Landis' proof of Harnack inequalities

Alexander Grigor'yan
University of Bielefeld

Petrovskii Conference, Landis Section, December 26, 2021

Harnack inequality in \mathbb{R}^{n}

Let L be an elliptic operator in \mathbb{R}^{n} of one of the forms

$$
\begin{equation*}
L=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
L=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} . \tag{2}
\end{equation*}
$$

We say that L satisfies a uniform Harnack inequality (H) if there exists a constant C such that, for any positive solution u of $L u=0$ in a ball $B_{r}(x)$, we have

$$
\sup _{B_{r / 2}(x)} u \leq C \inf _{B_{r / 2}(x)} u
$$

If $\left\{a_{i j}\right\}$ is uniformly elliptic then the operator (1) satisfies (H) by a theorem of Moser [7], 1961, while (2) satisfies (H) by a theorem of Krylov and Safonov [5], 1980.
E.M.Landis worked on both problems. He developed an alternative approach to the proof of Moser's theorem. Using this approach, he proved (H) for a class of non-divergent operators L of Cordes type [6], 1971. His ideas were used by Krylov and Safonov [5], 1980.

The approach of Landis has been useful for elliptic and parabolic PDEs on Riemannian manifolds and even on singular metric measure spaces of fractal types ([1], [2], [3], etc.).

Weak Harnack inequality

Fix $z \in \mathbb{R}^{n}$ and write $B_{R}=B_{R}(z)$. Let λ be the ellipticity constant of L. Let u be a positive solution of $L u=0$ in some ball $B_{4 R}$.

Denote

$$
E_{a}=\{u \geq a\} \cap B_{R} .
$$

We say that L satisfies the weak Harnack inequality $(w H)$ if for any $\theta>0$ there exists $\delta=\delta(\theta, n, \lambda)>0$ s.t.

$$
\left|E_{a}\right| \geq \theta\left|B_{R}\right| \Rightarrow \inf _{B_{R}} u \geq \delta a
$$

Clearly, $(H) \Rightarrow(w H)$ because if E_{a} is non-empty then by (H)

$$
\inf _{B_{R}} u \geq C^{-1} \sup _{B_{R}} u \geq C^{-1} a
$$

Theorem 1 (E.M.Landis) $(w H) \Rightarrow(H)$
This theorem works in a very general setting of metric measure spaces (see [3]) and uses only the following properties of solutions and the underlying space (the operator L is not used explicitly):
(i) if u is a solution then also $u+$ const is also a solution;
(ii) volume doubling: $\left|B_{2 R}\right| \leq C\left|B_{R}\right|$.

The arguments below follow [4].

Proof of $(w H)$ for L in the divergence form

For simplicity take $L=\Delta$. Let $a=1$. Consider the function $v=\log \frac{1}{u}$ so that $\Delta v=|\nabla v|^{2}$. Multiplying this equation by a cutoff function and integrating by parts, we obtain

$$
\begin{equation*}
\int_{B_{2 R}}|\nabla v|^{2} d \mu \leq C \frac{\left|B_{2 R}\right|}{R^{2}} \tag{3}
\end{equation*}
$$

Consider the set

$$
E=\{u \geq 1\} \cap B_{R}=\{v \leq 0\} \cap B_{R}=\left\{v_{+}=0\right\} \cap B_{R}
$$

By a version of the Poincaré inequality

$$
\begin{equation*}
\int_{B_{2 R}}|\nabla v|^{2} d \mu \geq c \frac{|E|}{R^{2}\left|B_{2 R}\right|} \int_{B_{2 R}} v_{+}^{2} d \mu \tag{4}
\end{equation*}
$$

