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Harnack inequality in Rn

Let L be an elliptic operator in Rn of one of the forms

L =
n∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj

)

(1)

or

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj

. (2)

We say that L satisfies a uniform Harnack inequality (H) if there exists a constant C such
that, for any positive solution u of Lu = 0 in a ball Br(x), we have

sup
Br/2(x)

u ≤ C inf
Br/2(x)

u.

If {aij} is uniformly elliptic then the operator (1) satisfies (H) by a theorem of Moser [7],
1961, while (2) satisfies (H) by a theorem of Krylov and Safonov [5], 1980.

E.M.Landis worked on both problems. He developed an alternative approach to the
proof of Moser’s theorem. Using this approach, he proved (H) for a class of non-divergent
operators L of Cordes type [6], 1971. His ideas were used by Krylov and Safonov [5], 1980.
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The approach of Landis has been useful for elliptic and parabolic PDEs on Riemannian
manifolds and even on singular metric measure spaces of fractal types ([1], [2], [3], etc.).

Weak Harnack inequality

Fix z ∈ Rn and write BR = BR (z) . Let λ be the ellipticity constant of L. Let u be a positive
solution of Lu = 0 in some ball B4R.

Denote
Ea = {u ≥ a} ∩ BR.

We say that L satisfies the weak Harnack inequality (wH)
if for any θ > 0 there exists δ = δ (θ, n, λ) > 0 s.t.

|Ea| ≥ θ |BR| ⇒ inf
BR

u ≥ δa

Clearly, (H) ⇒ (wH) because if Ea is non-empty then by (H)

inf
BR

u ≥ C−1 sup
BR

u ≥ C−1a.

2



Theorem 1 (E.M.Landis) (wH) ⇒ (H)

This theorem works in a very general setting of metric measure spaces (see [3]) and uses only
the following properties of solutions and the underlying space (the operator L is not used
explicitly):

(i) if u is a solution then also u + const is also a solution;
(ii) volume doubling: |B2R| ≤ C |BR| .

The arguments below follow [4].

Proof of (wH) for L in the divergence form

For simplicity take L = Δ. Let a = 1. Consider the function v = log 1
u

so that Δv = |∇v|2 .
Multiplying this equation by a cutoff function and integrating by parts, we obtain

∫

B2R

|∇v|2 dμ ≤ C
|B2R|
R2

. (3)

Consider the set

E = {u ≥ 1} ∩ BR = {v ≤ 0} ∩ BR = {v+ = 0} ∩ BR.

3



By a version of the Poincaré inequality

∫

B2R

|∇v|2 dμ ≥ c
|E|

R2 |B2R|

∫

B2R

v2
+dμ. (4)

Since |E| ≥ θ |BR|, combining (3) and (4) yields

−
∫

B2R

v2
+dμ ≤

const

θ
.

On the other hand, since Δv ≥ 0, Moser’s mean value inequality for subsolutions yields

sup
BR

v2
+ ≤ C−

∫

B2R

v2
+dμ

whence

sup
BR

v+ ≤
const

θ

and
inf
BR

u ≥ δ (θ) > 0.
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Preliminaries for (wH) for L in the non-divergence form

Lemma 2 Let u be a positive solution of Lu = 0 in B4R. If E = {u ≥ a} ∩ BR contains a
ball Br (y) then

inf
BR

u ≥ c
( r

R

)s

a (5)

for some c, s > 0 depending on n and λ.

Proof. Let a = 1. We use the following barrier function

w(x) =

(
1

|x − y|s
−

1

(3R)s

)

rs

It satisfies w|∂Br(y) ≤ 1 and w|∂B4R(z) ≤ 0
If s is big enough then Lw > 0.
Comparing w and u by the maximum principle,
we obtain u ≥ w in B4R (z) \ Br (y). Since

infBR(z) w(x) ≥

(
1

(2R)s −
1

(3R)s

)

rs = c
( r

R

)s

we obtain the same lower bound for u in BR that is (5).
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Lemma 3 (Lemma of growth in a thin domain) Let u be a non-negative L-harmonic function
in a ball B4R. There exists ε = ε (n, λ) > 0 with the following property: if

|{u < a} ∩ B4R| ≤ ε |B4R|

then inf
BR

u ≥ 1
2
a.

