Estimating the number of negative eigenvalues of Schrödinger operators

> Alexander Grigor'yan University of Bielefeld

IMS, CUHK, Hong Kong, March-April 2012

# 1 Upper estimate in $\mathbb{R}^n$ , $n \ge 3$

# **1.1** Introduction and statement

Given a non-negative  $L^1_{loc}$  function V(x) on  $\mathbb{R}^n$ , consider the Schrödinger type operator

$$H_V = -\Delta - V$$

where  $\Delta = \sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2}$  is the classical Laplace operator. More precisely,  $H_V$  is defined as a form sum of  $-\Delta$  and -V, so that, under certain assumptions about V, the operator  $H_V$  is self-adjoint in  $L^2(\mathbb{R}^n)$ .

Denote by Neg  $(H_V)$  the number of negative eigenvalues of  $H_V$  (counted with multiplicity), assuming that its spectrum in  $(-\infty, 0)$  is discrete. For example, the latter is the case when  $V(x) \to 0$  as  $x \to \infty$ . We are are interested in obtaining estimates of Neg  $(H_V)$  in terms of the potential V.

Suppose that -V is an attractive potential field in quantum mechanics. Then  $H_V$  is the Hamiltonian of a particle that moves in this field, and the negative eigenvalues of  $H_V$  correspond to so called *bound states* of the particle, that is, the negative energy levels  $E_k$  that are inside a

#### potential well.



Hence, Neg  $(H_V)$  determines the number of bound states of the system. In particular, if -V is the potential field of an electron in an atom, then Neg  $(H_V)$  is the maximal number of possible electron orbits in the atom.

Estimates of Neg  $(H_V)$ , especially upper bounds, are of paramount importance for quantum mechanics.

We start with a famous theorem of Cwikel-Lieb-Rozenblum.

**Theorem 1.1** Assume  $n \geq 3$  and  $V \in L^{n/2}(\mathbb{R}^n)$ . Then  $H_V$  can be defined as a self-adjoint operator, its negative spectrum is discrete, and the following estimate is true

$$\operatorname{Neg}\left(H_{V}\right) \leq C_{n} \int_{\mathbb{R}^{n}} V\left(x\right)^{n/2} dx.$$
(1.1)

This estimate was proved independently by the above named authors in 1972-1977. Later Lieb used (1.1) to prove the stability of the matter in the framework of quantum mechanics.

The estimate (1.1) implies that, for a large parameter  $\alpha$ ,

Neg 
$$(\alpha V) = O(\alpha^{n/2})$$
 as  $\alpha \to \infty$ . (1.2)

This is a so called semi-classical asymptotic (that corresponds to letting  $\hbar \to 0$ ), and it is expected from another consideration that Neg( $\alpha V$ ) should behave as  $\alpha^{n/2}$ , at least for a reasonable class of potentials.

### **1.2** Counting function

Before the proof of Theorem 1.1, let us give an exact definition of the operator  $H_V$  and its counting function. Given a potential V in  $\mathbb{R}^n$ , that is, a non-negative function from  $L^1_{loc}(\mathbb{R}^n)$ , define the bilinear energy form by

$$\mathcal{E}_{V}(f,g) = \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla g dx - \int_{\mathbb{R}^{n}} V f g dx$$

for all  $f, g \in \mathcal{D} := C_0^{\infty}(\mathbb{R}^n)$ , and the corresponding quadratic form  $\mathcal{E}_V(f) := \mathcal{E}_V(f, f)$ .

For any open set  $\Omega \subset \mathbb{R}^n$ , we consider a restriction of  $\mathcal{E}_V$  to  $\mathcal{D}_{\Omega} := C_0^{\infty}(\Omega)$ . The form  $(\mathcal{E}_V, \mathcal{D}_{\Omega})$  is called *closable* in  $L^2(\Omega)$  if

1. it is semi-bounded below, that is, for some constant  $K \ge 0$ ,

$$\mathcal{E}_V(f) \ge -K \|f\|_2^2 \text{ for all } f \in \mathcal{D}_{\Omega};$$

2. and, for any sequence  $\{f_n\} \subset \mathcal{D}_{\Omega}$ ,

 $||f_n||_2 \to 0 \text{ and } \mathcal{E}_V(f_n - f_m) \to 0 \implies \mathcal{E}_V(f_n) \to 0.$ 

A closable form  $(\mathcal{E}_V, \mathcal{D}_\Omega)$  has a unique extension to a subspace  $\mathcal{F}_{V,\Omega}$ of  $L^2(\Omega)$  so that  $\mathcal{F}_{V,\Omega}$  is a Hilbert space with respect to the inner product

$$(f,g)_{\mathcal{E}} := \mathcal{E}_V(f,g) + (K+1)(f,g), \qquad (1.3)$$

(that is,  $(\mathcal{E}_V, \mathcal{F}_{V,\Omega})$  is *closed*) and  $\mathcal{D}_{\Omega}$  is dense in  $\mathcal{F}_{V,\Omega}$ .

Being a closed form,  $(\mathcal{E}_V, \mathcal{F}_{V,\Omega})$  has the generator  $H_{V,\Omega}$  that can be defined as an (unbounded) operator in  $L^2(\Omega)$  with a maximal possible domain dom  $(H_{V,\Omega}) \subset \mathcal{F}_{V,\Omega}$  such that

$$\mathcal{E}_V(f,g) = (H_{V,\Omega}f,g) \quad \forall f \in \operatorname{dom}(H_{V,\Omega}) \text{ and } g \in \mathcal{F}_{V,\Omega}.$$
 (1.4)

Then  $H_{V,\Omega}$  is a self-adjoint operator in  $L^{2}(\Omega)$ .

For example, for  $f, g \in \mathcal{D}_{\Omega}$  we have

$$\mathcal{E}_{V}(f,g) = \int_{\Omega} \nabla f \cdot \nabla g dx - \int_{\Omega} V f g dx = \int_{\Omega} \left( -\Delta f - V f \right) g dx$$

so that

$$H_{V,\Omega}f = -\Delta f - Vf.$$

Since the operator  $H_{V,\Omega}$  is self-adjoint, the spectrum of  $H_{V,\Omega}$  is real and semi-bounded below. The *counting function*  $\mathcal{N}_{\lambda}$  of  $H_{V,\Omega}$  is defined by

$$\mathcal{N}_{\lambda}\left(H_{V,\Omega}\right) = \dim \operatorname{Im} \mathbf{1}_{(-\infty,\lambda)}\left(H_{V,\Omega}\right), \qquad (1.5)$$

where  $\mathbf{1}_{(-\infty,\lambda)}(H_{V,\Omega})$  is the spectral projector of  $H_{V,\Omega}$  of the interval  $(-\infty,\lambda)$ . For example, if the spectrum of  $H_{V,\Omega}$  is discrete and  $\{\varphi_k\}$  is an orthonormal basis of eigenfunctions with eigenvalues  $\{\lambda_k\}$  then  $\mathbf{1}_{(-\infty,\lambda)}(H_{V,\Omega})$  is the projection on the subspace of  $L^2(\Omega)$  spanned by all  $\varphi_k$  with  $\lambda_k < \lambda$ . It follows that  $\mathcal{N}_{\lambda}(H_{V,\Omega})$  is the number of eigenvalues  $\lambda_k < \lambda$  counted with multiplicity. The definition (1.5) has advantage that it always makes sense.

#### **Lemma 1.2** The following identity is true for all real $\lambda$ :

 $\mathcal{N}_{\lambda}(H_{V,\Omega}) = \sup\left\{\dim \mathcal{V}: \mathcal{V} \prec \mathcal{D}_{\Omega} \text{ and } \mathcal{E}_{V}(f) < \lambda \|f\|_{2}^{2} \quad \forall f \in \mathcal{V} \setminus \{0\}\right\},$ (1.6)

where  $\mathcal{V} \prec \mathcal{D}_{\Omega}$  means that  $\mathcal{V}$  is a subspace of  $\mathcal{D}_{\Omega}$ . In fact, it suffices to restrict sup to finite dimensional subspaces  $\mathcal{V}$ .

For example, if the spectrum of  $H_{V,\Omega}$  is discrete and  $\{\varphi_k\}$  is an orthonormal basis of eigenfunctions with eigenvalues  $\{\lambda_k\}$  then the condition  $\mathcal{E}_V(f) < \lambda \|f\|_2^2$  is satisfied exactly for  $f = \varphi_k$  provided  $\lambda_k < \lambda$ , because

$$\mathcal{E}_{V}(\varphi_{k}) = (H_{V,\Omega}\varphi_{k},\varphi_{k}) = \lambda_{k}(\varphi_{k},\varphi_{k}) < \lambda \|\varphi_{k}\|_{2}^{2}.$$

The optimal space  $\mathcal{V}$  in (1.7) is spanned by all  $\{\varphi_k\}$  with  $\lambda_k < \lambda$ , and its dimension is equal to  $\mathcal{N}_{\lambda}(H_{V,\Omega})$ .

There is also a version of counting function with non-strict inequality:

$$\mathcal{N}_{\lambda}^{*}(H_{V,\Omega}) = \dim \operatorname{Im} \mathbf{1}_{(-\infty,\lambda]}(H_{V,\Omega}).$$

Then the following identity is true:

$$\mathcal{N}_{\lambda}^{*}(H_{V,\Omega}) = \sup \left\{ \dim \mathcal{V} : \mathcal{V} \prec \mathcal{F}_{V,\Omega} \text{ and } \mathcal{E}_{V}[f] \leq \lambda \mu[f] \quad \forall f \in \mathcal{V} \right\}.$$
(1.7)

# **1.3** Reduction to operator $\frac{1}{V}\Delta$

For the sake of proof of Theorem 1.1, we will assume that V > 0 and, moreover,  $\frac{1}{V} \in L^1_{loc}(\mathbb{R}^n)$ . Then by approximation argument one can handle a general case. Set  $H_V \equiv H_{V,\mathbb{R}^n}$ . Our aim is to prove the upper bound

$$\mathcal{N}_0(H_V) \le C_n \int_{\mathbb{R}^n} V^{n/2} dx$$

for the number  $\mathcal{N}_0(H_V)$  of negative eigenvalues. By an approximation argument the same estimate will hold for the number  $\mathcal{N}_0^*(H_V)$  of non-positive eigenvalues.

For  $\lambda = 0$  the identity (1.6) becomes

 $\mathcal{N}_{0}(H_{V,\Omega}) = \sup \left\{ \dim \mathcal{V} : \mathcal{V} \prec \mathcal{D}_{\Omega} \text{ and } \mathcal{E}_{V}(f) < 0 \ \forall f \in \mathcal{V} \setminus \{0\} \right\}.$ (1.8)

The condition  $\mathcal{E}_{V}(f) < 0$  here is equivalent to

$$\int_{\Omega} |\nabla f|^2 \, dx - \int_{\Omega} V f^2 \, dx < 0 \tag{1.9}$$

for all non-zero  $f \in \mathcal{V}$  where  $\mathcal{V}$  is a subspace of  $\mathcal{D}_{\Omega}$ .

We will interpret this inequality in terms of the counting function of another operator. Consider a new measure  $\mu$  defined by

$$d\mu = V\left(x\right)dx$$

and the energy form

$$\mathcal{E}\left(f\right) = \int_{\mathbb{R}^n} \left|\nabla f\right|^2 dx$$

for  $f \in \mathcal{D}_{\Omega}$ . Then (1.9) can be rewritten in the form  $\mathcal{E}(f) < \|f\|_{2,\mu}^2$  so that

$$\mathcal{N}_{0}(H_{V,\Omega}) = \sup\left\{\dim \mathcal{V}: \mathcal{V} \prec \mathcal{D}_{\Omega} \text{ and } \mathcal{E}(f) < \|f\|_{2,\mu}^{2} \,\,\forall f \in \mathcal{V} \setminus \{0\}\right\}.$$
(1.10)

The right hand side here is the counting function of another operator. Indeed, denoted by  $\mathcal{L}_{V,\Omega}$  the generator of the energy form  $(\mathcal{E}, \mathcal{D}_{\Omega})$  in  $L^2(\Omega, \mu)$ . This form can be shown to be closable, so that its generator  $\mathcal{L}_{V,\Omega}$  is a self-adjoint operator in  $L^2(\Omega, \mu)$ . Note also that this operator is positive definite because so is  $\mathcal{E}$ .

By definition, we have, for all  $f, g \in \text{dom}(\mathcal{L}_{V,\Omega})$ ,

$$\mathcal{E}(f,g) = (\mathcal{L}_{V,\Omega}f,g)_{\mu}.$$

In particular, for  $f, g \in \mathcal{D}_{\Omega}$  this implies

$$-\int_{\Omega} (\Delta f) g dx = \int_{\Omega} \nabla f \cdot \nabla g \, dx = \int_{\Omega} (\mathcal{L}_{V,\Omega} f) g V dx,$$

whence  $\mathcal{L}_{V,\Omega}f = -\frac{1}{V}\Delta f$  that is,  $\mathcal{L}_{V,\Omega} = -\frac{1}{V}\Delta$ .

The counting function  $\mathcal{N}_{\lambda}(\mathcal{L}_{V,\Omega})$  of the operator  $\mathcal{L}_{V,\Omega}$  is defined exactly as for  $H_{V,\Omega}$ . Lemma 1.2 for this operator means that

$$\mathcal{N}_{\lambda}\left(\mathcal{L}_{V,\Omega}\right) = \sup\left\{\dim \mathcal{V}: \mathcal{V} \prec \mathcal{D}_{\Omega} \text{ and } \mathcal{E}\left(f\right) < \lambda \left\|f\right\|_{2,\mu}^{2} \quad \forall f \in \mathcal{V} \setminus \{0\}\right\}.$$
(1.11)

For  $\lambda = 1$  the right hand side of (1.11) coincides with that of (1.10), which implies

$$\mathcal{N}_0(H_{V,\Omega}) = \mathcal{N}_1(\mathcal{L}_{V,\Omega}). \qquad (1.12)$$

In particular, for the case  $\Omega = \mathbb{R}^n$ , we have  $\mathcal{N}_0(H_V) = \mathcal{N}_1(\mathcal{L}_V)$ . The identity (1.12) is called *Birman-Schwinger principle*.

