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1 Upper estimate in Rn, n ≥ 3

1.1 Introduction and statement

Given a non-negative L1
loc function V (x) on Rn, consider the Schrödinger type op-

erator
HV = −Δ − V

where Δ =
∑n

k=1
∂2

∂x2
k

is the classical Laplace operator. More precisely, HV is defined

as a form sum of −Δ and −V , so that, under certain assumptions about V , the
operator HV is self-adjoint in L2 (Rn).

Denote by Neg (HV ) the number of negative eigenvalues of HV (counted with
multiplicity), assuming that its spectrum in (−∞, 0) is discrete. For example, the
latter is the case when V (x) → 0 as x → ∞. We are are interested in obtaining
estimates of Neg (HV ) in terms of the potential V .

Suppose that −V is an attractive potential field in quantum mechanics. Then HV

is the Hamiltonian of a particle that moves in this field, and the negative eigenvalues
of HV correspond to so called bound states of the particle, that is, the negative energy
levels Ek that are inside a potential well.
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Figure 1:

Hence, Neg (HV ) determines the number of bound states of the system. In
particular, if −V is the potential field of an electron in an atom, then Neg (HV ) is
the maximal number of possible electron orbits in the atom.

Estimates of Neg (HV ), especially upper bounds, are of paramount importance
for quantum mechanics.

We start with a famous theorem of Cwikel-Lieb-Rozenblum.

Theorem 1 Assume n ≥ 3 and V ∈ Ln/2 (Rn). Then HV can be defined as a self-
adjoint operator with the domain in W 1,2 (Rn), its negative spectrum is discrete, and
the following estimate is true

Neg (HV ) ≤ Cn

∫

Rn

V (x)n/2 dx. (1)
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This estimate was proved independently by the above named authors in 1972-
1977. Later Lieb used (1) to prove the stability of the matter in the framework of
quantum mechanics.

The estimate (1) implies that, for a large parameter α,

Neg (αV ) = O
(
αn/2

)
as α → ∞. (2)

This is a so called semi-classical asymptotic (that corresponds to letting ~ → 0),
and it is expected from another consideration that Neg (αV ) should behave as αn/2,
at least for a reasonable class of potentials.

1.2 Counting function

Before the proof of Theorem 1, let us give an exact definition of the operator HV and
its counting function. Given a potential V in Rn, that is, a non-negative function
from L1

loc (Rn), define the bilinear energy form by

EV (f, g) =

∫

Rn

∇f ∙ ∇gdx −
∫

Rn

V fgdx

for all f, g ∈ D := C∞
0 (Rn) , and the corresponding quadratic form EV (f) :=

EV (f, f) .
For any open set Ω ⊂ Rn, we consider a restriction of EV to DΩ := C∞

0 (Ω) . The
form (EV ,DΩ) is called closable in L2 (Ω) if

1. it is semi-bounded below, that is, for some constant K ≥ 0,

EV (f) ≥ −K ‖f‖2
2 for all f ∈ DΩ; (3)

2. and, for any sequence {fn} ⊂ DΩ,

‖fn‖2 → 0 and EV (fn − fm) → 0 =⇒ EV (fn) → 0.

Here ‖∙‖2 is the L2-norm with respect to the Lebesgue measure.
A closable form (EV ,DΩ) has a unique extension to a subspace FV,Ω of L2 (Ω) so

that FV,Ω is a Hilbert space with respect to the inner product

(f, g)E := EV (f, g) + (K + 1) (f, g) , (4)

(that is, (EV ,FV,Ω) is closed) and DΩ is dense in FV,Ω.
Being a closed symmetric form, (EV ,FV,Ω) has the generator HV,Ω that can be

defined as an (unbounded) operator in L2 (Ω) with a maximal possible domain
dom (HV,Ω) ⊂ FV,Ω such that

EV (f, g) = (HV,Ωf, g) ∀f ∈ dom(HV,Ω) and g ∈ FV,Ω. (5)

In fact, HV,Ω is a self-adjoint operator in L2 (Ω) .
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For example, for f, g ∈ DΩ we have

EV (f, g) =

∫

Ω

∇f ∙ ∇gdx −
∫

Ω

V fgdx =

∫

Ω

(−Δf − V f) gdx

so that
HV,Ωf = −Δf − V f.

The operator HV,Ω is called the Friedrichs extension of −Δ − V .
Since HV,Ω is self-adjoint, the spectrum of HV,Ω is real. It follows from (3) that

the spectrum of HV,Ω is semi-bounded below. The counting function Nλ of HV,Ω is
defined by

Nλ (HV,Ω) = dim Im 1(−∞,λ) (HV,Ω) , (6)

where 1(−∞,λ) (HV,Ω) is the spectral projector of HV,Ω of the interval (−∞, λ). For
example, if the spectrum of HV,Ω is discrete and {ϕk} is an orthonormal basis of
eigenfunctions with eigenvalues {λk} then 1(−∞,λ) (HV,Ω) is the projection on the
subspace of L2 (Ω) spanned by all ϕk with λk < λ. It follows that Nλ (HV,Ω) is
the number of eigenvalues λk < λ counted with multiplicity. The definition (6) has
advantage that it makes sense for any spectrum.

Lemma 2 The following identity is true for all real λ:

Nλ (HV,Ω) = sup
{
dimV : V ≺ DΩ and EV (f) < λ ‖f‖2

2 ∀f ∈ V \ {0}
}

, (7)

where V ≺ DΩ means that V is a subspace of DΩ. In fact, it suffices to restrict sup
to finite dimensional subspaces V.

For example, if the spectrum of HV,Ω is discrete and {ϕk} is an orthonormal
basis of eigenfunctions with eigenvalues {λk} then the condition EV (f) < λ ‖f‖2

2 is
satisfied exactly for f = ϕk provided λk < λ, because

EV (ϕk) = (HV,Ωϕk, ϕk) = λk (ϕk, ϕk) < λ ‖ϕk‖
2
2 .

The optimal space V in (8) is spanned by all {ϕk} with λk < λ, and its dimension
is equal to Nλ (HV,Ω) .

In the case if HV,Ω is not defined as a self-adjoint operator, we still use (7) as the
definition of Nλ (HV,Ω)

There is also a version of counting function with non-strict inequality:

N ∗
λ (HV,Ω) = dim Im 1(−∞,λ] (HV,Ω) .

Then the following identity is true:

N ∗
λ (HV,Ω) = sup {dimV : V ≺ FV,Ω and EV [f ] ≤ λμ [f ] ∀f ∈ V} . (8)
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1.3 Reduction to operator 1
V Δ

In the most part of the proof of Theorem 1, we will assume that V > 0 and,
moreover, 1

V
∈ L∞

loc (Rn) . This can be achieved as follows. Choose some positive
function U ∈ C∞ (Rn)∩Ln/2 and consider the potential Vε = V + εU for ε > 0. For
this potential we have 1

Vε
∈ L∞

loc. On the other hand, we have by monotonicity

N0 (HV ) ≤ N0 (HVε) .

Hence, any estimate of N0 (HVε) will translate to that of N0 (HV ) by letting ε → 0.
For example, if we know already that

N0 (HVε) ≤ Cn

∫

Rn

V n/2
ε dx,

then we obtain (1) by letting ε → 0.
Set HV ≡ HV,Rn . Our aim is to prove the upper bound (1), that is,

N0 (HV ) ≤ Cn

∫

Rn

V n/2dx. (9)

In fact, the same argument works also for the number N ∗
0 (HV ) of non-positive

eigenvalues.
For λ = 0 the identity (7) becomes

N0 (HV,Ω) = sup {dimV : V ≺ DΩ and EV (f) < 0 ∀f ∈ V \ {0}} . (10)

The condition EV (f) < 0 here is equivalent to

∫

Ω

|∇f |2 dx −
∫

Ω

V f 2dx < 0 (11)

for all non-zero f ∈ V where V is a subspace of DΩ.
We will interpret this inequality in terms of the counting function of another

operator. Consider a new measure μ defined by

dμ = V (x) dx

and the energy form

E (f) =

∫

Rn

|∇f |2 dx

for f ∈ DΩ. Then (11) can be rewritten in the form E (f) < ‖f‖2
2,μ so that

N0 (HV,Ω) = sup
{

dimV : V ≺ DΩ and E (f) < ‖f‖2
2,μ ∀f ∈ V \ {0}

}
. (12)

The right hand side here is the counting function of another operator. Indeed,
denoted by LV,Ω the generator of the energy form (E ,DΩ) in L2 (Ω, μ). Assuming
that 1

V
∈ L∞

loc, this form can be shown to be closable, so that its generator LV,Ω is
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a self-adjoint operator in L2 (Ω, μ). Note also that this operator is positive definite
because so is E .

By definition, we have, for all f, g ∈ dom (LV,Ω),

E (f, g) = (LV,Ωf, g)μ .

In particular, for f, g ∈ DΩ this implies

−
∫

Ω

(Δf) gdx =

∫

Ω

∇f ∙ ∇g dx =

∫

Ω

(LV,Ωf) gV dx,

whence LV,Ωf = − 1
V

Δf that is, LV,Ω = − 1
V

Δ.
The counting function Nλ (LV,Ω) of the operator LV,Ω is defined exactly as for

HV,Ω. Lemma 2 for this operator means that

Nλ (LV,Ω) = sup
{

dimV : V ≺ DΩ and E (f) < λ ‖f‖2
2,μ ∀f ∈ V \ {0}

}
. (13)

For λ = 1 the right hand side of (13) coincides with that of (12), which implies

N0 (HV,Ω) = N1 (LV,Ω) . (14)

In particular, for the case Ω = Rn, we have N0 (HV ) = N1 (LV ) . The identity (14)
is called Birman-Schwinger principle.

Informally the identity (14) reflects the equivalence of the inequalities −Δ−V ≤
0 and − 1

V
Δ ≤ 1 that are understood in the sense of quadratic forms.

1.4 Case of small V

Here we illustrate the usage of (14) by proving a particular case of Theorem 1 as
follows.

Lemma 3 If n ≥ 3 then there is a constant cn > 0 such that

∫

Rn

V n/2dx < cn ⇒ N0 (HV ) = 0.

Proof. As was explained above, we can assume without loss of generality, that
1
V
∈ L∞

loc. By (14) we need to prove that the spectrum of LV below 1 is empty, that
is,

inf specLV ≥ 1.

This is equivalent to the claim that the operator LV in L2 (Rn, μ) is invertible and

∥
∥L−1

V

∥
∥ ≤ 1.

