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ABSTRACT. We prove a lower bound for the number of negative eigenvalues for a
Schodinger operator on a Riemannian manifold via the integral of the potential.

1. INTRODUCTION

Let (M, g) be a compact Riemannian manifold without boundary. Consider the
following eigenvalue problem on M:

— Au —Vu = \u, (1)

where A is the Laplace-Beltrami operator on M and V' € L™ (M) is a given poten-
tial. It is well-known, that the operator —A —V has a discrete spectrum. Denote by
{A(V) 2, the sequence of all its eigenvalues arranged in increasing order, where
the eigenvalues are counted with multiplicity.

Denote by N (V) the number of negative eigenvalues of (1), that is,

N(V) =card {k: \(V) < 0}.

It is well-known that A (V) is finite. Upper bounds of A (V) have received enough
attention in the literature, and for that we refer the reader to [2], [5], [12], [11], [15]
and references therein.

However, a little is known about lower estimates. Our main result is the following
theorem. We denote by i the Riemannian measure on M.

Theorem 1.1. Set dim M = n. For any V € L® (M) the following inequality is

true:
N(V) 2 ﬁ (f Vdu)i/ , @)

where C' > 0 is a constant that in the case n = 2 depends only on the genus of M
and in the case n > 2 depends only on the conformal class of M.

In the case V' > 0 the estimate (2) was proved in [6, Theorems 5.4 and Example
5.12]. Our main contribution is the proof of (2) for signed potentials V' (as it was
conjectured in [6]), with the same constant C' as in [6]. In fact, we reduce the case
of a signed V to the case of non-negative V' by considering a certain variational
problem for V' and by showing that the solution of this problem is non-negative.
The latter method originates from [14].
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In the case n = 2, inequality (2) takes the form

N (V) > C/ Vdpu. (3)
M
For example, the estimate (3) can be used in the following situation. Let M be
a two-dimensional manifold embedded in R?® and the potential V be of the form
V = aK + H where K is the Gauss curvature, H is the mean curvature, and «, 3
are real constants (see [8], [4]). In this case (3) yields

N(V) Z C (Ktotal + Htotal) )

where K4 is the total Gauss curvature and Hy,; is the total mean curvature. We
expect in the future many other applications of (2)-(3).

2. A VARIATIONAL PROBLEM

Fix positive integers k, N and consider the following optimization problem: find
V € L* (M) such that

/ Vdp — max under restrictions A, (V) > 0 and ||V, < N. (4)
M

Clearly, the functional V' +— [, Vdpu is weakly continuous in L (M). Since the
class of potentials V' satisfying the restrictions in (4) is bounded in L*> (M), it is
weakly precompact in L (M). In fact, we prove in the next lemma that this class
is weakly compact, which will imply the existence of the solution of (4).

Lemma 2.1. The class
Con={VeLlL*(M): N (V)>0and |V] ;e <N}

is weakly compact in L™ (M). Consequently, the problem (4) has a solution V €
Lo (M).

Proof. 1t was already mentioned that the class Cj, y is weakly precompact in L™ (M).
It remains to prove that it is weakly closed, that is, for any sequence {V;} C Ci n
that converges weakly in L*°, the limit V' is also in Cj_y. The condition ||V, < N
is trivially satisfied by the limit potential, so all we need is to prove that A, (V) > 0.
Let us use the minmax principle in the following form:

S \Vul? dp — [y Vutdu

e (V) = inf S ,
«(V) EgVIVM(Q@ue;\I?O} Jo wdp
im F=

where E is a subspace of W2 (M) of dimension k. The condition A, (V) > 0 is
equivalent then to the following:

VE C W2 (M) with dimE =k Ve>0 3Jue E\{0}

such that / |Vu|2d,u—/ Vuldp > —a/ u?dp. (5)
M M M

Fix a subspace E C W12 (M) of dimension k and some & > 0. Since A\; (V;) > 0, we
obtain that there exists uw; € E '\ {0} such that

/ ]Vui|2d,u—/ ViuZdp > —5/ uid. (6)
M M M
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Without loss of generality we can assume that [|u;[|yy12(5,) = 1. Then the sequence

