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1 What is the heat kernel

In this chapter we shall discuss the notion of the heat kernel on a metric measure space
(M,d, μ). Loosely speaking, a heat kernel pt(x, y) is a family of measurable functions
in x, y ∈ M for each t > 0 that is symmetric, Markovian and satisfies the semigroup
property and the approximation of identity property. It turns out that the heat kernel
coincides with the integral kernel of the heat semigroup associated with the Dirichlet form
in L2(M,μ).

Let us start with some basic examples of the heat kernels.

1.1 Examples of heat kernels

1.2 Heat kernel in Euclidean spaces

The classical Gauss-Weierstrass heat kernel is the following function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

, (1.1)

where x, y ∈ Rn and t > 0. This function is a fundamental solution of the heat equation

∂u

∂t
= Δu,

where Δ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator. Moreover, if f is a continuous bounded

function on Rn, then the function

u (t, x) =
∫

Rn

pt (x, y) f (y) dy

solves the Cauchy problem {
∂u
∂t = Δu,
u (0, x) = f (x) .

.
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This can be also written in the form

u (t, ∙) = exp (−tL) f ,

where L here is a self-adjoint extension of −Δ in L2 (Rn) and exp (−tL) is understood in
the sense of the functional calculus of self-adjoint operators. That means that pt (x, y) is
the integral kernel of the operator exp (−tL).

The function pt (x, y) has also a probabilistic meaning: it is the transition density of
Brownian motion {Xt}t≥0 in Rn. The graph of pt (x, 0) as a function of x is shown here:
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Figure 1.1: The Gauss-Weierstrass heat kernel at different values of t

The term |x−y|2

t determines the space/time scaling : if |x − y|2 ≤ Ct, then pt (x, y) is
comparable with pt (x, x), that is, the probability density in the C

√
t-neighborhood of x

is nearly constant.

1.2.1 Heat kernels on Riemannian manifolds

Let (M, g) be a connected Riemannian manifold, and Δ be the Laplace-Beltrami operator
on M . Then the heat kernel pt (x, y) can be defined as the integral kernel of the heat
semigroup {exp (−tL)}t≥0, where L is the Dirichlet Laplace operator, that is, the minimal
self-adjoint extension of −Δ in L2 (M,μ), and μ is the Riemannian volume. Alternatively,
pt (x, y) is the minimal positive fundamental solution of the heat equation

∂u

∂t
= Δu.

The function pt (x, y) can be used to define Brownian motion {Xt}t≥0 on M . Namely,
{Xt}t≥0 is a diffusion process (that is, a Markov process with continuous trajectories),
such that

Px (Xt ∈ A) =
∫

A
pt (x, y) dμ (y)

for any Borel set A ⊂ M .
Let d (x, y) be the geodesic distance on M . It turns out that the Gaussian type

space/time scaling d2(x,y)
t appears in heat kernel estimates on general Riemannian mani-

folds:
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Xt

x

A

Figure 1.2: The Brownian motion Xt hits a set A

1. (Varadhan) For an arbitrary Riemannian manifold,

log pt (x, y) ∼ −
d2 (x, y)

4t
as t → 0.

2. (Davies) For an arbitrary manifold M , for any two measurable sets A,B ⊂ M

∫

A

∫

B
pt (x, y) dμ (x) dμ (y) ≤

√
μ (A) μ (B) exp

(

−
d2 (A,B)

4t

)

.

Technically, all these results depend upon the property of the geodesic distance: |∇d| ≤
1.

It is natural to ask the following question:

Are there settings where the space/time scaling is different from Gaussian?

1.2.2 Heat kernels of fractional powers of Laplacian

Easy examples can be constructed using another operator instead of the Laplacian. As
above, let L be the Dirichlet Laplace operator on a Riemannian manifold M , and consider
the evolution equation

∂u

∂t
+ Lβ/2u = 0,

where β ∈ (0, 2). The operator Lβ/2 is understood in the sense of the functional calculus
in L2 (M,μ) . Let pt (x, y) be now the heat kernel of Lβ/2, that is, the integral kernel of
exp

(
−tLβ/2

)
.

The condition β < 2 leads to the fact that the semigroup exp
(
−tLβ/2

)
is Markovian,

which, in particular, means that pt (x, y) > 0 (if β > 2 then pt (x, y) may be signed). Using
the techniques of subordinators, one obtains the following estimate for the heat kernel of
Lβ/2 in Rn:

pt (x, y) �
C

tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

�
C

tn/β

(

1 +
|x − y|β

t

)−n+β
β

. (1.2)
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(the symbol � means that both ≤ and ≥ are valid but with different values of the constant
C).

The heat kernel of
√
L = (−Δ)1/2 in Rn (that is, the case β = 1) is known explicitly:

pt(x, y) =
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

=
cnt

(
t2 + |x − y|2

)n+1
2

,

where cn = Γ
(

n+1
2

)
/π(n+1)/2. This function coincides with the Poisson kernel in the half-

space Rn+1
+ and with the density of the Cauchy distribution in Rn with the parameter

t.
As we have seen, the space/time scaling is given by the term dβ(x,y)

t where β < 2. The
heat kernel of the operator Lβ/2 is the transition density of a symmetric stable process
of index β that belongs to the family of Lévy processes. The trajectories of this process
are discontinuous, thus allowing jumps. The heat kernel pt (x, y) of such process is nearly
constant in some Ct1/β-neighborhood of y. If t is large, then

t1/β � t1/2,

that is, this neighborhood is much larger than that for the diffusion process, which is not
surprising because of the presence of jumps. The space/time scaling with β < 2 is called
super-Gaussian.

1.2.3 Heat kernels on fractal spaces

A rich family of heat kernels for diffusion processes has come from Analysis on fractals.
Loosely speaking, fractals are subsets of Rn with certain self-similarity properties. One
of the best understood fractals is the Sierpinski gasket (SG). The construction of the
Sierpinski gasket is similar to the Cantor set: one starts with a triangle as a closed subset
of R2, then eliminates the open middle triangle (shaded on the diagram), then repeats
this procedure for the remaining triangles, and so on.

Figure 1.3: Construction of the Sierpinski gasket

Hence, SG is a compact connected subset of R2. The unbounded SG is obtained from
SG by merging the latter (at the left lower corner of the next diagram) with two shifted
copies and then by repeating this procedure at larger scales.
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Figure 1.4: The unbounded SG is obtained from SG by merging the latter (at the left
lower corner of the diagram) with two shifted copies and then by repeating this procedure
at larger scales.

Barlow and Perkins [12], Goldstein [22] and Kusuoka [41] have independently con-
structed by different methods a natural diffusion process on SG that has the same self-
similarity as SG. Barlow and Perkins considered random walks on the graph approxima-
tions of SG and showed that, with an appropriate scaling, the random walks converge to a
diffusion process. Moreover, they proved that this process has a transition density pt (x, y)
with respect to a proper Hausdorff measure μ of SG, and that pt satisfies the following
elegant estimate:

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (1.3)

where d (x, y) = |x − y| and

α = dimH SG =
log 3
log 2

, β =
log 5
log 2

> 2.

Similar estimates were proved by Barlow and Bass for other families of fractals, including
Sierpinski carpets, and the parameters α and β in (1.3) are determined by the intrinsic
properties of the fractal. In all cases, α is the Hausdorff dimension (which is also called
the fractal dimension). The parameter β, that is called the walk dimension, is larger than
2 in all interesting examples.

The heat kernel pt (x, y), satisfying (1.3) is nearly constant in some Ct1/β-neighborhood
of y. If t is large, then

t1/β � t1/2,

that is, this neighborhood is much smaller than that for the diffusion process, which is
due to the presence of numerous holes-obstacles that the Brownian particle must bypass.
The space/time scaling with β > 2 is called sub-Gaussian.

1.2.4 Summary of examples

Observe now that in all the above examples, the heat kernel estimates can be unified as
follows:
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pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

, (1.4)

where α, β are positive parameters and Φ (s) is a positive decreasing function on [0, +∞).
For example, the Gauss-Weierstrass function (1.1) satisfies (1.4) with α = n, β = 2 and

Φ (s) = exp
(
−s2

)

(Gaussian estimate).
The heat kernel (1.2) of the symmetric stable process in Rn satisfies (1.4) with α = n,

0 < β < 2, and
Φ (s) = (1 + s)−(α+β)

(super-Gaussian estimate).
The heat kernel (1.3) of diffusions on fractals satisfies (1.4) with β > 2 and

Φ (s) = exp
(
−s

β
β−1

)

(sub-Gaussian estimate).
There are at least two questions related to the estimates of the type (1.4):

1. What values of the parameters α, β and what functions Φ can actually occur in the
estimate (1.4)?

2. How to obtain estimates of the type (1.4)?

To give these questions a precise meaning, we must define what is a heat kernel .

1.3 Abstract heat kernels

Let (M,d) be a locally compact, separable metric space and let μ be a Radon measure on
M with full support. The triple (M,d, μ) will be called a metric measure space.

Definition 1.1 (heat kernel) A family {pt}t>0 of measurable functions pt(x, y) on M ×
M is called a heat kernel if the following conditions are satisfied, for μ-almost all x, y ∈ M
and all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) The total mass inequality: ∫

M
pt(x, y)dμ(y) ≤ 1.

(iii) Symmetry: pt(x, y) = pt(y, x).

(iv) The semigroup property:

ps+t(x, y) =
∫

M
ps(x, z)pt(z, y)dμ(z).
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(v) Approximation of identity: for any f ∈ L2 := L2 (M,μ),
∫

M
pt(x, y)f(y)dμ(y)

L2

−→ f(x) as t → 0 + .

If in addition we have, for all t > 0 and almost all x ∈ M ,
∫

M
pt(x, y)dμ(y) = 1,

then the heat kernel pt is called stochastically complete (or conservative).

1.4 Heat semigroups

Any heat kernel gives rise to the family of operators{Pt}t≥0 where P0 = id and Pt for t > 0
is defined by

Ptf(x) =
∫

M
pt(x, y)f(y)dμ(y),

where f is a measurable function on M . It follows from (i) − (ii) that the operator Pt is
Markovian, that is, f ≥ 0 implies Ptf ≥ 0 and f ≤ 1 implies Ptf ≤ 1. It follows that Pt

is a bounded operator in L2 and, moreover, is a contraction, that is, ‖Ptf‖2 ≤ ‖f‖2.
The symmetry property (iii) implies that the operator Pt is symmetric and, hence,

self-adjoint. The semigroup property (iv) implies that PtPs = Pt+s, that is, the family
{Pt}t≥0 is a semigroup of operators. It follows from (v) that

s- lim
t→0

Pt = id = P0

where s-lim stands for the strong limit. Hence, {Pt}t≥0 is a strongly continuous, symmet-
ric, Markovian semigroup in L2. In short, we call that {Pt} is a heat semigroup.

Conversely, if {Pt} is a heat semigroup and if it has an integral kernel pt (x, y) , then
the latter is a heat kernel in the sense of the above Definition.

Given a heat semigroup Pt in L2, define the infinitesimal generator L of the semigroup
by

Lf := lim
t→0

f − Ptf

t
,

where the limit is understood in the L2-norm. The domain dom(L) of the generator L
is the space of functions f ∈ L2 for which the above limit exists. By the Hille–Yosida
theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive definite oper-
ator, which immediately follows from the fact that the semigroup {Pt} is self-adjoint and
contractive. Moreover, Pt can be recovered from L as follows

Pt = exp (−tL) ,

where the right hand side is understood in the sense of spectral theory.

Heat kernels and heat semigroups arise naturally from Markov processes. Let
(
{Xt}t≥0 , {Px}x∈M

)

be a Markov process on M , that is reversible with respect to measure μ. Assume that it
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has the transition density pt (x, y), that is, a function such that, for all x ∈ M , t > 0, and
all Borel sets A ⊂ M ,

Px (Xt ∈ A) =
∫

M
pt (x, y) dμ (y) .

Then pt (x, y) is a heat kernel in the sense of the above Definition.

