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ALEXANDER GRIGOR’YAN, NIKOLAI NADIRASHVILI, AND YANNICK SIRE

Abstract. We prove a lower bound for the number of negative eigenvalues for a
Schödinger operator on a Riemannian manifold via the integral of the potential.

1. Introduction

Let (M, g) be a compact Riemannian manifold without boundary. Consider the
following eigenvalue problem on M :

− Δu − V u = λu, (1)

where Δ is the Laplace-Beltrami operator on M and V ∈ L∞ (M) is a given poten-
tial. It is well-known, that the operator −Δ−V has a discrete spectrum. Denote by
{λk(V )}∞k=1 the sequence of all its eigenvalues arranged in increasing order, where
the eigenvalues are counted with multiplicity.

Denote by N (V ) the number of negative eigenvalues of (1), that is,

N (V ) = card {k : λk(V ) < 0} .

It is well-known that N (V ) is finite. Upper bounds of N (V ) have received enough
attention in the literature, and for that we refer the reader to [2], [5], [12], [11], [15]
and references therein.

However, a little is known about lower estimates. Our main result is the following
theorem. We denote by μ the Riemannian measure on M .

Theorem 1.1. Set dim M = n. For any V ∈ L∞ (M) the following inequality is
true:

N (V ) ≥
C

μ (M)n/2−1

(∫

M

V dμ

)n/2

+

, (2)

where C > 0 is a constant that in the case n = 2 depends only on the genus of M
and in the case n > 2 depends only on the conformal class of M .

In the case V ≥ 0 the estimate (2) was proved in [6, Theorems 5.4 and Example
5.12]. Our main contribution is the proof of (2) for signed potentials V (as it was
conjectured in [6]), with the same constant C as in [6]. In fact, we reduce the case
of a signed V to the case of non-negative V by considering a certain variational
problem for V and by showing that the solution of this problem is non-negative.
The latter method originates from [14].
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In the case n = 2, inequality (2) takes the form

N (V ) ≥ C

∫

M

V dμ. (3)

For example, the estimate (3) can be used in the following situation. Let M be
a two-dimensional manifold embedded in R3 and the potential V be of the form
V = αK + βH where K is the Gauss curvature, H is the mean curvature, and α, β
are real constants (see [8], [4]). In this case (3) yields

N (V ) ≥ C (Ktotal + Htotal) ,

where Ktotal is the total Gauss curvature and Htotal is the total mean curvature. We
expect in the future many other applications of (2)-(3).

2. A variational problem

Fix positive integers k,N and consider the following optimization problem: find
V ∈ L∞ (M) such that

∫

M

V dμ → max under restrictions λk (V ) ≥ 0 and ‖V ‖L∞ ≤ N. (4)

Clearly, the functional V 7→
∫

M
V dμ is weakly continuous in L∞ (M). Since the

class of potentials V satisfying the restrictions in (4) is bounded in L∞ (M), it is
weakly precompact in L∞ (M). In fact, we prove in the next lemma that this class
is weakly compact, which will imply the existence of the solution of (4).

Lemma 2.1. The class

Ck,N = {V ∈ L∞ (M) : λk (V ) ≥ 0 and ‖V ‖L∞ ≤ N}

is weakly compact in L∞ (M). Consequently, the problem (4) has a solution V ∈
L∞(M).

Proof. It was already mentioned that the class Ck,N is weakly precompact in L∞ (M).
It remains to prove that it is weakly closed, that is, for any sequence {Vi} ⊂ Ck,N

that converges weakly in L∞, the limit V is also in Ck.N . The condition ‖V ‖L∞ ≤ N
is trivially satisfied by the limit potential, so all we need is to prove that λk (V ) ≥ 0.
Let us use the minmax principle in the following form:

λk (V ) = inf
E⊂W 1,2(M)

dim E=k

sup
u∈E\{0}

∫
M
|∇u|2 dμ −

∫
M

V u2dμ
∫

M
u2dμ

,

where E is a subspace of W 1,2 (M) of dimension k. The condition λk (V ) ≥ 0 is
equivalent then to the following:

∀E ⊂ W 1,2 (M) with dim E = k ∀ε > 0 ∃u ∈ E \ {0}

such that

∫

M

|∇u|2 dμ −
∫

M

V u2dμ ≥ −ε

∫

M

u2dμ.
(5)

Fix a subspace E ⊂ W 1,2 (M) of dimension k and some ε > 0. Since λk (Vi) ≥ 0, we
obtain that there exists ui ∈ E \ {0} such that

∫

M

|∇ui|
2 dμ −

∫

M

Viu
2
i dμ ≥ −ε

∫

M

u2
i dμ. (6)
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Without loss of generality we can assume that ‖ui‖W 1,2(M) = 1. Then the sequence

{ui} lies on the unit sphere in the finite-dimensional space E. Hence, it has a con-
vergent (in W 1,2 (M)-norm) subsequence. We can assume that the whole sequence
{ui} converges in E to some u ∈ E with ‖u‖W 1,2(M) = 1. It remains to verify that u

satisfies the inequality (5). By construction we have
∫

M

|∇ui|
2 dμ →

∫

M

|∇u|2 dμ and

∫

M

u2
i dμ →

∫

M

u2dμ.

Next we have
∣
∣
∣
∣

∫

M

Viu
2
i dμ −

∫

M

V u2dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

M

(
Viu

2
i − Viu

2
)
dμ

∣
∣
∣
∣+

∣
∣
∣
∣

∫

M

(
Viu

2 − V u2
)
dμ

∣
∣
∣
∣

≤ N ‖ui − u‖2
L2 +

∣
∣
∣
∣

∫

M

(Vi − V ) u2dμ

∣
∣
∣
∣ .

By construction we have ‖ui − u‖L2 → 0 as i → ∞. Since u2 ∈ L1 (M), the L∞

weak convergence Vi ⇀ V implies that
∫

M

(Vi − V ) u2dμ → 0 as i → ∞.

Hence, the inequality (5) follows from (6). �

Lemma 2.2. If N is large enough (depending on k and M) then any solution V of
(4) satisfies λk(V ) = 0.

Proof. Assume that λk(V ) > 0 and bring this to a contradiction. Consider the
family of potentials

Vt = (1 − t)V + tN where t ∈ [0, 1].

Since Vt ≥ V , we have by a well-known property of eigenvalues that λk(Vt) ≤ λk(V ).
By continuity we have, for small enough t, that λk(Vt) > 0. Clearly, we have also
|Vt| ≤ N . Hence, Vt satisfies the restriction of the problem (4), at least for small t.
If μ {V < N} > 0 then we have for all t > 0

∫

M

Vt >

∫

M

V,

which contradicts the maximality of V . Hence, we should have V = N a.e.. However,
if N > λk (−Δ) then λk (−Δ − N) < 0 and V ≡ N cannot be a solution of (4).
This contradiction finishes the proof. �

3. Proof of Theorem 1.1

The main part of the proof of Theorem 1.1 is contained in the following lemma.

Lemma 3.1. Let Vmax be a maximizer of the variational problem (4). Then Vmax

satisfies the inequality

Vmax ≥ 0 a.e. on M
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3.1. Proof of Theorem 1.1 assuming Lemma 3.1. Choose N large enough, say

N > sup
M

|V |.

Set k = N (V ) + 1 so that λk(V ) ≥ 0. For the maximizer Vmax of (4) we have
∫

M

V dμ ≤
∫

M

Vmax dμ.

On the other hand, since Vmax ≥ 0, we have by [6]

N (Vmax) ≥
C

μ (M)n/2−1

(∫

M

Vmax dμ

)n/2

.

Also , we have

λk(Vmax) ≥ 0,

which implies

N (Vmax) ≤ k − 1 = N (V ).

Hence, we obtain

N (V ) ≥ N (Vmax) ≥
C

μ (M)n/2−1

(∫

M

Vmax dμ

)n/2

≥
C

μ (M)n/2−1

(∫

M

V dμ

)n/2

+

,

which was to be proved.