The inverse operator is defined by

L−1
V f = u ⇔ LV u = f,
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where f ∈ L2 (Rn, μ) and u ∈ dom (LV ) . Hence, it suffices to prove that

LV u = f ⇒ ‖u‖2,μ ≤ ‖f‖2,μ .

Multiplying LV u = f by u and integrating against μ, we obtain

E (u) = (LV u, u)μ = (f, u)μ

that is, ∫

Rn

|∇u|2 dx =

∫

Rn

ufdμ.

By Sobolev inequality, we have

∫

Rn

|∇u|2 dx ≥ cn

(∫

Rn

|u|
2n

n−2 dx

)n−2
n

.

Note that this is the only place where n > 2 is used.
Using the Hölder inequality and the above lines, we obtain

∫

Rn

u2V dx ≤

(∫

Rn

|u|2
n

n−2 dx

)n−2
n
(∫

Rn

V
n
2 dx

) 2
n

≤ c−1
n

(∫

Rn

|∇u|2 dx

)(∫

Rn

V
n
2 dx

) 2
n

(15)

= c−1
n

(∫

Rn

ufdμ

)(∫

Rn

V
n
2 dx

) 2
n

≤ c−1
n

(∫

Rn

f 2dμ

)1/2(∫

Rn

u2dμ

)1/2(∫

Rn

V
n
2 dx

) 2
n

whence

‖u‖2,μ ≤ c−1
n

(∫

Rn

V
n
2 dx

) 2
n

‖f‖2,μ .

Clearly, if
∫
Rn V

n
2 dx small enough then ‖u‖2,μ ≤ ‖f‖2,μ, which was to be proved.

The argument in the proof of Lemma 3 allows to prove another part of Theorem
1.

Lemma 4 If V ∈ Ln/2 (Rn) then the form (EV ,W 1,2) is closed in L2 (Rn). Con-
sequently, the operator HV is defined as a self-adjoint operator in L2 (Rn) and its
domain is a subspace of W 1,2 (Rn) .

Proof. It follows from the hypothesis that, for any ε > 0, V can be split to a
sum of two potentials V = V1 + V2 where

‖V1‖n/2 ≤ ε and V2 ∈ L∞.
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It follows from (15) that

E (u) ≥ cn

(∫

Rn

V
n/2
1 dx

)−2/n ∫

Rn

u2V1dx ≥ cnε−1

∫

Rn

u2V1dx.

Choosing ε sufficiently small, we obtain cnε−1 ≥ 2 whence
∫

Rn

u2V dx =

∫

Rn

u2V1dx +

∫

Rn

u2V2dx

≤
1

2
E (u) + K ‖u‖2

2 , (16)

where K = ‖V2‖L∞ . Since the form (E ,W 1,2) is closed and
∫
Rn u2V dx satisfies the

domination condition (16), it follows by the KLMN-theorem from the theory of
quadratic forms, that the form (EV ,W 1,2) is also closed. Hence, its generator HV

is well-defined as a self-adjoint semi-bounded below operator, whose domain is a
subspace of W 1,2.

It remains to prove the main part of Theorem 1: the estimate (1) or, equivalently,
(9). As it was explained above, we can assume that 1

V
∈ L∞

loc. Moreover, let us show
that it suffices to treat the case V ∈ C∞. Indeed, consider a sequence {Vk}

∞
k=1 of

smooth positive functions Vk being mollifications of V , so that Vk
Ln/2

→ V. Using the
universal inequality

N0 (U + V ) ≤ N0 (2U) + N0 (2V ) ,

that follows from (12), we obtain

N0 (V ) ≤ N0 (Vk + |V − Vk|)

≤ N0 (2Vk) + N0 (2 |V − Vk|) . (17)

Choose k large enough so that ‖V − Vk‖n/2 is small enough. Then by Lemma 3

N0 (2 |V − Vk|) = 0.

Assuming that (9) is proved for smooth potentials, we have

N0 (2Vk) ≤ const

∫

Rn

V
n/2
k dx.

Substituting into (17) and passing to the limit as k → ∞, we obtain (9).

1.5 Proof of Theorem 1

The proof below is due to Li and Yau ’83 but it is presented here from somewhat
different angle. As it was explained above, we can assume from now on that V ∈ C∞

and V > 0.
In a precompact domain Ω the operator LV,Ω has discrete positive spectrum.

Denote its eigenvalues by λk (Ω), where k = 1, 2, ..., so that the sequence {λk (Ω)} is
increasing, and each eigenvalue is counted with multiplicity. The main part of the
proof of Theorem 1 is contained in the following statement.
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Theorem 5 (AG, Yau 2003) Assume that there is a Radon measure ν in Rn and
α > 0 such that, for all precompact open sets Ω,

λ1 (Ω) ≥ ν (Ω)−α . (18)

Then, for any positive integer k and any precompact open set Ω,

λk (Ω) ≥ c

(
k

ν (Ω)

)α

, (19)

where c = c (α) > 0.

For example, if V = 1 then LV,Ω is the Laplace operator −Δ with the Dirichlet
boundary condition on ∂Ω. The hypothesis (18) is satisfies if ν is a multiple of the
Lebesgue measure as by the Faber-Krahn inequality

λ1 (Ω) ≥ cn (vol Ω)−2/n .

Then (19) becomes

λk (Ω) ≥ c′n

(
k

vol Ω

)2/n

,

that is also known to be true. Moreover, it matches the Weyl’s asymptotic formula

λk (Ω) ∼ c̃n

(
k

vol Ω

)2/n
as k → ∞.

The point of Theorem 5 is that V in the definition of LV,Ω can be arbitrary and
measure ν can be arbitrary. By the way, there is no restriction of the dimension n
in Theorem 5. Moreover, exactly in this form it is true on any Riemannian manifold
instead of Rn.

Proof of Theorem 1 using Theorem 5. Let us use the variational principle:

λ1 (Ω) = inf
u∈DΩ

(LV,Ωu, u)μ

(u, u)μ

= inf
u∈DΩ

E (u)

(u, u)μ

.

Using again the Sobolev inequality

∫

Ω

|∇u|2 dx ≥ cn

(∫

Ω

|u|
2n

n−2 dx

)n−2
n

and the Hölder inequality

(u, u)μ =

∫

Ω

u2V dx ≤

(∫

Ω

|u|
2n

n−2 dx

)n−2
n
(∫

Ω

V n/2dx

) 2
n

,

we obtain
E (u)

(u, u)μ

≥ cn

(∫

Ω

V n/2dx

)− 2
n

.

Hence, setting dν = c
−n/2
n V n/2dx and minimizing in u, we obtain

λ1 (Ω) ≥ ν (Ω)−2/n .
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By Theorem 5, we conclude that

λk (Ω) ≥ c

(
k

ν (Ω)

)2/n

. (20)

We need to estimate the counting function

N1 (LV,Ω) = # {k : λk (Ω) < 1} .

By (20), λk (Ω) < 1 implies k ≤ Cν (Ω) whence also

N1 (LV,Ω) ≤ Cν (Ω) = C

∫

Ω

V n/2dx.

It follows by (14) that also

N0 (HV,Ω) ≤ C

∫

Ω

V n/2dx ≤ C

∫

Rn

V n/2dx. (21)

We are left to pass from HV,Ω to HV,Rn . Recall that

N0 (HV,Rn) = sup {dimV : V ≺ DRn , EV (f) < 0 ∀f ∈ V \ {0}} ,

where V is a finite-dimensional subspace of DRn . For any such V there exists a
precompact open set Ω containing supp f for all f ∈ V (for it suffices to have
supp f ⊂ V for the elements of a basis of V). Hence, V ≺ DΩ and by (21)

dimV ≤ C

∫

Rn

V n/2dx,

whence the same estimate for N0 (HV,Rn) follows.

Nash inequality

For the proof of Theorem 5 we need a Nash type inequality.

Lemma 6 Assume that (18) holds, that is, for all precompact open sets Ω,

λ1(Ω) ≥ ν(Ω)−α.

Then, for all such Ω and non-negative f ∈ DΩ,

E (f) ≥ c

(∫

Ω

f 2dμ

)1+α(∫

Ω

fdμ

∫

Ω

fdν

)−α

, (22)

where c = 2−2α−1.
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Figure 2:

Remark. If V ≡ 1 then both μ and ν are Lebesgue measures, α = 2/n, and (22)
becomes

E (f) ≥ ‖f‖2+4/n
2 ‖f‖−4/n

1 ,

which is a classical Nash inequality.

Proof. Fix s > 0 and observe that

E
(
(f − s)+

)
≤ E (f) . (23)

Set
Ωs := {x ∈ Ω : f(x) > s}

and note that supp (f − s)+ ⊂ Ωs ⊂ Ω.
It follows from the variational property of λ1(Ωs) and from (23), that

∫

Ω

(f − s)2
+ dμ =

∫

Ωs

(f − s)2
+ dμ ≤

E
(
(f − s)+

)

λ1(Ωs)
≤

E (f)

λ1(Ωs)
. (24)

Since

ν (Ωs) ≤
1

s

∫

Ω

fdν

we obtain by hypothesis

1

λ1 (Ωs)
≤ ν (Ωs)

α ≤ s−α

(∫

Ω

fdν

)a

.

Substituting into (24) and using

f 2 − 2sf ≤ (f − s)2
+ ,

we obtain ∫

Ω

f 2dμ − 2s

∫

Ω

fdμ ≤ s−α

(∫

Ω

fdν

)α

E (f) . (25)

Let us choose s from the condition

2s

∫

Ω

fdμ =
1

2

∫

Ω

f 2dμ.

11



With this s we obtain

1

2

∫

Ω

f 2dμ ≤

(
1

4

∫
Ω

f 2dμ
∫

Ω
fdμ

)−α(∫

Ω

fdν

)α

E (f)

whence (∫

Ω

f 2dμ

)1+α

≤ 22α+1

(∫

Ω

fdμ

)α(∫

Ω

fdν

)α

E (f) ,

and (22) follows.

1.6 Proof of Theorem 5

In the proof we work with the heat semigroup {Pt}t≥0 of the operator LV,Ω, that is
defined by

PΩ
t = e−tLV,Ω .

Since LV,Ω is a self-adjoint non-negative definite operator in L2 (Ω, μ), the operator
PΩ

t is bounded self-adjoint operator in L2 (Ω, μ) for any t ≥ 0. In fact, it is an
integral operator:

PΩ
t f (x) =

∫

Ω

pΩ
t (x, y) f (y) dμ (y)

where pΩ
t (x, y) is the heat kernel of LV,Ω. We will use the following general properties

of the heat kernel:

1. pt (x, y) is a smooth function of x, y ∈ Rn and t > 0.

