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Harnack inequality in R"
Let L be an elliptic operator in R™ of one of the forms

L= Z ( ai) (1)

zyl

or

L= Z ai;( 8:6 0563 2)

=il

We say that L satisfies a uniform Harnack inequality (H) if there exists a constant C' such
that, for any positive solution u of Lu = 0 in a ball B, (x), we have

sup v < C inf w.
B, /3(x) Br/2(z)

If {a;;} is uniformly elliptic then the operator (1) satisfies (H) by a theorem of Moser [7],
1961, while (2) satisfies (H) by a theorem of Krylov and Safonov [5], 1980.

E.M.Landis worked on both problems. He developed an alternative approach to the
proof of Moser’s theorem. Using this approach, he proved (H) for a class of non-divergent
operators L of Cordes type [6], 1971. His ideas were used by Krylov and Safonov [5], 1980.
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The approach of Landis has been useful for elliptic and parabolic PDEs on Riemannian
manifolds and even on singular metric measure spaces of fractal types ([1], [2], [3], etc.).

Weak Harnack inequality

Fix z € R™ and write Br = Bgr (2) . Let A be the ellipticity constant of L. Let u be a positive
solution of Lu = 0 in some ball Byp.

Denote
E,={u>a} N Bg.

Bur(2) . .
We say that L satisfies the weak Harnack inequality (wH)

if for any 6 > 0 there exists 6 =6 (0,n,\) > 0 s.t.
oz a] E,| > 0|Bg| = infu> da
Br
Clearly, (H) = (wH) because if F, is non-empty then by (H)

infu>C tsupu > C la.
Bgr Bgr



Theorem 1 (E.M.Landis) (wH) = (H)

This theorem works in a very general setting of metric measure spaces (see [3]) and uses only
the following properties of solutions and the underlying space (the operator L is not used
explicitly):

(i) if w is a solution then also u + const is also a solution;

(ii) volume doubling: |Bsgr| < C'|Bg| .
The arguments below follow [4].

Proof of (wH) for L in the divergence form

For simplicity take L = A. Let a = 1. Consider the function v = log + so that Av = IVol? .
Multiplying this equation by a cutoff function and integrating by parts, we obtain

B
[ 9ol dn < o2 3
2R

Consider the set

E:{UZl}ﬂBR:{USO}QBR:{U+:O}QBR.



By a version of the Poincaré inequality

E] 2
IVol* dp > c——— v dpu.
/BQR R ‘B2R| Bogr i

Since |E| > 6 |Bg|, combining (3) and (4) yields

const
][ vid,u < :
Bar 0

On the other hand, since Av > 0, Moser’s mean value inequality for subsolutions yields

sup vi <’ vid,u

Br Bar
whence
const
sup v4 <
Br 0
and

infu>0(0) > 0.

Br



Preliminaries for (wH) for L in the non-divergence form

Lemma 2 Let u be a positive solution of Lu = 0 in Byg. If E = {u > a} N Bg contains a
ball B, (y) then

inf u > c(%)sa (5)

Br

for some c,s > 0 depending on n and .

Proof. Let a = 1. We use the following barrier function
1 1

o) = (57~ )

It satisfies w|op,(y)y <1 and w|op,u) <0

If s is big enough then Lw > 0.

Comparing w and u by the maximum principle,
we obtain u > w in Byg (2) \ B, (y). Since

infp, () w(x) > ((2;)3 — (3}13)8) m=e (}%)5

we obtain the same lower bound for v in Bg that is (5).

Byr(z)
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Lemma 3 (Lemma of growth in a thin domain) Let u be a non-negative L-harmonic function
in a ball Byr. There exists € = ¢ (n, \) > 0 with the following property: if

{u < a} N Byr| < €| Byg|

then inf u >

iy
Br

Proof. Let 2z =0,a =1, G ={u < 1} N Byg. Let us solve in By the Dirichlet problem

Lv=—1g, vl|sp,, =0.

Then v > 0 and, by the theorem of Alexandrov and Pucci,

supv < CR ||1g|l . = CR|G|Y™ < CR2V/".

Bygr

2
(4‘152)2 — K % satisfies

in G the inequality Lw > 0 provided K is large enough.