1.5 Dirichlet forms

Given a heat semigroup {Pt} on a metric measure space (M,d, μ), for any t > 0, we define
a bilinear form Et on L2 by

Et (u, v) :=

(
u − Ptu

t
, v

)

=
1
t

((u, v) − (Ptu, v)) ,

where (∙, ∙) is the inner product in L2. Since Pt is symmetric, the form Et is also symmetric.
Since Pt is a contraction, it follows that

Et (u) := Et (u, u) =
1
t

((u, u) − (Ptu, u)) ≥ 0,

that is, Et is a positive definite form.
In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed as

follows

Et (u) =
1
t

((u, u) − (Ptu, u)) =
1
t

(∫ ∞

0
d‖Eλu‖2

2 −
∫ ∞

0
e−tλd‖Eλu‖2

2

)

=
∫ ∞

0

1 − e−tλ

t
d‖Eλu‖2

2,

which implies that Et (u) is decreasing in t, since the function t 7→ 1−e−tλ

t is decreasing.
Define for any u ∈ L2

E (u) = lim
t ↓ 0

Et (u)

where the limit (finite or infinite) exists by the monotonicity, so that E (u) ≥ Et (u). Since
1−e−tλ

t → λ as t → 0, we have

E (u) =
∫ ∞

0
λd‖Eλu‖2

2.

Set
F : = {u ∈ L2 : E (u) < ∞} = dom

(
L1/2

)
⊃ dom (L)

and define a bilinear form E (u, v) on F by the polarization identity

E (u, v) :=
1
4

(E (u + v) − E (u − v)) ,

which is equivalent to
E (u, v) = lim

t→0
Et (u, v) .
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Note that F contains dom(L). Indeed, if u ∈ dom(L), then we have for all v ∈ L2

lim
t→0

Et (u, v) =

(

lim
t→0

u − Ptu

t
, v

)

= (Lu, v) .

Setting v = u we obtain u ∈ F . Then choosing any v ∈ F we obtain the identity

E(u, v) = (Lu, v) for all u ∈ dom(L) and v ∈ F .

The space F is naturally endowed with the inner product

[u, v] := (u, v) + E (u, v) .

It is possible to show that the form E is closed, that is, the space F is Hilbert. Furthermore,
dom (L) is dense in F .

The fact that Pt is Markovian implies that the form E is also Markovian, that is

u ∈ F ⇒ ũ := min(u+, 1) ∈ F and E (ũ) ≤ E (u) .

Indeed, let us first show that for any u ∈ L2

Et (u+) ≤ Et (u) .

We have

Et (u) = Et (u+ − u−) = Et (u+) + Et (u−) − 2Et (u+, u−) ≥ Et (u+)

because Et (u−) ≥ 0 and

Et (u+, u−) =
1
t

(u+, u−) −
1
t

(Ptu+, u−) ≤ 0.

Assuming u ∈ F and letting t → 0, we obtain

E (u+) = lim
t→0

Et (u+) ≤ lim
t→0

Et (u) = E (u) < ∞

whence E (u+) ≤ E (u) and, hence, u+ ∈ F .
Similarly one proves that ũ = min(u+, 1) belongs to F and E (ũ) ≤ E (u+).

Conclusion. Hence, (E ,F) is a Dirichlet form, that is, a bilinear, symmetric, positive
definite, closed, densely defined form in L2 with Markovian property.

If the heat semigroup is defined by means of a heat kernel pt, then Et can be equivalently
defined by

Et (u) =
1
2t

∫

M

∫

M
(u(x) − u(y))2 pt(x, y)dμ(y)dμ(x)

+
1
t

∫

M
(1 − Pt1(x)) u2(x)dμ(x). (1.5)

Indeed, we have

u(x) − Ptu(x) = u (x) Pt1 (x) − Ptu (x) + (1 − Pt1(x)) u (x)

=
∫

M
(u(x) − u(y)) pt(x, y)dμ(y) + (1 − Pt1(x)) u (x) ,
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whence

Et (u) =
1
t

∫

M

∫

M
(u(x) − u(y)) u(x)pt(x, y)dμ(y)dμ(x)

+
1
t

∫

M
(1 − Pt1(x)) u2(x)dμ(x).

Interchanging the variables x and y in the first integral and using the symmetry of the
heat kernel, we obtain also

Et (u) =
1
t

∫

M

∫

M
(u(y) − u(x)) u(y)pt(x, y)dμ(y)dμ(x)

+
1
t

∫

M
(1 − Pt1(x)) u2(x)dμ(x),

and (1.5) follows by adding up the two previous lines.
Since Pt1 ≤ 1, the second term in the right hand side of (1.5) is non-negative. If the

heat kernel is stochastically complete, that is, Pt1 = 1, then that term vanishes and we
obtain

Et (u) =
1
2t

∫

M

∫

M
(u(x) − u(y))2 pt(x, y)dμ(y)dμ(x). (1.6)

Definition 1.2 The form (E ,F) is called local if E (u, v) = 0 whenever the functions
u, v ∈ F have compact disjoint supports. The form (E ,F) is called strongly local if
E (u, v) = 0 whenever the functions u, v ∈ F have compact supports and u ≡ const in an
open neighborhood of supp v.

For example, if pt (x, y) is the heat kernel of the Laplace-Beltrami operator on a com-
plete Riemannian manifold, then the associated Dirichlet form is given by

E (u, v) =
∫

M
〈∇u,∇v〉dμ, (1.7)

and F is the Sobolev space W 1
2 (M). Note that this Dirichlet form is strongly local because

u = const on supp v implies ∇u = 0 on supp v and, hence, E (u, v) = 0.
If pt (x, y) is the heat kernel of the symmetric stable process of index β in Rn, that is,

L = (−Δ)β/2, then

E (u, v) = cn,β

∫

Rn

∫

Rn

(u (x) − u (y)) (v (x) − v (y))

|x − y|n+β
dxdy,

and F is the Besov space B
β/2
2,2 (Rn) =

{
u ∈ L2 : E (u, u) < ∞

}
. This form is clearly

non-local.
Denote by C0 (M) the space of continuous functions on M with compact supports,

endowed with sup-norm.

Definition 1.3 The form (E ,F) is called regular if F ∩ C0 (M) is dense both in F (with
[∙, ∙]-norm) and in C0 (M) (with sup-norm).
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All the Dirichlet forms in the above examples are regular.
Assume that we are given a Dirichlet form (E ,F) in L2 (M,μ). Then one can define

the generator L of (E ,F) by the identity

(Lu, v) = E (u, v) for all u ∈ dom (L) , v ∈ F , (1.8)

where dom (L) ⊂ F must satisfy one of the following two equivalent requirements:

1. dom (L) is a maximal possible subspace of F such that (1.8) holds

2. L is a densely defined self-adjoint operator.

Clearly, L is positive definite so that spec L ⊂ [0, +∞). Hence, the family of operators
Pt = e−tL, t ≥ 0, forms a strongly continuous, symmetric, contraction semigroup in L2.
Moreover, using the Markovian property of the Dirichlet form (E ,F), it is possible to
prove that {Pt} is Markovian, that is, {Pt} is a heat semigroup. The question whether
and when Pt has the heat kernel requires a further investigation.

1.6 More examples of heat kernels

Let us give some examples of stochastically complete heat kernels that do not satisfy (1.4).

Example 1.4 (A frozen heat kernel) Let M be a countable set and let {xk}
∞
k=1 be the

sequence of all distinct points from M . Let {μk}
∞
k=1 be a sequence of positive reals and

define measure μ on M by μ ({xk}) = μk. Define a function pt (x, y) on M × M by

pt (x, y) =

{ 1
μk

, x = y = xk

0, otherwise.

It is easy to check that pt (x, y) is a heat kernel. For example, let us check the approximation
of identity: for any function f ∈ L2 (M,μ), we have

Ptf (x) =
∫

M
pt (x, y) f (y) dμ (y) = pt (x, x) f (x) μ ({x}) = f (x) .

This identity also implies the stochastic completeness. The Dirichlet form is

E (f) = lim
t→0

(
f − Ptf

t
, f

)

= 0.

The Markov process associated with the frozen heat kernel is very simple: Xt = X0 for
all t ≥ 0 so that it is a frozen diffusion.

Example 1.5 (The heat kernel in H3) The heat kernel of the Laplace-Beltrami operator
on the 3-dimensional hyperbolic space H3 is given by the formula

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

,

where r = d (x, y) is the geodesic distance between x, y. The Dirichlet form is given by
(1.7).
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Example 1.6 (The Mehler heat kernel) Let M = R, measure μ be defined by

dμ = ex2
dx,

and let L be given by

L = −e−x2 d

dx

(

ex2 d

dx

)

= −
d2

dx2
− 2x

d

dx
.

Then the heat kernel of L is given by the formula

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t − x2 − y2

1 − e−4t
− t

)

.

The associated Dirichlet form is also given by (1.7).
Similarly, for the measure

dμ = e−x2
dx

and for the operator

L = −ex2 d

dx

(

e−x2 d

dx

)

= −
d2

dx2
+ 2x

d

dx
,

we have

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t −

(
x2 + y2

)
e−4t

1 − e−4t
+ t

)

.

2 Necessary conditions for heat kernel bounds

In this Chapter we assume that pt (x, y) is a heat kernel on a metric measure space (M,d, μ)
that satisfies certain upper and/or lower estimates, and state the consequences of these
estimates. The reader may consult [33], [28] or [30] for the proofs.

Fix two positive parameters α and β, and let Φ : [0, +∞) → [0, +∞) be a monotone
decreasing function. We will consider the bounds of the heat kernel via the function

1
tα/β Φ

(
d(x,y)

t1/β

)
.

2.1 Identifying Φ in the non-local case

Theorem 2.1 (Grigor’yan and Kumagai [33]) Let pt (x, y) be a heat kernel on (M,d, μ).

(a) If the heat kernel satisfies the estimate

pt (x, y) ≤
1

tα/β
Φ

(
d (x, y)

t1/β

)

,

for all t > 0 and almost all x, y ∈ M , then either the associated Dirichlet form (E ,F)
is local or

Φ(s) ≥ c (1 + s)−(α+β)

for all s > 0 and some c > 0.
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(b) If the heat kernel satisfies the estimate

pt (x, y) ≥
1

tα/β
Φ

(
d (x, y)

t1/β

)

,

then we have
Φ(s) ≤ C (1 + s)−(α+β)

for all s > 0 and some C > 0.

(c) Consequently, if the heat kernel satisfies the estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

then either the Dirichlet form E is local or

Φ(s) � (1 + s)−(α+β) .

2.2 Volume of balls

Denote by B (x, r) a metric ball in (M,d), that is

B(x, r) := {y ∈ M : d(x, y) < r} .

Theorem 2.2 (Grigor’yan, Hu and Lau [28]) Let pt be a heat kernel on (M,d, μ).
Assume that it is stochastically complete and that it satisfies the two-sided estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. (2.1)

Then, for all x ∈ M and r > 0,
μ(B(x, r)) � rα,

that is, μ is α-regular.
Consequently, dimH (M,d) = α and μ � Hα on all Borel subsets of M , where Hα is

the α-dimensional Hausdorff measure in M .

In particular, the parameter α is the invariant of the metric space (M,d), and measure
μ is determined (up to a factor � 1) by the metric space (M,d).

2.3 Besov spaces

Fix α > 0, σ > 0. We introduce the following seminorms on L2 = L2 (M,μ):

Nα,σ
2,∞ (u) = sup

0<r≤1

1
rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y), (2.2)

and

Nα,σ
2,2 (u) =

∫ ∞

0

dr

r

1
rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y). (2.3)
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Define the space Λα,σ
2,∞ by

Λα,σ
2,∞ =

{
u ∈ L2 : Nα,σ

2,∞(u) < ∞
}

,

and the norm by
‖u‖2

Λα,σ
2,∞

= ‖u‖2
2 + Nα,σ

2,∞(u).

Similarly, one defines the space Λα,σ
2,2 . More generally one can define Λα,σ

p,q for p ∈ [1, +∞)
and q ∈ [1, +∞].

In the case of Rn, we have the following relations

Λn,σ
p,q (Rn) = Bσ

p,q (Rn) , 0 < σ < 1,

Λn,1
2,∞ (Rn) = W 1

p (Rn) ,

Λn,1
2,2 (Rn) = {0} ,

Λn,σ
p,q (Rn) = {0} , σ > 1.

where Bσ
p,q is the Besov space and W 1

p is the Sobolev space. The spaces Λα,σ
p,q will also be

called Besov spaces.

