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1 Upper estimate in Rn, n ≥ 3

1.1 Introduction and statement

Given a non-negative L1
loc function V (x) on Rn, consider the Schrödinger

type operator
HV = −Δ − V

where Δ =
∑n

k=1
∂2

∂x2
k

is the classical Laplace operator. More precisely,

HV is defined as a form sum of −Δ and −V , so that, under certain
assumptions about V , the operator HV is self-adjoint in L2 (Rn).

Denote by Neg (HV ) the number of negative eigenvalues of HV (counted
with multiplicity), assuming that its spectrum in (−∞, 0) is discrete. For
example, the latter is the case when V (x) → 0 as x → ∞. We are are
interested in obtaining estimates of Neg (HV ) in terms of the potential
V .

Suppose that −V is an attractive potential field in quantum mechan-
ics. Then HV is the Hamiltonian of a particle that moves in this field,
and the negative eigenvalues of HV correspond to so called bound states
of the particle, that is, the negative energy levels Ek that are inside a
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potential well.

 

x 

-V(x) 

Ek 

0 

Hence, Neg (HV ) determines the number of bound states of the sys-
tem. In particular, if −V is the potential field of an electron in an atom,
then Neg (HV ) is the maximal number of possible electron orbits in the
atom.

Estimates of Neg (HV ), especially upper bounds, are of paramount
importance for quantum mechanics.

2



We start with a famous theorem of Cwikel-Lieb-Rozenblum.

Theorem 1.1 Assume n ≥ 3 and V ∈ Ln/2 (Rn). Then HV can be
defined as a self-adjoint operator, its negative spectrum is discrete, and
the following estimate is true

Neg (HV ) ≤ Cn

∫

Rn

V (x)n/2 dx. (1.1)

This estimate was proved independently by the above named authors
in 1972-1977. Later Lieb used (1.1) to prove the stability of the matter
in the framework of quantum mechanics.

The estimate (1.1) implies that, for a large parameter α,

Neg (αV ) = O
(
αn/2

)
as α → ∞. (1.2)

This is a so called semi-classical asymptotic (that corresponds to letting
~ → 0), and it is expected from another consideration that Neg (αV )
should behave as αn/2, at least for a reasonable class of potentials.
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1.2 Counting function

Before the proof of Theorem 1.1, let us give an exact definition of the
operator HV and its counting function. Given a potential V in Rn, that
is, a non-negative function from L1

loc (Rn), define the bilinear energy form
by

EV (f, g) =

∫

Rn

∇f ∙ ∇gdx −
∫

Rn

V fgdx

for all f, g ∈ D := C∞
0 (Rn) , and the corresponding quadratic form

EV (f) := EV (f, f) .
For any open set Ω ⊂ Rn, we consider a restriction of EV to DΩ :=

C∞
0 (Ω) . The form (EV ,DΩ) is called closable in L2 (Ω) if

1. it is semi-bounded below, that is, for some constant K ≥ 0,

EV (f) ≥ −K ‖f‖2
2 for all f ∈ DΩ;

2. and, for any sequence {fn} ⊂ DΩ,

‖fn‖2 → 0 and EV (fn − fm) → 0 =⇒ EV (fn) → 0.
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A closable form (EV ,DΩ) has a unique extension to a subspace FV,Ω

of L2 (Ω) so that FV,Ω is a Hilbert space with respect to the inner product

(f, g)E := EV (f, g) + (K + 1) (f, g) , (1.3)

(that is, (EV ,FV,Ω) is closed) and DΩ is dense in FV,Ω.
Being a closed form, (EV ,FV,Ω) has the generator HV,Ω that can be

defined as an (unbounded) operator in L2 (Ω) with a maximal possible
domain dom (HV,Ω) ⊂ FV,Ω such that

EV (f, g) = (HV,Ωf, g) ∀f ∈ dom(HV,Ω) and g ∈ FV,Ω. (1.4)

Then HV,Ω is a self-adjoint operator in L2 (Ω) .
For example, for f, g ∈ DΩ we have

EV (f, g) =

∫

Ω

∇f ∙ ∇gdx −
∫

Ω

V fgdx =

∫

Ω

(−Δf − V f) gdx

so that
HV,Ωf = −Δf − V f.
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Since the operator HV,Ω is self-adjoint, the spectrum of HV,Ω is real
and semi-bounded below. The counting function Nλ of HV,Ω is defined
by

Nλ (HV,Ω) = dim Im 1(−∞,λ) (HV,Ω) , (1.5)

where 1(−∞,λ) (HV,Ω) is the spectral projector of HV,Ω of the interval
(−∞, λ). For example, if the spectrum of HV,Ω is discrete and {ϕk}
is an orthonormal basis of eigenfunctions with eigenvalues {λk} then
1(−∞,λ) (HV,Ω) is the projection on the subspace of L2 (Ω) spanned by all
ϕk with λk < λ. It follows that Nλ (HV,Ω) is the number of eigenvalues
λk < λ counted with multiplicity. The definition (1.5) has advantage
that it always makes sense.

Lemma 1.2 The following identity is true for all real λ:

Nλ (HV,Ω) = sup
{
dimV : V ≺ DΩ and EV (f) < λ ‖f‖2

2 ∀f ∈ V \ {0}
}

,
(1.6)

where V ≺ DΩ means that V is a subspace of DΩ. In fact, it suffices to
restrict sup to finite dimensional subspaces V.
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For example, if the spectrum of HV,Ω is discrete and {ϕk} is an or-
thonormal basis of eigenfunctions with eigenvalues {λk} then the condi-
tion EV (f) < λ ‖f‖2

2 is satisfied exactly for f = ϕk provided λk < λ,
because

EV (ϕk) = (HV,Ωϕk, ϕk) = λk (ϕk, ϕk) < λ ‖ϕk‖
2
2 .

The optimal space V in (1.7) is spanned by all {ϕk} with λk < λ, and its
dimension is equal to Nλ (HV,Ω) .

There is also a version of counting function with non-strict inequality:

N ∗
λ (HV,Ω) = dim Im 1(−∞,λ] (HV,Ω) .

Then the following identity is true:

N ∗
λ (HV,Ω) = sup {dimV : V ≺ FV,Ω and EV [f ] ≤ λμ [f ] ∀f ∈ V} .

(1.7)
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1.3 Reduction to operator 1
V Δ

For the sake of proof of Theorem 1.1, we will assume that V > 0 and,
moreover, 1

V
∈ L1

loc (Rn) . Then by approximation argument one can han-
dle a general case. Set HV ≡ HV,Rn . Our aim is to prove the upper bound

N0 (HV ) ≤ Cn

∫

Rn

V n/2dx

for the number N0 (HV ) of negative eigenvalues. By an approximation
argument the same estimate will hold for the number N ∗

0 (HV ) of non-
positive eigenvalues.

For λ = 0 the identity (1.6) becomes

N0 (HV,Ω) = sup {dimV : V ≺ DΩ and EV (f) < 0 ∀f ∈ V \ {0}} . (1.8)

The condition EV (f) < 0 here is equivalent to

∫

Ω

|∇f |2 dx −
∫

Ω

V f 2dx < 0 (1.9)

for all non-zero f ∈ V where V is a subspace of DΩ.
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We will interpret this inequality in terms of the counting function of
another operator. Consider a new measure μ defined by

dμ = V (x) dx

and the energy form

E (f) =

∫

Rn

|∇f |2 dx

for f ∈ DΩ. Then (1.9) can be rewritten in the form E (f) < ‖f‖2
2,μ so

that

N0 (HV,Ω) = sup
{

dimV : V ≺ DΩ and E (f) < ‖f‖2
2,μ ∀f ∈ V \ {0}

}
.

(1.10)
The right hand side here is the counting function of another operator.
Indeed, denoted by LV,Ω the generator of the energy form (E ,DΩ) in
L2 (Ω, μ). This form can be shown to be closable, so that its generator
LV,Ω is a self-adjoint operator in L2 (Ω, μ). Note also that this operator
is positive definite because so is E .

By definition, we have, for all f, g ∈ dom (LV,Ω),

E (f, g) = (LV,Ωf, g)μ .
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In particular, for f, g ∈ DΩ this implies

−
∫

Ω

(Δf) gdx =

∫

Ω

∇f ∙ ∇g dx =

∫

Ω

(LV,Ωf) gV dx,

whence LV,Ωf = − 1
V

Δf that is, LV,Ω = − 1
V

Δ.
The counting function Nλ (LV,Ω) of the operator LV,Ω is defined ex-

actly as for HV,Ω. Lemma 1.2 for this operator means that

Nλ (LV,Ω) = sup
{

dimV : V ≺ DΩ and E (f) < λ ‖f‖2
2,μ ∀f ∈ V \ {0}

}
.

(1.11)
For λ = 1 the right hand side of (1.11) coincides with that of (1.10),
which implies

N0 (HV,Ω) = N1 (LV,Ω) . (1.12)

In particular, for the case Ω = Rn, we have N0 (HV ) = N1 (LV ) . The
identity (1.12) is called Birman-Schwinger principle.

Informally the identity (1.12) reflects the equivalence of the inequal-
ities −Δ − V ≤ 0 and − 1

V
Δ ≤ 1 that are understood in the sense of

quadratic forms.
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1.4 Case of small V

Here we illustrate the usage of (1.12) by proving a particular case of
Theorem 1.1 as follows.

Proposition 1.3 If n ≥ 3 then there is a constant cn > 0 such that

∫

Rn

V n/2dx < cn ⇒ N0 (HV ) = 0.

Proof. By (1.12) we need to prove that the spectrum of LV below 1
is empty, that is,

inf specLV ≥ 1.

This is equivalent to the claim that the operator LV in L2 (Rn, μ) is
invertible and ∥

∥L−1
V

∥
∥ ≤ 1.

The inverse operator is defined by

L−1
V f = u ⇔ LV u = f,
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where f ∈ L2 (Rn, μ) and u ∈ dom (LV ) . Hence, it suffices to prove that

LV u = f ⇒ ‖u‖2,μ ≤ ‖f‖2,μ .

Multiplying LV u = f by u and integrating against μ, we obtain

E (u) = (LV u, u)μ = (f, u)μ

that is, ∫

Rn

|∇u|2 dx =

∫

Rn

ufdμ.

By Sobolev inequality, we have

∫

Rn

|∇u|2 dx ≥ cn

(∫

Rn

|u|
2n

n−2 dx

)n−2
n

.