Proof. Let z = 0, a = 1, G = {u < 1} ∩ B4R. Let us solve in B4R the Dirichlet problem

Lv = −1G, v|∂B4R
= 0.

Then v ≥ 0 and, by the theorem of Alexandrov and Pucci,

sup
B4R

v ≤ CR ‖1G‖Ln = CR |G|1/n ≤ CR2ε1/n.

The function w(x) = 1 −
|x|2

(4R)2 − K
v(x)

R2
satisfies

in G the inequality Lw ≥ 0 provided K is large enough.
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Since w ≤ 1 and w|∂B4R
≤ 0, it follows that w ≤ u in G. Hence, for a small enough ε,

inf
BR

u = inf
BR∩G

u ≥ inf
BR∩G

w ≥ inf
BR

w ≥ 1 −
1

16
− KCε1/n >

1

2
.

Lemma 4 Let u be a non-negative L-harmonic function in a ball B4R. If

|{u < a} ∩ BR| ≤ ε |BR|

then inf
BR

u ≥ γa, where γ = γ (n, λ) > 0.

Proof. Applying Lemma 3 to the ball BR instead of B4R, we obtain that

inf
BR/4

u ≥ a
2
.

Hence, the set
{
u ≥ a

2

}
∩ BR contains the ball BR/4.

By Lemma 2, we obtain

inf
BR

u ≥ c

(
R/4

R

)s

a = c4−sa,

which was to be proved.
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Proof of (wH) for L in the non-divergence form

Let u be a positive solution to Lu = 0 in a ball B4R. Assuming that the set

E = {u ≥ 1} ∩ BR

satisfies the condition |E| ≥ θ |BR| , we need to prove that infBR
u ≥ δ for some δ > 0.

Consider for any non-negative integer k the set

Ek =
{
u ≥ γk

}
∩ BR,

where γ ∈ (0, 1) is the constant from Lemma 4.

Claim. There exist β > 0 and a positive integer l
such that for any k ≥ 0 the following dichotomy holds:
(i) either |Ek+1| ≥ (1 + β) |Ek|
(ii) or Ek+l = BR

Let (i) hold for k = 0, ..., N − 1 and does not hold for k = N.
Then we have

|EN | ≥ (1 + β) |EN−1| ≥ ... ≥ (1 + β)N |E0| .
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Since |EN | ≤ |BR| and |E0| = |E| ≥ θ |BR|, it follows that θ (1 + β)N ≤ 1 whence

N ≤
ln 1

θ

ln (1 + β)
.

On the other hand, applying (ii) for k = N , we obtain EN+l = BR that is,

inf
BR

u = inf
EN+l

u ≥ γN+l ≥ γ
ln 1

θ
ln(1+β)

+l =: δ.

It suffices to prove Claim for the special case k = 0, that is,
(i) either |E1| ≥ (1 + β) |E0| (ii) or El = BR

while for a general case apply the special case to u/γk.

Choose 0 < r < R so that the set

F := E ∩ BR−r = {u ≥ 1} ∩ BR−r

has measure |F | =
1

2
|E| , and consider two cases.
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Case 1. Assume that there exists x ∈ F such that

|{u < 1} ∩ Br(x)| ≤ ε |Br| ,

where ε is the constant from Lemma 3. By Lemma 3

inf
Br/4(x)

u ≥
1

2

Hence, in BR there is a ball Br/4(x) where u ≥
1

2
.

By Lemma 2, we conclude that

inf
BR

u ≥ c

(
r/4

R

)s
1

2
.