Since $|E| \geq \theta\left|B_{R}\right|$, combining (3) and (4) yields

$$
f_{B_{2 R}} v_{+}^{2} d \mu \leq \frac{\text { const }}{\theta}
$$

On the other hand, since $\Delta v \geq 0$, Moser's mean value inequality for subsolutions yields

$$
\sup _{B_{R}} v_{+}^{2} \leq C f_{B_{2 R}} v_{+}^{2} d \mu
$$

whence

$$
\sup _{B_{R}} v_{+} \leq \frac{\text { const }}{\theta}
$$

and

$$
\inf _{B_{R}} u \geq \delta(\theta)>0
$$

Preliminaries for $(w H)$ for L in the non-divergence form

Lemma 2 Let u be a positive solution of $L u=0$ in $B_{4 R}$. If $E=\{u \geq a\} \cap B_{R}$ contains a ball $B_{r}(y)$ then

$$
\begin{equation*}
\inf _{B_{R}} u \geq c\left(\frac{r}{R}\right)^{s} a \tag{5}
\end{equation*}
$$

for some $c, s>0$ depending on n and λ.
Proof. Let $a=1$. We use the following barrier function

$$
w(x)=\left(\frac{1}{|x-y|^{s}}-\frac{1}{(3 R)^{s}}\right) r^{s}
$$

It satisfies $\left.w\right|_{\partial B_{r}(y)} \leq 1$ and $\left.w\right|_{\partial B_{4 R}(z)} \leq 0$ If s is big enough then $L w>0$.
Comparing w and u by the maximum principle, we obtain $u \geq w$ in $B_{4 R}(z) \backslash B_{r}(y)$. Since

$$
\inf _{B_{R}(z)} w(x) \geq\left(\frac{1}{(2 R)^{s}}-\frac{1}{(3 R)^{s}}\right) r^{s}=c\left(\frac{r}{R}\right)^{s}
$$

we obtain the same lower bound for u in B_{R} that is (5).

Lemma 3 (Lemma of growth in a thin domain) Let u be a non-negative L-harmonic function in a ball $B_{4 R}$. There exists $\varepsilon=\varepsilon(n, \lambda)>0$ with the following property: if

$$
\left|\{u<a\} \cap B_{4 R}\right| \leq \varepsilon\left|B_{4 R}\right|
$$

then $\inf _{B_{R}} u \geq \frac{1}{2} a$.
Proof. Let $z=0, a=1, G=\{u<1\} \cap B_{4 R}$. Let us solve in $B_{4 R}$ the Dirichlet problem

$$
L v=-1_{G},\left.\quad v\right|_{\partial B_{4 R}}=0
$$

Then $v \geq 0$ and, by the theorem of Alexandrov and Pucci,

$$
\sup _{B_{4 R}} v \leq C R\left\|1_{G}\right\|_{L^{n}}=C R|G|^{1 / n} \leq C R^{2} \varepsilon^{1 / n}
$$

The function $w(x)=1-\frac{|x|^{2}}{(4 R)^{2}}-K \frac{v(x)}{R^{2}} \quad$ satisfies in G the inequality $L w \geq 0$ provided K is large enough.

Since $w \leq 1$ and $\left.w\right|_{\partial B_{4 R}} \leq 0$, it follows that $w \leq u$ in G. Hence, for a small enough ε,

$$
\inf _{B_{R}} u=\inf _{B_{R} \cap G} u \geq \inf _{B_{R} \cap G} w \geq \inf _{B_{R}} w \geq 1-\frac{1}{16}-K C \varepsilon^{1 / n}>\frac{1}{2}
$$

Lemma 4 Let u be a non-negative L-harmonic function in a ball $B_{4 R}$. If

$$
\left|\{u<a\} \cap B_{R}\right| \leq \varepsilon\left|B_{R}\right|
$$

then $\inf _{B_{R}} u \geq \gamma a$, where $\gamma=\gamma(n, \lambda)>0$.
Proof. Applying Lemma 3 to the ball B_{R} instead of $B_{4 R}$, we obtain that

$$
\inf _{B_{R / 4}} u \geq \frac{a}{2} .
$$

Hence, the set $\left\{u \geq \frac{a}{2}\right\} \cap B_{R}$ contains the ball $B_{R / 4}$. By Lemma 2, we obtain

$$
\inf _{B_{R}} u \geq c\left(\frac{R / 4}{R}\right)^{s} a=c 4^{-s} a
$$

which was to be proved.