Theorem 2.3 (Jonsson [38], Pietruska-Pa luba [43], Grigor’yan, Hu and Lau [28])
Let pt be a heat kernel on (M,d, μ). Assume that it is stochastically complete and that it
satisfies the following estimate: for all t > 0 and almost all x, y ∈ M ,

1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt (x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

, (2.4)

where α, β be positive constants, and Φ1, Φ2 are monotone decreasing functions from
[0, +∞) to [0, +∞) such that Φ1 (s) > 0 for some s > 0 and

∫ ∞

0
sα+βΦ2(s)

ds

s
< ∞. (2.5)

Then, for any u ∈ L2,
E (u) � N

α,β/2
2,∞ (u),

and, consequently, F = Λα,β/2
2,∞ .

By Theorem 2.1, the upper bound in (2.4) implies that either (E ,F) is local or

Φ2 (s) ≥ c (1 + s)−(α+β) .

Since the latter contradicts condition (2.5), the form (E ,F) must be local. For non-local
forms the statement is not true. For example, for the operator (−Δ)β/2 in Rn, we have

F = B
β/2
2,2 = Λn,β/2

2,2 that is strictly smaller than B
β/2
2,∞ = Λn,β/2

2,∞ . This case will be covered
by the following theorem.
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Theorem 2.4 (Stós [44]) Let pt be a stochastically complete heat kernel on (M,d, μ)
satisfying estimate (2.4) with functions

Φ1 (s) � Φ2 (s) � (1 + s)−(α+β) .

Then, for any u ∈ L2,

E (u) � N
α,β/2
2,2 (u).

Consequently, we have F = Λα,β/2
2,2 .

2.4 Subordinated semigroups

Let L be the generator of a heat semigroup {Pt}. Then, for any δ ∈ (0, 1) , the operator Lδ

is also a generator of a heat semigroup, that is, the semigroup
{
e−tLσ}

is a heat semigroup.
Furthermore, there is the following relation between the two semigroups

e−tLδ
=
∫ ∞

0
e−sLηt (s) ds,

where ηt (s) is a subordinator whose Laplace transform is given by

e−tλδ

=
∫ ∞

0
e−sληt (s) ds, λ > 0.

Using the known estimates for ηt (s), one can obtain the following result.

Theorem 2.5 Let a heat kernel pt satisfy the estimate (2.4) where Φ1 (s) > 0 for some
s > 0 and ∫ ∞

0
sα+β′

Φ2 (s)
ds

s
< ∞,

where β′ = δβ, 0 < δ < 1. Then the heat kernel qt (x, y) of operator Lδ satisfies the
estimate

qt (x, y) �
1

tα/β′

(

1 +
d (x, y)

t1/β′

)−(α+β′)

� min

(

t−α/β′
,

t

d (x, y)α+β′

)

,

for all t > 0 and almost all x, y ∈ M .

2.5 The walk dimension

It follows from definition that the Besov seminorm

Nα,σ
2,∞ (u) = sup

0<r≤1

1
rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x) − u(y)|2 dμ(x)dμ(y)

increases when σ increases, which implies that the space

Λα,σ
2,∞ :=

{
u ∈ L2 : Nα,σ

2,∞ (u) < ∞
}

shrinks. For a certain value of σ, this space may become trivial. For example, as was
already mentioned, Λn,σ

2,∞ (Rn) = {0} for σ > 1, while Λn,σ
2,∞ (Rn) is non-trivial for σ ≤ 1.

16



Definition 2.6 Fix α > 0 and set

β∗ := sup
{

β > 0 : Λα,β/2
2,∞ is dense in L2 (M,μ)

}
. (2.6)

The number β∗ ∈ [0, +∞] is called the critical exponent of the family
{

Λα,β/2
2,∞

}

β>0
of

Besov spaces.

Note that the value of β∗ is an intrinsic property of the space (M,d, μ), which is defined
independently of any heat kernel. For example, for Rn with α = n we have β∗ = 2.

Theorem 2.7 (Jonsson [38], Pietruska-Pa luba [43], Grigor’yan, Hu and Lau [28])
Let pt be a heat kernel on a metric measure space (M,d, μ). If the heat kernel is stochas-
tically complete and satisfies (2.4), where Φ1 (s) > 0 for some s > 0 and

∫ ∞

0
sα+β+εΦ2(s)

ds

s
< ∞ (2.7)

for some ε > 0, then β = β∗.

By Theorem 2.1, condition (2.7) implies that the Dirichlet form (E ,F) is local. For non-
local forms the statement is not true: for example, in Rn for symmetric stable processes
we have β < 2 = β∗.

Theorem 2.8 Under the hypotheses of Theorem 2.7, the values of the parameters α and
β are the invariants of the metric space (M,d) alone. Moreover, we have

μ � Hα and E � N
α,β/2
2,∞ .

Consequently, both the measure μ and the energy form E are determined (up to a factor
� 1) by the metric space (M,d) alone.

Example 2.9 Consider in Rn the Gauss-Weierstrass heat kernel

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

and its generator L = −Δ in L2 (Rn) with the Lebesgue measure. Then α = n, β = 2, and

E (u) =
∫

Rn

|∇u|2 dx.

Consider now another elliptic operator in Rn:

L = −
1

m (x)

n∑

i,j=1

∂

∂xi

(

aij (x)
∂

∂xj

)

,

where m (x) and aij (x) are continuous functions, m (x) > 0 and the matrix (aij (x)) is
positive definite. The operator L is symmetric with respect to measure

dμ = m (x) dx,
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and its Dirichlet form is

E (u) =
∫

Rn

aij (x)
∂u

∂xi

∂u

∂xj
dx.

Let d (x, y) = |x − y| and assume that the heat kernel pt (x, y) of L satisfies the conditions
of Theorem 2.7. Then we conclude by Corollary 2.8 that α and β must be the same as in
the Gauss-Weierstrass heat kernel, that is, α = n and β = 2; moreover, measure μ must
be comparable to the Lebesgue measure, which implies that m � 1, and the energy form
must admit the estimate

E (u) �
∫

Rn

|∇u|2 dx,

which implies that the matrix (aij (x)) is uniformly elliptic. Hence, the operator L is
uniformly elliptic.

By Aronson’s theorem [2, 3] the heat kernel for uniformly elliptic operators satisfies
the estimate

pt (x, y) �
C

tn/2
exp

(

−c
|x − y|2

t

)

.

What we have proved here implies the converse to Aronson’s theorem: if the Aronson
estimate holds for the operator L, then L is uniformly elliptic.

The next theorem handles the non-local case.

Theorem 2.10 Let pt be a heat kernel on a metric measure space (M,d, μ). If the heat
kernel satisfies the lower bound

pt (x, y) ≥
1

tα/β
Φ1

(
d (x, y)

t1/β

)

,

where Φ1 (s) > 0 for some s > 0, then β ≤ β∗.

Proof. In the proof of Theorem 2.3 one shows that the lower bound of the heat kernel
implies F ⊂ Λα,β/2

2,∞ (and the opposite inclusion follows from the upper bound and the
stochastic completeness). Since F is dense in L2, it follows that β ≤ β∗.

As a conclusion of this part, we briefly explain the walk dimension from three different
points of view. As we have seen, there is a parameter appears in three different places:

• A parameter β in heat kernel bounds (2.4).

• A parameter θ in Markov processes: for a process Xt, one may have (cf. [4, formula
(1.1)])

Ex

(
|Xt − x|2

)
� t2/θ.

Then θ is a parameter that measures how fast the process Xt goes away from the
starting point x in time t. Alternatively, one may have that, for any ball B(x, r) ⊂ M ,

Ex

(
τB(x,r)

)
� rθ,

where τB(x,r) is the first exit time of Xt from the ball

τB = inf {t > 0 : Xt /∈ B(x, r)} .
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• A parameter σ in function spaces Nα,σ
2,∞ or Nα,σ

2,2 . By (2.2) or by (2.3), it is not hard
to see that σ measures how much smooth of the functions in the space Nα,σ

2,∞ or Nα,σ
2,2 .

In general the three parameters β, θ, 2σ may be different. However, it turns out that,
under some certain conditions, all these parameters are the same:

β = θ = 2σ. (2.8)

For examples, by Theorems 2.3 and 2.4, we see that σ = β
2 , whilst by Theorems 3.8 and

4.3 below, we will see that β = θ.

2.6 Inequalities for the walk dimension

Definition 2.11 We say that a metric space (M,d) satisfies the chain condition if there
exists a (large) constant C such that for any two points x, y ∈ M and for any positive
integer n there exists a sequence {xi}

n
i=0 of points in M such that x0 = x, xn = y, and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, ..., n − 1. (2.9)

The sequence {xi}
n
i=0 is referred to as a chain connecting x and y.

Theorem 2.12 (Grigor’yan, Hu and Lau [28]) Let (M,d, μ) be a metric measure space.
Assume that

μ(B(x, r)) � rα (2.10)

for all x ∈ M and 0 < r ≤ 1. Then
β∗ ≥ 2.

If in addition (M,d) satisfies the chain condition, then

β∗ ≤ α + 1.

Observe that the chain condition is essential for the inequality β∗ ≤ α + 1 to be true.
Indeed, assume for a moment that the claim of Theorem 2.12 holds without the chain
condition, and consider a new metric d′ on M given by d′ = d1/γ where γ > 1. Let us
mark by a dash all notions related to the space (M,d′, μ) as opposed to those of (M,d, μ).
It is easy to see that α′ = αγ and β∗′ = β∗γ. Hence, if Theorem 2.12 could apply to the
space (M,d′, μ) it would yield β∗γ ≤ αγ +1 which implies β∗ ≤ α because γ may be taken
arbitrarily large. However, there are spaces with β∗ > α, for example on SG.

Clearly, the metric d′ does not satisfy the chain condition; indeed the inequality (2.9)
implies

d′(xi, xi+1) ≤ C
d′(x, y)
n1/γ

,

which is not good enough. Note that if in the inequality (2.9) we replace n by n1/γ , then
the proof of Theorem 2.12 will give that β∗ ≤ α + γ instead of β∗ ≤ α + 1.

Theorem 2.13 (Grigor’yan, Hu and Lau [28]) Let pt be a stochastically complete heat
kernel on (M,d, μ) such that

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

.
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(a) If for some ε > 0 ∫ ∞

0
sα+β+εΦ(s)

ds

s
< ∞, (2.11)

then β ≥ 2.

(b) If (M,d) satisfies the chain condition, then β ≤ α + 1.

Proof. By Theorem 2.2 μ is α-regular so that Theorem 2.12 applies.
(a) By Theorem 2.12, β∗ ≥ 2, and by Theorem 2.7, β = β∗, whence β ≥ 2.
(b) By Theorem 2.12, β∗ ≤ α + 1, and by Theorem 2.10, β ≤ β∗, whence β ≤ α + 1.
Note that the condition (2.11) can occur only for a local Dirichlet form E . If both

(2.11) and the chain condition are satisfied, then we obtain

2 ≤ β ≤ α + 1. (2.12)

This inequality was stated by Barlow [4] without proof.
The set of couples (α, β) satisfying (2.12) is shown on the diagram:

α

2

β

1

1 2 3 4

Figure 2.1: The set 2 ≤ β ≤ α + 1

Barlow [5] proved that any couple of α, β satisfying (2.12) can be realized for the heat
kernel estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(2.13)

For a non-local form, we can only claim that

0 < β ≤ α + 1

(under the chain condition). In fact, any couple α, β in the range

0 < β < α + 1
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can be realized for the estimate

pt (x, y) �
1

tα/β′

(

1 +
d (x, y)

t1/β′

)−(α+β′)

.

Indeed, if L is the generator of a diffusion with parameters α and β satisfying (2.13), then
the operator Lδ, δ ∈ (0, 1), generates a jump process with the walk dimension β′ = δβ
and the same α (cf. Theorem 2.5). Clearly, β′ can take any value from (0, α + 1).

It is not known whether the walk dimension for a non-local form can be equal to α+1.

2.7 Identifying Φ in the local case

Theorem 2.14 (Grigor’yan and Kumagai [33]) Assume that the metric space (M,d)
satisfies the chain condition and all metric balls are precompact. Let pt be a stochastically
complete heat kernel in (M,d, μ). Assume that the associated Dirichlet form (E ,F) is
regular, and the following estimate holds with some α, β > 0 and Φ : [0, +∞) → [0, +∞):

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

.

