the normal divisor 4 and is denoted G/A.

We see that every group is associated with a whole set of new
groups—its factor groups with respect to different normal divisors.
Here, the factor group of the group G with respect to the unit sub-
group will, naturally, be isomorphic to G itself.

Every factor group G/A of an Abelian group G is itself Abelian,
since from zy= yz it follows that

zA - yA = zyAd =yzA = yA .24

Every factor group G/A of a cyclic group G is cyclic, because if G
is generated by an element g, G = {g}, and if we are given an
arbitrary coset zA, then there is an integer % such that

z=g"
and so
z4 = (gA)*

The order of any factor group G/A of a finite group G is a divisor

of the order of the group itself. Indeed, the order of the factor group



65. NORMAL DIVISORS, FACTOR GROUPS, HOMOMORPHISMS 397

G/A is equal to the index of the normal divisor A in the group G,
and so we can take advantage of (7) of the preceding section.

Here are some instances of factor groups. Since, in the additive
group of the integers, the subgroup of multiples of the natural num-
ber k has, as shown in the preceding section, index %, the factor
group of our group with respect to this subgroup is a finite group
of order k; it is a cyclic group because the group under consideration
is itself cyeclic.

The factor group of a symmetric group S, of degree r with respect
to an alternating group A, of degree n is a group of order 2; because
2 is prime, it is a cyclic group (see the end of the preceding section).

We have already given a description of the cosets of the multi-
plicative group of nonsingular matrices of order n with elements
in the field P with respect to the normal divisor composed of matrices
whose determinants are equal to 1. From this description it follows
that the corresponding factor group is isomorphic to the multiplica-
tive group of nonzero numbers of P.

Homomorphisms. The concepts of a normal divisor and a factor
group are closely connected with the following generalization of
the concept of an isomorphism.

A mapping ¢ of a group G onto a group G’ such that to every
element a of G there corresponds a unique element o’ = ag in G’
is called a homomorphic mapping of G onto G’ (or simply a homo-
morphism) if in this mapping every element &’ of G’ is an image of
some element a in G, &' = ag, and if for any elements a, b of G,

(ab) ¢ = ag-bo

It is quite obvious that if we also required a one-to-oneness
of the mapping ¢, we would obtain the already familiar definition
of an isomorphism.

If @ is a homomorphism of group G onto group G’ and 1 and a are,
respectively, the unit element and an arbitrary element of G and, 1’
is the unit element of G', then

19 =1/,
@) ¢ = (ap)™

Indeed, if 19 = ¢’ and z’ is an arbitrary element of the group G',
then there is an element z in G such that z¢ = z’. Whence,
2 =z¢p=(z1)p =za¢p-1¢p =2’ -¢
Similarly,
xl — e’xl
and, hence, ¢ = 1'.
On the other hand, if (¢7') ¢ = b’, then

1" =19 = (aa™) ¢ = ag-(a™) ¢ = ag-b’
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and, similarly,
1" =b"-ag
whence b’ = (ag)~!.

Let us use the term kernel of a homomorphism ¢ of a group G
onto a group G’ for the set of elements of G which are mapped under
¢ into the unit element 1’ of G'.

The kernel of any homomorphism @ of a group G is a normal divisor
of G.

Indeed, if the elements a, b of G enter into the kernel of the
homomorphism ¢, i.e.,

ap = bp =1’
then
(ab) ¢ = ap-bp =1"-1" =1’

That is to say, the product ab is also contained in the kernel of the
homomorphism ¢. On the other hand, if ap = 1’, then

(@) @ = (ag)? =171 =1’

which is to say that a~! is also in the kernel of the homomorphism ¢.
Finally, if ap = 1’, and x is an arbitrary element of the group G,
then

(z7'az) ¢ = (z7') @-ap-z9 = (z)~'-1"-zp =1’

The kernel of the homomorphism under consideration turned out to
be a subgroup of the group G, which contains all the elements con-
jugate to any one of its elements; hence, it is a normal divisor.

Now let A be an arbitrary normal divisor of the group G. Asso-
ciating every element z of G with that coset x4 with respect to the
normal divisor A in which the element lies, we obtain a mapping
of the group G onto the entire factor group G/A. From the definition
of multiplication in the group G/A [see (5)i, it follows that this
mapping is homomorphic.

The resulting homomorphism is the caronical homomorphism
of the group G onto the factor group G/A. The normal divisor A4
is itself obviously the kernel of this homomorphism.

From this it follows that only the normal divisors of the group
G serve as kernels of the homomorphisms of this group. This result can
be regarded as yet another definition of a normal divisor.

It appears that all groups onto which the group G can be homo-
morphically mapped are actually exhausted by the factor groups
of this group, and all the homomorphisms of G are exhausted by its
canonical homomorphisms onto its factor groups. To be more precise,
the following theorem holds.

Theorem on homomorphisms. Suppose we have a homomorphism
@ of a group G onto a group G'; let A be the kernel of this homomorphism.
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Then the group G’ is isomorphic to the factor group G/A; there exists
an isomorphic mapping & of the former of these groups onto the latter
such that the result of the successive mappings ¢ and ¢ coincides with
the canonical homomorphism of the group G onto the factor group G/A.

Indeed, let x’ be an arbitrary element of G’, and let = be an ele-
ment of G such that z¢ = z’. Since for any element a of the kernel
A of the homomorphism ¢ we have the equality ap = 1’, it follows
that

(xa2) ¢ = z@-ap = 2’1" =2’

That is, all elements of the coset z4 are mapped under ¢ into the
element z'.

On the other hand, if z is any element of the group G, such that
z¢ = z’, then

(z72) @ = z7'¢ 29 = (z@) 'z =21z’ =1

That is to say, 1z is contained in the kernel. 4 of the homomorphism
¢. If we set 27!z = a, then z = za, or the element z is contained in
the coset 4. Thus, collecting all the elements of the group G which
are mapped under the homomorphism ¢ into the fixed element z’
of the group G', we get precisely the coset zA4.

The correspondence ¢, which associates every element z' of G’
with that coset of G by the normal divisor 4 which consists of all
elements of G having z’ as its image under ¢, is a one-to-one mapping
of the group G’ onto the group G/A. This mapping ¢ is an isomorphism
since if

2’'c =24, yo=yA

that is,

g =2z, yo=y
then

(zy) ¢ = z9-yo = z'y’
and so

(@'y’)o = ayd =zA-yA = z'c-y'c
Finally, if z is an arbitrary element in G and z¢ = 2’ then
(x9) 0 = 2’0 = z4
That is, a successive execution of the homomorphism ¢ and the iso-

morphism ¢ indeed maps the element z into the coset x4 generated
by it. The theorem is proved.

