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Abstract

We show that the β-parabolic Harnack inequality for random walks on graphs is
equivalent, on one hand, to the sub-Gaussian estimate for the transition probability and,
on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling
volume property, and the fact that the mean exit time in any ball of radius R is of the
order Rβ . The latter condition can be replaced by a certain estimate of the resistance of
annuli.
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1 Introduction

In 1986, P.Li and S.-T.Yau [27] proved the following remarkable Gaussian estimate for the
heat kernel pt(x, y) on any complete Riemannian manifold M with non-negative Ricci curva-
ture:

pt(x, y) '
1

V (x,
√

t)
exp

(

−
d2(x, y)

ct

)

. (1.1)

Here d(x, y) is the geodesic distance between points x, y ∈ M , V (x, r) is the Riemannian
volume of a geodesic ball B(x, r) of radius r centered at x; the sign ' means that the ratio
of the two sides of (1.1) is bounded from above and below by two positive constants, for all
x, y ∈ M and t > 0 (the value of the constant c may be different for the upper and the lower
bounds). This estimate reflects the fact that the Brownian motion Xt on the manifold M
travels at distance ≈

√
t over time t.

Many efforts were made to understand what geometric properties of the manifold are
responsible for (1.1). The first author [18] and L.Saloff-Coste [31] obtained (1.1) under the
assumption that M satisfies the volume doubling property : for all x ∈ M and R > 0

V (x, 2R) ≤ CV (x,R), (V D)

and a certain Poincaré inequality. Moreover, L.Saloff-Coste proved that (V D) and the
Poincaré inequality are equivalent to (1.1).

For the purposes of the present paper it is important to mention that (1.1) is equivalent
to a parabolic Harnack inequality (see for example [15]) which says the following: for any non-
negative function u(x, t) solving the heat equation ∂u

∂t = Δu in a cylinder B(z, 2R)× (0, 4R2),

sup
B(z,R)×(R2,2R2)

u(x, t) ≤ C inf
B(z,R)×(3R2,4R2)

u(x, t), (PH2)

where the constant C does not depend on z,R. Clearly, the same space/time scaling time ≈
distance2 appears here as well.

The parabolic Harnack inequality implies the elliptic Harnack inequality : for any non-
negative harmonic function u(x) in a ball B(z, 2R),

sup
B(z,R)

u ≤ C inf
B(z,R)

u. (H)

Historically, the first significant results on elliptic and parabolic Harnack inequalities are
due to J.Moser [28], [29], who proved them for solutions of uniformly elliptic and parabolic
equations in the divergence form in Rn. In the geometric terms the results of Moser mean
that (PH2) and (H) hold on any Riemannian manifold quasi-isometric to Rn.

Moser’s method of proving Harnack inequalities as well as the competing methods ([15],
[18], [25], [31] and many others) yield (PH2) and (H) under the same set of assumptions
about M . For quite a long time it was not clear if (H) was actually weaker than (PH2). A
solution to this problem arose from a different field – analysis on fractals.

By fractals we mean sets like a Sierpinski carpet, which can be constructed by using
certain self-similar procedures. Normally fractals can be equipped with a distance function
d, a (Hausdorff) measure μ, and an energy functional E . Denote by M such a metric-measure-
energy space. Using methods of abstract potential theory, one defines a Hunt process Xt on
M (see [16]), which in many interesting cases happens to be diffusion with a continuous heat
kernel pt(x, y) (see [1]).
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M.Barlow and E.Perkins [8], M.Barlow and R.Bass [3], [4], [5] showed that, for a large
variety of fractal sets, the following heat kernel estimate takes place:

pt(x, y) '
1

tα/β
exp

(

−

(
dβ(x, y)

ct

) 1
β−1

)

, (1.2)

for a certain natural range of x, y, t. Here α, β are parameters related by 2 ≤ β ≤ α + 1.
M.Barlow and R.Bass [5] also showed that on such fractals a β-parabolic Harnack inequality
(PHβ) holds. This inequality is a generalization of (PH2) which one obtains by replacing
everywhere R2 by Rβ . The existence of spaces satisfying (PHβ) with β > 2 proves that (H)
is actually weaker than (PH2) because (PHβ) =⇒ (H) for any β whereas (PHβ) are not
equivalent for different β. However, a new interesting question arises:

What is “the difference” between (PHβ) and (H)?

This question is very much related to obtaining criteria for the following sub-Gaussian
estimate of the heat kernel:

pt(x, y) '
1

V (x, t1/β)
exp

(

−

(
dβ(x, y)

ct

) 1
β−1

)

. (1.3)

In the case of fractals satisfying (1.2) one has V (x, r) ' rα. Hence, (1.3) unifies (1.1) and
(1.2). Observe that the parameter β governs the space/time scaling by the relation

time = distanceβ .

In the case β > 2, the propagation of Xt is slower than in the Gaussian case β = 2.
The present paper answers the above questions in the setting of random walks on graphs (it

is well understood that a large scale behavior of random walks exhibits the same phenomena
as that of diffusions on manifolds or fractals). Note first that the volume doubling condition
(V D) and the elliptic Harnack inequality (H) are necessary for (PHβ). These two conditions
ensure a certain homogeneity of the space M but neither of them contains a parameter β. To
recover β one needs a third condition. Let E(x,R) be the mean exit time of the process Xt

from the ball B(x,R) provided X0 = x. For example in Rn we have E(x,R) ' R2. Consider
the hypothesis

E(x,R) ' Rβ . (Eβ)

Then our main result says that (in the setting of random walks on infinite graphs)

(1.3) ⇐⇒ (PHβ) ⇐⇒ (V D) + (H) + (Eβ).

Alternatively, the condition (Eβ) can be replaced by a certain estimate of the resistance of
annuli (see Sections 2, 3 below). In many interesting cases, (V D) and (Eβ) (or the resistance
condition) can be effectively verified. However, verifying the elliptic Harnack inequality (H)
may be very difficult, and it is still an open problem to find optimal criteria for (H).

Technically speaking, the main novelty of this paper is in obtaining the on-diagonal upper
estimate

pt(x, x) ≤
C

V (x, t1/β)
(DUEβ)

from (V D) + (H) + (Eβ). For an off-diagonal upper bound as well as for a lower bound, we
use previously known arguments. The major difficulty in proving (DUEβ) is that the right
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hand side depends on x. A celebrated method of Nash [30] that was successfully applied for
proving x-independent estimates like

pt(x, x) ≤ f(t) (1.4)

(see for example [35], [9], [19], [11]), does not work in our case. The estimate of Li and Yau
(1.1) can be proved using a certain parabolic mean value inequality (see [19], [26]). However,
all known proofs of the latter are too much linked to the classical Gaussian time/space scaling
and do not work in the case β > 2. This difficulty can be overcome in the strongly recurrent
case by using the resolvent method – see for example [8], [33], [34] (note for comparison that
Rn is strongly recurrent only for n = 1).

To prove (DUEβ) in the full generality, we develop in this paper a new method (partly in-
spired by [1] and [33]) that is based on a certain estimate (5.31) for λ-polyharmonic functions.
This estimate can be considered as an extension of the maximum principle for harmonic func-
tions, and it is proved by virtue of a higher order Feynman-Kac formula (5.25) (see Section
5).

As we have already mentioned, we prove all the results in the framework of random walks
on infinite graphs. We believe that a certain modification of our method will work also in the
setting of diffusions on manifolds and fractals. We intend to return to this problem elsewhere.

In Section 2 we describe the framework and give the background material. In Section 3
we state the main Theorem 3.1 and discuss some consequences and examples. Sections 4 –
6 contain the proofs. We use the letters c, C to denote positive constants whose values are
unimportant and may change at each occurrence.

Acknowledgment. We are grateful to Martin Barlow and Thierry Coulhon for useful
discussions. We are indebted to the unnamed referee for a number of suggestions that helped
to improve the paper.