Then the following dichotomy holds:

• either the Dirichlet form E is local, 2 ≤ β ≤ α + 1, and Φ(s) � C exp(−cs
β

β−1 ).

• or the Dirichlet form E is non-local, β ≤ α + 1, and Φ(s) � (1 + s)−(α+β).

3 Sub-Gaussian upper bounds

3.1 Ultracontractive semigroups

Let (M,d, μ) be a metric measure space and (E ,F) be a Dirichlet form in L2 (M,μ) ,
and let {Pt} be the associated heat semigroup, Pt = e−tL where L is the generator of
(E ,F). The question to be discussed here is whether Pt possesses the heat kernel, that
is, a function pt (x, y) that is non-negative, jointly measurable in (x, y), and satisfies the
identity

Ptf (x) =
∫

M
pt (x, y) f (y) dμ (y)

for all f ∈ L2, t > 0, and almost all x ∈ M . Usually the conditions that ensure the
existence of the heat kernel give at the same token some upper bounds.

Given two parameters p, q ∈ [0, +∞], define the Lp → Lq norm of Pt by

‖Pt‖Lp→Lq = sup
f∈Lp∩L2\{0}

‖Ptf‖q

‖f‖p

.

In fact, the Markovian property allows to extend Pt to an operator in Lp so that the range
Lp ∩ L2 of f can be replaced by Lp. Also, it follows from the Markovian property that
‖Pt‖Lp→Lp ≤ 1 for any p.
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Definition 3.1 The semigroup {Pt} is said to be Lp → Lq ultracontractive if there exists
a positive decreasing function γ on (0, +∞), called the rate function, such that, for each
t > 0

‖Pt‖Lp→Lq ≤ γ (t) .

By the symmetry of Pt, if Pt is Lp → Lq ultracontractive, then Pt is also Lq∗ → Lp∗

ultracontractive with the same rate function, where p∗ and q∗ are the Hölder conjugates
to p and q, respectively. In particular, Pt is L1 → L2 ultracontractive if and only if it is
L2 → L∞ ultracontractive.

Theorem 3.2

(a) The heat semigroup {Pt} is L1 → L2 ultracontractive with a rate function γ, if and
only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t/2)2 for all t > 0.

(b) The heat semigroup {Pt} is L1 → L∞ ultracontractive with a rate function γ, if and
only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t) for all t > 0.

This result is “well-known” and can be found in many sources. However, there are
hardly complete proofs of the measurability of the function pt (x, y) in (x, y), which is
necessary for many applications, for example, to use Fubini. Normally the existence of
the heat kernel is proved in some specific setting where pt (x, y) is continuous in (x, y), or
one just proves the existence of a family of functions pt,x ∈ L2 so that

Ptf (x) = (pt,x, f) =
∫

M
pt,x (y) f (y) dμ (y)

for all t > 0 and almost all x. However, if one defines pt (x, y) = pt,x (y), then this function
does not have to be jointly measurable. The proof of the existence of a jointly measurable
version can be found in [26]. Most of the material of this chapter can also be found there.

3.2 Restriction of the Dirichlet form

Let Ω be an open subset of M . Define the function space F(Ω) by

F(Ω) = {f ∈ F : supp f ⊂ Ω}
F

.

Clearly, F(Ω) is a closed subspace of F and a subspace of L2 (Ω).

Theorem 3.3 If (E ,F) is a regular Dirichlet form in L2 (M) , then (E ,F(Ω)) is a regular
Dirichlet form in L2 (Ω). If (E ,F) is (strongly) local then so is (E ,F(Ω)).

The regularity is used, in particular, to ensure that F(Ω) is dense in L2 (Ω). From
now on let us assume that (E ,F) is a regular Dirichlet form. Other consequences of this
assumptions are as follows (cf. [21]):
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1. The existence of cutoff functions: for any compact set K and any open set U ⊃ K,
there is a function ϕ ∈ F ∩ C0 (U) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in an open
neighborhood of K.

2. The existence of a Hunt process
(
{Xt}t≥0 , {Px}x∈M

)
associated with (E ,F).

Hence, for any open subset Ω ⊂ M , we have the Dirichlet form (E ,F(Ω)) that is called
a restriction of (E ,F) to Ω.

Example 3.4 Consider in Rn the canonical Dirichlet form

E (u) =
∫

Rn

|∇u|2 dx

in F = W 1
2 (Rn). Then F(Ω) = C1

0 (Ω)
W 1

2 =: H1
0 (Ω) .

Using the restricted form (E ,F(Ω)) corresponds to imposing the Dirichlet boundary
conditions on ∂Ω (or on Ωc), so that the form (E ,F(Ω)) could be called the Dirichlet form
with the Dirichlet boundary condition.

Denote by LΩ the generator of (E ,F(Ω)) and set

λmin (Ω) := inf specLΩ = inf
u∈F(Ω)\{0}

E (u)

‖u‖2
2

. (3.1)

Clearly, λmin (Ω) ≥ 0 and λmin (Ω) is decreasing when Ω expands.

Example 3.5 If (E ,F) is the canonical Dirichlet form in Rn and Ω is the bounded domain
in Rn, then the operator LΩ has the discrete spectrum λ1 (Ω) ≤ λ2 (Ω) ≤ λ3 (Ω) ≤ ... that
coincides with the eigenvalues of the Dirichlet problem

{
Δu + λu = 0,
u|∂Ω = 0,

so that λ1 (Ω) = λmin (Ω).

3.3 Faber-Krahn and Nash inequalities

Continuing the above example, we have by a theorem of Faber-Krahn

λ1 (Ω) ≥ λ1 (Ω∗) ,

where Ω∗ is the ball of the same volume as Ω. If r is the radius of Ω∗, then we have

λ1 (Ω∗) =
c′

r2
=

c

|Ω∗|2/n
=

c

|Ω|2/n
,

whence
λ1 (Ω) ≥ cn |Ω|−2/n .

It turns out that this inequality, that we call the Faber-Krahn inequality, is intimately
related to the existence of the heat kernel and its upper bound.
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Theorem 3.6 Let (E ,F) be a regular Dirichlet form in L2 (M,μ). Fix some constant
ν > 0. Then the following conditions are equivalent:

(i) (The Faber-Krahn inequality) There is a constant a > 0 such that, for all non-empty
open sets Ω ⊂ M ,

λmin (Ω) ≥ aμ (Ω)−ν . (3.2)

(ii) (The Nash inequality) There exists a constant b > 0 such that

E (u) ≥ b‖u‖2+2ν
2 ‖u‖−2ν

1 , (3.3)

for any function u ∈ F \ {0}.

(iii) (On-diagonal estimate of the heat kernel) The heat kernel exists and satisfies the
upper bound

esup
x,y∈M

pt (x, y) ≤ ct−1/ν (3.4)

for some constant c and for all t > 0.

The relation between the parameters a, b, c is as follows:

a � b � c−ν

where the ratio of any two of these parameters is bounded by constants depending only on
ν.

In Rn, we see that ν = 2/n.
The implication (ii) ⇒ (iii) was proved by Nash [42], and (iii) ⇒ (ii) by Carlen-

Kusuoka-Stroock [15], and (i) ⇔ (iii) by
Grigor’yan [24] and Carron [16].
Proof of (i) ⇒ (ii) ⇒ (iii). Observe first that (ii) ⇒ (i) is trivial: choosing in (3.3)

a function u ∈ F(Ω) \ {0} and applying the Cauchy-Schwarz inequality

‖u‖1 ≤ μ (Ω)1/2 ‖u‖2 ,

we obtain
E (u) ≥ bμ (Ω)−ν ‖u‖2

2 ,

whence (3.2) follow by the variational principle (3.1).
The opposite inequality (i) ⇒ (ii) is a bit more involved, and we prove it for functions

0 ≤ u ∈ F ∩ C0 (M) (a general u ∈ F requires some approximation argument). By the
Markovian property, we have (u − t)+ ∈ F ∩ C0 (M) for any t > 0 and

E (u) ≥ E
(
(u − t)+

)
. (3.5)

For any s > 0, consider the set

Us := {x ∈ M : u (x) > s} ,
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which is clearly open and precompact. If t > s, then (u − t)+ is supported in Us, and
whence, (u − t)+ ∈ F (Us). It follows from (3.1)

E
(
(u − t)+

)
≥ λmin (Us)

∫

Us

(u − t)2+ dμ. (3.6)

For simplicity, set A = ‖u‖1 and B = ‖u‖2
2. Since u ≥ 0, we have

(u − t)2+ ≥ u2 − 2tu,

which implies that
∫

Us

(u − t)2+dμ =
∫

M
(u − t)2+dμ ≥ B − 2tA. (3.7)

On the other hand, we have

μ(Us) ≤
1
s

∫

Us

u dμ ≤
A

s
,

which together with the Faber-Krahn inequality implies

λmin (Us) ≥ aμ (Us)
−ν ≥ a

( s

A

)ν
. (3.8)

Combining (3.5)-(3.8), we obtain

E (u) ≥ λmin (Us)
∫

Us

(u − t)2+ dμ ≥ a
( s

A

)ν
(B − 2tA) .

Letting t → s+ and then choosing s = B
4A , we obtain

E (u) ≥ a
( s

A

)ν
(B − 2sA) = a

(
B

4A2

)ν B

2
=

a

4ν2
Bν+1A−2ν ,

which is exactly (3.3).
To prove (ii) ⇒ (iii), choose f ∈ L2 ∩L1, and consider u = Ptf . Since u = e−tLf and

d
dtu = −Lu, we have

d

dt
‖u‖2

2 =
d

dt
(u, u) = −2 (Lu, u) = −2E (u, u)

≤ −2b‖u‖2+2ν
2 ‖u‖−2ν

1 ≤ −2b‖u‖2+2ν
2 ‖f‖−2ν

1 ,

since ‖u‖1 ≤ ‖f‖1 . Solving this differential inequality, we obtain

‖Ptf‖
2
2 ≤ ct−1/v ‖f‖2

1 ,

that is, the semigroup Pt is L1 → L2 ultracontractive with the rate function γ (t) =√
ct−1/v. By Theorem 3.2 we conclude that the heat kernel exists and satisfies (3.4).

Let M be a Riemannian manifold with the geodesic distance d and the Riemannian
volume μ. Let (E ,F) be the canonical Dirichlet form on M . The heat kernel on manifolds
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always exists and is a smooth function. In this case the estimate (3.4) is equivalent to the
on-diagonal upper bound

sup
x∈M

pt (x, x) ≤ ct−1/ν .

It is known (but non-trivial) that the on-diagonal estimate implies the Gaussian upper
bound

pt (x, y) ≤ Ct−1/ν exp

(

−
d2 (x, y)
(4 + ε) t

)

,

for all t > 0 and x, y ∈ M , which is due to the specific property of the geodesic distance
function that |∇d| ≤ 1.

In the context of abstract metric measure space, the distance function does not have
to satisfy this property, and typically it does not (say, on fractals). Consequently, one
needs some additional conditions that would relate the distance function to the Dirichlet
form and imply the off-diagonal bounds.

3.4 Off-diagonal upper bounds

From now on, let (E ,F) be a regular local Dirichlet form, so that the associated Hunt

process
(
{Xt}t≥0 , {Px}x∈M

)
is a diffusion. Recall that it is related to the heat semigroup

{Pt} of (E ,F) by means of the identity

Ex (f (Xt)) = Ptf (x)

for all f ∈ Bb (M), t > 0 and almost all x ∈ M .
Fix two parameters α > 0 and β > 1 and introduce some conditions.

(Vα) (Volume regularity) For all x ∈ M and r > 0,

μ (B (x, r)) � rα.

(FK) (The Faber-Krahn inequality) For any open set Ω ⊂ M ,

λmin (Ω) ≥ cμ (Ω)−β/α .

For any open set Ω ⊂ M, define the first exist time from Ω by

τΩ = inf {t > 0 : Xt /∈ Ω} .

A set N ⊂ M is called properly exceptional, if it is a Borel set of measure 0 that is
almost never hit by the process Xt starting outside N . In the next conditions N denotes
some properly exceptional set.