66. Direct Sums of Abelian Groups

We would like to conclude this chapter with a group-theoretic
theorem that is deeper than the elementary properties of groups given
above. Namely, proceeding from the description, given in Sec. 64,
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of cyclic groups, we will obtain in the next sectlon a complete des-
cription of finite Abelian groups.

As is customary in the theory of Abelian groups, we use the
additive notation for the group operation: we shall speak of the
sum a - b of elements ¢ and b of the group, of the zero subgroup 0,
of the multiples ka of some element a, etc.

We will examine in this section a construction that will be
described in detail in application to Abelian groups, though it could
have been introduced at once for arbitrary (that is, not necessarily
commutative) groups. This construction is suggested by the follow-
ing examples. A plane regarded as a two-dimensional real linear
space is an Abelian group with respect to the addition of vectors.
Any straight line in this plane passing through the coordinate origin
is a subgroup of the indicated group. If 4; and 4, are two distinct
straight lines of this kind, then, as we know, any vector in the plane
that issues from the origin is uniquely represented by the sum of its
projections on the straight lines A, and 4, Similarly, any vector
of three-dimensional linear space can be uniquely written as the
sum of three vectors belonging to three given straight lines 4y, 4,,
and Aj, provided the lines do not lie in the same plane.

An Abelian group G is called the direct sum of its subgroups 4,
A, ..., A4y,

G=A; +A,+...+4, )

if every element z of G is uriquely written as the sum of the elements
ay, ay, . . ., ap, taken, respectively, in the subgroups 44, 4,, . . ., 4,

z=a;+a + ...+ a 2)
The notation (1) is called the direct decomposition of the group
G, the subgroups 4,, i =1, 2, ..., k, are direct summands of this

decomposmon and the element a; in (2) is a component of the ele-
ment z in the direct summand A; of the decomposition (1), i =
=1, 2, , k.
If we are gwen a direct decomposition (1) of a group G and if the
direct summands A; of this decomposition (all or some of them), are
themselves decomposed into a direct sum,

A;=Ayu+ A+ ...+ Ay, ki >A1 (3)
then the group G is the direct sum of all its subgroups:
Ay, 7=42, .. .,k, i=1412 ...,k
Indeed, for an arbitrary element = of G we have the notation (2)

relative to the direct decomposition (1), and for each component a;,
i=1,2, ..., k& we have the notation

S T T S TS (4)
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relative to the direct decomposition (3) of the group A;. It is clear
that z is the sum of all the elements a;;, j =1, 2, ..., ki, i =
=1, 2, ..., k. The uniqueness of this notation follows from the
fact that we must obtain precisely equality (2) by taking any nota-
tion of the element z as a sum of elements, taken one each in the
subgroups A;;, and by adding the summands belonging to the same
subgroup 4;, i =1, 2, . . ., k. On the other hand, each element g;
only has one notation of the type (4).

The definition of a direct sum may be restated. First let us intro-
duce a new concept. If it is given that an Abelian group G has certain
subgroups By, B, . . ., B;, then we denote by {By, B,, . . ., B;} the
set of elements y of G which can in at least one way be written as
a sum of the elements by, b,, . . ., by, taken in the subgroups By, B,, ...
. .., By, respectively,

y=bi+bz+---+bl (5)

The set {By, B,, ..., Bi} will be a subgroup of G. We say that
this subgroup is generated by the subgroups B;, B,, ..., B,

For the proof, let us take in {By, B,, ..., Bj} an element y
with notation (5), and also an element y" with a similar notation,

| Y= b+ b b
where b; is an element in B;, i =1, 2, ..., I. Then
y+y =0+ b))+ (b +by) + ...+ (b + )

—y = (=by) + (=by) + ...+ (=b)

which is to say that the elements y + y’ and —y also have at least
one notation of the type (5) and, hence, belong to the set {By, B,, . . .

., B;}, which completes the proof.

The subgroup {Bi, B,, ..., By} contains each of the subgroups
B;, i =1, 2, ..., L Indeed, every subgroup of the group G con-
tains the zero element of this group and so, taking, for instance,
in the subgroup B; any element b,, and in the subgroups B,, . . ., B;
the element 0, we obtain the following notation of type (5) for ele-
ment b;:

b1=b1+0+...+0

An Abelian group G is the direct sum of its subgroups Ay, A,, . . ., 4y
if and only if it is generated by these subgroups,

G ={44, A,, ..., A} (6)
and if the intersection of each subgroup A;, i = 2, ..., k, with the
subgroup generated by all preceding subgroups Ay, A,y ..., 4;4

conilains zero alone:

{Ah sz o ey Ai*i} n Ai = 0, i = 2, .oy k (7)

26—5760
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Indeed, if the group G has the direct decomposition (1), then
for any element z of G the notation (2) exists, and therefore we have
equation (6). The validity of equations (7) follows from the uniqueness
of the notation (2) for any element z: if for some i the intersection
{41, Ay, ..., 454} N A; contained a nonzero element z, then,
on the one hand, z could be written as an element g;, in 4;, i.e.,
z = a;, and so

z=0+...+0+4a¢+0+...+0 ©)

On the other hand, z, as an element of the subgroup {A1, Ay . . A},
would have a notation of the form

z=a +a,+ ...+ a;
which is to say that
z=a +a+...+a4+04+-...4+0 (9)

It is evident that (8) and (9) are two distinct notations of type (2)
for the element .

Conversely, let (6) and (7) hold. From (6) it follows that any
element z of G has at least one notation of type (2). However, let
there be two distinct notations of type (2) for some element z:

z=at+a+...+tap=0a +a+...+a (10)

Then we can find an i, i C k%, such that

=0k, poy=0ap—1, ..., ai+i=a’i+1 (11)
but
a; #ai
That is,
a; —a; =0 (12)

From (10) and (11) follows, however, the equality
@ —ap = (q — ) + (a3 —a)) + ... + (@i — ;)

which contradicts (7) due to (12). The theorem is proved.
The concept of a direct sum may be regarded from quite a diffe-
rent angle. Suppose we have & arbitrary Abelian groups 44, 4,, . . .
, A, among which there may be isomorphic groups. Denote
by G the set of all possible systems of the form

(ah Aoy « o oy ak) (13)

composed of elements taken one at a time in each of the groups
Ay, A,y ..., Ay, The set G will become an Abelian group if addi-
tion of the systems of type (13) is defined by the following rule:
(ay, @y « . ., ap) + (a3, a3, .. ., ap)

=(as+a, ay+a, ..., a + ap) (14)
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That is, the elements are combined separately in each of the given
groups 4;, A,, . . ., Ay. Indeed, the associativity and commutativity
of this addition follows from the validity of these properties in
each of the specified groups; the role of zero is played by the system