Note that this is the only place where n > 2 is used.
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Using the Hölder inequality and the above lines, we obtain

∫

Rn

u2V dx ≤

(∫

Rn

|u|2
n

n−2 dx

)n−2
n
(∫

Rn

V
n
2 dx

) 2
n

≤ c−1
n

(∫

Rn

|∇u|2 dx

)(∫

Rn

V
n
2 dx

) 2
n

(1.13)

= c−1
n

(∫

Rn

ufdμ

)(∫

Rn

V
n
2 dx

) 2
n

≤ c−1
n

(∫

Rn

f 2dμ

)1/2(∫

Rn

u2dμ

)1/2(∫

Rn

V
n
2 dx

) 2
n

whence

‖u‖2,μ ≤ c−1
n

(∫

Rn

V
n
2 dx

) 2
n

‖f‖2,μ .

Clearly, if
∫
Rn V

n
2 dx small enough then ‖u‖2,μ ≤ ‖f‖2,μ, which was to be

proved.
The argument in the proof of Proposition 1.3 allows to prove another

part of Theorem 1.1.
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Proposition 1.4 If V ∈ Ln/2 (Rn) then the form (EV ,D) is closable.
Consequently, the operator HV is defined as a self-adjoint operator in
L2 (Rn) .

Proof. It follows from the hypothesis that, for any ε > 0, V can be
split to a sum of two potentials V = V1 + V2 where

‖V1‖n/2 ≤ ε and V2 ∈ L∞.

It follows from (1.13) that

E (u) ≥ cn

(∫

Rn

V
n/2
1 dx

)−2/n ∫

Rn

u2V1dx ≥ cnε−1

∫

Rn

u2V1dx.

Choosing ε sufficiently small, we obtain cnε−1 ≥ 2 whence

∫

Rn

u2V dx =

∫

Rn

u2V1dx +

∫

Rn

u2V2dx

≤
1

2
E (u) + K ‖u‖2

2 , (1.14)
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where K = ‖V2‖L∞ . In particular, we see that

EV (u) = E (u) −
∫

Rn

u2V dx ≥ −K ‖u‖2
2

so that the form EV is semi-bounded below. By a standard result from
the theory of quadratic forms, (1.14) implies that the form EV is closed
in the domain W 1,2 (Rn), which finishes the proof.
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1.5 Proof of Theorem 1.1 in general case

The proof below is due to Li and Yau ’83 but it is presented here from
somewhat different angle.

In a precompact domain Ω the operator LV,Ω has discrete positive
spectrum. Denote its eigenvalues by λk (Ω), where k = 1, 2, ..., so that
the sequence {λk (Ω)} is increasing, and each eigenvalue is counted with
multiplicity. The main part of the proof of Theorem 1.1 is contained in
the following statement.

Theorem 1.5 (AG, Yau 2003) Assume that there is a Radon measure
ν in Rn and α > 0 such that, for all precompact open sets Ω,

λ1 (Ω) ≥ ν (Ω)−α . (1.15)

Then, for any positive integer k and any precompact open set Ω,

λk (Ω) ≥ c

(
k

ν (Ω)

)α

, (1.16)

where c = c (α) > 0.
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For example, if V = 1 then LV,Ω is the Laplace operator −Δ with the
Dirichlet boundary condition on ∂Ω. The hypothesis (1.15) is satisfies if
ν is a multiple of the Lebesgue measure as by the Faber-Krahn inequality

λ1 (Ω) ≥ cn (vol Ω)−2/n .

Then (1.16) becomes

λk (Ω) ≥ c′n

(
k

vol Ω

)2/n

,

that is also known to be true. Moreover, it matches the Weyl’s asymptotic

formula λk (Ω) ∼ c̃n

(
k

vol Ω

)2/n
as k → ∞.

The point of Theorem 1.5 is that V in the definition of LV,Ω can
be arbitrary and measure ν can be arbitrary. By the way, there is no
restriction of the dimension n in Theorem 1.5. Moreover, exactly in this
form it is true on any Riemannian manifold instead of Rn.

Let us show how Theorem 1.5 implies Theorem 1.1. Let us use the
variational principle:

λ1 (Ω) = inf
u∈DΩ

(LV,Ωu, u)μ

(u, u)μ

= inf
u∈DΩ

E (u)

(u, u)μ

.
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Using again the Sobolev inequality

∫

Ω

|∇u|2 dx ≥ cn

(∫

Ω

|u|
2n

n−2 dx

)n−2
n

and the Hölder inequality

(u, u)μ =

∫

Ω

u2V dx ≤

(∫

Ω

|u|
2n

n−2 dx

)n−2
n
(∫

Ω

V n/2dx

) 2
n

,

we obtain
E (u)

(u, u)μ

≥ cn

(∫

Ω

V n/2dx

)− 2
n

.

Hence, setting dν = c
−n/2
n V n/2dx and minimizing in u, we obtain

λ1 (Ω) ≥ ν (Ω)−2/n .

By Theorem 1.5, we conclude that

λk (Ω) ≥ c

(
k

ν (Ω)

)2/n

. (1.17)
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We need to estimate the counting function

N1 (LV,Ω) = # {k : λk (Ω) < 1} .

By (1.17), λk (Ω) < 1 implies k ≤ Cν (Ω) whence also

N1 (LV,Ω) ≤ Cν (Ω) = C

∫

Ω

V n/2dx.

It follows by (1.12) that also

N0 (HV,Ω) ≤ C

∫

Ω

V n/2dx ≤ C

∫

Rn

V n/2dx. (1.18)

We are left to pass from HV,Ω to HV,Rn . Recall that

N0 (HV,Rn) = sup {dimV : V ≺ DRn , EV (f) < 0 ∀f ∈ V \ {0}} ,

where V is a finite-dimensional subspace of DRn . For any such V there
exists a precompact open set Ω containing supp f for all f ∈ V (for it
suffices to have supp f ⊂ V for the elements of a basis of V). Hence,
V ≺ DΩ and by (1.18) dimV ≤ C

∫
Rn V n/2dx, whence the same estimate

for N0 (HV,Rn) follows. �
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Brief summary

We prove the following theorem.

Theorem 1.1. If V is a non-negative potential in Rn with n ≥ 3 then
for the operator HV = −Δ − V ,

N0 (HV ) ≤ Cn

∫

Rn

V (x)n/2 dx. (1.1)

This was reduced to the following theorem.

Theorem 1.5. For any bounded domain Ω ⊂ Rn, denote by λk (Ω) the
k-th eigenvalue of the operator LV,Ω = − 1

V
Δ (with the Dirichlet boundary

condition on ∂Ω). Assume that there is a Radon measure ν in Rn and
α > 0 such that, for all bounded domains Ω,

λ1 (Ω) ≥ ν (Ω)−α . (1.15)

Then, for any positive integer k and any precompact open set Ω,

λk (Ω) ≥ c

(
k

ν (Ω)

)α

, (1.16)

where c = c (α) > 0.
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1.6 Nash inequality

For the proof of Theorem 1.5 we need a Nash type inequality.

Lemma 1.6 Assume that (1.15) holds, that is, for all precompact open
sets Ω,

λ1(Ω) ≥ ν(Ω)−α.

Then, for all such Ω and non-negative f ∈ DΩ,

E (f) ≥ c

(∫

Ω

f 2dμ

)1+α(∫

Ω

fdμ

∫

Ω

fdν

)−α

, (1.19)

where c = 2−2α−1.

Remark. If V ≡ 1 then both μ and ν are Lebesgue measures, α = 2/n,
and (1.19) becomes

E (f) ≥ ‖f‖2+4/n
2 ‖f‖−4/n

1 ,

which is a classical Nash inequality.
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Proof. Fix s > 0 and observe that

E
(
(f − s)+

)
≤ E (f) . (1.20)

Set
Ωs := {x ∈ Ω : f(x) > s}

and note that supp (f − s)+ ⊂ Ωs ⊂ Ω.

 

s 

0 

Ω 

f 

Ωs 

(f-s)+ 
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It follows from the variational property of λ1(Ωs) and from (1.20),
that
∫

Ω

(f − s)2
+ dμ =

∫

Ωs

(f − s)2
+ dμ ≤

E
(
(f − s)+

)

λ1(Ωs)
≤

E (f)

λ1(Ωs)
. (1.21)

Since

ν (Ωs) ≤
1

s

∫

Ω

fdν

we obtain by hypothesis

1

λ1 (Ωs)
≤ ν (Ωs)

α ≤ s−α

(∫

Ω

fdν

)a

.

Substituting into (1.21) and using

f 2 − 2sf ≤ (f − s)2
+ ,

we obtain
∫

Ω

f 2dμ − 2s

∫

Ω

fdμ ≤ s−α

(∫

Ω

fdν

)α

E (f) . (1.22)
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Let us choose s from the condition

2s

∫

Ω

fdμ =
1

2

∫

Ω

f 2dμ.

With this s we obtain

1

2

∫

Ω

f 2dμ ≤

(
1

4

∫
Ω

f 2dμ
∫

Ω
fdμ

)−α(∫

Ω

fdν

)α

E (f)

whence

(∫

Ω

f 2dμ

)1+α

≤ 22α+1

(∫

Ω

fdμ

)α(∫

Ω

fdν

)α

E (f) ,

and (1.19) follows.
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1.7 Proof of Theorem 1.5

In the proof we work with the heat semigroup {Pt}t≥0 of the operator
LV,Ω, that is defined by

PΩ
t = e−tLV,Ω .

Since LV,Ω is a self-adjoint non-negative definite operator in L2 (Ω, μ), the
operator PΩ

t is bounded self-adjoint operator in L2 (Ω, μ) for any t ≥ 0.
In fact, it is an integral operator:

PΩ
t f (x) =

∫

Ω

pΩ
t (x, y) f (y) dμ (y)

where pΩ
t (x, y) is the heat kernel of LV,Ω. We will use the following general

properties of the heat kernel:

1. positivity: pt (x, y) ≥ 0;

2. the symmetry: pΩ
t (x, y) = pΩ

t (y, x) ;

3. the semigroup identity
∫

Ω

pΩ
t (x, z) pΩ

s (z, y) dμ (z) = pΩ
t+s (x, y) ;
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4. the total mass inequality:
∫

Ω

pΩ
t (x, y) dμ (y) ≤ 1.

The last step before the proof of Theorem 1.5 is the following lemma.