Informally the identity (1.12) reflects the equivalence of the inequalities  $-\Delta - V \leq 0$  and  $-\frac{1}{V}\Delta \leq 1$  that are understood in the sense of quadratic forms.

#### **1.4** Case of small V

Here we illustrate the usage of (1.12) by proving a particular case of Theorem 1.1 as follows.

**Proposition 1.3** If  $n \ge 3$  then there is a constant  $c_n > 0$  such that

$$\int_{\mathbb{R}^n} V^{n/2} dx < c_n \Rightarrow \mathcal{N}_0\left(H_V\right) = 0.$$

**Proof.** By (1.12) we need to prove that the spectrum of  $\mathcal{L}_V$  below 1 is empty, that is,

inf spec  $\mathcal{L}_V \geq 1$ .

This is equivalent to the claim that the operator  $\mathcal{L}_V$  in  $L^2(\mathbb{R}^n,\mu)$  is invertible and

$$\left\|\mathcal{L}_V^{-1}\right\| \le 1.$$

The inverse operator is defined by

$$\mathcal{L}_V^{-1}f = u \quad \Leftrightarrow \quad \mathcal{L}_V u = f,$$

where  $f \in L^2(\mathbb{R}^n, \mu)$  and  $u \in \text{dom}(\mathcal{L}_V)$ . Hence, it suffices to prove that

$$\mathcal{L}_V u = f \quad \Rightarrow \|u\|_{2,\mu} \le \|f\|_{2,\mu} \,.$$

Multiplying  $\mathcal{L}_V u = f$  by u and integrating against  $\mu$ , we obtain

$$\mathcal{E}(u) = (\mathcal{L}_V u, u)_{\mu} = (f, u)_{\mu}$$

that is,

$$\int_{\mathbb{R}^n} |\nabla u|^2 \, dx = \int_{\mathbb{R}^n} u f d\mu.$$

By Sobolev inequality, we have

$$\int_{\mathbb{R}^n} |\nabla u|^2 \, dx \ge c_n \left( \int_{\mathbb{R}^n} |u|^{\frac{2n}{n-2}} \, dx \right)^{\frac{n-2}{n}}.$$

Note that this is the only place where n > 2 is used.

Using the Hölder inequality and the above lines, we obtain

$$\int_{\mathbb{R}^{n}} u^{2} V dx \leq \left( \int_{\mathbb{R}^{n}} |u|^{2\frac{n}{n-2}} dx \right)^{\frac{n-2}{n}} \left( \int_{\mathbb{R}^{n}} V^{\frac{n}{2}} dx \right)^{\frac{2}{n}} \\
\leq c_{n}^{-1} \left( \int_{\mathbb{R}^{n}} |\nabla u|^{2} dx \right) \left( \int_{\mathbb{R}^{n}} V^{\frac{n}{2}} dx \right)^{\frac{2}{n}} \\
= c_{n}^{-1} \left( \int_{\mathbb{R}^{n}} uf d\mu \right) \left( \int_{\mathbb{R}^{n}} V^{\frac{n}{2}} dx \right)^{\frac{2}{n}} \\
\leq c_{n}^{-1} \left( \int_{\mathbb{R}^{n}} f^{2} d\mu \right)^{1/2} \left( \int_{\mathbb{R}^{n}} u^{2} d\mu \right)^{1/2} \left( \int_{\mathbb{R}^{n}} V^{\frac{n}{2}} dx \right)^{\frac{2}{n}}$$
(1.13)

whence

$$\|u\|_{2,\mu} \le c_n^{-1} \left( \int_{\mathbb{R}^n} V^{\frac{n}{2}} dx \right)^{\frac{2}{n}} \|f\|_{2,\mu}.$$

Clearly, if  $\int_{\mathbb{R}^n} V^{\frac{n}{2}} dx$  small enough then  $\|u\|_{2,\mu} \leq \|f\|_{2,\mu}$ , which was to be proved.

The argument in the proof of Proposition 1.3 allows to prove another part of Theorem 1.1.

**Proposition 1.4** If  $V \in L^{n/2}(\mathbb{R}^n)$  then the form  $(\mathcal{E}_V, \mathcal{D})$  is closable. Consequently, the operator  $H_V$  is defined as a self-adjoint operator in  $L^2(\mathbb{R}^n)$ .

**Proof.** It follows from the hypothesis that, for any  $\varepsilon > 0$ , V can be split to a sum of two potentials  $V = V_1 + V_2$  where

$$||V_1||_{n/2} \le \varepsilon$$
 and  $V_2 \in L^{\infty}$ .

It follows from (1.13) that

$$\mathcal{E}(u) \ge c_n \left( \int_{\mathbb{R}^n} V_1^{n/2} dx \right)^{-2/n} \int_{\mathbb{R}^n} u^2 V_1 dx \ge c_n \varepsilon^{-1} \int_{\mathbb{R}^n} u^2 V_1 dx.$$

Choosing  $\varepsilon$  sufficiently small, we obtain  $c_n \varepsilon^{-1} \ge 2$  whence

$$\int_{\mathbb{R}^n} u^2 V dx = \int_{\mathbb{R}^n} u^2 V_1 dx + \int_{\mathbb{R}^n} u^2 V_2 dx$$
  
$$\leq \frac{1}{2} \mathcal{E}(u) + K \|u\|_2^2, \qquad (1.14)$$

where  $K = \|V_2\|_{L^{\infty}}$ . In particular, we see that

$$\mathcal{E}_{V}(u) = \mathcal{E}(u) - \int_{\mathbb{R}^{n}} u^{2} V dx \ge -K \|u\|_{2}^{2}$$

so that the form  $\mathcal{E}_V$  is semi-bounded below. By a standard result from the theory of quadratic forms, (1.14) implies that the form  $\mathcal{E}_V$  is closed in the domain  $W^{1,2}(\mathbb{R}^n)$ , which finishes the proof.

#### **1.5** Proof of Theorem 1.1 in general case

The proof below is due to Li and Yau '83 but it is presented here from somewhat different angle.

In a precompact domain  $\Omega$  the operator  $\mathcal{L}_{V,\Omega}$  has discrete positive spectrum. Denote its eigenvalues by  $\lambda_k(\Omega)$ , where k = 1, 2, ..., so that the sequence  $\{\lambda_k(\Omega)\}$  is increasing, and each eigenvalue is counted with multiplicity. The main part of the proof of Theorem 1.1 is contained in the following statement.

**Theorem 1.5** (AG, Yau 2003) Assume that there is a Radon measure  $\nu$  in  $\mathbb{R}^n$  and  $\alpha > 0$  such that, for all precompact open sets  $\Omega$ ,

$$\lambda_1(\Omega) \ge \nu(\Omega)^{-\alpha}. \tag{1.15}$$

Then, for any positive integer k and any precompact open set  $\Omega$ ,

$$\lambda_k(\Omega) \ge c \left(\frac{k}{\nu(\Omega)}\right)^{\alpha},\tag{1.16}$$

where  $c = c(\alpha) > 0$ .

For example, if V = 1 then  $\mathcal{L}_{V,\Omega}$  is the Laplace operator  $-\Delta$  with the Dirichlet boundary condition on  $\partial\Omega$ . The hypothesis (1.15) is satisfies if  $\nu$  is a multiple of the Lebesgue measure as by the Faber-Krahn inequality

$$\lambda_1(\Omega) \ge c_n (\operatorname{vol} \Omega)^{-2/n}$$

Then (1.16) becomes

$$\lambda_k(\Omega) \ge c'_n \left(\frac{k}{\operatorname{vol}\Omega}\right)^{2/n},$$

that is also known to be true. Moreover, it matches the Weyl's asymptotic formula  $\lambda_k(\Omega) \sim \tilde{c}_n \left(\frac{k}{\operatorname{vol}\Omega}\right)^{2/n}$  as  $k \to \infty$ .

The point of Theorem 1.5 is that V in the definition of  $\mathcal{L}_{V,\Omega}$  can be arbitrary and measure  $\nu$  can be arbitrary. By the way, there is no restriction of the dimension n in Theorem 1.5. Moreover, exactly in this form it is true on any Riemannian manifold instead of  $\mathbb{R}^n$ .

Let us show how Theorem 1.5 implies Theorem 1.1. Let us use the variational principle:

$$\lambda_{1}\left(\Omega\right) = \inf_{u \in \mathcal{D}_{\Omega}} \frac{\left(\mathcal{L}_{V,\Omega}u, u\right)_{\mu}}{\left(u, u\right)_{\mu}} = \inf_{u \in \mathcal{D}_{\Omega}} \frac{\mathcal{E}\left(u\right)}{\left(u, u\right)_{\mu}}.$$

Using again the Sobolev inequality

$$\int_{\Omega} \left| \nabla u \right|^2 dx \ge c_n \left( \int_{\Omega} \left| u \right|^{\frac{2n}{n-2}} dx \right)^{\frac{n-2}{n}}$$

and the Hölder inequality

$$(u,u)_{\mu} = \int_{\Omega} u^2 V dx \le \left(\int_{\Omega} |u|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \left(\int_{\Omega} V^{n/2} dx\right)^{\frac{2}{n}},$$

we obtain

$$\frac{\mathcal{E}(u)}{(u,u)_{\mu}} \ge c_n \left( \int_{\Omega} V^{n/2} dx \right)^{-\frac{2}{n}}.$$

Hence, setting  $d\nu = c_n^{-n/2} V^{n/2} dx$  and minimizing in u, we obtain

 $\lambda_1(\Omega) \ge \nu(\Omega)^{-2/n}$ .

By Theorem 1.5, we conclude that

$$\lambda_k(\Omega) \ge c \left(\frac{k}{\nu(\Omega)}\right)^{2/n}.$$
(1.17)

We need to estimate the counting function

 $\mathcal{N}_{1}\left(\mathcal{L}_{V,\Omega}\right) = \#\left\{k : \lambda_{k}\left(\Omega\right) < 1\right\}.$ 

By (1.17),  $\lambda_k(\Omega) < 1$  implies  $k \leq C\nu(\Omega)$  whence also

$$\mathcal{N}_1\left(\mathcal{L}_{V,\Omega}\right) \leq C\nu\left(\Omega\right) = C \int_{\Omega} V^{n/2} dx.$$

It follows by (1.12) that also

$$\mathcal{N}_0(H_{V,\Omega}) \le C \int_{\Omega} V^{n/2} dx \le C \int_{\mathbb{R}^n} V^{n/2} dx.$$
(1.18)

We are left to pass from  $H_{V,\Omega}$  to  $H_{V,\mathbb{R}^n}$ . Recall that

 $\mathcal{N}_{0}\left(H_{V,\mathbb{R}^{n}}\right) = \sup\left\{\dim \mathcal{V}: \mathcal{V} \prec \mathcal{D}_{\mathbb{R}^{n}}, \quad \mathcal{E}_{V}\left(f\right) < 0 \; \forall f \in \mathcal{V} \setminus \left\{0\right\}\right\},\$ 

where  $\mathcal{V}$  is a finite-dimensional subspace of  $\mathcal{D}_{\mathbb{R}^n}$ . For any such  $\mathcal{V}$  there exists a precompact open set  $\Omega$  containing supp f for all  $f \in \mathcal{V}$  (for it suffices to have supp  $f \subset \mathcal{V}$  for the elements of a basis of  $\mathcal{V}$ ). Hence,  $\mathcal{V} \prec \mathcal{D}_{\Omega}$  and by (1.18) dim  $\mathcal{V} \leq C \int_{\mathbb{R}^n} V^{n/2} dx$ , whence the same estimate for  $\mathcal{N}_0(H_{V,\mathbb{R}^n})$  follows.

### **Brief summary**

We prove the following theorem.

**Theorem 1.1.** If V is a non-negative potential in  $\mathbb{R}^n$  with  $n \ge 3$  then for the operator  $H_V = -\Delta - V$ ,

$$\mathcal{N}_0(H_V) \le C_n \int_{\mathbb{R}^n} V(x)^{n/2} \, dx. \tag{1.1}$$

This was reduced to the following theorem.

**Theorem 1.5.** For any bounded domain  $\Omega \subset \mathbb{R}^n$ , denote by  $\lambda_k(\Omega)$  the k-th eigenvalue of the operator  $\mathcal{L}_{V,\Omega} = -\frac{1}{V}\Delta$  (with the Dirichlet boundary condition on  $\partial\Omega$ ). Assume that there is a Radon measure  $\nu$  in  $\mathbb{R}^n$  and  $\alpha > 0$  such that, for all bounded domains  $\Omega$ ,

$$\lambda_1(\Omega) \ge \nu(\Omega)^{-\alpha}. \tag{1.15}$$

Then, for any positive integer k and any precompact open set  $\Omega$ ,

$$\lambda_k(\Omega) \ge c \left(\frac{k}{\nu(\Omega)}\right)^{\alpha},\tag{1.16}$$

where  $c = c(\alpha) > 0$ .

### **1.6** Nash inequality

For the proof of Theorem 1.5 we need a Nash type inequality.

**Lemma 1.6** Assume that (1.15) holds, that is, for all precompact open sets  $\Omega$ ,

 $\lambda_1(\Omega) \ge \nu(\Omega)^{-\alpha}.$ 

Then, for all such  $\Omega$  and non-negative  $f \in \mathcal{D}_{\Omega}$ ,

$$\mathcal{E}(f) \ge c \left( \int_{\Omega} f^2 d\mu \right)^{1+\alpha} \left( \int_{\Omega} f d\mu \int_{\Omega} f d\nu \right)^{-\alpha}, \qquad (1.19)$$

where  $c = 2^{-2\alpha - 1}$ .