(04, Oy . .., Op)

where 0; denotes the zero element of the group 4;,i =1, 2, .. ., k.
The inverse of (13) is the system

(—ay, —ay, ..., —ap)
The Abelian group G thus constructed is called the direct sum
of the groups 4,, A4,, ..., A, and is written, as above,
G=A,+ A4, + ...+ 4,

This name is justified by the fact that the group G, which is the direct
sum of the groups Ay, A,, . . ., Ay in the sense just deﬁned, can be de-

composed into the direct sum of its subgroups A, A, . . ., Ay, which
are isomorphic, respectively, to the groups Ay, 4, .. A
Namely, denote by A3, i =1, 2, , k, the set of elements of G,

that is systems of type (13), with an arbltrary element a; of group
A, in the ith position, all other positions being occupied by zeros
of the corresponding groups; these will thus be systems of the form

(Ob LEEIRT) Oi -1 &4, Oi+h LR} Oh) (15)

The definition (14) of addition shows that the set A} is a subgroup
of the group G. We obtain the isomorphism of this subgroup and the
group A, by associating to each system (15) an element a; of group A4;.
It remains to prove that the group G is the direct sum of the

subgroups A4;, A;, ..., Ak Indeed, any element (13) of G may be
represented as a sum of elements of the indicated subgroups:

(a,, az, . ey dh) = (di, 02, . e ny Oh)
+ (01, ay, 03, ey Oh) —f" [ + (0‘, 02, . e ey Oh"i’ ak)
The uniqueness of this representation follows from the fact that
distinct systems of type (13) are distinct elements of the group G.
If we have two systems of Abelian groups, Ay, A,, ..., Ay and
By, By, . . ., By, and the groups A; and B; are isomorphic, i = 1, 2, . . .
., k, then the groups
G=A1+A2+...+Ah
and
H=Bi+Bz+"-+Bh
are also isomorphic.

Indeed; if for i =1, 2, ..., k there is established, between
groups 4; and B;, an isomorphism ¢;, which associates with each

26*
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element a; of 4; an element a;¢; of B;, then the mapping ¢, which
associates with every element (a4, a,, . . ., a;) of G an element of H
defined by the equation

(ag, ag - .., ap) @ = (aiq)h @y@ay - - -5 BpQPr),

will obviously be an isomorphic mapping of the group G onto the
group H.

If we have finite Abelian groups As, A, . . ., Ay of orders ny, n,, ...
. « ., Ny, respectively, then the direct sum G of these groups is also a
finite group and its order n is equal to the product of the orders of the
direct summands,

n=rnm, ... N (16)

Quite true, since the number of distinct systems of type (13)
whose element a; can assume n, distinct values, whose element a,
can assume n, distinct values, and so on, is determined by equa-
tion (16).

Let us consider some examples.

If the order n of a finite cyclic group {a} can be decomposed into
the product of two relatively prime natural numbers,

n=st (s,2 =1

then the group {a} can be decomposed into the direct sum of two cyclic
groups having orders s and t, respectively.

Let us use the additive notation for the group {a}. If we set
b = ta, then

sb=(st)a=na=20
but for 0O <k <s
kb = (kt) a %0
which is to say that the cyclic subgroup {b} is of order s. Similarly,
the cyclic subgroup {c} of element ¢ = sa has order £. The inter-
section {b} N {¢} contains only zero because if kb = Ic for 0 << k <<
<s, 0<<l<t, then
(k) a = (Is) a
whence, since the numbers %z and Is are less than n,
kt = Is
which is impossible due to the relative primality of the numbers s
and ¢ Finally, there are numbers u and v such that
su+tw=1
and so
a =v(ta) + u (sa) = vb + uc
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and, consequently, any element of the group {a} may be represented
as the sum of elements of the subgroups {b} and {c}.

We call an Abelian group G indecomposable if it cannot be de-
composed into the direct sum of two or several of its subgroups dis-
tinct from the zero subgroup. A finite cyclic group whose order
is some power of the prime number p is called a primary cyclic group
relative to the prime number p. Applying several times the assertion
proved above, we find that any finite cyclic group can be decomposed
into the direct sum of primary cyclic groups relative to distinct prime
numbers. More precisely, a cyclic group of order

— phipk ]
n=pap?...pg

where py, Py, . - ., ps are distinct prime numbers, can be decomposed
into the direct sum s of cyclic groups having orders p*, pk: , . . ., phs,
respectively.

Every primary cyclic group is indecomposable.

Indeed, suppose we have a finite cyclic group {a} of order p*,
where p is prime. If this group were decomposable, then, by (7),
it would have nonzero subgroups whose intersection is zero. Actual-
ly, however, every nonzero subgroup of our group contains the non-
zero element

b=p*la

To prove this, take an arbitrary nonzero element z of our group,

z=3sa, 0<s<<pt
The number s may be written as

s = p's’, o<Ii<k
where the number s’ is not divisible by p and, hence, is relatively
prime to it; and so there exist numbers © and v such that

s'u + pv =1
Then
Pz =(p
=p"t(1—pr)a=(p"' —p)a=pla—v(p'a) =p"la=b

k'l*lus) a— (ph_lusl) a

which is to say, the element b is in the cyclic subgroup {z}.

The additive group of the integers (which is an infinite cyclic group)
and also the additive group of all rational numbers are indecomposable
groups.

The indecomposability of both these groups follows from the
fact that in each of them there exists, for any two nonzero elements,
a nonzero common multiple; that is, any two nonzero cyclic sub-
groups have a nonzero intersection.
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Note that if the operation in an Abelian group G is termed mul-
tiplication, then instead of a direct sum we speak of a direct product.

The multiplicative group of nonzero real numbers can be decom-
posed into a direct product of the multiplicative group of positive real
numbers and a group, with respect to multiplication, made up of the
numbers 1 and —1.

Actually, the intersection of these two subgroups of our group
contains only the number 1 —the unit element of this group. On the
other hand, every positive number is the product of the number 1
by itself, every negative number is the product of its absolute value
by the number —1.

67. Finite Abelian Groups

If we take any finite set of primary cyclic groups, some of which
can refer to one and the same prime number or even have the same
order, i.e., be isomorphic, then the direct sum of these groups is
a finite Abelian group. It turns out that this exhausts all finite
Abelian groups.

Fundamental theorem of finite Abelian groups. Every finite
Abelian group G which is not a zero group can be decomposed into a
direct sum of primary cyclic subgroups.