Lemma 1.7 If (1.15) holds, that is, λ1 (Ω) ≥ ν (Ω)−α, then, for any
precompact open set Ω,

∫

Ω

pΩ
t (x, x) dμ (x) ≤

Cν (Ω)

t1/α
. (1.23)

where C = C (α).

Proof. Fix s > 0, x ∈ Ω and consider a function

f = pΩ
s (x, ∙)

and set ut = PΩ
t f , that is,

ut (y) =

∫

Ω

pΩ
t (y, z) f (z) dμ (z) = pΩ

t+s (x, y) .
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Then we have
∫

Ω

u2
t dμ =

∫

Ω

pΩ
t+s(x, y)pΩ

t+s (y, x) dμ(y) = pΩ
2(t+s) (x, x) .

On the other hand, by the Nash inequality we have

∫

Ω

u2
t dμ ≤

(∫

Ω

utdμ

∫

Ω

utdν

) α
α+1

[CE (ut)]
1

α+1 .

Using ∫

Ω

utdμ =

∫

Ω

pΩ
t+s (x, y) dμ (y) ≤ 1, (1.24)

and

E (ut) = (LV,Ωut, ut)μ = −

(
d

dt
ut, ut

)

μ

= −
1

2

d

dt
(ut, ut)μ

we obtain

∫

Ω

u2
t dμ ≤

(∫

Ω

utdν

) α
α+1
[

−
C

2

d

dt

∫

Ω

u2
t dμ

] 1
α+1

.
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Recall that ut depends in fact on x. Setting

vt (x) :=

∫

Ω

u2
t dμ = pΩ

2(t+s) (x, x) ,

rewrite the previous inequality in the form

vt(x) ≤

(∫

Ω

utdν

) α
α+1
[

−
C

2

∂vt

∂t

] 1
α+1

. (1.25)

Integrating (1.25) against dμ(x) and using the Hölder inequality

∫
F

α
α+1 G

1
α+1 dμ ≤

[∫
Fdμ

] α
α+1
[∫

Gdμ

] 1
α+1

,

we obtain
∫

Ω

vt (x) dμ (x) ≤
∫ [∫

utdν

]

︸ ︷︷ ︸
F

α
α+1
[

−
C

2

∂vt

∂t

]

︸ ︷︷ ︸
G

1
α+1

dμ(x)

≤

[∫ ∫
utdνdμ(x)

] α
α+1
[

−
C

2

∫
∂vt

∂t
dμ(x)

] 1
α+1

.
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Observe that (1.24) implies
∫ ∫

ut(x, ∙)dνdμ(x) =

∫ (∫
ut(x, ∙)dμ(x)

)

dν ≤
∫

Ω

dν = ν(Ω).

(1.26)
Denoting

w (t) :=

∫

Ω

vt (x) dμ (x) =

∫

Ω

pΩ
2(t+s) (x, x) μ (x) ,

we obtain from above

w(t) ≤ ν(Ω)
α

α+1

(

−
C

2

dw

dt

) 1
α+1

. (1.27)

Solving this differential inequality by separation of variables, we obtain

w(t) ≤
C ′ν (Ω)

t1/α
.

Finally, choosing s = t we obtain

∫

Ω

pΩ
4t (x, x) μ (x) ≤

C ′ν (Ω)

t1/α
, which was

to be proved.
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Proof of Theorem 1.5. We need to show that

λk (Ω) ≥ c

(
k

ν (Ω)

)α

.

Note that ∫

Ω

pΩ
t (x, x) dμ (x) = trace PΩ

t .

On the other hand, all the eigenvalues of PΩ
t are equal to e−tλk(Ω), whence

trace PΩ
t =

∞∑

k=1

e−tλk(Ω).

Hence, applying (1.23), we obtain

∞∑

k=1

e−tλk(Ω) ≤
Cν (Ω)

t1/α
.

Restricting the summation to the first k terms, we obtain

ke−tλk(Ω) ≤
Cν (Ω)

t1/α
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whence

λk (Ω) ≥
1

t
ln

kt1/α

Cν (Ω)
.

Choosing t from the condition

kt1/α

Cν (Ω)
= e,

that is,

t =

(

Ce
ν (Ω)

k

)α

,

we obtain

λk (Ω) ≥
1

t
=

(
1

Ce

k

ν (Ω)

)α

,

which finishes the proof of Theorem 1.5.
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1.8 Minimal surfaces

Let M be a two-dimensional manifold immersed in R3 as an oriented min-
imal surface. The Riemannian metric on M is induced by the Euclidean
structure of R3. Denote by α the Riemannian area on M .

For any function f ∈ C∞
0 (M) and a real parameter ε, consider a

deformation of M given by the mapping x 7→ x+εf(x)ν(x) where ν (x) is
the unit normal vector field on M compatible with the orientation. Since
M is a minimal surface, the first variation δα(f) of the area functional
vanishes. For the second variation, the following formula is known:

δ2α(f) =

∫

M

(|∇f |2 + 2Kf 2)dα , (1.28)

where K = K(x) is the Gauss curvature of M at the point x ∈ M (since
M is minimal, K(x) ≤ 0). If δ2α(f) ≥ 0 for all f then the minimal
surface M is called stable. In particular, all area minimizers are stable.

However, in general a minimal surface is not necessarily stable. By
definition, the stability index ind(M) is the maximal dimension of a linear
subspace V of C∞

0 (M) such that δ2α(f) < 0 for any f ∈ V \ {0}.
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In other words,
ind(M) = N0 (HV )

where HV = −Δ + 2K and Δ is the Laplace-Beltrami operator on M .
It turns out that for this specific potential V = −2K the upper bound

of Theorem 1.1 is satisfied.

Theorem 1.8 (AG, Yau 2003) For any immersed oriented minimal sur-
face M in R3, we have

ind(M) ≤ C

∫

M

|K| dα, (1.29)

where C is an absolute constant.

The proof goes in the same way as the one of Theorem 1.1 using
Theorem 1.5. Using specific properties of Gauss curvature, we prove for
the operator LV,Ω = − 1

V
Δ in Ω ⊂ M the eigenvalue estimate

λ1 (Ω) ≥ cμ (Ω)−1 ,
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where dμ = |K| dα. By Theorem 1.5 this implies

λk (Ω) ≥ c′
k

μ (Ω)

and then as in the proof of Theorem 1.1,

N0 (HV ) ≤ Cμ (M)

that is (1.29).
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2 Lower estimates in R2

Here we estimate N0 (HV ) in R2.

2.1 A counterexample to the upper bound

In the case n = 2, the estimate (1.1) of Theorem 1.1 becomes

N0 (HV ) ≤ C

∫

R2

V (x) dx,

which however is wrong. To see that, consider in R2 the potential

V (x) =
1

|x|2 ln2 |x|
if |x| > e

and V (x) = 0 if |x| ≤ e. For this V we have

∫

R2

V (x) dx < ∞,
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whereas Neg (HV ) = ∞. Indeed, consider the function

f (x) =
√

ln |x| sin

(
1

2
ln ln |x|

)

that satisfies in the region {|x| > e} the differential equation

Δf +
1

2
V (x) f = 0.

For any positive integer k, function f has constant sign in the ring

Ωk :=

{

x ∈ R2 : πk <
1

2
ln ln |x| < π (k + 1)

}

,

and vanishes on ∂Ωk. For each function fk = f1Ωk
we have

EV (fk) =

∫

Ωk

|∇fk|
2 dx −

∫

Ωk

V f 2
kdx

= −
∫

Ωk

fkΔfkdx −
∫

Ωk

V f 2
kdx

= −
1

2

∫

Ωk

V f 2
kdx < 0.
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The same inequality holds for linear combination of functions fk since
the intersection of their supports has measure 0.

Hence, the space V = span {fk} has infinite dimension and EV (f) < 0
for all non-zero f ∈ V , which implies N0 (HV ) = ∞.

In fact, one can show that no upper bound of the form

N0 (HV ) ≤
∫

R2

V (x) W (x) dx

can be true, no matter how we choose a weight W (x) .
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2.2 Lower bound of N0 (HV )

It turns out that in the case n = 2, instead of an upper bound, a lower
bound in (1.1) is true.

Theorem 2.1 (AG, Netrusov, Yau, 2004) For any non-negative poten-
tial V in R2,

N0 (HV ) ≥ c

∫

R2

V (x) dx (2.1)

with some absolute constant c > 0.

Let us describe an approach to the proof. Since

N0 (HV ) = sup {dimV : V ≺ DR2 and EV (f) < 0 ∀f ∈ V \ {0}} ,

it suffices to construct a subspace V of DR2 such that EV is negative on
V and

dimV ≥ c

∫

R2

V (x) dx.

We will construct V as span {fk} where {fk}
N
k=1 is a sequence of functions

with disjoint compact supports such that EV (fk) < 0. Then EV (f) <
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0 will be true for any non-zero function f ∈ span {fk}, and dimV =
N. Hence, it suffices to construct a sequence {fk}

N
k=1 of functions with

compact disjoint supports such that, for any k = 1, ..., N ,

∫

R2

|∇fk|
2 dx <

∫

R2

V f 2
kdx,

and

N ≥ c

∫

R2

V (x) dx.

Each function fk will be constructed as follows. Fix two reals 0 <
r < R and consider the annulus

A =
{
x ∈ R2 : r < |x| < R

}

and denote by 2A the annulus

2A =

{

x ∈ R2 :
1

2
r < |x| < 2R

}

.
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Consider the following function

f (x) =






1, x ∈ A,
0, x /∈ 2A,
1

ln 2
ln 2|x|

r
, r

2
≤ |x| ≤ r,

1
ln 2

ln 2R
|x| , R ≤ |x| ≤ 2R.

 

x2 

x1 
R 2R r/2 r 

A  f=1 

 f=0 

2A 

 f=0 
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This function f is harmonic in each of the four domains, whence we
obtain

∫

R2

|∇f |2 dx =

∫

{ r
2
≤|x|≤r}

|∇f |2 dx +

∫

{R≤|x|≤2R}
|∇f |2 dx

=

∫

∂{ r
2
≤|x|≤r}

f
∂f

∂ν
dl +

∫

∂{R≤|x|≤2R}
f

∂f

∂ν
dl

= f ′ (r) 2πr − f ′ (R) 2πR

=
1

(ln 2) r
2πr +

1

(ln 2) R
2πR

=
4π

ln 2
< 20.