**Remark.** If  $V \equiv 1$  then both  $\mu$  and  $\nu$  are Lebesgue measures,  $\alpha = 2/n$ , and (1.19) becomes

$$\mathcal{E}(f) \ge \|f\|_2^{2+4/n} \|f\|_1^{-4/n},$$

which is a classical Nash inequality.

**Proof.** Fix s > 0 and observe that

$$\mathcal{E}\left(\left(f-s\right)_{+}\right) \le \mathcal{E}\left(f\right). \tag{1.20}$$

Set

$$\Omega_s := \{ x \in \Omega : f(x) > s \}$$

and note that supp  $(f-s)_+ \subset \overline{\Omega}_s \subset \Omega$ .



It follows from the variational property of  $\lambda_1(\Omega_s)$  and from (1.20), that

$$\int_{\Omega} \left(f-s\right)_{+}^{2} d\mu = \int_{\Omega_{s}} \left(f-s\right)_{+}^{2} d\mu \le \frac{\mathcal{E}\left((f-s)_{+}\right)}{\lambda_{1}(\Omega_{s})} \le \frac{\mathcal{E}\left(f\right)}{\lambda_{1}(\Omega_{s})}.$$
 (1.21)

Since

$$\nu\left(\Omega_{s}\right) \leq \frac{1}{s} \int_{\Omega} f d\nu$$

we obtain by hypothesis

$$\frac{1}{\lambda_1\left(\Omega_s\right)} \le \nu\left(\Omega_s\right)^{\alpha} \le s^{-\alpha} \left(\int_{\Omega} f d\nu\right)^{\alpha}.$$

Substituting into (1.21) and using

$$f^2 - 2sf \le (f - s)^2_+,$$

we obtain

$$\int_{\Omega} f^2 d\mu - 2s \int_{\Omega} f d\mu \le s^{-\alpha} \left( \int_{\Omega} f d\nu \right)^{\alpha} \mathcal{E}(f) \,. \tag{1.22}$$

Let us choose s from the condition

$$2s\int_{\Omega} fd\mu = \frac{1}{2}\int_{\Omega} f^2 d\mu.$$

With this s we obtain

$$\frac{1}{2} \int_{\Omega} f^2 d\mu \le \left(\frac{1}{4} \frac{\int_{\Omega} f^2 d\mu}{\int_{\Omega} f d\mu}\right)^{-\alpha} \left(\int_{\Omega} f d\nu\right)^{\alpha} \mathcal{E}\left(f\right)$$

whence

$$\left(\int_{\Omega} f^2 d\mu\right)^{1+\alpha} \leq 2^{2\alpha+1} \left(\int_{\Omega} f d\mu\right)^{\alpha} \left(\int_{\Omega} f d\nu\right)^{\alpha} \mathcal{E}\left(f\right),$$

and (1.19) follows.

### 1.7 Proof of Theorem 1.5

In the proof we work with the heat semigroup  $\{P_t\}_{t\geq 0}$  of the operator  $\mathcal{L}_{V,\Omega}$ , that is defined by

$$P_t^{\Omega} = e^{-t\mathcal{L}_{V,\Omega}}.$$

Since  $\mathcal{L}_{V,\Omega}$  is a self-adjoint non-negative definite operator in  $L^2(\Omega, \mu)$ , the operator  $P_t^{\Omega}$  is bounded self-adjoint operator in  $L^2(\Omega, \mu)$  for any  $t \geq 0$ . In fact, it is an integral operator:

$$P_{t}^{\Omega}f(x) = \int_{\Omega} p_{t}^{\Omega}(x, y) f(y) d\mu(y)$$

where  $p_t^{\Omega}(x, y)$  is the *heat kernel* of  $\mathcal{L}_{V,\Omega}$ . We will use the following general properties of the heat kernel:

- 1. positivity:  $p_t(x, y) \ge 0$ ;
- 2. the symmetry:  $p_{t}^{\Omega}(x,y) = p_{t}^{\Omega}(y,x)$ ;
- 3. the semigroup identity

$$\int_{\Omega} p_t^{\Omega}(x,z) p_s^{\Omega}(z,y) d\mu(z) = p_{t+s}^{\Omega}(x,y);$$

4. the total mass inequality:

$$\int_{\Omega} p_t^{\Omega}\left(x, y\right) d\mu\left(y\right) \le 1.$$

The last step before the proof of Theorem 1.5 is the following lemma.

**Lemma 1.7** If (1.15) holds, that is,  $\lambda_1(\Omega) \geq \nu(\Omega)^{-\alpha}$ , then, for any precompact open set  $\Omega$ ,

$$\int_{\Omega} p_t^{\Omega}(x, x) \, d\mu(x) \le \frac{C\nu(\Omega)}{t^{1/\alpha}}.$$
(1.23)

where  $C = C(\alpha)$ .

**Proof.** Fix  $s > 0, x \in \Omega$  and consider a function

•

$$f = p_s^{\Omega}\left(x, \cdot\right)$$

and set  $u_t = P_t^{\Omega} f$ , that is,

$$u_t(y) = \int_{\Omega} p_t^{\Omega}(y, z) f(z) d\mu(z) = p_{t+s}^{\Omega}(x, y).$$

Then we have

$$\int_{\Omega} u_t^2 d\mu = \int_{\Omega} p_{t+s}^{\Omega}(x, y) p_{t+s}^{\Omega}(y, x) \, d\mu(y) = p_{2(t+s)}^{\Omega}(x, x) \, .$$

On the other hand, by the Nash inequality we have

$$\int_{\Omega} u_t^2 d\mu \leq \left( \int_{\Omega} u_t d\mu \int_{\Omega} u_t d\nu \right)^{\frac{\alpha}{\alpha+1}} \left[ C\mathcal{E} \left( u_t \right) \right]^{\frac{1}{\alpha+1}}.$$

Using

$$\int_{\Omega} u_t d\mu = \int_{\Omega} p_{t+s}^{\Omega}(x, y) \, d\mu(y) \le 1, \qquad (1.24)$$

and

$$\mathcal{E}(u_t) = \left(\mathcal{L}_{V,\Omega}u_t, u_t\right)_{\mu} = -\left(\frac{d}{dt}u_t, u_t\right)_{\mu} = -\frac{1}{2}\frac{d}{dt}\left(u_t, u_t\right)_{\mu}$$

we obtain

$$\int_{\Omega} u_t^2 d\mu \le \left(\int_{\Omega} u_t d\nu\right)^{\frac{\alpha}{\alpha+1}} \left[-\frac{C}{2}\frac{d}{dt}\int_{\Omega} u_t^2 d\mu\right]^{\frac{1}{\alpha+1}}$$

Recall that  $u_t$  depends in fact on x. Setting

$$v_t(x) := \int_{\Omega} u_t^2 d\mu = p_{2(t+s)}^{\Omega}(x, x) ,$$

rewrite the previous inequality in the form

$$v_t(x) \le \left(\int_{\Omega} u_t d\nu\right)^{\frac{\alpha}{\alpha+1}} \left[-\frac{C}{2}\frac{\partial v_t}{\partial t}\right]^{\frac{1}{\alpha+1}}.$$
 (1.25)

Integrating (1.25) against  $d\mu(x)$  and using the Hölder inequality

$$\int F^{\frac{\alpha}{\alpha+1}} G^{\frac{1}{\alpha+1}} d\mu \le \left[ \int F d\mu \right]^{\frac{\alpha}{\alpha+1}} \left[ \int G d\mu \right]^{\frac{1}{\alpha+1}},$$

we obtain

$$\int_{\Omega} v_t(x) d\mu(x) \leq \int \underbrace{\left[\int u_t d\nu\right]}_{F} \underbrace{\overset{\alpha}{a+1}}_{F} \underbrace{\left[-\frac{C}{2}\frac{\partial v_t}{\partial t}\right]}_{G} \underbrace{\overset{1}{a+1}}_{H} d\mu(x)$$
$$\leq \underbrace{\left[\int \int u_t d\nu d\mu(x)\right]}_{\alpha+1} \underbrace{\left[-\frac{C}{2}\int \frac{\partial v_t}{\partial t} d\mu(x)\right]}_{H} \underbrace{\overset{1}{a+1}}_{A}.$$

Observe that (1.24) implies

$$\int \int u_t(x,\cdot)d\nu d\mu(x) = \int \left(\int u_t(x,\cdot)d\mu(x)\right)d\nu \le \int_{\Omega} d\nu = \nu(\Omega).$$
(1.26)

Denoting

$$w(t) := \int_{\Omega} v_t(x) d\mu(x) = \int_{\Omega} p_{2(t+s)}^{\Omega}(x,x) \mu(x),$$

we obtain from above

$$w(t) \le \nu(\Omega)^{\frac{\alpha}{\alpha+1}} \left(-\frac{C}{2}\frac{dw}{dt}\right)^{\frac{1}{\alpha+1}}.$$
(1.27)

Solving this differential inequality by separation of variables, we obtain

$$w(t) \le \frac{C'\nu\left(\Omega\right)}{t^{1/\alpha}}.$$

Finally, choosing s = t we obtain  $\int_{\Omega} p_{4t}^{\Omega}(x, x) \mu(x) \le \frac{C'\nu(\Omega)}{t^{1/\alpha}}$ , which was to be proved.

**Proof of Theorem 1.5.** We need to show that

$$\lambda_k(\Omega) \ge c \left(\frac{k}{\nu(\Omega)}\right)^{\alpha}$$

Note that

$$\int_{\Omega} p_t^{\Omega}(x, x) \, d\mu(x) = \operatorname{trace} P_t^{\Omega}.$$

On the other hand, all the eigenvalues of  $P_t^{\Omega}$  are equal to  $e^{-t\lambda_k(\Omega)}$ , whence

trace 
$$P_t^{\Omega} = \sum_{k=1}^{\infty} e^{-t\lambda_k(\Omega)}$$

Hence, applying (1.23), we obtain

$$\sum_{k=1}^{\infty} e^{-t\lambda_k(\Omega)} \le \frac{C\nu(\Omega)}{t^{1/\alpha}}.$$

Restricting the summation to the first k terms, we obtain

$$ke^{-t\lambda_k(\Omega)} \le \frac{C\nu\left(\Omega\right)}{t^{1/\alpha}}$$

whence

$$\lambda_k(\Omega) \ge \frac{1}{t} \ln \frac{kt^{1/\alpha}}{C\nu(\Omega)}.$$

Choosing t from the condition

$$\frac{kt^{1/\alpha}}{C\nu\left(\Omega\right)} = e_{z}$$

that is,

$$t = \left(Ce\frac{\nu\left(\Omega\right)}{k}\right)^{\alpha},$$

we obtain

$$\lambda_k(\Omega) \ge \frac{1}{t} = \left(\frac{1}{Ce} \frac{k}{\nu(\Omega)}\right)^{\alpha},$$

which finishes the proof of Theorem 1.5.  $\blacksquare$ 

# **1.8** Minimal surfaces

Let M be a two-dimensional manifold immersed in  $\mathbb{R}^3$  as an oriented minimal surface. The Riemannian metric on M is induced by the Euclidean structure of  $\mathbb{R}^3$ . Denote by  $\alpha$  the Riemannian area on M.

For any function  $f \in C_0^{\infty}(M)$  and a real parameter  $\varepsilon$ , consider a deformation of M given by the mapping  $x \mapsto x + \varepsilon f(x)\nu(x)$  where  $\nu(x)$  is the unit normal vector field on M compatible with the orientation. Since M is a minimal surface, the first variation  $\delta\alpha(f)$  of the area functional vanishes. For the second variation, the following formula is known:

$$\delta^2 \alpha(f) = \int_M (|\nabla f|^2 + 2Kf^2) d\alpha \,, \tag{1.28}$$

where K = K(x) is the Gauss curvature of M at the point  $x \in M$  (since M is minimal,  $K(x) \leq 0$ ). If  $\delta^2 \alpha(f) \geq 0$  for all f then the minimal surface M is called *stable*. In particular, all area minimizers are stable.

However, in general a minimal surface is not necessarily stable. By definition, the *stability index*  $\operatorname{ind}(M)$  is the maximal dimension of a linear subspace  $\mathcal{V}$  of  $C_0^{\infty}(M)$  such that  $\delta^2 \alpha(f) < 0$  for any  $f \in \mathcal{V} \setminus \{0\}$ .

In other words,

$$\operatorname{ind}(M) = \mathcal{N}_0(H_V)$$

where  $H_V = -\Delta + 2K$  and  $\Delta$  is the Laplace-Beltrami operator on M.

It turns out that for this specific potential V = -2K the upper bound of Theorem 1.1 is satisfied.

**Theorem 1.8** (AG, Yau 2003) For any immersed oriented minimal surface M in  $\mathbb{R}^3$ , we have

$$\operatorname{ind}(M) \le C \int_{M} |K| \, d\alpha, \tag{1.29}$$

where C is an absolute constant.

The proof goes in the same way as the one of Theorem 1.1 using Theorem 1.5. Using specific properties of Gauss curvature, we prove for the operator  $\mathcal{L}_{V,\Omega} = -\frac{1}{V}\Delta$  in  $\Omega \subset M$  the eigenvalue estimate

 $\lambda_1(\Omega) \ge c\mu(\Omega)^{-1},$ 

where  $d\mu = |K| d\alpha$ . By Theorem 1.5 this implies

$$\lambda_{k}\left(\Omega\right) \geq c' \frac{k}{\mu\left(\Omega\right)}$$

and then as in the proof of Theorem 1.1,

 $\mathcal{N}_0(H_V) \le C\mu(M)$ 

that is (1.29).

# **2** Lower estimates in $\mathbb{R}^2$

Here we estimate  $\mathcal{N}_0(H_V)$  in  $\mathbb{R}^2$ .

