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1 Differential forms on a finite set

Let V be a non-empty finite set. Denote by Λ0 = Λ0 (V ) the linear space
of all K-valued functions on V , where K is a fixed scalar field, say K = R
or K = C. More generally, for any integer p ≥ 0, denote by Λp = Λp (V )
the linear space of all K-valued functions on V p+1 = V × ...× V︸ ︷︷ ︸

p+1

. Clearly,

dim Λp = |V |p+1 .

Definition. Elements of Λp are referred to as p-forms on V .

The value of a p-form ω at a point (i0, i1, ..., ip) ∈ V p+1 will be denoted
by ωi0i1...ip . In particular, the value of a function f ∈ Λ0 (V ) at i ∈ V
will be denoted by fi.

Denote by ej0...jp a p-form that takes value 1 ∈ K at the point
(j0, j1, ..., jp) and 0 at all other points. For example, ej is a function
on V that is equal to 1 at j and 0 away from j. Let us refer to ej0...jp

as an elementary p-form. Clearly, the family {ej0...jp} of all elementary
p-forms is a basis in the linear space Λp and, for any ω ∈ Λp,

ω =
∑

j0,...,jp∈V

ωj0...jpe
j0...jp .
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1.1 Exterior derivative

Definition. Define the exterior derivative d : Λp → Λp+1 by

(dω)i0...ip+1
=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1
, (1.1)

for any ω ∈ Λp, where the hat îq means omission of the index iq.

For example, for a function f ∈ Λ0 we have

(df)ij = fj − fi,

for 1-form ω
(dω)ijk = ωjk − ωik + ωij ,

for a 2-form ω
(dω)ijkl = ωjkl − ωikl + ωijl − ωijk.
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It follows from (1.1) that

(
dej0...jp

)
i0...ip+1

=

p+1∑

q=0

(−1)q e
j0...jp

i0...îq ...ip+1

=

p+1∑

q=0

(−1)q e
j0...jq−1iqjq ...jp

i0...iq ...ip+1

=

p+1∑

q=0

(−1)q
∑

i

e
j0...jq−1ijq ...jp

i0...ip+1

whence

dej0...jp =
∑

i

p+1∑

q=0

(−1)q ej0j1...jq−1ijq ...jp . (1.2)

For example,

dej =
∑

i

(
eij − eji

)
,

dejk =
∑

i

(
eijk − ejik + ejki

)
.

3



Lemma 1.1 For any p ≥ 0 and all ω ∈ Λp,

d2ω = 0. (1.3)

Proof. We have

(
d2ω
)

i0...ip+2
=

p+2∑

q=0

(−1)q (dω)i0...îq ...ip+2

=

p+2∑

q=0

(−1)q

(
q−1∑

r=0

(−1)r ωi0...îr ...îq ...ip+2
+

p+2∑

r=q+1

(−1)r−1 ωi0...îq ...îr ...ip+2

)

=
∑

0≤r<q≤p+2

(−1)q+r ωi0...îr ...îq ...ip+2

−
∑

0≤q<r≤p+2

(−1)q+r ωi0...îq ...îr...ip+2
.

After switching q and r in the second sum we see that it is equal to the
first one, whence d2ω = 0 follows.
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1.2 Concatenation and product rule

Definition. For forms ϕ ∈ Λp and ψ ∈ Λq denote by ϕψ a form from
Λp+q that is defined by

(ϕψ)i0...ip+q
= ϕi0...ipψipip+1...ip+q

. (1.4)

The form ϕψ is called the concatenation of ϕ and ψ.

Clearly, ϕψ is a bilinear operation with respect to ϕ, ψ. For example,
if ϕ is a function, that is, p = 0, then ϕψ ∈ Λq and

(ϕψ)i0...iq
= ϕi0ψi0...iq .

Also ψϕ ∈ Λq and
(ψϕ)i0...iq

= ψi0...iqϕiq .

For the elementary forms ei0...ip and ej0...jq we have

ei0...ipej0...jq =

{
0, ip 6= j0,
ei0...ipj1...iq , ip = j0.
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Lemma 1.2 For all ϕ ∈ Λp and ψ ∈ Λq, we have

d (ϕψ) = (dϕ) ψ + (−1)p ϕdψ. (1.5)

Proof. Denoting ω = ϕψ, we have

(dω)i0...ip+q+1
=

p+q+1∑

r=0

(−1)r ωi0...îr ...ip+q+1

=

p∑

r=0

(−1)r ωi0...îr ...ip+1...ip+q+1
+

p+q+1∑

r=p+1

(−1)r ωi0...ip...îr...ip+q+1

=

p∑

r=0

(−1)r ϕi0...îr...ip+1
ψip+1...ip+q+1

+

p+q+1∑

r=p+1

(−1)r ϕi0...ipψip...îr ...ip+q+1
.

Noticing that

(dϕ)i0...ip+1
=

p+1∑

r=0

(−1)r ϕi0...îr ...ip+1

and

(dψ)ip...ip+q+1
=

p+q+1∑

r=p

(−1)r−p ψip...îr ...ip+q+1
,
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we obtain

(dω)i0...ip+q+1
=

[
(dϕ)i0...ip+1

− (−1)p+1 ϕi0...ip

]
ψip+1...ip+q+1

+ (−1)p ϕi0...ip

[
(dψ)ip...ip+q+1

− ψip+1...ip+q+1

]

= ((dϕ) ψ)i0...ip+q+1
+ (−1)p (ϕdψ)i0...ip+q+1

which was to be proved.

1.3 Spaces of paths and Stokes’s formula

An elementary p-path is any (ordered) sequence i0, ..., ip of p + 1 vertices
of V that will be denoted simply by i0...ip or by ei0...ip . We use the
notation ei0...ip when we consider the elementary path as an element of
a linear space Λp = Λp (V ) that consists of all formal linear combination
of all elementary p-paths. The elements of Λp are called p-paths. Each
p-path has a form

v =
∑

i0i1...ip

vi0i1...ip ei0i1...ip ,

with arbitrary scalars vi0i1...ip , that are called the coefficients of v.
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We have a natural pairing of p-forms and p-paths as follows:

(ω, v) :=
∑

i0...ip

ωi0...ipv
i0...ip

for all ω ∈ Λp and v ∈ Λp. It follows that the spaces Λp and Λp are dual.

Definition. Define the boundary operator ∂ : Λp+1 → Λp by

(∂v)i0...ip =
∑

k

p+1∑

q=0

(−1)q vi0...iq−1kiq ...ip (1.6)

where the index k is inserted so that it is preceded by q indices.

This definition is valid for p ≥ 0. Sometimes we need also the operator
∂ : Λ0 → Λ−1 where we set Λ−1 = {∅} , so that Λ−1 can be understood as
a 0-dimensional linear space. Then by definition ∂v = ∅ for all v ∈ Λ0.

If v is an 1-path, then ∂v is given by

(∂v)i =
∑

k

(
vki − vik

)
.
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If v is a 2-path then

(∂v)ij =
∑

k

(
vkij − vikj + vijk

)
.

It follows from (1.6) that

(
∂ej0...jp+1

)i0...ip
=

∑

k

p+1∑

q=0

(−1)q e
i0...iq−1kiq ...ip
j0...jp+1

=

p+1∑

q=0

∑

k

(−1)q e
i0...iq−1kiq ...ip
j0...jp+1

=

p+1∑

q=0

(−1)q e
i0...iq−1iq ...ip
j0...jq−1jq+1...jp+1

whence

∂ej0...jp+1 =

p+1∑

q=0

(−1)q ej0...ĵq ...jp+1
. (1.7)

For example, ∂eij = ej − ei and ∂eijk = ejk − eik + eij .
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Lemma 1.3 For any p-form ω and any (p + 1)-path v the following iden-
tity holds

(dω, v) = (ω, ∂v) .

Hence, the operators d : Λp → Λp+1 and ∂ : Λp+1 → Λp are dual.
Proof. It suffices to prove this for v = ei0...ip+1 . We have

(dω, v) = (dω)i0...ip+1
= (dω)i0...ip+1

=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1

while

(ω, ∂v) =

(

ω,

p+1∑

q=0

(−1)q ei0...îq ...ip+1

)

=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1
,

whence the identity of the two expressions follows.

Corollary 1.4 For any v ∈ Λp, we have ∂2v = 0.
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1.4 Product of paths

For any two paths u ∈ Λp and v ∈ Λq define the product uv ∈ Λp+q+1 as
follows:

(uv)i0...ipj0...jq = ui0...ipvj0...jq . (1.8)

For example, if u = ei0...ip and v = ej0...jq , then

ei0...ipej0...jq = ei0...ipj0...jq . (1.9)

This definition is valid for all p, q ≥ 0.
To state a product rule for ∂ (uv) we need also the notion of a product

also for p = −1 or q = −1. For that consider instead of Λ−1 = {∅} a

modified space Λ̃−1 ≡ K so that any u ∈ Λ̃−1 is just a scalar. Then (1.8)

can be used again to define the product uv for u ∈ Λ̃−1 (or v ∈ Λ̃−1)
because the right hand side of (1.8) amounts to multiplying by the scalar
u (resp. v). That is, if p = −1 then uv is just the multiple of v with the
coefficient u.

We need then a modified version of ∂ when acting from Λ0 to Λ̃−1.Define
the operator ∂̃ : Λp → Λp−1 as follows. If p > 0 then ∂̃ ≡ ∂, and for p = 0

define ∂̃ : Λ0 → K by setting ∂̃ei = 1 and extending to all v ∈ Λ0 by
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linearity. In other word, for v ∈ Λ0 we have ∂̃v = (1, v) . This definition

of ∂̃ is the same as the one used in the extended chain complex (2.20).

It is easy to see that ∂̃2 = 0.

Lemma 1.5 For any paths u ∈ Λp and v ∈ Λq with p, q ≥ 0, we have

∂ (uv) = (∂̃u)v + (−1)p+1 u∂̃v. (1.10)

Proof. By bilinearity it suffices to prove (1.10) for u = ei0...ip and
v = ej0...jq . Consider first the case p = q = 0. Then u = ei, v = ej and

∂̃u = ∂̃v = 1 and

∂ (uv) = ∂ (eij) = ej − ei = (∂̃u)v − u(∂̃v),

which proves (1.10) in this case.
If p = 0 and q ≥ 1 then u = ei and v = ej0...jq , whence

∂ (uv) = ∂eij0...jq = ej0...jq − eij1j2...jq + eij0j2...jq − ...

= v − ei(∂v) = (∂̃u)v − u(∂̃v)

which proves (1.10) in this case.
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If p ≥ 1 and q = 0 then u = ui0...ip , v = ej, whence

∂ (uv) = ∂ei0...iqj = ei1...iqj − ei0i2...iqj − ... + (−1)p+1 ei0...ip

= (∂u) ej + (−1)p+1 u = (∂̃u)v + (−1)p+1 u∂̃v.

Finally, if p ≥ 1 and q ≥ 1 then

∂ (uv) = ∂ei0...ipj0...jq = ei1...ipj0...jq − ei0i2...ipj0...jq + ...

+ (−1)p+1 (ei0...ipj1...jq − ei0...ipj0j2...jq + ...
)

= (∂u) v + (−1)p+1 u (∂v) ,

which finishes the proof.

1.5 Regular forms

We say that a path i0...ip is regular if ik 6= ik+1 for all k = 0, ..., p − 1,
and irregular otherwise. Consider the following subspace of Λp:

Rp = span
{
ei0...ip : i0...ip is regular

}

=
{
ω ∈ Λp : ωi0...ip = 0 if i0...ip is irregular

}
.
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The elements of Rp are called regular p-forms. For example, ω ∈ R1 if
ωii ≡ 0 and ω ∈ R2 if ωiij ≡ ωjii ≡ 0. The condition f ∈ R0 has no
additional restriction so that R0 = Λ0.

The operations of exterior derivative and concatenation can be re-
stricted to regular forms.

Lemma 1.6 If ω ∈ Rp then dω ∈ Rp+1. If ϕ ∈ Rp and ψ ∈ Rq then
ϕψ ∈ Rp+q.