Suppose that we have a sequence of annuli {Ak}
N
k=1, with different

centers and different radii, but such that the sequence {2Ak}
N
k=1 is dis-

joint. Then, defining fk for each pair (Ak, 2Ak) as above, we obtain a
sequence of functions with disjoint supports and with

∫

R2

|∇fk|
2 dx < 20.
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Note that ∫

R2

V f 2
kdx ≥

∫

Ak

V dx.

Hence, the condition
∫
R2 |∇fk|

2 dx <
∫
R2 V f 2

kdx will be satisfied if

∫

Ak

V dx ≥ 20.

Consider again measure μ given by dμ = V dx and restate our problem
as follows: construct N annuli {Ak}

N
k=1 such that

(i) {2Ak}
N
k=1 are disjoint,

(ii) μ (Ak) ≥ 20 for each k,

(iii) and N ≥ cμ (R2) .

Of course, if μ (R2) < 20 then such a sequence cannot be constructed.
In this case we argue differently. Choose some 0 < r < R and consider
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the function

f (x) =






1, |x| ≤ r
0, x ≥ R,

1
ln R

r

ln R
|x| , r ≤ |x| ≤ R.

 

x2 

x1 
R r 

 f=1 

 f=0 
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For this function
∫

R2

|∇f |2 dx = −f ′ (r) 2πr =
2π

ln R
r

while ∫

R2

V f 2dx ≥
∫

{|x|≤r}
V dx.

Taking r and R
r

large enough, we obtain
∫
R2 |∇f |2 dx <

∫
R2 V f 2dx whence

N0 (HV ) ≥ 1. If μ (R2) =
∫
R2 V dx is bounded by some constant, say 20,

then we obtain N0 (HV ) ≥ cμ (R2) just by taking c small enough.
Hence, in the main part we can assume that μ (R2) is large enough.

In this case, the sequence of annuli satisfying (i)-(iii) can be always
constructed. In fact, the positive answer is given by the following abstract
theorem.

44



Theorem 2.2 Let (X, d) be a metric space and μ is a non-atomic Borel
measure on X. Assume that the following properties are satisfied.

1. All metric balls B (x, r) = {y ∈ X : d (x, y) < r} are precompact.

2. There exists a constant M such that, for any ball B (x, r) there is
a family of at most M balls of radii r/2 that cover B (x, r) .

Then there is a constant c = c (M) > 0 such that, for any 0 < v <

μ (X) there exists at least cμ(X)
v

annuli {Ak} such that

(i) {2Ak} are disjoint

(ii) and μ (Ak) ≥ v for any k.

Of course, R2 satisfies all the hypotheses of Theorem 2.2. Taking
v = 20 we obtain that if μ (R2) > 20 then there exists at least c′μ (R2)
annuli satisfying (i) and (ii), which finishes the proof of Theorem 2.1.

We leave Theorem 2.2 without proof, only mentioning that it can be
regarded as a sophisticated version of the ball covering argument. Note
also that annuli in the statement cannot be replaced by balls.
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2.3 Estimates of eigenvalues on S2

Let us show one more application of Theorem 2.2.

Theorem 2.3 Let λk, k = 1, 2, ..., be the k-th smallest eigenvalue of the
Laplace-Beltrami operator Δ on (S2, g) , where g is an arbitrary Rieman-
nian metric on S2. Then, for any k,

λk ≤ C
k − 1

μ (S2)
, (2.2)

where C is a universal constant and μ is the Riemannian volume of the
metric g.

In fact, this theorem holds also for any closed Riemann surface, where
the constant C depends also on the genus of the surface. However, the
general case follows from the estimate for S2.

Note that λ1 = 0 so that the case k = 1 is trivial. For k = 2 Theorem
2.3 was proved by Hersch in 1970 for the sphere and then for any Riemann
surface by Yang and Yau in 1980. For a general k, Yau stated (2.2) as a
conjecture, which was proved by Korevaar in 1993.
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The main point of (2.2) that the constant C does not depend on the
Riemannian metric g. The metric enters (2.2) only through the total area
μ (S2). This is essentially two-dimensional phenomenon as such estimates
do not hold in higher dimensions.

Let us show how Theorem 2.3 can be obtained from Theorem 2.2.
Consider the counting function for Δ on (S2, g):

Nλ = # {j ≥ 1 : λj < λ} .

Note that λk < λ will follow from Nλ ≥ k. We will prove that, for all
λ > 0,

Nλ ≥ C−1μ
(
S2
)
λ. (2.3)

If (2.3) is already proved, then choosing here λ = C k
μ(S2)

, where k ≥ 2,
we obtain Nλ ≥ k and, hence,

λk < λ = C
k

μ (S2)
≤ 2C

k − 1

μ (S2)
,

which proves (2.2).
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Let us prove (2.3) for any λ > 0. The counting function admits
variational characterization

Nλ = sup
{
dimV : V ≺ DS2 , E (f) < λ ‖f‖2

2 ∀f ∈ V \ {0}
}

where

E (f) =

∫

S2
|∇f |2g dμ and ‖f‖2

2 =

∫

S2
f 2dμ.

Hence, it suffices to construct at least N = C−1μ (S2) λ functions f with
disjoint supports and with E (f) < λ ‖f‖2

2 .
If λ is small enough, namely, if C−1μ (R2) λ ≤ 1 then we need to

construct only one function, and it always exists: f ≡ 1. Hence, we can
assume that λ > C

μ(S2)
.

Any metric g on S2 is conformally equivalent to the canonical metric
g0 on S2. Denote by μ0 the canonical Riemannian measure on S2. Note
that the energy is a conformal invariant:

E (f) =

∫

S2
|∇f |2g dμ =

∫

S2
|∇f |2g0

dμ0.

Let d be the geodesic distance on (S2, g0) . As in R2, one can show that,
for any annulus A on S2 (with respect to d) one can construct a test
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function f supported in 2A and such that f |A = 1 and E (f) < K where
K is some constant. On the other hand,

‖f‖2
2 ≥

∫

A

f 2dμ = μ (A) ,

so that E (f) < λ ‖f‖2
2 will follow from K ≤ λμ (A) . Hence, we need

to construct at least N = C−1μ (S2) λ annuli Ak on S2 so that 2Ak are
disjoint and

μ (Ak) ≥
K

λ
.

Let us emphasize that measure μ is defined by the metric g, whereas the
annuli are defined using the distance function of g0.

Let us apply Theorem 2.2 to the metric space (S2, d) with measure μ.
Set v := K

λ
< C−1Kμ (S2) . Choosing C > K, we have v < μ (S2) so that

Theorem 2.2 can be applied. Hence, we obtain at least c
μ(S2)

v
= c

K
μ (S2) λ

annuli Ak with disjoint 2Ak and with

μ (Ak) ≥ v =
K

λ
,

which finishes the proof of (2.3) with C = K
c
.
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3 Upper estimate in R2

3.1 Statement of the result

Consider a tiling of R2 into a sequence of annuli {Un}n∈Z defined by

Un
n<0
= {e−2|n|

< |x| < e−2|n|−1

}, U0 = {e−1 < |x| < e}, Un
n>0
= {e2n−1

< |x| < e2n

}

 

x2 

x1 

Un 
n>0 

e 2
n-1 e-1

 e 

U0 Un 
n<0 

e 2
n 
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Given a potential (=a non-negative L1
loc-function) V (x) on R2 and

p > 1, define for any n ∈ Z the following quantities:

An =

∫

Un

V (x) (1 + |ln |x||) dx , Bn =






∫

{en<|x|<en+1}

V p (x) |x|2(p−1) dx






1/p

(3.1)
The main result of this section is the following theorem.

Theorem 3.1 (AG, N.Nadirashvili, 2012) For any potential V in R2

and for any p > 1, we have

Neg (V ) ≤ 1 + C
∑

{n∈Z:An>c}

√
An + C

∑

{n∈Z:Bn>c}

Bn, (3.2)

where C, c are positive constants depending only on p.

The additive term 1 in (3.2) reflects a special feature of R2: for any
non-zero potential V , there is at least 1 negative eigenvalue of HV , no
matter how small are the sums in (3.2), as it was shown in the course of
the proof of Theorem 2.1.
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Let us compare (3.2) with previously known upper bounds. A simpler
(and coarser) version of (3.2) is

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx + C
∑

n∈Z

Bn. (3.3)

Indeed, if An > c then
√

An ≤ c−1/2An so that the first sum in (3.2) can
be replaced by

∑
n∈Z An thus yielding (3.3).

The estimate (3.3) was obtained by Solomyak in 1994. In fact, he
proved a better version:

Neg (V ) ≤ 1 + C ‖A‖1,∞ + C
∑

n∈Z

Bn, (3.4)

where A denotes the whole sequence {An}n∈Z and ‖A‖1,∞ is the weak

l1-norm (the Lorentz norm) given by

‖A‖1,∞ = sup
s>0

s# {n : An > s} .

Clearly, ‖A‖1,∞ ≤ ‖A‖1 so that (3.4) is better than (3.3).
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However, (3.4) also follows from (3.2) using an observation that

‖A‖1,∞ ≤ sup
s>0

s1/2
∑

{An>s}

√
An ≤ 4 ‖A‖1,∞ .

In particular, we have
∑

{An>c}

√
An ≤ 4c−1/2 ‖A‖1,∞ ,

so that (3.2) implies (3.4). As we will see below, our estimate (3.2)
provides for certain potentials strictly better results than (3.4).

In the case when V (x) is a radial function, that is, V (x) = V (|x|),
the following estimate was proved by physicists Chadan, Khuri, Martin,
Wu in 2003:

Neg (V ) ≤ 1 +

∫

R2

V (x) (1 + |ln |x||) dx. (3.5)

Although this estimate is better than (3.3), we will see that our main
estimate (3.2) gives for certain potentials strictly better estimates than
(3.5).

53



Another upper estimate for a general potential in R2 was obtained by
Molchanov and Vainberg in 2010:

Neg (V ) ≤ 1 + C

∫

R2

V (x) ln 〈x〉 dx + C

∫

R2

V (x) ln
(
2 + V (x) 〈x〉2

)
dx,

(3.6)
where 〈x〉 = e + |x|. However, due to the logarithmic term in the second
integral, this estimate never implies the linear semi-classical asymptotic

Neg (αV ) ' O (α) as α → ∞, (3.7)

that is expected to be true for “nice” potentials. Observe that the
Solomyak estimates (3.3) and (3.4) are linear in V so that they imply
(3.7) whenever the right hand side is finite.