(Eβ) (An estimate for the mean exit time from balls ) For all x ∈ M \ N and r > 0

Ex

[
τB(x,r)

]
� rβ

(the parameter β is called the walk dimension of the process).
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x

Xt
Xτ

Figure 3.1: First exit time τ

(Pβ) (The exit probability estimate) There exist constants ε ∈ (0, 1), δ > 0 such that, for
all x ∈ M \ N and r > 0,

Px

(
τB(x,r) ≤ δrβ

)
≤ ε.

(EΩ) (An isoperimetric estimate for the mean exit time ) For any open subset Ω ⊂ M ,

sup
x∈Ω\N

Ex (τΩ) ≤ Cμ (Ω)β/α .

If both (Vα) and (Eβ) are satisfied, then we obtain for any ball B ⊂ M

sup
x∈B\N

Ex (τB) � rβ � μ (B)β/α .

It follows that the balls are in some sense optimal sets for the condition (EΩ).

Example 3.7 If Xt is Brownian motion in Rn, then it is known that

ExτB(x,r) = cnr2,

so that (Eβ) holds with β = 2. This can also be rewritten in the form

ExτB = cn |B|2/n ,

where B = B (x, r).
It is also known that for any open set Ω ⊂ Rn with finite volume and for any x ∈ Ω,

Ex (τΩ) ≤ Ex

(
τB(x,r)

)
,

provided that ball B (x, r) has the same volume as Ω; that is, for a fixed value of |Ω|, the
mean exist time is maximal when Ω is a ball and x is the center. It follows that

Ex (τΩ) ≤ cn |Ω|2/n

so that (EΩ) is satisfied with β = 2 and α = n.
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Finally, introduce notation for the following estimates of the heat kernel:

(UEloc) (Sub-Gaussian upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

for all t > 0 and almost all x, y ∈ M .

(ΦUE) (Φ-upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
1

tα/β
Φ

(
d (x, y)

t1/β

)

for all t > 0 and almost all x, y ∈ M , where Φ is a decreasing positive function on
[0, +∞) such that ∫ ∞

0
sαΦ(s)

ds

s
< ∞.

(DUE) (On-diagonal upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
C

tα/β

for all t > 0 and almost all x, y ∈ M .

(Texp) (The exponential tail estimate) The heat kernel pt exists and satisfies the estimate

∫

B(x,r)c

pt(x, y) dμ(y) ≤ C exp

(

−c
( r

t1/β

) β
β−1

)

, (3.9)

for some constants C, c > 0, all t > 0, r > 0 and μ-almost all x ∈ M .

Note that it is easy to show that (3.9) is equivalent to the following inequality: for
any ball B = B (x0, r) and t > 0,

Pt1Bc (x) ≤ C exp

(

−c
( r

t1/β

) β
β−1

)

for μ-almost all x ∈
1
4
B

(see [25, Remark 3.3]).

(Tβ) (The tail estimate) There exist 0 < ε < 1
2 and C > 0 such that, for all t > 0 and all

balls B = B(x0, r) with r ≥ Ct1/β ,

Pt1Bc(x) ≤ ε for μ-almost all x ∈
1
4
B.

(Sβ) (The survival estimate) There exist 0 < ε < 1 and C > 0 such that, for all t > 0 and
all balls B = B(x0, r) with r ≥ Ct1/β ,

1 − PB
t 1B(x) ≤ ε for μ-almost all x ∈

1
4
B.
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Clearly, we have
(UEloc) ⇒ (ΦUE) ⇒ (DUE) .

Theorem 3.8 (Grigor’yan, Hu [26]) Let (M,d, μ) be a metric measure space and let
(Vα) hold. Let (E ,F) be a regular, local, conservative Dirichlet form in L2(M,μ). Then,
the following equivalences are true:

(UEloc) ⇔ (FK) + (Eβ) ⇔ (EΩ) + (Eβ)

⇔ (FK) + (Pβ) ⇔ (EΩ) + (Pβ)

⇔ (DUE) + (Eβ) ⇔ (DUE) + (Pβ) ,

⇔ (ΦUE)

⇔ (FK) + (Sβ) ⇔ (FK) + (Tβ)

⇔ (DUE) + (Sβ) ⇔ (DUE) + (Tβ)

⇔ (DUE) + (Texp) .

Let us emphasize the equivalence

(UEloc) ⇔ (EΩ) + (Eβ)

where the right hand side means the following: the mean exit time from all sets Ω satisfies
the isoperimetric inequality, and this inequality is optimal for balls (up to a constant
multiple). Note that the latter condition relates the properties of the diffusion (and,
hence, of the Dirichlet form) to the distance function.

Conjecture 3.9 Under the hypotheses of Theorem 3.8,

(UEloc) ⇔ (FK) +
{

λmin (Br) � r−β
}

Indeed, the Faber-Krahn inequality (FK) can be regarded as an isoperimetric inequal-
ity for λmin (Ω), and the condition

λmin (Br) � r−β

means that (FK) is optimal for balls (up to a constant multiple).
Theorem 3.8 is an oversimplified version of a result of [26], where instead of (Vα) one

uses the volume doubling condition, and other hypotheses must be appropriately changed.
The following lemma is used in the proof of Theorem 3.8.

Lemma 3.10 For any open set Ω ⊂ M

λmin (Ω) ≥
1

esupx∈Ω Ex (τΩ)
.

Proof. Let GΩ be the Green operator in Ω, that is,

GΩ = L−1
Ω =

∫ ∞

0
e−tLΩdt.
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We claim that
Ex (τΩ) = GΩ1 (x)

for almost all x ∈ Ω. We have

GΩ1 (x) =
∫ ∞

0
e−tLΩ1Ω (x) dt =

∫ ∞

0
Ex

(
1Ω

(
XΩ

t

))

=
∫ ∞

0
Ex

(
1{t<τΩ}

)
dt = Ex

∫ ∞

0

(
1{t<τΩ}

)
dt = Ex (τΩ) .

Setting
m = esup

x∈Ω
Ex (τΩ) ,

we obtain that GΩ1 ≤ m, so that m−1GΩ is a Markovian operator. Therefore,
∥
∥m−1GΩ

∥
∥

L2→L2 ≤
1 whence spec GΩ ∈ [0,m]. It follows that specLΩ ⊂ [m−1,∞) and λmin (Ω) ≥ m−1.

A new analytical approach is developed in [26] to prove Theorem 3.8, which is different
from the Davies-Gaffney approach [20]. The difficult part in proving Theorem 3.8 is to
deduce (UEloc) from various conditions.

Sketch of proof for Theorem 3.8. We sketch the main steps.

• By a direct integration, we have

(ΦUE) ⇒ (Tβ) .

Indeed, for any x ∈ 1
4B, we see that B(x, 1

2r) ⊂ B. Thus, setting rk = 2k(r/2) and
using condition (ΦUE) and the monotonicity of Φ, we obtain that

∫

M\B
pt(x, y)dμ(y) ≤

∫

M\B(x,r/2)
pt(x, y)dμ(y)

=
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)
pt (x, y) dμ(y)

≤
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)
Ct−α/βΦ

( rk

t1/β

)
dμ(y)

≤
∞∑

k=0

Crα
k+1t

−α/βΦ
( rk

t1/β

)

= C ′
∞∑

k=0

(
2k−1r

t1/β

)α

Φ

(
2k−1r

t1/β

)

≤ C ′
∫ ∞

1
4
r/t1/β

sαΦ(s)
ds

s
. (3.10)

The integral (3.10) converges, and its value can be made arbitrarily small provided
that rβ/t is large enough. Hence, condition (Tβ) follows.

• The following implications hold:

(EΩ)
L. 3.10
⇒ (FK)

T. 3.6
⇒ (DUE) .

In particular, we see that the heat kernel exists under any of the hypotheses of
Theorem 3.8.
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• We can also show that
(Eβ) ⇒ (Pβ) =⇒ (Tβ)

(the implication (Eβ) ⇒ (Pβ) was pointed out in [4]).

• By a bootstrapping technique, we obtain (hard!) the implication

(Tβ) =⇒ (Texp)

(see also [25]). Hence, any set of the hypothesis of Theorem 3.8 imply both (DUE)
and (Texp).

• Finally, it is easy to check the implication

(DUE) + (Texp) ⇒ (UEloc) . (3.11)

Indeed, using the semigroup identity, we have that, for all t > 0, almost all x, y ∈ M ,
and r := 1

2d (x, y),

pt (x, y) =
∫

M
p t

2
(x, z) p t

2
(z, y) dμ(z)

≤

(∫

B(x,r)c
+
∫

B(y,r)c

)

p t
2
(x, z) p t

2
(z, y) dμ(z)

≤ esup
z∈M

p t
2
(z, y)

∫

B(x,r)c
p t

2
(x, z) dμ(z)

+ esup
z∈M

p t
2
(x, z)

∫

B(y,r)c
p t

2
(y, z) dμ(z). (3.12)

On the other hand, by condition (DUE),

esup pt ≤ Ct−α/β ,

whilst by condition (Tβ),

∫

B(x,r)c
p t

2
(x, z) dμ(z) ≤ C exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

.

Therefore, it follows from (3.12) that, for almost all x, y ∈ M ,

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

,

proving the implication (3.11).

Recently, Andres and Barlow [1] gave a new equivalence condition for (UEloc). Con-
sider the following functional inequality.
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(CSAβ) (The cutoff Sobolev annulus inequality ) There exists a constant C > 0 such that,
for all two concentric balls B(x,R), B(x,R + r), there exists a cutoff function ϕ
satisfying ∫

U
f2dμ〈ϕ〉 ≤

1
8

∫

U
ϕ2dμ〈f〉 + Cr−β

∫

U
f2dμ

for any f ∈ F , where U = B(x,R+r)\B(x,R) is the annulus and μ〈ϕ〉 is the energy
measure associated with ϕ:

∫

M
udμ〈ϕ〉 = 2E(uϕ, ϕ) − E(ϕ2, u) for any u ∈ F ∩ C0(M).

We remark here that constant C is universal that is independent of two concentric
balls B(x,R), B(x,R + r) and function f , whilst the cutoff function ϕ may depend on the
balls but is independent of function f . The coefficient 1

8 is not essential and is chosen for
technical reasons.

Theorem 3.11 (Andres, Barlow [1]) Let (M,d, μ) be an unbounded metric measure
space and let (Vα) hold. Let (E ,F) be a regular, local Dirichlet form in L2(M,μ). Then,
the following equivalence is true:

(UEloc) ⇔ (FK) + (CSAβ) .

We mention that here the Dirichlet form is not required to be conservative as in
Theorem 3.8.

The key point in proving Theorem 3.11 is to derive the “Davies-Gaffney” bound [20],
and then use the technique developed in [23], [19] to show a mean value inequality for
weak solutions of the heat equation. It is quite surprising that the Davies-Gaffney method
still works when the walk dimension β may be greater than 2.

4 Two-sided sub-Gaussian bounds

4.1 Using elliptic Harnack inequality

Now we would like to extend the results of Theorems 3.8, 3.11, and obtain also the lower
estimates and the Hölder continuity of the heat kernel. As before, (M,d, μ) is a metric
measure space, and assume in addition that all metric balls are precompact. Let (E ,F) is
a local regular conservative Dirichlet form in L2 (M,μ).

Definition 4.1 We say that a function u ∈ F is harmonic in an open set Ω ⊂ M if

E (u, v) = 0 for all v ∈ F (Ω) .

For example, if M = Rn and (E ,F) is the canonical Dirichlet form in Rn, then a
function u ∈ W 1

2 (Rn) is harmonic in an open set Ω ⊂ Rn if
∫

Rn

〈∇u,∇v〉dx = 0

for all v ∈ H1
0 (Ω) or for v ∈ C∞

0 (Ω). This of course implies that Δu = 0 in a weak sense
in Ω and, hence, u is harmonic in Ω in the classical sense. However, unlike the classical
definition, we a priori require u ∈ W 1

2 (Rn) .
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Definition 4.2 (Elliptic Harnack inequality (H)) We say that M satisfies the elliptic
Harnack inequality (H) if there exist constants C > 1 and δ ∈ (0, 1) such that for any ball
B (x, r) and for any function u ∈ F that is non-negative and harmonic in B (x, r),

esup
B(x,δr)

u ≤ C einf
B(x,δr)

u.