The function w(x) =1 —



Since w < 1 and w|yp,, < 0, it follows that w < w in G. Hence, for a small enough &,

1 1
infu= inf u> inf w>infw>1-——KCe/*> =
Br BrNG BrNG Br 16 2

Lemma 4 Let u be a non-negative L-harmonic function in a ball Byr. If
{u < a} N Bg| < ¢|Bg|

then iélfu > ~va, where v =y (n,A) > 0.
R
Proof. Applying Lemma 3 to the ball By instead of Byg, we obtain that

e — inf u > 3.
Brya

Bm Hence, the set {u > %} N Br contains the ball Bg/4.

;;';;;%,(2} By Lemma 2, we obtain

R/4\°
infch(Tg) a = c4%a,

Br

which was to be proved.



Proof of (wH) for L in the non-divergence form

Let u be a positive solution to Lu = 0 in a ball B4z. Assuming that the set

satisfies the condition |E| > 0 |Bg|, we need to prove that infp, u > ¢ for some 6§ > 0.
Consider for any non-negative integer k the set

Ek = {U ka}ﬂBR,

where v € (0, 1) is the constant from Lemma 4.

Claim. There exist # > 0 and a positive integer [
such that for any k£ > 0 the following dichotomy holds:

(i) either |Exi1| > (1 + B) | Ex|
(11) or Ek:—i—l = BR

Let (i) hold for £ =0,..., N — 1 and does not hold for k = N.

Then we have
Bl = (14 B)|Exa = o 2 (1+ B) |Eo].




Since |Ey| < |Bg| and |Ey| = |E| > 6 |Bg|, it follows that 6 (1 + 3)" < 1 whence

1
lng

N< ———
~In(14p5)
On the other hand, applying (ii) for £ = N, we obtain Ey.; = Bg that is,

In L1
o o 0 4
infu = inf u >Nt > fyln(1+ﬁ)+ — 4.
BR EN—H

It suffices to prove Claim for the special case k = 0, that is,
(i) either |Ey| > (1 + 0) | Eol (ii) or E; = Bg
while for a general case apply the special case to u/y".

AN

Choose 0 < r < R so that the set

F:=EnNBr,={u>1}NBg_,

1
has measure |F| = 5 |E|, and consider two cases.



Case 1. Assume that there exists z € F' such that
Hu <1} N B.(x)| < e|B,],

where ¢ is the constant from Lemma 3. By Lemma 3

. 1
inf u>—
Br/4($) 2 1
Hence, in Bp there is a ball B, 4(x) where u > 5

By Lemma 2, we conclude that

4\° 1
%15“20<%> o3

By the choice of r we have |Bg| — |Br—,| = |Bg \ Br—,| > |E\ F| = 3 |E| > 10|Bg|
which implies after division by |Bg| = c¢R" that

R—r\" 1
1— > —0.
( R ) _29
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2

. 1 1/n &
infu>-4"7°11—-(1-—-=0 =:0>0.
Br 2 2

Therefore, E; = Bg for any [ such that 4/ < ¢, that is, the alternative (ii) takes places.

It follows that }% >1-— (1 — l@)”” .and, hence,

Case 2 (main). Assume that, for any = € I, we have
H{u < 1} N B.(x)| > ¢|B,|,
For any x € F' and p > 0 consider the quotient:

_ Hu <1} N By(2)|
Q(xvp)_ ‘Bpl

As p— 0, Q(x,p) — 0 for almost all x € F because in F' we have v > 1. On the other
hand, @ (z,r) > ¢ for any z € F. Hence, for almost all 2z € F, there exists p(x) € (0,r) such
that @ (z, p(x)) = ¢, that is,

{u <1} N By (7)| = €| By - (6)
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T There is a compact set K C F such that |K| > 3 |F| = 1 |E]
\ and such that p(z) is defined for all z € K.

By a standard ball covering argument, there exists in K

a finite sequence {;} such that the balls {B,, (z;)} are
disjoint while {Bs, (z;)} cover K, where p; = p(z;) .