Our estimate (3.2) gives both linear asymptotic (3.7) for “nice” po-
tentials and non-linear asymptotics for some other potentials. Let us
emphasize two main novelties in our estimate (3.2): using the square
root of An instead of linear expressions, and the restriction of the both
sums in (3.2) to the values An > c and Bn > c, respectively, which allows
to obtain significantly better results.
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The reason for the terms
√

An in (3.2) can be explained as follows.
Different parts of the potential V contributes differently to Neg (V ). The
high values of V that are concentrated on relatively small areas, con-
tribute to Neg (V ) via the terms Bn, while the low values of V scattered
over large areas, contribute via the terms An. Since we integrate V over
annuli, the long range effect of V becomes similar to that of an one-
dimensional potential. In R1 one expects Neg (αV ) '

√
α as α → ∞

which explains the appearance of the square root in (3.2).
By the way, the following estimate of Neg (V ) in R1

+ was proved by
Solomyak:

Neg (V ) ≤ 1 + C

∞∑

n=0

√
an (3.8)

where

an =

∫

In

V (x) (1 + |x|) dx

and In = [2n−1, 2n] if n > 0 and I0 = [0, 1]. Clearly, the sum
∑√

an

here resembles
∑√

An in (3.2), which is not a coincidence. In fact, our
method allows to improve (3.8) by restricting the sum to those n for
which an > c.
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Returning to (3.3), one can apply a suitable Hölder inequality to
combine the both terms of (3.3) in one as follows. Assume that W (r)
is a positive monotone increasing function on (0, +∞) that satisfies the
following Dini type condition both at 0 and at ∞:

∫ ∞

0

r |ln r|
p

p−1 dr

W (r)
1

p−1

< ∞. (3.9)

Then

Neg (V ) ≤ 1 + C

(∫

R2

V p (x)W (|x|) dx

)1/p

, (3.10)

where the constant C depends on p and W . Here is an example of a
weight function W (r) that satisfies (3.9):

W (r) = r2(p−1)〈ln r〉2p−1 lnp−1+ε〈ln r〉, (3.11)

where ε > 0. In particular, for p = 2, we obtain the following estimate:

Neg (V ) ≤ 1 + C

(∫

R2

V 2 (x) |x|2 〈ln |x|〉3 ln1+ε〈ln |x|〉dx

)1/2

. (3.12)
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3.2 Examples

Example 1. Assume that, for all x ∈ R2,

V (x) ≤
α

|x|2

for a small enough positive constant α. Then, for all n ∈ Z,

Bn ≤ α

(∫

{en<|x|<en+1}

1

|x|2
dx

)1/p

' α

so that Bn < c and the last sum in (3.2) is void, whence we obtain

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx. (3.13)

The estimate (3.13) in this case follows also from the estimate (3.6) of
Molchanov and Vainberg.
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Example 2. Assume that a potential V satisfies the following condi-
tion: for some constant K and all n ∈ Z,

sup
{en<|x|<en+1}

V ≤ K inf
{en<|x|<en+1}

V. (3.14)

For such potential we have

Bn '
∫

{en<|x|<en+1}
V dx, (3.15)

so that (3.3) implies

Neg (V ) ≤ 1 + C

∫

R2

V (x) (1 + |ln |x||) dx + C ′

∫

R2

V (x) dx,

where the constant C ′ depends also on K. Of course, the second term
here can be absorbed by the first one thus yielding (3.13) with C = C (K).

The estimate (3.13) in this case can be obtained from the estimate
(3.5) of Chadan, Khuri, Martin, Wu by comparing V with a radial po-
tential.
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Example 3. Let

V (x) =
α

|x|2
(
1 + ln2 |x|

) ,

where α > 0 is small enough. Then as in the first example Bn < c, while
An can be computed as follows: for n > 0

An '
∫ e2n

e2n−1

α

r2 ln2 r
(ln r) rdr = α

∫ e2n

e2n−1
d ln ln r ' α, (3.16)

and the same for n ≤ 0, so that An < c for all n. Hence, the both sums
in (3.2) are void, and we obtain

Neg (V ) = 1.

This result cannot be obtained by any of the previously known es-
timates. Indeed, in the estimates of Chadan, Khuri, Martin, Wu and
of Molchanov, Vainberg one has

∫
R2 V (x) (1 + |ln |x||) dx = ∞, and in

the estimate (3.4) of Solomyak one has ‖A‖1,∞ = ∞. As will be shown
below, if α > 1/4 then Neg (V ) can be ∞. Hence, Neg (V ) exhibits a
non-linear behavior with respect to the parameter α, which cannot be
captured by linear estimates.
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Example 4. Assume that V (x) is locally bounded and

V (x) = o

(
1

|x|2 ln2 |x|

)

as x → ∞.

Similarly to the above computation we see that An → 0 and Bn → 0 as
n → ∞, which implies that the both sums in (3.2) are finite and, hence,

Neg (V ) < ∞.

This result is also new. Note that in this case the integral
∫
R2 V (x) (1 + |ln |x||) dx

may be divergent; moreover, the norm ‖A‖1,∞ can also be ∞ as one can
see in the next example.

Example 5. Choose q > 0 and set

V (x) =
1

|x|2 ln2 |x| (ln ln |x|)q for |x| > e2 (3.17)

and V (x) = 0 for |x| ≤ e2. For n ≥ 2 we have

An '
∫ e2n

e2n−1

1

r2 ln2 r (ln ln r)q (ln r) rdr =

∫ e2n

e2n−1

d ln ln r

(ln ln r)q '
1

nq
,
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and, by (3.15),

Bn '
∫ en+1

en

1

r2 ln2 r (ln ln r)q rdr =

∫ en+1

en

d ln r

ln2 r (ln ln r)q '
1

n2 lnq n
.

Let α be a large real parameter. Then

An (αV ) '
α

nq
, (3.18)

and the condition An (αV ) > c is satisfied for n ≤ Cα1/q, whence we
obtain

∑

{An(αV )>c}

√
An (αV ) ≤ C

dCα1/qe∑

n=1

√
α

nq
' C

√
α
(
α1/q

)1−q/2
= Cα1/q.

It is clear that
∑

n Bn (αV ) ' α. Hence, we obtain from (3.2)

Neg (αV ) ≤ C
(
α1/q + α

)
. (3.19)

If q ≥ 1 then the leading term here is α. Combining this with (2.1), we
obtain

Neg (αV ) ' α as α → ∞.
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If q > 1 then this follows also from (3.5) and (3.4); if q = 1 then only the
estimate (3.4) of Solomyak gives the same result as in this case An ' 1

n

and ‖A‖1,∞ < ∞.

If q < 1 then the leading term in (3.19) is α1/q so that

Neg (αV ) ≤ Cα1/q.

As was shown by Birman and Laptev, in this case, indeed, Neg (αV ) '
α1/q as α → ∞. Observe that in this case ‖A‖1,∞ = ∞, and neither of
the estimates previous estimates (3.3), (3.5), (3.4), (3.6) yields even the
finiteness of Neg (αV ), leaving alone the correct rate of growth in α.

Example 6. Let V be a potential in R2 such that

∑

n∈Z

√
An (V ) +

∑

n∈Z

Bn (V ) < ∞. (3.20)

Applying (3.2) to αV , we obtain

Neg (αV ) ≤ 1 + Cα1/2
∑

n∈Z

√
An (V ) + α

∑

n∈Z

Bn (V ) .
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Combining with the lower bound (2.1) and letting α → ∞, we see that

cα

∫

R2

V dx ≤ Neg (αV ) ≤ α
∑

n∈Z

Bn (V ) + o (α) ,

in particular,
Neg (αV ) ' α as α → ∞.

Furthermore, if V satisfies the condition (3.14) then, using (3.15), we
obtain a more precise estimate

Neg (αV ) ' α

∫

R2

V (x) dx as α → ∞. (3.21)

For example, (3.20) is satisfied for the potential (3.17) of Example 5 with
q > 2, as it follows from (3.18). By a more sophisticated argument, one
can show that (3.21) holds also for q > 1.
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Example 7. Set R = e2m
where m is a large integer, choose α > 1

4

and consider the following potential on R2

V (x) =
α

|x|2 ln2 |x|
if e < |x| < R

and V (x) = 0 otherwise. Computing An as in (3.16) we obtain An ' α
for any 1 ≤ n ≤ m, whence it follows that

∑

n∈Z

√
An =

m∑

n=1

√
An '

√
αm '

√
α ln ln R.

Also, we obtain by (3.15) Bn ' a
n2 , for 1 ≤ n < 2m, whence

∑

n∈Z

Bn (V ) '
2m−1∑

n=1

α

n2
' α.

By (3.2) we obtain

Neg (V ) ≤ C
√

α ln ln R + Cα. (3.22)
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Observe that both (3.4) and (3.5) give in this case a weaker estimate

Neg (V ) ≤ Cα ln ln R.

Let us estimate Neg (V ) from below. Considering the function

f (x) =
√

ln |x| sin

(√

α −
1

4
ln ln |x|

)

that satisfies in the region Ω = {e < |x| < R} the differential equation
Δf + V (x) f = 0, and counting the number N of rings

Ωk :=

{

x ∈ R2 : πk <

√

α −
1

4
ln ln |x| < π (k + 1)

}

in Ω, we obtain
Neg (V ) ≥ N '

√
α ln ln R

(assuming that α >> 1
4
). On the other hand, (2.1) yields Neg (V ) ≥ cα.

Combining these two estimates, we obtain the lower bound

Neg (V ) ≥ c
(√

α ln ln R + α
)
,

that matches the upper bound (3.22).
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3.3 The energy form revisited

We consider a somewhat different energy form than in Rn, n ≥ 3. For
any open set Ω ⊂ R2, consider a function space

FV,Ω =

{

f ∈ L2
loc

(
Ω
)

:

∫

Ω

|∇f |2 dx < ∞,

∫

Ω

V f 2dx < ∞

}

and the quadratic form on FV,Ω:

EV,Ω (f) =

∫

Ω

|∇f |2 dx −
∫

Ω

V f 2dx. (3.23)

We will use the following quantity:

Neg (V, Ω) := sup {dimV : V ≺ FV,Ω : EV,Ω (f) ≤ 0 for all f ∈ V} .
(3.24)

Clearly, we have N0 (HV ) ≤ Neg(V,R2), but in R2 we do not loose much
when we estimate a larger quantity Neg instead of N0. (Observe that
FV,R2 contains f = const and E (f) ≤ 0 so that Neg (V,R2) ≥ 1, but as
we know, N0 (HV ) ≥ 1). Theorem 3.1 contains the estimate of Neg (V ) =
Neg (V,R2) .
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For bounded domains with smooth boundary, Neg (V, Ω) is equal to
the number of non-positive eigenvalues of the Neumann problem in Ω for
−Δ − V .