We remark that constants C and δ are independent of ball B(x, r) and function u.
We introduce the near-diagonal lower estimate of heat kernel.

(NLE) (Near-diagonal lower estimate) The heat kernel pt (x, y) exists, and satisfies

pt (x, y) ≥
c

tα/β

for all t > 0 and μ× μ-almost all x, y ∈ M such that d (x, y) ≤ δt1/β , where δ > 0 is
a sufficiently small constant.

Denote by (UEstrong) a modification of condition (UEloc) that is obtained by adding
the Hölder continuity of pt (x, y) and by restricting inequality in (UEloc) to all x, y ∈ M .
In a similar way, we can define condition (NLEstrong).

Theorem 4.3 (Grigor’yan, Telcs [35, Theorem 7.4]) Let (M,d, μ) be a metric mea-
sure space and let (Vα) hold. Let (E ,F) be a regular, strongly local Dirichlet form in
L2(M,μ). Then, the following equivalences are true:

(H) + (Eβ) ⇔ (UEloc) + (NLE)

⇔ (UEstrong) + (NLEstrong) .

This theorem is proved in [35] for a more general setting of volume doubling instead
of (Vα).

Observe that the following implications hold [35, Lemma 7.3]:

(H) ⇒ (M,d) is connected,

(Eβ) ⇒ (E ,F) is conservative,

(Eβ) ⇒ diam (M) = ∞.

Sketch of proof for Theorem 4.3. First one shows that

(Vα) + (Eβ) + (H) ⇒ (FK) ,

which is quite involved and uses, in particular, Lemma 3.10. Once having (Vα) + (Eβ) +
(FK) , we obtain (UEloc) by Theorem 3.8.

Using the elliptic Harnack inequality, one obtains in a standard way the oscillating
inequality for harmonic functions and then for functions of the form u = GΩf (that solves
the equation LΩu = f) in terms of ‖f‖∞ .

If now u = PΩ
t f then u satisfies the equation

d

dt
u = −LΩu,
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and whence

u = −GΩ

(
d

dt
u

)

.

Knowing an upper bound for u, which follows from the upper bound of the heat kernel,
one obtains also an upper bound for d

dtu in terms of u. Applying the oscillation inequality
one obtains the Hölder continuity of u and, hence, of the heat kernel.

Let us prove the on-diagonal lower bound

pt (x, x) ≥ ct−α/β .

Note that (UEloc) and (Vα) imply that
∫

B(x,r)
pt (x, y) dμ (y) ≥

1
2

provided r ≥ Kt1/β (cf. [28, formula (3.8)]). Choosing r = Kt1/β , we obtain

p2t (x, x) =
∫

M
p2

t (x, y) dμ (y)

≥
1

μ (B (x, r))

(∫

B(x,r)
pt (x, y) dμ (y)

)2

≥
c

rα
=

c′

tα/β
.

Then (NLE) follows from the upper estimate for

|pt (x, x) − pt (x, y)|

when y close to x, which follows from the oscillation inequality.
We next characterize (UEloc) + (NLE) by using the estimates of the capacity and of

the Green function.

Definition 4.4 (capacity) Let Ω be an open set in M and A b Ω be a Borel set. Define
the capacity cap(A, Ω) by

cap(A, Ω) := inf {E (ϕ) : ϕ is a cutoff function of (A, Ω)} . (4.1)

It follows from the definition that the capacity cap(A, Ω) is increasing in A, and de-
creasing in Ω, namely, if A1 ⊂ A2, Ω1 ⊃ Ω2, then cap(A1, Ω1) ≤ cap(A2, Ω2). Using the
latter property, let us extend the definition of capacity when A ⊂ Ω as follows:

cap(A, Ω) = lim
n→∞

cap(A ∩ Ωn, Ω) (4.2)

where {Ωn} is any increasing sequence of precompact open subsets of Ω exhausting Ω (in
particular, A ∩ Ωn b Ω).

Note that by the monotonicity property of the capacity, the limit in the right hand
side of (4.2) exists (finite or infinite) and is independent of the choice of the exhausting
sequence {Ωn}.

34



Next, define the resistance res (A, Ω) by

res (A, Ω) =
1

cap(A, Ω)
. (4.3)

We introduce the notions of the Green operator and the Green function.

Definition 4.5 For an open Ω ⊂ M , a linear operator GΩ : L2(Ω) → F(Ω) is called a
Green operator if, for any ϕ ∈ F(Ω) and any f ∈ L2(Ω),

E(GΩf, ϕ) = (f, ϕ) . (4.4)

If GΩ admits an integral kernel gΩ, that is,

GΩf(x) =
∫

Ω
gΩ(x, y)f(y)dμ(y) for any f ∈ L2(Ω), (4.5)

then gΩ is called a Green function.

It is known (cf. [27, Lemma 5.1]) that if (E ,F) is regular and if Ω ⊂ M is open such
that λmin(Ω) > 0, then the Green operator GΩ exists, and in fact, GΩ = (−LΩ)−1, the
inverse of −LΩ, where LΩ is the generator of (E ,F (Ω)). However, the issue of the Green
function gΩ is much more involved, and is one of the key topics in [27].

For an open set Ω ⊂ M , function EΩ is defined by

EΩ (x) := GΩ1(x) (x ∈ M), (4.6)

namely, the function EΩ is a unique weak solution of the following Poisson-type equation

− LΩEΩ = 1, (4.7)

provided that λmin(Ω) > 0.
It is known that

EΩ (x) = Ex (τΩ) for μ-a.a. x ∈ M. (4.8)

Clearly, if the Green function gΩ exists, then

EΩ (x) = GΩ1(x) =
∫

Ω
gΩ (x, y) dμ(y) (4.9)

for μ-almost all x ∈ M .
We introduce the following hypothesis.

(Rβ) (Resistance condition (Rβ)) We say that the resistance condition (Rβ) is satisfied if,
there exist constants K,C > 1 such that, for any ball B of radius r > 0,

C−1 rβ

μ (B)
≤ res (B,KB) ≤ C

rβ

μ (B)
, (4.10)

where constants K and C are independent of the ball B. Equivalently, (4.10) can
be written in the form

res (B,KB) �
rβ

μ (B)
.
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(
E′

β

)
(Condition

(
E′

β

)
) We say that condition

(
E′

β

)
holds if, there exist two constants

C > 1 and δ1 ∈ (0, 1) such that, for any ball B of radius r > 0,

esup
B

EB ≤ Crβ ,

einf
δ1B

EB ≥ C−1rβ .

(Gβ) (Condition (Gβ)) We say that condition (Gβ) holds if, there exist constants K > 1
and Ċ > 0 such that, for any ball B := B (x0, R), the Green kernel gB exists and is
jointly continuous off the diagonal, and satisfies

gB (x0, y) ≤ C

∫ R

K−1d(x0,y)

sβds

sV (x, s)
for all y ∈ B \ {x0},

gB (x0, y) ≥ C−1

∫ R

K−1d(x0,y)

sβds

sV (x, s)
for all y ∈ K−1B \ {x0},

where V (x, r) = μ(B(x, r)) as before.

Theorem 4.6 (Grigor’yan, Hu [27, Theorem 3.14]) Let (M,d, μ) be a metric mea-
sure space and let (Vα) hold. Let (E ,F) be a regular, strongly local Dirichlet form in
L2(M,μ). Then, the following equivalences are true:

(H) +
(
E′

β

)
⇔ (Gβ) ⇔ (H) + (Rβ)

⇔ (UEloc) + (NLE)

⇔ (UEstrong) + (NLEstrong) .

We mention that condition (Vα) can be replaced by conditions (V D) and (RV D), the
latter refers to the reverse doubling condition (cf. [27]).

Sketch of proof for Theorem 4.6. The proofs of Theorem 4.6 consists of two
parts.

• Part One. Firstly, the following implications hold:

(UEstrong) + (NLEstrong)

m

(UEloc) + (NLE)

m ⇑

(H) + (Eβ) ⇒ (H) +
(
E′

β

)

In fact, by Theorem 4.3, we only need to show that

(Eβ) ⇒
(
E′

β

)
, (4.11)

(H) +
(
E′

β

)
=⇒ (UEloc) + (NLE). (4.12)
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The implication (4.11) can be proved directly by using the probability argument, see
[27, Theorem 3.14]. And the implication (4.12) can be done by showing the following

(H) +
(
E′

β

)
⇒ (FK) ([35, formula (3.17) and T.3.11])

(
E′

β

)
⇒ (Sβ) (by [32, formula (6.34)])

(FK) + (Sβ) ⇒ (UEloc) (by Theorem 3.8)

(H) +
(
E′

β

)
⇒ (NLE) (by [35, Section 5.4]).

• Part Two. Secondly, we need to show that

(H) +
(
E′

β

)
⇔ (Gβ) ⇔ (H) + (Rβ) .

This is the hard part. The cycle implications are obtained in [27, Section 8] as
follows:

(H) + (Rβ) =⇒ (Gβ) =⇒ (H) +
(
E′

β

)
=⇒ (H) + (Rβ) .

One of the most challenging results (cf. [27, Lemma 5.7] ) is to obtain an annulus
Harnack inequality for the Green function, without assuming any specific properties
of the metric d, unlike previously known similar results in [6], [34] where the geodesic
property of the distance function was used.

4.2 Matching upper and lower bounds

The purpose of this section is to improve both (UEloc) and (NLE) in order to obtain
matching upper and lower bounds for the heat kernel. The reason why (UEloc) and (NLE)
do not match, in particular, why (NLE) contains no information about lower bound of
pt (x, y) for distant x, y is the lack of chaining properties of the distance function, that is
an ability to connect any two points x, y ∈ M by a chain of balls of controllable radii so
that the number of balls in this chain is also under control.

For example, the chain condition considered above is one of such properties. If (M,d)
satisfies the chain condition, then as we have already mentioned, (NLE) implies the full
sun-Gaussian lower estimate by the chain argument and the semigroup property (see for
example [28, Corollary 3.5]).

Here we consider a setting with weaker chaining properties. For any ε > 0, we introduce
a modified distance dε (x, y) by

dε (x, y) = inf
{xi} is ε-chain

N∑

i=1

d (xi, xi−1) , (4.13)

where an ε-chain is a sequence {xi}
N
i=0 of points in M such that

x0 = x, xN = y, and d(xi, xi−1) < ε for all i = 1, 2, ..., N.

Clearly, dε (x, y) is decreases as ε increases and dε (x, y) = d (x, y) if ε > d (x, y). As ε ↓
0, dε (x, y) increases and can go to ∞ or even become equal to ∞. It is easy to see that
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dε (x, y) satisfies all properties of a distance function except for finiteness, so that it is a
distance function with possible value +∞.

It is easy to show that
dε (x, y) � εNε (x, y) ,

where Nε (x, y) is the smallest number of balls in a chain of balls of radius ε connecting x
and y:

x0=x

xN=yxi

Figure 4.1: Chain of balls connecting x and y

Nε can be regarded as the graph distance on a graph approximation of M by an ε-net.
If d is geodesic, then the points {xi} of an ε-chain can be chosen on the shortest

geodesic, whence dε (x, y) = d (x, y) for any ε > 0. If the distance function d satisfies the
chain condition, then one can choose in (4.13) an ε-chain so that d (xi, xi+1) ≤ C d(x,y)

N ,
whence dε (x, y) ≤ Cd (x, y). In general, dε (x, y) may go to ∞ as ε → 0, and the rate of
growth of dε (x, y) as ε → 0 can be regarded as a quantitative description of the chaining
properties of d.

We need the following hypothesis

Cβ (Chaining property) For all x, y ∈ M ,

εβ−1dε (x, y) → 0 as ε → 0,

or equivalently,
εβNε (x, y) → 0 as ε → 0.

For x 6= y we have εβ−1dε (x, y) → ∞ as ε → ∞, which implies under (Cβ) that for
any t > 0, there is ε = ε (t, x, y) satisfying the identity

εβ−1dε (x, y) = t (4.14)

(always take the maximal possible value of ε). If x = y, then set ε (t, x, x) = ∞.
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Theorem 4.7 (Grigor’yan, Telcs [35, Section 6]) Assume that all the hypothesis of
Theorem 4.6 hold. If (Eβ) + (H) and (Cβ) are satisfied, then

pt (x, y) �
C

tα/β
exp



−c

(
dβ

ε (x, y)
t

) 1
β−1



 (4.15)

�
C

tα/β
exp (−cNε (x, y)) , (4.16)

where ε = ε (t, x, y).