2 Preliminaries

The results cited here can be found in many places (cf. [10], [12], [22]).
Measure and distance. Let Γ be an infinite connected locally finite graph endowed

with a weight μxy. The latter is a symmetric non-negative function on Γ×Γ such that μxy > 0
if and only if x and y are connected by an edge (in which case we write x ∼ y). The weight
μxy on edges induces a weight μ(x) on vertices and hence a measure μ on subsets A ⊂ Γ
defined by

μ(x) :=
∑

y:y∼x

μxy and μ(A) :=
∑

x∈A

μ(x).

Let d(x, y) be the graph distance between the points x, y ∈ Γ, that is the minimal number
of edges in any edge path connecting x and y. Denote metric balls and their measures as
follows:

B(x,R) := {y ∈ Γ : d(x, y) < R} and V (x,R) := μ(B(x,R)) .

A weighted graph (Γ, μ) satisfies the volume doubling property if

V (x, 2R) ≤ CV (x,R) ∀x ∈ Γ, ∀R > 0 (V D)

for some constant C. It is known that (V D) self-improves to the following inequality

V (x,R)
V (y, r)

≤ C

(
d(x, y) + R

r

)α

, (2.1)

for all pairs of balls B(x,R) and B(y, r) such that r ≤ R and for some α,C > 0.
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Random walk. The main object of our study is a random walk Xn on Γ, which is
a reversible Markov chain with respect to μ, defined by the following one-step transition
probability

P (x, y) =
μxy

μ(x)
.

We also consider P (x, y) as a Markov operator which acts on functions on Γ by

Pf(x) =
∑

y

P (x, y)f(y).

For any non-negative integer n, the n-step transition probability Pn is defined by Pn(x, y) =
Px(Xn = y). Alternatively, Pn is the n-th convolution power of the operator P . Define the
heat kernel of (Γ, μ) by

pn(x, y) =
Pn(x, y)

μ(y)
. (2.2)

It is easy to see that pn(x, y) = pn(y, x), and for any y ∈ Γ, the function un(x) = pn(x, y)
satisfies the heat equation

un+1(x) − un(x) = Δun. (2.3)

Here Δ is the Laplace operator of the graph (Γ, μ) defined by Δ = P − I, that is

Δu(x) =
∑

y

P (x, y)u(y) − u(x) =
1

μ (x)

∑

y

(u(y) − u(x)) μxy.

For any parameter β > 1, consider the following estimates of the heat kernel, which in general
may be true or not: for all x, y ∈ Γ

pn(x, y) ≤
C

V (x, n1/β)
exp

[

−

(
d(x, y)β

Cn

) 1
β−1

]

, ∀n ≥ 1, (UEβ)

(pn + pn+1)(x, y) ≥
c

V (x, n1/β)
exp

[

−

(
d(x, y)β

cn

) 1
β−1

]

, ∀n ≥ d(x, y) ∨ 1. (LEβ)

The conjunction (UEβ) + (LEβ) is a discrete analogue of the estimate (1.3) from the Intro-
duction. The obvious distinctions between (UEβ) and (LEβ) – the restriction n ≥ d(x, y)
and the term pn + pn+1 instead of pn – reflect the discreteness of the time (see [22, Section
14]). Although a priori β is any number > 1, in fact (UEβ) + (LEβ) imply β ≥ 2.

In some parts of this paper, we assume that the following condition is satisfied: for some
positive p0

P (x, y) ≥ p0 for all x ∼ y. (p0)

In particular, (p0) implies that each point x ∈ Γ has a uniformly bounded number of edges.
Green function and killed random walk. For any finite non-empty subset A ⊂ Γ,

denote by c0(A) the set of all functions on A extended to be 0 outside A. Define operator
ΔA on c0(A) as follows: for any f ∈ c0(A)

ΔAf(x) =

{
Δf(x), x ∈ A,
0, x /∈ A.

The operator −ΔA is positive definite and has the inverse GA =
(
−ΔA

)−1
which is called

the Green function. Respectively, the Green kernel is defined by

gA(x, y) =
GA(x, y)

μ(y)
.
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Note that gA(x, y) is non-negative and vanishes if one of the points x, y is outside A. Also,
gA(x, y) = gA(y, x), and gA(∙, y) satisfies the equation

ΔgA = −δy

where δy(x) = 0 if x 6= y and δy(y) = 1/μ(y).
Let PA be restriction of the Markov operator P to the set A. The iterates of PA are

denoted by PA
n and define the random walk XA

n with the killing condition outside A. Then
we have

GA(x, y) =
∞∑

n=0

PA
n (x, y) and gA(x, y) =

∞∑

n=0

pA
n (x, y),

where pA
n is the density of PA

n .
Mean exit time. The exit time from a set A ⊂ Γ is defined as

TA := min{n ≥ 0 : Xn /∈ A}.

Its expectation Ex(TA) is called the mean exit time and will be denoted also by Ex(A). If
A = B(x,R) then we write

Tx,R := TB(x,R) and E(x,R) := Ex

(
TB(x,R)

)
.

The mean exit time is related to the Green function by the identity

Ex(A) =
∑

y

GA(x, y) =
∑

y

gA(x, y)μ(y). (2.4)

Denote

E(A) := sup
z

Ez(A) and E(x,R) := E (B(x,R)) = sup
z∈B(x,R)

Ez

(
TB(x,R)

)
. (2.5)

The following two conditions will be frequently used:

E(x,R) ' Rβ , for all x ∈ Γ and R ≥ 1, (Eβ)

and
E(x,R) ≤ CE(x,R), for all x ∈ Γ and R > 0. (E)

If (Eβ) is satisfied then we have also

E(x,R) ' Rβ , for all x ∈ Γ and R ≥ 1, (2.6)

which in particular implies (E) (see [22, Proposition 6.1]).
Resistance. For any function f on Γ define its energy by

E (f) =
1
2

∑

x,y: x∼y

(f(x) − f(y))2 μxy.

For any two sets A ⊂ B ⊂ Γ the resistance ρ(A,B) is defined by

ρ−1(A,B) = inf {E (f) : f |A = 1 and f |Bc = 0} , (2.7)

where Bc := Γ \ B. The following condition is an analog of (Eβ) for resistance:

ρ (B(x,R), B(x,MR)) '
Rβ

V (x,R)
, for all x ∈ Γ and R ≥ 1, (ρβ)

for some fixed (large) number M whose value is unimportant.
Harnack inequalities. A function u is said to be harmonic in a set A ⊂ Γ if u is defined

in A (that consists of all points in A and all their neighbors) and if Δu(x) = 0 for any x ∈ A.
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Definition 2.1 We say that (Γ, μ) satisfies an elliptic Harnack inequality if, for all x ∈ Γ,
R > 0, and for any non-negative harmonic function u in B(x, 2R), the following inequality
holds

max
B(x,R)

u ≤ C min
B(x,R)

u. (H)

Definition 2.2 Given β > 1, we say that (Γ, μ) satisfies a β-parabolic Harnack inequality
if, for all x ∈ Γ, R ≥ 1 and for any non-negative function un(y) defined for n ∈ [0, 4N ],
y ∈ B(x, 2R) and satisfying the heat equation (2.3) in [0, 4N) × B(x, 2R), the following
inequality holds

max
n∈[N,2N)
y∈B(x,R)

un(y) ≤ C min
n∈[3N,4N)
y∈B(x,R)

(un(y) + un+1(y)) , (PHβ)

where N is a positive integer such that N ' Rβ and N ≥ 2R.

Since any harmonic function satisfies also the heat equation, (PHβ) =⇒ (H) for any β.

Remark 2.1 If the graph (Γ, μ) satisfies the condition (p0) then the Harnack inequality (H)
automatically holds for all balls with a bounded range of the radius R and for all non-negative
superharmonic functions u in B(x, 2R) (see [22, Proposition 3.2]); in this case the constant
C in (H) depends on the upper bound of the radius. The main point of Definition 2.1 (and
Definition 2.2) is that (H) (resp., (PHβ)) holds for arbitrarily large R with the same constant
C.