2. positivity: pt (x, y) ≥ 0;

3. the symmetry: pΩ
t (x, y) = pΩ

t (y, x) ;

4. the semigroup identity

∫

Ω

pΩ
t (x, z) pΩ

s (z, y) dμ (z) = pΩ
t+s (x, y) ;

5. the total mass inequality:

∫

Ω

pΩ
t (x, y) dμ (y) ≤ 1.

The last step before the actual proof of Theorem 5 is the following lemma.

Lemma 7 If (18) holds then, for any precompact open set Ω ⊂ Rn,

∫

Ω

pΩ
t (x, x) dμ (x) ≤

Cν (Ω)

t1/α
. (26)

where C = C (α).
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Proof. Fix Ω ⊂ Rn, s > 0 and consider the function

ut (x, y) = pΩ
t+s (x, y) .

By the semigroup identity we have

ut (x, y) =

∫

Ω

pΩ
t (y, z) pΩ

s (z, x) dμ (z) = PΩ
t f (y)

where f = pΩ
s (∙, x) (considering x as fixed). Since f ∈ L2 (Ω, μ), it follows that

ut (x, ∙) lies in dom (LV,Ω). The Nash inequality (22) extends easily to such functions,
so that we obtain

∫

Ω

u2
t dμ ≤ C

(∫

Ω

utdμ

∫

Ω

utdν

) α
α+1

E (ut)
1

α+1 ,

where C = C (α) and integration is done with respect to y. Set

vt (x) :=

∫

Ω

u2
t (x, y) dμ (y) =

∫

Ω

pΩ
t+s(x, y)pΩ

t+s (y, x) dμ(y) = pΩ
2(t+s) (x, x) .

Using ∫

Ω

utdμ =

∫

Ω

pΩ
t+s (x, y) dμ (y) ≤ 1 (27)

and

E (ut) = (LV,Ωut, ut)μ = −

(
d

dt
ut, ut

)

μ

= −
1

2

d

dt
(ut, ut)μ = −

1

2

d

dt
vt (x) ,

we obtain

vt (x) ≤ C

(∫

Ω

utdν

) α
α+1
(

−
d

dt
vt (x)

) 1
α+1

. (28)

Integrating (28) against dμ(x) and using the Hölder inequality

∫
F

α
α+1 G

1
α+1 dμ ≤

[∫
Fdμ

] α
α+1
[∫

Gdμ

] 1
α+1

,

we obtain

∫

Ω

vt (x) dμ (x) ≤ C

∫ [∫
utdν (y)

]

︸ ︷︷ ︸
F

α
α+1
[

−
∂vt

∂t

]

︸ ︷︷ ︸
G

1
α+1

dμ(x)

≤ C

[∫ ∫
utdν (y) dμ(x)

] α
α+1
[

−
∫

∂vt

∂t
dμ(x)

] 1
α+1

.

Observe that (27) implies

∫ ∫
utdν (y) dμ(x) =

∫ (∫
ut (x, y) dμ(x)

)

dν (y) ≤
∫

Ω

dν = ν(Ω). (29)
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Denoting

w (t) :=

∫

Ω

vt (x) dμ (x) =

∫

Ω

pΩ
2(t+s) (x, x) μ (x) ,

we obtain from above

w(t) ≤ Cν(Ω)
α

α+1

(

−
dw

dt

) 1
α+1

. (30)

Solving this differential inequality by separation of variables, we obtain

w(t) ≤
Cν (Ω)

t1/α
.

Finally, choosing s = t we obtain
∫

Ω

pΩ
4t (x, x) μ (x) ≤

Cν (Ω)

t1/α
,

which was to be proved.
Proof of Theorem 5. We need to show that

λk (Ω) ≥ c

(
k

ν (Ω)

)α

.

Note that ∫

Ω

pΩ
t (x, x) dμ (x) = trace PΩ

t .

On the other hand, all the eigenvalues of PΩ
t are equal to e−tλk(Ω), whence

trace PΩ
t =

∞∑

k=1

e−tλk(Ω).

Hence, applying (26), we obtain
∞∑

k=1

e−tλk(Ω) ≤
Cν (Ω)

t1/α
.

Restricting the summation to the first k terms, we obtain

ke−tλk(Ω) ≤
Cν (Ω)

t1/α

whence

λk (Ω) ≥
1

t
ln

kt1/α

Cν (Ω)
.

Choosing t from the condition
kt1/α

Cν (Ω)
= e,

that is,

t =

(

Ce
ν (Ω)

k

)α

,

we obtain

λk (Ω) ≥
1

t
=

(
1

Ce

k

ν (Ω)

)α

,

which finishes the proof of Theorem 5.
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2 Minimal surfaces

Let M be a two-dimensional manifold immersed in R3 as an oriented minimal surface.
The Riemannian metric on M is induced by the Euclidean structure of R3. Denote
by σ the Riemannian area on M .

For any function f ∈ C∞
0 (M) consider a deformation Mf of M given by the

mapping x 7→ x + f(x)ν(x) where ν (x) is the unit normal vector field on M that is
determined by the orientation. Then

σ (Mf ) = σ (M) + δσ (f) + o (‖f‖)

where δσ (f) is the first variation of the area functional, that is given by

δσ (f) =

∫

M

fHdσ,

where H = H (x) is the mean curvature of M . By definition, M is called a minimal
surface, if the first variation δσ(f) vanishes for all f , which is equivalent to H ≡ 0
on M . Assuming that M is minimal, there is the following nice formula for the
second variation:

δ2σ(f) =

∫

M

(|∇f |2 + 2Kf 2)dσ , (31)

where K = K(x) is the Gauss curvature of M at the point x ∈ M . Note that since
H ≡ 0, we have K ≤ 0. If δ2σ(f) ≥ 0 for all f then the minimal surface M is called
stable. In particular, all area minimizers are stable.

However, in general a minimal surface is not necessarily stable. By definition,
the stability index ind(M) of the minimal surface is the Morse index of the δ2σ, that
us,

ind(M) = sup
{
dimV : V ≺ C∞

0 (M) s.t. δ2σ(f) < 0 for all f ∈ V \ {0}
}

.

In other words, we have
ind(M) = N0 (HV ) ,

where V = −2K and
HV = −Δ − V = −Δ + 2K

and Δ is the Laplace-Beltrami operator on M . The operator HV is called the
stability operator of M .

It turns out that for the stability operator the upper bound of Theorem 1 is
satisfied.

Theorem 8 (AG, Yau 2003) For any immersed oriented minimal surface M in R3,
we have

ind(M) ≤ C

∫

M

|K| dσ, (32)

where C is an absolute constant.
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The proof goes in the same way as the one of Theorem 1 using Theorem 5. Using
specific properties of Gauss curvature, we first prove for the operator LV,Ω = − 1

V
Δ

in Ω ⊂ M the eigenvalue estimate

λ1 (Ω) ≥ cμ (Ω)−1 ,

where dμ = |K| dσ. By Theorem 5 this implies

λk (Ω) ≥ c′
k

μ (Ω)

and then as in the proof of Theorem 1,

N0 (HV ) ≤ Cμ (M)

that is (32).
In the case of geodesically complete M the estimate (32) was proved in Tysk in

1987 (a better value of the constant C is due to Micallef 2001). In 1985 Fischer-
Colbrie proved, also for complete minimal surfaces, that the finiteness of ind(M) is
equivalent to the finiteness of the total curvature of M .

3 Lower estimates in R2

Here we are concerned with N0 (HV ) in R2.

3.1 A counterexample to the upper bound

In the case n = 2, the estimate (1) of Theorem 1 becomes

N0 (HV ) ≤ C

∫

R2

V (x) dx,

which however is wrong. To see that, consider in R2 the potential

V (x) =
1

|x|2 ln2 |x|
if |x| > e

and V (x) = 0 if |x| ≤ e. For this V we have
∫

R2

V (x) dx < ∞,

whereas Neg (HV ) = ∞. Indeed, consider the function

f (x) =
√

ln |x| sin

(
1

2
ln ln |x|

)

that satisfies in the region {|x| > e} the differential equation

Δf +
1

2
V (x) f = 0.
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For any positive integer k, function f has constant sign in the ring

Ωk :=

{

x ∈ R2 : πk <
1

2
ln ln |x| < π (k + 1)

}

,

and vanishes on ∂Ωk. For each function fk = f1Ωk
we have

EV (fk) =

∫

Ωk

|∇fk|
2 dx −

∫

Ωk

V f 2
kdx

= −
∫

Ωk

fkΔfkdx −
∫

Ωk

V f 2
kdx

= −
1

2

∫

Ωk

V f 2
kdx < 0.

The same inequality holds for linear combination of functions fk since the intersec-
tion of their supports has measure 0.

Hence, the space V = span {fk} has infinite dimension and EV (f) < 0 for all
non-zero f ∈ V , which implies N0 (HV ) = ∞.

In fact, one can show that no upper bound of the form

N0 (HV ) ≤
∫

R2

V (x) W (x) dx

can be true, no matter how we choose a weight W (x) .

3.2 Lower bound of N0 (HV )

It turns out that in the case n = 2, instead of an upper bound, a lower bound in (1)
is true.

Theorem 9 (AG, Netrusov, Yau, 2004) For any non-negative potential V in R2,

N0 (HV ) ≥ c

∫

R2

V (x) dx (33)

with some absolute constant c > 0.

Let us describe an approach to the proof. Since

N0 (HV ) = sup {dimV : V ≺ DR2 and EV (f) < 0 ∀f ∈ V \ {0}} ,

it suffices to construct a subspace V of DR2 such that EV is negative on V and

dimV ≥ c

∫

R2

V (x) dx.

We will construct V as span {fk} where {fk}
N
k=1 is a sequence of functions with

disjoint compact supports such that EV (fk) < 0. Then EV (f) < 0 will be true for
any non-zero function f ∈ span {fk}, and dimV = N. Hence, it suffices to construct
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a sequence {fk}
N
k=1 of functions with compact disjoint supports such that, for any

k = 1, ..., N , ∫

R2

|∇fk|
2 dx <

∫

R2

V f 2
kdx,

and

N ≥ c

∫

R2

V (x) dx.