3.2. Some auxiliary results. Before we can prove Lemma 3.1, we need some
auxiliary lemmas. The following lemma can be found in [9].

Lemma 3.2. Let V (t, x) be a function on R×M such that, for any t ∈ R, V (t, ∙) ∈
L∞ (M) and ∂tV (t, ∙) ∈ L∞ (M). For any t ∈ R, consider the Schrödinger operator
Lt = −Δ − V (t, ∙) on M and denote by {λk (t)}∞k=1 the sequence of the eigenvalues
of Lt counted with multiplicities and arranged in increasing order. Let λ be an
eigenvalue of L0 with multiplicity m; moreover, let

λ = λk+1 (0) = ... = λk+m (0) .

Let Uλ be the eigenspace of L0 that corresponds to the eigenvalue λ and {u1, ..., um}
be an orthonormal basis in Uλ. Set for all i, j = 1, ...,m

Qij =

∫

M

∂V

∂t

∣
∣
∣
∣
t=0

uiujdμ.

and denote by {αi}
m
i=1 the sequence of the eigenvalues of the matrix {Q}m

i,j=1 counted
with multiplicities and arranged in increasing order. Then we have the following
asymptotic, for any i = 1, ...,m,

λk+i(t) = λk+i(0) − tαi + o(t) as t → 0.

The following lemma is multi-dimensional extension of [14, Lemmas 3.4,3.6].
Given a connected open subset Ω of M with smooth boundary, the Dirichlet problem

{
Δu = 0 mboxin Ω
u|∂Ω = f
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Figure 1.

has for any f ∈ C (∂Ω) a unique solution that can be represented in the form

u (y) =

∫

∂Ω

Q (x, y) f (x) dσ (x)

for any y ∈ Ω, where Q (x, y) is the Poisson kernel of this problem and σ is the
surface measure on ∂Ω. For any y ∈ Ω, the function q (x) = Q (x, y) on ∂Ω will be
called the Poisson kernel at the source y. Note that q (x) is continuous, positive and

∫

∂Ω

qdσ = 1.

Lemma 3.3. Let Ω be a connected open subset of M with smooth boundary and x0

be a point in Ω. Then, for any constant N ≥ 1 there exists ε = ε (Ω, N, x0) > 0 such
that for any measurable set E ⊂ Ω with

μ (E) ≤ ε

and for any positive solution v ∈ C2 (Ω) of the inequality

Δv + Wv ≥ 0 in Ω, (7)

where

W =

{
N in E,
− 1

N
in Ω \ E,

(8)

the following inequality holds

v(x0) <

∫

∂Ω

v qdσ, (9)

where q is the Poisson kernel of the Laplace operator at the source x0.

Proof. For any δ > 0 denote by Aδ the set of points in Ω at the distance ≤ δ from
∂Ω (see Fig. 1) and consider the potential Vδ in Ω defined by

Vδ =

{
N in Aδ,
− 1

N
in Ω \ Aδ.

(10)
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Since
∥
∥V +

δ

∥
∥

Lp(Ω)
can be made sufficiently small by the choice of δ > 0, the follow-

ing boundary value problem has a unique positive solution:
{

Δw + Vδw = 0 in Ω
w = f on ∂Ω,

(11)

for any positive continuous function f on ∂Ω. Denote by qδ (x), x ∈ ∂Ω, the Poisson
kernel of (11) at the source x0. Letting δ → 0, we obtain that the solution of (11)
converges to that of {

Δw − 1
N

w = 0 in Ω
w = f on ∂Ω.

(12)

Denoting by q0 the Poisson kernel of (12) at the source x0, we obtain that qδ ↘ q0

on ∂Ω as δ ↘ 0 and, moreover, the convergence is uniform.
Let q be the Poisson kernel of the Laplace operator Δ in Ω, as in the statement of

the theorem. Since any solution of (12) is strictly subharmonic in Ω, we obtain that
q0 < q on ∂Ω. In particular, there is a constant η > 0 depending only on Ω, N, x0

such that

q0 < (1 − η) q on ∂Ω.

