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Abstract

We discuss extensions of some results of V.G.Maz’ya to Riemannian manifolds. His proofs of
the relationships between capacities, isoperimetric inequalities and Sobolev inequalities did not use
specific properties of the Euclidean space. His method, transplanted to manifolds, gives a unified
approach to such results as parabolicity criteria, eigenvalues estimates, heat kernel estimates, etc.
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1 Introduction

One of the important contributions of Maz’ya is the general understanding of the relationship between
isoperimetric inequalities and functional inequalities of the Sobolev type in regions of R

n. However, his
method is not linked to specific properties of the Euclidean spaces and can be carried over to Riemannian
manifolds. This was fully understood by Maz’ya in the 1960s when he wrote in [24, p.153]

“Let us mention that, despite here we restrict ourself by considering sets in R
n, the method

of proof of criteria of [such] type does not use specific properties of the Euclidean space. The
proofs can be carried over to the case of singular Riemannian manifolds; the exponents in the
embedding theorems will depend not only on measures µ, ν and on the degree of irregularity
of the boundary of [region] D but also on the singularities of the metric of the manifold.”

Nowadays it is commonly accepted that embedding theorems and Sobolev type inequalities play the
crucial role in Analysis on manifolds. A series of deep investigations undertaken during the last two
decades, have revealed the fact that practically all important properties of solutions to second order
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elliptic and parabolic PDE have certain geometric background. For example, such properties as the
mean-value inequality and the Harnack inequality are equivalent to some geometric conditions stated
in terms of Sobolev and Poincaré inequalities as well as the volume of geodesic balls. On the other
hand, estimates of the eigenvalues, Green kernel and heat kernel are closely related to the isoperimetric
inequalities.

Maz’ya was one of the first mathematicians who started looking at the properties of solutions through
the geometric properties of the domain. His method was based on the systematic use of the level sets
of the functions and the co-area formula. The latter was independently discovered by Kronrod [18] (the
case of two variables) and Federer [5] (the general case).

In this note, I would like to sketch some results of Maz’ya as they should look for Riemannian
manifolds, and their relations with recent developments. Let M denote a smooth connected Riemannian
manifold of dimension n. Let B(x, r) denote the open geodesic ball of radius r centered at x ∈M . Denote
by µ the Riemannian volume and by σ the (n− 1)-dimensional volume on hypersurfaces (that is, the
(n − 1)-Hausdorff measure). Differential operators such as the gradient ∇, the divergence div and the
Laplace operator ∆, are those associated with the Riemannian metric.

Given a compact set F ⊂ M and an open set G ⊂ M containing F , we call the couple (F,G) a
capacitor. Each capacitor has p-capacity (where p ≥ 1) defined by

capp(F,G) := inf
u

∫
G\F

|∇u|p dµ , (1)

where the inf is taken over all Lipschitz functions u with compact support in G such that u = 1 on
F . Clearly, capp(F,G) increases on enlargement of F and on shrinking of Ω. We will write capp(F ) for
capp(F,M). If F is precompact then we set capp(F,G) = capp(F ,G).

The following are the key ingredients of Maz’ya’s method.

(i) The estimate of the Dirichlet integral via the capacities of level sets. Let u be a Lipschitz
function on M with compact support. Denote

Ut := {x ∈M : |u(x)| ≥ t} .

Then ∫
M

|∇u|p dµ ≥ ap

∫ ∞

0

capp(Ut)d(t
p), (2)

where

ap =
{

(p− 1)p−1p−p, if p > 1,
1, if p = 1. (3)

See [25, Theorem 3], [26, Section 2.3.1] or [27, p.150-51].

The integral of the function u itself can be estimated via the measure of sets Ut. Indeed, for any
α ≥ 1, the following inequality holds∫

M

|u|αp dµ ≤
(∫ ∞

0

µ(Ut)
1
α d(tp)

)α
. (4)

If α = 1 then the equality is attained in (4), and it is trivial. See [26, Section 2.3.2] for the proof in
the general case.