Each function fk will be constructed as follows. Fix two reals 0 < r < R and
consider the annulus

A =
{
x ∈ R2 : r < |x| < R

}

and denote by 2A the annulus

2A =

{

x ∈ R2 :
1

2
r < |x| < 2R

}

.

Consider the following function

f (x) =






1, x ∈ A,
0, x /∈ 2A,
1

ln 2
ln 2|x|

r
, r

2
≤ |x| ≤ r,

1
ln 2

ln 2R
|x| , R ≤ |x| ≤ 2R.

 

x2 

x1 
R 2R r/2 r 

A  f=1 

 f=0 

2A 

 f=0 

Figure 3:

This function f is harmonic in each of the four domains, whence we obtain
∫

R2

|∇f |2 dx =

∫

{ r
2
≤|x|≤r}

|∇f |2 dx +

∫

{R≤|x|≤2R}
|∇f |2 dx

=

∫

∂{ r
2
≤|x|≤r}

f
∂f

∂ν
dl +

∫

∂{R≤|x|≤2R}
f

∂f

∂ν
dl

= f ′ (r) 2πr − f ′ (R) 2πR

=
1

(ln 2) r
2πr +

1

(ln 2) R
2πR

=
4π

ln 2
< 20.
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Suppose that we have a sequence of annuli {Ak}
N
k=1, with different centers and

different radii, but such that the sequence {2Ak}
N
k=1 is disjoint. Then, defining fk

for each pair (Ak, 2Ak) as above, we obtain a sequence of functions with disjoint
supports and with ∫

R2

|∇fk|
2 dx < 20.

Note that ∫

R2

V f 2
kdx ≥

∫

Ak

V dx.

Hence, the condition
∫
R2 |∇fk|

2 dx <
∫
R2 V f 2

kdx will be satisfied if

∫

Ak

V dx ≥ 20.

Consider again measure μ given by dμ = V dx and restate our problem as follows:
construct N annuli {Ak}

N
k=1 such that

(i) {2Ak}
N
k=1 are disjoint,

(ii) μ (Ak) ≥ 20 for each k,

(iii) and N ≥ cμ (R2) .

Of course, if μ (R2) < 20 then such a sequence cannot be constructed. In this
case we argue differently. Choose some 0 < r < R and consider the function

f (x) =






1, |x| ≤ r
0, x ≥ R,

1
ln R

r

ln R
|x| , r ≤ |x| ≤ R.

 

x2 

x1 
R r 

 f=1 

 f=0 

Figure 4:
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For this function
∫

R2

|∇f |2 dx = −f ′ (r) 2πr =
2π

ln R
r

while ∫

R2

V f 2dx ≥
∫

{|x|≤r}
V dx.

Taking r and R
r

large enough, we obtain
∫
R2 |∇f |2 dx <

∫
R2 V f 2dx whence N0 (HV ) ≥

1. If μ (R2) =
∫
R2 V dx is bounded by some constant, say 20, then we obtain

N0 (HV ) ≥ cμ (R2) just by taking c small enough.
Hence, in the main part we can assume that μ (R2) is large enough. In this case,

the sequence of annuli satisfying (i)-(iii) can be always constructed. In fact, the
positive answer is given by the following abstract theorem.
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Theorem 10 Let (X, d) be a metric space and μ is a non-atomic Borel measure on
X. Assume that the following properties are satisfied.

1. All metric balls B (x, r) = {y ∈ X : d (x, y) < r} are precompact.

2. There exists a constant M such that, for any ball B (x, r) there is a family of
at most M balls of radii r/2 that cover B (x, r) .

Then there is a constant c = c (M) > 0 such that, for any 0 < v < μ (X) there

exists at least cμ(X)
v

annuli {Ak} such that

(i) {2Ak} are disjoint

(ii) and μ (Ak) ≥ v for any k.

Of course, R2 satisfies all the hypotheses of Theorem 10. Taking v = 20 we
obtain that if μ (R2) > 20 then there exists at least c′μ (R2) annuli satisfying (i) and
(ii), which finishes the proof of Theorem 9.

We leave Theorem 10 without proof, only mentioning that it can be regarded as
a sophisticated version of the ball covering argument. Note also that annuli in the
statement cannot be replaced by balls.

4 Eigenvalues on S2

Let us show one more application of Theorem 10.

Theorem 11 Let λk, k = 1, 2, ..., be the k-th smallest eigenvalue of the Laplace-
Beltrami operator Δ on (S2, g) , where g is an arbitrary Riemannian metric on S2.
Then, for any k,

λk ≤ C
k − 1

μ (S2)
, (34)

where C is a universal constant and μ is the Riemannian volume of the metric g.

In fact, this theorem holds also for any closed Riemann surface, where the con-
stant C depends also on the genus of the surface. However, the general case follows
from the estimate for S2.

Note that λ1 = 0 so that the case k = 1 is trivial. For k = 2 Theorem 11 was
proved by Hersch in 1970 for the sphere and then for any Riemann surface by Yang
and Yau in 1980. For a general k, Yau stated (34) as a conjecture, which was proved
by Korevaar in 1993.

The main point of (34) that the constant C does not depend on the Rieman-
nian metric g. The metric enters (34) only through the total area μ (S2). This is
essentially two-dimensional phenomenon as such estimates do not hold in higher
dimensions.
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Let us show how Theorem 11 can be obtained from Theorem 10. Consider the
counting function for Δ on (S2, g):

Nλ = # {j ≥ 1 : λj < λ} .

Note that λk < λ will follow from Nλ ≥ k. We will prove that, for all λ > 0,

Nλ ≥ C−1μ
(
S2
)
λ. (35)

If (35) is already proved, then choosing here λ = C k
μ(S2)

, where k ≥ 2, we obtain
Nλ ≥ k and, hence,

λk < λ = C
k

μ (S2)
≤ 2C

k − 1

μ (S2)
,

which proves (34).
Let us prove (35) for any λ > 0. The counting function admits variational

characterization

Nλ = sup
{
dimV : V ≺ DS2 , E (f) < λ ‖f‖2

2 ∀f ∈ V \ {0}
}

where

E (f) =

∫

S2
|∇f |2g dμ and ‖f‖2

2 =

∫

S2
f 2dμ.

Hence, it suffices to construct at least N = C−1μ (S2) λ functions f with disjoint
supports and with E (f) < λ ‖f‖2

2 .
If λ is small enough, namely, if C−1μ (R2) λ ≤ 1 then we need to construct only

one function, and it always exists: f ≡ 1. Hence, we can assume that λ > C
μ(S2)

.

Any metric g on S2 is conformally equivalent to the canonical metric g0 on S2.
Denote by μ0 the canonical Riemannian measure on S2. Note that the energy is a
conformal invariant:

E (f) =

∫

S2
|∇f |2g dμ =

∫

S2
|∇f |2g0

dμ0.

Let d be the geodesic distance on (S2, g0) . As in R2, one can show that, for any
annulus A on S2 (with respect to d) one can construct a test function f supported
in 2A and such that f |A = 1 and E (f) < K where K is some constant. On the
other hand,

‖f‖2
2 ≥

∫

A

f 2dμ = μ (A) ,

so that E (f) < λ ‖f‖2
2 will follow from K ≤ λμ (A) . Hence, we need to construct at

least N = C−1μ (S2) λ annuli Ak on S2 so that 2Ak are disjoint and

μ (Ak) ≥
K

λ
.

Let us emphasize that measure μ is defined by the metric g, whereas the annuli are
defined using the distance function of g0.
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Let us apply Theorem 10 to the metric space (S2, d) with measure μ. Set v :=
K
λ

< C−1Kμ (S2) . Choosing C > K, we have v < μ (S2) so that Theorem 10 can be

applied. Hence, we obtain at least c
μ(S2)

v
= c

K
μ (S2) λ annuli Ak with disjoint 2Ak

and with

μ (Ak) ≥ v =
K

λ
,

which finishes the proof of (35) with C = K
c
.

5 Upper estimate in R2

5.1 Statement of the result

Consider a tiling of R2 into a sequence of annuli {Un}n∈Z defined by

Un
n<0
= {e−2|n|

< |x| < e−2|n|−1

}, U0 = {e−1 < |x| < e}, Un
n>0
= {e2n−1

< |x| < e2n

}

 

x2 

x1 

Un 
n>0 

e 2
n-1 e-1

 e 

U0 Un 
n<0 

e 2
n 

Figure 5:

Given a potential (=a non-negative L1
loc-function) V (x) on R2 and p > 1, define

for any n ∈ Z the following quantities:

An =

∫

Un

V (x) (1 + |ln |x||) dx , Bn =






∫

{en<|x|<en+1}

V p (x) |x|2(p−1) dx






1/p

(36)

The main result of this section is the following theorem.

Theorem 12 (AG, N.Nadirashvili, 2012) For any potential V in R2 and for any
p > 1, we have

Neg (V ) ≤ 1 + C
∑

{n∈Z:An>c}

√
An + C

∑

{n∈Z:Bn>c}

Bn, (37)

where C, c are positive constants depending only on p.
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The additive term 1 in (37) reflects a special feature of R2: for any non-zero
potential V , there is at least 1 negative eigenvalue of HV , no matter how small are
the sums in (37), as it was shown in the course of the proof of Theorem 9.

Let us compare (37) with previously known upper bounds. A simpler (and
coarser) version of (37) is

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx + C
∑

n∈Z

Bn. (38)

Indeed, if An > c then
√

An ≤ c−1/2An so that the first sum in (37) can be replaced
by
∑

n∈Z An thus yielding (38).
The estimate (38) was obtained by Solomyak in 1994. In fact, he proved a better

version:
Neg (V ) ≤ 1 + C ‖A‖1,∞ + C

∑

n∈Z

Bn, (39)

where A denotes the whole sequence {An}n∈Z and ‖A‖1,∞ is the weak l1-norm (the
Lorentz norm) given by

‖A‖1,∞ = sup
s>0

s# {n : An > s} .

Clearly, ‖A‖1,∞ ≤ ‖A‖1 so that (39) is better than (38).
However, (39) also follows from (37) using an observation that

‖A‖1,∞ ≤ sup
s>0

s1/2
∑

{An>s}

√
An ≤ 4 ‖A‖1,∞ .

In particular, we have ∑

{An>c}

√
An ≤ 4c−1/2 ‖A‖1,∞ ,

so that (37) implies (39). As we will see below, our estimate (37) provides for certain
potentials strictly better results than (39).