We begin the proof of this theorem with the remark that in the
group G there will inevitably be nonzero elements of prime power orders.
Indeed, if some nonzero element x of G has order I, Iz = 0 and if
p*, k > 0, is a power of the prime p such that divides the number ,

Il =p'm
then the element mz is different from zero and has order p*.
Let
Pt1s Por + - -5 Ps (1)

be all distinct primes, some powers of which serve as the orders of
certain elements of the group G. Denote any such number by p
and the set of elements of G having powers of p as their orders by P.

The set P is a subgroup of the group G. Indeed, P 1ncludes the
element 0 since its order is 1 = p° urthermme, if p*z = 0, then
p* (—z) = 0 as well. Finally, if p"z = 0, p'y = 0 and if, say,
k> 1, then

"ty =0

Thus, either the number p* or a divisor of this number, at any rate
some power of p, serves as the order of the element z + y.

Alternately taking each of the numbers (1) for p, we obtain s
nonzero subgroups

Pi,Pg,.-.,Ps (2)
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The group G is the direct sum of these subgroups,
G=P, +P,+...+ P, (3)

True, for if x is an arbitrary element of G, then its order ! can
only be divisible by certain prime numbers of the system (1),

I=ppp2 ... pye

where k; >0, i =1, 2, ..., s. Therefore, as was demonstrated
at the end of Sec. 66, the cyclic subgroup {z} can be decomposed into
the direct sum of primary cyclic subgroups having orders pf1, pk2, ...
R pfa, respectively. These primary cyclic subgroups lie in corres-
ponding subgroups (2) and, consequently, the element z is repre-
sented in the form of a sum of elements taken one each in all or
several of the subgroups (2). This proves the equality

G={Py, P, ..., P}

which is similar to (6) of Sec. 66. ,

To prove the equality similar to (7) of the same section, take
any i, 2 <{i < s. Then any element y of the subgroup {P,, P,, ..
. ... Py} is of the form

y=a1+a2+...+a!.1

where the element a;, j = 4, 2, ..., i — 4, is in the subgroup P;,,
that is, has order p;’f. Then,

(Plapl ... Pl y=0
For the order of the element y we have some divisor of the number
phipk . .p?i_—ii and, consequently, the element y, if it is diffe-
rent from zero, cannot be in the subgroup P;. This proves that
{Ph P2a LIRS} Pi—i} ﬂ Pi =0

which is what we set out to prove.

Notice that an Abelian group, the orders of all the elements of
which are powers of one and the same prime number p, is termed
primary relative to p. Primary cyclic groups are a special case of
primary groups. Thus, the subgroups (2) are primary. They are called
primary components of the group G, and the direct decomposition (3)
is called the decomposition of this group into primary components.
Since the subgroups (2) are defined uniquely in the group G, it follows
that the decomposition of G into primary components is likewise defined
uniquely.

Quite naturally, the decomposability of any finite Abelian group
into the direct sum of primary groups reduces the proof of the fun-
damental theorem to the case of a finite primary Abelian group P
relative to some prime number p. Let us consider this case.
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Let a; be one of the elements of the group P having the highest
order in it. Furthermore, if in P there are nonzero elements, the
intersection of the cyclic subgroups of which with the cyclic sub-
group {a,} is zero only, then by a, we denote one of the elements of
the highest order among the elements with this property; thus,

{a} N {a} =0

Let the elements a;, a,, ..., @;_, be already chosen. Denote
by {a;, a,, . .., a;.;} the subgroup of the group P generated by
their cyclic subgroups:

{{as}, {as} , . . . {ai—i}} = {ay, ay, - .., a4} (4)

It evidently consists of all the elements of P that can be written as
the sum of multiples of the elements a4, a,, . . ., a; _;. We will say
that this subgroup is generated by the elements a4, a,, . . ., ; _;.
Let us now denote by a; one of the elements of the highest order
among those elements of P whose cyclic subgroups have a zero

intersection with the subgroup {ay, a,, ..., a; 4}. Thus
{aia Aoy « + o ai"i} n {ai} =0 (5)
Because of the finiteness of the group P, this process must ter-
minate. Suppose this occurs after the elements a,, a,, . . ., a, have

been chosen. If by P’ we denote the subgroup generated by these
elements,

P’ = {ay, a,, ..., a3}
i.e.,

P’ = {{a}, {a5}, . .., {a5}} (6)

then, consequently, a cyclic subgroup of any nonzero element of the
group P has a nonzero intersection with the subgroup P’.

The equality (6) and the equality (5), which holds true for
i=2,3,...,s, show that, by (4), the subgroup P’ is the direct
sum of the cyclic subgroups {a}, {a,}, ..., {as}

P’ = (a) + {a} + . . - + (a) (7)

It remains to prove that the subgroup P’ does indeed coincide with
the entire group P.
Let £ be any element of P having order'p. Since

P’ {z} %0

and the subgroup {z} has no nonzero subgroups different from it-
self—recall that the order of a subgroup is a divisor of the order
of the group, and the number p is prime —the subgroup {z} is indeed
contained in the subgroup P’ and, hence, z belongs to P’. Thus, all
elements of order p of the group P lie in the subgroup P’.
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Now suppose it has been proved that all elements of P whose
order does not exceed the number p*-! are in the subgroup P’, and
let z be any élement of P having order p*. As the choice of the ele-
ments ay, a,, ..., &, shows, their orders do not increase and so we
can indicate an i, 1 << i — 1 <, such that the orders of the elements
ai, @y, - . ., a; _y are greater than or equal to p*, and for i — 1 <<s
the order of the element a; is strictly less than this number, that
is to say, less than the order of the element z. Whence it follows,
by the conditions to which the choice of the element a; are subject,
that if

Q={a, a5, ..., a;_4}

QN {z} 0

However, in Sec. 66 it was proved that any nonzero subgroup
of a primary cyclic group {z} of order p" contains the element

y = p*lz (8)

Consequently, the element y lies in the intersection Q {} {z} and
therefore in the subgroup Q as well. This enables one to write y
as the sum of multiples of the elements a4, a,, . .., @;,

Yy = liai + l2a2 + ... + l,—_iai_i (9)
From (8) it follows that the element y has order p. Therefore,
(pl) as + (ply) ap + . . . + (pli-y) a;.y = 0

That is to say, because of the existence of the direct decomposi-
tion (7),

then

(pljya; =0, j=14,2 ...,i—1
The number pl; must thus be divisible by the order of the element a; a5
and therefore also by the number p*, whence it follows that p*
divides I;:

lj = p”‘lmj, j= 1, 2, ..., i—1 ('10)

Let
2= myay + meay + . .. + m;_4a; 4

This will be an element of the subgroup Q and therefore of the sub-
group P’ too; by (9) and (10),

y=p"z (11)
From (8) and (11) follows the equality
pPl(z—1z) =0
That is, the order of the element
t=z—z
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does not exceed p*-! and, hence, by the induction hypothesis, ¢ is
contained in the subgroup P’. Therefore, element z as the sum of
two elements of P', z = z } ¢, also belongs to the subgroup P’.
This is proof that all elements of order p" of the group P are con-
tained in P’.