Proof. Let ω ∈ Rp. To prove that dω ∈ Rp+1, we must show that

(dω)i0...ip+1
= 0 (1.11)

whenever i0...ip+1 is irregular, say ik = ik+1. We have by (1.1)

(dω)i0...ip+1
=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1
.

If q 6= k, k + 1 then both ik, ik+1 are present in ωi0...îq ...ip+1
which makes

this term equal to 0 since ω is regular. In the remaining two cases q = k
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and q = k + 1 the term ωi0...îq ...ip+1
has the same values (because the

sequences i0...îq...ip+1 are the same) but the signs (−1)q are opposite.
Hence, they cancel out, which proves (1.11).

Let us prove that ϕψ is regular provided so are ϕ and ψ. By (1.4),
we have

(ϕψ)i0...ip+q
= ϕi0...ipψip...ip+q

.

If the sequence i0...ip+q is irregular, say ik = ik+1 then the both in-
dices ik, ik+1 are present either in the sequence i0...ip or in ip...ip+q,
which implies that one of the terms ϕi0...ip , ψip...ip+q

vanishes and, hence,
(ϕψ)i0...ip+q

= 0.

1.6 Regular paths

We say that an elementary p-path ei0...ip is regular (or irregular) if the
path i0...ip is regular (resp. irregular). We would like to define the
boundary operator ∂ on the subspace of Λp spanned by regular elemen-
tary paths. Just restriction of ∂ to the subspace does not work as ∂ is
not invariant on this subspace, so that we have to consider a quotient
space instead.
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Let Ip be the subspace of Λp that is spanned by irregular ei0...ip . Con-
sider the quotient spaces

Rp := Λp/Ip.

The elements of Rp are the equivalence classes v mod Ip where v ∈ Λp,
and they are called regularized p-paths. The next lemma shows that the
boundary operator ∂, the product and the pairing are well-defined for
regularized paths.

Lemma 1.7 (a) If v1, v2 ∈ Λp and v1 = v2 mod Ip then ∂v1 = ∂v2 mod Ip−1.

(b) If ω ∈ Rp, v1, v2 ∈ Λp and v1 = v2 mod Ip then (ω, v1) = (ω, v2).

(b) Let u1, u2 ∈ Λp and v1, v2 ∈ Λq. If u1 = u2 mod Ip and v1 =
v2 mod Iq then u1v1 = u2v2 mod Ip+q+1.

Proof. (a) It suffices to prove that if v = 0 mod Ip then ∂v =
0 mod Ip−1. Since v is a linear combination of irregular paths, it suf-
fices to prove that ∂ei0...ip is irregular provided ei0...ip is irregular. If ei0...ip

is irregular then there exists an index k such that ik = ik+1. Then we
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have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip(1.12)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1.12) cancel out, whereas
all other terms are irregular, whence, ∂ei0...ip ∈ Ip−1.

(b) Indeed, v1−v2 ∈ Ip is a linear combination of irregular paths ei0...ip .
Since

(
ω, ei0...ip

)
= 0 for irregular paths, it follows that (ω, v1 − v2) = 0

and (ω, v1) = (ω, v2) .
(c) Observe first that if u ∈ Λp, v ∈ Λq then uv = 0 mod Ip+q+1

provided u = 0 mod Ip or v = 0 mod Iq. Indeed, if for example u =
0 mod Ip then u is a linear combination of irregular paths ei0...ip , and the
product of an irregular path with any path is irregular. Since

u1v1 − u2v2 = (u1 − u2) v1 + u2 (v1 − v2)

and u1 − u2 = 0 mod Ip, v1 − v2 = 0 mod Iq, we conclude that

u1v1 = u2v2 mod Ip+q+1.
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It follows from Lemma 1.3 that, for all ω ∈ Rp and v ∈ Rp+1,

(dω, v) = (ω, ∂v) . (1.13)

By Lemma 1.5, we obtain that, for all u ∈ Rp and v ∈ Rq,

∂ (uv) = (∂u) v + (−1)p+1 u∂v. (1.14)

Clearly, Rp is linearly isomorphic to the space of regular paths:

span
{
ei0...ip : i0...ip is regular

}
.

For simplicity of notation, we will identify Rp with this space, by setting
all irregular p-paths to be equal to 0. Hence, when applying the formulas
for ∂ and for the product in the spaces Rp, one should make the following
adjustments: all elementary irregular paths ei0...ip are equal to zero, and
the components vi0...ip for irregular paths i0...ip vanish by definition. In
particular, the formula (1.6) for the component (∂v)i0...ip is valid only for
regular i0...ip, whereas the formula (1.7) for ∂ej0...jp+1 remains valid for
all j0...jp+1.
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Let V ′ be a subset of V . Clearly, every elementary regular p-path
ei0...ip on V ′ is also a regular p-path on V , so that we have a natural
inclusion

Rp (V ′) ⊂ Rp (V ) . (1.15)

By (1.7), ∂ei0...ip has the same expression in the both spaces Rp (V ′),Rp (V )
so that ∂ commutes with the inclusion (1.15).

Note for comparison that for p-forms the inclusion Rp (V ′) ⊂ Rp (V )
is also valid, but the operator d does not commute with it. For example,
in the formula

dei =
∑

j

(
eji − eij

)

the summation index j on the right hand side runs over all vertices, and
the result depends on the set of vertices.
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2 Elements of homological algebra

2.1 Cochain complexes

A cochain complex X is a sequence

0 → X0 d
→ X1 d

→ . . .
d
→ Xp−1 d

→ Xp d
→ . . . (2.1)

of vector spaces {Xp}∞p=0 over a field K and linear mappings d : Xp →
Xp+1 with the property that d2 = 0 at each level. The latter means that
Im d|Xp−1 ⊂ ker d|Xp that allows to define the de Rham cohomologies of
the complex X by

Hp (X) = ker d|Xp /Im d|Xp−1

(where X−1 := {0}). The sequence (2.1) is called exact if Hp (X) = {0}
for all p ≥ 0.

We always assume that the spaces Xp are finitely dimensional. Ap-
plying the nullity-rank theorem to the mapping d : Xp → Xp+1, we
obtain the following identity:
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Lemma 2.1 We have for any p ≥ 0

dim Hp (X) = dim Xp − dim dXp − dim dXp−1. (2.2)

It implies the following.

Lemma 2.2 For a finite cochain complex

0 → X0 d
→ X1 d

→ . . .
d
→ Xn−1 d

→ Xn d
→ 0 , (2.3)

the following identity is satisfied

n∑

k=0

(−1)k dim Hk (X) =
n∑

k=0

(−1)k dim Xk. (2.4)

In particular, if the sequence (2.3) is exact, then

n∑

k=0

(−1)k dim Xk = 0. (2.5)
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For any finite cochain complex (2.3), define its Euler characteristic
by

χ (X) =
n∑

p=0

(−1)p dim Xp.

Then (2.4) implies

χ (X) =
n∑

k=0

(−1)k dim Hk (X) .

2.2 Chain complexes

Given a cochain complex (2.1) with finite-dimensional spaces Xp, denote
by Xp the dual space to Xp and by ∂ the dual operator to d. Then we
obtain a chain complex

0 ← X0
∂
← X1

∂
← . . .

∂
← Xp−1

∂
← Xp

∂
← . . . (2.6)

Denoting by (∙, ∙) the natural pairing of dual spaces, we obtain by defi-
nition

(dω, v) = (ω, ∂v)
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for all ω ∈ Xp and v ∈ Xp+1. Since d2 = 0, it follows that also ∂2 = 0.
Hence, one can define the homologies of the chain complex (2.6) by

Hp (X) = ker ∂|Xp

/
Im ∂|Xp+1 .

By duality we have

ker ∂|Xp = (Im d|Xp−1)⊥ , ker d|Xp =
(
Im ∂|Xp+1

)⊥
, (2.7)

where ⊥ refers to the annihilator in the dual space, which implies the
following.

Lemma 2.3 The spaces Hp (X) and Hp (X) are dual. In particular,
dim Hp (X) = dim Hp (X) .

Lemma 2.4 We have for any p ≥ 0

dim Hp (X) = dim Xp − dim ∂Xp − dim ∂Xp+1.
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2.3 Sub-complexes and quotient complexes

Let X be a cochain complex as in (2.1), and assume that each Xp has a
subspace Jp so that d is invariant on {Jp}, that is, dJp ⊂ Jp+1. Then we
have a cochain sub-complex J as follows:

0 → J0 d
→ J1 d

→ . . .
d
→ Jp−1 d

→ Jp d
→ . . . (2.8)

Since the operator d is well defined also on the quotient spaces Xp/Jp,
we obtain also a cochain quotient complex X/J :

0 → X0/J0 d
→ X1/J1 d

→ . . .
d
→ Xp−1/Jp−1 d

→ Xp/Jp d
→ . . .

(2.9)
Consider the annihilator of Jp, that is the space

(Jp)⊥ = {v ∈ Xp : v⊥Jp} .

Lemma 2.5 The dual operator ∂ of d is invariant on
{

(Jp)⊥
}
, and the

chain sub-complex

0 ← (J0)
⊥ ∂
← (J1)

⊥ ∂
← . . .

∂
← (Jp−1)

⊥ ∂
← (Jp)⊥

∂
← . . .

(2.10)
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is dual to the cochain quotient complex (2.9).

Proof. If v ∈ (Jp)⊥ then, for any ω ∈ Jp−1, we have dω ∈ Jp and,
hence,

(ω, ∂v) = (dω, v) = 0,

which implies ∂v ∈ (Jp−1)
⊥
. Hence, ∂ maps (Jp)⊥ to (Jp−1)

⊥
, so that

the complex (2.10) is well-defined.
To prove the duality of (2.9) and (2.10), observe that (Jp)⊥ is nat-

urally isomorphic to the dual space (Xp/Jp)′ . Indeed, each v ∈ (Jp)⊥

defines a linear functional on Xp/Jp simply by ω 7→ (ω, v) where ω ∈ Xp

is a representative of an element of Xp/Jp. If ω1 = ω2 mod Jp then
ω1 − ω2 ∈ Jp whence (ω1 − ω2, v) = 0 and (ω1, v) = (ω2, v). Clearly, the
mapping (Jp)⊥ → (Xp/Jp)′ is injective and, hence, surjective because
of the identity of the dimensions of the two spaces. Finally, the duality
of the operators d and ∂ on the complexes (2.9) and (2.10) is a trivial
consequence of their duality on the complexes X ∙ and X∙

Let us describe a specific method of constructing of d-invariant sub-
spaces.
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Lemma 2.6 Given any subspace Sp of Xp, set

Jp = Sp + dSp−1. (2.11)

Then d is invariant on {Jp}. Besides, we have the following identity

(Jp)⊥ =
{

v ∈ (Sp)⊥ : ∂v ∈
(
Sp−1

)⊥}
. (2.12)

Proof. The first claim follows from d2 = 0 since

dJp ⊂ dSp + d2Sp−1 = dSp ⊂ Jp+1.

The condition v ∈ (Jp)⊥ means that

v⊥Sp and v⊥dSp−1. (2.13)

Clearly, the first condition here is equivalent to v ∈ (Sp)⊥, while the
second condition is equivalent to

(dω, v) = 0 ∀ω ∈ Sp−1 ⇔ (ω, ∂v) = 0 ∀ω ∈ Sp−1 ⇔ ∂v⊥Sp−1 ⇔ ∂v ∈
(
Sp−1

)⊥
,

which proves (2.12).
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2.4 Zigzag Lemma

Consider now three cochain complexes X,Y, Z connected by vertical lin-
ear mappings as on the diagram:

0 → 0 → 0 → 0 → . . .
↓ ↓ ↓ ↓

0 → Y 0 d
→ Y 1 d

→ Y 2 → . . .
↓ ↓α ↓α ↓α

0 → X0 d
→ X1 d

→ X2 → . . .
↓ ↓α ↓α ↓α

0 → Z0 d
→ Z1 d

→ Z2 → . . .
↓ ↓ ↓ ↓
0 → 0 → 0 → 0 → . . .