By the choice of r we have |BR| − |BR−r| = |BR \ BR−r| ≥ |E \ F | = 1
2
|E| ≥ 1

2
θ |BR|

which implies after division by |BR| = cRn that

1 −

(
R − r

R

)n

≥
1

2
θ.
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It follows that
r

R
≥ 1 −

(
1 − 1

2
θ
)1/n

.and, hence,

inf
BR

u ≥
c

2
4−s

(

1 −

(

1 −
1

2
θ

)1/n
)s

=: δ > 0.

Therefore, El = BR for any l such that γl ≤ δ, that is, the alternative (ii) takes places.

Case 2 (main). Assume that, for any x ∈ F , we have

|{u < 1} ∩ Br(x)| > ε |Br| ,

For any x ∈ F and ρ > 0 consider the quotient:

Q (x, ρ) =
|{u < 1} ∩ Bρ(x)|

|Bρ|

As ρ → 0, Q (x, ρ) → 0 for almost all x ∈ F because in F we have u ≥ 1. On the other
hand, Q (x, r) > ε for any x ∈ F . Hence, for almost all x ∈ F , there exists ρ(x) ∈ (0, r) such
that Q (x, ρ(x)) = ε, that is,

∣
∣{u < 1} ∩ Bρ(x)(x)

∣
∣ = ε

∣
∣Bρ(x)

∣
∣ . (6)
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There is a compact set K ⊂ F such that |K| ≥ 1
2
|F | = 1

4
|E|

and such that ρ(x) is defined for all x ∈ K.
By a standard ball covering argument, there exists in K
a finite sequence {xi} such that the balls

{
Bρi

(xi)
}

are
disjoint while

{
B3ρi

(xi)
}

cover K, where ρi = ρ (xi) .
Since xi ∈ BR−r and ρi < r, it follows that B4ρi

(xi) ⊂ B4R.
Using (6) and Lemma 4, we obtain that

inf
Bρi (xi)

u ≥ γ.

It follows that
(E1 \ E) ∩ Bρi(xi) = {γ ≤ u < 1} ∩ Bρi(xi) = {u < 1} ∩ Bρi

(xi)
whence by (6) ∣

∣(E1 \ E) ∩ Bρi(xi)

∣
∣ = ε

∣
∣Bρi

(xi)
∣
∣ .

Hence, |E1 \ E| ≥
∑

i

ε
∣
∣Bρi

(xi)
∣
∣ = 3−n

∑

i

ε
∣
∣B3ρi

(xi)
∣
∣

≥ 3−nε |K| ≥ β |E| where β = 1
4
3−nε,

and |E1| ≥ (1 + β) |E| so that we have Case (i) .
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Preliminaries for the proof of (wH) ⇒ (H)

Lemma 5 (Reiteration of the weak Harnack inequality)

Let u be a non-negative L-harmonic function
in some ball BR(x). Consider a ball Br (y)
where y ∈ B 1

9
R(x) and r ≤ 2

9
R.

If for some θ > 0

|{u ≥ 1} ∩ Br (y)| ≥ θ |Br|

then

u(x) ≥ δ
( r

R

)s

where δ = δ (θ, n, λ) > 0 and s = s (n, λ) > 0.

13



Proof. Note that B4r (y) ⊂ BR(x) because |x − y| + 4r < 1
9
R + 8

9
R = R.

Applying the weak Harnack inequality in Br (y), we obtain that

inf
Br(y)

u ≥ δ1 := δ (θ, n, λ) .

It follows that
|{u ≥ δ1} ∩ B2r (y)| ≥ |Br| = 2−n |B2r|

If B8r (y) ⊂ BR(x) then applying
the weak Harnack inequality in B2r (y)
we obtain that

infB2r(y) u ≥ δ1δ (2−n, n, λ) = εδ1

where ε = δ (2−n, n, λ) .

Continuing by induction we obtain the following statement for any positive integer k:

if B2k+2r (y) ⊂ BR(x) then inf
B

2kr

u ≥ εkδ1. (7)
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Let k be the maximal integer such that
B2k+2r (y) ⊂ BR(x).

Then
2k+2r + |x − y| ≤ R

while
2k+3r + |x − y| > R.