In the case when V (x) is a radial function, that is, V (x) = V (|x|), the following
estimate was proved by physicists Chadan, Khuri, Martin, Wu in 2003:

Neg (V ) ≤ 1 +

∫

R2

V (x) (1 + |ln |x||) dx. (40)

Although this estimate is better than (38), we will see that our main estimate (37)
gives for certain potentials strictly better estimates than (40).

Another upper estimate for a general potential in R2 was obtained by Molchanov
and Vainberg in 2010:

Neg (V ) ≤ 1 + C

∫

R2

V (x) ln 〈x〉 dx + C

∫

R2

V (x) ln
(
2 + V (x) 〈x〉2

)
dx, (41)

where 〈x〉 = e + |x|. However, due to the logarithmic term in the second integral,
this estimate never implies the linear semi-classical asymptotic

Neg (αV ) = O (α) as α → ∞, (42)
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that is expected to be true for “nice” potentials. Observe that the Solomyak esti-
mates (38) and (39) are linear in V so that they imply (42) whenever the right hand
side is finite.

Our estimate (37) gives both linear asymptotic (42) for “nice” potentials and non-
linear asymptotics for some other potentials. Let us emphasize two main novelties in
our estimate (37): using the square root of An instead of linear expressions, and the
restriction of the both sums in (37) to the values An > c and Bn > c, respectively,
which allows to obtain significantly better results.

The reason for the terms
√

An in (37) can be explained as follows. Different
parts of the potential V contributes differently to Neg (V ). The high values of V
that are concentrated on relatively small areas, contribute to Neg (V ) via the terms
Bn, while the low values of V scattered over large areas, contribute via the terms
An. Since we integrate V over annuli, the long range effect of V becomes similar to
that of an one-dimensional potential. In R1 one expects Neg (αV ) '

√
α as α → ∞

which explains the appearance of the square root in (37).
By the way, the following estimate of Neg (V ) in R1

+ was proved by Solomyak:

Neg (V ) ≤ 1 + C
∞∑

n=0

√
an (43)

where

an =

∫

In

V (x) (1 + |x|) dx

and In = [2n−1, 2n] if n > 0 and I0 = [0, 1]. Clearly, the sum
∑√

an here resembles∑√
An in (37), which is not a coincidence. In fact, our method allows to improve

(43) by restricting the sum to those n for which an > c.
Returning to (38), one can apply a suitable Hölder inequality to combine the

both terms of (38) in one as follows. Assume that W (r) is a positive monotone
increasing function on (0, +∞) that satisfies the following Dini type condition both
at 0 and at ∞: ∫ ∞

0

r |ln r|
p

p−1 dr

W (r)
1

p−1

< ∞. (44)

Then

Neg (V ) ≤ 1 + C

(∫

R2

V p (x)W (|x|) dx

)1/p

, (45)

where the constant C depends on p and W . Here is an example of a weight function
W (r) that satisfies (44):

W (r) = r2(p−1)〈ln r〉2p−1 lnp−1+ε〈ln r〉, (46)

where ε > 0. In particular, for p = 2, we obtain the following estimate:

Neg (V ) ≤ 1 + C

(∫

R2

V 2 (x) |x|2 〈ln |x|〉3 ln1+ε〈ln |x|〉dx

)1/2

. (47)
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5.2 Examples

Example 1. Assume that, for all x ∈ R2,

V (x) ≤
α

|x|2

for a small enough positive constant α. Then, for all n ∈ Z,

Bn ≤ α

(∫

{en<|x|<en+1}

1

|x|2
dx

)1/p

' α

so that Bn < c and the last sum in (37) is void, whence we obtain

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx. (48)

The estimate (48) in this case follows also from the estimate (41) of Molchanov and
Vainberg.

Example 2. Assume that a potential V satisfies the following condition: for
some constant K and all n ∈ Z,

sup
{en<|x|<en+1}

V ≤ K inf
{en<|x|<en+1}

V. (49)

For such potential we have

Bn '
∫

{en<|x|<en+1}
V dx, (50)

so that (38) implies

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx + C ′

∫

R2

V (x) dx,

where the constant C ′ depends also on K. Of course, the second term here can be
absorbed by the first one thus yielding (48) with C = C (K).

The estimate (48) in this case can be obtained from the estimate (40) of Chadan,
Khuri, Martin, Wu by comparing V with a radial potential.

Example 3. Let

V (x) =
α

|x|2
(
1 + ln2 |x|

) ,

where α > 0 is small enough. Then as in the first example Bn < c, while An can be
computed as follows: for n > 0

An '
∫ e2n

e2n−1

α

r2 ln2 r
(ln r) rdr = α

∫ e2n

e2n−1
d ln ln r ' α, (51)

and the same for n ≤ 0, so that An < c for all n. Hence, the both sums in (37) are
void, and we obtain

Neg (V ) = 1.

26



This result cannot be obtained by any of the previously known estimates. In-
deed, in the estimates of Chadan, Khuri, Martin, Wu and of Molchanov, Vainberg
one has

∫
R2 V (x) (1 + |ln |x||) dx = ∞, and in the estimate (39) of Solomyak one

has ‖A‖1,∞ = ∞. As will be shown below, if α > 1/4 then Neg (V ) can be ∞.
Hence, Neg (V ) exhibits a non-linear behavior with respect to the parameter α,
which cannot be captured by linear estimates.

Example 4. Assume that V (x) is locally bounded and

V (x) = o

(
1

|x|2 ln2 |x|

)

as x → ∞.

Similarly to the above computation we see that An → 0 and Bn → 0 as n → ∞,
which implies that the both sums in (37) are finite and, hence,

Neg (V ) < ∞.

This result is also new. Note that in this case the integral
∫
R2 V (x) (1 + |ln |x||) dx

may be divergent; moreover, the norm ‖A‖1,∞ can also be ∞ as one can see in the
next example.

Example 5. Choose q > 0 and set

V (x) =
1

|x|2 ln2 |x| (ln ln |x|)q for |x| > e2 (52)

and V (x) = 0 for |x| ≤ e2. For n ≥ 2 we have

An '
∫ e2n

e2n−1

1

r2 ln2 r (ln ln r)q (ln r) rdr =

∫ e2n

e2n−1

d ln ln r

(ln ln r)q '
1

nq
,

and, by (50),

Bn '
∫ en+1

en

1

r2 ln2 r (ln ln r)q rdr =

∫ en+1

en

d ln r

ln2 r (ln ln r)q '
1

n2 lnq n
.

Let α be a large real parameter. Then

An (αV ) '
α

nq
, (53)

and the condition An (αV ) > c is satisfied for n ≤ Cα1/q, whence we obtain

∑

{An(αV )>c}

√
An (αV ) ≤ C

dCα1/qe∑

n=1

√
α

nq
' C

√
α
(
α1/q

)1−q/2
= Cα1/q.

It is clear that
∑

n Bn (αV ) ' α. Hence, we obtain from (37)

Neg (αV ) ≤ C
(
α1/q + α

)
. (54)
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If q ≥ 1 then the leading term here is α. Combining this with (33), we obtain

Neg (αV ) ' α as α → ∞.

If q > 1 then this follows also from (40) and (39); if q = 1 then only the estimate
(39) of Solomyak gives the same result as in this case An ' 1

n
and ‖A‖1,∞ < ∞.

If q < 1 then the leading term in (54) is α1/q so that

Neg (αV ) ≤ Cα1/q.

As was shown by Birman and Laptev, in this case, indeed, Neg (αV ) ' α1/q as
α → ∞. Observe that in this case ‖A‖1,∞ = ∞, and neither of the estimates previous
estimates (38), (40), (39), (41) yields even the finiteness of Neg (αV ), leaving alone
the correct rate of growth in α.

Example 6. Let V be a potential in R2 such that
∑

n∈Z

√
An (V ) +

∑

n∈Z

Bn (V ) < ∞. (55)

Applying (37) to αV , we obtain

Neg (αV ) ≤ 1 + Cα1/2
∑

n∈Z

√
An (V ) + α

∑

n∈Z

Bn (V ) .

Combining with the lower bound (33) and letting α → ∞, we see that

cα

∫

R2

V dx ≤ Neg (αV ) ≤ α
∑

n∈Z

Bn (V ) + o (α) ,

in particular,
Neg (αV ) ' α as α → ∞.

Furthermore, if V satisfies the condition (49) then, using (50), we obtain a more
precise estimate

Neg (αV ) ' α

∫

R2

V (x) dx as α → ∞. (56)

For example, (55) is satisfied for the potential (52) of Example 5 with q > 2, as it
follows from (53). By a more sophisticated argument, one can show that (56) holds
also for q > 1.

Example 7. Set R = e2m
where m is a large integer, choose α > 1

4
and consider

the following potential on R2

V (x) =
α

|x|2 ln2 |x|
if e < |x| < R

and V (x) = 0 otherwise. Computing An as in (51) we obtain An ' α for any
1 ≤ n ≤ m, whence it follows that

∑

n∈Z

√
An =

m∑

n=1

√
An '

√
αm '

√
α ln ln R.
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Also, we obtain by (50) Bn ' a
n2 , for 1 ≤ n < 2m, whence

∑

n∈Z

Bn (V ) '
2m−1∑

n=1

α

n2
' α.

By (37) we obtain
Neg (V ) ≤ C

√
α ln ln R + Cα. (57)

Observe that both (39) and (40) give in this case a weaker estimate

Neg (V ) ≤ Cα ln ln R.

Let us estimate Neg (V ) from below. Considering the function

f (x) =
√

ln |x| sin

(√

α −
1

4
ln ln |x|

)

that satisfies in the region Ω = {e < |x| < R} the differential equation Δf+V (x) f =
0, and counting the number N of rings

Ωk :=

{

x ∈ R2 : πk <

√

α −
1

4
ln ln |x| < π (k + 1)

}

in Ω, we obtain
Neg (V ) ≥ N '

√
α ln ln R

(assuming that α >> 1
4
). On the other hand, (33) yields Neg (V ) ≥ cα. Combining

these two estimates, we obtain the lower bound

Neg (V ) ≥ c
(√

α ln ln R + α
)
,

that matches the upper bound (57).