Consequently, our inductive proof admits of the assertion that
all elements of the group P enter into the subgroup P’, or P’ = P.
This concludes the proof of the fundamental theorem.

Collaterally, we have that a finite Abelian group is primary rela-
tive to a prime number p if and only if its order is a power of p. True
enough, it was shown that any finite primary (with respect to p)
Abelian group P can be decomposed into the direct sum of primary
(with respect to p) cyclic groups, and for this reason the order of the
group P is equal to the product of the orders of these cyclic groups,
that is to say, itisa power of p. Conversely, if a finite Abelian group
has order p*, where p is prime, then the order of any one of its ele-
ments is a d1v1sor of this number, that is, it is also some power of p,
and therefore the group turns out to be primary relative to p.

The fundamental theorem does not yet exhaust the problem of
a complete description of finite Abelian groups, since we have not
precluded the possibility that the direct sums of two distinct sets
of cyclic groups that are primary relative to certain prime numbers
may prove to be isomorphic groups. Actually, this does not occur,
as the following theorem shows.

If a finite Abelian group G is decomposed in two ways into a direct
sum of primary cyclic subgroups,

G = {a} + {a} + ...+ {as} = {b} + {bs} + ...+ {b:} (12)

then both direct decompositions have one and the same number of direct
summands, s = t, and it is possible to establish a one-to-one corres-
pondence between these decompositions such that the appropriate sum-
mands are cyclic groups of the same order, which is to say they are iso-
morphic.

Note, to begin with, that if, say, in the first of the direct decom-
positions (12), we collect direct summands relative to a given prime
p, then their direct sum will be a primary (relative to p) subgroup
of the group G and even a primary component of this group, since
its order is equal to the highest power of p that divides the order
of the group G. Thus combining the direct summands in each of the
decompositions (12), in both cases we obtain a decomposition of &
into primary components, the uniqueness of which decomposition
has already been noted above.

This permits proving our theorem under the assumption that
the group G is itself primary relative to the prime number p. Let the
numbering of the direct summands in each of the decompositions
(12) be chosen so that the orders of these summands do not increase,
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that is, the elements a4, a,, ..., a, have, respectively, the orders
ph, pk2, ..., phs
for
by 2 ke >0 2>k

while the elements by, b,, ..., b; have the orders

ph, pi2, ..., pht
for
L>2L>=... 2k

If the assertion of our theorem were not valid, then there would
be an i, { > 1, such that

ki - li’ v e ey ki-1 - li—i ('13)
ki =1

Naturally, i << min (s, £), since for each of the decompositions (12)
the product of the orders of all direct summands is equal to the order
of the group G. We will show that our assumption leads to a contra-
diction.

For example, let

but

ki <<l (14)

Denote by H the set of elements of the group G whose orders do not
exceed p*. This is a subgroup of the group G, since if z and y are
elements of H, then both 2 + y and —z have orders that do not
exceed the numbers p*i.

Note that the subgroup H contains, for instance, the following
elements:

pki_hiaia p _kiazv ey phi_i—kiai—u Ay, Qiyyqy - - -, Qs

On the other hand, if 1 <<j <<i — 1, then the element p*i—ki—ig;
has order p*it+! and therefore is not in H. From this it follows that
the coset a; + H (recall that we are using the additive notation!)
has, as an element of the factor group G/H, the order p*i—*i. Such
also is the order of its cyclic subgroup {a; + H}. We will now prove
that the group G/H is the direct sum of the cyclic subgroups {a; +
+H),j=1,2,...i—1,

G/H = {a; + H} + {a, + H} + . .. 4 {a;-1 + H} (15)
and so its order is equal to the number
PRk Oy —ky) (16)

If x is an arbitrary element of the group G, then there exists the
notation

L3

= myay -+ myay, + . .. -+ mga,
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Suppose for j =1, 2, ..., i — 1,
my= p"I Mig;+ n;

where

0<ny < phi (17)
Then

mya; = q; (p"1 "az) +nja;

and since the first summand of the right member is contained in H,
it follows that

mya; + H = nja; + H
On the other hand,
ma;, +H=H, ... ma,+ H=H

And so
z + H = (may + H) + (mya, + H) + ...+ (ma, + H)

= (may + H) + (n,a, + H) + . .. + (740, + H) (18)

Let there also be the notation

x4+ H = (njay + H) + (nga, + H) + ... + (ni_1a;-4 + H) (19)

where

oni<<p ™, j=1,2 ... i—1 (20)
Then the elements
ni@y + Moy + . . .+ N8y
and
nay + nga, + . ..+ ni_ya;

lie in one coset relative to H, i.e., their difference belongs to H and
therefore

Pril(ny—n) ay+ (ng— 1) @y + . . .+ (mily—ni_1) a1 =0

From this it follows [since the first of the decompositions (12) is
direct] that

Plinj—nj)a;=0, j=1,2, ..., i=1

and so the number p*i (n; — nj) must be divisible by the order p*J
of the element a; and, hence, the difference n; — n} is divisible by
the number p*s~*i. Whence, by (17) and (20), it follows that

n; = nj, i=42,...,i—1

which means that the notations (18) and (19) are identical. This
proves the existence of the direct decomposition (15).
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Analogous arguments relative to the second of the direct decom-
positions (12) will show that this same factor group G/H has the
direct decomposition

G/H = {by + H} + {b, + Hy -+ . . . + {byos + H} + {b; + H} +...

That is, by (13) and (14), its order must be strictly greater than the
number (16). This contradiction proves the theorem.

We have thus obtained a complete survey of the finite Abelian
groups. Namely, we take all possible finite sets of the natural numbers

(n,, Ngy « - « nk)

different from unity, but not necessarily distinct; each one of these num-
bers must be a power of some prime number. To each such set we asso-
ciate the direct sum of cyclic groups whose orders are numbers from
this set. All the finite Abelian groups thus obtained are pairwise noni-
somorphic, and any other finite Abelian group is isomorphic to one
of these groups.
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multiplicative 386, 391

noncommutative 387

order of 383

primary 407

primary Abelian 407

primary cyclic 405, 407

theory of 10, 382
Soviet school of 14

Gurevtch, G.B. 414

Hamilton, W.R. 13

Hamilton (see Cayley-Hamilton theo-
rem)

Hecke, E. 415

Height of a polynomial 353

Higher algebra 7, 8

Higher-degree equations 234

Highest term of a polynomial 311

“Hisab al-jabr w’al‘imugﬁ—balah" 12

Hodge, W. V.D. 415

Holder, 0. 13

Homogeneous linear equations (see
systems of h.l. egs.)