Since the convergence qδ → q is uniform on ∂Ω, we obtain that, for small enough δ
(depending on Ω, N, x0),

qδ < (1 − η/2) q on ∂Ω.

Fix such δ. Consequently, we obtain for the solution w of (11) that

w (x0) < (1 − η/2)

∫

∂Ω

fqdσ. (13)

Note that the function W from (8) can be increased without violating (7). Define
a new potential Wδ by

Wδ =

{
N in Aδ ∪ E,
− 1

N
in Ω \ Aδ \ E.

(14)

Observe that, for any p > 1
∥
∥W+

δ

∥
∥p

Lp(Ω)
≤ Np (μ (Aδ) + ε) ,

so that by the choice of ε and further reducing δ this norm can be made arbitrarily
small. By a well-known fact (see [13]), if

∥
∥W+

δ

∥
∥

Lp(Ω)
is sufficiently small, then the

operator −Δ−Wδ in Ω with the Dirichlet boundary condition on ∂Ω is positive
definite, provided p = n/2 for n > 2 and p > 1 for n = 2.

So, we can assume that the operator −Δ−Wδ is positive definite. In particular,
the following boundary value problem

{
Δu + Wδu = 0 in Ω
u|∂Ω = v

(15)

has a unique positive solution u. Comparing this with (7) and using the maximum
principle for the operator Δ+ Wδ, we obtain u ≥ v in Ω. Since u = v on ∂Ω, the
required inequality (9) will follow if we prove that

u (x0) <

∫

∂Ω

uqdσ. (16)
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Set Ωδ = Ω \ Aδ and prove that

sup
Ωδ

u ≤ C

∫

∂Ω

udσ, (17)

for some constant C that depends on Ω, N, δ, n. By choosing ε and δ sufficiently
small, the norm ‖Wδ‖Lp can be made arbitrarily small for any p. Hence, function u
satisfies the Harnack inequality

sup
Ωδ

u ≤ C

∫

Ωδ

udμ (18)

where C depends on Ω, N, δ (see [1], [7]). Let h be the solution of the following
boundary value problem

{
−Δh − Wδh = 1Ωδ

in Ω
h = 0 on ∂Ω.

where Ωδ = Ω \ Aδ. Since ‖Wδ‖Lq is bounded for any q, we obtain by the known a
priori estimates, that

‖h‖W 2,p(Ω) ≤ C ‖1Ωδ
‖Lp(Ω) ,

where p > 1 is arbitrary and C depends on Ω, N, δ, p (see [10]). Choose p > n so
that by the Sobolev embedding

‖h‖C1(Ω) ≤ C ‖h‖W 2,p(Ω) .

Since ‖1Ωδ
‖Lp(Ω) is uniformly bounded, we obtain by combining the above estimates

that

‖h‖C1(Ω) ≤ C,

with a constant C depending on Ω, N, δ, n.
Multiplying the equation −Δh − Wδh = 1Ωδ

by u and integrating over Ω, we
obtain ∫

Ωδ

udμ =

∫

∂Ω

∂h

∂ν
u dσ ≤ C

∫

∂Ω

udσ

which together with (18) implies (17).
Let w be the solution (11) with the boundary condition f = u, that is,

{
Δw + Vδw = 0 in Ω
w = u on ∂Ω.

Let us consider the difference

ϕ = u − w.

Clearly, we have in Ω

Δϕ + Vδϕ = (Δu + Vδu) − (Δw + Vδw) = (Vδ − Wδ)u

and ϕ = 0 on ∂Ω. Denoting by GVδ
the Green function of the operator −Δ − Vδ in

Ω with the Dirichlet boundary condition, we obtain

ϕ (x0) =

∫

Ω

GVδ
(x0, y) ( Wδ − Vδ) u (y) dμ (y) .
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Since we are looking for an upper bound for ϕ (x0), we can restrict the integration
to the domain {Vδ ≤ Wδ}. By (14) and (10) we have

{Vδ ≤ Wδ} = (Ω \ Aδ) ∩ (Aδ ∪ E) = E \ Aδ =: E ′

and, moreover, on E ′ we have

Wδ − Vδ = N +
1

N
< 2N,

whence it follows that

ϕ (x0) ≤ 2N

∫

E′

GVδ
(x0, y) u (y) dμ (y) .