3 Main result

Theorem 3.1 If graph (Γ, μ) satisfies (p0) then, for any β ≥ 2, the following conditions are
equivalent:

(i) (UEβ) + (LEβ)

(ii) (PHβ)

(iii) (V D) + (H) + (ρβ)

(iv) (V D) + (H) + (Eβ)

Some of the implications in Theorem 3.1 were already known and are included here for
completeness as for instance, (i) ⇐⇒ (ii) – see [15], [13] for the case β = 2, and [23] for any
β (see also [5]). The implication (ii) =⇒ (iii) was proved in [33, Section 7].

The implication (iii) =⇒ (iv) is proved in the present paper in Section 4.3. In the view
of
(
ρβ

)
and (Eβ), this can be regarded as the proof of the following relation

E(x,R) ' ρ (B(x,R), B(x,MR)) V (x,R) ,

which we call Einstein’s relation1.
1In his celebrated work [14], A.Einstein proved the following formula for a diffusion constant: D−1 = σμ

where σ is the resistance density and μ is the mass density of the media in which the diffusion takes place.
Much later in the fractal literature (see for example, [17]) the renormalisation technique led to the use of the
scaling terms D−1 ≈ Lβ , μ ≈ Lα, σ ≈ Lγ and to the observation that on large families of fractals β = α + γ,
conjectured in [32] to be a very general law.
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The major part of this paper is devoted to the proof of (UEβ) in the implication (iv) =⇒
(i). The proof consists of many steps and goes via an upper estimate (Gβ) for the resolvent
and a diagonal upper bound (DUEβ) for the heat kernel as is shown on the diagram:

(V D)
(H)
(Eβ)





Thm.5.9
=⇒

(V D)
(Gβ)

}

Thm.6.1
=⇒

(V D)
(DUEβ)

(Eβ)





Thm.6.2
=⇒ (UEβ)

(see also Section 6.3). The derivation of (LEβ) from (V D)+(H)+(Eβ) is practically contained
in [22, Section 13] and is briefly outlined in Section 6.3.

Note that the equivalence

(PHβ) ⇐⇒ (V D) + (H) + (Eβ)

is new even for β = 2. For the case β = 2, we have a further result. Denote by λ(x,R) the
smallest eigenvalue of −ΔB(x,R) and consider the following hypothesis:

λ (x,R) ≥
c

R2
, for all x ∈ Γ and R ≥ 1. (λ)

Corollary 3.2 If (Γ, μ) satisfies (p0) then (PH2) ⇐⇒ (V D) + (H) + (λ) .

Indeed, the direction “ =⇒ ” follows from Theorem 3.1(iv) using (2.6) and the inequality

λ1 (x,R) ≥ E(x,R)−1

(see [22, Propositions 6.1,6.2]), whereas the direction “ ⇐= ” follows from Theorem 3.1(iii)
and the inequalities

R2

V (x, 2R)
≤ ρ (B(x,R), B(x, 2R)) ≤

1
λ(x, 2R)V (x,R)

(see [33]).
The proof of Theorem 3.1 contains the following new implication (see Remark 6.1):

(V D) + (MV ) + (Eβ) =⇒ (UEβ) , (3.1)

where (MV ) stands for the elliptic mean value inequality defined in Section 5.2. It is in-
teresting to recall that (UE2) is equivalent to (V D)+a parabolic version of (MV ) (see [12],
[26]). Theorem 3.1 recovers also the results obtained in [22] and [33].

In conclusion of this section, we give some examples highlighting the relations between
the hypotheses in questions.

Example 3.1 Let us observe that (V D) + (H) does not imply (Eβ) since there are graphs
with (V D) + (H) + (Eβ) with different β (see for example [2], [6], [24]).

Let us sketch an example where (V D) + (Eβ) holds but (H) does not. Indeed, take two
copies Γ1 and Γ2 of the same graph that satisfies (V D) + (H) + (Eβ) and such that the
random walk on it is transient. Create a new graph Γ whose vertex set is the disjoint union
of those of Γ1 and Γ2, and the edge set consists of those of Γ1 and Γ2 plus one additional
edge connecting a vertex in Γ1 to the corresponding vertex in Γ2. Then it is not difficult
to prove that Γ satisfies (V D) + (Eβ) but not (H) (see [21] for a manifold analogue of this
construction). In addition, it is possible to prove that (UEβ) holds on Γ; hence (LEβ) must
fail.

Probably, (H) + (Eβ) does not imply (V D) but we do not have an example for that.
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Γ3

Γ2

Γ1

o

Figure 1: Blocks Γ1, Γ2, Γ3, ... in the Vicsek tree

Example 3.2 Here we describe a weighted graph satisfying (V D) + (H) + (Eβ) and such
that V (x,R) substantially depends on x. Let Γ be the Vicsek tree (embedded in R2) that
is the union of the increasing sequence of blocks {Γk}

∞
k=1 – see Fig. 1. Here Γ0 = {o}, and

Γk+1 consists of Γk and its four copies translated and glued in an obvious way.
Fix a ≥ 1 and define weight μxy for any edge xy by μxy = ak where k is the minimal

index such that Γk contains x or y. Since d(x, o) ' 3k for any x ∈ Γk \ Γk−1, this implies for
all x 6= o,

μ(x) ' d(x, o)δ (3.2)

where δ = log3 a.
Let xk be the symmetry center of Γk and set Rk = 3k−1+ 1

2 ; then Γk = B(xk, Rk). Clearly,

|B(xk, Rk)| = |Γk| ' 5k ' Rα
k

where |∙| is the cardinality of a set and α = log3 5. It is not difficult to see that the same
relation holds for all balls B(x,R) in Γ with R ≥ 1, that is

|B(x,R)| ' Rα. (3.3)

From (3.2) and (3.3), one easily obtains, for all x ∈ Γ and R ≥ 1,

V (x,R) = μ (B(x,R)) ' Rα (R + d (x, o))δ , (3.4)

which in particular proves (V D) for (Γ, μ).
Due to the tree structure of Γ, it is easy to compute the Green kernel gΓk(xk, ∙) (cf. [7,

Section 4]). The set Γk \ Γk consists of a single point; denote it by zk (see Fig. 2).
Let gk(y) be a function on Γ satisfying the following conditions:

• gk vanishes outside Γk, in particular at zk;

• gk increases linearly along the path from zk to xk with a constant increment ck at each
step;

9



xk

zk

Γk

o

Γk-1

Figure 2: Points xk and zk.

• gk remains constant along all other paths in Γk.

These conditions uniquely determine gk, up to the choice of ck. Clearly, gk is harmonic
in Γk \ xk. At point xk, we have Δgk = −ck/4. Therefore, if we take ck := 4/μ (xk) = a−k

then we obtain for all y ∈ Γk

Δgk(y) = −δxk
(y)

and hence gk ≡ gΓk(xk, ∙).
For any point y on the paths from zk to xk, we have gk(y) = ckd(y, zk). In particular, for

any y ∈ B(xk,
1
3Rk),

gk(y) '

(
3
a

)k

and gk(y)μ (y) ' 3k.

Therefore, by (2.4)

E (xk, Rk) =
∑

y∈Γk

gk(y)μ (y) ' 3k |Γk| ' 15k ' Rβ
k

where β = log3 15. It is easy to show that the same relation E(x,R) ' Rβ holds for all x ∈ Γ
and R ≥ 1, which proves (Eβ).

The Green kernel gk = gΓk(xk, ∙) constructed above is nearly radial2. A similar argument
shows that the same is true for all balls in Γ, which implies (H) by [22, Proposition 10.1].

Hence, (Γ, μ) satisfies (V D) + (H) + (Eβ) and, by Theorem 3.1, (Γ, μ) satisfies (UEβ) +
(LEβ) with the volume function (3.4).

4 Harnack inequality and resistance

4.1 Harnack inequality for Green function

Definition 4.1 We say (Γ, μ) satisfies a ball covering property (BC) if, for all ε > 0, any
ball B(x,R) can be covered by N = N(ε) balls of radii εR.

2More precisely this means that the Green kernel satisfies a certain condition (HG) described below in
Section 4.1.
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It is well known that (V D) implies (BC).