Proof of $(w H)$ for L in the non-divergence form

Let u be a positive solution to $L u=0$ in a ball $B_{4 R}$. Assuming that the set

$$
E=\{u \geq 1\} \cap B_{R}
$$

satisfies the condition $|E| \geq \theta\left|B_{R}\right|$, we need to prove that $\inf _{B_{R}} u \geq \delta$ for some $\delta>0$.
Consider for any non-negative integer k the set

$$
E_{k}=\left\{u \geq \gamma^{k}\right\} \cap B_{R}
$$

where $\gamma \in(0,1)$ is the constant from Lemma 4 .

Claim. There exist $\beta>0$ and a positive integer l such that for any $k \geq 0$ the following dichotomy holds:
(i) either $\left|E_{k+1}\right| \geq(1+\beta)\left|E_{k}\right|$
(ii) or $E_{k+l}=B_{R}$

Let (i) hold for $k=0, \ldots, N-1$ and does not hold for $k=N$. Then we have

$$
\left|E_{N}\right| \geq(1+\beta)\left|E_{N-1}\right| \geq \ldots \geq(1+\beta)^{N}\left|E_{0}\right|
$$

Since $\left|E_{N}\right| \leq\left|B_{R}\right|$ and $\left|E_{0}\right|=|E| \geq \theta\left|B_{R}\right|$, it follows that $\theta(1+\beta)^{N} \leq 1$ whence

$$
N \leq \frac{\ln \frac{1}{\theta}}{\ln (1+\beta)}
$$

On the other hand, applying (ii) for $k=N$, we obtain $E_{N+l}=B_{R}$ that is,

$$
\inf _{B_{R}} u=\inf _{E_{N+l}} u \geq \gamma^{N+l} \geq \gamma^{\frac{\ln \frac{1}{\theta}}{\ln (1+\beta)}+l}=: \delta .
$$

It suffices to prove Claim for the special case $k=0$, that is,
(i) either $\left|E_{1}\right| \geq(1+\beta)\left|E_{0}\right|$
(ii) or $E_{l}=B_{R}$
while for a general case apply the special case to u / γ^{k}.

Choose $0<r<R$ so that the set

$$
F:=E \cap B_{R-r}=\{u \geq 1\} \cap B_{R-r}
$$

has measure $|F|=\frac{1}{2}|E|$, and consider two cases.

Case 1. Assume that there exists $x \in F$ such that

$$
\left|\{u<1\} \cap B_{r}(x)\right| \leq \varepsilon\left|B_{r}\right|
$$

where ε is the constant from Lemma 3. By Lemma 3

$$
\inf _{B_{r / 4}(x)} u \geq \frac{1}{2}
$$

Hence, in B_{R} there is a ball $B_{r / 4}(x)$ where $u \geq \frac{1}{2}$.
By Lemma 2, we conclude that

$$
\inf _{B_{R}} u \geq c\left(\frac{r / 4}{R}\right)^{s} \frac{1}{2}
$$

By the choice of r we have $\left|B_{R}\right|-\left|B_{R-r}\right|=\left|B_{R} \backslash B_{R-r}\right| \geq|E \backslash F|=\frac{1}{2}|E| \geq \frac{1}{2} \theta\left|B_{R}\right|$ which implies after division by $\left|B_{R}\right|=c R^{n}$ that

$$
1-\left(\frac{R-r}{R}\right)^{n} \geq \frac{1}{2} \theta
$$

It follows that $\frac{r}{R} \geq 1-\left(1-\frac{1}{2} \theta\right)^{1 / n}$.and, hence,

$$
\inf _{B_{R}} u \geq \frac{c}{2} 4^{-s}\left(1-\left(1-\frac{1}{2} \theta\right)^{1 / n}\right)^{s}=: \delta>0
$$

Therefore, $E_{l}=B_{R}$ for any l such that $\gamma^{l} \leq \delta$, that is, the alternative (ii) takes places.