Since dε (x, y) ≥ d (x, y), the upper bound in (4.15) is an improvement of (UEloc);
similarly the lower bound in (4.15) is an improvement of (NLE). The proof of the upper
bound in (4.15) follows the same line as the proof of (UEloc) with careful tracing all places
where the distance d (x, y) is used and making sure that it can be replaced by dε (x, y).
The proof of the lower bound in (4.16) uses (NLE) and the semigroup identity along
the chain with Nε balls connecting x and y. Finally, observe that (4.15) and (4.16) are
equivalent, that is

Nε �

(
dβ

ε (x, y)
t

) 1
β−1

,

which follows by substituting here Nε � dε/ε and t = εβ−1dε (x, y) .
By Theorem 4.6, the same conclusion in Theorem 4.7 is true if (Eβ) + (H) is instead

replaced by the one of conditions (H) +
(
E′

β

)
, (Gβ) and (H) + (Rβ).

Example 4.8 A good example to illustrate Theorem 4.7 is the class of post critically finite
(p.c.f.) fractals. For connected p.c.f. fractals with regular harmonic structure, the heat
kernel estimate (4.16) was proved by Hambly and Kumagai [36], see also [40, Theorem
5.2]. In this setting d (x, y) is the resistance metric of the fractal M and μ is the Hausdorff
measure of M of dimension α := dimH M . Hambly and Kumagai proved that (Vα) and
(Eβ) are satisfied with β = α + 1. The condition (Cβ) follows from their estimate

Nε (x, y) ≤ C

(
d (x, y)

ε

)β/2

,

because
εβNε (x, y) ≤ Cd (x, y)β/2 εβ/2 → 0 as ε → 0.

The Harnack inequality (H) on p.c.f. fractals was proved by Kigami [39, Proposition 3.2.7,
p.78]. Hence, Theorem 4.7 applies and gives the estimates (4.15)-(4.16).

The estimate (4.16) means that the diffusion process goes from x to y in time t in the
following way. The process firstly “computes” the value ε (t, x, y), secondly “detects” a
shortest chain of ε-balls connecting x and y, and then goes along that chain.

This phenomenon was first observed by Hambly and Kumagai on p.c.f. fractals, but
it seems to be generic. Hence, to obtain matching upper and lower bounds, one needs in
addition to the usual hypotheses also the following information, encoded in the function
Nε (x, y): the graph distance between x and y on any ε-net approximation of M .
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x

y

Figure 4.2: Two shortest chains of ε-ball for two distinct values of ε provide different
routes for the diffusion from x to y for two distinct values of t.

Example 4.9 (Computation of ε) Assume that the following bound is known for all
x, y ∈ M and ε > 0

Nε (x, y) ≤ C

(
d (x, y)

ε

)γ

,

where 0 < γ < β, so that (Cβ) is satisfied (since Nε ≥ d (x, y) /ε, one must have γ ≥ 1).
Since by (4.14) we have εβNε � t, it follows that

εβ

(
d (x, y)

ε

)γ

≥ ct,

whence

ε ≥ c

(
t

d (x, y)γ

) 1
β−γ

.

Consequently, we obtain

Nε (x, y) ≤ Cd (x, y)γ ε−γ ≤ Cd (x, y)γ

(
d (x, y)γ

t

) γ
β−γ

= C

(
d (x, y)β

t

) γ
β−γ

,

and so

pt (x, y) ≥
c

tα/β
exp



−

(
d (x, y)β

ct

) γ
β−γ



 .

Similarly, the lower estimate of Nε

Nε (x, y) ≥ c

(
d (x, y)

ε

)γ

implies an upper bound for the heat kernel

pt (x, y) ≤
C

tα/β
exp



−

(
d (x, y)β

Ct

) γ
β−γ



 .
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Remark 4.10 Assume that (Vα) holds and all balls in M of radius ≥ r0 are connected,
for some r0 > 0. We claim that (Cβ) holds with any β > α. The α-regularity of measure
μ implies, by the classical ball covering argument, that any ball Br of radius r can be
covered by at most C

(
r
ε

)α balls of radii ε ∈ (0, r). Consequently, if Br is connected then
any two points x, y ∈ Br can be connected by a chain of ε-balls containing at most C

(
r
ε

)α

balls, so that

Nε (x, y) ≤ C
(r

ε

)α
.

Since any two points x, y ∈ M are contained in a connected ball Br (say, with r =
r0 + d (x, y)), we obtain

εβNε (x, y) ≤ Cεβ−αrα → 0

as ε → 0, which was claimed.

4.3 Further results

We discuss here some consequences and extensions of the above results. For this, we
introduce two-sided estimates of the heat kernel.

(ULEloc) (Upper and lower estimates) The heat kernel pt (x, y) exists and satisfies

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

. (4.17)

Theorem 4.11 Let (M,d, μ) be a metric measure space, and let (E ,F) be a regular, con-
servative Dirichlet form in L2(M,μ). If (M,d) satisfies the chain condition, then the
following equivalences take place:

(Vα) +






(Eβ) + (H)(
E′

β

)
+ (H)

(Rβ) + (H)
(Gβ)

+ (locality) ⇐⇒ (ULEloc),

where condition (locality) means that (E ,F) is local.

Remark 4.12 Observe that if (E ,F) is regular, conservative and local, then (E ,F) is
strongly local; this is easily seen by using the Beuling-Deny decomposition [21, Theorem
3.2.1, p.120] and by noting that both killing and jump measures disappear.

Remark 4.13 Observe also that (Vα) + (NLE)+ (chain condition) implies that the off-
diagonal lower estimate

pt (x, y) ≥
C ′

tα/β
exp

(

−c′
(

dβ(x, y)
t

) 1
β−1

)

(4.18)

for μ-almost all x, y ∈ M and all t > 0, see for example [29, Proposition 3.1] or [4], [28,
Corollary 3.5].
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Sketch of proof for Theorem 4.11. (1) “⇒”.
Let us show the implication

(Vα) + (Eβ) + (H) + (locality) ⇒ (ULEloc). (4.19)

Indeed, by Remark 4.12, we have that (E ,F) is strongly local. Now, using Theorem 4.3,
we obtain (UEloc) + (NLE). Using Remark 4.13, we see that (4.18) holds, showing that
(ULEloc) is true.

Similarly, using Theorem 4.6, we obtain the other three implications “⇒”.
(2) “⇐”.
Let us show the opposite implication

(ULEloc) ⇒ (Vα) + (Eβ) + (H) + (locality). (4.20)

Indeed, note that

(ULEloc) ⇒ (Vα) (by Theorem 2.2)

(UEloc) ⇒ (locality) (by Theorem 2.14)

(UEloc) + (NLE) ⇒ (Eβ) + (H) (by Theorem 4.3)

showing that the implication (4.20) holds.
Similarly, all the other three implications “⇐=” also hold.

Remark 4.14 The implication (4.19) can also be proved by using Theorem 4.7 and the
fact that dε � d.

Conjecture 4.15 The condition (Eβ) above may be replaced by

λmin (B (x, r)) � r−β . (λβ)

In fact, (Eβ) in all statements can be replaced by the resistance condition:

res(Br, B2r) � rβ−α (Rβ)

where Br = B (x, r). In the strongly recurrent case α < β, it alone implies the elliptic
Harnack inequality (H) so that two sided heat kernel estimates are equivalent to (Vα) +
(Rβ) as was proved by Barlow, Coulhon, Kumagai [9] (in a setting of graphs) and was
discussed in M. Barlow’s lectures.

An interesting (and obviously hard) question is the characterization of the elliptic
Harnack inequality (H) in more geometric terms - so far nothing is known, not even a
conjecture.

One can consider also a parabolic Harnack inequality (PHI), which uses caloric func-
tions instead of harmonic functions. Then in a general setting and assuming the volume
doubling condition (V D) (instead of (Vα)), the following holds (cf. [11]):

(PHI) ⇔ (UEloc) + (NLE) .

On the other hand, (PHI) is equivalent to

Poincaré inequality + cutoff Sobolev inequality,

see [8].

Conjecture 4.16 The cutoff Sobolev inequality here can be replaced by (λβ) and/or (Rβ) .
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5 Upper bounds for jump processes

We have investigated above the heat kernel for the local Dirichlet form. In this chapter we
shall study the non-local Dirichlet form and present the equivalence conditions for upper
bounds of the associated heat kernel. As an interesting example, we discuss the heat kernel
estimates for effective metric spaces.

A non-local Dirichlet form will give arise to a jump process, that is, the trajectories of
this process are discontinuous, as we have already seen for a symmetric stable process of
index β (Lévy process). And the heat kernel decays at a polynomial rate (cf. 1.2), instead
of an exponential rate as for a local Dirichlet form.

Jump process have found various applications in science. For instance, a Lévy flight is
a jump process and can be used to describe animal foraging patterns, the distribution of
human travel and some aspects of earthquake behavior (cf. [13]).

5.1 Upper bounds for non-local Dirichlet forms

The techniques for obtaining heat kernel bounds for non-local Dirichlet forms has been
developed by a number of authors, see for example [7, 10, 14, 17, 18] and the references
therein. The basic approach to obtaining heat kernel upper estimates used in these papers
consists of the two steps. The first step is to obtain the heat kernel upper bounds for a
truncated Dirichlet form, that is, in the case when the jump density J (x, y) has a bounded
range. In this case one uses the Davies method as it was presented in the seminal work [15]
and where the cut-off functions of form (λ − d(x0, x))+ were used (where λ is a positive
constant). This method can be used as long as the cut-off functions belong to the domain
of the Dirichlet form, which is the case only when β < 2 (hence, if β ≥ 2 then this method
does not work).

The second step is to obtain heat kernel estimates for the original Dirichlet form
by comparing the heat semigroup of the truncated Dirichlet form with the original heat
semigroup. We remark that while the first step was done by purely analytic means, the
second step in the above-mentioned papers used a probabilistic argument.

Here we describe an alternative new approach of [32] for obtaining upper bounds.
Recall that by a theorem of Beurling and Deny, any regular conservative Dirichlet form

admits a decomposition
E(u, v) = E (L)(u, v) + E (J)(u, v), (5.1)

where E (L) is a local part and

E (J) (u, v) =
∫ ∫

M×M\diag

(u(x) − u(y)) (v(x) − v(y)) dj(x, y) (5.2)

is a jump part with a jump measure j defined on M × M \ diag . In our setting the jump
measure j will have a density with respect to μ × μ, which will be denoted by J (x, y) ,
and so the jump part E (J) becomes

E (J) (u, v) =
∫ ∫

M×M

(u(x) − u(y)) (v(x) − v(y)) J(x, y)dμ(y)dμ(x). (5.3)

We introduce the following hypothesis.
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(V≤) (Upper α-regularity) For all x ∈ M and all r > 0,

V (x, r) ≤ Crα.

(UE) (Upper estimate of non-local type) The heat kernel pt exists and satisfies the off-
diagonal upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

for all t > 0 and μ-almost all x, y ∈ M.

(J≤) (Upper bound of jump density ) The jump density exists and admits the estimate

J(x, y) ≤ Cd(x, y)−(α+β),

for μ-almost all x, y ∈ M .

(Tstrong) (Strong tail estimate) There exist constants c > 0 and β > 0 such that, for all balls
B = B(x0, r) and for all t > 0,

Pt1Bc(x) ≤
ct

rβ
for μ-almost all x ∈

1
4
B.

Clearly, we have that (Texp) ⇒ (Tstrong) ⇒ (Tβ) .

We now state the main technical result of [32].

Theorem 5.1 (Grigor’yan, Hu, Lau [32]) Let (M,d, μ) be a metric measure space
with precompact balls, and let (E ,F) be a regular conservative Dirichlet form in L2 (M,μ)
with jump density J . Then the following implication holds:

(V≤) + (DUE) + (J≤) + (Sβ) ⇒ (UE) . (5.4)

We remark that by [28, Theorem 3.2], if (E ,F) is conservative then

(V≤) + (UE) ⇒ (Vα) .