Definition 4.2 We say that (Γ, μ) satisfies a Harnack inequality for the Green function if,
for some (large) constants M,C, for all x ∈ Γ and R > 0 and for any finite set U ⊃ B(x,MR),

sup
y/∈B(x,R)

gU (x, y) ≤ C inf
z∈B(x,R)

gU (x, z). (HG)

It is possible to show that (HG) =⇒ (H) (cf. [22, Proposition 10.1]). Here we need a
converse statement.

Proposition 4.1 Assume that (Γ, μ) satisfies (p0). Then (BC) + (H) =⇒ (HG). In partic-
ular, (V D) + (H) =⇒ (HG).

The main part of the proof is contained in the following lemma.

Lemma 4.2 Assume that (Γ, μ) satisfies (p0), (BC), (H). Let y, z be two points in a ball
B(x,R) such that the shortest path

y = ξ0 ∼ ξ1 ∼ ... ∼ ξk = z (4.1)

connecting y and z in Γ, does not intersect B(x, εR) for some ε ∈ (0, 1). Then, for any finite
set U containing B(x, 3R),

gU (x, y) ≤ Cεg
U (x, z). (4.2)

Proof. If R is in a bounded range then (4.2) follows from the hypothesis (p0) (cf. Remark
2.1 or [22, Proposition 3.2]). Assume in the sequel that R is large enough, and observe that
for any ξi

d(x, ξi) ≤ d(x, y) + d(y, ξi) and d(x, ξi) ≤ d(x, z) + d(ξi, z),

whence

d(x, ξi) ≤
d(x, y) + d(x, z) + d(y, z)

2
≤ d(x, y) + d(x, z) < 2R.

In particular, we have ξi ∈ B(x, 2R).
By (BC), the ball B(x, 2R) can be covered by at most N = N (ε/16) balls of radius

r = ε
8R. Select out of them only those balls which contain at least one point ξi, and denote

their centers by oj , j = 0, 1, ..., n, where n ≤ N . Among the points ξi which belong to the
ball B(oj , r) select one and denote it by ξj , making sure that the points y = ξ0 and z = ξk

are selected. Since the balls B(oj , r) cover the path (4.1) and B(oj , r) ⊂ B(ξj , 2r), the balls
B(ξj , 2r) also cover this path. Let us rearrange the points ξj in the order of increasing d(y, ξj)
(see Fig. 3). Then y = ξ0, z = ξn, and

d(ξj , ξj+1) < 4r, (4.3)

for all 0 ≤ j < n.
By hypothesis, we have

d(x, ξj) ≥ εR = 8r,

so that the point x is outside the ball B(ξj , 8r). Since ξj ∈ B(x, 2R) and 8r < R, we see that

B(ξj , 8r) ⊂ B(x, 3R) ⊂ U.

Hence, the function gU (x, ∙) is harmonic in B(ξj , 8r). By (4.3), we have ξj+1 ∈ B(ξj , 4r), and
the Harnack inequality (H) applied in the ball B(ξj , 8r), yields

gU (x, ξj) ≤ CgU (x, ξj+1).

11



z

x

y

B(x,R)

B(ξj,2r)
_

B(x,εR)

B(ξj+1,2r)
_

ξi

Figure 3: Covering the path from y to z by balls B(ξj , 2r).

Iterating this inequality n times, we obtain (4.2).
Proof of Proposition 4.1. The following argument is due to T.Delmotte (private

communication). Let y and z be the points where the sup and inf in (HG) are attained,
respectively. As follows from the maximum principle,

y ∈ B(x,R + 1) \ B(x,R) and z ∈ B(x,R) \ B(x,R − 1).

We need to prove that
gU (x, y) ≤ CgU (x, z) (4.4)

where U ⊃ B(x,MR) for some M . In fact, any M ≥ 11 will do as we will see below.
For a bounded range of R, (4.4) follows from (p0) (cf. Remark 2.1). Assume in the sequel

that R is large enough, connect y and z by the shortest path in Γ as in (4.1), and consider
two cases.

Case 1. All points ξi are outside B(x, 1
4R). Then (4.4) follows from Lemma 4.2 since

y, z ∈ B(x, 2R) and U ⊃ B(x, 6R).
Case 2. One of the points ξi is in the ball B(x, 1

4R). Let us show that the shortest path
connecting x and z in Γ does not intersect B(y, 1

4R). Indeed, set ξ = ξi so that d(x, ξ) < 1
4R.

By the triangle inequality, we have

d(y, z) = d(y, ξ) + d(z, ξ)

≥ (d(x, y) − d(x, ξ)) + (d(x, z) − d(x, ξ))

> d(x, y) + d(x, z) −
R

2
,

whence

d(y, z) − d(x, z) > d(x, y) −
R

2
≥

R

2
>

R

4
. (4.5)

For any vertex η on the shortest path between x and z, we obtain by (4.5)

d(y, η) ≥ d(y, z) − d(η, z) ≥ d(y, z) − d(x, z) >
R

4
,

12



which means that the shortest path from x to z lies outside the ball B(y, 1
4R). Since x, z ∈

B(y, 3R) and
U ⊃ B(x, 11R) ⊃ B(y, 9R),

we obtain by Lemma 4.2
gU (y, x) ≤ CgU (y, z).

Similarly, connecting x to y, we obtain

gU (z, y) ≤ CgU (z, x).

Multiplying these inequalities and using the symmetry of the Green kernel, we obtain (4.4).

4.2 Green function and resistance

Proposition 4.3 Assume that the graph (Γ, μ) satisfies (p0) and (HG). Then for any ball
B(x,R) and for any 0 < r ≤ R/M , we have

sup
y/∈B(x,r)

gB(x,R)(x, y) ' ρ(B(x, r), B(x,R)) ' inf
y∈B(x,r)

gB(x,R)(x, y). (4.6)

Proof. For an arbitrary graph (Γ, μ), the following is true: if A,B are finite subsets of Γ
such that A ⊂ B then for any x ∈ Ao

sup
y/∈Ao

gB(x, y) ≥ ρ(A,B) ≥ inf
y∈A

gB(x, y), (4.7)

where Ao consists of the points in A which have neighbors only in A (see [20, Proposition
4.1] for a continuous version of (4.7)). Applying (4.7) for A = B(x, r), B = B(x,R) and
combining with (HG) and (p0) we obtain (4.6).

Proposition 4.4 Assume that the graph (Γ, μ) satisfies (p0) and (HG). Fix any ball B(x, r)
and denote Bk = B(x,Mkr) for k = 0, 1, .... Then for all integers n > m ≥ 0,

sup
y/∈Bm

gBn(x, y) '
n−1∑

k=m

ρ(Bk, Bk+1) ' inf
y∈Bm

gBn(x, y). (4.8)

Proof. The following general property of resistance follows directly from the variational
definition (2.7):

n−1∑

k=m

ρ(Bk, Bk+1) ≤ ρ (Bm, Bn) .

Together with Proposition 4.3, it implies the lower bound for inf gBn in (4.8).
To obtain the upper bound for sup gBn observe that the difference

gBk+1(x, ∙) − gBk(x, ∙)

is a harmonic function in Bk. The maximum principle implies for any y ∈ Γ

gBk+1(x, y) − gBk(x, y) ≤ sup
z /∈Bk

gBk+1(x, z).

By Proposition 4.3, we obtain

gBk+1(x, y) − gBk(x, y) ≤ Cρ (Bk, Bk+1) . (4.9)

For any y /∈ Bm, Proposition 4.3 yields

gBm+1(x, y) ≤ Cρ(Bm, Bm+1). (4.10)

For such y, adding up (4.10) with (4.9) for m < k < n, we obtain the upper bound of sup gBn

in (4.8).
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4.3 Proof of (iii) =⇒ (iv) in Theorem 3.1

We need to prove that
(V D) + (H) +

(
ρβ

)
=⇒ (Eβ) .

Using (2.4), (4.6),
(
ρβ

)
and (V D), we obtain for r = R/M

E(x,R) ≥
∑

y∈B(x,r)

gB(x,R)(x, y)μ(y) ≥ cρ(B(x, r), B(x,R))V (x, r) ≥ cRβ .