# 2.1 A counterexample to the upper bound

In the case n = 2, the estimate (1.1) of Theorem 1.1 becomes

$$\mathcal{N}_0(H_V) \le C \int_{\mathbb{R}^2} V(x) \, dx,$$

which however is *wrong*. To see that, consider in  $\mathbb{R}^2$  the potential

$$V(x) = \frac{1}{|x|^2 \ln^2 |x|}$$
 if  $|x| > e$ 

and V(x) = 0 if  $|x| \le e$ . For this V we have

$$\int_{\mathbb{R}^2} V(x) \, dx < \infty,$$
whereas Neg  $(H_V) = \infty$ . Indeed, consider the function

$$f(x) = \sqrt{\ln|x|} \sin\left(\frac{1}{2}\ln\ln|x|\right)$$

that satisfies in the region  $\{|x|>e\}$  the differential equation

$$\Delta f + \frac{1}{2}V\left(x\right)f = 0$$

For any positive integer k, function f has constant sign in the ring

$$\Omega_k := \left\{ x \in \mathbb{R}^2 : \pi k < \frac{1}{2} \ln \ln |x| < \pi (k+1) \right\},\,$$

and vanishes on  $\partial \Omega_k$ . For each function  $f_k = f \mathbf{1}_{\Omega_k}$  we have

$$\begin{aligned} \mathcal{E}_{V}\left(f_{k}\right) &= \int_{\Omega_{k}} |\nabla f_{k}|^{2} dx - \int_{\Omega_{k}} V f_{k}^{2} dx \\ &= -\int_{\Omega_{k}} f_{k} \Delta f_{k} dx - \int_{\Omega_{k}} V f_{k}^{2} dx \\ &= -\frac{1}{2} \int_{\Omega_{k}} V f_{k}^{2} dx < 0. \end{aligned}$$

The same inequality holds for linear combination of functions  $f_k$  since the intersection of their supports has measure 0.

Hence, the space  $\mathcal{V} = \text{span} \{f_k\}$  has infinite dimension and  $\mathcal{E}_V(f) < 0$  for all non-zero  $f \in \mathcal{V}$ , which implies  $\mathcal{N}_0(H_V) = \infty$ .

In fact, one can show that no upper bound of the form

$$\mathcal{N}_{0}(H_{V}) \leq \int_{\mathbb{R}^{2}} V(x) W(x) dx$$

can be true, no matter how we choose a weight W(x).

### **2.2** Lower bound of $\mathcal{N}_0(H_V)$

It turns out that in the case n = 2, instead of an upper bound, a lower bound in (1.1) is true.

**Theorem 2.1** (AG, Netrusov, Yau, 2004) For any non-negative potential V in  $\mathbb{R}^2$ ,

$$\mathcal{N}_0(H_V) \ge c \int_{\mathbb{R}^2} V(x) \, dx \tag{2.1}$$

with some absolute constant c > 0.

Let us describe an approach to the proof. Since

 $\mathcal{N}_{0}(H_{V}) = \sup \left\{ \dim \mathcal{V} : \mathcal{V} \prec \mathcal{D}_{\mathbb{R}^{2}} \text{ and } \mathcal{E}_{V}(f) < 0 \ \forall f \in \mathcal{V} \setminus \{0\} \right\},\$ 

it suffices to construct a subspace  $\mathcal{V}$  of  $\mathcal{D}_{\mathbb{R}^2}$  such that  $\mathcal{E}_V$  is negative on  $\mathcal{V}$  and

 $\dim \mathcal{V} \ge c \int_{\mathbb{R}^2} V(x) \, dx.$ 

We will construct  $\mathcal{V}$  as span  $\{f_k\}$  where  $\{f_k\}_{k=1}^N$  is a sequence of functions with disjoint compact supports such that  $\mathcal{E}_V(f_k) < 0$ . Then  $\mathcal{E}_V(f) < \mathcal{E}_V(f) < 0$ .

0 will be true for any non-zero function  $f \in \text{span}\{f_k\}$ , and  $\dim \mathcal{V} = N$ . Hence, it suffices to construct a sequence  $\{f_k\}_{k=1}^N$  of functions with compact disjoint supports such that, for any k = 1, ..., N,

$$\int_{\mathbb{R}^2} |\nabla f_k|^2 \, dx < \int_{\mathbb{R}^2} V f_k^2 \, dx,$$

and

$$N \ge c \int_{\mathbb{R}^2} V(x) \, dx.$$

Each function  $f_k$  will be constructed as follows. Fix two reals 0 < r < R and consider the annulus

$$A = \left\{ x \in \mathbb{R}^2 : r < |x| < R \right\}$$

and denote by 2A the annulus

$$2A = \left\{ x \in \mathbb{R}^2 : \frac{1}{2}r < |x| < 2R \right\}.$$

Consider the following function

$$f(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin 2A, \\ \frac{1}{\ln 2} \ln \frac{2|x|}{r}, & \frac{r}{2} \le |x| \le r, \\ \frac{1}{\ln 2} \ln \frac{2R}{|x|}, & R \le |x| \le 2R. \end{cases}$$



This function f is harmonic in each of the four domains, whence we obtain

$$\int_{\mathbb{R}^2} |\nabla f|^2 dx = \int_{\left\{\frac{r}{2} \le |x| \le r\right\}} |\nabla f|^2 dx + \int_{\left\{R \le |x| \le 2R\right\}} |\nabla f|^2 dx$$
$$= \int_{\partial \left\{\frac{r}{2} \le |x| \le r\right\}} f \frac{\partial f}{\partial \nu} dl + \int_{\partial \left\{R \le |x| \le 2R\right\}} f \frac{\partial f}{\partial \nu} dl$$
$$= f'(r) 2\pi r - f'(R) 2\pi R$$
$$= \frac{1}{(\ln 2) r} 2\pi r + \frac{1}{(\ln 2) R} 2\pi R$$
$$= \frac{4\pi}{\ln 2} < 20.$$

Suppose that we have a sequence of annuli  $\{A_k\}_{k=1}^N$ , with different centers and different radii, but such that the sequence  $\{2A_k\}_{k=1}^N$  is disjoint. Then, defining  $f_k$  for each pair  $(A_k, 2A_k)$  as above, we obtain a sequence of functions with disjoint supports and with

$$\int_{\mathbb{R}^2} |\nabla f_k|^2 \, dx < 20.$$

Note that

$$\int_{\mathbb{R}^2} V f_k^2 dx \ge \int_{A_k} V dx.$$

Hence, the condition  $\int_{\mathbb{R}^2} |\nabla f_k|^2 dx < \int_{\mathbb{R}^2} V f_k^2 dx$  will be satisfied if

$$\int_{A_k} V dx \ge 20.$$

Consider again measure  $\mu$  given by  $d\mu = Vdx$  and restate our problem as follows: construct N annuli  $\{A_k\}_{k=1}^N$  such that

- (i)  $\{2A_k\}_{k=1}^N$  are disjoint,
- (*ii*)  $\mu(A_k) \ge 20$  for each k,
- (iii) and  $N \ge c\mu\left(\mathbb{R}^2\right)$ .

Of course, if  $\mu(\mathbb{R}^2) < 20$  then such a sequence cannot be constructed. In this case we argue differently. Choose some 0 < r < R and consider

### the function

$$f(x) = \begin{cases} 1, & |x| \le r \\ 0, & x \ge R, \\ \frac{1}{\ln \frac{R}{r}} \ln \frac{R}{|x|}, & r \le |x| \le R. \end{cases}$$



For this function

$$\int_{\mathbb{R}^2} |\nabla f|^2 \, dx = -f'(r) \, 2\pi r = \frac{2\pi}{\ln \frac{R}{r}}$$

while

$$\int_{\mathbb{R}^2} V f^2 dx \ge \int_{\{|x| \le r\}} V dx.$$

Taking r and  $\frac{R}{r}$  large enough, we obtain  $\int_{\mathbb{R}^2} |\nabla f|^2 dx < \int_{\mathbb{R}^2} V f^2 dx$  whence  $\mathcal{N}_0(H_V) \ge 1$ . If  $\mu(\mathbb{R}^2) = \int_{\mathbb{R}^2} V dx$  is bounded by some constant, say 20, then we obtain  $\mathcal{N}_0(H_V) \ge c\mu(\mathbb{R}^2)$  just by taking c small enough.

Hence, in the main part we can assume that  $\mu(\mathbb{R}^2)$  is large enough. In this case, the sequence of annuli satisfying (i)-(iii) can be always constructed. In fact, the positive answer is given by the following abstract theorem. **Theorem 2.2** Let (X, d) be a metric space and  $\mu$  is a non-atomic Borel measure on X. Assume that the following properties are satisfied.

- 1. All metric balls  $B(x,r) = \{y \in X : d(x,y) < r\}$  are precompact.
- 2. There exists a constant M such that, for any ball B(x,r) there is a family of at most M balls of radii r/2 that cover B(x,r).

Then there is a constant c = c(M) > 0 such that, for any  $0 < v < \mu(X)$  there exists at least  $c\frac{\mu(X)}{v}$  annuli  $\{A_k\}$  such that

- (i)  $\{2A_k\}$  are disjoint
- (ii) and  $\mu(A_k) \ge v$  for any k.

Of course,  $\mathbb{R}^2$  satisfies all the hypotheses of Theorem 2.2. Taking v = 20 we obtain that if  $\mu(\mathbb{R}^2) > 20$  then there exists at least  $c'\mu(\mathbb{R}^2)$  annuli satisfying (i) and (ii), which finishes the proof of Theorem 2.1.

We leave Theorem 2.2 without proof, only mentioning that it can be regarded as a sophisticated version of the ball covering argument. Note also that annuli in the statement cannot be replaced by balls.

### **2.3** Estimates of eigenvalues on $\mathbb{S}^2$

Let us show one more application of Theorem 2.2.

**Theorem 2.3** Let  $\lambda_k$ , k = 1, 2, ..., be the k-th smallest eigenvalue of the Laplace-Beltrami operator  $\Delta$  on  $(\mathbb{S}^2, g)$ , where g is an arbitrary Riemannian metric on  $\mathbb{S}^2$ . Then, for any k,

$$\lambda_k \le C \frac{k-1}{\mu\left(\mathbb{S}^2\right)},\tag{2.2}$$

where C is a universal constant and  $\mu$  is the Riemannian volume of the metric g.

In fact, this theorem holds also for any closed Riemann surface, where the constant C depends also on the genus of the surface. However, the general case follows from the estimate for  $\mathbb{S}^2$ .

Note that  $\lambda_1 = 0$  so that the case k = 1 is trivial. For k = 2 Theorem 2.3 was proved by Hersch in 1970 for the sphere and then for any Riemann surface by Yang and Yau in 1980. For a general k, Yau stated (2.2) as a conjecture, which was proved by Korevaar in 1993.

The main point of (2.2) that the constant C does not depend on the Riemannian metric g. The metric enters (2.2) only through the total area  $\mu(\mathbb{S}^2)$ . This is essentially two-dimensional phenomenon as such estimates do not hold in higher dimensions.

Let us show how Theorem 2.3 can be obtained from Theorem 2.2. Consider the counting function for  $\Delta$  on  $(\mathbb{S}^2, g)$ :

$$\mathcal{N}_{\lambda} = \# \left\{ j \ge 1 : \lambda_j < \lambda \right\}.$$

Note that  $\lambda_k < \lambda$  will follow from  $\mathcal{N}_{\lambda} \geq k$ . We will prove that, for all  $\lambda > 0$ ,

$$\mathcal{N}_{\lambda} \ge C^{-1} \mu\left(\mathbb{S}^{2}\right) \lambda. \tag{2.3}$$

If (2.3) is already proved, then choosing here  $\lambda = C \frac{k}{\mu(\mathbb{S}^2)}$ , where  $k \geq 2$ , we obtain  $\mathcal{N}_{\lambda} \geq k$  and, hence,

$$\lambda_k < \lambda = C \frac{k}{\mu\left(\mathbb{S}^2\right)} \le 2C \frac{k-1}{\mu\left(\mathbb{S}^2\right)},$$

which proves (2.2).

Let us prove (2.3) for any  $\lambda > 0$ . The counting function admits variational characterization

 $\mathcal{N}_{\lambda} = \sup \left\{ \dim \mathcal{V} : \mathcal{V} \prec D_{\mathbb{S}^{2}}, \ \mathcal{E}\left(f\right) < \lambda \left\|f\right\|_{2}^{2} \ \forall f \in \mathcal{V} \setminus \{0\} \right\}$ 

where

$$\mathcal{E}(f) = \int_{\mathbb{S}^2} |\nabla f|_g^2 d\mu$$
 and  $||f||_2^2 = \int_{\mathbb{S}^2} f^2 d\mu.$ 

Hence, it suffices to construct at least  $N = C^{-1}\mu(\mathbb{S}^2)\lambda$  functions f with disjoint supports and with  $\mathcal{E}(f) < \lambda ||f||_2^2$ .

If  $\lambda$  is small enough, namely, if  $C^{-1}\mu(\mathbb{R}^2)\lambda \leq 1$  then we need to construct only one function, and it always exists:  $f \equiv 1$ . Hence, we can assume that  $\lambda > \frac{C}{\mu(\mathbb{S}^2)}$ .

Any metric g on  $\mathbb{S}^2$  is conformally equivalent to the canonical metric  $g_0$  on  $\mathbb{S}^2$ . Denote by  $\mu_0$  the canonical Riemannian measure on  $\mathbb{S}^2$ . Note that the energy is a conformal invariant:

$$\mathcal{E}\left(f\right) = \int_{\mathbb{S}^2} \left|\nabla f\right|_g^2 d\mu = \int_{\mathbb{S}^2} \left|\nabla f\right|_{g_0}^2 d\mu_0.$$

Let d be the geodesic distance on  $(\mathbb{S}^2, g_0)$ . As in  $\mathbb{R}^2$ , one can show that, for any annulus A on  $\mathbb{S}^2$  (with respect to d) one can construct a test

function f supported in 2A and such that  $f|_A = 1$  and  $\mathcal{E}(f) < K$  where K is some constant. On the other hand,

$$||f||_{2}^{2} \ge \int_{A} f^{2} d\mu = \mu(A),$$

so that  $\mathcal{E}(f) < \lambda \|f\|_2^2$  will follow from  $K \leq \lambda \mu(A)$ . Hence, we need to construct at least  $N = C^{-1} \mu(\mathbb{S}^2) \lambda$  annuli  $A_k$  on  $\mathbb{S}^2$  so that  $2A_k$  are disjoint and

$$\mu\left(A_k\right) \geq \frac{K}{\lambda}.$$

Let us emphasize that measure  $\mu$  is defined by the metric g, whereas the annuli are defined using the distance function of  $g_0$ .