5.3 The energy form revisited

We consider a somewhat different energy form than in Rn, n ≥ 3. For any open set
Ω ⊂ R2, consider a function space

FV,Ω =

{

f ∈ L2
loc

(
Ω
)

:

∫

Ω

|∇f |2 dx < ∞,

∫

Ω

V f 2dx < ∞

}

and the quadratic form on FV,Ω:

EV,Ω (f) =

∫

Ω

|∇f |2 dx −
∫

Ω

V f 2dx. (58)

We will use the following quantity:

Neg (V, Ω) := sup {dimV : V ≺ FV,Ω : EV,Ω (f) ≤ 0 for all f ∈ V} . (59)
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Clearly, we have N0 (HV ) ≤ Neg(V,R2), but in R2 we do not loose much when we
estimate a larger quantity Neg instead of N0. (Observe that FV,R2 contains f = const
and E (f) ≤ 0 so that Neg (V,R2) ≥ 1, but as we know, N0 (HV ) ≥ 1). Theorem 12
contains the estimate of Neg (V ) = Neg (V,R2) .

For bounded domains with smooth boundary, Neg (V, Ω) is equal to the number
of non-positive eigenvalues of the Neumann problem in Ω for −Δ − V .

A useful feature of Neg (V, Ω) is subadditivity with respect to Ω. We say that a
sequence {Ωk} of open sets Ωk ⊂ R2 is a partition of Ω if all the sets Ωk are disjoint,
Ωk ⊂ Ω, and Ω \

⋃
k Ωk has measure 0.

 Ω 

Ωk

Figure 6:

Lemma 13 If {Ωk} is a partition of Ω, then

Neg (V, Ω) ≤
∑

k

Neg (V, Ωk) . (60)

The idea of the proof is the same as in the classical Weyl’s argument: adding
additional Neumann boundaries inside Ω increases the space of test functions and,
hence, the number of non-negative eigenvalues.

5.4 One negative eigenvalue in a disc

Denote by Dr the open disk of radius r in R2, that is, Dr = {x ∈ R2 : |x| < r} , and
set D1 ≡ D.

Lemma 14 For any p > 1 there is ε > 0 such that, for any potential V in D,

‖V ‖Lp(D) ≤ ε ⇒ Neg (V,D) = 1.

Sketch of proof. Since always Neg (V,D) ≥ 1, we need only to prove that
Neg (V,D) ≤ 1. We will prove that if u ∈ FV,D then

u⊥1 in L2 (D) and EV,D (u) ≤ 0 ⇒ u = 0,

which will imply that Neg (V,D) ≤ 1.

30



Extend u ∈ FV,D to R2 using the inversion Φ (x) = x
|x|2

: for any x /∈ D, set

u (x) = u (Φ (x)). By conformal invariance of energy, we have

∫

R2

|∇u|2 dx = 2

∫

D

|∇u|2 dx ≤ 2

∫

D

V u2dx.

Choose a cutoff function ϕ such that ϕ|D2 ≡ 1, ϕ|R2\D3
= 0 and set u∗ = uϕ. Then

it follows that ∫

D4

|∇u∗|2 dx ≤ C

∫

D

V u2dx,

with some absolute constant C. Since u⊥1, one uses in the proof the Poincaré
inequality in D in the form ‖u‖L2 ≤ C ‖∇u‖L2 .

Next, we have by Hölder inequality

∫

D

V u2dx ≤

(∫

D

V pdx

)1/p(∫

D

|u|
2p

p−1 dx

)1−1/p

,

and by Sobolev inequality

(∫

D

|u|
2p

p−1 dx

)1−1/p

≤

(∫

D4

|u∗|
2p

p−1 dx

)1−1/p

≤ C

∫

D4

|∇u∗|2 dx.

Combining the above three lines, we obtain

∫

D4

|∇u∗|2 dx ≤ C

(∫

D

V pdx

)1/p ∫

D4

|∇u∗|2 dx. (61)

Assuming that ‖V ‖Lp(D) is small enough, we see that (61) is only possible if u∗ =

const . Since u⊥1 in L2 (D), it follows that u ≡ 0.

Corollary 15 Let Ω be a domain in R2 that is bilipschitz equivalent to Dr. Then

∫

Ω

V pdx ≤ cr2−2p ⇒ Neg (V, Ω) = 1. (62)

where c > 0 depends on p and on the Lipschitz constant of the mapping between Dr

and Ω.

Proof. Indeed, if Ω = Dr then (62) follows from Lemma 14 by scaling transfor-
mation. For a general Ω one shows that Neg (V, Ω) ≤ Neg (CV ∗, Dr) where V ∗ is
the pull-back of V under the bilipschitz mapping L : Dr → Ω where the constant C
depends on the Lipschitz constant.

5.5 Negative eigenvalues in a square

Denote by Q the unit square in R2.
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Lemma 16 For any p > 1 and for any potential V in Q,

Neg (V,Q) ≤ 1 + C ‖V ‖Lp(Q) , (63)

where C depends only on p.

Proof. It suffices to construct a partition P of Q into a family of N disjoint
subsets such that

1. Neg (V, Ω) = 1 for any Ω ∈ P ;

2. N ≤ 1 + C ‖V ‖Lp(Q) .

Indeed, if such a partition exists then we obtain by Lemma 13

Neg (V,Q) ≤
∑

Ω∈P

Neg (V, Ω) = N, (64)

and (63) follows from the above bound of N .
The elements of a partition will be of two shapes: it is either a square of the side

length 0 < l ≤ 1 or a step, that is, a set of the form Ω = A \ B where A is a square
of the side length l, and B is a square of the side length ≤ l/2 that is attached to
one of corners of A.

 

l l 

l/2 

Figure 7: A square and a step of size l

In the both cases we refer to l as the size of Ω. By Corollary 15, the condition 1
for such a set Ω will follow from

∫

Ω

V pdx ≤ cl2−2p. (65)

Apart from the shape, we will distinguish also the type of a set Ω ∈ P of size l
as follows: we say that

- Ω is of a large type, if ∫

Ω

V pdx > cl2−2p,
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- Ω is of a medium type if

c′l2−2p <

∫

Ω

V pdx ≤ cl2−2p, (66)

- and Ω is of small type if ∫

Ω

V pdx ≤ c′l2−2p. (67)

Here c is the constant from (65) and c′ ∈ (0, c) will be chosen below. In particular,
if Ω is of small or medium type then Neg (V, Ω) = 1.

The construction of the partition P will be done by induction. At each step
i ≥ 1 of induction we will have a partition P (i) of Q such that

1. each Ω ∈ P (i) is either a square or a step;

2. If Ω ∈ P (i) is a step then Ω is of a medium type.

At step 1 we have just one set: P (1) = {Q}. At any step i ≥ 1, partition P (i+1)

is obtained from P (i) as follows. If Ω ∈ P (i) is small or medium then Ω becomes
one of the elements of the partition P (i+1). If Ω ∈ P (i) is large, then it is a square,
and it will be further partitioned into a few sets that will become elements of P (i+1).
Denoting by l the side length of the square Ω, let us first split Ω into four equal
squares Ω1, Ω2, Ω3, Ω4 of side length l/2 and consider the following cases.

 

small 

small 

small 

medium 

1 

Figure 8: Various possibilities of partitioning of a square Ω (the shaded shapes are
of medium or large type, the hatched shape Ω1 can be of any type)

Case 1. If among Ω1, ..., Ω4 the number of small squares is at most 2, then all
sets Ω1, ..., Ω4 become elements of P (i+1).

Case 2. If among Ω1, ..., Ω4 there are exactly 3 small squares, say, Ω2, Ω3, Ω4,
then we have

∫

Ω\Ω1

V pdx =

∫

Ω2∪Ω3∪Ω4

V pdx ≤ 3c′
(

l

2

)2−2p

= 3c′22p−2l2−2p < cl2−2p,

where we choose c′ to satisfy 3c′22p−2 < c. On the other hand, we have
∫

Ω

V pdx > cl2−2p.
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Therefore, by reducing the size of Ω1 (but keeping Ω1 attached to the corner of Ω)
one can achieve the equality

∫

Ω\Ω1

V pdx = cl2−2p.

Hence, we obtain a partition of Ω into two sets Ω1 and Ω\Ω1, where the step Ω \Ω1

is of medium type, while the square Ω1 can be of any type. Both Ω1 and Ω \ Ω1

become elements of P (i+1).

Case 3. Let us show that all 4 squares Ω1, ..., Ω4 cannot be small. Indeed, in this
case we would have

∫

Ω

V pdx =
4∑

k=1

∫

Ωk

V pdx ≤ 4c′
(

l

2

)2−2p

=
(
4c′22p−2

)
l2−2p.

Let us choose c′ so small that 4c′22p−2 < c. Then the above estimate contradicts the
assumption that Ω is of large type.

As we see from construction, at each step i only large squares get partitioned
further, and the size of the large type squares in P (i+1) reduces at least by a factor 2.
If the size of a square is small enough then it is necessarily of small type, because the
right hand side of (67) goes to ∞ as l → 0. Hence, the process will stop after finitely
many steps. After sufficiently many steps we obtain a partition P where all the
elements are either of small or medium types. In particular, we have Neg (V, Ω) = 1
for any Ω ∈ P .

 

Figure 9: An example of a final partition P . The shaded shapes are of medium
type, the white squares are of small type.

Let N be a number of elements of P . We need to show that

N ≤ 1 + C ‖V ‖Lp(Q) . (68)

At each step of construction, denote by L the number of large elements, by M the
number of medium elements, and by S the number of small elements. Let us show
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that the quantity 2L+3M −S is non-decreasing during the construction. Indeed, at
each step we split one large square Ω, so that by removing this square, L decreases
by 1. However, we add new elements of partitions, which contribute to the quantity
2L + 3M − S as follows.

1. If Ω is split into s ≤ 2 small and 4 − s medium/large squares as in Case 1,
then the value of 2L + 3M − S has the increment at least

−2 + 2 (4 − s) − s = 6 − 3s ≥ 0.

2. If Ω is split into 1 square and 1 step as in Case 2, then one obtains at least 1
medium set and at most 1 small, so that 2L + 3M − S has the increment at
least

−2 + 3 − 1 = 0.

(Luckily, Case 3 cannot occur. In that case, we would have 4 new small squares
so that L and M would not have increased, whereas S would have increased at least
by 3, so that no quantity of the type C1L + C2M − S would have been monotone
increasing).