(2.14)

Each horizontal mapping is denoted by d and each vertical mapping is
denoted by α. We assume that the diagram is commutative. Let us also
assume that each column in (2.14) is an exact cochain complex, that is,
the mapping α : Y p → Xp is an injection, and α : Xp → Zp a surjection
with the kernel Xp. In this case we can identify Y p with a subspace of
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Xp and Zp with the quotient Xp/Y p.

Proposition 2.7 (Zigzag Lemma) Under the above conditions the se-
quence

0→ H0 (Y )→ H0 (X)→ H0 (Z)→ ∙ ∙ ∙ → Hp (Y )→ Hp (X)→ Hp (Z)→ Hp+1 (Y )→ . . .
(2.15)

is exact (more precisely, the mappings in (2.15) can be defined so that
the sequence is exact).

The sequence (2.15) is called a long exact sequence in cohomology. A
similar result holds for homologies of chain complexes.

We will normally apply Proposition 2.7 in the following form: if X is
a cochain complex (2.1) and J is its sub-complex (2.8), then the following
long sequence is exact:

0→ ∙ ∙ ∙ → Hp(J)→ Hp(X)→ Hp(X/J)→ Hp+1(J)→ . . . (2.16)

Similarly, if X is a chain complex (2.6) and J its sub-complex, then the
following long sequence is exact:

0← ∙ ∙ ∙ ← Hp(X/J)← Hp(X)← Hp(J)← Hp+1(X/J)← . . . (2.17)
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2.5 Reduced cohomologies and homologies

In the cochain and chain complexes (2.1) and (2.6) one naturally defines
the spaces X−1 and X−1 as {0} . In a number of situations there is a need
in another choice of X−1 and X−1.

Assume that there is a injection d̃ : K→ X0 that satisfies the relation
dd̃ = 0. Setting X̃−1 ≡ K, we obtain an extended cochain complex

0 → X̃−1 d̃
→ X0 d

→ X1 d
→ . . .

d
→ Xp−1 d

→ Xp d
→ . . .

(2.18)

The cohomologies of the complex (2.18) are denoted by H̃p (X) and are
called the reduced cohomologies. Obviously, we have

H̃p (X) =

{
Hp (X) , p ≥ 1,
H0 (X) / const, p = 0.

(2.19)

The dual space X̃−1 is also K, and the dual operator ∂̃ : X0 → K of d̃
is given by ∂̃v = (d̃1, v) for any v ∈ X0. Hence, we obtain an extended
chain complex

0 ← X̃−1
∂̃
← X0

∂
← X1

∂
← . . .

∂
← Xp−1

∂
← Xp

∂
← . . .

(2.20)
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and the reduced homologies H̃p (X) .
For example, let X0 be a space of K-valued functions over a finite set

V and assume that d const = 0. Define a mapping d̃ : K→ X0 as follows:
for any c ∈ K, d̃c is the constant function on V taking the value c. It
follows that dd̃ = 0 so that the reduced cohomologies are well-defined.
In this case ∂̃v = (1, v) where 1 is regarded as a constant function on V.
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Brief summary

Given a finite set V , we define a p-form ω on V as K-valued function on
V p+1. The set of all p-forms is a linear space over K that is denoted by
Λp. It has a canonical basis ei0...ip . For any ω ∈ Λp we have

ω =
∑

i0,...,ip∈V

ωi0...ipe
i0...ip

where ωi0...ip = ω (i0, ..., ip) . The exterior derivative d : Λp → Λp+1 is
defined by

(dω)i0...ip+1
=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1

and satisfies d2 = 0. The concatenation of forms ϕ ∈ Λp and ψ ∈ Λq is a
form ϕψ ∈ Λp+q defined by

(ϕψ)i0...ip+q
= ϕi0...ipψipip+1...ip+q

.

Then d (ϕψ) = (dϕ) ψ + (−1)p ϕdψ.
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We have defined a subspace Rp ⊂ Λp of regular forms that is spanned
by ei0...ip with regular paths i0...ip (when ik 6= il+1), and observed that
the spaces Rp are invariant for d and for concatenation.

A p-path on V is a formal linear combination of the elementary p-
paths ei0...ip ≡ i0...ip, and the linear space of all p-paths is denoted by
Λp. For any v ∈ Λp we have

v =
∑

i0,...,ip∈V

vi0...ipei0...ip

and a pairing with a p-path ω:

(ω, v) =
∑

i0,...,ip

ωi0...ipv
i0...ip .

The dual operator ∂ : Λp+1 → Λp is given by

∂ei0...ip+1 =

p+1∑

q=0

(−1)q ei0...îq ...ip+1
.

The product of two paths u ∈ Λp and v ∈ Λq is a paths uv ∈ Λp+q+1

defined by
(uv)i0...ipj0...jq = ui0...ipvj0...jq .
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It satisfies the product rule

∂ (uv) = (∂u)v + (−1)p+1 u∂v

where ∂v in the case v ∈ Λ0 is a constant
∑

i vi (that is equivalent to
∂ei = 1).

Let Ip be the subspace of Λp that is spanned by ei0...ip with irregular
paths i0...ip. Then the spaces Ip are invariant for ∂ and for product, which
allows to define ∂ and product on the quotient spaces Rp = Λp/Ip. For
simplicity of notation we identify the elements of Rp with their repre-
sentatives that are regular p-paths. Then ei0...ip with irregular i0...ip are
treated as zeros.

3 Forms and paths on digraphs

A digraph is a pair (V,E) where V is an arbitrary set and E is a subset of
V ×V \diag . The elements of V are called vertices and the elements of E
are called (directed) edges. The set V will be always assumed non-empty
and finite.

33



3.1 Allowed paths

Let i0...ip be an elementary regular p-path on V . It is called allowed if
ikik+1 ∈ E for any k = 0, ..., p−1, and non-allowed otherwise. The set of
all allowed elementary p-paths will be denoted by Ep, and non-allowed –
by Np. For example, E0 = V and E1 = E.

Denote by Ap = Ap (V,E) the subspace of Rp spanned by the allowed
elementary p-paths, that is,

Ap = span
{
ei0...ip : i0...ip ∈ Ep

}
=
{
v ∈ Rp : vi0...ip = 0 ∀i0...ip ∈ Np

}
.

(3.1)
The elements of Ap are called allowed p-paths.

Similarly, denote by N p the subspace of Rp, spanned by the non-
allowed elementary p-forms, that is,

N p = span
{
ei0...ip : i0...ip ∈ Np

}
=
{
ω ∈ Rp : ωi0...ip = 0 ∀i0...ip ∈ Ep

}
.

Clearly, we have Ap = (N p)⊥ where ⊥ refers to the annihilator subspace
with respect to the couple (Rp,Rp) of dual spaces.
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3.2 The space p-forms on a digraph

We would like to reduce the space Rp of regular p-forms so that the non-
allowed forms can be treated as zeros. Consider the following subspaces
of spaces Rp

J p ≡ J p (V,E) := N p + dN p−1, (3.2)

that are d-invariant by Lemma 2.6, and define the space Ωp of p-forms
on the digraph (V,E) by

Ωp ≡ Ωp (V,E) := Rp /J p . (3.3)

Then d is well-defined on Ωp and we obtain a cochain complex

0 −→ Ω0 d
−→ . . .

d
−→ Ωp d

−→ Ωp+1 d
−→ . . . (3.4)

Shortly we write Ω∙ = R∙/J where Ω∙ is the complex (3.4) and R∙ and
J refer to the corresponding cochain complexes.

If the digraph (V,E) is complete, that is, E = V × V \ diag then the
spaces N p and J p are trivial, and Ωp = Rp.

Let us show that the concatenation is also well-defined on the spaces
Ωp.
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Lemma 3.1 Let ϕ ∈ Rp and ψ ∈ Rq. If ϕ ∈ J p or ψ ∈ J q then ϕψ ∈
J p+q, that is, {J p} is a graded ideal for the concatenation. Consequently,
the concatenation of two forms is well-defined on the spaces J p as well
as on Ωp, and it satisfies the product rule (1.5).

Proof. Observe first that if ϕ ∈ N p then ϕψ ∈ N p+q. Indeed, it
suffices to prove this for elementary forms ϕ = ei0...ip and ψ = ej0...jq

where the claim is obvious: if the p-path i0...ip is non-allowed then so is
the concatenated (p + q)-path i0...ipj1...jq.

If ϕ ∈ J p then ϕ = ϕ0 + dϕ1 where ϕ0 ∈ N
p and ϕ1 ∈ N

p−1. Then
we have

ϕψ = ϕ0ψ + (dϕ1) ψ

= ϕ0ψ + d (ϕ1ψ)− (−1)p−1 ϕ1dψ.

By the above observation, all the forms ϕ0ψ, ϕ1ψ, ϕ1dψ are in N ∙. It
follows that d (ϕ1ψ) ∈ J p+q and, hence, ϕψ ∈ J p+q. In the same way
one handles the case ψ ∈ J q.

To prove that concatenation is well defined on Ωp, we need to verify
that if ϕ = ϕ′ modJ p and ψ = ψ′ modJ q then ϕψ = ϕψ modJ p+q.
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Indeed, we have

ϕψ − ϕ′ψ′ = ϕ (ψ − ψ′) + (ϕ− ϕ′) ψ′,

and each of the terms in the right hand side belong to Jp+q by the first
part. Finally, the Leibniz formula for equivalence classes follows from
that for their representatives.

Frequently it will be convenient to use the following notation. For
p-forms ω′, ω′′ ∈ Rp we write

ω′ ' ω′′ if ω′ = ω′′ modJ p.

Then the equivalence classes of ' are exactly the elements of Ωp.
As it follows from Lemmas 2.6 and 3.1, ω ' 0 implies dω ' 0, and if

ϕ ' 0 or ψ ' 0 then ϕψ ' 0.
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3.3 The space of ∂-invariant paths

Consider the following subspaces of Ap

Ωp ≡ Ωp (V,E) = {v ∈ Ap : ∂v ∈ Ap−1} (3.5)

that are ∂-invariant. Indeed, v ∈ Ωp ⇒ ∂v ∈ Ap−1 ⊂ Ωp−1. The elements
of Ωp are called ∂-invariant p-paths.

We obtain a chain complex Ω∙

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

that, in fact, is dual to Ω∙. Indeed, by Lemma 2.5, the dual to the cochain
complex Ω∙ = R∙/J is

0 ← (J 0)
⊥ ∂
← (J 1)

⊥ ∂
← . . .

∂
← (J p−1)

⊥ ∂
← (J p)⊥

∂
← . . .

while by Lemma 2.6 we have

(J p)⊥ =
{

v ∈ (N p)⊥ : ∂v ∈
(
N p−1

)⊥}

= {v ∈ Ap : ∂v ∈ Ap−1} = Ωp.
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By construction we have Ω0 = A0 and Ω1 = A1 so that

dim Ω0 = |V | and dim Ω1 = |E| ,

while in general Ωp ⊂ Ap.
Note that, unlike the operation of concatenation of forms, the opera-

tion of product of paths is not invariant in spaces Ap or Ωp.
Let us define the (co)homologies of the digraph (V,E) by

Hp (V,E) := Hp (Ω) and Hp (V,E) := Hp (Ω) .

Recall that by Lemma 2.3 the spaces Hp (V,E) and Hp (V,E) are dual
and, hence, their dimensions are the same. The values of dim Hp (V,E)
can be regarded as invariants of the digraph (V,E).

By Lemma 2.4, we have for any p ≥ 0

dim Hp (Ω) = dim Ωp − dim ∂Ωp − dim ∂Ωp+1. (3.6)

Let us define the Euler characteristic of the digraph (V,E) by

χ (V,E) =
n∑

p=0

(−1)p dim Hp (Ω) (3.7)
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provided n is so big that

dim Hp (Ω) = 0 for all p > n. (3.8)

We do not know if such an n exists for any finite digraph. Hence, χ (V,E)
is defined only if the digraph satisfied (3.8).