Let us apply Theorem 2.2 to the metric space  $(\mathbb{S}^2, d)$  with measure  $\mu$ . Set  $v := \frac{K}{\lambda} < C^{-1}K\mu(\mathbb{S}^2)$ . Choosing C > K, we have  $v < \mu(\mathbb{S}^2)$  so that Theorem 2.2 can be applied. Hence, we obtain at least  $c\frac{\mu(\mathbb{S}^2)}{v} = \frac{c}{K}\mu(\mathbb{S}^2)\lambda$ annuli  $A_k$  with disjoint  $2A_k$  and with

$$\mu\left(A_k\right) \ge v = \frac{K}{\lambda},$$

which finishes the proof of (2.3) with  $C = \frac{K}{c}$ .

# **3** Upper estimate in $\mathbb{R}^2$

## 3.1 Statement of the result

Consider a tiling of  $\mathbb{R}^2$  into a sequence of annuli  $\{U_n\}_{n\in\mathbb{Z}}$  defined by

 $U_n \stackrel{n < 0}{=} \{ e^{-2^{|n|}} < |x| < e^{-2^{|n|-1}} \}, \quad U_0 = \{ e^{-1} < |x| < e \}, \quad U_n \stackrel{n > 0}{=} \{ e^{2^{n-1}} < |x| < e^{2^n} \}$ 



Given a potential (=a non-negative  $L^1_{loc}$ -function) V(x) on  $\mathbb{R}^2$  and p > 1, define for any  $n \in \mathbb{Z}$  the following quantities:

$$A_{n} = \int_{U_{n}} V(x) \left(1 + |\ln|x||\right) dx, \quad B_{n} = \left(\int_{\{e^{n} < |x| < e^{n+1}\}} V^{p}(x) |x|^{2(p-1)} dx\right)^{1/p}$$
(3.1)

The main result of this section is the following theorem.

**Theorem 3.1** (AG, N.Nadirashvili, 2012) For any potential V in  $\mathbb{R}^2$ and for any p > 1, we have

Neg 
$$(V) \le 1 + C \sum_{\{n \in \mathbb{Z}: A_n > c\}} \sqrt{A_n} + C \sum_{\{n \in \mathbb{Z}: B_n > c\}} B_n,$$
 (3.2)

where C, c are positive constants depending only on p.

The additive term 1 in (3.2) reflects a special feature of  $\mathbb{R}^2$ : for any non-zero potential V, there is at least 1 negative eigenvalue of  $H_V$ , no matter how small are the sums in (3.2), as it was shown in the course of the proof of Theorem 2.1. Let us compare (3.2) with previously known upper bounds. A simpler (and coarser) version of (3.2) is

Neg 
$$(V) \le 1 + C \int_{\mathbb{R}^2} V(x) \left(1 + |\ln |x||\right) dx + C \sum_{n \in \mathbb{Z}} B_n.$$
 (3.3)

Indeed, if  $A_n > c$  then  $\sqrt{A_n} \le c^{-1/2}A_n$  so that the first sum in (3.2) can be replaced by  $\sum_{n \in \mathbb{Z}} A_n$  thus yielding (3.3).

The estimate (3.3) was obtained by Solomyak in 1994. In fact, he proved a better version:

Neg 
$$(V) \le 1 + C ||A||_{1,\infty} + C \sum_{n \in \mathbb{Z}} B_n,$$
 (3.4)

where A denotes the whole sequence  $\{A_n\}_{n\in\mathbb{Z}}$  and  $||A||_{1,\infty}$  is the weak  $l^1$ -norm (the Lorentz norm) given by

$$||A||_{1,\infty} = \sup_{s>0} s \# \{n : A_n > s\}.$$

Clearly,  $||A||_{1,\infty} \leq ||A||_1$  so that (3.4) is better than (3.3).

However, (3.4) also follows from (3.2) using an observation that

$$||A||_{1,\infty} \le \sup_{s>0} s^{1/2} \sum_{\{A_n > s\}} \sqrt{A_n} \le 4 ||A||_{1,\infty}.$$

In particular, we have

$$\sum_{A_n > c\}} \sqrt{A_n} \le 4c^{-1/2} \, \|A\|_{1,\infty} \,,$$

so that (3.2) implies (3.4). As we will see below, our estimate (3.2) provides for certain potentials strictly better results than (3.4).

In the case when V(x) is a radial function, that is, V(x) = V(|x|), the following estimate was proved by physicists Chadan, Khuri, Martin, Wu in 2003:

Neg 
$$(V) \le 1 + \int_{\mathbb{R}^2} V(x) \left(1 + |\ln |x||\right) dx.$$
 (3.5)

Although this estimate is better than (3.3), we will see that our main estimate (3.2) gives for certain potentials strictly better estimates than (3.5).

Another upper estimate for a general potential in  $\mathbb{R}^2$  was obtained by Molchanov and Vainberg in 2010:

$$\operatorname{Neg}\left(V\right) \leq 1 + C \int_{\mathbb{R}^2} V\left(x\right) \ln\left\langle x\right\rangle dx + C \int_{\mathbb{R}^2} V\left(x\right) \ln\left(2 + V\left(x\right)\left\langle x\right\rangle^2\right) dx,$$
(3.6)

where  $\langle x \rangle = e + |x|$ . However, due to the logarithmic term in the second integral, this estimate never implies the linear semi-classical asymptotic

Neg 
$$(\alpha V) \simeq O(\alpha)$$
 as  $\alpha \to \infty$ , (3.7)

that is expected to be true for "nice" potentials. Observe that the Solomyak estimates (3.3) and (3.4) are linear in V so that they imply (3.7) whenever the right hand side is finite.

Our estimate (3.2) gives both linear asymptotic (3.7) for "nice" potentials and non-linear asymptotics for some other potentials. Let us emphasize two main novelties in our estimate (3.2): using the square root of  $A_n$  instead of linear expressions, and the restriction of the both sums in (3.2) to the values  $A_n > c$  and  $B_n > c$ , respectively, which allows to obtain significantly better results. The reason for the terms  $\sqrt{A_n}$  in (3.2) can be explained as follows. Different parts of the potential V contributes differently to Neg (V). The high values of V that are concentrated on relatively small areas, contribute to Neg (V) via the terms  $B_n$ , while the low values of V scattered over large areas, contribute via the terms  $A_n$ . Since we integrate V over annuli, the long range effect of V becomes similar to that of an onedimensional potential. In  $\mathbb{R}^1$  one expects Neg  $(\alpha V) \simeq \sqrt{\alpha}$  as  $\alpha \to \infty$ which explains the appearance of the square root in (3.2).

By the way, the following estimate of Neg (V) in  $\mathbb{R}^1_+$  was proved by Solomyak:

$$\operatorname{Neg}\left(V\right) \le 1 + C \sum_{n=0}^{\infty} \sqrt{a_n} \tag{3.8}$$

where

$$a_n = \int_{I_n} V(x) \left(1 + |x|\right) dx$$

and  $I_n = [2^{n-1}, 2^n]$  if n > 0 and  $I_0 = [0, 1]$ . Clearly, the sum  $\sum \sqrt{a_n}$  here resembles  $\sum \sqrt{A_n}$  in (3.2), which is not a coincidence. In fact, our method allows to improve (3.8) by restricting the sum to those n for which  $a_n > c$ .

Returning to (3.3), one can apply a suitable Hölder inequality to combine the both terms of (3.3) in one as follows. Assume that  $\mathcal{W}(r)$  is a positive monotone increasing function on  $(0, +\infty)$  that satisfies the following Dini type condition both at 0 and at  $\infty$ :

$$\int_0^\infty \frac{r \left|\ln r\right|^{\frac{p}{p-1}} dr}{\mathcal{W}(r)^{\frac{1}{p-1}}} < \infty.$$
(3.9)

Then

$$\operatorname{Neg}\left(V\right) \le 1 + C\left(\int_{\mathbb{R}^2} V^p\left(x\right) \mathcal{W}\left(|x|\right) dx\right)^{1/p}, \qquad (3.10)$$

where the constant C depends on p and W. Here is an example of a weight function W(r) that satisfies (3.9):

$$\mathcal{W}(r) = r^{2(p-1)} \langle \ln r \rangle^{2p-1} \ln^{p-1+\varepsilon} \langle \ln r \rangle, \qquad (3.11)$$

where  $\varepsilon > 0$ . In particular, for p = 2, we obtain the following estimate:

$$\operatorname{Neg}\left(V\right) \le 1 + C\left(\int_{\mathbb{R}^2} V^2\left(x\right) |x|^2 \left\langle \ln |x| \right\rangle^3 \ln^{1+\varepsilon} \left\langle \ln |x| \right\rangle dx\right)^{1/2}.$$
 (3.12)

### **3.2** Examples

Example 1. Assume that, for all  $x \in \mathbb{R}^2$ ,

$$V\left(x\right) \le \frac{\alpha}{\left|x\right|^{2}}$$

for a small enough positive constant  $\alpha$ . Then, for all  $n \in \mathbb{Z}$ ,

$$B_n \le \alpha \left( \int_{\{e^n < |x| < e^{n+1}\}} \frac{1}{|x|^2} dx \right)^{1/p} \simeq \alpha$$

so that  $B_n < c$  and the last sum in (3.2) is void, whence we obtain

Neg 
$$(V) \le 1 + C \int_{\mathbb{R}^2} V(x) \left(1 + |\ln |x||\right) dx.$$
 (3.13)

The estimate (3.13) in this case follows also from the estimate (3.6) of Molchanov and Vainberg.

Example 2. Assume that a potential V satisfies the following condition: for some constant K and all  $n \in \mathbb{Z}$ ,

$$\sup_{\{e^n < |x| < e^{n+1}\}} V \le K \inf_{\{e^n < |x| < e^{n+1}\}} V.$$
(3.14)

For such potential we have

$$B_n \simeq \int_{\{e^n < |x| < e^{n+1}\}} V dx,$$
 (3.15)

so that (3.3) implies

Neg 
$$(V) \le 1 + C \int_{\mathbb{R}^2} V(x) (1 + |\ln |x||) dx + C' \int_{\mathbb{R}^2} V(x) dx$$
,

where the constant C' depends also on K. Of course, the second term here can be absorbed by the first one thus yielding (3.13) with C = C(K).

The estimate (3.13) in this case can be obtained from the estimate (3.5) of Chadan, Khuri, Martin, Wu by comparing V with a radial potential.

Example 3. Let

$$V(x) = \frac{\alpha}{|x|^2 (1 + \ln^2 |x|)},$$

where  $\alpha > 0$  is small enough. Then as in the first example  $B_n < c$ , while  $A_n$  can be computed as follows: for n > 0

$$A_n \simeq \int_{e^{2^{n-1}}}^{e^{2^n}} \frac{\alpha}{r^2 \ln^2 r} (\ln r) \, r dr = \alpha \int_{e^{2^{n-1}}}^{e^{2^n}} d\ln \ln r \simeq \alpha, \qquad (3.16)$$

and the same for  $n \leq 0$ , so that  $A_n < c$  for all n. Hence, the both sums in (3.2) are void, and we obtain

$$Neg\left(V\right) = 1.$$

This result cannot be obtained by any of the previously known estimates. Indeed, in the estimates of Chadan, Khuri, Martin, Wu and of Molchanov, Vainberg one has  $\int_{\mathbb{R}^2} V(x) (1 + |\ln |x||) dx = \infty$ , and in the estimate (3.4) of Solomyak one has  $||A||_{1,\infty} = \infty$ . As will be shown below, if  $\alpha > 1/4$  then Neg(V) can be  $\infty$ . Hence, Neg(V) exhibits a non-linear behavior with respect to the parameter  $\alpha$ , which cannot be captured by linear estimates. Example 4. Assume that V(x) is locally bounded and

$$V(x) = o\left(\frac{1}{|x|^2 \ln^2 |x|}\right) \text{ as } x \to \infty.$$

Similarly to the above computation we see that  $A_n \to 0$  and  $B_n \to 0$  as  $n \to \infty$ , which implies that the both sums in (3.2) are finite and, hence,

$$\operatorname{Neg}(V) < \infty.$$

This result is also new. Note that in this case the integral  $\int_{\mathbb{R}^2} V(x) (1 + |\ln |x||) dx$  may be divergent; moreover, the norm  $||A||_{1,\infty}$  can also be  $\infty$  as one can see in the next example.