{u;} lies on the unit sphere in the finite-dimensional space E. Hence, it has a con-
vergent (in W12 (M)-norm) subsequence. We can assume that the whole sequence
{ui} converges in £ to some u € E with [|u[[y12(,,) = 1. It remains to verify that u
satisfies the inequality (5). By construction we have

/|Vu@-|2d,u—>/ |Vu|*dp and /ufdu—>/ u?dy.
M M M M

Next we have

/Viu?d,u—/ VUQdM‘ < ‘/ (Viu? — Viu?) du‘+'/ (Viu* — Vu?) d,u‘
M M M M

Nl =l | | = vy,
M

IN

By construction we have ||u; —ul|;» — 0 as i — oo. Since u? € L' (M), the L™
weak convergence V; — V implies that

/ (Vi = V)u?dy — 0 as i — oo.
M

Hence, the inequality (5) follows from (6). O

Lemma 2.2. If N is large enough (depending on k and M ) then any solution V' of
(4) satisfies \i,(V) = 0.

Proof. Assume that Ag(V) > 0 and bring this to a contradiction. Consider the
family of potentials

Vi=(1—-1t)V +tN wheret € [0,1].

Since V; > V| we have by a well-known property of eigenvalues that \x(V;) < Ap (V).
By continuity we have, for small enough ¢, that Ax(V;) > 0. Clearly, we have also
|Vi] < N. Hence, V; satisfies the restriction of the problem (4), at least for small ¢.
If u{V < N} >0 then we have for all t > 0

/Vt>/V,
M M

which contradicts the maximality of V. Hence, we should have V' = N a.e.. However,
if N > A\ (—A) then Ay, (—A — N) < 0 and V = N cannot be a solution of (4).
This contradiction finishes the proof. O

3. PROOF OF THEOREM 1.1

The main part of the proof of Theorem 1.1 is contained in the following lemma.

Lemma 3.1. Let Vi be a mazimizer of the variational problem (4). Then Vi
satisfies the inequality

Viax > 0 a.e.on M
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3.1. Proof of Theorem 1.1 assuming Lemma 3.1. Choose N large enough, say

N > sup|V].
M

Set k = N(V) 41 so that \x(V) > 0. For the maximizer V., of (4) we have

/Vd,ug/ Vinax dji.
M M

On the other hand, since V. > 0, we have by [6]

n/2
N(Vmax) 2 L Vmax d,U/ .
p (M) N\ u

Ak(vmax> > 07

Also , we have

which implies

Hence, we obtain

n/2 n/2
N(V) Z N(Vmax) Z Lg_l (/ Vmax d#’) Z Lg_l (/ Vd,u) s
(M) M (M) M +

which was to be proved.

3.2. Some auxiliary results. Before we can prove Lemma 3.1, we need some
auxiliary lemmas. The following lemma can be found in [9].

Lemma 3.2. Let V (t,x) be a function on R x M such that, for anyt € R, V (¢,-) €
L (M) and 0,V (t,-) € L* (M). For any t € R, consider the Schridinger operator
Ly=—-A—=V(t,-) on M and denote by {\, (t)},—, the sequence of the eigenvalues
of Ly counted with multiplicities and arranged in increasing order. Let X\ be an
eigenvalue of Lo with multiplicity m; moreover, let

A= Nt (0) = oo = A (0.

Let Uy be the eigenspace of Lg that corresponds to the eigenvalue A and {uy, ..., Uy}
be an orthonormal basis in Uy. Set for alli,7 =1,....m

ov
= [ %
T Ju Ot

and denote by {a;};, the sequence of the eigenvalues of the matriz {Q};";_, counted
with multiplicities and arranged in increasing order. Then we have the following
asymptotic, for any i =1,....;m,

Miti(t) = Me1i(0) — tay +o(t) as t — 0.

wujdp.
t=0

The following lemma is multi-dimensional extension of [14, Lemmas 3.4,3.6].
Given a connected open subset () of M with smooth boundary, the Dirichlet problem
Au =0 mboxin )
uloo = f