Since x; € Br_, and p; < r, it follows that By, (z;) C Bag.
Using (6) and Lemma 4, we obtain that

EEEEEE Bpi () 7

It follows that
(EA\E)N B,y ={7Su<1}NB, @) ={u<1}NB, (z)
whence by (6)

‘(El \E)N Bpi(fﬂi)‘ =& ‘Bpi (‘%)‘ :

Hence, |E;\ E|> ZE ‘Bpi (xz)‘ =3 Z‘S }B3pi (xz)‘

>3 "¢ |K| > [|E| where g =
and |E1| > (1+ 0)|F| so that we have Case (i) .

lo—n
13 &y
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Preliminaries for the proof of (wH) = (H)

Lemma 5 (Reiteration of the weak Harnack inequality)

Let u be a non-negative L-harmonic function
in some ball Br(x). Consider a ball B, (y)
where y € B%R(x) and r < 2R.

If for some 6 > 0

By(x)

{u=1}N B, (y)| = 0|5

then

o2 0(5)

where 6 = § (0, n,\) >0 and s = s (n,\) > 0.
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Proof. Note that By, (y) C Br(x) because |¢ —y| +4r < sR+ SR = R.
Applying the weak Harnack inequality in B, (y), we obtain that

inf u>d,:=6(0,n,\).
Br(y)

)
It follows that e

H{u > 61} N By (y)| > |B,| = 27" | By

If Bs, (y) C Br(x) then applying
the weak Harnack inequality in B, (y)
we obtain that

infp, (yyu > 610 (27", n,\) = €y
where e =9 (27", m,\).

Continuing by induction we obtain the following statement for any positive integer k:

if Bok+2, (y) C Bg(x) then inf u > 6. (7)

B2kr
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Let k be the maximal integer such that
By, (y) C Br().

Then
252 4 |z —y| < R

while
263 + |z — y| > R.

Since R > 9|z — y|, it follows that

2> g (R—|z—yl) 2|z -yl

and = € By, (y) . By (7) we have

u(x) > 6. I

On the other hand, 2*7 < R whence k < log, £. It follows that

R logs € N
> Ingg = — = — .
U(l’)_E (51 51(7“) 51 (R)
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Lemma 6 (Alternative form of the weak Harnack inequality)

Let u be an L-harmonic function in some ball Byr(x)
If for some 6 > 0

[{u < 0} N Br(x)| > 0|Bxl, eg
then

sup u > (14 6)u(x)
Byr(z)

where 6 = § (0,n,\) > 0 is the same as in (WH).

Proof. If u(z) < 0 then there is nothing to prove. Assume that u(z) > 0. By rescaling, we
can assume also that

sup u = 1.

Byr(z)
Consider the function v = 1 — w that is a non-negative L-harmonic function in Byg(z).

Observe also, that
u<0&sv>1.
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Hence, we obtain that
{v > 1} N Bgr(z)| > 0 |BR.

By the weak Harnack inequality, we conclude that

inf v >0,
Br(z)

where § = § (n, \,0) > 0. It follows that v(z) > § and, hence

1 1
— sup u,
149 1+5B4E

u(x) <1-4§<

which was to be proved.

Lemma 7 (Lemma of growth in a thin domain) There exists € = € (n, \) > 0 such that the
following is true: if u is an L-harmonic function in a ball Bg(x) and if

{u> 0} N Ba(x)| < ¢ |Bal
then

sup u > 4u(x).
Br(z)
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Proof. Fix ¢ > 0 that will be specified later.

Consider any ball B, (y) C Bg(x)
of radius r = (25)% R so that |B,| = 2¢|Bg| .

Br(x)
Then

|BR| Ssi:l
| B |

{u>0}N B, (y)| < e|By 2 = 2

whence
{u<0}N B (y)] >3|B].

If By, (y) C Bg(z) then by Lemma 6

SUPp,, (y) U = (1+6)u(y)

where 0 = 0 (n, A, %) > (. By slightly reducing ¢, we obtain the following claim.
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Claim. If By, (y) C Br(z) and r = (2¢)"™ R then there exists y € By, (y) such that

u(y') 2 1 +06)u(y),

where 0 > 0 depends on n, \.

Applying this Claim with y = x and with (28)””

By (x) C Bg(x), we obtain a point x; € By,(x) such that

(@) = (1+0)u(z).