(ii) Upper bound of capacity via flux. LetG ⊂ M be a precompact open set and F ⊂ G be
compact. Suppose that a Lipschitz function u is defined in G \ F such that u = a on ∂F and u = b
on ∂G where a < b are real constants. For any t ∈ [a, b], denote Et := {x : u(x) = t} and define the
p-flux of u through Et by

fluxp(u,Et) :=
∫
Et

|∇u|p−1 dσ

(if Et is empty then set fluxp(u,Et) = 0). Then, for all p > 1,

capp(F,G) ≤
(∫ b

a

dt

fluxp(u,Et)
1

p−1

)1−p
(5)
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(this is true also if a > b in which case one should switch the limits in the integral (5)). Furthermore,
the equality in (5) is attained for some function u satisfying the above conditions. See [21], [23,
Lemma 1], [26, Lemma 2.2.2/1] or [27, p.149]. In fact, the idea of (5) goes back to Pólya and Szegö
[29].

(iii) Lower bound for capacity via the isoperimetric function. We say that M admits an
isoperimetric function I(v) if, for any precompact open set Ω ⊂M with smooth boundary,

σ(∂Ω) ≥ I(µ(Ω)). (6)

If M admits a positive continuous isoperimetric function I(v) then, for any capacitor (F,G) and
p > 1,

capp(F,G) ≥
(∫ µ(G)

µ(F )

dv

I(v)
p

p−1

)1−p
. (7)

If p = 1 then, instead of (7), we have

cap1(F,G) ≥ inf
µ(F )≤v≤µ(G)

I(v). (8)

See [21], [26, Corollary 2.2.3/2] or [27, p.150-51].

We will use (i)-(iii) as building blocks to show how to obtain a series of important results in a unified
way.

2 Capacity of balls

Fix a point o ∈ M and denote Br = B(o, r) and Sr := σ(∂Br). Let us assume that M is geodesically
complete so that any ball is precompact. Let us choose in (5) u = dist(·, o). Then Et = ∂Bt and |∇u| ≤ 1
which implies fluxp(u,Et) ≤ St. Hence, (5) yields, for all R > r > 0,

capp (Br, BR) ≤
(∫ R

r

dt

S
1

p−1
t

)1−p
(9)

(let us assume for simplicity p > 1 whenever it is needed).
In applications, it is frequently more convenient to use the volume function Vr rather than Sr. Let us

show that the following estimate holds

capp (Br, BR) ≤ 2p
(∫ R

r

(
t− r

Vt − Vr

) 1
p−1

dt

)1−p

. (10)

Observe first that V ′
t = St. Hence, (10) will follow from (9) if we prove the following inequality∫ b

a

dt

(v′)γ
≥ 2−1−γ

∫ b

a

(
t− a

v(t) − v(a)

)γ
dt,

for all monotone increasing functions v on [a, b], where b > a and γ > 0 (it suffices to take γ = 1
p−1 ). With-

out loss of generality, we may assume a = 0 and v(a) = 0. Denote by s(t) the increasing rearrangement
of v′ on (a, b) and define the function v∗ by

v∗ :=
∫ t

0

s(τ )dτ .

Then, by the convexity of v∗,

s(t) ≤ v∗(2t) − v∗(t)
t

≤ v∗(2t)
t

.

By the properties of rearrangements v∗(t) ≤ v(t), whence∫ b

0

dt

(v′)γ
=
∫ b

0

dt

s(t)γ
≥
∫ b

0

(
t

v∗(2t)

)γ
dt ≥ 2−1−γ

∫ b

0

(
t

v(t)

)γ
dt,
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which was to be proved1.
In the case when M possesses a rotation symmetry with respect to o, it is possible to show that

(9) becomes the equality. Such a manifold is called spherically symmetric with the pole o and can be
described as follows. Topologically, M can be identified with R

n (assuming M is geodesically complete
and non-compact), and the metric of M can be written in the polar coordinates (ρ, θ) (centered at o) as
follows

ds2 = dρ2 + ψ2(ρ)dθ2.