For the upper bound, denote rk = Mk, Bk = B(x, rk) and let n be the minimal integer so
that R < rn. Then we have

E(x,R) ≤ E(x, rn) =
∑

y∈Bn

gBn(x, y)μ(y) =
∑

y∈B0

gBn(x, y)μ(y)+
n−1∑

m=0

∑

y∈Bm+1\Bm

gBn(x, y)μ(y).

(4.11)
As follows from (p0) (see Remark 2.1) the first term in the right hand side of (4.11) – the
sum over B0 – is majorized by a multiple of a similar sum over B1 \ B0, which is a part of
the second term. Estimating gBn by Proposition 4.3 and applying

(
ρβ

)
, we obtain

E(x,R) ≤ C
n−1∑

m=0

[
n−1∑

k=m

ρ(Bk, Bk+1)

]

μ (Bm+1 \ Bm)

≤ C
n−1∑

k=0

[
k∑

m=0

μ (Bm+1 \ Bm)

]

ρ (Bk, Bk+1)

≤ C
n−1∑

k=0

μ(Bk+1)ρ(Bk, Bk+1) ≤ C
n−1∑

k=0

rβ
k+1 ≤ CRβ .

5 The resolvent

5.1 Definition of λ,m-resolvent

For any non-empty finite set B ⊂ Γ , for all real λ ≥ 0 and integer m ≥ 0, define the
λ,m-resolvent of Δ in B by

GB
λ,m =

(
λI − ΔB

)−m
. (5.1)

Since the spectrum of −ΔB is strictly positive, the operator GB
λ,m is well-defined. It follows

from the definition that GB
λ,0 = I and GB

0,1 = GB , where GB is the usual Green function in
B. Clearly, we have also

GB
λ,m =

(
GB

λ,1

)m
. (5.2)

Since ΔB = PB − I, we obtain from (5.1)

GB
λ,m =

(
(λ + 1) I − PB

)−m
= ωm

(
I − ωPB

)−m
.

where ω = (λ + 1)−1. The binomial formula yields

GB
λ,m = ωm

(

I + mωPB +
m(m + 1)

2
ω2
(
PB
)2

+ ...

)

=
∞∑

n=0

Qm(n)ωn+mPB
n , (5.3)

where Q0(0) = 1, Q0(n) = 0 for n ≥ 1, and for m ≥ 1

Qm(n) =

(
n + m − 1

m − 1

)

=
(n + m − 1) (n + m − 2) ... (n + 1)

(m − 1)!
. (5.4)

14



By (5.3) we extend the definition of GB
λ,m to infinite sets B. If λ > 0 then the series in (5.3)

always converges. If λ = 0 then GB
λ,m may be equal to ∞ for infinite B.

The λ,m-resolvent has a symmetric kernel defined by

gB
λ,m(x, y) =

GB
λ,m(x, y)

μ(y)
=

∞∑

n=0

Qm(n)ωn+mpB
n (x, y). (5.5)

If B is finite and m ≥ 1 then (5.1) implies

(Δ − λ) gB
λ,m = −gB

λ,m−1 in B. (5.6)

5.2 Upper bound for 0,m-resolvent

Definition 5.1 We say that the mean-value inequality (MV ) holds on (Γ, μ) if, for any ball
B(x, r) and for any non-negative harmonic function u in B(x, r),

u(x) ≤
C

V (x, r)

∑

y∈B(x,r)

u(y)μ(y) . (MV )

Clearly, (H) + (V D) =⇒ (MV ) because

u(x) ≤ C inf
B(x,r/2)

u ≤
C

V (x, r/2)

∑

y∈B(x,r/2)

u(y)μ(y).

Lemma 5.1 If (Γ, μ) satisfies (V D) + (MV ) then for all x ∈ Γ, R > 0, and y 6= x,

gB(x,R)(x, y) ≤ C
E(x, 2R)
V (x, d)

, (5.7)

where d = d(x, y).

Proof. If d > R then gB(x,R)(x, y) = 0 and there is nothing to prove. Otherwise, consider
the function

u(z) := gB(x,2R)(x, z).

This function is non-negative and harmonic in the ball B(y, d) ⊂ B(x, 2R). Hence, by (MV ),
(2.4), and (E), we obtain

u(y) ≤
C

V (y, d)

∑

z∈B(y,d)

u(z)μ(z) ≤
C

V (x, d)
E(x, 2R).

Finally, (5.7) follows from gB(x,R) ≤ gB(x,2R).

Lemma 5.2 For any set B ⊂ Γ, for all integers m ≥ 0 and reals λ ≥ 0, we have

‖GB
λ,m‖ ≤ E(B)m, (5.8)

where ‖GB
λ,m‖ is the operator norm in the space c0 (B) endowed with the sup-norm.

Proof. Consider first the case λ = 0, m = 1 when we have GB
0,1 = GB . For any f ∈ c0(B)

and any x ∈ B, (2.4) and (2.5) imply

GBf(x) =
∑

y

GB(x, y)f(y) ≤
∑

y

GB(x, y)‖f‖ ≤ E(B)‖f‖,
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where ‖f‖ := sup |f |. Therefore, we obtain

‖GB‖ = sup
f∈c0(B)\{0}

‖GBf‖
‖f‖

≤ E(B) . (5.9)

Iterating (5.9) and using (5.2) we obtain

‖GB
0,m‖ ≤ ‖GB

0,1‖
m ≤ E(B)m,

which proves (5.8) for the case λ = 0 and any m ≥ 1.
It easily follows from (5.5) that gB

λ,m ≤ gB
0,m which implies

‖GB
λ,m‖ ≤ ‖GB

0.m‖,

whence (5.8) follows for any λ ≥ 0.

Lemma 5.3 If (Γ, μ) satisfies (V D) + (MV ) then for any m ≥ 1, for all x ∈ Γ, R > 0, and
y 6= x,

g
B(x,R)
0,m (x, y) ≤ C

E(x, 5R)m

V (x, d)
, (5.10)

where d = d(x, y) and the constant C depends on m and on the constants from the hypotheses.

Proof. The case m = 1 follows from Lemma 5.1, so we can assume m ≥ 2 and argue by
induction in m. Denote for simplicity B = B(x,R), GB

m := GB
0,m and gB

m := gB
0,m. Assuming

y ∈ B(x,R), let us set r = d(x, y)/2 and observe that the balls B(x, r) and B(y, r) do not
intersect. Therefore, using GB

m = GB
m−1 ◦ GB

1 , we obtain

gB
m(x, y) =

∑

z

gB
m−1(x, z)gB

1 (z, y)μ(z) ≤




∑

z /∈B(x,r)

+
∑

z /∈B(y,r)



 gB
m−1(x, z)gB

1 (z, y)μ(z).

Denoting
f(z) := gB

1 (z, y)1{z /∈B(y,r)} and h(z) := gB
m−1 (x, z)1{z /∈B(x,r)}

we obtain
gB
m(x, y) ≤ GB

m−1f(x) + GB
1 h(y). (5.11)

Since the Green kernels in questions are symmetric and increase with B, we obtain by (5.7)
and (V D),

‖f‖ = sup
z /∈B(y,r)

g
B(x,R)
1 (z, y) ≤ sup

z /∈B(y,r)
g

B(y,2R)
1 (y, z) ≤ C

E(y, 4R)
V (y, r)

≤ C
E(x, 5R)
V (x, r)

,

and by the inductive hypothesis

‖h‖ = sup
z /∈B(x,r)

g
B(x,R)
m−1 (x, z) ≤ C

E(x, 5R)m−1

V (x, r)
.

Combining together (5.11), (5.8), and the above estimates for ‖f‖,‖g‖, we obtain (5.10).
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5.3 Upper bound for λ-harmonic functions

Lemma 5.4 Assume that (Γ, μ) satisfies (Eβ). Let B = B(x0, R) be an arbitrary ball on Γ,
and let f be a non-negative function in B, which satisfies in B the equation Δf − λf = 0
with a constant 0 < λ < 1. Then

f(x0) ≤ C exp
(
−cλ1/βR

)
max
B\B

f, (5.12)

where the constants C, c > 0 depend on the constants in hypothesis (Eβ).