Since for the partition P (1) we have 2L + 3M − S ≥ −1, this inequality will
remain true at all steps of construction and, in particular, it is satisfied for the
final partition P . For the final partition we have L = 0, whence it follows that
S ≤ 1 + 3M and, hence,

N = S + M ≤ 1 + 4M. (69)

Let us estimate M . Let Ω1, ..., ΩM be the medium type elements of P and let lk
be the size of Ωk. Each Ωk contains a square Ω′

k ⊂ Ωk of the size lk/2, and all the
squares {Ω′

k}
M
k=1 are disjoint, which implies that

M∑

k=1

l2k ≤ 4. (70)

Using the Hölder inequality and (70), we obtain

M =
M∑

k=1

l
2
p′

k l
− 2

p′

k ≤

(
M∑

k=1

l2k

)1/p′ ( M∑

k=1

l
− 2p

p′

k

)1/p

≤ 41/p′

(
M∑

k=1

l2−2p
k

)1/p

.

Since by (66) c′l2−2p
k <

∫
Ωk

V pdx, it follows that

M ≤ C

(
M∑

k=1

∫

Ωk

V pdx

)1/p

≤ C

(∫

Q

V pdx

)1/p

.

Combining this with N ≤ 1 + 4M , we obtain N ≤ 1 + C ‖V ‖Lp(Q), thus finishing
the proof.
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Corollary 17 Let Ω be a domain in R2 that is bilipschitz equivalent to D. Then

Neg (V, Ω) ≤ 1 + C

(∫

Ω

V pdx

)1/p

,

where C > 0 depends on p and on the Lipschitz constant of the mapping between D
and Ω.

5.6 One negative eigenvalue in R2

Now we would like to obtain conditions for Neg (V,R2) = 1 in terms of some weighted
L1-norms. The method that we have used in the case n ≥ 3 (Lemma 3) was based
on the operator LV = − 1

V
Δ and estimating of

∥
∥L−1

V

∥
∥ in L2 (Rn, V dx) .

The hidden reason why it was possible is the existence of the positive Green
function g (x, y) = cn

|x−y|n−2 of −Δ. In fact, the operator L−1
V is given by

L−1
V f =

∫

Rn

g (x, y) f (y) V (y) dy.

The application of the Sobolev in the proof of Lemma 3 can be replaced by a direct
estimate of the norm of this integral operator in L2 (Rn, V dx) . In fact, the classical
proof of the Sobolev inequality uses this approach.

One of the difficulties in R2 is the absence of a positive Green function of the
Laplace operator. To overcome this difficulty, we introduce an auxiliary potential
V0 ∈ C∞

0 (R2) , such that V0 6≡ 0 and V0 ≥ 0.

Lemma 18 (AG, 2006) Operator H0 = −Δ + V0 has a positive Green function
g (x, y) that admits the following estimate

g (x, y) ' ln 〈x〉 ∧ ln 〈y〉 + ln+
1

|x − y|
, (71)

where 〈x〉 := e + |x| and ∧ means min .

By Lemma 14 there exists V0 such that Neg (V0,R2) = 1. Fix such V0 and, hence,
the Green function g (x, y) of H0 for what follows.

For a given potential V , define as measure μ by dμ = V dx and consider the
integral operator GV defined by

GV f (x) =

∫

R2

g (x, y) f (y) dμ (y) .

Denote by ‖GV ‖ the norm of GV in the space L2 (R2, μ) .

Lemma 19 If ‖GV ‖ ≤ 1
2

then Neg (V,R2) = 1.
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Sketch of the proof. The idea is that the operator GV is the inverse of the
operator 1

V
H0 in L2 (μ) so that ‖GV ‖ ≤ 1

2
implies that the spectrum of 1

V
H0 is

confined in [2,∞). This implies that H0 ≥ 2V in the sense of quadratic forms, that
is, ∫

R2

|∇u|2 dx +

∫

R2

V0u
2dx ≥ 2

∫

R2

V u2dx

for all u ∈ FV . If V is a subspace of FV where EV ≤ 0 then for any u ∈ V
∫

R2

|∇u|2 dx ≤
∫

R2

V u2dx.

Combining the two lines, we obtain

∫

R2

|∇u|2 dx ≤
∫

R2

V0u
2dx,

that is, EV0 (u) ≤ 0. Taking sup dim V we obtain

Neg
(
V,R2

)
≤ Neg

(
V0,R

2
)

= 1.

The next step is estimating the norm ‖GV ‖ in terms of V . Since g (x, y) is
symmetric in x, y, we have a simple estimate

‖GV ‖ ≤ sup
y

∫

R2

g (x, y) dμ (x) ,

which together with Lemma 18 leads to

‖GV ‖ ≤ C

∫

R2

ln 〈x〉 dμ (x) + C sup
y∈R2

∫

R2

ln+
1

|x − y|
dμ (x) .

However, ‖GV ‖ admits a better estimate, as will be explained below.

5.7 Transformation to a strip

It will be more convenient to estimate first Neg (V, S) where S is a strip in R2 defined
by

S =
{
(x1, x2) ∈ R

2 : x1 ∈ R, 0 < x2 < π
}

.

The strip S is the image of R2
+ under the conformal mapping z 7→ ln z:

Let γ (x, y) be the push-forward of the Green function g (x, y) under this map-
ping, that is,

γ (x, y) = g (ex, ey) .

Using the estimate (72) of g, it is possible to show that

γ (x, y) ≤ C 〈x1〉 ∧ 〈y1〉 + C ln+
1

|x − y|
. (72)
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Figure 10:

For example, x1 arises from ln |ex| = ln |ex1+ix2 | = ln ex1 = x1.
Consider also the corresponding integral operator

ΓV f (x) =

∫

S

γ (x, y) f (y) dμ (y) , (73)

where measure μ is defined as above by dμ = V (x) dx. Denote by ‖ΓV ‖ the norm
of ΓV in L2 (S, μ). Lemma 19 implies the following.

Lemma 20 ‖ΓV ‖ ≤ 1
8
⇒ Neg (V, S) = 1.

The main point in the proof is that the holomorphic mappings are conformal
and, hence, preserve the Dirichlet integral.

5.8 Estimating ‖ΓV ‖

For any n ∈ Z set
Qn = S ∩ {n < x1 < n + 1},
Sn = S ∩

{
−2|n| < x1 < −2|n|−1

}
for n < 0,

S0 = S ∩ {−1 < x1 < 1} ,
Sn = S ∩ {2n−1 < x1 < 2n} for n > 0,

 

x1 

Q5 

S3 
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Figure 11:

an (V ) =

∫

Sn

(1 + |x1|) V (x) dx ' 2|n|
∫

Sn

V (x) dx (74)

bn (V ) =

(∫

Qn

V p (x) dx

)1/p

. (75)
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Lemma 21 The operator ΓV admits the following norm estimate in L2 (S, μ):

‖ΓV ‖ ≤ C sup
n∈Z

an (V ) + C sup
n∈Z

bn (V ) . (76)

Approach to the proof. Note that by (72)

|ΓV f (x)| ≤ C

∫

S

(1 + |x1| ∧ |y1|) |f (y)|V (y) dy

+C

∫

S

ln+
1

|x − y|
f (y) |V (y)| dy. (77)

The second integral operator can be estimated by the Hölder inequality:

∫

S

ln+
1

|x − y|
V (y) dy ≤

(∫

B(x,1)

(

ln+
1

|x − y|

)p′

dy

)1/p′

(∫

B(x,1)∩S

V p (y) dy

)1/p

.

The first integral here is equal to a finite constant depending only on p, but inde-
pendent of x. The second integral is bounded by C supn bn (V ) .

It is much more subtle to estimate the norm of the first integral operator in (77)
via C supn∈Z an (V ) . This problem is reduced to an one dimensional problem by
integrating in the direction x2. Then we apply a certain weighted Hardy inequality.
We skip the details as the argument is quite lengthy.

Corollary 22 There is a constant c > 0 such that

sup
n

an (V ) ≤ c and sup
n

bn (V ) ≤ c ⇒ Neg (V, S) = 1.

Proof. Assuming that the constant c here is small enough, we obtain from (76)
that ‖ΓV ‖ ≤ 1

8
, whence by Lemma 20 Neg (V, S) = 1.

5.9 Rectangles

For all α ∈ [−∞, +∞), β ∈ (−∞, +∞] such that α < β, denote by Pα,β the rectangle

Pα,β =
{
(x1, x2) ∈ R

2 : α < x1 < β, 0 < x2 < π
}

.

Note that Pα,β ⊂ S.

Lemma 23 For any potential V in a rectangle Pα,β with the length β − α ≥ 1, we
have

Neg (V, Pα,β) ≤ Neg (17V, S) ,

where V is extended to S by setting V = 0 outside Pα,β.
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Sketch of the proof. It suffices to show that any function u ∈ FV,P can be
extended to FV,S so that

∫

S

|∇u|2 dx ≤ 17

∫

P

|∇u|2 dx. (78)

Attach to P from each side one rectangle, say P ′ from the left and P ′′ from the
right, each having the length 4 (β − α) (to ensure that the latter is > π). Extend
function u to P ′ by applying four times symmetries in the vertical sides, so that

∫

P ′

|∇u|2 dx = 4

∫

P

|∇u|2 dx.

 

 x1 

x 

S 

Φ''(x) P'' 
P 

(α,0) 

 x2 

P' 

(β,0) 

x Φ'(x) 

Figure 12: Extension of function u from P to S.

Then slightly reduce P ′ by taking intersections with the circle of radii β − α
centered at (α, 0). Now we extend u from P ′ to the left by using the inversion Φ′

at the point (α, 0) in the aforementioned circle. By the conformal invariance of the
Dirichlet integral, we have

∫

S∩{x1<α}
|∇u|2 ≤ 8

∫

P

|∇u|2 dx.

Extending u in the same way to the right of P , we obtain (78).

5.10 Sparse potentials

We say that a potential V in S is sparse if

sup
n

bn (V ) < c0,

where c0 is a small enough positive constant, depending only on p. It follows from
Corollary 22 that, for a sparse potential,

sup
n

an (V ) ≤ c ⇒ Neg (V, S) = 1.
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 x2 

Sn 

0 

π 

x1 

Sm 

β 2m-1
 2m

 

S 

P0,β 

2n-1
 2n

 

S0 

1 -1 

Figure 13: Rectangle P0,β is covered by the sequence Sn, 0 ≤ n ≤ m

Corollary 24 Let V be a sparse potential in Pα,β where β − α ≥ 1. Then

(β − α)

∫

Pα,β

V (x) dx ≤ c ⇒ Neg (V, Pα,β) = 1. (79)

Proof. Take α = 0 so that β ≥ 1. Let m be a non-negative integer such that
2m−1 < β ≤ 2m.