Here θ ∈ S
n−1 and dθ2 is the standard metric on S

n−1. Let us denote such a manifold by Mψ. Function
ψ is any positive smooth function on R+ such that ψ(0) = 0 and ψ′(0) = 1 (see [8]). It is easy to see that

Sr = ωnψ(r)n−1 and Vr =
∫ r

0

Stdt

so that each function Sr, Vr uniquely determines Mψ.
For example, if ψ(ρ) = ρ then Mψ = R

n. If ψ(ρ) = sinh ρ then M = H
n. If ψ(ρ) = sinρ then M = S

n

(in this case, ρ varies in [0, π] and M is compact).
As was remarked already, capacity of a ball on Mψ is computed by

capp (Br, BR) =

(∫ R

r

dt

S
1

p−1
t

)1−p
. (11)

Taking R = ∞, one obtains capp(Br). For example if Mψ = R
n then capp(Br) = const rn−p provided

p < n, and capp(Br) = 0 if p ≥ n. If Mψ = H
n then the exact computation is generally not possible but

one easily gets the estimate
capp(Br) ∼ constSr, r → ∞.

For comparison, in R
n one has capp(Br) = constSrr1−p, if p < n.

3 Parabolicity of manifolds

A Riemannian manifold M is called parabolic if any of the following equivalent properties holds:

(a) any bounded subharmonic function on M is constant;

(b) there is no positive fundamental solution of the Laplace operator on M ;

(c) cap(F ) = 0 for any compact F ⊂M ;

(d) the Brownian motion on M is recurrent2.

Let us say that the manifold M is p-parabolic if capp(F ) = 0 for any compact F ⊂M . This notion is
connected to the properties of the p-Laplace operator defined by

∆pu = div(|∇u|p−2 ∇u).

Indeed, it is known that the p-parabolicity is equivalent to the fact that any bounded p-subharmonic
function is constant and to the non-existence of a positive fundamental solution of ∆p (see [14]).

Finding convenient geometric conditions for parabolicity and non-parabolicity is an important task of
potential theory on manifolds. Clearly, the estimates of capacity can give certain conditions of parabol-
icity.

Assume for simplicity that M is geodesically complete and non-compact (observe that a compact
manifold is always p-parabolic). The upper bound of capacity (9) implies the following parabolicity test:
if ∫ ∞ dt

S
1

p−1
t

= ∞ (12)

1The upper bound (10) for capacity in the case p = 2 was proved by Sturm [30] using a different method. His estimate
has the better constant 2 rather than 4 = 2p.

2It is not quite obvious that (a)–(d) should be equivalent - see [13] for a detailed account of parabolicity and related
topics.

4



then capp (Br) = 0 and, therefore, M is p-parabolic. For example, if Sr = crn−1 then (12) holds provided
n ≤ p. Therefore, if n ≤ p then R

n is p-parabolic.
The capacity upper bound (10) gives the following parabolicity test in terms of the volume growth

function: a geodesically complete manifold M is p-parabolic provided

∫ ∞ ( t

Vt

) 1
p−1

dt = ∞. (13)

For example, (13) holds if Vr ≤ Crp, for large r, or even if Vr ≤ Crp logp−1 r.
The parabolicity condition (12) for the case when p = 2 and n = 2 goes back to Ahlfors [1] and

Nevanlinna [28] who proved it for simply connected Riemann surfaces (in this case, the parabolicity of
M is equivalent to the fact that M is conformally equivalent to R

2). For general manifolds, (12) was
noticed by many authors, see for example [9], [19].

The sufficient condition Vr ≤ Cr2 for 2-parabolicity was first proved by Cheng and Yau [3]. The
2-parabolicity under the more general hypothesis (13) was proved by Karp [16], Varopoulos [31] and the
author [10]. The case p = n was studied by Keselman and Zorich [17]. The proof for arbitrary p > 1 was
obtained by Holopainen [15].

As we have seen, the capacity approach allows to obtain all mentioned parabolicity criteria in a few
lines.

Let us turn to non-parabolicity tests. Assume that M admits the isoperimetric function I(v) and let
for simplicity µ(M) = ∞. We claim that if∫ ∞ dv

I
p

p−1 (v)
<∞ (14)

then M is p-non-parabolic. Indeed, given (14), the capacity estimate (7) implies capp(F ) > 0 for large
enough compact F . For example, let I(v) = cv1−1/n. Then (14) holds if n > p. In particular, R

n is
p-non-parabolic provided n > p.