If dim Ωp = 0 for p > n, then by Lemma 2.2

χ (V,E) =
n∑

p=0

(−1)p dim Ωp. (3.9)

The definition (3.7) has an advantage that it may work even when all
dim Ωp > 0.
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3.4 Computation of dim H0

Proposition 3.2 We have

dim H0 (Ω) = C, (3.10)

where C is the number of (undirected) connected components of the di-
graph (V,E) .

Proof. By definition,

H0 (Ω) = ker d|Ω0 =
{
f ∈ Ω0 : df ' 0

}
.

The condition df ' 0 means that (df)ij = 0 for all ij ∈ E, that is, fi = fj

for all edges ij. The latter is equivalent to the fact that f = const on
any connected component of (V,E), and the dimension of this space of
functions is clearly C.

3.5 Some condition for dim Ωp = 0

Proposition 3.3 If dim Ωn ≤ 1 then dim Ωp = 0 for all p > n.
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Proof. Assume dim Ωn = 0. Any regular p-form ei0...ip with p > n is
a concatenation of an n-form and a (p− n)-form:

ei0...ip = ei0...inein...ip .

Since ei0...in ' 0 by hypothesis, it follows by Lemma 3.1 that also ei0...ip '
0, whence dim Ωp = 0.

Let now dim Ωn = 1. We have

ei0...ip = ei0...inein...ip = ei0i1ei1...in+1ein+1...ip

We claim that

either ei0...in ' 0 or ei1...in+1 ' 0, (3.11)

which would imply that ei0...ip ' 0 and dim Ωp = 0. Indeed, if (3.11) fails
then both forms ei0...in and ei1...in+1 belong to non-zero equivalence classes
modulo J n. Since the latter has dimension 1, it follows that

ei0...in = const ei1...in+1 modJ n.

Clearly, this identity is only possible if ei0...in = ei1...in+1 whence i0 =
i1... = in+1, which contradicts the regularity.
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3.6 Poincaré lemma for star-like graphs

We say that a digraph (V,E) is star-like if there is a vertex a ∈ V (called
a star center) such that ai ∈ E for all i 6= a. For example, here is a
star-like digraph:

a• −→ •

↓ ↘
...

• ∙ ∙ ∙ •

Clearly, a complete digraph is star-like.

Theorem 3.4 If (V,E) is a star-like digraph, then Hp (V,E) = {0} for
any p ≥ 1. Consequently, χ (V,E) = 1.

Proof. We prove that Hp (V,E) = {0} . For that we need to prove
that if v ∈ Ωp and ∂v = 0 then v = ∂ω for some ω ∈ Ωp+1. Set ω = eav.
We claim that ω ∈ Ap+1. Since v is a linear combination of allowed paths
ei0...ip , it suffices to show that eai0...ip ∈ Ap+1 for any allowed path ei0...ip .
Indeed, if i0 = a then eai0...ip = 0 ∈ Ap+1. If i0 6= a then eai0...ip is allowed
by the star condition. Hence, we have ω ∈ Ap+1.
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By the product rule (1.14) we have

∂ω = ∂ (eav) = v − ea∂v = v,

where we have used ∂v = 0. It follows that ∂ω ∈ Ap and, hence, ω ∈ Ωp+1,
which finishes the proof of Hp (V,E) = {0} .

Since the graph (V,E) is connected, we have also dim H0 (V,E) = 1
by Proposition 3.2. It follows that χ = 1.

Remark. In a similar manner one can handle the inverse star-like
graphs, that is, when the requirement ai ∈ E in the definition of a start
property is replaced by ia ∈ E. Using the right multiplication with ea,
one proves in the same way that the statement of Theorem 3.4 remains
true for inverse star-like graph.

Example. The graph
0•
↓↑ ↘
2• ←− •1

is star like with the star center 0. Hence, χ = 1.
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3.7 Computation of dim Ω2

Recall that dim Ω0 = dimA0 = |V | and dim Ω1 = dimA1 = |E|. Here
we compute dim Ω2. We say that a pair ac ∈ V × V \ diag is a semi-edge
if ac is not an edge, but there is b ∈ V such that both ab and bc are
edges:

b
•

a•
↗

⇀
↘
•c

Denote by S the set of all semi-edges of a digraph (V,E) .

Proposition 3.5 We have

dim Ω2 = dimA2 − |S| = |E2| − |S| . (3.12)

Proof. Recall that

A2 = span {eabc : abc is allowed} , dimA2 = |E2| ,

and
Ω2 = {v ∈ A2 : ∂v ∈ A1} = {v ∈ A2 : ∂v = 0 modA1} .
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If abc is allowed then ab and bc are edges, whence

∂eabc = ebc − eac + eab = −eac modA1.

If ac is an edge then eac = 0 modA1. If ac is not an edge then ac is a
semi-edge, and in this case

∂eabc 6= 0 modA1.

For any v ∈ Ω2, we have

v =
∑

{abc is allowed}

vabceabc

hence it follows that

∂v = −
∑

{abc: ac is semi-edge}

vabceac modA1.

The condition ∂v = 0 modA1 is equivalent to
∑

{abc: ac is semi-edge}

vabceac = 0 modA1,
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which is equivalent to
∑

b vabc = 0 for all semi-edges ac. The number of
these conditions is exactly |S|, and they all are independent for differ-
ent semi-edges, because a triple abc determines at most one semi-edge.
Hence, Ω2 is obtained from A2 by imposing |S| linearly independent
conditions, which implies (3.12).

Let us call by a triangle a sequence of three distinct vertices a, b, c ∈ V
such that ab, bc, ac are edges:

b
•

a•
↗
−→

↘
•c

Note that a triangle determines a 2-path eabc ∈ Ω2 as eabc ∈ A2 and

∂eabc = ebc − eac + eab ∈ A1.

Let us called by a square a sequence of four distinct vertices a, b, b′, c ∈
V such that ab, bc, ab′, b′c are edges:

b
•

a•
↗
↘

↘
↗•c

•
b′
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Note that a square determines a 2-path v := eabc − eab′c ∈ Ω2 as v ∈ A2

and

∂v = (ebc − eac + eab)− (eb′c − eac + eab′)

= eab + ebc − eab′ − eb′c ∈ A1.

Corollary 3.6 If (V,E) contains no squares then dim Ω2 is equal to the
number of distinct triangles in (V,E) . In particular, if (V,E) contains
neither triangles nor squares then dim Ω2 = 0.

Proof. Let us split the family E2 of allowed 2-paths into two subsets:
an allowed path abc is of the first kind if ac is an edge and of the second
kind otherwise:

1st kind:
b
•

a•
↗
−→

↘
•c

, 2nd kind:
b
•

a•
↗ ↘

•c

Clearly, the paths of the first kind are in one-to-one correspondence with
triangles. Each path abc of the second kind determines a semi-edge ac.
The mapping of abc 7→ ac from the paths of second kind to semi-edges
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is also one-to-one: if abc 7→ ac and ab′c 7→ ac then we obtain a square
a, b, b′, c which contradicts the hypotheses. Hence, the number of the
path of the second kind is equal to |S| , which implies that the number
of the paths of the first kind is equal to |E2| − |S|, and so is the number
of triangles. Comparing with (3.12) we finish the proof.

In the presence of squares one cannot relate directly dim Ω2 to the
number of squares and triangles as there may be a linear dependence
between them. Indeed, in the following digraph

b1•

a
↗
• −→

↘

b2•
↘
−→ •

↗
c

•
b3

there are three squares a, bi, bj, c, which determine three paths

ab1c− ab2c, ab2c− ab3c, ab3c− ab1c

that are linearly dependent (the sum is equal to 0). In fact, dim Ω2 = 2
as |E2| = 3 and there is only one semi-edge ac.
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3.8 An example of direct computation of dim Hp

Consider the graph of 6 vertices V = {0, 1, 2, 3, 5} with 8 edges E =
{01, 02, 13, 14, 23, 24, 53, 54} .

 

4 3 

0 

2 1 

5 

Let us compute the spaces Ωp and the homologies Hp (Ω) . We have

Ω0 = A0 = span {e0, e1, e2, e3, e4, e5} , dim Ω0 = 6

Ω1 = A1 = span {e01, e02, e13, e14, e23, e24, e53, e54} , dim Ω1 = 8

A2 = span {e013, e014, e023, e024} , dimA2 = 4.
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The set of semi-edges is S = {e03, e04} so that dim Ω2 = dimA2−|S| = 2.
The basis in Ω2 can be easily spotted as each of two squares 0, 1, 2, 3 and
0, 1, 2, 4 determine a ∂-invariant 2-paths, whence

Ω2 = span {e013 − e023, e014 − e024} .

Since there are no allowed 3-paths, we see that A3 = Ω3 = {0} . It follows
that

χ = dim Ω0 − dim Ω1 + dim Ω2 = 6− 8 + 2 = 0.

Let us compute dim H2 by (3.6):

dim H2 = dim Ω2 − dim ∂Ω2 − dim ∂Ω3 = 2− dim ∂Ω2.

The image ∂Ω2 is spanned by two 1-paths

∂ (e013 − e023) = e13 − e03 + e01 − (e23 − e03 + e02) = e13 + e01 − e23 − e02

∂ (e014 − e024) = e14 − e04 + e01 − (e24 − e04 + e02) = e14 + e01 − e24 − e02

that are clearly linearly independent. Hence, dim ∂Ω2 = 2 whence dim H2 =
0. The dimension of H1 can be computed similarly, but we can do easier
using the Euler characteristic:

dim H0 − dim H1 + dim H2 = χ = 0
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whence dim H1 = 1.
In fact, a non-trivial element of H1 is determined by 1-path

v = e13 − e14 − e53 + e54.

Indeed, by a direct computation ∂v = 0, so that v ∈ ker ∂|Ω1 while for v
to be in Im ∂|Ω2 it should be a linear combination of ∂ (e013 − e023) and
∂ (e014 − e024) , which is not possible since they do not have the term e54.
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3.9 Cycle graphs

We say that a digraph (V,E) is a (undirected) cycle it is connected and
every vertex had the degree 2.

  

For a cycle graph we have dim H0 = 1 and

dim Ω0 = |V | = |E| = dim Ω1. (3.13)

Proposition 3.7 Let (V,E) be a cycle graph. Then

dim Ωp = 0 for all p ≥ 3

dim Hp (Ω) = 0 for all p ≥ 2.
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If (V,E) is a triangle or a square then

dim Ω2 = 1, dim H1 (Ω) = 0, χ = 1

whereas otherwise

dim Ω2 = 0, dim H1 (Ω) = 1, χ = 0.

Proof. Observe first that dim Ω2 ≤ 1 will imply dim Ωp = 0 for all
p ≥ 3 by Proposition 3.3, whence dim Hp = 0 for p ≥ 3. Hence, we need
only to handle the cases p = 1, 2.

Using two equivalent definition of the Euler characteristic, we have

χ = dim H0 − dim H1 + dim H2

= dim Ω0 − dim Ω1 + dim Ω2

whence
χ = dim Ω2 = 1− dim H1 + dim H2. (3.14)

Assume first that (V,E) is neither a triangle nor a square. Then
(V,E) contains neither a triangle nor a square. By Corollary 3.6 dim Ω2 =
0 whence dim H2 = 0 and by (3.14) χ = 0 and dim H1 = 1.
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Let us construct an 1-path spanning H1. For that let us identify
V with ZN where N = |V | so that in the unoriented graph based on
(V,E), the edges are i (i + 1). Hence, in the digraph (V,E) either i (i + 1)
or (i + 1) i is an edge. Consider an allowed 1-path v with components
vi(i+1) = 1 if i (i + 1) is an edge, and v(i+1)i = −1 if (i + 1) i is an edge
(and all other components of v vanish):

  5 
4 

3 

2 1 

0 

-1 

+1 

+1 
-1 

-1 

+1 

Since v 6= 0, v is not in Im ∂|Ω2 . However, v ∈ ker ∂Ω1 because by
construction vi(i+1) − v(i+1)i ≡ 1 whence for any i

(∂v)i =
∑

j∈V

(
vji − vij

)
= v(i−1)i + v(i+1)i − vi(i−1) − vi(i+1) = 1− 1 = 0.
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Let (V,E) be a triangle, say, with vertices a, b, c then dimA2 = 1, S =
∅ whence dim Ω2 = 1 and χ = 1. Note that in this case Ω2 = span {eabc}.
Since a triangle is star-like, we have by Theorem 3.4 dim Hp = 0 for all
p ≥ 1.