A useful feature of Neg (V, Ω) is subadditivity with respect to Ω. We
say that a sequence {Ωk} of open sets Ωk ⊂ R2 is a partition of Ω if all
the sets Ωk are disjoint, Ωk ⊂ Ω, and Ω \

⋃
k Ωk has measure 0.

 Ω 

Ωk
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Lemma 3.2 If {Ωk} is a partition of Ω, then

Neg (V, Ω) ≤
∑

k

Neg (V, Ωk) . (3.25)

The idea of the proof is the same as in the classical Weyl’s argument:
adding additional Neumann boundaries inside Ω increases the space of
test functions and, hence, the number of non-negative eigenvalues.
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3.4 One negative eigenvalue in a disc

Denote by Dr the open disk of radius r in R2, that is, Dr = {x ∈ R2 : |x| < r} ,
and set D1 ≡ D.

Lemma 3.3 For any p > 1 there is ε > 0 such that, for any potential V
in D,

‖V ‖Lp(D) ≤ ε ⇒ Neg (V,D) = 1.

Sketch of proof. Since always Neg (V,D) ≥ 1, we need only to
prove that Neg (V,D) ≤ 1. We will prove that if u ∈ FV,D then

u⊥1 in L2 (D) and EV,D (u) ≤ 0 ⇒ u = 0,

which will imply that Neg (V,D) ≤ 1.
Extend u ∈ FV,D to R2 using the inversion Φ (x) = x

|x|2
: for any

x /∈ D, set u (x) = u (Φ (x)). By conformal invariance of energy, we have

∫

R2

|∇u|2 dx = 2

∫

D

|∇u|2 dx ≤ 2

∫

D

V u2dx.
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Choose a cutoff function ϕ such that ϕ|D2 ≡ 1, ϕ|R2\D3
= 0 and set

u∗ = uϕ. Then it follows that
∫

D4

|∇u∗|2 dx ≤ C

∫

D

V u2dx,

with some absolute constant C. Since u⊥1, one uses in the proof the
Poincaré inequality in D in the form ‖u‖L2 ≤ C ‖∇u‖L2 .

Next, we have by Hölder inequality

∫

D

V u2dx ≤

(∫

D

V pdx

)1/p(∫

D

|u|
2p

p−1 dx

)1−1/p

,

and by Sobolev inequality

(∫

D

|u|
2p

p−1 dx

)1−1/p

≤

(∫

D4

|u∗|
2p

p−1 dx

)1−1/p

≤ C

∫

D4

|∇u∗|2 dx.

Combining the above three lines, we obtain

∫

D4

|∇u∗|2 dx ≤ C

(∫

D

V pdx

)1/p ∫

D4

|∇u∗|2 dx. (3.26)
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Assuming that ‖V ‖Lp(D) is small enough, we see that (3.26) is only pos-

sible if u∗ = const . Since u⊥1 in L2 (D), it follows that u ≡ 0.

Corollary 3.4 Let Ω be a domain in R2 that is bilipschitz equivalent to
Dr. Then ∫

Ω

V pdx ≤ cr2−2p ⇒ Neg (V, Ω) = 1. (3.27)

where c > 0 depends on p and on the Lipschitz constant of the mapping
between Dr and Ω.

Proof. Indeed, if Ω = Dr then (3.27) follows from Lemma 3.3 by
scaling transformation. For a general Ω one shows that Neg (V, Ω) ≤
Neg (CV ∗, Dr) where V ∗ is the pull-back of V under the bilipschitz map-
ping L : Dr → Ω where the constant C depends on the Lipschitz con-
stant.
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3.5 Negative eigenvalues in a square

Denote by Q the unit square in R2.

Lemma 3.5 For any p > 1 and for any potential V in Q,

Neg (V,Q) ≤ 1 + C ‖V ‖Lp(Q) , (3.28)

where C depends only on p.

Proof. It suffices to construct a partition P of Q into a family of N
disjoint subsets such that

1. Neg (V, Ω) = 1 for any Ω ∈ P ;

2. N ≤ 1 + C ‖V ‖Lp(Q) .

Indeed, if such a partition exists then we obtain by Lemma 3.2

Neg (V,Q) ≤
∑

Ω∈P

Neg (V, Ω) = N, (3.29)
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and (3.28) follows from the above bound of N .
The elements of a partition will be of two shapes: it is either a square

of the side length 0 < l ≤ 1 or a step, that is, a set of the form Ω = A\B
where A is a square of the side length l, and B is a square of the side
length ≤ l/2 that is attached to one of corners of A.

 

l l 

l/2 

In the both cases we refer to l as the size of Ω. By Corollary 3.4, the
condition 1 for such a set Ω will follow from

∫

Ω

V pdx ≤ cl2−2p. (3.30)
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Apart from the shape, we will distinguish also the type of a set Ω ∈ P
of size l as follows: we say that

- Ω is of a large type, if
∫

Ω

V pdx > cl2−2p,

- Ω is of a medium type if

c′l2−2p <

∫

Ω

V pdx ≤ cl2−2p, (3.31)

- and Ω is of small type if
∫

Ω

V pdx ≤ c′l2−2p. (3.32)

Here c is the constant from (3.30) and c′ ∈ (0, c) will be chosen below.
In particular, if Ω is of small or medium type then Neg (V, Ω) = 1.

The construction of the partition P will be done by induction. At
each step i ≥ 1 of induction we will have a partition P (i) of Q such that
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1. each Ω ∈ P (i) is either a square or a step;

2. If Ω ∈ P (i) is a step then Ω is of a medium type.

At step 1 we have just one set: P (1) = {Q}. At any step i ≥ 1,
partition P (i+1) is obtained from P (i) as follows. If Ω ∈ P (i) is small or
medium then Ω becomes one of the elements of the partition P (i+1). If
Ω ∈ P (i) is large, then it is a square, and it will be further partitioned
into a few sets that will become elements of P (i+1). Denoting by l the
side length of the square Ω, let us first split Ω into four equal squares
Ω1, Ω2, Ω3, Ω4 of side length l/2 and consider the following cases.

 

small 

small 

small 

medium 

1 

Case 1. If among Ω1, ..., Ω4 the number of small squares is at most 2,
then all sets Ω1, ..., Ω4 become elements of P (i+1).
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Case 2. If among Ω1, ..., Ω4 there are exactly 3 small squares, say,
Ω2, Ω3, Ω4, then we have

∫

Ω\Ω1

V pdx =

∫

Ω2∪Ω3∪Ω4

V pdx ≤ 3c′
(

l

2

)2−2p

= 3c′22p−2l2−2p < cl2−2p,

where we choose c′ to satisfy 3c′22p−2 < c. On the other hand, we have

∫

Ω

V pdx > cl2−2p.

Therefore, by reducing the size of Ω1 (but keeping Ω1 attached to the
corner of Ω) one can achieve the equality

∫

Ω\Ω1

V pdx = cl2−2p.

Hence, we obtain a partition of Ω into two sets Ω1 and Ω \Ω1, where the
step Ω \ Ω1 is of medium type, while the square Ω1 can be of any type.
Both Ω1 and Ω \ Ω1 become elements of P (i+1).
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Case 3. Let us show that all 4 squares Ω1, ..., Ω4 cannot be small.
Indeed, in this case we would have

∫

Ω

V pdx =
4∑

k=1

∫

Ωk

V pdx ≤ 4c′
(

l

2

)2−2p

=
(
4c′22p−2

)
l2−2p.

Let us choose c′ so small that 4c′22p−2 < c. Then the above estimate
contradicts the assumption that Ω is of large type.

As we see from construction, at each step i only large squares get
partitioned further, and the size of the large type squares in P (i+1) reduces
at least by a factor 2. If the size of a square is small enough then it is
necessarily of small type, because the right hand side of (3.32) goes to
∞ as l → 0. Hence, the process will stop after finitely many steps. After
sufficiently many steps we obtain a partition P where all the elements are
either of small or medium types. In particular, we have Neg (V, Ω) = 1
for any Ω ∈ P .
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Let N be a number of elements of P . We need to show that

N ≤ 1 + C ‖V ‖Lp(Q) . (3.33)

At each step of construction, denote by L the number of large elements,
by M the number of medium elements, and by S the number of small
elements. Let us show that the quantity 2L + 3M − S is non-decreasing
during the construction. Indeed, at each step we split one large square
Ω, so that by removing this square, L decreases by 1. However, we add

78



new elements of partitions, which contribute to the quantity 2L+3M−S
as follows.

1. If Ω is split into s ≤ 2 small and 4 − s medium/large squares as in
Case 1, then the value of 2L + 3M − S has the increment at least

−2 + 2 (4 − s) − s = 6 − 3s ≥ 0.

2. If Ω is split into 1 square and 1 step as in Case 2, then one obtains
at least 1 medium set and at most 1 small, so that 2L + 3M − S
has the increment at least

−2 + 3 − 1 = 0.

(Luckily, Case 3 cannot occur. In that case, we would have 4 new
small squares so that L and M would not have increased, whereas S
would have increased at least by 3, so that no quantity of the type C1L+
C2M − S would have been monotone increasing).

Since for the partition P (1) we have 2L+3M −S ≥ −1, this inequal-
ity will remain true at all steps of construction and, in particular, it is
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satisfied for the final partition P . For the final partition we have L = 0,
whence it follows that S ≤ 1 + 3M and, hence,

N = S + M ≤ 1 + 4M. (3.34)

Let us estimate M . Let Ω1, ..., ΩM be the medium type elements of
P and let lk be the size of Ωk. Each Ωk contains a square Ω′

k ⊂ Ωk of the
size lk/2, and all the squares {Ω′

k}
M
k=1 are disjoint, which implies that

M∑

k=1

l2k ≤ 4. (3.35)

Using the Hölder inequality and (3.35), we obtain

M =
M∑

k=1

l
2
p′

k l
− 2

p′

k ≤

(
M∑

k=1

l2k

)1/p′ ( M∑

k=1

l
− 2p

p′

k

)1/p

≤ 41/p′

(
M∑

k=1

l2−2p
k

)1/p

.