SCHRODINGER EIGENVALUES 5

FIGURE 1.

has for any f € C' (092) a unique solution that can be represented in the form

u(y) = . Q(z,y) f (x)do (z)

for any y € Q, where @ (z,y) is the Poisson kernel of this problem and o is the
surface measure on 0. For any y € Q, the function ¢ (z) = @ (x,y) on I will be
called the Poisson kernel at the source y. Note that ¢ (x) is continuous, positive and

/ qdo = 1.
o0

Lemma 3.3. Let €2 be a connected open subset of M with smooth boundary and x
be a point in Q. Then, for any constant N > 1 there exists e = € (2, N, z¢) > 0 such
that for any measurable set E C Q) with

p(E) <e
and for any positive solution v € C? () of the inequality
Av+Wuv >0 in §, (7)
where
N i E|
w={ ) hate ®

the following inequality holds

v(xg) < / v qdo, 9)
o0
where q is the Poisson kernel of the Laplace operator at the source xg.

Proof. For any § > 0 denote by As the set of points in €2 at the distance < ¢ from
00 (see Fig. 1) and consider the potential Vj in §2 defined by

i N in Ag,
%—{ ~LinQ\ 4. (10)
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Since HV(;r || () €N be made sufficiently small by the choice of § > 0, the follow-
ing boundary value problem has a unique positive solution:

Aw + Vsw =0 in Q
{ w = f on 0f), (11)

for any positive continuous function f on 0f2. Denote by g5 (z), x € 92, the Poisson
kernel of (11) at the source zy. Letting 6 — 0, we obtain that the solution of (11)
converges to that of
{ Aw — %w =01in Q2
w = f on 0N.
Denoting by ¢ the Poisson kernel of (12) at the source xg, we obtain that gs \, qo
on 0f) as 0 \, 0 and, moreover, the convergence is uniform.

Let ¢ be the Poisson kernel of the Laplace operator A in €, as in the statement of
the theorem. Since any solution of (12) is strictly subharmonic in €2, we obtain that
go < q on 0N). In particular, there is a constant 1 > 0 depending only on Q, N, x,
such that

(12)

go < (1 —n)q on 0N.
Since the convergence g5 — ¢ is uniform on 02, we obtain that, for small enough ¢
(depending on Q, N, zy),
g5 < (1 —=n/2)q on OS2
Fix such §. Consequently, we obtain for the solution w of (11) that

w (xg) < (1 —n/2) ., fqdo. (13)

Note that the function W from (8) can be increased without violating (7). Define

a new potential Wy by
N in AsUFE
Ws = . ’ 14
0 {—% in 2\ A5\ E. (14)

Observe that, for any p > 1
HW;HZI?,P(Q) < NP (p(4s) +¢),

so that by the choice of € and further reducing 0 this norm can be made arbitrarily
small. By a well-known fact (see [13]), if || W'| L) 18 sufficiently small, then the
operator —A— Wj in Q with the Dirichlet boundary condition on 0 is positive
definite, provided p =n/2 for n > 2 and p > 1 for n = 2.
So, we can assume that the operator —A— Wy is positive definite. In particular,
the following boundary value problem
{Au+W5u:OinQ (15)
Ulgn = v
has a unique positive solution u. Comparing this with (7) and using the maximum
principle for the operator A+ Wj, we obtain u > v in 2. Since u = v on 052, the
required inequality (9) will follow if we prove that

u(xg) < /89 uqdo. (16)
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Set Q5 = Q\ As and prove that
supu < C udo, (17)
Qs o0

for some constant C' that depends on €2, N;d,n. By choosing ¢ and ¢ sufficiently
small, the norm ||[Ws||,, can be made arbitrarily small for any p. Hence, function u
satisfies the Harnack inequality

supu < C'/ udp (18)
Qs Qs

where C' depends on Q, N,6 (see [1], [7]). Let h be the solution of the following
boundary value problem

—Ah — Wgh = 195 in
h =0 on 0f).