Since R > 9 |x − y|, it follows that

2kr > 1
8
(R − |x − y|) ≥ |x − y|

and x ∈ B2kr (y) . By (7) we have

u(x) ≥ εkδ1.

On the other hand, 2kr < R whence k ≤ log2
R
r
. It follows that

u(x) ≥ εlog2
R
r δ1 = δ1

(
R

r

)log2 ε

= δ1

( r

R

)s

.
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Lemma 6 (Alternative form of the weak Harnack inequality)

Let u be an L-harmonic function in some ball B4R(x)
If for some θ > 0

|{u ≤ 0} ∩ BR(x)| ≥ θ |BR| ,
then

sup
B4R(x)

u ≥ (1 + δ) u(x)

where δ = δ (θ, n, λ) > 0 is the same as in (wH) .

.

Proof. If u(x) ≤ 0 then there is nothing to prove. Assume that u(x) > 0. By rescaling, we
can assume also that

sup
B4R(x)

u = 1.

Consider the function v = 1 − u that is a non-negative L-harmonic function in B4R(x).
Observe also, that

u ≤ 0 ⇔ v ≥ 1.
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Hence, we obtain that
|{v ≥ 1} ∩ BR(x)| ≥ θ |BR| .

By the weak Harnack inequality, we conclude that

inf
BR(x)

v ≥ δ,

where δ = δ (n, λ, θ) > 0. It follows that v(x) ≥ δ and, hence

u(x) ≤ 1 − δ <
1

1 + δ
=

1

1 + δ
sup
B4R

u,

which was to be proved.

Lemma 7 (Lemma of growth in a thin domain) There exists ε = ε (n, λ) > 0 such that the
following is true: if u is an L-harmonic function in a ball BR(x) and if

|{u > 0} ∩ BR(x)| ≤ ε |BR|

then
sup

BR(x)

u ≥ 4u(x).
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Proof. Fix ε > 0 that will be specified later.

Consider any ball Br (y) ⊂ BR(x)

of radius r = (2ε)
1
n R so that |Br| = 2ε |BR| .

Then

|{u > 0} ∩ Br (y)| ≤ ε |Br|
|BR|
|Br|

≤ ε 1
2ε

= 1
2

whence
|{u ≤ 0} ∩ Br (y)| ≥ 1

2
|Br| .

If B4r (y) ⊂ BR(x) then by Lemma 6

supB4r(y) u ≥ (1 + δ) u (y)

where δ = δ
(
n, λ, 1

2

)
> 0. By slightly reducing δ, we obtain the following claim.
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Claim. If B4r (y) ⊂ BR(x) and r = (2ε)1/n R then there exists y′ ∈ B4r (y) such that

u (y′) ≥ (1 + δ) u (y) ,

where δ > 0 depends on n, λ.

Applying this Claim with y = x and with (2ε)1/n < 1
4

so that r < R/4 and, hence,
B4r(x) ⊂ BR(x), we obtain a point x1 ∈ B4r(x) such that

u (x1) ≥ (1 + δ) u(x).

If B4r (x1) ⊂ BR(x) then applying Claim again
we obtain a point x2 ∈ B4r (x1) such that

u (x2) ≥ (1 + δ) u (x1) .

We continue construction of the sequence {xk}
by induction: as long as B4r (xk) ⊂ BR(x),
we obtain xk+1 ∈ B4r (xk) such that

u (xk+1) ≥ (1 + δ) u (xk) .
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We stop construction if, for some k, B4r (xk) is not contained in BR(x). Hence, if xk exists
then xk ∈ BR(x) and

u (xk) ≥ (1 + δ)k u(x). (8)

Besides, we have
|xl+1 − xl| < 4r for all l ≤ k − 1,

which implies that
|xk − x| < 4kr.

It is easy to see that if 4kr < R then xk exists. Choose the maximal integer k with 4kr < R.
Then we have

4 (k + 1) r ≥ R

and, hence,

k ≥
R

4r
− 1 =

1

4 (2ε)1/n
− 1.