Since by (3.31) c′l2−2p
k <

∫
Ωk

V pdx, it follows that

M ≤ C

(
M∑

k=1

∫

Ωk

V pdx

)1/p

≤ C

(∫

Q

V pdx

)1/p

.
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Combining this with N ≤ 1 + 4M , we obtain N ≤ 1 + C ‖V ‖Lp(Q), thus
finishing the proof.

Corollary 3.6 Let Ω be a domain in R2 that is bilipschitz equivalent to
D. Then

Neg (V, Ω) ≤ 1 + C

(∫

Ω

V pdx

)1/p

,

where C > 0 depends on p and on the Lipschitz constant of the mapping
between D and Ω.
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3.6 One negative eigenvalue in R2

Now we would like to obtain conditions for Neg (V,R2) = 1 in terms of
some weighted L1-norms. The method that we have used in the case
n ≥ 3 (Proposition 1.3) was based on the operator LV = − 1

V
Δ and

estimating of
∥
∥L−1

V

∥
∥ in L2 (Rn, V dx) .

The hidden reason why it was possible is the existence of the positive
Green function g (x, y) = cn

|x−y|n−2 of −Δ. In fact, the operator L−1
V is

given by

L−1
V f =

∫

Rn

g (x, y) f (y) V (y) dy.

The application of the Sobolev in the proof of Proposition 1.3 can be
replaced by a direct estimate of the norm of this integral operator in
L2 (Rn, V dx) . In fact, the classical proof of the Sobolev inequality uses
this approach.

One of the difficulties in R2 is the absence of a positive Green function
of the Laplace operator. To overcome this difficulty, we introduce an
auxiliary potential V0 ∈ C∞

0 (R2) , such that V0 6≡ 0 and V0 ≥ 0.
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Lemma 3.7 (AG, 2006) Operator H0 = −Δ + V0 has a positive Green
function g (x, y) that admits the following estimate

g (x, y) ' ln 〈x〉 ∧ ln 〈y〉 + ln+
1

|x − y|
, (3.36)

where 〈x〉 := e + |x| and ∧ means min .

By Lemma 3.3 there exists V0 such that Neg (V0,R2) = 1. Fix such
V0 and, hence, the Green function g (x, y) of H0 for what follows.

For a given potential V , define as measure ν by dν = V dx and con-
sider the integral operator GV defined by

GV f (x) =

∫

R2

g (x, y) f (y) dν (y) .

Denote by ‖GV ‖ the norm of GV in the space L2 (R2, ν) .
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Lemma 3.8 If ‖GV ‖ ≤ 1
2

then Neg (V,R2) = 1.

Sketch of the proof. The idea is that the operator GV is the
inverse of the operator 1

V
H0 in L2 (ν) so that ‖GV ‖ ≤ 1

2
implies that the

spectrum of 1
V

H0 is confined in [2,∞). This implies that H0 ≥ 2V in the
sense of quadratic forms, that is,

∫

R2

|∇u|2 dx +

∫

R2

V0u
2dx ≥ 2

∫

R2

V u2dx

for all u ∈ FV . If V is a subspace of FV where EV ≤ 0 then for any u ∈ V
∫

R2

|∇u|2 dx ≤
∫

R2

V u2dx.

Combining the two lines, we obtain
∫

R2

|∇u|2 dx ≤
∫

R2

V0u
2dx,

that is, EV0 (u) ≤ 0. Taking sup dim V we obtain

Neg
(
V,R2

)
≤ Neg

(
V0,R

2
)

= 1.
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The next step is estimating the norm ‖GV ‖ in terms of V . Since
g (x, y) is symmetric in x, y, we have a simple estimate

‖GV ‖ ≤ sup
y

∫

R2

g (x, y) dν (x) ,

which together with Lemma 3.7 leads to

‖GV ‖ ≤ C

∫

R2

ln 〈x〉 dν (x) + C sup
y∈R2

∫

R2

ln+
1

|x − y|
dν (x) .

However, ‖GV ‖ admits a better estimate, as will be explained below.
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3.7 Transformation to a strip

It will be more convenient to estimate first Neg (V, S) where S is a strip
in R2 defined by

S =
{
(x1, x2) ∈ R

2 : x1 ∈ R, 0 < x2 < π
}

.

The strip S is the image of R2
+ under the conformal mapping z 7→ ln z:

 

+ 

ln z 

S 

π 

0 0 

2 

Let γ (x, y) be the push-forward of the Green function g (x, y) under
this mapping, that is,

γ (x, y) = g (ex, ey) .
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Using the estimate (3.37) of g, it is possible to show that

γ (x, y) ≤ C 〈x1〉 ∧ 〈y1〉 + C ln+
1

|x − y|
. (3.37)

For example, x1 arises from ln |ex| = ln |ex1+ix2 | = ln ex1 = x1.
Consider also the corresponding integral operator

ΓV f (x) =

∫

S

γ (x, y) f (y) dν (y) , (3.38)

where measure ν is defined as above by dν = V (x) dx. Denote by ‖ΓV ‖
the norm of ΓV in L2 (S, ν). Lemma 3.8 implies the following.

Lemma 3.9 ‖ΓV ‖ ≤ 1
8
⇒ Neg (V, S) = 1.

The main point in the proof is that the holomorphic mappings are
conformal and, hence, preserve the Dirichlet integral.
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3.8 Estimating ‖ΓV ‖

For any n ∈ Z set
Qn = S ∩ {n < x1 < n + 1},
Sn = S ∩

{
−2|n| < x1 < −2|n|−1

}
for n < 0,

S0 = S ∩ {−1 < x1 < 1} ,
Sn = S ∩ {2n−1 < x1 < 2n} for n > 0,

 

x1 

Q5 

S3 

0 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 

S 

S0 S1 S2 

Q0 Q1 Q2 Q3 Q4 Q6 Q7 Q-1 

S-1 S-2 S-3 

Q-2 Q-3 Q-4 Q-5 Q-6 Q-7 Q-8 

an (V ) =

∫

Sn

(1 + |x1|) V (x) dx ' 2|n|
∫

Sn

V (x) dx (3.39)

bn (V ) =

(∫

Qn

V p (x) dx

)1/p

. (3.40)
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Lemma 3.10 The operator ΓV admits the following norm estimate in
L2 (S, ν):

‖ΓV ‖ ≤ C sup
n∈Z

an (V ) + C sup
n∈Z

bn (V ) . (3.41)

Approach to the proof. Note that by (3.37)

|ΓV f (x)| ≤ C

∫

S

(1 + |x1| ∧ |y1|) |f (y)|V (y) dy

+C

∫

S

ln+
1

|x − y|
f (y) |V (y)| dy. (3.42)

The second integral operator can be estimated by the Hölder inequality:

∫

S

ln+
1

|x − y|
V (y) dy ≤

(∫

B(x,1)

(

ln+
1

|x − y|

)p′

dy

)1/p′

(∫

B(x,1)∩S

V p (y) dy

)1/p

.

The first integral here is equal to a finite constant depending only on p,
but independent of x. The second integral is bounded by C supn bn (V ) .
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It is much more subtle to estimate the norm of the first integral
operator in (3.42) via C supn∈Z an (V ) . This problem is reduced to an
one dimensional problem by integrating in the direction x2. Then we
apply a certain weighted Hardy inequality. We skip the details as the
argument is quite lengthy.

Corollary 3.11 There is a constant c > 0 such that

sup
n

an (V ) ≤ c and sup
n

bn (V ) ≤ c ⇒ Neg (V, S) = 1.

Proof. Assuming that the constant c here is small enough, we obtain
from (3.41) that ‖ΓV ‖ ≤ 1

8
, whence by Lemma 3.9 Neg (V, S) = 1.

90



3.9 Rectangles

For all α ∈ [−∞, +∞), β ∈ (−∞, +∞] such that α < β, denote by Pα,β

the rectangle

Pα,β =
{
(x1, x2) ∈ R

2 : α < x1 < β, 0 < x2 < π
}

.

Note that Pα,β ⊂ S.

Lemma 3.12 For any potential V in a rectangle Pα,β with the length
β − α ≥ 1, we have

Neg (V, Pα,β) ≤ Neg (17V, S) ,

where V is extended to S by setting V = 0 outside Pα,β.

Sketch of the proof. It suffices to show that any function u ∈ FV,P

can be extended to FV,S so that

∫

S

|∇u|2 dx ≤ 17

∫

P

|∇u|2 dx. (3.43)
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Attach to P from each side one rectangle, say P ′ from the left and P ′′

from the right, each having the length 4 (β − α) (to ensure that the latter
is > π). Extend function u to P ′ by applying four times symmetries in
the vertical sides, so that

∫

P ′

|∇u|2 dx = 4

∫

P

|∇u|2 dx.

 

 x1 

x 

S 

Φ''(x) P'' 
P 

(α,0) 

 x2 

P' 

(β,0) 

x Φ'(x) 

Then slightly reduce P ′ by taking intersections with the circle of radii
β − α centered at (α, 0). Now we extend u from P ′ to the left by using
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the inversion Φ′ at the point (α, 0) in the aforementioned circle. By the
conformal invariance of the Dirichlet integral, we have

∫

S∩{x1<α}
|∇u|2 ≤ 8

∫

P

|∇u|2 dx.

Extending u in the same way to the right of P , we obtain (3.43).

3.10 Sparse potentials

We say that a potential V in S is sparse if

sup
n

bn (V ) < c0,

where c0 is a small enough positive constant, depending only on p. It
follows from Corollary 3.11 that, for a sparse potential,

sup
n

an (V ) ≤ c ⇒ Neg (V, S) = 1.
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Corollary 3.13 Let V be a sparse potential in Pα,β where β − α ≥ 1.
Then

(β − α)

∫

Pα,β

V (x) dx ≤ c ⇒ Neg (V, Pα,β) = 1. (3.44)

Proof. Take α = 0 so that β ≥ 1. Let m be a non-negative integer
such that 2m−1 < β ≤ 2m.

 
x2 

Sn 

0 

π 

x1 

Sm 

β 2m-1
 2m

 

S 

P0,β 

2n-1
 2n

 

S0 

1 -1 

Then an (V ) = 0 for n < 0 and for n ≥ m + 1. For 0 ≤ n ≤ m

an (V ) ≤ 2n+1

∫

Sn

V (x) dx ≤ 2m+1

∫

P0,β

V (x) dx ≤ 4β

∫

P0,β

V (x) dx,

(3.45)
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so that an (17V ) are small enough for all n ∈ Z. By Corollary 3.11
Neg (17V, S) = 1, and by Lemma 3.12 Neg (V, P0,β) = 1.