This lemma was essentially proved in [22, Lemma 7.4]. Since it plays an important role
in the proof of Theorem 3.1, we reproduce the proof below, with minor improvements.

Let us start with a weaker version of Lemma 5.4.

Lemma 5.5 Assume that the hypothesis (E) holds on (Γ, μ). Let A = B(x0, r) be an arbi-
trary ball on Γ, and let f be a non-negative function in A, which satisfies in A the equation
Δf − λf = 0 with a constant λ such that

λ ≥ (EA)−1. (5.13)

Then
f(x0) ≤ (1 − ε )max

A
f, (5.14)

where ε > 0 depends on the constants in hypothesis (E).

Proof. Without loss of generality, we can assume maxA f = 1. As follows from (2.4), the
function u(x) := EA(x) satisfies in A the equation Δu = −1; besides, u vanishes outside A.
Set

λ0 := (EA)−1 =
1

max u
,

and consider the function w = 1 − λ0
2 u. Clearly, we have 1

2 ≤ w ≤ 1 and

Δw =
λ0

2
≤ λ0w ≤ λw in A.

Since f ≤ 1 = w in A\A, the comparison principle for the operator Δ−λ implies that f ≤ w
in A. In particular,

f(x0) ≤ w(x0) = 1 −
λ0

2
u(x0) ≤ 1 −

u(x0)
2max u

.

The hypothesis (E) implies
u(x0)
max u

=
E(x0, r)

E(x0, r)
≥ c,

whence (5.14) follows.
Proof of Lemma 5.4. By [22, Proposition 6.1], the hypothesis (Eβ) implies (E), which

will enable us to use Lemma 5.5.
Without loss of generality, we can assume maxB\B f = 1. The function f is subharmonic

in B, which implies by the maximum principle that

max
B

f ≤ max
B\B

f = 1. (5.15)
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If λ1/βR is bounded by a (large but fixed) constant then the right hand side of (5.12) can
be made > 1 just by adjusting the constant C. Since f(x0) ≤ 1, in this case (5.12) is trivially
satisfied.

Assume in the sequel that
λ1/βR > 2K1/β , (5.16)

where K > 1 is a large enough constant to be chosen below. Since λ < 1, we obtain from
(5.16)

R > 2K1/β > 2

and

λ > K

(
R

2

)−β

> K (R − 1)−β . (5.17)

By the hypothesis (Eβ), we can choose the constant K so large that

E(x, r) ≥ K−1rβ for all x ∈ Γ and r ≥ 1. (5.18)

Find a number r from the equation
λ = Kr−β . (5.19)

Clearly, we have for this r

r < R − 1 and r =

(
K

λ

)1/β

> 1.

It follows from (5.18) and (5.19) that

λ ≥
1

E(x, r)
≥

1

E(x, r)
,

so that Lemma 5.5 applies in any ball of radius r.
For any i = 1, 2, ..., let xi be a point of maximum of the function f in the ball B(x0, ir

′)
where r′ := r + 1. Set mi = f(xi) and m0 = f(x0). Consider the ball Ai = B(xi, r) for any
i = 0, 1, 2, ..., k − 1, where

k := bR/r′c ≥ 1

(see Fig. 4).
Then we have

Ai ⊂ B(xi, r
′) ⊂ B(x0, (i + 1)r′) ⊂ B(x0, R),

whence we see that
Δf − λf = 0 in Ai and max

Ai

f ≤ mi+1.

Applying Lemma 5.5 to the function f in the ball Ai, we obtain

mi ≤ (1 − ε)mi+1.

Iterating this inequality k times and using mk ≤ 1 (which follows from (5.15)) we conclude

f(x0) = m0 ≤ (1 − ε)k. (5.20)

Finally, by the choice of k and r, we have

k '
R

r
' λ1/βR,

so that (5.20) implies (5.12).

18



x0 xi

xi+1

(i+1)rI
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irI
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B(x0, R)

Figure 4: The point xi and the ball Ai = B(xi, r).

5.4 Feynman-Kac formula for λ-polyharmonic functions

Let f be a function on Γ such that

Δf − λf = 0 in B, (5.21)

for a finite non-empty set B ⊂ Γ. Then the function v = GB
λ,mf satisfies

(Δ − λ)m+1 v = 0 in B (5.22)

so that vm is a λ-polyharmonic function. Moreover, v satisfies the following boundary condi-
tions outside B:

v = 0, (Δ − λ) v = 0, (Δ − λ)2 v = 0, ..., (Δ − λ)m v = (−)m f, (5.23)

so that v can be regarded as a solution to the boundary value problem (5.22)-(5.23). The
following statement provides a probabilistic representation of such a solution.

Lemma 5.6 (A Feynman-Kac formula) Let f be a function on Γ satisfying (5.21). Then for
all x ∈ B,

f(x) = Ex

[
ωT f(XT )

]
, (5.24)

where T = TB is the first exit time from B and ω = (1 + λ)−1.
Furthermore, for all m ≥ 0, λ ≥ 0, and x ∈ B,

GB
λ,mf(x) = Ex

[
Qm+1(T )ωT+mf(XT )

]
. (5.25)

Proof. For any integer m ≥ −1, denote

vm(x) = Ex

[
Qm+1(T )ωT+mf(XT )

]
. (5.26)

Clearly, v−1 = 0 in B, v0 = f in Bc and vm = 0 in Bc for all m ≥ 1. Let us prove that, for
all m ≥ 0,

Δvm − λvm = −vm−1 in B. (5.27)
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Indeed, for any x ∈ B, the Markov property implies

Ex

[
Qm+1(T − 1)ωT−1+mf(XT )

]
=
∑

y∼x

P (x, y)Ey

[
Qm+1(T )ωT+mf(XT )

]
= Pvm(y). (5.28)

By the property of the binomial coefficients, we have for all m ≥ 0 and T ≥ 1

Qm+1 (T − 1) = Qm+1(T ) − Qm(T ).

Hence, the left hand side of (5.28) is equal to

Ex

[
Qm+1(T )ωT−1+mf(XT )

]
− Ex

[
Qm(T )ωT−1+mf(XT )

]
= ω−1vm(x) − vm−1(x).

Substituting this into (5.28) and using ω−1 = 1 + λ, we obtain (5.27).
For m = 0 we obtain from (5.27) Δv0 − λv0 = 0. Since v0 = f outside B, we conclude

v0 = f also in B. Therefore, (5.24) follows from (5.26) for m = 0. If m ≥ 1 then solving
(5.27) with the boundary condition vm = 0 outside B, we obtain vm = GB

λ vm−1. Therefore
vm = GB

λ,mf , whence (5.25) follows.

Corollary 5.7 For any non-empty finite set B ⊂ Γ and for any non-negative function f in
Γ such that Δf − λf = 0 in B,

(
GB

λ,mf(x)
)2

≤ cmf(x)GB
λ,2mf(x), (5.29)

for all x ∈ Γ, m ≥ 0, λ ≥ 0.

Proof. Using the notation (5.26) we have by the Cauchy-Schwarz inequality

vm(x)2 ≤ Ex

[
ωT f(XT )

]
Ex

[
Q2

m+1(T )ωT+2mf(XT )
]
. (5.30)

By (5.4) we obtain
Q2

m+1(T ) ≤ cmQ2m+1(T ).

Hence, (5.30) implies
v2
m ≤ cmv0v2m ,

which by Lemma 5.6 coincides with (5.29).

Corollary 5.8 Under the hypotheses of Lemma 5.4, we have for any integer k ≥ 0

GB
λ,kf(x0) ≤ CRβk exp

(
−cλ1/βR

)
max
B\B

f. (5.31)

Proof. Indeed, by (5.29), (5.8), and (5.15), we obtain

[
GB

λ,kf(x0)
]2

≤ Cf(x0)G
B
λ,2kf(x0) ≤ Cf(x0)‖G

B
λ,2k‖max

B
f ≤ Cf(x0)E(B)2k max

B\B
f.