2 so that » < R/4 and, hence,

If By (z1) C Bgr(z) then applying Claim again
we obtain a point xy € By, (1) such that

u(xe) > (L+90)u(zy). M /x’”\'

We continue construction of the sequence {xzy} ) 2 xk
by induction: as long as By, (xy) C Bgr(x),
we obtain .1 € By, (7)) such that
BR(X)/

u(p1) 2 (14 0) u (k).
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We stop construction if, for some k, By, (x)) is not contained in Br(x). Hence, if xj exists
then z;, € Bgr(x) and
u(zx) 2 (1+0)" u(2). (8)
Besides, we have
T — x| <4r foralll <k-—1,

which implies that
|z — x| < 4kr.

It is easy to see that if 4kr < R then z; exists. Choose the maximal integer k£ with 4kr < R.
Then we have

4k+1)r>R
and, hence,
1
k> E—1:—1—1.
4r 4 (2¢)"

It follows from (8) that
w(my) > (1 +6)5@7 " y(z).
Finally, choosing £ small enough, we obtain
sup u > u (xg) > du(x).

BRr(x)
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Corollary 8 Let u be an L-harmonic function in a ball Br(x). If for some a € R
{u > a} N Br(x)| < e|Bg|,
where € = ¢ (n, \) is as above, then

sup u > a+4 (u(z) —a).
Br(z)

Proof. Indeed, just apply Lemma 7 to the L-harmonic function v = u — a.

Proof of (wH) = (H)

It suffices to prove the following: if u is a non-negative L-harmonic function on a ball Bxg(z)
(where K = 18) and

sup u = 2, 9)
Br(z)
then
u(z) >c=c(n,A) > 0. (10)

We construct a sequence {zy},~, of points such that

xp € Bog(x) and wu(xg) = ok, (11)
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A point x; with u (z;) = 2 exists in Bg(z) by (9). Assume that x; satisfying (11) is already
constructed. Then, for small enough r» > 0, we have

sup u < ok +1

Br(wk)
Set
Tl = Sup {7’ € (0,R]: sup u < 2k+1} .

Br(zk)

If r, = R then we stop the process without constructing x,.,. If » < R then we necessarily
have

sup u = Py

Br(zk)
Therefore, there exists xy,1 € B, (7)) such that u (zgyy) = 281 If 24,1 € Bog(x) then
we keep xp11 and go to the next step. If xx.1 ¢ Bsogr(z) then we discard x,; and stop the
process.

Hence, we obtain a sequence of balls {B,, (zj)} such that

re <R, x € Bog(x), u(xy)=2%  sup u <28 (12)
B'f‘k(xk)
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Moreover, we have also |z, — zx| < 74
The sequence {x} cannot be infinite
as u (zy) — oo , while u is bounded in Bag(z).

\ x2
Let N be the largest value of k in this sequence. / 2 Al
L/
Then: X4 Yo v
either ry = R orry < R and xyy1 ¢ Bag(x),
BR(X)
where zy 1 is the discarded point.
BzR(x)l,"'
In the both cases we clearly have '
7”1—|‘...—|—?”NZR. (13)

In any ball B,, (z) we have by (12)

sup u < 28T < 2Pt g (28 — M) = 28 4 4 (u (zy) — 2871
BTk(xk)
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By Corollary 8 with a = 28~! we obtain
[{u =2} N By, (w)| > €|B,

We apply Lemma 5 with B, (y) = B, (zx).
Since u is non-negative and L-harmonic in Bgg(z),
the following conditions need to be satisfied:

ry < 2KR and |z, —2| < KR
Since rp < R and |z, — x| < 2R, the both
conditions are satisfied if K = 18.

By Lemma 5, we obtain that
u(x) > <%> 52kt (14)

where § =0 (e,n,A\) >0 and s = s(n,A) > 0.
The question remains how to estimate

TE\® qk—1
— ) 2
(R)

from below, given the fact that we do not know much about the sequence {ry}: the only
available information is (13). The following trick was invented by Landis.
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Since r; + 79+ ... +ry > R and

P ~
2k2 12 ’
k=1
there exists £ < N such that .
Tk Z @
For this k£ we obtain from (14) that
Tk - 2k—1
25 (Z) 2tz 2
u(x) R = T (2k2)°
Finally, since
' 2k—1
m = Igfl 2% > 0,

we conclude that

which finishes the proof of (10).
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