Lemma 3.14 Let V be a sparse potential in Pα,β where β−α ≥ 1. Then

Neg (V, Pα,β) ≤ 1 + C

(

(β − α)

∫

Pα,β

V (x) dx

)1/2

. (3.46)

In particular, for a sparse potential in Sn,

Neg (V, Sn) ≤ 1 + C
√

an (V ). (3.47)

Proof. Without loss of generality set α = 0. Set also

J =

∫

P0,β

V (x) dx

and recall that, by Corollary 3.13, if βJ ≤ c for sufficiently small c then
Neg (V, P0,β) = 1. Hence, in this case (3.46) is trivially satisfied, and we
assume in the sequel that βJ > c.
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Due to Lemma 3.12, it suffices to prove that

Neg (V, S) ≤ C (βJ)1/2 .

Consider a sequence of reals {rk}
N
k=0 such that

0 = r0 < r1 < ... < rN−1 < β ≤ rN

and the corresponding sequence of rectangles

Rk := Prk−1,rk
= {(x1, x2) : rk−1 < x1 < rk, 0 < x2 < π}

where k = 1, ..., N , that covers P0,β.
Denote lk = rk − rk−1 and Jk =

∫
Rk

V (x) dx. By Corollary 3.13,

lk ≥ 1 and lkJk ≤ c ⇒ Neg (V,Rk) = 1 (3.48)

Let us construct the sequence {rk}
N
k=0 to satisfy (3.48) for all k = 1, ..., N .

If rk−1 is already defined and rk−1 < β then choose rk > rk−1 to satisfy
the identity

lkJk = c. (3.49)
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x2 

Rk 

0=r0 

π 

r1 

... 

rk rk-1 

R1 

k 

x1 

RN 

β rN-1 rN 

S ... 

r2 

R2 

P0,β 

If such rk does not exist then set rk = β+1; in this case, we have lkJk < c.
Let us show that in the both cases lk = rk − rk−1 ≥ 1. Indeed, if lk < 1
then rk < β + 1 so that (3.49) is satisfied. By Hölder inequality, (3.49)
and lk < 1, we obtain

(∫

Rk

V pdx

)1/p

≥
1

(πlk)
1/p′

∫

Rk

V dx =
c

(πlk)
1/p′ lk

≥
c

π1/p′
,

which contradicts the assumption that V is sparse. Hence, lk ≥ 1.
As soon as we reach rk ≥ β we stop the process and set N = k. Since

always lk ≥ 1, the process will indeed stop in a finite number of steps.
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We obtain a partition of S into N rectangles R1, ..., RN and two half-
strips: S ∩ {x1 < 0} and S ∩ {x1 > rN}, and in the both half-strips we
have V ≡ 0. In each Rk we have Neg (V,Rk) = 1 whence it follows that

Neg (V, S) ≤ 2 +
N∑

k=1

Neg (V,Rk) = N + 2.

Let us estimate N from above. In each Rk with k ≤ N − 1 we have by
(3.49) 1

Jk
= 1

c
lk. Therefore, we have

N − 1 =
N−1∑

k=1

1
√

Jk

√
Jk ≤

(
1

c

N−1∑

k=1

lk

)1/2(N−1∑

k=1

Jk

)1/2

≤
(

1
c
β
)1/2

J1/2.

Using also 3 ≤ 3
(

1
c
βJ
)1/2

, we obtain N + 2 ≤ 4
(

1
c
βJ
)1/2

, which finishes
the proof of (3.46).

The estimate (3.47) follows trivially from (3.46) and (3.39) as Sn is a
rectangle Pα,β with the length 1 ≤ β − α ≤ 2|n|+1.
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Proposition 3.15 For any sparse potential in the strip S,

Neg (V, S) ≤ 1 + C
∑

{n:an(V )>c}

√
an (V ), (3.50)

for some constant C, c > 0 depending only on p.

Proof. Let us enumerate in the increasing order those values n where
an (V ) > c. So, we obtain an increasing sequence {ni}, finite or infinite,
such that ani

(V ) > c for any index i. The difference S \
⋃

i Sni
can be

partitions into a sequence {Tj} of rectangles, where each rectangle Tj

either fills the gap in S between successive rectangles Sni
or Tj may be a

half-strip that fills the gap between Sni
and +∞ or −∞.

 

x1 

S Tj  ni 
S ni+1 

... 

... 

S 
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By construction, each Tj is a union of some rectangles Sk with ak (V ) ≤
c. It follows from Corollary 3.11 that Neg (V, Tj) = 1. Since by construc-
tion

# {Tj} ≤ 1 + # {Sni
} ,

it follows that

Neg (V, S) ≤
∑

j

Neg (V, Ti) +
∑

i

Neg (V, Sni
)

≤ 1 + # {Sni
} +

∑

i

Neg (V, Sni
)

≤ 1 + 2
∑

i

Neg (V, Sni
) .

In each Sni
we have by (3.47) and ani

(V ) > c that

Neg (V, Sni
) ≤ C

√
ani

(V ).

Substituting into the previous estimate, we obtain (3.50).
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3.11 Arbitrary potentials in a strip

We use notation an (V ) and bn (V ) defined by (3.39) and (3.40).

Theorem 3.16 For any p > 1 and for any potential V in the strip S,
we have

Neg (V, S) ≤ 1+C
∑

{n∈Z:an(V )>c}

√
an (V )+C

∑

{n∈Z:bn(V )>c}

bn (V ) , (3.51)

where the positive constants C, c depend only on p.

Proof. Let {ni} be a sequence of all n ∈ Z for which bn (V ) > c.
Let {Tj} be rectangles that fill the gaps in S between successive Qni

or
between Qni

and ±∞.

 

x1 

Q ni Tj 
S Q ni+ 1 
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If the sequence {ni} is empty then V is sparse, and (3.51) follows
from Proposition 3.15. Assume that {ni} is non-empty.

Consider the potentials V ′ = V 1∪Tj
and V ′′ = V 1∪Qni

. Since V =
V ′ + V ′′, we have

Neg (V, S) ≤ Neg (2V ′, S) + Neg (2V ′′, S) .

The potential 2V ′ is sparse by construction, whence by Proposition 3.15

Neg (2V ′, S) ≤ 1 + C
∑

{n:an(V ′)>c}

√
an (V ′). (3.52)

By Lemma 3.2 and Lemma 3.5, we obtain

Neg (2V ′′, S) ≤
∑

j

Neg (2V ′′, Tj) +
∑

i

Neg (2V ′′, Qni
)

= # {Tj} +
∑

i

(
1 + C ‖2V ′′‖Lp(Qni)

)

= # {Tj} + # {Qni
} + 2C

∑

i

bni
(V ) .
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By construction we have # {Tj} ≤ 1 + # {Qni
} . By the choice of ni, we

have 1 < c−1bni
(V ) , whence

# {Tj}+# {Qni
} ≤ 1+2# {Qni

} ≤ 1+2c−1
∑

i

bni
(V ) ≤ 3c−1

∑

i

bni
(V )

Combining these estimates together, we obtain

Neg (2V ′′, S) ≤ C ′
∑

i

bni
(V ) = C ′

∑

{n:bn(V )>c}

bn (V ) (3.53)

Adding up (3.52) and (3.53) yields

Neg (V, S) ≤ 1 + C
∑

{n:an(V ′)>c}

√
an (V ′) + C

∑

{n:bn(V )>c}

bn (V ) . (3.54)

Since V ′ ≤ V , (3.54) implies (3.51), which finishes the proof.

Remark. In fact, we have proved a slightly better inequality (3.54) than
(3.51).
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3.12 Proof of Theorem 3.1

Let us prove the main Theorem 3.1, that is, for any potential V in R2,

Neg (V ) ≤ 1 + C
∑

{n∈Z:An>c}

√
An + C

∑

{n∈Z:Bn>c}

Bn, (3.55)

where

An (V ) =

∫

Un

V (x) (1 + |ln |x||) dx, Bn (V ) =

(∫

Wn

V p (x) |x|2(p−1) dx

)1/p

,

Un =






{e2n−1
< |x| < e2n

}, n ≥ 1,
{e−1 < |x| < e}, n = 0,

{e−2|n|
< |x| < e−2|n|−1

}, n ≤ −1,

and
Wn =

{
en < |x| < en+1

}
.
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Consider an open set Ω = R2 \ L where L = { x1 ≥ 0, x2 = 0} and

the mapping Ψ : Ω → S̃ where Ψ (z) = ln z and

S̃ =
{
(y1, y2) ∈ R

2 : 0 < y2 < 2π
}

.

 
Ω Ψ(z) = ln z 

S 
~ 

2π 

0 n n+1 

 

y1 

y2 
x2 

x1 0 

Wn 

en en+1 
Qn 

L 

Φ(z) = ez
 

Using the inverse mapping Φ = Ψ−1, define a potential Ṽ on S̃ by
Ṽ (y) = V (Φ (y)) |JΦ (y)| where JΦ is the Jacobian of Φ. It is possible to
prove that

Neg
(
V,R2

)
≤ Neg (V, Ω) = Neg(Ṽ , S̃). (3.56)
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Since the strips S̃ and S are bilipschitz equivalent, Theorem 3.16
holds also for S̃, that is,

Neg(Ṽ , S̃) ≤ 1 + C
∑

{n:an>c}

√
an + C

∑

{n:bn(V )>c}

bn, (3.57)

where

an =

∫

Sn

(1 + |y1|) Ṽ (y) dy, bn =

(∫

Qn

Ṽ pdy

)1/p

,

and
Qn = Ψ (Wn \ L) , Sn = Ψ (Un \ L) .

Since JΨ = 1
|x|2

, we obtain, using the change y = Ψ (x) ,

bp
n =

∫

Qn

Ṽ p (y) dy =

∫

Wn

V p (x) |JΦ (y)|p |JΨ (x)| dx

=

∫

Wn

V p (x) |JΨ (x)|1−p dx

=

∫

Wn

V p (x) |x|2(p−1) dx = Bp
n.
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Similarly, computing an and observing that

y1 = Re Ψ (x) = Re ln x = ln |x| ,

we obtain

an =

∫

Sn

Ṽ (y) (1 + |y1|) dy =

∫

Un

V (x) |JΦ (y)| (1 + |ln |x||) |JΨ (x)| dx

=

∫

Un

V (x) (1 + |ln |x||) dx = An.

Combining together (3.56), (3.57), we obtain (3.55).
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