The non-parabolicity test (14) was obtained by Fernández [7] and by the author [10], for the case
p = 2. The general case seems to have not been published.

4 Isoperimetric inequality and Sobolev inequality

Assume that M admits the isoperimetric function I(v) = cv1−1/n like R
n. Then (7) and (8) imply the

following “isoperimetric inequality” for capacity

capp(F ) ≥ c′µ(F )1−p/n, (15)

whence by (2) ∫
|∇u|p dµ ≥ c′ap

∫ ∞

0

µ(Ut)1−p/nd(tp). (16)

Assume p < n and apply (4) with α = n
n−p , which yields

(∫
|u| np

n−p dµ

)n−p
n

≤
∫ ∞

0

µ(Ut)1−p/nd(tp).

Comparing with (16), we conclude

∫
|∇u|p dµ ≥ c′′

(∫
|u| np

n−p dµ

)n−p
n

. (17)

This inequality in R
n was proved by S.L.Sobolev for p > 1 and by E.Gagliardo for p = 1. Maz’ya [20]

as well as Federer and Fleming [6], were first to realize that the Sobolev inequality (17) is a consequence
of the isoperimetric inequality (6). This has made it possible to prove Sobolev inequalities on manifolds
where the method of singular integrals originally applied by Sobolev, would not work.
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5 Capacity and the principal frequency

For any precompact region Ω ⊂M , let us denote by λ(Ω) the first eigenvalue of the Dirichlet problem in
Ω for the Laplace operator. By the variational property,

λ(Ω) = inf
u

∫ |∇u|2 dµ∫ |u|2 dµ
where the inf is taken over all Lipschitz functions u 	≡ 0 compactly supported in Ω. Analogously, let us
define the principal p-frequency λp(Ω) by

λp(Ω) := inf
u

∫ |∇u|p dµ∫ |u|p dµ (18)

where Ω is any open subset of M . Clearly, λp(Ω) is decreasing on enlargement of Ω.
For any open set Ω, let us define the Maz’ya constant of Ω as follows:

mp(Ω) := inf
F⊂⊂Ω

capp (F,Ω)
µ (F )

. (19)

We claim that
mp(Ω) ≥ λp(Ω) ≥ apmp(Ω) (20)

where ap is defined by (3). The left hand side inequality in (20) easily follows if we take the test function
u in definition (18) of λp(Ω) so that u is equal to 1 on a compact set F ⊂ Ω, and apply definition (1) of
capacity. To prove the lower bound of λp(Ω) in (20), let us apply (4) with α = 1 and compare it with
(2), rewritten for Ω instead of M . Then we have∫

Ω

|∇u|p dµ ≥ ap

∫ ∞

0

capp(Ut,Ω)d(tp),

and ∫
Ω

|u|p dµ ≤
∫ ∞

0

µ(Ut)d(tp),

whence ∫
Ω
|∇u|p dµ∫

Ω |u|p dµ ≥ apmp(Ω)

which was to be proved.
In fact, both the Sobolev inequality (17) and the eigenvalue estimate (20) are particular cases of a

more general theorem of Maz’ya [26, Theorem 2.3.2/1], which covers also the norms of u in Orlicz spaces.
Let us show an example of application of (20). If (15) is valid then

capp(F,Ω)
µ(F )

≥ c′µ(F )−p/n ≥ c′µ(Ω)−p/n,

whence
mp(Ω) ≥ c′µ(Ω)−p/n

and, by (20),
λp(Ω) ≥ c′apµ(Ω)−p/n.