Let (V,E) be a square, say a, b, b′, c:

b
•

a•
↗
↘

↘
↗•c

•
b′

Then
A2 = span {eabc, eab′c} , S = {ac}

whence dim Ω2 = 2− 1 = 1 and χ = 1. Note that in this case

Ω2 = span {eabc − eab′c} .

For v = eabc − eab′c we have ∂v = ebc − eb′c + eab − eab′ 6= 0 so that
ker ∂|Ω2 = 0. It follows that dim H2 = 0. Then by (3.14) dim H1 = 0.
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3.10 Examples of ∂-invariant paths

3.10.1 Snake and simplex

A snake of length p is a subgraph of p + 1 vertices, say, 0, 1, ..., p such
that i (i + 1) and i (i + 2) are edges, which is equivalent to say that any
triple i (i + 1) (i + 2) is a triangle.

 

i-1 

i 

i+1 

i+2 

i+3 

Any snake gives rise to a ∂-invariant p-path v = e01...p. This path is
obviously allowed, its boundary

∂v = e1...p − e02...p + e013...p − ... + (−1)p e01....p−1
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is also allowed, so that indeed v ∈ Ωp.
A simplex of dimension p is a subgraph of p+1 vertices, say 0, 1, ..., p

so that any pair ij with i < j is an edge. For example, a simplex of
dimension 2 is a triangle

1
•

0•
↗
−→

↘
•2

a simplex of dimension 3 is shown here:

 

0 

1 

2 

3 

Since the simplex contains a snake as a subgraph, the p-path v = e01...p

is ∂-invariant also on a simplex.
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3.10.2 Cylinder and hypercube

For any graph (V,E) consider its product with graph 0• → •1 that will

be denoted by (V̂ , Ê) where V̂ = V × {0, 1} and the set of edges Ê is
defined by (x, a) (y, b) if and only if either x y in (V,E) and a = b
or x = y and a b :

1• . . .
(x,1)
• −→

(y,1)
• . . .

↑ ↑ ↑

0• . . .
(x,0)
• −→

(y,0)
• . . .

V . . . •
x
−→ •

y
. . .

The graph (V̂ , Ê) is a cylinder over (V,E). We mark by the hat̂all the

notions related to the graph (V̂ , Ê).
It will be convenient to identify V × {0, 1} with V t V ′ where V ′ is

a copy of V , and set the notation (x, 0) ≡ x and (x, 1) ≡ x′. Define the

operation of lifting paths from V to V̂ as follows. If v = ei0...ip then v̂ is
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a (p + 1)-path in (V̂ , Ê) defined by

v̂ =

p∑

k=0

(−1)k ei0...iki′k...i′p .

Clearly, if i0...ip is allowed in (V,E) then i0...iki
′
k...i

′
p is allowed in (V̂ , Ê):

∙ ∙ ∙
i′k• −→

i′k+1

• −→ ∙ ∙ ∙ −→
i′p
•

↑ ↑
i0• −→ ∙ ∙ ∙ −→

ik• −→
ik+1

• ∙ ∙ ∙

Extending by linearity this definition for a general p-path v on (V,E),

we obtain that if v ∈ Ap then v̂ ∈ Âp+1.

Proposition 3.8 If v ∈ Ωp then v̂ ∈ Ω̂p+1.

Proof. We need to prove that if v ∈ Ap and ∂v ∈ Ap−1 then ∂v̂ ∈ Âp.
Let us prove first some properties of the lifting. For any path v in (V,E)
define its image v′ in (V ′, E ′) by

(
ei0...ip

)′
= ei′0...i′p .
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Let us show first that for any p-path u and q-path v on (V,E), the
following identity holds:

ûv = ûv′ + (−1)p+1 uv̂ (3.15)

It suffices to prove it for u = ei0...ip and v = ej0...jq . Then uv = ei0...ipj0...jq

and

ûv =

p∑

k=0

(−1)k ei0...iki′k...i′pj′0...j′q +

q∑

k=0

(−1)k+p+1 ei0...ipj0...jkj′k...j′q

= ûv′ + (−1)p+1 uv̂.

Now let us show that, for any p-path v with p ≥ 1,

∂v̂ = −∂̂v + v′ − v. (3.16)

It suffices to prove it for v = ei0...ip , which will be done by induction in
p. For p = 1 write v = eab so that v̂ = eaa′b′ − eabb′ and

∂v̂ = (ea′b′ − eab′ + eaa′)− (ebb′ − eab′ + eab)

= eaa′ − ebb′ + ea′b′ − eab

= − (eb − ea)
ˆ + v′ − v

= −∂̂v + v′ − v.
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For p > 1 write v = ueip where u = ei0...ip−1 . Using (3.15) and the
inductive hypothesis with the (p− 1)-path u we obtain

∂v̂ = ∂
(
ûei′p + (−1)p ueipi′p

)

= (∂û) ei′p + (−1)p+1 û + (−1)p (∂u) eipi′p + u
(
ei′p − eip

)

=
[
−∂̂u + u′ − u

]
ei′p + (−1)p+1 û + (−1)p (∂u) eipi′p + uei′p − v

= −(∂̂u)ei′p + v′ + (−1)p+1 û + (−1)p (∂u) eipi′p − v

On the other hand,

∂̂v =
(
(∂u) eip + (−1)p u

)ˆ

= (∂̂u)ei′p + (−1)p−1 (∂u) eipi′p + (−1)p û,

whence it follows that ∂v̂+ ∂̂v = v′−v, which finishes the proof of (3.16).

Finally, if v ∈ Ap and ∂v ∈ Ap−1 then v′ and ∂̂v belong to Âp whence

it follows from (3.16) also ∂v̂ ∈ Âp. This proves that v̂ ∈ Âp+1.
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Example. The cylinder over a triangle 012 is the following graph:

 

0 2 

1 

4 

5 3 

Since 2-path e012 is ∂-invariant on the triangle, lifting it to the cylin-
der, we obtain a ∂-invariant 3-path e00′1′2′ − e011′2′ + e0122′ , that can be
written in the form e0345 − e0145 + e0125.

Example. The cylinder over the graph 0• → •1 is a square

2• −→ •3

↑ ↑
0• −→ •1
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Lifting a ∂-invariant 1-path e01 ∈ Ω1 we obtain a ∂-invariant 2-path on
the square e00′1′ − e011′ that we rewrite in the form e023 − e013.

The cylinder over a square is a 3-cube:

 

0 1 

3 2 

4 5 

7 6 

Lifting the 2-path e023 − e013 we obtain a ∂-invariant 3-path

e00′2′3′ − e022′3′ + e0233′ − e00′1′3′ + e011′3′ − e0133′

that we can rewrite in the form

e0467 − e0267 + e0237 − e0457 + e0157 − e0137.

Similarly, any binary hypercube of dimension p determines a ∂-invariant
p-path that is an alternating sum of p! terms.

64



3.11 Lemma of Sperner revisited

Consider a triangle ABC on the place, and its triangulation T . The set
S of vertices of T is colored with three colors 1, 2, 3 in such a way that

• the vertices A,B,C are colored with 1, 2, 3 respectively;

• each vertex on an edge of ABC is colored only with one of the two
colors of the ends of its edge.

 

2 

1 

1 

1 

1 

2 

2 

2 
3 

3 

3 
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The classical lemma of Sperner says that then there exists a 3-color
triangle from T , that is, a triangle, whose vertices are colored with the
three different colors. Moreover, the number of such triangles is odd.

We give here a new proof using the boundary operator ∂ for 1-paths.
Let us first do some reduction. Firstly, let us change the triangulation T
so that there are no vertices on the edges AB,AC,BC except for A,B,C.
Indeed, if X is a vertex on AB then move X a bit inside the triangle
ABC. This gives rise to a new triangle in the triangulation T that is
formed by X and its former neighbors, say Y and Z, on the edge AB.
However, since all X,Y, Z are colored with two colors, no 3-color triangle
appears after this move. By induction, we remove all vertices from the
edges of ABC.

Secondly, we project the triangle ABC and the triangulation T onto
the sphere S2 and add to the set T the triangle ABC itself from the
other side of the sphere. Then we obtain a triangulation of S2, denote it
again by T , and we need to prove that the number of 3-color triangles
is even. Indeed, since we know that one of the triangles, namely, ABC
is 3-color, this would imply that the number of 3-color triangles in the
original triangulation was odd.
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Let us regard T as a graph on S2 and construct a dual graph V . Chose
at each face of T a point and regard them as vertices of the dual graph V .
The vertices in V are connected if the corresponding triangles in T have
a common edge. Then the faces of V are in one-to-one correspondence
to the vertices of T.

  

1 2 

3 

Hence, given a graph V on S2 such that each vertex has degree 3 and
each face is colored with one of the colors 1, 2, 3, prove that the number
of 3-color vertices (that is, the vertices, whose adjacent faces have all
three colors) is even.
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Let us make V into a digraph as follows. Each edge ξ in V has two
adjacent faces. Choose the orientation on ξ so that the color from the
left hand side and the color from the right hand side of ξ form one of the
following pairs: (1, 2) , (2, 3) , (3, 1) (if the colors are the same then allow
both orientations of ξ).

  

1 2 2 3 3 1 

For example:

  

1 2 

3 

1 2 

1 

68



Denote by E the set of the oriented edges and set v =
∑

{ab∈E} eab.
We have for any a ∈ V

(∂v)a =
∑

b

vba −
∑

c

vac = #{incoming edges} −#{outcoming edges}.

If a is 3-color, then either all three edges at a are outcoming or all are
incoming whence

(∂v)a = ±3 = 1 mod 2.

Otherwise (∂v)a = 0 (see the above pictures). Denoting by n the number
of 3-color vertices, we obtain

(∂v, 1) =
∑

a∈V

(∂v)a = n mod 2.

On the other hand, (∂v, 1) = (v, d1) = 0 whence we conclude that

n = 0 mod 2.
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Brief summary

A p-path on finite set V is a formal linear combination of the elementary
p-paths ei0...ip ≡ i0...ip, where ik ∈ V , and the linear space of all p-paths
is denoted by Λp. For any v ∈ Λp we write

v =
∑

i0,...,ip∈V

vi0...ipei0...ip .

The boundary operator ∂ : Λp+1 → Λp is defined by

∂ei0...ip+1 =

p+1∑

q=0

(−1)q ei0...îq ...ip+1
.

It satisfies ∂2 = 0.
The product of two paths u ∈ Λp and v ∈ Λq is a paths uv ∈ Λp+q+1

defined by
(uv)i0...ipj0...jq = ui0...ipvj0...jq .

It satisfies the product rule

∂ (uv) = (∂u)v + (−1)p+1 u∂v.
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Let Ip be the subspace of Λp that is spanned by irregular ei0...ip (a
path i0...ip is irregular if ik = ik+1 for some k). Then the spaces Ip are
invariant for ∂ and for product, which allows to define ∂ and product
on the quotient spaces Rp = Λp/Ip. We identify the elements of Rp with
their representatives that are regular p-paths. Then ei0...ip with irregular
i0...ip are treated as zeros.

Let (V,E) be a digraph, that is, E ⊂ V ×V \diag is a set of directed
edges. An elementary regular path ei0...ip is called allowed if ikik+1 ∈ E
for all k, and non-allowed otherwise.

Let Ap be a subspace of Rp that is spanned by all allowed ei0...ip . The
elements of Ap are called allowed p-paths. For example, A0 consists of
linear combinations of all vertices, and A1 consists of linear combinations
of all edges.

In general, the spaces Ap is not ∂-invariant, so we introduce smaller
spaces

Ωp = {v ∈ Ap : ∂v ∈ Ap−1} ,

that are ∂-invariant, that is, ∂Ωp ⊂ Ωp−1. The elements of Ωp are called
∂-invariant paths.