Then an (V ) = 0 for n < 0 and for n ≥ m + 1. For 0 ≤ n ≤ m

an (V ) ≤ 2n+1

∫

Sn

V (x) dx ≤ 2m+1

∫

P0,β

V (x) dx ≤ 4β

∫

P0,β

V (x) dx, (80)

so that an (17V ) are small enough for all n ∈ Z. By Corollary 22 Neg (17V, S) = 1,
and by Lemma 23 Neg (V, P0,β) = 1.

Lemma 25 Let V be a sparse potential in Pα,β where β − α ≥ 1. Then

Neg (V, Pα,β) ≤ 1 + C

(

(β − α)

∫

Pα,β

V (x) dx

)1/2

. (81)

In particular, for a sparse potential in Sn,

Neg (V, Sn) ≤ 1 + C
√

an (V ). (82)

Proof. Without loss of generality set α = 0. Set also

J =

∫

P0,β

V (x) dx

and recall that, by Corollary 24, if βJ ≤ c for sufficiently small c then Neg (V, P0,β) =
1. Hence, in this case (81) is trivially satisfied, and we assume in the sequel that
βJ > c.

Due to Lemma 23, it suffices to prove that

Neg (V, S) ≤ C (βJ)1/2 .

Consider a sequence of reals {rk}
N
k=0 such that

0 = r0 < r1 < ... < rN−1 < β ≤ rN
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r1 
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rk rk-1 

R1 

k 
x1 

RN 

β rN-1 rN 

S ... 

r2 

R2 

P0,β 

Figure 14: The sequence {Rk}
N
k=1 of rectangles covering P0,β

and the corresponding sequence of rectangles

Rk := Prk−1,rk
= {(x1, x2) : rk−1 < x1 < rk, 0 < x2 < π}

where k = 1, ..., N , that covers P0,β.
Denote lk = rk − rk−1 and Jk =

∫
Rk

V (x) dx. By Corollary 24,

lk ≥ 1 and lkJk ≤ c ⇒ Neg (V,Rk) = 1 (83)

Let us construct the sequence {rk}
N
k=0 to satisfy (83) for all k = 1, ..., N . If rk−1 is

already defined and rk−1 < β then choose rk > rk−1 to satisfy the identity

lkJk = c. (84)

If such rk does not exist then set rk = β + 1; in this case, we have lkJk < c. Let us
show that in the both cases lk = rk − rk−1 ≥ 1. Indeed, if lk < 1 then rk < β + 1 so
that (84) is satisfied. By Hölder inequality, (84) and lk < 1, we obtain

(∫

Rk

V pdx

)1/p

≥
1

(πlk)
1/p′

∫

Rk

V dx =
c

(πlk)
1/p′ lk

≥
c

π1/p′
,

which contradicts the assumption that V is sparse. Hence, lk ≥ 1.
As soon as we reach rk ≥ β we stop the process and set N = k. Since always

lk ≥ 1, the process will indeed stop in a finite number of steps.
We obtain a partition of S into N rectangles R1, ..., RN and two half-strips:

S ∩{x1 < 0} and S ∩{x1 > rN}, and in the both half-strips we have V ≡ 0. In each
Rk we have Neg (V,Rk) = 1 whence it follows that

Neg (V, S) ≤ 2 +
N∑

k=1

Neg (V,Rk) = N + 2.

Let us estimate N from above. In each Rk with k ≤ N −1 we have by (84) 1
Jk

= 1
c
lk.

Therefore, we have

N − 1 =
N−1∑

k=1

1
√

Jk

√
Jk ≤

(
1

c

N−1∑

k=1

lk

)1/2(N−1∑

k=1

Jk

)1/2

≤
(

1
c
β
)1/2

J1/2.
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Using also 3 ≤ 3
(

1
c
βJ
)1/2

, we obtain N + 2 ≤ 4
(

1
c
βJ
)1/2

, which finishes the proof
of (81).

The estimate (82) follows trivially from (81) and (74) as Sn is a rectangle Pα,β

with the length 1 ≤ β − α ≤ 2|n|+1.

Lemma 26 For any sparse potential in the strip S,

Neg (V, S) ≤ 1 + C
∑

{n:an(V )>c}

√
an (V ), (85)

for some constant C, c > 0 depending only on p.

Proof. Let us enumerate in the increasing order those values n where an (V ) > c.
So, we obtain an increasing sequence {ni}, finite or infinite, such that ani

(V ) > c
for any index i. The difference S \

⋃
i Sni

can be partitions into a sequence {Tj}
of rectangles, where each rectangle Tj either fills the gap in S between successive
rectangles Sni

or Tj may be a half-strip that fills the gap between Sni
and +∞ or

−∞.

 

x1 

S Tj  ni 
S ni+1 

... 

... 

S 

Figure 15: Partitioning of the strip S into rectangles Sni
and Tj

By construction, each Tj is a union of some rectangles Sk with ak (V ) ≤ c. It
follows from Corollary 22 that Neg (V, Tj) = 1. Since by construction

# {Tj} ≤ 1 + # {Sni
} ,

it follows that

Neg (V, S) ≤
∑

j

Neg (V, Ti) +
∑

i

Neg (V, Sni
)

≤ 1 + # {Sni
} +

∑

i

Neg (V, Sni
)

≤ 1 + 2
∑

i

Neg (V, Sni
) .

In each Sni
we have by (82) and ani

(V ) > c that

Neg (V, Sni
) ≤ C

√
ani

(V ).

Substituting into the previous estimate, we obtain (85).
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5.11 Arbitrary potentials in a strip

We use notation an (V ) and bn (V ) defined by (74) and (75).

Theorem 27 For any p > 1 and for any potential V in the strip S, we have

Neg (V, S) ≤ 1 + C
∑

{n∈Z:an(V )>c}

√
an (V ) + C

∑

{n∈Z:bn(V )>c}

bn (V ) , (86)

where the positive constants C, c depend only on p.

Proof. Let {ni} be a sequence of all n ∈ Z for which bn (V ) > c. Let {Tj} be
rectangles that fill the gaps in S between successive Qni

or between Qni
and ±∞.

 

x1 

Q ni Tj 
S Q ni+ 1 

Figure 16: Partitioning of the strip S into rectangles Qni
and Tj

If the sequence {ni} is empty then V is sparse, and (86) follows from Lemma 26.
Assume that {ni} is non-empty.

Consider the potentials V ′ = V 1∪Tj
and V ′′ = V 1∪Qni

. Since V = V ′ + V ′′, we
have

Neg (V, S) ≤ Neg (2V ′, S) + Neg (2V ′′, S) .

The potential 2V ′ is sparse by construction, whence by Lemma 26

Neg (2V ′, S) ≤ 1 + C
∑

{n:an(V ′)>c}

√
an (V ′). (87)

By Lemma 13 and Lemma 16, we obtain

Neg (2V ′′, S) ≤
∑

j

Neg (2V ′′, Tj) +
∑

i

Neg (2V ′′, Qni
)

= # {Tj} +
∑

i

(
1 + C ‖2V ′′‖Lp(Qni)

)

= # {Tj} + # {Qni
} + 2C

∑

i

bni
(V ) .

By construction we have # {Tj} ≤ 1 + # {Qni
} . By the choice of ni, we have

1 < c−1bni
(V ) , whence

# {Tj} + # {Qni
} ≤ 1 + 2# {Qni

} ≤ 1 + 2c−1
∑

i

bni
(V ) ≤ 3c−1

∑

i

bni
(V )
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Combining these estimates together, we obtain

Neg (2V ′′, S) ≤ C ′
∑

i

bni
(V ) = C ′

∑

{n:bn(V )>c}

bn (V ) (88)

Adding up (87) and (88) yields

Neg (V, S) ≤ 1 + C
∑

{n:an(V ′)>c}

√
an (V ′) + C

∑

{n:bn(V )>c}

bn (V ) . (89)

Since V ′ ≤ V , (89) implies (86), which finishes the proof.

Remark. In fact, we have proved a slightly better inequality (89) than (86).

5.12 Proof of Theorem 12

Let us prove the main Theorem 12, that is, for any potential V in R2,

Neg (V ) ≤ 1 + C
∑

{n∈Z:An>c}

√
An + C

∑

{n∈Z:Bn>c}

Bn, (90)

where

An (V ) =

∫

Un

V (x) (1 + |ln |x||) dx, Bn (V ) =

(∫

Wn

V p (x) |x|2(p−1) dx

)1/p

,

Un =






{e2n−1
< |x| < e2n

}, n ≥ 1,
{e−1 < |x| < e}, n = 0,

{e−2|n|
< |x| < e−2|n|−1

}, n ≤ −1,

and
Wn =

{
en < |x| < en+1

}
.

Consider an open set Ω = R2 \ L where L = { x1 ≥ 0, x2 = 0} and the mapping

Ψ : Ω → S̃ where Ψ (z) = ln z and

S̃ =
{
(y1, y2) ∈ R

2 : 0 < y2 < 2π
}

.

Using the inverse mapping Φ = Ψ−1, define a potential Ṽ on S̃ by Ṽ (y) =
V (Φ (y)) |JΦ (y)| where JΦ is the Jacobian of Φ. It is possible to prove that

Neg
(
V,R2

)
≤ Neg (V, Ω) = Neg(Ṽ , S̃). (91)

Since the strips S̃ and S are bilipschitz equivalent, Theorem 27 holds also for S̃,
that is,

Neg(Ṽ , S̃) ≤ 1 + C
∑

{n:an>c}

√
an + C

∑

{n:bn(V )>c}

bn, (92)

where

an =

∫

Sn

(1 + |y1|) Ṽ (y) dy, bn =

(∫

Qn

Ṽ pdy

)1/p

,
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Figure 17: Conformal mapping Ψ : Ω → S̃

and
Qn = Ψ (Wn \ L) , Sn = Ψ (Un \ L) .

Since JΨ = 1
|x|2

, we obtain, using the change y = Ψ (x) ,

bp
n =

∫

Qn

Ṽ p (y) dy =

∫

Wn

V p (x) |JΦ (y)|p |JΨ (x)| dx

=

∫

Wn

V p (x) |JΨ (x)|1−p dx

=

∫

Wn

V p (x) |x|2(p−1) dx = Bp
n.

Similarly, computing an and observing that

y1 = Re Ψ (x) = Re ln x = ln |x| ,

we obtain

an =

∫

Sn

Ṽ (y) (1 + |y1|) dy =

∫

Un

V (x) |JΦ (y)| (1 + |ln |x||) |JΨ (x)| dx

=

∫

Un

V (x) (1 + |ln |x||) dx = An.

Combining together (91), (92), we obtain (90).
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