Case 2 (main). Assume that, for any $x \in F$, we have

$$
\left|\{u<1\} \cap B_{r}(x)\right|>\varepsilon\left|B_{r}\right|,
$$

For any $x \in F$ and $\rho>0$ consider the quotient:

$$
Q(x, \rho)=\frac{\left|\{u<1\} \cap B_{\rho}(x)\right|}{\left|B_{\rho}\right|}
$$

As $\rho \rightarrow 0, Q(x, \rho) \rightarrow 0$ for almost all $x \in F$ because in F we have $u \geq 1$. On the other hand, $Q(x, r)>\varepsilon$ for any $x \in F$. Hence, for almost all $x \in F$, there exists $\rho(x) \in(0, r)$ such that $Q(x, \rho(x))=\varepsilon$, that is,

$$
\begin{equation*}
\left|\{u<1\} \cap B_{\rho(x)}(x)\right|=\varepsilon\left|B_{\rho(x)}\right| . \tag{6}
\end{equation*}
$$

There is a compact set $K \subset F$ such that $|K| \geq \frac{1}{2}|F|=\frac{1}{4}|E|$ and such that $\rho(x)$ is defined for all $x \in K$. By a standard ball covering argument, there exists in K a finite sequence $\left\{x_{i}\right\}$ such that the balls $\left\{B_{\rho_{i}}\left(x_{i}\right)\right\}$ are disjoint while $\left\{B_{3 \rho_{i}}\left(x_{i}\right)\right\}$ cover K, where $\rho_{i}=\rho\left(x_{i}\right)$. Since $x_{i} \in B_{R-r}$ and $\rho_{i}<r$, it follows that $B_{4 \rho_{i}}\left(x_{i}\right) \subset B_{4 R}$. Using (6) and Lemma 4, we obtain that

$$
\inf _{B_{\rho_{i}}\left(x_{i}\right)} u \geq \gamma
$$

It follows that
$\left(E_{1} \backslash E\right) \cap B_{\rho_{i}\left(x_{i}\right)}=\{\gamma \leq u<1\} \cap B_{\rho_{i}\left(x_{i}\right)}=\{u<1\} \cap B_{\rho_{i}}\left(x_{i}\right)$ whence by (6)

$$
\left|\left(E_{1} \backslash E\right) \cap B_{\rho_{i}\left(x_{i}\right)}\right|=\varepsilon\left|B_{\rho_{i}}\left(x_{i}\right)\right|
$$

Hence, $\quad\left|E_{1} \backslash E\right| \geq \sum_{i} \varepsilon\left|B_{\rho_{i}}\left(x_{i}\right)\right|=3^{-n} \sum_{i} \varepsilon\left|B_{3 \rho_{i}}\left(x_{i}\right)\right|$

$$
\geq 3^{-n} \varepsilon|K| \geq \beta|E| \quad \text { where } \beta=\frac{1}{4} 3^{-n} \varepsilon
$$

and $\quad\left|E_{1}\right| \geq(1+\beta)|E|$ so that we have Case (i).

Preliminaries for the proof of $(w H) \Rightarrow(H)$

Lemma 5 (Reiteration of the weak Harnack inequality)

Let u be a non-negative L-harmonic function in some ball $B_{R}(x)$. Consider a ball $B_{r}(y)$ where $y \in B_{\frac{1}{9} R}(x)$ and $r \leq \frac{2}{9} R$.
If for some $\theta>0$

$$
\left|\{u \geq 1\} \cap B_{r}(y)\right| \geq \theta\left|B_{r}\right|
$$

then

$$
u(x) \geq \delta\left(\frac{r}{R}\right)^{s}
$$

where $\delta=\delta(\theta, n, \lambda)>0$ and $s=s(n, \lambda)>0$.