Example 5. Choose q > 0 and set

$$V(x) = \frac{1}{|x|^2 \ln^2 |x| (\ln \ln |x|)^q} \text{ for } |x| > e^2$$
(3.17)

and V(x) = 0 for  $|x| \le e^2$ . For  $n \ge 2$  we have

$$A_n \simeq \int_{e^{2^{n-1}}}^{e^{2^n}} \frac{1}{r^2 \ln^2 r \left(\ln \ln r\right)^q} \left(\ln r\right) r dr = \int_{e^{2^{n-1}}}^{e^{2^n}} \frac{d \ln \ln r}{\left(\ln \ln r\right)^q} \simeq \frac{1}{n^q},$$

and, by (3.15),

$$B_n \simeq \int_{e^n}^{e^{n+1}} \frac{1}{r^2 \ln^2 r \left(\ln \ln r\right)^q} r dr = \int_{e^n}^{e^{n+1}} \frac{d \ln r}{\ln^2 r \left(\ln \ln r\right)^q} \simeq \frac{1}{n^2 \ln^q n}.$$

Let  $\alpha$  be a large real parameter. Then

$$A_n\left(\alpha V\right) \simeq \frac{\alpha}{n^q},$$
 (3.18)

and the condition  $A_n(\alpha V) > c$  is satisfied for  $n \leq C \alpha^{1/q}$ , whence we obtain

$$\sum_{\{A_n(\alpha V)>c\}} \sqrt{A_n(\alpha V)} \le C \sum_{n=1}^{\lceil C\alpha^{1/q} \rceil} \sqrt{\frac{\alpha}{n^q}} \simeq C\sqrt{\alpha} \left(\alpha^{1/q}\right)^{1-q/2} = C\alpha^{1/q}.$$

It is clear that  $\sum_{n} B_n(\alpha V) \simeq \alpha$ . Hence, we obtain from (3.2)

$$\operatorname{Neg}\left(\alpha V\right) \le C\left(\alpha^{1/q} + \alpha\right). \tag{3.19}$$

If  $q \ge 1$  then the leading term here is  $\alpha$ . Combining this with (2.1), we obtain

Neg 
$$(\alpha V) \simeq \alpha$$
 as  $\alpha \to \infty$ .

If q > 1 then this follows also from (3.5) and (3.4); if q = 1 then only the estimate (3.4) of Solomyak gives the same result as in this case  $A_n \simeq \frac{1}{n}$  and  $||A||_{1,\infty} < \infty$ .

If q < 1 then the leading term in (3.19) is  $\alpha^{1/q}$  so that

 $\operatorname{Neg}\left(\alpha V\right) \le C\alpha^{1/q}.$ 

As was shown by Birman and Laptev, in this case, indeed, Neg  $(\alpha V) \simeq \alpha^{1/q}$  as  $\alpha \to \infty$ . Observe that in this case  $||A||_{1,\infty} = \infty$ , and neither of the estimates previous estimates (3.3), (3.5), (3.4), (3.6) yields even the finiteness of Neg  $(\alpha V)$ , leaving alone the correct rate of growth in  $\alpha$ .

Example 6. Let V be a potential in  $\mathbb{R}^2$  such that

$$\sum_{n \in \mathbb{Z}} \sqrt{A_n(V)} + \sum_{n \in \mathbb{Z}} B_n(V) < \infty.$$
(3.20)

Applying (3.2) to  $\alpha V$ , we obtain

Neg 
$$(\alpha V) \leq 1 + C\alpha^{1/2} \sum_{n \in \mathbb{Z}} \sqrt{A_n(V)} + \alpha \sum_{n \in \mathbb{Z}} B_n(V).$$

Combining with the lower bound (2.1) and letting  $\alpha \to \infty$ , we see that

$$c\alpha \int_{\mathbb{R}^2} V dx \le \operatorname{Neg}\left(\alpha V\right) \le \alpha \sum_{n \in \mathbb{Z}} B_n\left(V\right) + o\left(\alpha\right),$$

in particular,

Neg 
$$(\alpha V) \simeq \alpha$$
 as  $\alpha \to \infty$ .

Furthermore, if V satisfies the condition (3.14) then, using (3.15), we obtain a more precise estimate

Neg 
$$(\alpha V) \simeq \alpha \int_{\mathbb{R}^2} V(x) dx$$
 as  $\alpha \to \infty$ . (3.21)

For example, (3.20) is satisfied for the potential (3.17) of Example 5 with q > 2, as it follows from (3.18). By a more sophisticated argument, one can show that (3.21) holds also for q > 1.

Example 7. Set  $R = e^{2^m}$  where m is a large integer, choose  $\alpha > \frac{1}{4}$  and consider the following potential on  $\mathbb{R}^2$ 

$$V(x) = \frac{\alpha}{|x|^2 \ln^2 |x|}$$
 if  $e < |x| < R$ 

and V(x) = 0 otherwise. Computing  $A_n$  as in (3.16) we obtain  $A_n \simeq \alpha$  for any  $1 \le n \le m$ , whence it follows that

$$\sum_{n \in \mathbb{Z}} \sqrt{A_n} = \sum_{n=1}^m \sqrt{A_n} \simeq \sqrt{\alpha} m \simeq \sqrt{\alpha} \ln \ln R$$

Also, we obtain by (3.15)  $B_n \simeq \frac{a}{n^2}$ , for  $1 \le n < 2^m$ , whence

$$\sum_{n \in \mathbb{Z}} B_n(V) \simeq \sum_{n=1}^{2^m - 1} \frac{\alpha}{n^2} \simeq \alpha.$$

By (3.2) we obtain

$$Neg(V) \le C\sqrt{\alpha} \ln \ln R + C\alpha.$$
(3.22)

Observe that both (3.4) and (3.5) give in this case a weaker estimate  $Neg(V) \le C\alpha \ln \ln R.$ 

Let us estimate Neg(V) from below. Considering the function

$$f(x) = \sqrt{\ln|x|} \sin\left(\sqrt{\alpha - \frac{1}{4}} \ln\ln|x|\right)$$

that satisfies in the region  $\Omega = \{e < |x| < R\}$  the differential equation  $\Delta f + V(x) f = 0$ , and counting the number N of rings

$$\Omega_k := \left\{ x \in \mathbb{R}^2 : \pi k < \sqrt{\alpha - \frac{1}{4}} \ln \ln |x| < \pi \left(k + 1\right) \right\}$$

in  $\Omega$ , we obtain

 $\operatorname{Neg}\left(V\right) \ge N \simeq \sqrt{\alpha} \ln \ln R$ 

(assuming that  $\alpha \gg \frac{1}{4}$ ). On the other hand, (2.1) yields Neg  $(V) \ge c\alpha$ . Combining these two estimates, we obtain the lower bound

$$\operatorname{Neg}(V) \ge c\left(\sqrt{\alpha}\ln\ln R + \alpha\right),$$

that matches the upper bound (3.22).

#### 3.3 The energy form revisited

We consider a somewhat different energy form than in  $\mathbb{R}^n$ ,  $n \geq 3$ . For any open set  $\Omega \subset \mathbb{R}^2$ , consider a function space

$$\mathcal{F}_{V,\Omega} = \left\{ f \in L^2_{loc}\left(\overline{\Omega}\right) : \int_{\Omega} |\nabla f|^2 \, dx < \infty, \ \int_{\Omega} V f^2 \, dx < \infty \right\}$$

and the quadratic form on  $\mathcal{F}_{V,\Omega}$ :

$$\mathcal{E}_{V,\Omega}\left(f\right) = \int_{\Omega} |\nabla f|^2 \, dx - \int_{\Omega} V f^2 \, dx. \tag{3.23}$$

We will use the following quantity:

Neg 
$$(V, \Omega)$$
 := sup {dim  $\mathcal{V} : \mathcal{V} \prec \mathcal{F}_{V,\Omega} : \mathcal{E}_{V,\Omega} (f) \leq 0$  for all  $f \in \mathcal{V}$ }.  
(3.24)

Clearly, we have  $\mathcal{N}_0(H_V) \leq \operatorname{Neg}(V, \mathbb{R}^2)$ , but in  $\mathbb{R}^2$  we do not loose much when we estimate a larger quantity Neg instead of  $\mathcal{N}_0$ . (Observe that  $\mathcal{F}_{V,\mathbb{R}^2}$  contains  $f = \operatorname{const}$  and  $\mathcal{E}(f) \leq 0$  so that  $\operatorname{Neg}(V, \mathbb{R}^2) \geq 1$ , but as we know,  $\mathcal{N}_0(H_V) \geq 1$ ). Theorem 3.1 contains the estimate of  $\operatorname{Neg}(V) =$  $\operatorname{Neg}(V, \mathbb{R}^2)$ . For bounded domains with smooth boundary, Neg  $(V, \Omega)$  is equal to the number of non-positive eigenvalues of the *Neumann* problem in  $\Omega$  for  $-\Delta - V$ .

A useful feature of Neg  $(V, \Omega)$  is subadditivity with respect to  $\Omega$ . We say that a sequence  $\{\Omega_k\}$  of open sets  $\Omega_k \subset \mathbb{R}^2$  is a *partition* of  $\Omega$  if all the sets  $\Omega_k$  are disjoint,  $\Omega_k \subset \Omega$ , and  $\overline{\Omega} \setminus \bigcup_k \Omega_k$  has measure 0.



**Lemma 3.2** If  $\{\Omega_k\}$  is a partition of  $\Omega$ , then

$$\operatorname{Neg}\left(V,\Omega\right) \le \sum_{k} \operatorname{Neg}\left(V,\Omega_{k}\right).$$
(3.25)

The idea of the proof is the same as in the classical Weyl's argument: adding additional Neumann boundaries inside  $\Omega$  increases the space of test functions and, hence, the number of non-negative eigenvalues.

### 3.4 One negative eigenvalue in a disc

Denote by  $D_r$  the open disk of radius r in  $\mathbb{R}^2$ , that is,  $D_r = \{x \in \mathbb{R}^2 : |x| < r\}$ , and set  $D_1 \equiv D$ .

**Lemma 3.3** For any p > 1 there is  $\varepsilon > 0$  such that, for any potential V in D,

$$\|V\|_{L^p(D)} \le \varepsilon \Rightarrow \operatorname{Neg}(V, D) = 1.$$

**Sketch of proof.** Since always Neg $(V, D) \ge 1$ , we need only to prove that Neg $(V, D) \le 1$ . We will prove that if  $u \in \mathcal{F}_{V,D}$  then

 $u \perp 1 \text{ in } L^2(D) \text{ and } \mathcal{E}_{V,D}(u) \leq 0 \Rightarrow u = 0,$ 

which will imply that  $Neg(V, D) \leq 1$ .

Extend  $u \in \mathcal{F}_{V,D}$  to  $\mathbb{R}^2$  using the inversion  $\Phi(x) = \frac{x}{|x|^2}$ : for any  $x \notin D$ , set  $u(x) = u(\Phi(x))$ . By conformal invariance of energy, we have

$$\int_{\mathbb{R}^2} |\nabla u|^2 \, dx = 2 \int_D |\nabla u|^2 \, dx \le 2 \int_D V u^2 \, dx$$

Choose a cutoff function  $\varphi$  such that  $\varphi|_{D_2} \equiv 1$ ,  $\varphi|_{\mathbb{R}^2 \setminus D_3} = 0$  and set  $u^* = u\varphi$ . Then it follows that

$$\int_{D_4} |\nabla u^*|^2 \, dx \le C \int_D V u^2 dx,$$

with some absolute constant C. Since  $u \perp 1$ , one uses in the proof the Poincaré inequality in D in the form  $||u||_{L^2} \leq C ||\nabla u||_{L^2}$ .

Next, we have by Hölder inequality

$$\int_D V u^2 dx \le \left(\int_D V^p dx\right)^{1/p} \left(\int_D |u|^{\frac{2p}{p-1}} dx\right)^{1-1/p},$$

and by Sobolev inequality

$$\left(\int_{D} |u|^{\frac{2p}{p-1}} dx\right)^{1-1/p} \le \left(\int_{D_4} |u^*|^{\frac{2p}{p-1}} dx\right)^{1-1/p} \le C \int_{D_4} |\nabla u^*|^2 dx.$$

Combining the above three lines, we obtain

$$\int_{D_4} |\nabla u^*|^2 \, dx \le C \left( \int_D V^p \, dx \right)^{1/p} \int_{D_4} |\nabla u^*|^2 \, dx. \tag{3.26}$$

Assuming that  $\|V\|_{L^p(D)}$  is small enough, we see that (3.26) is only possible if  $u^* = \text{const.}$  Since  $u \perp 1$  in  $L^2(D)$ , it follows that  $u \equiv 0$ .

**Corollary 3.4** Let  $\Omega$  be a domain in  $\mathbb{R}^2$  that is bilipschitz equivalent to  $D_r$ . Then

$$\int_{\Omega} V^p dx \le cr^{2-2p} \Rightarrow \operatorname{Neg}\left(V,\Omega\right) = 1.$$
(3.27)

where c > 0 depends on p and on the Lipschitz constant of the mapping between  $D_r$  and  $\Omega$ .

**Proof.** Indeed, if  $\Omega = D_r$  then (3.27) follows from Lemma 3.3 by scaling transformation. For a general  $\Omega$  one shows that  $\operatorname{Neg}(V, \Omega) \leq \operatorname{Neg}(CV^*, D_r)$  where  $V^*$  is the pull-back of V under the bilipschitz mapping  $L: D_r \to \Omega$  where the constant C depends on the Lipschitz constant.
### 3.5 Negative eigenvalues in a square

Denote by Q the unit square in  $\mathbb{R}^2$ .

**Lemma 3.5** For any p > 1 and for any potential V in Q,

Neg 
$$(V, Q) \le 1 + C \|V\|_{L^p(Q)}$$
, (3.28)

where C depends only on p.

**Proof.** It suffices to construct a partition  $\mathcal{P}$  of Q into a family of N disjoint subsets such that

1. Neg  $(V, \Omega) = 1$  for any  $\Omega \in \mathcal{P}$ ;

2.  $N \leq 1 + C \|V\|_{L^p(Q)}$ .

Indeed, if such a partition exists then we obtain by Lemma 3.2

$$\operatorname{Neg}\left(V,Q\right) \le \sum_{\Omega \in \mathcal{P}} \operatorname{Neg}\left(V,\Omega\right) = N, \tag{3.29}$$

and (3.28) follows from the above bound of N.

The elements of a partition will be of two shapes: it is either a square of the side length  $0 < l \leq 1$  or a *step*, that is, a set of the form  $\Omega = A \setminus B$ where A is a square of the side length l, and B is a square of the side length  $\leq l/2$  that is attached to one of corners of A.