Using (17) to estimate here u (y), we obtain

ϕ (x0) ≤ 2NC

(∫

E′

GVδ
(x0, y) dμ (y)

)∫

∂Ω

udσ

Since μ (E ′) ≤ ε and the Green function GVδ
(x0, ∙) is integrable, we see that∫

E′ GVδ
(x0, ∙) dμ can be made arbitrarily small by choosing ε > 0 small enough.

Choose ε so small that

2NC

∫

E′

GVδ
(x0, y) dμ (y) < η/2 inf

∂Ω
q,

which implies that

ϕ (x0) < η/2

∫

∂Ω

uqdσ.

Since by (13)

w (x0) < (1 − η/2)

∫

∂Ω

uqdσ,

we obtain

u (x0) = ϕ (x0) + w (x0) <

∫

∂Ω

uqdσ,

which was to be proved. �

Let Vmax be a solution of the problem (4). Denote by U the eigenspace of −Δ −
Vmax associated with the eigenvalue λk (Vmax) = 0 assuming that N is sufficiently
large.

Lemma 3.4. Fix some c > 0 and consider the set

F = {Vmax ≤ −c} .

Then, for any Lebesgue point x ∈ F , then there exists a non-negative function
q ∈ L∞ (M) such that

(1)
∫

M
q dμ = 1;

(2) for any u ∈ U \ {0} we have

u2(x) <

∫

M

u2q dμ. (19)
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Proof. Set V = Vmax. Any function u ∈ U satisfies Δu + V u = 0, which implies by
a simple calculation that the function v = u2 satisfies

Δv + 2V v ≥ 0.

Next, we apply Lemma 3.3 with W = 2V where instead of parameter N there we
will use N ′ = max(2N, 1

2c
). Choose r so small that

μ (F ∩ B (x, r)) > (1 − ε) μ (B (x, r)) ,

where ε = ε (N ′) is given in Lemma 3.3. Since W ≤ 2N ≤ N ′ in B (x, r) and

μ

({

W > −
1

N ′

}

∩ B (x, r)

)

≤ μ ({W > −2c} ∩ B (x, r))

= μ ({V > −c} ∩ B (x, r))

< εμ (B (x, r)) ,

all the hypotheses of Lemma 3.3 in Ω = B (x, r) are satisfied. Let q be the function
from Lemma 3.3. Extending q by setting q = 0 outside B (x, r) we obtain (19). �

3.3. Proof of main Lemma 3.1. We can now prove Lemma 3.1, that is, that
Vmax ≥ 0. Consider again the set

F = {Vmax ≤ −c} ,

where c > 0. We want to show that, for any c > 0,

μ(F ) = 0,

which will imply the claim. Assume the contrary, that is μ(F ) > 0 for some c > 0.
Denote by FL the set of Lebesgue points of F . For any x ∈ FL denote by qx the
function q that is given by Lemma 3.4. For x /∈ FL set qx = δx. Then x 7→ qx is a
Markov kernel and, for all x ∈ M and u ∈ U

u2 (x) ≤
∫

M

u2qxdμ. (20)

Denote by M the set of all probability measures on M . Define on M a partial
order: ν1 � ν2 if and only if

∫

M

u2dν1 ≤
∫

M

u2dν2 for all u ∈ U \ {0} . (21)

Define ν0 ∈ M by

dν0 =
1

μ (FL)
1FL

dμ

and measure ν1 ∈ M by

ν1 =

∫

M

qxdν0 (x) .
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Since ν0 (FL) > 0, we obtain for any u ∈ U \ {0} that

∫

M

u2dν1 =

∫

M

(∫

M

u2qxdμ

)

dν0 (x)

≥
∫

FL

(∫

M

u2qxdμ

)

dν0 (x) +

∫

M\FL

(∫

M

u2qxdμ

)

dν0 (x)

>

∫

FL

u2 (x) dν0 (x) +

∫

M\FL

u2 (x) dν0 (x)

=

∫

M

u2dν0. (22)

In particular, we have ν0 � ν1. Consider the following subset of M:

M1 = {ν ∈ M : ν � ν1} .