6 Cheeger’s inequality

Inequality (20) provides a powerful tool for estimating principal frequencies. Let us set in the next
discussion p = 2 and omit p from all notation (say, cap means cap2 etc.). Then (20) takes the form

m(Ω) ≥ λ(Ω) ≥ 1
4
m(Ω). (21)

The Cheeger constant h(Ω) of the region Ω is defined by

h(Ω) := inf
F⊂Ω

σ(∂F )
µ(F )

where F runs over all compact subsets of Ω with smooth boundary3. The Cheeger inequality [2] says
3The Cheeger constant h(Ω) can be regarded as the limiting case of the Maz’ya constant mp(Ω) for p = 1.
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that
λ(Ω) ≥ 1

4
h2(Ω). (22)

Let us deduce (22) from (21). Indeed, given the Cheeger constant h(Ω), we may say that Ω admits
the isoperimetric function I(v) = h(Ω)v. Hence, by (7),

cap(F,Ω) ≥
(∫ µ(Ω)

µ(F )

dv

I(v)2

)−1

≥ h2(Ω)µ(F ),

whence m(Ω) ≥ h2(Ω), which together with (21) finishes the proof of (22).
The ratio of λ(Ω)/h2(Ω) can be made arbitrarily large, by choosing “bad” regions Ω. The Maz’ya

inequality (20) shows that in such situations it is better to use capacity to estimate λ(Ω). We will show an
application of that in Section 7. Note that the estimates (21) were proved by Maz’ya as early as in 1962
(see [22, Theorem 1]), long before the question of estimating eigenvalues on manifolds was even raised.

For arbitrary p > 1, one gets similarly

mp(Ω) ≥ (p− 1)1−p hp(Ω),

whence, by (20),
λp(Ω) ≥ p−php(Ω).

7 Eigenvalues of balls on spherically symmetric manifolds

We assume in this section that M = Mψ is a spherically symmetric manifold and follow the notation
introduced in Section 2. The question to be discussed here is how to estimate λ(BR) as a function of the
radius R?

Let us modify the definition of the Maz’ya constant mp(Ω) in the case when Ω = BR. Namely, in the
definition (19), let us assume in addition that F runs only over balls Br with r < R. In the definition
(18) of λp(BR), the minimum is attained for the radially symmetric function u. Therefore, in the proof of
the Maz’ya inequalities (20), if Ω = BR then it suffices to use only the radially symmetric test functions.
Hence, we obtain

mp(BR) ≥ λp(BR) ≥ apmp(BR) (23)

where mp now refers to the modified Maz’ya constant.
Let us assume in the sequel p = 2 and suppress p from the notation. Since the capacity cap(Br, BR)

is explicitly given by (11), that is,

cap (Br, BR) =

(∫ R

r

dt

St

)−1

,

the modified Maz’ya constant can be computed as follows:

m(BR) =
1

Φ(R)
(24)

where

Φ(R) := sup
r≤R

[
Vr

∫ R

r

dt

St

]
. (25)

Respectively, we obtain the eigenvalue estimates

1
Φ(R)

≥ λ(BR) ≥ 1
4Φ(R)

. (26)

For comparison, the Cheeger inequality implies another estimate

λ(BR) ≥ 1
4

(
inf
r≤R

Sr
Vr

)2

(27)
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(see [4, Lemma 8.2]), which is generally weaker than (27), but in some situation is substantially weaker.
Let us show some examples.

Examples: 1. Let Sr � rN−1 for large r, where N > 0. Respectively, the volume function is Vr � rN .
Simple computation shows that Φ(R) � R2 for large R whence λ(BR) � R−2.

2. Let us take Sr � r−1 so that Vr � log r. Then the optimal r in (25) is of the order R/
√

logR, and
we find

Φ(R) � R2 logR and λ(BR) � 1
R2 logR

.

Note that (27) gives the weaker estimate

λ(BR) ≥ c

R2 log2R
.

3. If Sr � (r log r)−1 and, therefore, Vr � log log r then

Φ(R) � R2 logR log logR and λ(BR) � 1
R2 logR log logR

,

which is again better than (27).

8 Heat kernel on spherically symmetric manifolds

By definition, the heat kernel on a Riemannian manifold M is the smallest positive fundamental solution
to the heat equation ut = ∆u on R+×M . We denote the heat kernel by p(t, x, y) where t > 0 and x, y ∈M .
One of the most interesting questions about the heat kernel is obtaining its long time estimates. This
question has been attracted much attention in the past decade, and we refer the reader to the surveys
[11] and [12] for general overview.

Here, we assume that M = Mψ is spherically symmetric manifold as above and try to estimate
p(t, o, o) as a function of t, as t→ ∞. Suppose that we are given a positive non-increasing function Λ(v)
such that, for each ball Br,

λ(Br) ≥ Λ(Vr).