Apart from the shape, we will distinguish also the *type* of a set  $\Omega \in \mathcal{P}$  of size l as follows: we say that

-  $\Omega$  is of a large type, if

$$\int_{\Omega} V^p dx > cl^{2-2p},$$

-  $\Omega$  is of a medium type if

$$c'l^{2-2p} < \int_{\Omega} V^p dx \le cl^{2-2p},$$
 (3.31)

- and  $\Omega$  is of small type if

$$\int_{\Omega} V^p dx \le c' l^{2-2p}.$$
(3.32)

Here c is the constant from (3.30) and  $c' \in (0, c)$  will be chosen below. In particular, if  $\Omega$  is of small or medium type then Neg $(V, \Omega) = 1$ .

The construction of the partition  $\mathcal{P}$  will be done by induction. At each step  $i \geq 1$  of induction we will have a partition  $\mathcal{P}^{(i)}$  of Q such that 1. each  $\Omega \in \mathcal{P}^{(i)}$  is either a square or a step;

2. If  $\Omega \in \mathcal{P}^{(i)}$  is a step then  $\Omega$  is of a medium type.

At step 1 we have just one set:  $\mathcal{P}^{(1)} = \{Q\}$ . At any step  $i \geq 1$ , partition  $\mathcal{P}^{(i+1)}$  is obtained from  $\mathcal{P}^{(i)}$  as follows. If  $\Omega \in \mathcal{P}^{(i)}$  is small or medium then  $\Omega$  becomes one of the elements of the partition  $\mathcal{P}^{(i+1)}$ . If  $\Omega \in \mathcal{P}^{(i)}$  is large, then it is a square, and it will be further partitioned into a few sets that will become elements of  $\mathcal{P}^{(i+1)}$ . Denoting by l the side length of the square  $\Omega$ , let us first split  $\Omega$  into four equal squares  $\Omega_1, \Omega_2, \Omega_3, \Omega_4$  of side length l/2 and consider the following cases.



Case 2. If among  $\Omega_1, ..., \Omega_4$  there are exactly 3 small squares, say,  $\Omega_2, \Omega_3, \Omega_4$ , then we have

$$\int_{\Omega \setminus \Omega_1} V^p dx = \int_{\Omega_2 \cup \Omega_3 \cup \Omega_4} V^p dx \le 3c' \left(\frac{l}{2}\right)^{2-2p} = 3c' 2^{2p-2} l^{2-2p} < cl^{2-2p},$$

where we choose c' to satisfy  $3c'2^{2p-2} < c$ . On the other hand, we have

$$\int_{\Omega} V^p dx > cl^{2-2p}.$$

Therefore, by reducing the size of  $\Omega_1$  (but keeping  $\Omega_1$  attached to the corner of  $\Omega$ ) one can achieve the equality

$$\int_{\Omega \setminus \Omega_1} V^p dx = c l^{2-2p}.$$

Hence, we obtain a partition of  $\Omega$  into two sets  $\Omega_1$  and  $\Omega \setminus \overline{\Omega_1}$ , where the step  $\Omega \setminus \overline{\Omega_1}$  is of medium type, while the square  $\Omega_1$  can be of any type. Both  $\Omega_1$  and  $\Omega \setminus \overline{\Omega_1}$  become elements of  $\mathcal{P}^{(i+1)}$ . Case 3. Let us show that all 4 squares  $\Omega_1, ..., \Omega_4$  cannot be small. Indeed, in this case we would have

$$\int_{\Omega} V^p dx = \sum_{k=1}^{4} \int_{\Omega_k} V^p dx \le 4c' \left(\frac{l}{2}\right)^{2-2p} = \left(4c' 2^{2p-2}\right) l^{2-2p}.$$

Let us choose c' so small that  $4c'2^{2p-2} < c$ . Then the above estimate contradicts the assumption that  $\Omega$  is of large type.

As we see from construction, at each step i only large squares get partitioned further, and the size of the large type squares in  $\mathcal{P}^{(i+1)}$  reduces at least by a factor 2. If the size of a square is small enough then it is necessarily of small type, because the right hand side of (3.32) goes to  $\infty$  as  $l \to 0$ . Hence, the process will stop after finitely many steps. After sufficiently many steps we obtain a partition  $\mathcal{P}$  where all the elements are either of small or medium types. In particular, we have Neg $(V, \Omega) = 1$ for any  $\Omega \in \mathcal{P}$ .



Let N be a number of elements of  $\mathcal{P}$ . We need to show that

$$N \le 1 + C \|V\|_{L^p(Q)}. \tag{3.33}$$

At each step of construction, denote by L the number of large elements, by M the number of medium elements, and by S the number of small elements. Let us show that the quantity 2L + 3M - S is non-decreasing during the construction. Indeed, at each step we split one large square  $\Omega$ , so that by removing this square, L decreases by 1. However, we add new elements of partitions, which contribute to the quantity 2L + 3M - S as follows.

1. If  $\Omega$  is split into  $s \leq 2$  small and 4 - s medium/large squares as in Case 1, then the value of 2L + 3M - S has the increment at least

$$-2 + 2(4 - s) - s = 6 - 3s \ge 0.$$

2. If  $\Omega$  is split into 1 square and 1 step as in Case 2, then one obtains at least 1 medium set and at most 1 small, so that 2L + 3M - Shas the increment at least

$$-2 + 3 - 1 = 0.$$

(Luckily, Case 3 cannot occur. In that case, we would have 4 new small squares so that L and M would not have increased, whereas S would have increased at least by 3, so that no quantity of the type  $C_1L + C_2M - S$  would have been monotone increasing).

Since for the partition  $\mathcal{P}^{(1)}$  we have  $2L + 3M - S \ge -1$ , this inequality will remain true at all steps of construction and, in particular, it is

satisfied for the final partition  $\mathcal{P}$ . For the final partition we have L = 0, whence it follows that  $S \leq 1 + 3M$  and, hence,

$$N = S + M \le 1 + 4M. \tag{3.34}$$

Let us estimate M. Let  $\Omega_1, ..., \Omega_M$  be the medium type elements of  $\mathcal{P}$  and let  $l_k$  be the size of  $\Omega_k$ . Each  $\Omega_k$  contains a square  $\Omega'_k \subset \Omega_k$  of the size  $l_k/2$ , and all the squares  $\{\Omega'_k\}_{k=1}^M$  are disjoint, which implies that

$$\sum_{k=1}^{M} l_k^2 \le 4. \tag{3.35}$$

Using the Hölder inequality and (3.35), we obtain

$$M = \sum_{k=1}^{M} l_k^{\frac{2}{p'}} l_k^{-\frac{2}{p'}} \le \left(\sum_{k=1}^{M} l_k^2\right)^{1/p'} \left(\sum_{k=1}^{M} l_k^{-\frac{2p}{p'}}\right)^{1/p} \le 4^{1/p'} \left(\sum_{k=1}^{M} l_k^{2-2p}\right)^{1/p}$$

Since by (3.31)  $c' l_k^{2-2p} < \int_{\Omega_k} V^p dx$ , it follows that

$$M \le C \left( \sum_{k=1}^{M} \int_{\Omega_k} V^p dx \right)^{1/p} \le C \left( \int_Q V^p dx \right)^{1/p}.$$

Combining this with  $N \leq 1 + 4M$ , we obtain  $N \leq 1 + C \|V\|_{L^p(Q)}$ , thus finishing the proof.

**Corollary 3.6** Let  $\Omega$  be a domain in  $\mathbb{R}^2$  that is bilipschitz equivalent to D. Then

Neg 
$$(V, \Omega) \le 1 + C \left( \int_{\Omega} V^p dx \right)^{1/p}$$
,

where C > 0 depends on p and on the Lipschitz constant of the mapping between D and  $\Omega$ .

# **3.6** One negative eigenvalue in $\mathbb{R}^2$

Now we would like to obtain conditions for Neg  $(V, \mathbb{R}^2) = 1$  in terms of some weighted  $L^1$ -norms. The method that we have used in the case  $n \geq 3$  (Proposition 1.3) was based on the operator  $\mathcal{L}_V = -\frac{1}{V}\Delta$  and estimating of  $\|\mathcal{L}_V^{-1}\|$  in  $L^2(\mathbb{R}^n, Vdx)$ .

The hidden reason why it was possible is the existence of the positive Green function  $g(x,y) = \frac{c_n}{|x-y|^{n-2}}$  of  $-\Delta$ . In fact, the operator  $\mathcal{L}_V^{-1}$  is given by

$$\mathcal{L}_{V}^{-1}f = \int_{\mathbb{R}^{n}} g\left(x, y\right) f\left(y\right) V\left(y\right) dy.$$

The application of the Sobolev in the proof of Proposition 1.3 can be replaced by a direct estimate of the norm of this integral operator in  $L^2(\mathbb{R}^n, Vdx)$ . In fact, the classical proof of the Sobolev inequality uses this approach.

One of the difficulties in  $\mathbb{R}^2$  is the absence of a positive Green function of the Laplace operator. To overcome this difficulty, we introduce an auxiliary potential  $V_0 \in C_0^{\infty}(\mathbb{R}^2)$ , such that  $V_0 \not\equiv 0$  and  $V_0 \geq 0$ . **Lemma 3.7** (AG, 2006) Operator  $H_0 = -\Delta + V_0$  has a positive Green function g(x, y) that admits the following estimate

$$g(x,y) \simeq \ln \langle x \rangle \wedge \ln \langle y \rangle + \ln_{+} \frac{1}{|x-y|},$$
 (3.36)

where  $\langle x \rangle := e + |x|$  and  $\wedge$  means min.

By Lemma 3.3 there exists  $V_0$  such that Neg $(V_0, \mathbb{R}^2) = 1$ . Fix such  $V_0$  and, hence, the Green function g(x, y) of  $H_0$  for what follows.

For a given potential V, define as measure  $\nu$  by  $d\nu = V dx$  and consider the integral operator  $G_V$  defined by

$$G_{V}f(x) = \int_{\mathbb{R}^{2}} g(x, y) f(y) d\nu(y).$$

Denote by  $||G_V||$  the norm of  $G_V$  in the space  $L^2(\mathbb{R}^2,\nu)$ .

**Lemma 3.8** If  $||G_V|| \le \frac{1}{2}$  then Neg  $(V, \mathbb{R}^2) = 1$ .

**Sketch of the proof.** The idea is that the operator  $G_V$  is the inverse of the operator  $\frac{1}{V}H_0$  in  $L^2(\nu)$  so that  $||G_V|| \leq \frac{1}{2}$  implies that the spectrum of  $\frac{1}{V}H_0$  is confined in  $[2, \infty)$ . This implies that  $H_0 \geq 2V$  in the sense of quadratic forms, that is,

$$\int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} V_0 u^2 \, dx \ge 2 \int_{\mathbb{R}^2} V u^2 \, dx$$

for all  $u \in \mathcal{F}_V$ . If  $\mathcal{V}$  is a subspace of  $\mathcal{F}_V$  where  $\mathcal{E}_V \leq 0$  then for any  $u \in \mathcal{V}$ 

$$\int_{\mathbb{R}^2} |\nabla u|^2 \, dx \le \int_{\mathbb{R}^2} V u^2 \, dx.$$

Combining the two lines, we obtain

$$\int_{\mathbb{R}^2} |\nabla u|^2 \, dx \le \int_{\mathbb{R}^2} V_0 u^2 \, dx,$$

that is,  $\mathcal{E}_{V_0}(u) \leq 0$ . Taking sup dim  $\mathcal{V}$  we obtain

$$\operatorname{Neg}(V, \mathbb{R}^2) \leq \operatorname{Neg}(V_0, \mathbb{R}^2) = 1.$$

The next step is estimating the norm  $||G_V||$  in terms of V. Since g(x, y) is symmetric in x, y, we have a simple estimate

$$\|G_V\| \le \sup_{y} \int_{\mathbb{R}^2} g(x, y) \, d\nu(x) \, ,$$

which together with Lemma 3.7 leads to

$$\|G_V\| \le C \int_{\mathbb{R}^2} \ln \langle x \rangle \, d\nu \, (x) + C \sup_{y \in \mathbb{R}^2} \int_{\mathbb{R}^2} \ln_+ \frac{1}{|x - y|} d\nu \, (x) \, .$$

However,  $||G_V||$  admits a better estimate, as will be explained below.

### 3.7 Transformation to a strip

It will be more convenient to estimate first Neg (V, S) where S is a strip in  $\mathbb{R}^2$  defined by

$$S = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \in \mathbb{R}, \ 0 < x_2 < \pi \}.$$

The strip S is the image of  $\mathbb{R}^2_+$  under the conformal mapping  $z \mapsto \ln z$ :



Let  $\gamma(x, y)$  be the push-forward of the Green function g(x, y) under this mapping, that is,

$$\gamma\left(x,y\right) = g\left(e^x,e^y\right).$$

Using the estimate (3.37) of g, it is possible to show that

$$\gamma(x,y) \le C \langle x_1 \rangle \land \langle y_1 \rangle + C \ln_+ \frac{1}{|x-y|}.$$
(3.37)

For example,  $x_1$  arises from  $\ln |e^x| = \ln |e^{x_1 + ix_2}| = \ln e^{x_1} = x_1$ . Consider also the corresponding integral operator

$$\Gamma_V f(x) = \int_S \gamma(x, y) f(y) d\nu(y), \qquad (3.38)$$

where measure  $\nu$  is defined as above by  $d\nu = V(x) dx$ . Denote by  $\|\Gamma_V\|$  the norm of  $\Gamma_V$  in  $L^2(S, \nu)$ . Lemma 3.8 implies the following.

## Lemma 3.9 $\|\Gamma_V\| \leq \frac{1}{8} \Rightarrow \operatorname{Neg}(V, S) = 1.$

The main point in the proof is that the holomorphic mappings are conformal and, hence, preserve the Dirichlet integral.