Let us prove that M1 has a maximal element. By Zorn’s Lemma, it suffices to
show that any chain (=totally ordered subset) C of M1 has an upper bound in
M1. It follows from dim U < ∞ that there exists an increasing sequence {νi}

∞
i=1 of

elements of C such that, for all u ∈ U ,

lim
i→∞

∫

M

u2dνi → sup
{ν∈C}

∫

M

u2dν.

The sequence {ν
i
}∞i=1 of probability measures is w∗-compact. Without loss of gener-

ality we can assume that this sequence is w∗-convergent. It follows that the measure

νC = w∗- lim νi ∈ M1

is an upper bound for C.
By Zorn’s Lemma, there exists a maximal element ν in M1. Note that the

measure ν can be alternatively constructed by using a standard balayage procedure
(see e.g. [3, Proposition 2.1, p. 250]). Consider first the measure ν ′ defined by
ν ′ =

∫
M

qxdν (x). It follows from (20) that for any u ∈ U

∫

M

u2dν ′ =

∫

M

(∫

M

u2qxdμ

)

dν

≥
∫

M

u2dν,

that is, ν ′ � ν, in particular, ν ′ ∈ M1. Since ν is a maximal element in M1, it
follows that ν ′ = ν, which implies the identity

∫

M

u2dν =

∫

M

(∫

M

u2qxdμ

)

dν. (23)
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Now we can prove that ν (FL) = 0. Assuming from the contrary that ν (FL) > 0,
we obtain, for any u ∈ U \ {0}.

∫

M

u2dν =

∫

M

(∫

M

u2qxdμ

)

dν (x)

≥
∫

FL

(∫

M

u2qxdμ

)

dν (x) +

∫

M\FL

(∫

M

u2qxdμ

)

dν (x)

>

∫

FL

u2 (x) dν (x) +

∫

M\FL

u2 (x) dν (x)

=

∫

M

u2dν, (24)

which is a contradiction. Finally, it follows from (22) and ν ∈ M1 that, for any
u ∈ U \ {0}, ∫

M

u2dν0 <

∫

M

u2dν.

Measure ν can be approximated in w∗-sense by measures with bounded densities
sitting in M \ FL. Therefore, there exists a non-negative function ϕ ∈ L∞ (M) that
vanishes on FL and such that ∫

M

ϕdμ = 1

and, for any u ∈ U \ {0},
∫

M

u2ϕ0dμ <

∫

M

u2ϕdμ (25)

where ϕ0 = 1
μ(FL)

1FL
. Consider now the potential

Vt = Vmax + tϕ0 − tϕ.

We have for all t ∫

M

Vtdμ =

∫

M

Vmaxdμ

and for t → 0

λk(Vt) = λk(Vmax) − tα + o(t),

where α is the minimal eigenvalue of the quadratic form

Q (u, u) =

∫

M

u2 (ϕ0 − ϕ) dμ,

which by (25) is negative definite. Therefore, α < 0, which together with λk (Vmax) =
0 implies that, for all small enough t > 0

λk(Vt) > 0.

Finally, let us show that |Vt| ≤ N a.e. Indeed, on F we have

Vt ≤ −c + tϕ0 < N

for small enough t > 0, and on M \ FL we have

Vt ≤ Vmax − tϕ ≤ Vmax ≤ N.
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Therefore, V ≤ N a.e. for small enough t > 0. Similarly, we have on FL

Vt ≥ Vmax + tϕ0 ≥ Vmax ≥ −N

and on M \ F
Vt ≥ −c − tϕ ≥ −N

for small enough t > 0, which implies that |Vt| ≤ N a.e. for small enough t > 0.
Hence, we obtain that Vt is a solution to our optimization problem (4), but it

satisfies λk(Vt) > 0, which contradicts the optimality of Vt by Lemma 2.2.
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