It follows from (8) that

u (xk) ≥ (1 + δ)
1

4(2ε)1/n
−1

u(x).

Finally, choosing ε small enough, we obtain

sup
BR(x)

u ≥ u (xk) ≥ 4u(x).
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Corollary 8 Let u be an L-harmonic function in a ball BR(x). If for some a ∈ R

|{u > a} ∩ BR(x)| ≤ ε |BR| ,

where ε = ε (n, λ) is as above, then

sup
BR(x)

u ≥ a + 4 (u(x) − a) .

Proof. Indeed, just apply Lemma 7 to the L-harmonic function v = u − a.

Proof of (wH) ⇒ (H)

It suffices to prove the following: if u is a non-negative L-harmonic function on a ball BKR(x)
(where K = 18) and

sup
BR(x)

u = 2, (9)

then
u(x) ≥ c = c (n, λ) > 0. (10)

We construct a sequence {xk}k≥1 of points such that

xk ∈ B2R(x) and u (xk) = 2k. (11)

21



A point x1 with u (x1) = 2 exists in BR(x) by (9). Assume that xk satisfying (11) is already
constructed. Then, for small enough r > 0, we have

sup
Br(xk)

u ≤ 2k+1.

Set

rk = sup

{

r ∈ (0, R] : sup
Br(xk)

u ≤ 2k+1

}

.

If rk = R then we stop the process without constructing xk+1. If r < R then we necessarily
have

sup
Br(xk)

u = 2k+1.

Therefore, there exists xk+1 ∈ Brk
(xk) such that u (xk+1) = 2k+1. If xk+1 ∈ B2R(x) then

we keep xk+1 and go to the next step. If xk+1 /∈ B2R(x) then we discard xk+1 and stop the
process.

Hence, we obtain a sequence of balls {Brk
(xk)} such that

rk ≤ R, xk ∈ B2R(x), u (xk) = 2k, sup
Brk

(xk)

u ≤ 2k+1. (12)
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Moreover, we have also |xk+1 − xk| ≤ rk.
The sequence {xk} cannot be infinite
as u (xk) → ∞ , while u is bounded in B2R(x).

Let N be the largest value of k in this sequence.
Then:

either rN = R or rN < R and xN+1 /∈ B2R(x),

where xN+1 is the discarded point.

In the both cases we clearly have

r1 + ... + rN ≥ R. (13)

In any ball Brk
(xk) we have by (12)

sup
Brk

(xk)

u ≤ 2k+1 < 2k−1 + 4
(
2k − 2k−1

)
= 2k−1 + 4

(
u (xk) − 2k−1

)
.
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By Corollary 8 with a = 2k−1 we obtain

∣
∣{u ≥ 2k−1

}
∩ Brk

(xk)
∣
∣ ≥ ε |Brk

|

We apply Lemma 5 with Br (y) = Brk
(xk).

Since u is non-negative and L-harmonic in BKR(x),
the following conditions need to be satisfied:

rk ≤ 2
9
KR and |xk − x| ≤ 1

9
KR

Since rk ≤ R and |xk − x| ≤ 2R, the both
conditions are satisfied if K = 18.

By Lemma 5, we obtain that

u(x) ≥
(rk

R

)s

δ2k−1, (14)

where δ = δ (ε, n, λ) > 0 and s = s (n, λ) > 0.
The question remains how to estimate

(rk

R

)s

2k−1

from below, given the fact that we do not know much about the sequence {rk}: the only
available information is (13). The following trick was invented by Landis.
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Since r1 + r2 + ... + rN ≥ R and

∞∑

k=1

1

2k2
=

π2

12
< 1,

there exists k ≤ N such that

rk ≥
R

2k2
.

For this k we obtain from (14) that

u(x) ≥ δ
(rk

R

)s

2k−1 ≥ δ
2k−1

(2k2)s .

Finally, since

m := inf
k≥1

2k−1

(2k2)s > 0,

we conclude that
u(x) ≥ δm =: c,

which finishes the proof of (10).
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