where Q5 = Q\ As. Since ||[Ws||,, is bounded for any ¢, we obtain by the known a
priori estimates, that

Wl < C ol ooy

where p > 1 is arbitrary and C' depends on Q, N,d,p (see [10]). Choose p > n so
that by the Sobolev embedding

1Pller ) < CllIAllwen) -

Since 1o, [ () is uniformly bounded, we obtain by combining the above estimates
that

1hllcrgy < C,

with a constant C' depending on 2, N, d,n.
Multiplying the equation —Ah — Wsh = 1o, by u and integrating over 2, we

obtain
/udu: @uda§0/ udo
Qs o0 OV 0

which together with (18) implies (17).
Let w be the solution (11) with the boundary condition f = w, that is,

Aw + Vsw =0 in Q
w = u on Of).

Let us consider the difference
Y =u—w.
Clearly, we have in €

A + Vs = (Au+ Vsu) — (Aw + Vsw) = (Vs — Wi)u

and ¢ = 0 on 0f2. Denoting by Gy, the Green function of the operator —A — Vj in
Q) with the Dirichlet boundary condition, we obtain

w@w=AGMmmm%—%mwmmw.
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Since we are looking for an upper bound for ¢ (z(), we can restrict the integration
to the domain {Vs < W;s}. By (14) and (10) we have

{‘/(;S W(;}:(Q\A(;)H(AgUE):E\A(g: El

and, moreover, on £’ we have
1
W(;—V;;:N+N<2N,
whence it follows that

¢ (r0) < 2N . Gvy; (2o, y) u (y) du () -

Using (17) to estimate here u (y), we obtain

¢ (z9) <2NC (/,GV(; (zo,y) du (y)> /aQ udo

Since p(E') < e and the Green function Gy, (zo,-) is integrable, we see that
J3 Gv; (2, -) dp can be made arbitrarily small by choosing ¢ > 0 small enough.
Choose ¢ so small that

INC [ Gy (ao.9) du ) < n/2inf

which implies that

o) <n/2 [ uado.
o9
Since by (13)
wian) < (1=n/2) [ uado,
oN
we obtain
u () = ¢ (xg) + w (x) < / uqdo,
o0

which was to be proved. 0

Let Vinax be a solution of the problem (4). Denote by U the eigenspace of —A —
Vinax associated with the eigenvalue Ay (Viax) = 0 assuming that N is sufficiently
large.

Lemma 3.4. Fixz some ¢ > 0 and consider the set
F ={Va < —c}.

Then, for any Lebesgue point x € F', then there exists a mon-negative function
q € L™ (M) such that

(1) [yyadp=1;
(2) for any uw e U\ {0} we have

u? () </Mu2qdp. (19)



SCHRODINGER EIGENVALUES 9

Proof. Set V' = Viax. Any function u € U satisfies Au + Vu = 0, which implies by
a simple calculation that the function v = u? satisfies

Av+ 2V > 0.

Next, we apply Lemma 3.3 with W = 2V where instead of parameter N there we
will use N’ = max(2N, o). Choose r so small that

p(ENB(x,r) > (1—&)p(B(z,r),

where € = € (N’) is given in Lemma 3.3. Since W < 2N < N’ in B (z,r) and

" ({W > —Ni} ﬂB(x,r)) < W({W > -2 N B (z,7))

= n({V > —cpnB(z,1))
< ep(B(z,r)),

all the hypotheses of Lemma 3.3 in = B (x,r) are satisfied. Let ¢ be the function
from Lemma 3.3. Extending ¢ by setting ¢ = 0 outside B (x,r) we obtain (19). O
3.3. Proof of main Lemma 3.1. We can now prove Lemma 3.1, that is, that
Vimax = 0. Consider again the set
F = {Vmaz < _C}7
where ¢ > 0. We want to show that, for any ¢ > 0,
u(F) =0,

which will imply the claim. Assume the contrary, that is u(F) > 0 for some ¢ > 0.
Denote by Fp, the set of Lebesgue points of F. For any x € Fj, denote by ¢, the
function ¢ that is given by Lemma 3.4. For x ¢ Fj set ¢, = §,. Then z — ¢, is a
Markov kernel and, for all z € M and u € U

u? (r) < /Mquzd,u. (20)