In other word, Λ provides the lower bound for λ(Br) via the volume of Br. Then we have, for all t > 0,

p(t, o, o) ≤ 4
P (t/2)

(28)

where the function P is defined by

t =
∫ P (t)

0

dv

vΛ(v)
. (29)

(see [4, Eq. (8.19)]). Hence, the question of estimating p(t, o, o) amounts to obtaining sharp lower bounds
for λ(Br). For example, if Mψ = R

n then Λ(v) = cv−2/n whence P (t) = c′tn/2 and p(t, o, o) ≤ Ct−n/2.
For general Mψ, the function Λ can be obtained from (26). Namely, let us define Λ by

Λ(VR) =
1

4Φ(R)
(30)

where Φ is defined by (25). Then, the formulas (25), (30), (29) and (28) give implicitly an upper bound
for p(t, o, o) via the volume function Vr. This approach is similar to one adopted in [4], but the novelty
here is the usage the Maz’ya estimate (26) of the eigenvalues rather than (27) that was used in [4].

Substituting (30) into (29), we obtain

t = 4
∫ V −1(P (t))

0

Φ(r)
Srdr

Vr

where V −1 is the inverse function to V(·). Denote R = R(t) = V −1(P (t)). Alternatively, R(t) is defined
by

t = 4
∫ R(t)

0

Φ(r)
Srdr

Vr
. (31)
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Then (28) implies

p(t, o, o) ≤ 4
VR(t/2)

(32)

Let us try and estimate R(t) more explicitly. Since the function Φ(r) is monotone increasing, (31)
implies, for all t > t0 > 0,

t− t0 ≤ 4Φ(R) log
VR
VR0

(33)

where R0 = R(t0). This inequality can be turned into a lower bound for R(t) which can be then used in
(32).

For example, let Vr = exp (rα) for large r, where α ∈ (0, 1). Then (25) yields, for large R,

Φ(R) � R2(1−α)

and (33) implies, for large t,
R(t) ≥ ct

1
2−α .

Respectively, the heat kernel admits the following upper bound

p(t, o, o) ≤ C exp
(−ct α

2−α
)
.

On the other hand, one can show that there is a matching lower bound here - see [4, p.42].
If Vr grows polynomially in r then the estimate (33) for R(t) is too rough. To get a better estimate,

let us assume that

(a) Vr satisfies the doubling property: for all r > 0 and some constant C,

V2r ≤ CVr (34)

(b) and, for all r > 0 and some c > 0,
Sr
Vr

≥ c

r
. (35)

We claim that, under (a) and (b), the following estimate holds

p(t, o, o) � 1
V√t

. (36)

Previously, this estimate was known provided the doubling property (a) holds and Sr/Vr is non-increasing
function - see [4, Corollary 8.5]. On the contrary, the hypothesis (35) does not restrict Sr from above.
For example, the graph of Sr against r may have arbitrarily high peeks on small intervals as long as this
does not violate the doubling property (34).

To prove (36), let first observe that (25) and (35) imply, for any R > 0 and some r ∈ (0, R),

Φ(R) = Vr

∫ R

r

dt

St
≤
∫ R

r

Vtdt

St
≤ 1

2c
(
R2 − r2

)
<

1
2c
R2. (37)

Then the integral in (31) can be estimated as follows:

∫ R

0

Φ(r)
Srdr

Vr
=

∞∑
k=0

∫ R2−k

R2−(k+1)
Φ(r)

Srdr

Vr

≤
∞∑
k=0

Φ(R2−k)
∫ R2−k

R2−(k+1)

Srdr

Vr

≤
∞∑
k=0

Φ(R2−k) log
V (R2−k)

V (R2−(k+1))

≤ C

∞∑
k=0

Φ(R2−k)

≤ C′R2
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where we have used (34) and (37).
Hence, (31) implies

R(t) ≥ c′
√
t,

which together with (32) and (34) yields

p(t, o, o) ≤ C′′

V√t
. (38)

We are left to note that, by [4, Theorem 7.2], the upper bound (38) and the doubling property (34) imply
the lower bound in (36).
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