Hence, the hypotheses of Theorem 5.1 imply that μ is α-regular.
Sketch of proof for Theorem 5.1. We sketch the ideas of the proof.

• Step 1. We decompose E(u) into two parts:

E(u) = E (ρ)(u) +
∫

M

∫

M\B(x,ρ)
(u(x) − u(y))2 J(x, y)dμ(y)dμ(x),

where ρ ∈ (0,∞) is any fixed number. Then the form
(
E(ρ),F

)
can be extended to

a regular Dirichlet form
(
E (ρ),F (ρ)

)
. Indeed, since using condition (J≤),

esup
x∈M

∫

B(x,ρ)c

J(x, y)dμ(y) < ∞,

the form
(
E (ρ),F

)
is closable, and its closure

(
E(ρ),F (ρ)

)
in L2 is a regular Dirichlet

form in L2. Note that
(
E (ρ),F (ρ)

)
is ρ-local (non-local): E(ρ)(f, g) = 0 for any two

functions f, g ∈ F (ρ) with compact supports such that

dist (supp f, supp g) > ρ.
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• Step 2. We need to obtain upper estimates of the heat kernel qt(x, y) of the truncated
Dirichlet form

(
E(ρ),F (ρ)

)
. Indeed, conditions (DUE), (J≤) , (Sβ) and (V≤) imply

the following estimate of qt(x, y) :

qt(x, y) ≤
C

tα/β
exp

(
4ρ−βt

)
exp

(

−c

(
d(x, y)

ρ
∧

ρ

t1/β

))

(5.5)

for all t > 0 and μ-almost all x, y ∈ M , where constants C, c > 0 depend on
the constants in the hypotheses but are independent of ρ. This can be done with a
certain amount of effort, by using the bootstrapping technique where the comparison
inequality [31, Corollary 4.8, Remark 4.10] for heat semigroups play an important
rôle.

• Step 3. Next we apply the following useful inequality between two heat kernels:

pt(x, y) ≤ qt(x, y) + 2t esup
x∈M,y∈B(x,ρ)c

J(x, y) (5.6)

for all t > 0 and almost all x, y ∈ M ; this inequality follows from the parabolic
maximum principle alone. Therefore, by choosing an appropriate ρ, it follows from
(5.5), (5.6) that, for any real n ≥ 0,

pt(x, y) ≤
c(n)
tα/β

(

1 +
d(x, y)
t1/β

)− (α+β)n
n+α+β

(5.7)

for almost all x, y ∈ M and all t > 0.

Note that (5.7) is nearly close to our desired estimate (UE) . However, one can
not just obtain (UE) by directly taking the limit as n → ∞, since we do not know
whether the coefficient c(n) is bounded uniformly in n. We need the second iteration.

• Step 4. Finally, we will obtain (UE) by a self-improvement of (5.7). Indeed, one
can use (5.7) to obtain

∫

B(x,r)c

pt(x, y)dμ(y) ≤ C(n)
(
rt−1/β

)−θ
,

where θ = nβ−α(α+β)
n+α+β ∈ (0, β) (note that this estimate is sharper than condition

(Sβ)), and then repeating the above procedure, we arrive at (UE).

Now we can state some equivalences for (UE).

Theorem 5.2 (Grigor’yan, Hu, Lau [32]) Let (M,d, μ) be a metric measure space
with precompact balls, and let (E ,F) be a regular conservative Dirichlet form in L2 (M,μ)
with jump density J . If (V≤) holds, then the following equivalences are true:

(UE) ⇔ (UEΦ) + (J≤)

⇔ (DUE) + (J≤) + (Tβ)

⇔ (DUE) + (J≤) + (Sβ)

⇔ (DUE) + (J≤) + (Tstrong) . (5.8)
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Proof. Observe that the implication (UE) ⇒ (J≤) holds by [10, p. 150], and (UE) ⇒
(UEΦ) is trivial by taking Φ(s) = (1 + s)−(α+β). The implication (UEΦ) ⇒ (DUE)
is obvious. The implication (UEΦ) ⇒ (Tβ) was proved in (3.10) (see also [28, formula
(3.6),p.2072]). Since (E ,F) is conservative, the equivalence (Tβ) ⇔ (Sβ) holds by [25,
Theorem 3.1,p.96]. By Theorem 5.1 we have

(DUE) + (J≤) + (Sβ) ⇒ (UE) ,

which closes the cycle of implications, thus proving the first three equivalences.
Finally, the implication (UE) ⇒ (Tstrong) is true by using (3.10), and hence

(UE) ⇒ (DUE) + (J≤) + (Tstrong)

⇒ (DUE) + (J≤) + (Tβ) ⇒ (UE) ,

which finishes the proof.

Remark 5.3 The upper estimate (UE) is best possible for non-local forms in the following
sense: if the heat kernel pt satisfies the estimate

pt(x, y) ≤
1

tα/β
Φ

(
d(x, y)
t1/β

)

for all t > 0 and μ-almost all x, y ∈ M , where Φ is a continuous decreasing function on
[0, +∞), then necessarily

Φ (s) ≥ c (1 + s)−(α+β)

for some c > 0 (see Theorem 2.14).

Remark 5.4 Under the standing assumptions of Theorem 5.2, the following equivalence
is true

(UEloc) ⇔ (DUE) + (“locality”) + (Sβ) .

Indeed, since (UEloc) is stronger than (UE), it implies (DUE) and (Sβ) by Theorem 5.2.
Next, (UEloc) ⇒(“locality”) by Theorem 2.14 above. The opposite implication

(DUE) + (“locality”) + (Sβ) ⇒ (UEloc)

was stated in Theorem 3.8.

In order to state some consequence of Theorem 5.2, we need the following Proposition.
Define first the following condition:

(J≥) (Lower bound of jump density ) There exist constants C,α, β > 0 such that, for
μ-almost all x 6= y,

J(x, y) ≥ C−1d(x, y)−(α+β).

Proposition 5.5 Let (M,d, μ) be a metric measure space, and let (E ,F) be a regular
Dirichlet form in L2 (M,μ) with jump density J . Then

(Vα) + (J≥) ⇒ (DUE) . (5.9)
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Proof. As was proved in [37, Theorem 3.1], under (Vα) the following inequality holds
for all non-zero functions u ∈ L1 ∩ L2:

∫

M

∫

M

(u (x) − u (y))2

d (x, y)α+β
dμ (x) dμ (y) ≥ c||u||2(1+β/α)

2 ‖u‖−2β/α
1 ,

where c is a positive constant. Using (5.1), (5.3) and (J≥) we obtain

E (u) = E (L) (u) + E (J) (u)

≥ C

∫

M

∫

M

(u (x) − u (y))2

d (x, y)α+β
dμ (x) dμ (y)

≥ c||u||2(1+β/α)
2 ‖u‖−2β/α

1

for all u ∈ F ∩ L1. Hence, (DUE) follows by Theorem 3.6.
We obtain the following consequence of Theorem 5.2.

Theorem 5.6 (Grigor’yan, Hu, Lau [32]) Let (M,d, μ) be a metric measure space
with precompact balls, and let (E ,F) be a regular conservative Dirichlet form in L2 (M,μ)
with jump density J . If (Vα) holds and J(x, y) � d(x, y)−(α+β), then

(UE) ⇔ (Sβ) . (5.10)

Proof. Let us show that (Sβ) ⇒ (UE) . Indeed, (DUE) holds by Proposition 5.5.
Hence, (UE) is satisfied by Theorem 5.2. The opposite implication (UE) ⇒ (Sβ) holds
also by Theorem 5.2.

Therefore, if (Vα) holds and J(x, y) � d(x, y)−(α+β), then in order to obtain off-diagonal
upper bounds of heat kernels, one needs only to verify the survival condition (Sβ) . In the
sequel, we will show that the survival condition (Sβ) holds for a class of measure spaces
with effective resistance metrics.

5.2 Upper bounds using effective resistance

We will show how Theorem 5.2 can be applied for a certain class of metric measure spaces
with effective resistance.

Let (E ,F) be a regular Dirichlet form in L2 (M,μ) as before. Recall that the effective
resistance R(A,B) between two disjoint non-empty closed subsets A and B of M is defined
by

R(A,B)−1 = inf {E (u) : u ∈ F ∩ C0, u|A = 1 and u|B = 0} . (5.1)

It follows from (5.1) that, for any fixed A, R(A,B) is a non-increasing function of B.
Denote by

R(x,B) := R({x}, B) and R(x, y) := R({x}, {y}).

In general, it may happen that R(x, y) = ∞ for some points x, y ∈ M . Below we will
exclude this case.

Fix a parameter γ > 0, and introduce conditions (R1) and (R2).

(R1) : For all u ∈ F ∩ C0(M) and all x, y ∈ M , the following inequality holds:

|u(x) − u(y)|2 ≤ Cd(x, y)γE (u) .
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(R2) : For all x ∈ M and r > 0,
R(x,B(x, r)c) ≥ C−1rγ .

Theorem 5.7 (Grigor’yan, Hu, Lau [32]) Let (E ,F) be a regular Dirichlet form in
L2 (M,μ). Then

(Vα) + (R1) + (R2) ⇒ (Sβ) + (DUE),

where β = α + γ. Consequently, under the standing conditions (Vα) + (R1) + (R2), we
have that

(UE) ⇔ (J≤). (5.2)

Sketch of proof for Theorem 5.7. The proof consists of the following five steps.

• Step 1. For any ball B := B(x0, r), using conditions (R1) and (R2) , we can obtain
the two-sided estimate of the Green functions gB(x, y) :

sup
x,y∈B

gB(x, y) ≤ Crγ , (5.3)

inf
y∈B(x0,ηr)

gB(x0, y) ≥ C−1rγ , (5.4)

where C > 0 and η ∈ (0, 1).

• Step 2. Therefore, under condition (Vα), it follows from (5.3), (5.4) that condition(
E′

β

)
holds:

esup
B

EB ≤ Crα+γ , (5.5)

einf
δ1B

EB ≥ C−1rα+γ , (5.6)

where EB is the weak solution of the Poisson-type equation (4.7) as before, and
C > 0 and δ1 ∈ (0, 1/2).

• Step 3. To show condition (Sβ), observe that, for all t > 0 and μ-almost all x ∈ B,

PB
t 1B(x) ≥

EB(x) − t

‖EB‖∞
, (5.7)

which follows by using the parabolic maximum principle, nothing else. Hence, using
(5.5), (5.6),

PB
t 1B(x) ≥

EB(x) − t

‖EB‖∞
≥ c − c1tr

−β

≥
c

2
,

for all t > 0 and μ-almost all x ∈ B(x0, δ1r), provided that tr−β is small enough,
thus proving (Sβ).

48



x

y

B(x,r)

B(x,2r)

Ω
suppf

Figure 5.1:

• Step 4. We show that (R1) ⇒ (DUE). Consider a function f ∈ F∩C0(Ω) normalized
so that sup |f | = 1, and let x ∈ Ω be a point such that |f(x)| = 1. Let r be the
largest radius such that B(x, r) ⊂ Ω. Then the ball B (x, 2r) is not covered by Ω so
that there exists a point y ∈ B (x, 2r) \ Ω (note that M is unbounded by condition
(Vα)). In particular, y /∈ supp f (see Figure 5.1 ). that E (J) (f) ≤ E (f) and by the
α-regularity of μ

r ≤ C [μ (B(x, r))]1/α ≤ C [μ (Ω)]1/α ,

we obtain from (R1) that

1 = |f(y) − f(x)|2

≤ Cd(y, x)β−αE (J) (f)

≤ C (2r)β−α E (f) ≤ C2β−α [μ (Ω)]β/α−1 E (f) .

Since ‖f‖2
2 ≤ μ (Ω), it follows that

E (f)

‖f‖2
2

≥ c [μ (Ω)]−β/α ,

for some c > 0, thus proving the Faber-Krahn inequality. Hence, condition (DUE)
follows by using Theorem 3.6.

• Step 5. Finally, with a certain amount of effort [32, Prop.6.5, Lem.6.4], one can show
that

(R1) + (R2) ⇒ conservativeness of (E ,F) .

Therefore, the equivalence (5.2) follows directly by using Theorem 5.2.
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