Proof. Note that $B_{4 r}(y) \subset B_{R}(x)$ because $|x-y|+4 r<\frac{1}{9} R+\frac{8}{9} R=R$.
Applying the weak Harnack inequality in $B_{r}(y)$, we obtain that

$$
\inf _{B_{r}(y)} u \geq \delta_{1}:=\delta(\theta, n, \lambda)
$$

It follows that
$\left|\left\{u \geq \delta_{1}\right\} \cap B_{2 r}(y)\right| \geq\left|B_{r}\right|=2^{-n}\left|B_{2 r}\right|$
If $B_{8 r}(y) \subset B_{R}(x)$ then applying the weak Harnack inequality in $B_{2 r}(y)$ we obtain that
$\inf _{B_{2 r}(y)} u \geq \delta_{1} \delta\left(2^{-n}, n, \lambda\right)=\varepsilon \delta_{1}$
where $\varepsilon=\delta\left(2^{-n}, n, \lambda\right)$.

Continuing by induction we obtain the following statement for any positive integer k :

$$
\begin{equation*}
\text { if } B_{2^{k+2_{r}}}(y) \subset B_{R}(x) \text { then } \quad \inf _{B_{2_{r}}} u \geq \varepsilon^{k} \delta_{1} . \tag{7}
\end{equation*}
$$

Let k be the maximal integer such that

$$
B_{2^{k+2} r}(y) \subset B_{R}(x) .
$$

Then

$$
2^{k+2} r+|x-y| \leq R
$$

while

$$
2^{k+3} r+|x-y|>R
$$

Since $R>9|x-y|$, it follows that

$$
2^{k} r>\frac{1}{8}(R-|x-y|) \geq|x-y|
$$

and $x \in B_{2^{k} r}(y)$. By (7) we have

$$
u(x) \geq \varepsilon^{k} \delta_{1} .
$$

On the other hand, $2^{k} r<R$ whence $k \leq \log _{2} \frac{R}{r}$. It follows that

$$
u(x) \geq \varepsilon^{\log _{2} \frac{R}{r}} \delta_{1}=\delta_{1}\left(\frac{R}{r}\right)^{\log _{2} \varepsilon}=\delta_{1}\left(\frac{r}{R}\right)^{s}
$$

Lemma 6 (Alternative form of the weak Harnack inequality)
Let u be an L-harmonic function in some ball $B_{4 R}(x)$ If for some $\theta>0$

$$
\left|\{u \leq 0\} \cap B_{R}(x)\right| \geq \theta\left|B_{R}\right|,
$$

then

$$
\sup _{B_{4 R}(x)} u \geq(1+\delta) u(x)
$$

where $\delta=\delta(\theta, n, \lambda)>0$ is the same as in $(w H)$.

Proof. If $u(x) \leq 0$ then there is nothing to prove. Assume that $u(x)>0$. By rescaling, we can assume also that

$$
\sup _{B_{4 R}(x)} u=1
$$

Consider the function $v=1-u$ that is a non-negative L-harmonic function in $B_{4 R}(x)$. Observe also, that

$$
u \leq 0 \Leftrightarrow v \geq 1
$$

Hence, we obtain that

$$
\left|\{v \geq 1\} \cap B_{R}(x)\right| \geq \theta|B R| .
$$

By the weak Harnack inequality, we conclude that

$$
\inf _{B_{R}(x)} v \geq \delta
$$

where $\delta=\delta(n, \lambda, \theta)>0$. It follows that $v(x) \geq \delta$ and, hence