Homogeneous polynomial 306

Homological algebra 13

Homomorphic mapping 397

Homomorphism(s) 394, 397
canonical 398
theorem on 398

Horner method 140, 141

Hurwitz, A. 13

Hypercomplex numbers, theory of 10

Hypercomplex systems, theory of 13

Ideals, theory of 10, 13

Identity element of a group 383, 385
Identity matrix 93

Identity permutation 31

Identity transformation 189, 195, 214
Image 188
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Imaginaries

axis of 112

pure 112
Imaginary part 112
Imaginary unit 112
Incomplete cubic equation 226
Inconsistent system of linear equa-

tions 16
Indecomposability of groups 405
Indecomposable Abelian group 405
Indefinite quadratic forms 177
Indeterminate system 16
Index

of inertia

negative 172
positive 172

of a subgroup 393
Inertia

law of 169f, 170

negative index of 172

positive index of 172
Infinite cyclic group 390, 391
Infinjte-dimensional linear spaces 181
Infinite-dimensional spaces 9
Integers, system of 107
Integral rational functions 156
Interpolation, linear, method of 251
Interpolation formula, Lagrange 153
Invariant (adj.) 211
Invariant factors 361
Invariant subgroup 394
Invariants, theory of 9
Inverse (to a class) 301
Inverse of a permutation 33
Inverse element 179, 384
Inverse linear transformation 199
Inverse matrices 93
Inverse matrix

left 94

right 94
Inverse operation 261
Inverse polynomial 129
Inverse transformatjon 199
Inversion 29
Irrational numbers 107
Irreducible (of a polynomial) 281, 306
Irreducible (of a solution) 230
Isomorphic (adj.) 272
Isomorphic correspondence 182
Isomorphic FEuclidean spaces 208
Isomorphic groups 385
Isomorphic real linear spaces 181
Isomorphism(s) 178, 181

of Euclidean spaces 208ff

of fields 272ff

of rings 272ff
Iterative procedures 58

Jacobson, N. 414, 415

Jordan, M.E.C. 13

Jordan matrices 370

Jordan matrix of order » 370

Jordan normal form 370f
reduction of a matrix to 375

Jordan submatrix 371

Kernel

of a homomorphism 398

of a linear transformation 197
Khayyam, Omar, 12
Kronecker, L. 13, 345
Kronecker-Capelli theorem 77, 78, 81
Kummer, E.E. 13
Kurosh, A.G. 415

Lagrange, J.L. 12, 13
Lagrange interpolation formula 153
Lagrange’s theorem 393
Laplace, P.S. 12
Laplace’s theorem 50, 51
Lattice 11
Lattice theory 11, 13
Law of inertia 169f, 170
Leading coefficient 126
Left coset 392
Left decomposition 392
Left-identity 384
Left-inverse 385
Left inverse matrix 94
Lemma (see theorem)
d’Alembert’s 147, 149
Gauss’ (or Gaussian) 307, 342
on the increase of the modulus of
a polynomial 146
on the modulus of the highest-degree
term 145
Leonardo of Pisa (see Fibonacci) 12
Lie, S. 13
Lie groups, theory of 11
Linear algebra 7, 8, 13, 15, 276
Linear combination of vectors 62
Linear dependence of vectors 62ff
Linear equations (see systems of I
egs.)
Linear form 62, 306
Linear interpolation, method of 251
Linear polynomials 127, 139
Linear spaces 7, 178ff
complex 202, 209
finite-dimensional 183
infinite-dimensional 181
n-dimensional 185
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Linear subspaces 195ff, 202
generation of 196
Linear substitution 87
Linear transformation(s) 87, 89, 188f
inverse 199
kernel of 197
nonsingular 93, 198
nonsingularity of 224
null space of 197
operations on 193
product of 193
by a scalar 193
rank of 197
with a simple spectrum 202
singular 93
spectrum of 200
Linearly dependent system of vectors
Linearly independent system of vec-
tors 63
Lobachevsky, N.I. 13
method of 256
Lyapin, E.S. 414, 415

Maltsev, A.I. 414
Mapping, homomorphic 397
Matrices (see also matrix)
diagonal 371
fundamental theorem on the simi-
larity of 367
inverse 93ff
Jordan 370
A-matrices 355
canonical 356, 357
equivalence 355ff
equivalent 356
unimodular 362ff
of a linear transformation in diffe-
rent bases, relationship between
191
noncommutative 90
numerical 355
orthogonal 210ff, 214
polynomial 355
product of 124
rectangular 70
multiplication of 97
scalar 102
similar 192, 200
similarity of, fundamental theorem
on 367
square, similar 192
theory of 8
Matrix (see also matrices) 16
adjoint of 94

augmented 21
change-of-basis 186
characteristic 199
definition of 23
diagonalization of 203
elementary 363
elementary divisors of 376
elementary transformations of 355
identity 93
Jordan (of order n) 370
left-inverse 94
multiplication of by a scalar 99, 100
normal form of 355ff
of a quadratic form 162
reduction of to diagonal form 75,
203
reduction of to Jordan normal form
375
right-inverse 94
square 93
nonsingular 93
of order n 16
singular 93
transformations of, elementary 355
unit 16, 93, 195, 211
zero 100, 195
Matrix addition 99
Matrix multiplication 87if, 89
Matrix polynomials 365f
Matrix root of a polynomial 378
Maximal linearly independent system
of vectors 65, 68
Method
alphabetical 310
of equalizing coefficients 23
of false position 251
Graefie 256
Horner 140, 141
iterative (see iterative procedure)
of linear interpolation 251
of Lobachevsky 256
Newton’s 236, 252, 253
Sturm’s 238
Minimal polynomials 377ff
Minor(s) 43ft
complementary 43
kth-order (of a matrix) 70
of order k 43
principal (of a form) 175
Modulus 113
of a product of complex numbers 115
of a quotient of two complex num-
bers 116
of a sum 117
Molin, F.E. 13
Multidimensional space 7
Multidimensional vector spaces 59
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Multiplication 261
of classes 268
in a group 382
matrix, associativity of 96
of a matrix by a scalar 99, 100
noncommutativity of 90
of rectangular matrices 97
scalar 204
of vectors by a scalar 61
Multiplication theorem for determi-
nants 91, 93
Multiplicative group 386, 391
Multiple(s)
of an element 389
zero 265
Multiple factors 284, 287
isolation of 288
Multiple roots 141
Multiplicity of a root 141, 152
Murnaghan, F.D. 415