Note that Ω0 = A0 and Ω1 = A1, but for p ≥ 2, Ωp can actually be
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smaller than Ap. We obtain a chain complex

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

whose homologies Hp (Ω) = Hp (V,E) are the subject for our study. So
far we know that dim H0 (V,E) is equal to the number of connected
components of the graph.

4 Surgery of digraphs

4.1 Homologies of subgraphs

Let (V ′, E ′) be a subgraph of (V,E) in the sense that V ′ ⊂ V and E ′ ⊂ E.
Let us mark by the dash ”′” all the notation related to the graph (V ′, E ′)
rather than to (V,E).

As it was already observed, R′
p ⊂ Rp and ∂ commutes with this

inclusion. It is also obvious that if ei0...ip is an allowed path in (V ′, E ′)
then it is also allowed in (V,E), whence A′

p ⊂ Ap.
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∙ ∙ ∙

•↘
•

↗
•
↓

∙ ∙ ∙

• → •
↗

V ′ V

By the definition (3.5) of Ωp, we obtain that Ω′
p ⊂ Ωp and ∂ commutes

with this inclusion. Consequently, the chain complex

0 ← Ω′
0

∂
← Ω′

1
∂
← Ω′

2
∂
← Ω′

3
∂
← . . .

is a sub-complex of

0 ← Ω0
∂
← Ω1

∂
← Ω2

∂
← Ω3

∂
← . . .

By Proposition 2.7 (cf. (2.17)) we obtain that the following long sequence
is exact:

0← H0(Ω/Ω′)← H0(Ω)← H0(Ω
′)← ∙ ∙ ∙ ← Hp(Ω/Ω′)← Hp(Ω)← Hp(Ω

′)← Hp+1(Ω/Ω′)← . . .
(4.1)
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4.2 Removing a vertex of degree 1

Theorem 4.1 Suppose that a graph (V,E) has a vertex a such that there
is only one outcoming edge ab from a and no incoming edges to a. Let
V ′ = V \ {a} and E ′ = E \ {ab}.

a • −→ • b V ′ V

Then Hp (V,E) ∼= Hp(V
′, E ′) for all p ≥ 0.

Remark. The same is true if the edge ab in the statement is replaced
by ba.

Proof. Let us first prove that Ω′
p = Ωp for p ≥ 2. Since always

Ω′
p ⊂ Ωp, it suffices to prove the opposite inclusion Ωp ⊂ Ω′

p. Let us first
show that, for all p ≥ 2,

Ωp ⊂ A
′
p, (4.2)

that is
v ∈ Ap and ∂v ∈ Ap−1 ⇒ v ∈ A′

p.
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Every elementary allowed p-path on (V,E) either is allowed on (V ′, E ′)
or starts with ab, which implies that v can be represented in the form

v = eabu + v′,

where v′ ∈ A′
p, while u ∈ A′

p−2 is a linear combination of the paths
ei0...ip−2 ∈ A

′
p−2 with i0 6= b. It follows that

∂v = (eb − ea) u + eab∂u + ∂v′. (4.3)

Note that eau is a linear combination of the elementary paths eai0...ip−2

where i0, ..., ip−2 ∈ V ′ and i0 6= b. Since ai0 is not an edge, those elemen-
tary paths are not allowed in (V,E). No other terms in the right hand
side of (4.3) has eai0...ip−2-component. Since ∂v is allows in (V,E), its
eai0...ip−2-component is 0, which is only possible if eau = 0, that is, u = 0.
It follows that v = v′ ∈ A′

p, which finishes the proof of (4.2).
Let us now show that Ωp ⊂ Ω′

p for all p ≥ 2. Indeed, if v ∈ Ωp

then by definition ∂v ∈ Ap−1 and by (4.2) v ∈ A′
p, which together imply

∂v ∈ A′
p−1. It follows that v ∈ Ω′

p. Consequently, we have proved that

Ωp = Ω′
p for all p ≥ 2. (4.4)
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It follows that, for all p ≥ 2,

dim Hp (Ω′) = dim Hp (Ω) . (4.5)

For p = 0 this identity also true as the number of connected components
of (V,E) and (V ′, E ′) is the same.

We are left to treat the case p = 1. Observe that

Ω0 = Ω′
0 + span {ea} and Ω1 = Ω′

1 + span {eab} . (4.6)

By (4.4) and (4.6) the cochain complex Ω/Ω′ has the form

0←− span {ea}
∂
←− span {eab} ←− 0 = Ω2/Ω′

2.

Since
∂eab = eb − aa = −ea mod Ω′

0,

it follows that Im ∂|Ω1/Ω′
1

= span {ea}, while ker ∂|Ω1/Ω′
1

= 0, whence

dim H0 (Ω/Ω′) = dim H1 (Ω/Ω′) = 0.

By (4.1) we have a long exact sequence

H0 (Ω/Ω′) = 0←− H1 (Ω)←− H1 (Ω′)←− 0 = H1 (Ω/Ω′)
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which implies that

dim H1 (Ω) = dim H1 (Ω′) ,

thus finishing the proof.

Corollary 4.2 Let a digraph (V,E) be a tree (that is, the underlying
undirected graph is a tree). Then Hp (V,E) = 0 for all p ≥ 1.

Proof. Induction in the number of edges |E| . If |E| = 0 then the
claim is obvious. If |E| > 0 then there is a vertex a ∈ V of degree
1 (indeed, if this is not the case then moving along undirected edges
allows to produce a cycle). Removing this vertex and the adjacent edge,
we obtain a tree (V ′, E ′) with |E ′| < |E|. By the inductive hypothesis
Hp (V ′, E ′) = 0 for p ≥ 1, whence by Theorem 4.1 also Hp (V,E) = 0.
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4.3 Removing of a vertex of degree 2

Theorem 4.3 Suppose that a graph (V,E) has a vertex a with two out-
coming edges ab and ac and no incoming edges. Assume also that either
bc or cb (or both) is an edge:

a •↗↘

•b
↓
•c

V ′ V

Let V ′ = V \ {a} and E ′ = E \ {ab, ac}. Then, for any p ≥ 0,

dim Hp (V,E) = dim Hp (V ′, E ′) . (4.7)

The same is true if the vertex a has two incoming edges ba and ca
and no outcoming edges, while either bc or cb is an edge:

a •↙↖

•b
↓
•c

V ′ V
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Example. Consider a graph (V,E) as on the picture:

 
b 

… … 

c 

a1 a2 an a-1 a-2 an a-m 

Each of the vertices ai satisfies the hypotheses of Theorem 4.3 (either
with incoming or outcoming edges). Removing these vertices succes-
sively, we see that all the homologies of (V,E) are the same as those of
the remaining graph b• → •c. Since it is a star-like graph, we obtain
dim H0 = 1 and dim Hp = 0 for all p ≥ 1. In particular, χ = 1.

Proof of Theorem 4.3. Without loss of generality assume that
bc is an edge. Since the number of connected components of the graphs
(V,E) and (V ′, E ′) is obviously the same, the identity (4.7) for p = 0
follows from Proposition 3.2.
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For p ≥ 1 consider the long exact sequence (4.1), that is,

...← Hp (Ω/Ω′)← Hp (Ω)← Hp (Ω′)← Hp+1 (Ω/Ω′)← ...,

which implies the identity

dim Hp (Ω) = dim Hp (Ω′) for p ≥ 1,

if we prove that
dim Hp (Ω/Ω′) = 0 for p ≥ 1. (4.8)

The condition (4.8) means that

ker ∂|Ωp/Ω′
p
⊂ Im ∂|Ωp+1/Ω′

p+1

that is, if
v ∈ Ωp and ∂v = 0 mod Ω′

p−1 (4.9)

then there exists ω ∈ Ωp+1 such that

∂ω = v mod Ω′
p. (4.10)

In fact, it suffices to have ω ∈ Ap+1 because then the identity (4.10)
implies ∂ω ∈ Ωp and, hence, ω ∈ Ωp+1.
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Consider first the case p = 1. Every 1-path v ∈ Ω1 has the form

v = vabeab + vaceac + v′

where v′ ∈ A′
1 = Ω′

1. Since (∂v)a = 0 and

(∂v)a =
∑

k

(
vka − vak

)
= −

(
vab + vac

)
,

it follows that
vab + vac = 0,

whence
v = vab (eab − eac) mod Ω′

1.

For 2-form ω = vabeabc we have

∂ω = vab (ebc − eac + eab) = v mod Ω′
1,

which finishes the proof of (4.8) in the case p = 1.
Consider now the case p = 2. For any v ∈ Ω2 and any vertex j 6=

a, b, c, we have

(∂v)aj =
∑

k∈V

(
vkaj − vakj + vajk

)
= −

(
vabj + vacj

)
,
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because there are no incoming edges at a and only two outcoming edges
ab and ac. By (4.9) we have (∂v)aj = 0 whence

vabj + vacj = 0. (4.11)

Denote by J the set of vertices j such that either j = c or both bj and
cj are edges:

a •↗↘

•b
↓
•c

↘
↗ • j

We claim that
j ∈ V \ J ⇒ vabj = vacj = 0.

If j = a or b then this is trivial. Otherwise, j 6= a, b, c and either bj or cj
is not an edge. If bj is not an edge then vabj = 0 whence by (4.11) also
vacj = 0, and the same is valid if cj is not an edge.

It follows that v can be represented in the form

v =
∑

j∈J

vabjeabj +
∑

j∈J

vacjeacj + v′

=
∑

j∈J

vabj (eabj − eacj) + v′, (4.12)
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where v′ ∈ A′
2. In the last line we have used (4.11) for j 6= c and eacj = 0

for j = c.
For any j ∈ J, we have

∂ (eabj − eacj) = (ebj − eaj + eab)− (ecj − eaj + eac)

= ebj − ecj + eab − eac ∈ A1.

Since ∂v ∈ A′
1, it follows from (4.12) that ∂v′ ∈ A1. Since v′ ∈ A′

2, we
conclude that ∂v′ ∈ A′

1 whence v′ ∈ Ω′
2. Therefore,

v =
∑

j∈J

vabj (eabj − eacj) mod Ω′
2. (4.13)

Since (∂v)ab = 0 and

(∂v)ab =
∑

j∈V

(
vjab − vajb + vabj

)
=
∑

j∈J

vabj ,

it follows that ∑

j∈J

vabj = 0. (4.14)
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Consider the 3-path

ω =
∑

j∈J

vabjeabcj .

For any j ∈ J\{c} we have eabcj ∈ E3 whereas for j = c we have eabcj = 0.
Hence, ω ∈ A3. Since

∂eabcj = ebcj − eacj + eabj − eabc

and ebcj ∈ Ω′
2, it follows from (4.13) and (4.14) that

∂ω =
∑

j∈J

vabj (eabj − eacj − eabc) = v mod Ω′
2,

which finishes the proof in the case p = 2.
Consider the case p ≥ 3. Any p-path v ∈ Ωp has the form

v =
∑

γ∈E′
p−2

vabγeabγ +
∑

γ∈E′
p−2

vacγeacγ + v′, (4.15)
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where v′ ∈ A′
p. Using product of paths and (1.14), we obtain

∂eabγ = ∂ (eabeγ) = (∂eab) eγ + eab∂eγ

= (eb − ea) eγ + eab∂eγ

= ebγ − eaγ + eab∂eγ

and a similar formula for ∂eacγ , whence it follows that

∂v =
∑

γ∈E′
p−2

(
vabγebγ + vacγecγ −

(
vabγ + vacγ

)
eaγ

)
(4.16)

+eab

∑

γ∈E′
p−2

vabγ∂eγ + eac

∑

γ∈E′
p−2

vacγ∂eγ + ∂v′. (4.17)

Let γ = γ0...γp−2 where γi ∈ V ′. We claim that if γ0 6= c then

vabγ + vacγ = 0. (4.18)

If γ0 = a or b then we have trivially vabγ = vacγ = 0. Otherwise let us look
at the component eaγ in (4.16)-(4.17). Since it occurs only once, namely
in the last term of (4.16), while (∂v)aγ = 0, we obtain (4.18). Note that
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if γ0 = c then vacγ = 0 but vabγ may be non-zero, so that (4.18) may not
be valid.