Denote by M the set of all probability measures on M. Define on M a partial
order: vy = vy if and only if

/ u?dvy < / u?dvs, for all uw € U\ {0}. (21)
M M
Define vy € M by
1
dvg = ——=1p,d
O )

and measure v1 € M by

v = / qzdvg (2) .
M
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Since v (Fr) > 0, we obtain for any v € U \ {0} that

/MUQdyl = /M ( /M quxdu) dvy ()
/FL (/M u2qxdu) dv () + /M\FL (/M uqud,u) dvy (z)

> /F Lu2(x)dy0(x)+ / u? (z) dvg ()

M\Fy,

- /M w2dvy. (22)

In particular, we have vy < . Consider the following subset of M:

v

Mi={veM:vr=u}.

Let us prove that M, has a maximal element. By Zorn’s Lemma, it suffices to
show that any chain (=totally ordered subset) C of M; has an upper bound in
M;. It follows from dim U < oo that there exists an increasing sequence {v;}.-, of
elements of C such that, for all u € U,

lim [ w’dv; — sup / uldy.
oo M {veC} J M

The sequence {v, };-, of probability measures is w*-compact. Without loss of gener-
ality we can assume that this sequence is w*-convergent. It follows that the measure

ve = w'-limy; € M,
is an upper bound for C.
By Zorn’s Lemma, there exists a maximal element v in M;. Note that the
measure v can be alternatively constructed by using a standard balayage procedure

(see e.g. [3, Proposition 2.1, p. 250]). Consider first the measure v/ defined by
V' = [}, @dv (z). It follows from (20) that for any u € U

/Ule/, = / </ u2qxd,u) dv
M M \JM
> /quy,
M

that is, v/ = v, in particular, v/ € M. Since v is a maximal element in M, it
follows that v/ = v, which implies the identity

/M udy = /M ( /M quxdu> dv. (23)
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Now we can prove that v (FL) = 0. Assuming from the contrary that v (Fg) > 0,
we obtain, for any u € U\ {0}.

/MUQd” = /M ( /M quxdu) dv ()
/FL (/M quxdu) dv (x) + /M\FL </M uqudu> dv (z)

> /FL u? (x) dv (z) + / u? (z) dv (z)

M\Fy,

= /M uldy, (24)

which is a contradiction. Finally, it follows from (22) and v € M; that, for any

ue U\ {0},
/ uldyvg < / udv.
M M

Measure v can be approximated in w*-sense by measures with bounded densities
sitting in M \ Fp. Therefore, there exists a non-negative function ¢ € L™ (M) that
vanishes on F}, and such that
/ wdp =1
M

/u2g00dp</ wodp (25)
M M

1p,. Consider now the potential

v

and, for any v € U \ {0},

where ¢, = @

‘/t = Vmax + tSOo - t(,p

/V;Sd,u:/ Vmaxd,u
M M

Ae(Ve) = M (Vinax) — ta =+ o(2),

where « is the minimal eigenvalue of the quadratic form

Q () = /M (o — ) d

which by (25) is negative definite. Therefore, o < 0, which together with Ay (Vinax) =
0 implies that, for all small enough ¢ > 0
Ae(Ve) > 0.
Finally, let us show that |V;| < N a.e. Indeed, on F' we have
Vi<—c+tp, <N

We have for all ¢

and for t — 0

for small enough ¢ > 0, and on M \ F, we have
‘/%Svmax_t@gvmang
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Therefore, V' < N a.e. for small enough ¢ > 0. Similarly, we have on F},
‘/t Z Vmax + tSﬂo Z Vmax 2 _N

and on M \ F'
Viz—c—tp=>—-N
for small enough ¢ > 0, which implies that |V;| < N a.e. for small enough ¢ > 0.
Hence, we obtain that V; is a solution to our optimization problem (4), but it
satisfies A (V;) > 0, which contradicts the optimality of V; by Lemma 2.2.
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