Using the estimate (5.12) for f(x0) and the hypothesis (Eβ), we conclude the proof.
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5.5 Upper bound for λ,m-resolvent

Theorem 5.9 Assume that (Γ, μ) satisfies (V D) + (MV ) + (Eβ). Then for a large enough
m > 1 and for all 0 < λ < 1, x ∈ Γ

gλ,m(x, x) ≤ C
λ−m

V (x, λ−1/β)
, (Gβ)

where the constant C depends on the constants in the hypotheses as well as on m.

We start with a lemma.

Lemma 5.10 Assume that (Γ, μ) satisfies (V D) + (MV ) + (Eβ). Then, for all x ∈ Γ and
positive r,R such that R ≥ r + 1, the following estimate holds

g
B(x,R)
λ,m (x, x) − g

B(x,r)
λ,m (x, x) ≤ C

Rβm

V (x, r)
exp

(
−cλ1/βr

)
,

where the constants C, c > 0 depend on the constants in the hypotheses, and C depends also
on m.

Proof. Fix a point x ∈ Γ, set A = B(x, r), B = B(x,R), and consider the functions

vm(y) := gB
λ,m(x, y) − gA

λ,m(x, y).

Clearly, we have v0 = 0 and for all m ≥ 1

Δvm − λvm = −vm−1 in A.

Therefore,
vm = GA

λ vm−1 + um in A, (5.32)

where um solves the following boundary value problem
{

Δum − λum = 0 in A,
um|Ac = vm.

Iterating (5.32) and using v0 = 0 we obtain

vm = GA
λ,m−1u1 + GA

λ,m−2u2 + ... + um. (5.33)

Since A ⊂ B, we have by Corollary 5.8

GA
λ,luk(x) ≤ Crβl exp

(
−cλ1/βr

)
max
B\A

vk , (5.34)

and by Lemma 5.3

max
B\A

vk = max
y∈B\A

gB
λ,k(x, y) ≤ C

Rβk

V (x, r)
. (5.35)

Therefore, we obtain from (5.33), (5.34), and (5.35)

vm(x) =
m∑

k=1

GA
λ,m−kuk(x) ≤ C

m∑

k=1

rβ(m−k) exp
(
−cλ1/βr

) Rβk

V (x, r)
≤ C

Rβm

V (x, r)
exp

(
−cλ1/βr

)
,

which was to be proved.
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Proof of Theorem 5.9. Set Bk = B(x, 2k) for k = 0, 1, 2, .... Obviously, we have

gλ,m(x, x) = gB0
λ,m(x, x) +

∞∑

k=0

(
g

Bk+1

λ,m (x, x) − gBk
λ,m(x, x)

)
.

The first term gB0
λ,m(x, x) is estimated as follows, using (5.5):

gB0
λ,m(x, x) =

∞∑

n=0

Qm(n)ωn+mpB(x,1)
n (x, x) = Qm(0)ωmp

B(x,1)
0 (x, x) =

ωm

V (x, 1)
≤

1
V (x, 1)

.

Applying Lemma 5.10 with r = 2k and R = 2k+1, we obtain for any k ≥ 0

g
Bk+1

λ,m (x, x) − gBk
λ,m(x, x) ≤ C

2kβm

V (x, 2k)
exp

(
−cλ1/β2k

)
,

whence

gλ,m(x, x) ≤
1

V (x, 1)
+ C

∞∑

k=0

exp
(
−cλ1/β2k

) 2kβm

V (x, 2k)
.

Set r = λ−1/β and rewrite this inequality as follows

gλ,m(x, x) ≤
1

V (x, 1)
+ C

∞∑

k=0

exp

(

−c
2k

r

)(
2k

r

)βm
V (x, r)
V (x, 2k)

rβm

V (x, r)
. (5.36)

Let us choose m so large that
βm > α,

where α is the exponent from (2.1). If 2k ≤ r then by (2.1)

V (x, r)
V (x, 2k)

≤ C
( r

2k

)α
, (5.37)

and the k-th term in the sum (5.36) is estimated from above by

(
2k

r

)βm−α
rβm

V (x, r)
. (5.38)

The sequence of these numbers is an increasing geometric series in k; hence, the sum of all
the terms in (5.36) with k such that 2k ≤ r, is bounded by a multiple of the largest term in
(5.38); that is by

C
rβm

V (x, r)
. (5.39)

If 2k > r then the k-th term in the sum (5.36) is bounded by

exp

(

−c
2k

r

)(
2k

r

)βm
rβm

V (x, r)
≤ C exp

(

−
c

2
2k

r

)
rβm

V (x, r)
.

The sequence of these numbers decreases in k faster than a geometric series; hence, the sum
of all the terms in (5.36) with k such that 2k > r is again bounded by (5.39).

Finally, by (5.37) with k = 0, we obtain

1
V (x, 1)

≤
Crα

V (x, r)
≤

Crβm

V (x, r)
,

which means that the term 1
V (x,1) in (5.36) is also bounded by (5.39). Hence, gλ,m(x, x) is

bounded by (5.39), whence (Gβ) follows by substituting r = λ−1/β .
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6 Estimates of the heat kernel

6.1 Diagonal upper estimate

Theorem 6.1 If (Γ, μ) satisfies (V D) + (Gβ) then, for all x, y ∈ Γ and n ≥ 1,

pn(x, x) ≤
C

V (x, n1/β)
(DUEβ)

and

pn(x, y) ≤
C

√
V (x, n1/β)V (y, n1/β)

. (PUEβ)

Proof. Let us first prove that, for λ = n−1 and any m ≥ 0,

p2n(x, x) ≤ Cλmgλ,m(x, x). (6.1)

Indeed, p2k(x, x) is non-increasing in k. Therefore, for λ = n−1 we have

gλ,m(x, x) =
∞∑

k=0

Qm(k)ωk+mpk(x, x) ≥
∞∑

k=0

Qm(2k)ω2k+mp2k(x, x)

≥ c
n∑

k=1

km−1ω2k+mp2k(x, x) ≥ cnmp2n(x, x),

(where we have used ω2k+m ≥ (1 + 1/n)−2n−m ≥ e−22−m) whence (6.1) follows. By the
hypothesis (Gβ) we have for some m

gλ,m(x, x) ≤
C

λmV (x, λ−1/β)
,

which together with (6.1) implies (DUEβ) for even n.
Using the semigroup property and the Cauchy-Schwarz inequality, we obtain (PUEβ) for

even n:

p2n(x, y) =
∑

z

pn(x, z)pn(z, y)μ(z) (6.2)

≤
√

p2n(x, x)p2n(y, y) (6.3)

≤
C

√
V (x, n1/β)V (y, n1/β)

.

Again by the semigroup property, we obtain

p2n+1(x, y) =
∑

z∼x

p1(x, z)p2n(z, y)μ(z) ≤ sup
z∼x

p2n(z, y) (6.4)

whence

p2n+1(x, y) ≤ sup
z∼x

p2n(z, y) ≤ sup
z∼x

C
√

V (z, n1/β)V (y, n1/β)
.

By (V D),
V (z, n1/β) ' V (x, n1/β)

for all z ∼ x, whence (PUEβ) and (DUEβ) follow for odd n > 1. Finally, (PUEβ) and
(DUEβ) for n = 1 follow directly from the definition (2.2) of pn(x, y).
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6.2 Off-diagonal upper estimate

Theorem 6.2 For any graph (Γ, μ)

(V D) + (DUEβ) + (Eβ) =⇒ (UEβ) .

The following lemma plays a crucial role in the proof.

Lemma 6.3 Let (Γ, μ) satisfy (Eβ) and let f be a bounded non-negative function on Γ which
vanishes in a ball B(x0, R). Then for any n ≥ 1 the function Pnf admits the following
estimate at the point x0:

Pnf(x0) ≤ C exp

[

−c

(
Rβ

n

) 1
β−1

]

sup
Γ

f, (6.5)

where the constants C, c > 0 depend on the constants in (Eβ).

This lemma can be deduced from [22, Lemma 7.4] but we give here a self-contained proof
of it based on Lemma 5.4.

Proof of Lemma 6.3. If R > n then we have Pnf(x0) = 0 and there is nothing to
prove. Assume in the sequel R ≤ n. Without loss of generality, we can also assume sup f = 1.