Negative definite forms 177
Negative index of inertia 172
Newton, Isaac 12
Newton’s binomial theorem 120
Newton’s formulas 323
Newton’s method 236, 252, 253
Noether, E. 9
Noether, M. 13
Nonassociative rings 267
Noncommutative groups 387
Noncommutative matrices 90
Noncommutative ring 266
Nogl(l)commutativity of multiplication
Noncommutable set 352
Nonhomogeneous equations 83
Nonhomogeneous system 83
Nor;)ssingular linear transformations 93,
1
Nonsingular quadratic form 162
Nonsingular square matrix 93
Nonsingular transformation 211
Nonsingularity of a linear transfor-
mation 224
Norm of a number 286
Normal divisors 394f, 398
Normal form 169, 170
of a matrix 355ft
Normalization of a vector 208
Normalized vector 207
Notation, additive 400
Null space of a linear transformation
197
Nullity of a transformation 197, 198

Number(s
algebraic 349f
conjugate 350
set of 350
Cayley 111
complex 107, 110, 112ff
raising to a power 120
taking roots of 120ff, 122, 123
taking the square root of 122
conjugate 118
conjugate complex 118
hypercomplex 10
irrational 105
rational 105
field of 341
real 105
transcendental 349, 353, 354
Number fields 257, 260, 271
Number rings 257, 258, 259
Numerical matrices 355

Okunev, L.Ya. 414, 415
Omar Khayyam 12
Operation
algebraic 261
inverse 261
Opposite class 294
Opposite element 179
Order of a group 382
Orthogonal bases 207
Orthogonal matrices 210ff, 214
Orthogonal system (of vectors) 206
Orthogonal transformation(s) 210ff
of Euclidean space 212
Orthogonalization process 206, 207
Orthonormal bases 204, 208
Orthonormal basis 208

Parity of permutations 34
Part
imaginary 112
real 112
Partial fraction 157
Pedoe, D. 415
Permutation(s) 27ff
cyclic 34
decrement of 36
definition of 28
of degree n (definition) 30, 32
even 32
identity 31
inverse of 33
multiplication of 32
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odd 32
parity of 34
Pi (m), transcendence of 259
Plane, complex 112
Polar angle 113
Polynomial(s) 156
algebra of over an arbitrary field 276
algebraic viewpoint of 127
alphabetic order of terms of 310, 311
is annihilated by a linear transfor-
mation 381
characteristic (of a matrix) 200
cubic 127
cyclotomic 345
decomposition of 284
definition of 127
degree of 303
of degree n 127
of degree one 139
of degree zero 127, 129
derivative of 141
dividend of 306
divisibility of 131-133, 305
divisor of 306
elementary divisors of a 376
equal 127, 303
evaluating roots of 225ff
factorization of 284
into irreducible factors 281f
first-degree 127
as a formal algebraic expression 127
function-theoretic viewpoint of 127
greatest common divisor of 134
highest term of 311
homogeneous 306
identically equal 127, 303
integral, rational roots of 345ff
inverse 129
irreducible 281, 306
linear 127, 139
matrix 365f
minimal 377ff
nth-degree 127
operations on 126ff
primitive 342
quadratic 127
quotient of 131
with rational coefficients 341ff
with real coefficients 155
reducibility of over the field of
rationals 341ff
reducible 281, 306
relatively prime 133
theorems on 137
remainder in division of 131
ring of 279, 304
roots of 139ff

in several unknowns 303ff
sum of 304
symbols for 127
symmetric 312ff, 319ff
elementary 313
fundamental theorem on 314, 316,
319
in two systems of unknowns 324
value of 139, 377, 381
from viewpoint of mathematical
analysis 127
Polynomial matrices 355
Pontryagin, L.S. 415
Position, false, method of 251
Positive definite forms 174ff
Positive definite quadratic forms 174ff
Positive definiteness of a form 177
Positive index of inertia 172
Postmul tiplication 94, 99
Power
of an element 389
raising complex numbers to a 120
zero 389
Power sums 322
Premultiplication 99
Primary Abelian group 407
Primary components 407
Primary cyclic groups 405, 407
Primary group gsubgroup) 407
Prime element of a ring 285
Primitive nth roots of unity 125
Primitive polynomial 342
Primitive root 391
Principal-axis theorem 219, 220
Principal diagonal 16
Principal minors of a form 175

- Product

of classes 294, 301

direct 406

of matrices 89

scalar (of vectors) 205
Projective geometry 11
Proper rational fraction 156
Proskuryakov, 1.V. 414
Pure imaginaries 112

Quadratic equations 225

Quadratic form(s) 306
canonical 164
complex 162
decomposable 172
definition of 162
indefinite 177
matrix of 162
negative definite 177
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nonsingular 162
positive definite 174ff
rank of 162
real 162
reduction of to canonical form 164t
theory of 168
reduction of to principal axes 168,
219ff
semidefinite 177
theory of 161
Quadratic polynomial 127
Quadric curves and surfaces, theory
of 161
Quartic equations 230
Quartic form 306
Quasigroups, theory of 13
Quaternions 111
Quintic equations 232
Quotient 267
of a polynomial 131

Radius vector 113
Range of values (of a transformation)
197
Rank
of a linear transformation 197
of a matrix 69ff
evaluating 72
of a product of matrices 98
of a quadratic form 162
of a system of vectors 68
Rank theorem 72, 74
Rational fractions 156f, 298
fieldvof 297ff
in lowest terms 156
proper 156
simplified 156
Rational numbers 107
field of 341
Rational roots of integral polynomials
3456t

Real linear spaces 178

Real numbers 107

Real part 112

Reals, axis of 112

Rectangular matrices 70
multiplication of 97

Reduced system 86

Reducibility of polynomials over the
field of rationals 341ff

Reducible (of a polynomial) 281, 306

Reduction
of a matrix to diagonal form 203
of3a 5ma\trix to Jordan normal form

7

of quadratic forms to canonical
form 161
of quadratic forms to principal axes
168, 219§
Regula falsi 251
Relation, equivalence 356
Relatively prime polynomials 133
theorems on 137
Relatively prime system of polyno-
mials 138
Remainder of polynomials (in division)
131

Resultant 326, 327, 330
Right decomposition 392
Right-identity 384
Right-inverse 384
Right inverse matrix 94
Ring(s) 10, 260ff
commutative 267
concept of 257
definition of 262
examples of 262
finite 268
of functions 262
nonassociative 267
noncommutative 266
number 257, 258, 259
of polynomials 279, 304
theory of 10, 13
Root(s)
approximation of 250ff
bounds of 232ff
characteristic 199ff, 216
of complex numbers 120ff, 122, 123
k-fold 141
matrix 378
multiple 141
of polynomials 139ff, 378
primitive 391
rational (of integral polynomials)
3454t
simple 141
theorem on the existence of a 290f
theorems on the number of real 244f
of unity 124ff
primitive nth 125
Ruffini, P. 12