$$
u(x) \leq 1-\delta<\frac{1}{1+\delta}=\frac{1}{1+\delta} \sup _{B_{4 R}} u
$$

which was to be proved.
Lemma 7 (Lemma of growth in a thin domain) There exists $\varepsilon=\varepsilon(n, \lambda)>0$ such that the following is true: if u is an L-harmonic function in a ball $B_{R}(x)$ and if

$$
\left|\{u>0\} \cap B_{R}(x)\right| \leq \varepsilon\left|B_{R}\right|
$$

then

$$
\sup _{B_{R}(x)} u \geq 4 u(x)
$$

Proof. Fix $\varepsilon>0$ that will be specified later.
Consider any ball $B_{r}(y) \subset B_{R}(x)$
of radius $r=(2 \varepsilon)^{\frac{1}{n}} R$ so that $\left|B_{r}\right|=2 \varepsilon\left|B_{R}\right|$.
Then

$$
\left|\{u>0\} \cap B_{r}(y)\right| \leq \varepsilon\left|B_{r}\right| \frac{\left|B_{R}\right|}{\left|B_{r}\right|} \leq \varepsilon \frac{1}{2 \varepsilon}=\frac{1}{2}
$$

whence

$$
\left|\{u \leq 0\} \cap B_{r}(y)\right| \geq \frac{1}{2}\left|B_{r}\right| .
$$

If $B_{4 r}(y) \subset B_{R}(x)$ then by Lemma 6

$$
\sup _{B_{4 r}(y)} u \geq(1+\delta) u(y)
$$

where $\delta=\delta\left(n, \lambda, \frac{1}{2}\right)>0$. By slightly reducing δ, we obtain the following claim.

Claim. If $B_{4 r}(y) \subset B_{R}(x)$ and $r=(2 \varepsilon)^{1 / n} R$ then there exists $y^{\prime} \in B_{4 r}(y)$ such that

$$
u\left(y^{\prime}\right) \geq(1+\delta) u(y)
$$

where $\delta>0$ depends on n, λ.
Applying this Claim with $y=x$ and with $(2 \varepsilon)^{1 / n}<\frac{1}{4}$ so that $r<R / 4$ and, hence, $B_{4 r}(x) \subset B_{R}(x)$, we obtain a point $x_{1} \in B_{4 r}(x)$ such that

$$
u\left(x_{1}\right) \geq(1+\delta) u(x) .
$$

If $B_{4 r}\left(x_{1}\right) \subset B_{R}(x)$ then applying Claim again we obtain a point $x_{2} \in B_{4 r}\left(x_{1}\right)$ such that

$$
u\left(x_{2}\right) \geq(1+\delta) u\left(x_{1}\right)
$$

We continue construction of the sequence $\left\{x_{k}\right\}$ by induction: as long as $B_{4 r}\left(x_{k}\right) \subset B_{R}(x)$, we obtain $x_{k+1} \in B_{4 r}\left(x_{k}\right)$ such that

$$
u\left(x_{k+1}\right) \geq(1+\delta) u\left(x_{k}\right)
$$

We stop construction if, for some $k, B_{4 r}\left(x_{k}\right)$ is not contained in $B_{R}(x)$. Hence, if x_{k} exists then $x_{k} \in B_{R}(x)$ and

$$
\begin{equation*}
u\left(x_{k}\right) \geq(1+\delta)^{k} u(x) \tag{8}
\end{equation*}
$$

Besides, we have

$$
\left|x_{l+1}-x_{l}\right|<4 r \text { for all } l \leq k-1
$$

which implies that

$$
\left|x_{k}-x\right|<4 k r .
$$

It is easy to see that if $4 k r<R$ then x_{k} exists. Choose the maximal integer k with $4 k r<R$. Then we have

$$
4(k+1) r \geq R
$$

and, hence,

$$
k \geq \frac{R}{4 r}-1=\frac{1}{4(2 \varepsilon)^{1 / n}}-1
$$

It follows from (8) that

$$
u\left(x_{k}\right) \geq(1+\delta)^{\frac{1}{4(2 \varepsilon)^{1 / n}-1}} u(x)
$$