Denote by Γ the set of paths γ ∈ E ′
p−2 such that either γ0 = c or

both bγ and cγ are in E ′
p−1:

•b
a•↗↘ ↓ ↘

↗•
γ
→ • → • → •

•c
↓γ
• → • → •

It follows from (4.18) that if γ ∈ E ′
p−2 \Γ then both vabγ and vacγ vanish.

Indeed, since γ0 6= c, we have (4.18). Since bγ or cγ is not in E ′
p−1, one of

the terms vabγ , vacγ vanish, whence the second term also vanish by (4.18).
Hence, the summation in (4.15) can be restricted to γ ∈ Γ:

v =
∑

γ∈Γ

vabγeabγ +
∑

γ∈Γ

vacγeacγ + v′

=
∑

γ∈Γ

vabγ (eabγ − eacγ) + v′, (4.19)
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where in the second line we have used (4.18) for γ0 6= c and eacγ = 0 for
γ0 = c. Set

u =
∑

γ∈Γ

vabγeγ, (4.20)

so that we can rewrite (4.19) in the form

v = (eab − eac) u + v′ (4.21)

whence
∂v = (eb − ec) u + (eab − eac) ∂u + ∂v′. (4.22)

Let us show that ∂u = 0. Indeed, since the (p− 1)-paths ∂v, ebu, ecu,
and ∂v′ are in R′

p−1, it follows from (4.22) that also

(eab − eac) ∂u ∈ R′
p−1.

We have the identity

(eab − eac) ∂u =
∑

i0,...,ip−3∈V ′

(∂u)i0...ip−3
(
eabi0...ip−3 − eaci0...ip−3

)
.
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If i0 6= b then eabi0...ip−3 /∈ R′
p−1 so that the coefficient (∂u)i0...ip−3 must

vanish. If i0 = b then i0 6= c, eaci0...ip−3 /∈ R′
p−1 and again (∂u)i0...ip−3 = 0.

Hence, we conclude that ∂u = 0, which was claimed.
It follows that

∂v = (eb − ec) u + ∂v′.

Since ∂v, ebu, ecu ∈ A′
p−1, it follows that ∂v′ ∈ A′

p−1 whence v′ ∈ Ω′
p−1.

Substituting this into (4.21) , we obtain

v = (eab − eac) u mod Ω′
p. (4.23)

Consider a (p + 1)-path ω = eabcu. Since

∂ (eabcu) = (∂eabc) u− eabc∂u = (ebc − eac + eab) u,

we have
∂ (eabcu) = ebcu + v mod Ω′

p. (4.24)

We are left to show that ebcu ∈ Ω′
p. That ebcu ∈ A′

p follows from the
definition of Γ and (4.20). Next we have

∂ (ebcu) = (eb − ec) u + ebc∂u = ebu− ecu ∈ A
′
p−1,
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which implies that ebcu ∈ Ω′
p. From (4.24) we conclude that

∂ (eabcu) = v mod Ω′
p,

which finishes the proof.
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4.4 Removing a vertex of degree 1 + 1

Recall that a pair cb of distinct vertices on a graph is a semi-edge if cb is
not an edge but there is a vertex j such that cjb is an edge:

•b
�
•c

↖
↗ • j

Theorem 4.4 Suppose that a graph (V,E) has a vertex a such that there
is only one outcoming edge ab from a and only one incoming edge ca,
where b 6= c. Let V ′ = V \ {a} and E ′ = E \ {ab, ca}.

a •↗↖

•b
...
•c

V ′ V

Then the following is true.

(a) For any p ≥ 2,

dim Hp (V,E) = dim Hp(V
′, E ′). (4.25)
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(b) If cb is an edge or a semi-edge in (V ′, E ′) then (4.25) is satisfied
also for p = 0, 1, that is, for all p ≥ 0.

(c) If cb is neither edge nor semi-edge in (V ′, E ′), but b, c belong to the
same connected component of (V ′, E ′) then

dim H1 (V,E) = dim H1(V
′, E ′) + 1

and dim H0 (V,E) = dim H0 (V ′, E ′) .

(d) If b, c belong to different connected components of (V ′, E ′) then

dim H1 (V,E) = dim H1(V
′, E ′)

and dim H0 (V,E) = dim H0(V
′, E ′)− 1.

Consequently, in the case (b) , χ (V,E) = χ (V ′, E ′) , whereas in the
cases (c) and (d) , χ (V,E) = χ (V ′, E ′)− 1.
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Example. Consider the graphs

(V,E) =

b•
↗ ↖

a• ↓ •d
↖ ↗

c•

and (V ′, E ′) =

b•
↖

↓ •d
↗

c•

Since cb is semi-edge in (V ′, E ′) we have case (b) so that all homologies of
(V,E) and (V ′, E ′) are the same. Removing further vertex d we obtain
a digraph b• → •c that will be denoted by (V ′′, E ′′). It is a star-like
graph with all dim Hp (V ′′, E ′′) = 0 for p ≥ 1. Since cb is neither edge nor
semi-edge in (V ′′, E ′′), but the graph is connected, we conclude by case
(c) that

Hp (V ′, E ′) = Hp (V ′′, E ′′) for p ≥ 2,

and
dim H1 (V ′, E ′) = dim H1 (V ′′, E ′′) + 1 = 1.

It follows that dim Hp (V,E) = 0 for p ≥ 2 and dim H1 (V,E) = 1.
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Example. Consider a digraph (a kind of anti-snake):

 

1 

2 

3 

4 

5 

6 

We start building this graph with 1 → 2. Since 21 is neither edge
nor semi-edge, adding a path 2 → 3 → 1 increases dim H1 by 1 and
preserves other homologies. Since 23 is an edge, adding a path 2 → 4→ 3
preserves all homologies. Since 34 is neither edge nor semi-edge, adding
a path 3→ 5→ 4 increases dim H1 by 1 and preserves other homologies.
Similarly, adding a path 5 → 6→ 4 preserves all homologies.

One can repeat this pattern arbitrarily many times. By doing so
we construct a digraph with a prescribed value of dim H1 while keeping
dim Hp = 0 for all p ≥ 2. Consequently, the Euler characteristic χ can
take arbitrary negative values.
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Proof of Theorem 4.4. Proof of (a) . The identity (4.25) for p ≥ 2
will follow if if prove that

dim Hp (Ω/Ω′) = 0 for p ≥ 2. (4.26)

In order to prove (4.26) it suffices to show that

ker ∂|Ωp/Ω′
p

= 0,

which is equivalent to

v ∈ Ωp, ∂v = 0 mod Ω′
p−1 ⇒ v = 0 mod Ω′

p. (4.27)

By the definition (3.5) of Ωp, (4.27) is equivalent to

v ∈ Ap and ∂v ∈ A′
p−1 ⇒ v ∈ A′

p. (4.28)

Hence, let us prove (4.28) for all p ≥ 2.
Every elementary allowed p-path on (V,E) either contains one of the

edges ab, ca or is allowed in (V ′, E ′). Let us show that, for any v as
in (4.28), its components v...ab... and v...ca... vanish, which will imply that
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v ∈ A′
p. Any such component can be written in the form vαabβ or vγcaβ

where α, β, γ are some paths. Consider the following cases. For further
applications, in the Cases 1,2 we assume only that v ∈ Ωp (whereas in
the Case 3 v is as in (4.28)).

Case 1. Let us consider first the component vαabβ where β is non-
empty. If αabβ is not allowed in (V,E) then vαabβ = 0 by definition. Let
αabβ be allowed in (V,E). The path αaβ is not allowed because the only
outcoming edge from a is ab. Since ∂v ∈ Ap−1, we have

(∂v)αaβ = 0.

Let us show that
(∂v)αaβ = ±vαabβ, (4.29)

which will imply vαabβ = 0. Indeed, by (1.6) (∂v)αaβ is the sum of the
terms ±vω where ω is a p-path that is obtained from αaβ by inserting
one vertex. Since there is no edge from a to β, the only way ω can be
allowed is when ω = αabβ. Since for any other ω we have vω = 0, we
obtain (4.29), which implies that vαabβ = 0.

Case 2. In the same way one proves that vγcaβ = 0 provided γ is
non-empty, using the fact that the only incoming edge in a is ca.
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Case 3. Consider now an arbitrary component vαabβ. If β is non-
empty then vαabβ = 0 by Case 1. Let β be empty. Then α must have the
form α = γc so that vαabβ = vγcab. If γ is non-empty then vγcab = 0 by
Case 2. Finally, let γ be also empty so that vαabβ = vcab (which is only
possible if p = 2). Since ∂v ∈ A′

1, we have

(∂v)ab = 0.

On the other hand,

(∂v)ab =
∑

i∈V

viab − vaib + vabi.

Here all the terms of the form viab vanish, except possibly for vcab, because
ia is not an edge unless i = c. All the terms vaib vanish because ai is not
an edge. All the terms vabi vanish by Case 1. Hence, we obtain

(∂v)ab = vcab

whence vcab = 0 follows, thus finishing the proof of the part (a) .
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Proof of (b) , (c) , (d) . If b, c belong to the same connected component
of (V ′, E ′) then the number of connected components of (V,E) and that
of (V ′, E ′) are the same, so that

dim H0 (Ω) = dim H0 (Ω′) , (4.30)

whereas if b, c belong to different connected components of (V ′, E ′) then
after joining them by a the number of connected components reduces by
1, so that

dim H0 (Ω) = dim H0 (Ω′)− 1. (4.31)

To handle H1 we use the long exact sequence (4.1) that by (4.26) has
the form

0← H0 (Ω/Ω′)← H0 (Ω)← H0 (Ω′)← H1 (Ω/Ω′)← H1 (Ω)← H1 (Ω′)← 0.
(4.32)

Since we know already the relation between H0 (Ω′) and H0 (Ω), to obtain
the relation between H1 (Ω′) and H1 (Ω) we need to compute dim H0 (Ω/Ω′)
and dim H1 (Ω/Ω′) from the quotient complex Ω/Ω′. Observe that

Ω0 = Ω′
0 + span {ea} , Ω1 = Ω′

1 + span {eab, eca} (4.33)
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so that the quotient complex Ω/Ω′ has the form

0←− span {ea}
∂
←− span {eab, eca}

∂
←− Ω2/Ω′

2
∂
←− ...

We need to determine Im ∂|Ω1/Ω′
1
, ker ∂|Ω1/Ω′

1
, Im ∂|Ω2/Ω′

2
. Since

∂eab = eb − ea = −ea mod Ω′
0,

it follows that
Im ∂|Ω1/Ω′

1
= Ω0/Ω′

0,

whence
dim H0 (Ω/Ω′) = 0. (4.34)

For any scalars k, l ∈ K, we have

∂(keab + leca) = (l − k)ea mod Ω′
0,

so that ∂(keab + leca) = 0 if and only if k = l, that is

ker ∂|Ω1/Ω′
1

= span(eab + eca) mod Ω′
1. (4.35)
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Let us now compute Im ∂|Ω2/Ω′
2
. For any v ∈ Ω2 we have by the above

Cases 1,2 that vabi = vjca = 0, which implies that v has the form

v = v′ + vcabecab, (4.36)

where v′ ∈ A′
2. It follows that

∂v = ∂v′ + vcab (eab − ecb + eca) . (4.37)

Since all 1-paths ∂v, eab and eca belong toA1, it follows that ∂v′−vcabecb ∈
A1 whence also ∂v′ − vcabecb ∈ A′

1. Therefore,

∂v = vcab (eab + eca) mod Ω′
1. (4.38)

Next consider two cases.
(i) Let Ω2 contain an element v with vcab 6= 0. Then by (4.38)

Im ∂|Ω2/Ω′
2

= span (eab + eca) mod Ω′
1, (4.39)

which together with (4.35) implies

dim H1 (Ω/Ω′) = 0. (4.40)
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Substituting (4.34) and (4.40) into the exact sequence (4.32), we obtain
that the identity

dim Hp (Ω′) = dim Hp (Ω)

holds for all p ≥ 0.
(ii) Assume that vcab = 0 for all v ∈ Ω2. Then by (4.38)

Im ∂|Ω2/Ω′
2

= 0,

which together with (4.35) implies

dim H1 (Ω/Ω′) = 1. (4.41)

Using again the exact sequence (4.32), that is,

0← H0 (Ω)← H0 (Ω′)← H1 (Ω/Ω′)← H1 (Ω)← H1 (Ω′)← 0,

we obtain by (2.5) and (4.41)

dim H1 (Ω′)− dim H1(Ω) + 1− dim H0 (Ω′) + dim H0(Ω) = 0 (4.42)
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Let us now specify when (i) or (ii) occur. Assume first that cb is an edge:

a •↗↖

•b
↑
•c

V ′ V

Then
∂ecab = eab − ecb + eca ∈ A1,

whence it follows that ecab ∈ Ω2. Hence, we have the case (i) with
v = ecab.