Set A = B(x0, R), fix some λ ∈ (0, 1) and find a function h(x) on A solving the boundary
value problem {

Δh = λh in A,

h = 1 in A \ A.

Then the function un(x) := (1+ λ)nh(x) solves the heat equation (2.3) in N×A and satisfies
the following initial boundary conditions:

u0(x) ≥ 0 in A,

un(x) ≥ 1 in A \ A.

Comparing with the function Pnf(x) that also solves the heat equation, we conclude by the
parabolic comparison principle that

Pnf(x) ≤ un(x),

for all x ∈ A and n ≥ 0.
On the other hand, by Lemma 5.4, we have

h (x0) ≤ C exp
(
−cλ1/βR

)
,

whence
Pfn(x0) ≤ (1 + λ)nh(x0) ≤ C exp

(
λn − cλ1/βR

)
. (6.6)

Now choose λ from the condition cλ1/βR = 2λn; that is,

λ =

(
cR

2n

) β
β−1

. (6.7)

Of course, we can always assume c < 1. Then the assumption R ≤ n implies λ < 1 so that
this λ can be used in (6.6). Therefore, we obtain

Pfn(x0) ≤ C exp(−λn) = C exp

(

−c′
(

Rβ

n

) 1
β−1

)

,
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which finishes the proof.
Proof of Theorem 6.2. We can assume that (PUEβ) holds because, as was shown in

the proof of Theorem 6.1, (PUEβ) follows from (V D) + (DUEβ).
STEP 1. Let us prove that (PUEβ) + (V D) + (Eβ) implies, for all R ≥ 0,

In(x,R) :=
∑

z /∈B(x,R)

p2
n(x, z)μ(z) ≤

C

V (x, n1/β)
exp

[

−

(
Rβ

Cn

) 1
β−1

]

. (6.8)

By (2.1) we have for all x, y ∈ Γ, n > 0, ε > 0

V (x, n1/β)
V (y, n1/β)

≤ C

(

1 +
d(x, y)
n1/β

)α

≤ Cε exp

[

ε

(
dβ(x, y)

n

) 1
β−1

]

. (6.9)

Therefore, by (PUEβ) and (6.9),

pn(x, y) ≤
C

V (x, n1/β)

[
V (x, n1/β)
V (y, n1/β)

]1/2

≤
Cε

V (x, n1/β)
exp

[

ε

(
dβ(x, y)

n

) 1
β−1

]

. (6.10)

If Rβ ≤ Cn then (6.8) follows from (6.3) and (DUEβ). Assuming in the sequel Rβ > Cn,
denote Rk = 2kR where k = 0, 1, 2, .... Splitting the summation in (6.8) to annuli

Ak := B(x,Rk) \ B(x,Rk−1),

denoting fk = 1Ak
pn(x, ∙), and using Lemma 6.3, we obtain

In(x,R) =
∞∑

k=1

∑

z∈Ak

p2
n(x, z)μ(z) =

∞∑

k=1

Pnfk(x) ≤ C
∞∑

k=1

exp



−c

(
Rβ

k−1

n

) 1
β−1



 sup fk .

(6.11)
By (6.10), we obtain

sup fk ≤ sup
y/∈B(x,Rk)

pn(x, y) ≤
Cε

V (x, n1/β)
exp



ε

(
Rβ

k

n

) 1
β−1



 .

Substituting this estimate in (6.11) and estimating the sum in (6.11) for small enough ε, we
obtain (6.8).

STEP 2. Let us deduce (UEβ) from (6.8). Denote R = 1
2d(x, y) and observe that Γ is

covered by the union of B(x,R)c and B(y,R)c. Therefore, we have by (6.2)

p2n(x, y) ≤
∑

z /∈B(x,R)

pn(x, z)pn(z, y)μ(z) +
∑

z /∈B(y,R)

pn(x, z)pn(z, y)μ(z). (6.12)

By the Cauchy-Schwarz inequality, the first sum in (6.12) is dominated by
√

In(x,R)In(y, 0),
and the second sum is dominated by

√
In(y,R)In(x, 0). Applying (6.8) we obtain

p2n(x, y) ≤
C

√
V (x, n1/β)V (y, n1/β)

exp

[

−

(
dβ(x, y)

Cn

) 1
β−1

]

,

which together with (6.9) yields (UEβ) for even n. Finally, (UEβ) for odd n follows from
(6.4).
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6.3 Proof of (iv) =⇒ (i) in Theorem 3.1

Let us prove that
(V D) + (H) + (Eβ) =⇒ (UEβ) .

As was shown in Section 5.2
(V D) + (H) =⇒ (MV ).

By Theorem 5.9
(V D) + (MV ) + (Eβ) =⇒ (Gβ)

and by Theorem 6.1
(V D) + (Gβ) =⇒ (DUEβ).

By Theorem 6.2
(V D) + (DUEβ) + (Eβ) =⇒ (UEβ) ,

which finishes the proof.

Remark 6.1 Clearly, the hypothesis (H) can be replaced here by (MV ) so that we obtain
(3.1). Note also that the lower bound in the hypothesis (Eβ) was required only for Lemma
5.4 and for its consequence Lemma 6.3. In all other places we used only the upper bound
E(x,R) ≤ CRβ .

Let us prove that
(V D) + (H) + (Eβ) =⇒ (LEβ) .

By [22, Propositions 7.1,9.1], (V D) + (Eβ) implies

p
B(x,R)
2n (x, x) ≥

c

V (x, n1/β)
, for all n ≤ εRβ , (6.13)

for some c, ε > 0. By Theorem 6.1

(V D) + (H) + (Eβ) =⇒ (DUEβ).

By [22, Proposition 13.1], [33], assuming (p0), the conditions

(V D) + (H) + (Eβ) + (DUEβ) + (6.13)

imply
pn(x, y) + pn+1(x, y) ≥

c

V (x, n1/β)
whenever d(x, y) ≤ δn1/β , (6.14)

for some δ > 0. Finally, using (p0) and arguing as in [22, Proposition 13.2] or [13, Theorem
3.8] or [33], we obtain

(V D) + (6.14) =⇒ (LEβ) .

Remark 6.2 Alternatively, one can deduce (LEβ) from (V D) + (H) + (UEβ) using a mod-
ification of the method described in [22, Remark 15.1] (in the continuous setting, this was
done in [23]). In particular, we see that (V D) + (H) + (UEβ) is equivalent to each of the
conditions (i) − (iv) of Theorem 3.1.
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7 Appendix: the lettered conditions

The conditions (H), (PHβ), (HG), (MV ) can be found in Definitions 2.1, 2.2, 4.2, 5.1,
respectively. Here is the list of most of the other conditions used in this paper:

P (x, y) ≥ p0, ∀x ∼ y (p0)

V (x, 2R) ≤ CV (x,R), ∀x ∈ Γ ∀R > 0 (V D)

E(x,R) ≤ CE(x,R), ∀x ∈ Γ ∀R > 0 (E)

E(x,R) ' Rβ , ∀x ∈ Γ ∀R ≥ 1 (Eβ)

ρ (B(x,R), B(x,MR)) '
Rβ

V (x,R)
, ∀x ∈ Γ ∀R ≥ 1 (ρβ)

pn(x, y) ≤
C

V (x, n1/β)
exp

[

−

(
d(x, y)β

Cn

) 1
β−1

]

, ∀x, y ∈ Γ ∀n ≥ 1 (UEβ)

(pn + pn+1)(x, y) ≥
c

V (x, n1/β)
exp

[

−

(
d(x, y)β

cn

) 1
β−1

]

, ∀n ≥ d(x, y) ∨ 1 (LEβ)

pn(x, x) ≤
C

V (x, n1/β)
, ∀x ∈ Γ ∀n ≥ 1 (DUEβ)

pn(x, y) ≤
C

√
V (x, n1/β)V (y, n1/β)

∀x, y ∈ Γ ∀n ≥ 1 (PUEβ)

gλ,m(x, x) ≤ C
λ−m

V (x, λ−1/β)
, ∀x ∈ Γ ∀λ ∈ (0, 1). (Gβ)
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