Finally, choosing ε small enough, we obtain

$$
\sup _{B_{R}(x)} u \geq u\left(x_{k}\right) \geq 4 u(x) .
$$

Corollary 8 Let u be an L-harmonic function in a ball $B_{R}(x)$. If for some $a \in \mathbb{R}$

$$
\left|\{u>a\} \cap B_{R}(x)\right| \leq \varepsilon\left|B_{R}\right|,
$$

where $\varepsilon=\varepsilon(n, \lambda)$ is as above, then

$$
\sup _{B_{R}(x)} u \geq a+4(u(x)-a) .
$$

Proof. Indeed, just apply Lemma 7 to the L-harmonic function $v=u-a$.
Proof of $(w H) \Rightarrow(H)$
It suffices to prove the following: if u is a non-negative L-harmonic function on a ball $B_{K R}(x)$ (where $K=18$) and

$$
\begin{equation*}
\sup _{B_{R}(x)} u=2 \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
u(x) \geq c=c(n, \lambda)>0 \tag{10}
\end{equation*}
$$

We construct a sequence $\left\{x_{k}\right\}_{k \geq 1}$ of points such that

$$
\begin{equation*}
x_{k} \in B_{2 R}(x) \text { and } u\left(x_{k}\right)=2^{k} . \tag{11}
\end{equation*}
$$

A point x_{1} with $u\left(x_{1}\right)=2$ exists in $\bar{B}_{R}(x)$ by (9). Assume that x_{k} satisfying (11) is already constructed. Then, for small enough $r>0$, we have

$$
\sup _{B_{r}\left(x_{k}\right)} u \leq 2^{k+1}
$$

Set

$$
r_{k}=\sup \left\{r \in(0, R]: \sup _{B_{r}\left(x_{k}\right)} u \leq 2^{k+1}\right\}
$$

If $r_{k}=R$ then we stop the process without constructing x_{k+1}. If $r<R$ then we necessarily have

$$
\sup _{B_{r}\left(x_{k}\right)} u=2^{k+1}
$$

Therefore, there exists $x_{k+1} \in \bar{B}_{r_{k}}\left(x_{k}\right)$ such that $u\left(x_{k+1}\right)=2^{k+1}$. If $x_{k+1} \in B_{2 R}(x)$ then we keep x_{k+1} and go to the next step. If $x_{k+1} \notin B_{2 R}(x)$ then we discard x_{k+1} and stop the process.

Hence, we obtain a sequence of balls $\left\{B_{r_{k}}\left(x_{k}\right)\right\}$ such that

$$
\begin{equation*}
r_{k} \leq R, \quad x_{k} \in B_{2 R}(x), \quad u\left(x_{k}\right)=2^{k}, \quad \sup _{B_{r_{k}}\left(x_{k}\right)} u \leq 2^{k+1} \tag{12}
\end{equation*}
$$

Moreover, we have also $\left|x_{k+1}-x_{k}\right| \leq r_{k}$.
The sequence $\left\{x_{k}\right\}$ cannot be infinite as $u\left(x_{k}\right) \rightarrow \infty$, while u is bounded in $\bar{B}_{2 R}(x)$.

Let N be the largest value of k in this sequence. Then:
either $r_{N}=R \quad$ or $r_{N}<R$ and $x_{N+1} \notin B_{2 R}(x)$,
where x_{N+1} is the discarded point.