Assume now that cb is not an edge. Denote by J the set of vertices
j ∈ V ′ such that the 2-path cjb is allowed in (V ′, E ′):

a •↗↖

•b

•c

↖
↗ •j ... J

Assume first that J is non-empty, that is, cb is a semi-edge, and set

v = ecab −
1

|J |

∑

j∈J

ecjb,
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where |J | is the number of elements in J . It is clear that v ∈ A2. We
have

∂v = (eab − ecb + eca)−
1

|J |

∑

j∈J

(ejb − ecb + ecj)

= (eab + eca)−
1

|J |

∑

j∈J

(ejb + ecj) , (4.43)

where the term ecb has cancelled out. It follows from (4.43) that ∂v ∈ A1

whence v ∈ Ω2, and we obtain again the case (i). This finishes the proof
of (b).

Let us show that if J = ∅ (that is, when cb is neither edge nor semi-
edge) then we have the case (ii) . Any 2-path v ∈ Ω2 has the form (4.36)
and ∂v is given by (4.37). It follows that

(∂v)cb = (∂v′)
cb − vcab.

Since ∂v ∈ A1 and cb is not an edge, we have (∂v)cb = 0. We have by
(1.6)

(∂v′)
cb

=
∑

j∈V ′

(v′)
jcb − (v′)

cjb
+ (v′)

cbj
,
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which implies that (∂v′)cb = 0 as no elementary 2-path of the form
jcb, cjb, cbj is allowed in (V ′, E ′) , whereas v′ ∈ A′

2. It follows that
vcab = 0 so that we have the case (ii).

If in addition b, c belong to the same connected component of (V ′, E ′)
then we have (4.30), that is,

dim H0 (Ω) = dim H0(Ω′).

Substituting into (4.42), we obtain

dim H1 (Ω) = dim H1(Ω
′) + 1.

which proves part (c).
If b, c belong to different components of (V ′, E ′) then we have by

(4.31)
dim H0 (Ω) = dim H0(Ω′)− 1,

whence by (4.42)
dim H1 (Ω) = dim H1(Ω

′),

which finishes the proof of part (d) .
Finally, the identities for the Euler characteristic follows easily from

the relations between dim Hp (Ω) and dim Hp (Ω′) .
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4.5 Suspension

Let a digraph (V,E) have a subgraph (V ′, E ′) such that V \ V ′ = {a, b}
and E \ E ′ = {ia, ib, i ∈ V ′} :

•a

↗ ↑ ↖

V ′

↘ ↓ ↙
•b

V

The digraph (V,E) is called a suspension of (V ′, E ′) and is denoted by
Sus (V ′, E ′) . Similarly, if a and b have outcoming edges then (V,E) is an
inverse suspension of (V ′, E ′) .

The next theorem determines the homologies of a suspension.

Theorem 4.5 If (V,E) is a suspension (or inverse suspension) of (V ′, E ′)
then, for any p ≥ 1,

Hp (V,E) ∼= H̃p−1 (V ′, E ′) . (4.44)

104



Here H̃p is a reduced homology: H̃p = Hp for p ≥ 1 and H̃0
∼=

H0/ const .
Denoting the digraph (V ′, E ′) by G, we can write the identity (4.44)

in the functorial form as follows:

Hp (Sus G) = H̃p−1 (G) .

It follows that χ (Sus G) = 2− χ (G) .
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Example. Consider the digraph G = (V,E) as follows:

 

0 

1 

2 

4 

3 

5 

Clearly, G = Sus G′ where G′ is the subgraph with vertices {2, 3, 4, 5}.
Also, G′ = Sus G′′ where G′′ is a subgraph with vertices {4, 5}. Since
dim H0 (G′′) = 2 and dim Hp (G′′) = 0 for p ≥ 1, we obtain by (4.44)

dim H0 (G′) = 1, dim H1 (G′) = 1, dim Hp (G′) = 0 for p ≥ 2,

dim H0 (G) = 1, dim H1 (G) = 0, dim H2 (G) = 1, dim Hp (G) = 0 for p ≥ 3.

Consequently, χ (G) = 2.
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In the digraph G we have

dim Ω0 = |V | = 6 and dim Ω1 = |E| = 12

and
A2 = span {e024, e025, e034, e035, e124, e125, e134, e135} .

The set of semi-edges is empty, whence dim Ω2 = dimA2 = 8 and, hence,
Ω2 = A2. Alternatively, one can see that because all the 2-paths spanning
A2 are triangles so that all they are ∂-invariant. Also, there are no
allowed 3-paths, so that A3 = {0} whence dim Ωp = 0 for all p ≥ 3.

A spanning element in H2 (G) is

v = e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135

as v 6= 0 and ∂v = 0.

107



Example. Let S be any cycle graph that is neither triangle nor square.
We regards S as a circle. Define Sn inductively by S1 = S and Sn+1 =
Sus Sn. Then Sn can be regarded as n-dimensional sphere. Here is an
example of S2:

  
a 

b 

Since χ (S) = 0 by Proposition 3.7, it follows that χ (Sn) = 0 if
n is odd and χ (Sn) = 2 if n is even. Theorem 4.5 also implies that
dim Hn (Sn) = dim H1 (S) = 1, which gives an example of a non-trivial
Hn with an arbitrary n.
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Proof of Theorem 4.5. For any p ≥ 0 consider a linear mapping

τ : A′
p → Ap+1,

defined by
τv = v (ea − eb) . (4.45)

Since every vertex from V ′ is connected to a and b, the path τv is indeed
allowed. By the product rule (1.14) we have

∂ (τv) = (∂v) (eb − ea) + (−1)p+1 v∂ (ea − eb) = τ∂v

so that the operators ∂ and τ commute. It follows that

τ
(
Ω′

p

)
⊂ Ωp+1.

Indeed, if v ∈ Ω′
p then

v ∈ A′
p and ∂v ∈ A′

p−1

whence
τv ∈ Ap+1 and ∂ (τv) = τ (∂v) ∈ Ap,
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whence τv ∈ Ωp+1. Hence, we have the commutative following diagram
for all p ≥ 1:

Ω′
p−1

∂
←− Ω′

p

↓τ ↓τ

Ωp
∂
←− Ωp+1

(4.46)

Let us extend it to the case p = 0. Set Ω′
−1 = K as in the case of reduced

homology. The operator τ : K → Ω0 is also defined by (4.45), which
now amounts to τ1 = ea − eb. The operator ∂ should be replaced by
∂̃ : Ω′

0 → K where ∂̃ei = 1 (this is the same operator ∂̃ that is used in
the reduced homologies and in the product rule). The above argument,
based on the product rule, remains valid. Hence, the diagram (4.46)
remains commutative also for p = 0, where it takes the form

K
∂̃
←− Ω′

0

↓τ ↓τ

Ω0
∂
←− Ω1

Consider the digraph (V ′′, E ′′) that is obtained by adding to (V ′, E ′)
the vertex a and all the edges ia with i ∈ V ′, that is, (V ′′, E ′′) is a cone
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over (V ′, E ′):

•a

↗ ↑ ↖

V ′

V ′′

↘ ↓ ↙
•b

V

Let us mark by a double dash ′′ all the notation related to this digraph.
For any p ≥ 0, define a linear mapping ρ : Ap → A′′

p by

ρei0...ip =

{
ei0...ip , if ip 6= b
ei0...ip−1a, if ip = b.

(4.47)

Clearly, ρ is surjective. Let us show that ρ commutes with ∂. If v = ei0...ip

with ip 6= b then ρv = v and ρ (∂v) = ∂v so that ρ (∂v) = ∂ (ρv) . If ip = b
then, setting u = ei0...ip−1 , we obtain ρv = uea and

∂ (ρv) = (∂u) ea + (−1)p u.
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On the other hand, we have

∂v = (∂u) ea + (−1)p u

whence it follows that

ρ (∂v) = (∂u) eb + (−1)p u,

which proves that ρ (∂v) = ∂ (ρv) .
It follows that ρ maps Ωp to Ω′′

p and the following diagram is commu-
tative for any p ≥ 0:

Ωp
∂
←− Ωp+1

↓ρ ↓ρ

Ω′′
p

∂
←− Ω′′

p+1

(4.48)

We will merge the diagrams (4.48) and (4.46), and for that we need to
verify that the following sequence is exact for all p ≥ −1:

0 −→ Ω′
p

τ
−→ Ωp+1

ρ
−→ Ω′′

p+1 −→ 0. (4.49)

Since τ is injective and ρ is surjective, it suffices to show that Im τ =
ker ρ. We have

τei0...ip = ei0...ipa − ei0...ipb
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so that Im τ consists of all p-paths of the form

∑

i0,...,ip∈V ′

ci0...ip
(
ei0...ipa − ei0...ipb

)
(4.50)

with arbitrary coefficients ci0...ip . Observe that, for any u ∈ Ωp+1,

ρu =
∑

i0,...,ip+1∈V ′

ui0...ip+1ei0...ipip+1 +
∑

i0,...,ip∈V ′

(
ui0...ipa + ui0...ipb

)
ei0...ipa.

(4.51)
Then the equation ρu = 0 that amounts to the system

{
ui0...ip+1 = 0, for all i0...ip+1 ∈ V ′,
ui0...ipa + ui0...ipb = 0, for all i0...ip ∈ V ′,

(4.52)

that is, to the identity

u =
∑

i0,...,ip∈V ′

ui0...ipa
(
ei0...ipa − ei0...ipb

)
. (4.53)

Comparing with (4.50) we see that Im τ = ker ρ.
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Hence, we have constructed the following commutative diagram where
the rows are chain complexes and the columns are exact:

0 ←− 0 ←− 0 ←− 0 ←− . . . ←− 0 ←− 0 ←− . . .
↓ ↓ ↓ ↓ ↓ ↓

0 ←− Ω′
−1

∂̃
←− Ω′

0
∂
←− Ω′

1
∂
←− . . .

∂
←− Ω′

p−1
∂
←− Ω′

p
∂
←− . . .

↓ ↓τ ↓τ ↓τ ↓τ ↓τ

0 ←− Ω0
∂
←− Ω1

∂
←− Ω2

∂
←− . . .

∂
←− Ωp

∂
←− Ωp+1

∂
←− . . .

↓ ↓ρ ↓ρ ↓ρ ↓ρ ↓ρ

0 ←− Ω′′
0

∂
←− Ω′′

1
∂
←− Ω′′

2
∂
←− . . .

∂
←− Ω′′

p
∂
←− Ω′′

p+1
∂
←− . . .

↓ ↓ ↓ ↓ ↓ ↓
0 ←− 0 ←− 0 ←− 0 ←− . . . ←− 0 ←− 0 ←− . . .

(4.54)

The homologies of the first chain complex in (4.54) are the reduced

homologies H̃∙ (Ω
′), while the second and the third complexes yield the

homologies H∙ (Ω) and H∙ (Ω
′′) respectively. By (2.17) we obtain a long

exact sequence

0← ∙ ∙ ∙ ← Hp (Ω′′)← Hp (Ω)← H̃p−1 (Ω′)← Hp+1 (Ω′′)← . . .

114



Since (V ′′, E ′′) is a star-like, we have by Theorem 3.4 Hp (Ω′′) = {0} for
any p ≥ 1, whence it follows that

dim Hp (Ω) = dim H̃p−1 (Ω′) ,

which was to be proved.
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