Scalar matrices 102

Scalar multiplication 204

Scalar product of vectors 204
Schmidt, O.Yu. 14, 415
Schreier, O. 414

Self-adjoint transformation 215
Semidefinite quadratic forms 177
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Semigroups, theory of 13
Sequence, Sturm’s 239
Set
countable 352
denumerable 352
noncountable 352
Shapiro, G.M. 414
Shatunovsky, S.0. 13
Shilov, G.E. 414
Signature of a form 172
Similar matrices 192, 200
Similar square matrices 192
Similarity of matrices, fundamental
theorem on 367
Simple factor 284
Simple root 141
Simple spectrum 202, 203
Simplified rational fraction 156
Single factor 284
Singular linear transformation 93
Singular square matrix 93
Skew-symmetric determinant 42
Sol\Zrability of equations by radicals
1

Sominsky, 1.8. 414
Space(s)
complex linear 181, 202
Euclidean (see also Euclidean spa-
ce) 204
finite-dimensional 182
four-dimensional 7
of functions 185
infinite-dimensijonal 9
linear 7, 178ff
finite-dimensional 183
infinite-dimensional 181
n-dimensional 185
multidimensional 7
null 197
real affine 178
real linear 178, 181
isomorphic 181
real vector 178
of sequences 185
unitary 209
finite-dimensional 210
vector (see also vector spaces) 7
theory of 9
Spectrum
of a linear transformation 200
simple 202, 203
Sperner, E. 414
Splitting field 416
Square matrix 93
Sturm method 238
Sturm sequence 239
Sturm theorem 238fl

Subfields 271t
Subgroup(s) 388it
cyclic 389
generated by subgroups 401
invariant 394
primary 407
unit 389
Submatrix, Jordan 371
Subspace(s)
linear 195ff, 202
generation of 196
zero 195
Substitution, linear 87
Subtraction 261
Successive elimination of unknowns,
method of 15, 17
Sum(s)
of classes 293, 300
direct 400, 403
of polynomials 304
power 322
Summands of a decomposition 100
Sushkevich, A.K. 414, 415
Sylow, 13
Sylvester, J.J. 13
Symmetric functions 312
Symmetric polynomial in two systems
of unknowns 324
Symmetric polynomials 312ff, 319ff
elementary 313
fundamental theorem of 314, 316,
319
Symmetric rational fractions 321
Symmetric transformations 215f
System(s)
of Cayley numbers 111
of complex numbers 107ft
definition of 110
of homogeneous linear equations 82f
solutions of 83
of integers 107
of linear equations 76
arbitrary, solution of 79
consistent 16
determinate 16
indeterminate 16
general theory of 59ff
inconsistent 16
.0of nonhomogeneous equations 83
orthogonal (of vectors) 206
of quaternions 111 -
of rational numbers 107
of real numbers 107
reduced 86
of solutions, fundamental 84
of vectors
equivalent 67
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linearly dependent 63, 64

linearly independent 63

maximal linearly independent 65,
68 .

Tartaglia, N. 12
Taylor's formula 145
Tensor algebra 9
Term
degree of 303
highest, of a polynomial 311
Theorem(s) (see lemma)
binomial 120
Budan-Fourier 246, 249
Cayley-Hamilton 380, 381
Descartes’ 247, 249, 348
on the existence of a root 290f
on the existence of roots, fundamen-
tal 12
fundamental (of the algebra of com-
plex numbers) 142ff
alternative proof of 337f
fundamental, corollaries to 151
fundamental (on finite Abelian gro-
ups) 406
fundamental (of higher algebra) 143
fundamental, on the similarity of
matrices 367
fundamental, on symmetric polyno-
mials 314, 316, 319
on homomorphisms 398
Kronecker-Capelli 77, 78, 81
Lagrange's 393, 557
Laplace’s 50, 51
multiplication (for determinants)
Newton’s binomial 120
on the number of real roots 244f
principal-axis 219, 220
rank 72, 74
on relatively prime polynomials 137
Sturm’s 238f[p
unique factorization 308
Weierstrass 150, 211
Theory of algebras 13
Topological algebra 11, 13
Topological properties of real and com-
plex numbers 143
Transcendence
of e 349
of 1 259
Transcendental numbers 349, 353, 354
Transcendental over a field 279, 305
Transform of an element 395
Transformation(s)
affine 214

elementary 74, 102
of a matrix 355
identity 189, 195, 214
inverse 199, 279
linear (see linear transformations)
87, 89, 188f
nonsingular 93
operations on 193
singular 93
nonsingular 211
nullity of 197, 198
orthogonal 210ff
of Euclidean space 212
range of values of 197
self-adjoint 215
symmetric 245f
of vector coordinates 186
zero 189, 195, 215
Transpose
of a determinant, taking 38
of a matrix 162
Transpose operation 38
Transposition 34
Trigonometric form (of complex num-
bers) 114

Unimodular A-matrices 362ff
Unique decomposition of a proper ra-
tional fraction 459
example of 160
Unique factorization theorem 308
Unit, imaginary 112
Unit, class 294, 301
Unit element 269
of a group 383, 385
Unit matrix 16, 93, 195, 211
Unit subgroup 389
Unit vectors 64, 183
Unitary space(s) 210
finite-dimensional 210
Unity 269
divisor of 285
primitive nth roots of 125
roots of 124
Universal algebras 11
Unknowns, free 79

Value of a polynomial 377, 381
Van der Waerden, B.L. 415
Vandermonde determinant 49, 329,
336
Vector(s) 178
examples of 60, 81
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multiplication of by a scalar 61
n-dimensional 60
n2-dimensional 60
normalized 207
opposite 61
unit 64, 185
zero 61

Vector space(s) 9, 178
multidimensional 59
rn-dimensional 59, 60, 62
theory of 9

Vectorial angle 113

Vieta (Viete) F. 12

Vieta’s formulas 154, 217, 296, 313

Vinogradov, S.P. 414

Voronoi, G.F. 13

Waerden, van der, B.L. 415
Weierstrass theorem 150
Weight of a term 320, 332
Weyl, H. 415

Zero 109

the number 61
Zero class 294, 300
Zero element 180, 264
Zero matrix 100, 195
Zero multiple 265
Zero power 389
Zero subspace 195
Zero transformation 189, 195, 215
Zero vector 60
Zolotarev, E.I. 13
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