In the both cases we clearly have

$$
\begin{equation*}
r_{1}+\ldots+r_{N} \geq R \tag{13}
\end{equation*}
$$

In any ball $B_{r_{k}}\left(x_{k}\right)$ we have by (12)

$$
\sup _{B_{r_{k}}\left(x_{k}\right)} u \leq 2^{k+1}<2^{k-1}+4\left(2^{k}-2^{k-1}\right)=2^{k-1}+4\left(u\left(x_{k}\right)-2^{k-1}\right)
$$

By Corollary 8 with $a=2^{k-1}$ we obtain

$$
B_{K R}(x)
$$

$$
\left|\left\{u \geq 2^{k-1}\right\} \cap B_{r_{k}}\left(x_{k}\right)\right| \geq \varepsilon\left|B_{r_{k}}\right|
$$

We apply Lemma 5 with $B_{r}(y)=B_{r_{k}}\left(x_{k}\right)$.
Since u is non-negative and L-harmonic in $B_{K R}(x)$,
 the following conditions need to be satisfied:

$$
r_{k} \leq \frac{2}{9} K R \quad \text { and } \quad\left|x_{k}-x\right| \leq \frac{1}{9} K R
$$

Since $r_{k} \leq R$ and $\left|x_{k}-x\right| \leq 2 R$, the both conditions are satisfied if $K=18$.

By Lemma 5, we obtain that

$$
\begin{equation*}
u(x) \geq\left(\frac{r_{k}}{R}\right)^{s} \delta 2^{k-1} \tag{14}
\end{equation*}
$$

where $\delta=\delta(\varepsilon, n, \lambda)>0$ and $s=s(n, \lambda)>0$.
The question remains how to estimate

$$
\left(\frac{r_{k}}{R}\right)^{s} 2^{k-1}
$$

from below, given the fact that we do not know much about the sequence $\left\{r_{k}\right\}$: the only available information is (13). The following trick was invented by Landis.

Since $r_{1}+r_{2}+\ldots+r_{N} \geq R$ and

$$
\sum_{k=1}^{\infty} \frac{1}{2 k^{2}}=\frac{\pi^{2}}{12}<1
$$

there exists $k \leq N$ such that

$$
r_{k} \geq \frac{R}{2 k^{2}}
$$

For this k we obtain from (14) that

$$
u(x) \geq \delta\left(\frac{r_{k}}{R}\right)^{s} 2^{k-1} \geq \delta \frac{2^{k-1}}{\left(2 k^{2}\right)^{s}} .
$$

Finally, since

$$
m:=\inf _{k \geq 1} \frac{2^{k-1}}{\left(2 k^{2}\right)^{s}}>0
$$

we conclude that

$$
u(x) \geq \delta m=: c,
$$

which finishes the proof of (10).

References

[1] Grigor'yan A., The heat equation on non-compact Riemannian manifolds (in Russian), Matem. Sbornik 182 (1991), 55-87. English translation: Math. USSR Sb. 72 (1992), 47-77.
[2] Grigor'yan A., Hu Eryan, Hu Jiaxin, Two-sided estimates of heat kernels of jump type Dirichlet forms, Adv. Math. 330 (2018), 433-515.
[3] Grigor'yan A., Hu Jiaxin, Lau K. -S., Generalized capacity, Harnack inequality and heat kernels on metric spaces, J. Math. Soc. Japan 67 (2015), 1485-1549.
[4] Kondratiev V. A, Landis E. M., Qualitative theory of linear second-order partial differential equations (in Russian), Itogi Nauki i Techniki, serija Sovremennye Problemy Matematiki, Fundamental'nye Napravlenija 32, VINITI, Moscow, 1988, 99-215. English translation: Partial Differential Equations III, Encyclopedia of Math. Sci. 32, Springer, 1990.
[5] Krylov N. V., Safonov M. V. A certain property of solutions of parabolic equations with measurable coefficients (in Russian), Izv. Akad. Nauk SSSR 44 (1980), 81-98. English translation: Math. USSR Izvestija 16 (1981), 151-164.
[6] Landis E. M., The second order equations of elliptic and parabolic types (in Russian), Nauka, Moscow, 1971. English translation: Transl. of Mathematical Monographs 171, AMS publications, 1999.
[7] Moser J. On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591.