# **3.8 Estimating** $\|\Gamma_V\|$

**Lemma 3.10** The operator  $\Gamma_V$  admits the following norm estimate in  $L^2(S, \nu)$ :

$$\|\Gamma_V\| \le C \sup_{n \in \mathbb{Z}} a_n \left(V\right) + C \sup_{n \in Z} b_n \left(V\right).$$
(3.41)

Approach to the proof. Note that by (3.37)

$$|\Gamma_{V}f(x)| \leq C \int_{S} (1+|x_{1}| \wedge |y_{1}|) |f(y)| V(y) dy +C \int_{S} \ln_{+} \frac{1}{|x-y|} f(y) |V(y)| dy.$$
(3.42)

The second integral operator can be estimated by the Hölder inequality:

$$\begin{split} \int_{S} \ln_{+} \frac{1}{|x-y|} V\left(y\right) dy &\leq \left( \int_{B(x,1)} \left( \ln_{+} \frac{1}{|x-y|} \right)^{p'} dy \right)^{1/p'} \\ &\left( \int_{B(x,1) \cap S} V^{p}\left(y\right) dy \right)^{1/p}. \end{split}$$

The first integral here is equal to a finite constant depending only on p, but independent of x. The second integral is bounded by  $C \sup_{n} b_{n}(V)$ .

It is much more subtle to estimate the norm of the first integral operator in (3.42) via  $C \sup_{n \in \mathbb{Z}} a_n(V)$ . This problem is reduced to an one dimensional problem by integrating in the direction  $x_2$ . Then we apply a certain weighted Hardy inequality. We skip the details as the argument is quite lengthy.

**Corollary 3.11** There is a constant c > 0 such that

$$\sup_{n} a_n(V) \le c \quad and \quad \sup_{n} b_n(V) \le c \quad \Rightarrow \ \operatorname{Neg}(V, S) = 1.$$

**Proof.** Assuming that the constant c here is small enough, we obtain from (3.41) that  $\|\Gamma_V\| \leq \frac{1}{8}$ , whence by Lemma 3.9 Neg (V, S) = 1.

#### **3.9** Rectangles

For all  $\alpha \in [-\infty, +\infty)$ ,  $\beta \in (-\infty, +\infty]$  such that  $\alpha < \beta$ , denote by  $P_{\alpha,\beta}$  the rectangle

$$P_{\alpha,\beta} = \{ (x_1, x_2) \in \mathbb{R}^2 : \alpha < x_1 < \beta, \quad 0 < x_2 < \pi \}.$$

Note that  $P_{\alpha,\beta} \subset S$ .

**Lemma 3.12** For any potential V in a rectangle  $P_{\alpha,\beta}$  with the length  $\beta - \alpha \geq 1$ , we have

 $\operatorname{Neg}(V, P_{\alpha,\beta}) \leq \operatorname{Neg}(17V, S),$ 

where V is extended to S by setting V = 0 outside  $P_{\alpha,\beta}$ .

Sketch of the proof. It suffices to show that any function  $u \in \mathcal{F}_{V,P}$  can be extended to  $\mathcal{F}_{V,S}$  so that

$$\int_{S} |\nabla u|^2 dx \le 17 \int_{P} |\nabla u|^2 dx.$$
(3.43)

Attach to P from each side one rectangle, say P' from the left and P'' from the right, each having the length  $4(\beta - \alpha)$  (to ensure that the latter is  $> \pi$ ). Extend function u to P' by applying four times symmetries in the vertical sides, so that



Then slightly reduce P' by taking intersections with the circle of radii  $\beta - \alpha$  centered at  $(\alpha, 0)$ . Now we extend u from P' to the left by using

the inversion  $\Phi'$  at the point  $(\alpha, 0)$  in the aforementioned circle. By the conformal invariance of the Dirichlet integral, we have

$$\int_{S \cap \{x_1 < \alpha\}} |\nabla u|^2 \le 8 \int_P |\nabla u|^2 \, dx.$$

Extending u in the same way to the right of P, we obtain (3.43).

## **3.10** Sparse potentials

We say that a potential V in S is *sparse* if

$$\sup_{n} b_n \left( V \right) < c_0,$$

where  $c_0$  is a small enough positive constant, depending only on p. It follows from Corollary 3.11 that, for a sparse potential,

$$\sup_{n} a_n(V) \le c \implies \operatorname{Neg}(V, S) = 1.$$

**Corollary 3.13** Let V be a sparse potential in  $P_{\alpha,\beta}$  where  $\beta - \alpha \geq 1$ . Then

$$(\beta - \alpha) \int_{P_{\alpha,\beta}} V(x) \, dx \le c \quad \Rightarrow \quad \operatorname{Neg}\left(V, P_{\alpha,\beta}\right) = 1. \tag{3.44}$$

**Proof.** Take  $\alpha = 0$  so that  $\beta \ge 1$ . Let *m* be a non-negative integer such that  $2^{m-1} < \beta \le 2^m$ .



Then  $a_n(V) = 0$  for n < 0 and for  $n \ge m + 1$ . For  $0 \le n \le m$  $a_n(V) \le 2^{n+1} \int_{S_n} V(x) \, dx \le 2^{m+1} \int_{P_{0,\beta}} V(x) \, dx \le 4\beta \int_{P_{0,\beta}} V(x) \, dx,$ (3.45) so that  $a_n(17V)$  are small enough for all  $n \in \mathbb{Z}$ . By Corollary 3.11 Neg(17V, S) = 1, and by Lemma 3.12 Neg $(V, P_{0,\beta}) = 1$ .

**Lemma 3.14** Let V be a sparse potential in  $P_{\alpha,\beta}$  where  $\beta - \alpha \geq 1$ . Then

$$\operatorname{Neg}\left(V, P_{\alpha,\beta}\right) \le 1 + C\left(\left(\beta - \alpha\right) \int_{P_{\alpha,\beta}} V\left(x\right) dx\right)^{1/2}.$$
(3.46)

In particular, for a sparse potential in  $S_n$ ,

$$Neg(V, S_n) \le 1 + C\sqrt{a_n(V)}.$$
(3.47)

**Proof.** Without loss of generality set  $\alpha = 0$ . Set also

$$J = \int_{P_{0,\beta}} V\left(x\right) dx$$

and recall that, by Corollary 3.13, if  $\beta J \leq c$  for sufficiently small c then Neg  $(V, P_{0,\beta}) = 1$ . Hence, in this case (3.46) is trivially satisfied, and we assume in the sequel that  $\beta J > c$ .

Due to Lemma 3.12, it suffices to prove that

 $\operatorname{Neg}\left(V,S\right) \le C\left(\beta J\right)^{1/2}.$ 

Consider a sequence of reals  $\{r_k\}_{k=0}^N$  such that

$$0 = r_0 < r_1 < \dots < r_{N-1} < \beta \le r_N$$

and the corresponding sequence of rectangles

$$R_k := P_{r_{k-1}, r_k} = \{ (x_1, x_2) : r_{k-1} < x_1 < r_k, \quad 0 < x_2 < \pi \}$$

where k = 1, ..., N, that covers  $P_{0,\beta}$ . Denote  $l_k = r_k - r_{k-1}$  and  $J_k = \int_{R_k} V(x) dx$ . By Corollary 3.13,

$$l_k \ge 1 \text{ and } l_k J_k \le c \implies \operatorname{Neg}(V, R_k) = 1$$
 (3.48)

Let us construct the sequence  $\{r_k\}_{k=0}^N$  to satisfy (3.48) for all k = 1, ..., N. If  $r_{k-1}$  is already defined and  $r_{k-1} < \beta$  then choose  $r_k > r_{k-1}$  to satisfy the identity

$$l_k J_k = c. (3.49)$$



We obtain a partition of S into N rectangles  $R_1, ..., R_N$  and two halfstrips:  $S \cap \{x_1 < 0\}$  and  $S \cap \{x_1 > r_N\}$ , and in the both half-strips we have  $V \equiv 0$ . In each  $R_k$  we have Neg $(V, R_k) = 1$  whence it follows that

Neg 
$$(V, S) \le 2 + \sum_{k=1}^{N} Neg (V, R_k) = N + 2.$$

Let us estimate N from above. In each  $R_k$  with  $k \leq N - 1$  we have by (3.49)  $\frac{1}{J_k} = \frac{1}{c} l_k$ . Therefore, we have

$$N-1 = \sum_{k=1}^{N-1} \frac{1}{\sqrt{J_k}} \sqrt{J_k} \le \left(\frac{1}{c} \sum_{k=1}^{N-1} l_k\right)^{1/2} \left(\sum_{k=1}^{N-1} J_k\right)^{1/2} \le \left(\frac{1}{c}\beta\right)^{1/2} J^{1/2}.$$

Using also  $3 \leq 3 \left(\frac{1}{c}\beta J\right)^{1/2}$ , we obtain  $N+2 \leq 4 \left(\frac{1}{c}\beta J\right)^{1/2}$ , which finishes the proof of (3.46).

The estimate (3.47) follows trivially from (3.46) and (3.39) as  $S_n$  is a rectangle  $P_{\alpha,\beta}$  with the length  $1 \leq \beta - \alpha \leq 2^{|n|+1}$ .

**Proposition 3.15** For any sparse potential in the strip S,

Neg 
$$(V, S) \le 1 + C \sum_{\{n:a_n(V)>c\}} \sqrt{a_n(V)},$$
 (3.50)

for some constant C, c > 0 depending only on p.

**Proof.** Let us enumerate in the increasing order those values n where  $a_n(V) > c$ . So, we obtain an increasing sequence  $\{n_i\}$ , finite or infinite, such that  $a_{n_i}(V) > c$  for any index i. The difference  $S \setminus \bigcup_i S_{n_i}$  can be partitions into a sequence  $\{T_j\}$  of rectangles, where each rectangle  $T_j$  either fills the gap in S between successive rectangles  $S_{n_i}$  or  $T_j$  may be a half-strip that fills the gap between  $S_{n_i}$  and  $+\infty$  or  $-\infty$ .



By construction, each  $T_j$  is a union of some rectangles  $S_k$  with  $a_k(V) \leq c$ . It follows from Corollary 3.11 that Neg $(V, T_j) = 1$ . Since by construction

$$\#\{T_j\} \le 1 + \#\{S_{n_i}\},\$$

it follows that

$$\operatorname{Neg}(V, S) \leq \sum_{j} \operatorname{Neg}(V, T_{i}) + \sum_{i} \operatorname{Neg}(V, S_{n_{i}})$$
$$\leq 1 + \# \{S_{n_{i}}\} + \sum_{i} \operatorname{Neg}(V, S_{n_{i}})$$
$$\leq 1 + 2\sum_{i} \operatorname{Neg}(V, S_{n_{i}}).$$

In each  $S_{n_i}$  we have by (3.47) and  $a_{n_i}(V) > c$  that

$$\operatorname{Neg}\left(V, S_{n_{i}}\right) \leq C\sqrt{a_{n_{i}}\left(V\right)}.$$

Substituting into the previous estimate, we obtain (3.50).

### 3.11 Arbitrary potentials in a strip

We use notation  $a_n(V)$  and  $b_n(V)$  defined by (3.39) and (3.40).

**Theorem 3.16** For any p > 1 and for any potential V in the strip S, we have

Neg 
$$(V, S) \le 1 + C \sum_{\{n \in \mathbb{Z}: a_n(V) > c\}} \sqrt{a_n(V)} + C \sum_{\{n \in \mathbb{Z}: b_n(V) > c\}} b_n(V), \quad (3.51)$$

where the positive constants C, c depend only on p.

**Proof.** Let  $\{n_i\}$  be a sequence of all  $n \in \mathbb{Z}$  for which  $b_n(V) > c$ . Let  $\{T_j\}$  be rectangles that fill the gaps in S between successive  $Q_{n_i}$  or between  $Q_{n_i}$  and  $\pm \infty$ .



If the sequence  $\{n_i\}$  is empty then V is sparse, and (3.51) follows from Proposition 3.15. Assume that  $\{n_i\}$  is non-empty.

Consider the potentials  $V' = V \mathbf{1}_{\cup T_j}$  and  $V'' = V \mathbf{1}_{\cup Q_{n_i}}$ . Since V = V' + V'', we have

$$\operatorname{Neg}(V, S) \le \operatorname{Neg}(2V', S) + \operatorname{Neg}(2V'', S).$$

The potential 2V' is sparse by construction, whence by Proposition 3.15

Neg 
$$(2V', S) \le 1 + C \sum_{\{n:a_n(V') > c\}} \sqrt{a_n(V')}.$$
 (3.52)

By Lemma 3.2 and Lemma 3.5, we obtain

$$\operatorname{Neg}(2V'', S) \leq \sum_{j} \operatorname{Neg}(2V'', T_{j}) + \sum_{i} \operatorname{Neg}(2V'', Q_{n_{i}})$$
$$= \#\{T_{j}\} + \sum_{i} \left(1 + C \|2V''\|_{L^{p}(Q_{n_{i}})}\right)$$
$$= \#\{T_{j}\} + \#\{Q_{n_{i}}\} + 2C\sum_{i} b_{n_{i}}(V).$$

By construction we have  $\# \{T_j\} \leq 1 + \# \{Q_{n_i}\}$ . By the choice of  $n_i$ , we have  $1 < c^{-1}b_{n_i}(V)$ , whence

$$\# \{T_j\} + \# \{Q_{n_i}\} \le 1 + 2\# \{Q_{n_i}\} \le 1 + 2c^{-1} \sum_i b_{n_i}(V) \le 3c^{-1} \sum_i b_{n_i}(V)$$

Combining these estimates together, we obtain

Neg 
$$(2V'', S) \le C' \sum_{i} b_{n_i}(V) = C' \sum_{\{n:b_n(V)>c\}} b_n(V)$$
 (3.53)

Adding up (3.52) and (3.53) yields

Neg 
$$(V, S) \le 1 + C \sum_{\{n:a_n(V') > c\}} \sqrt{a_n(V')} + C \sum_{\{n:b_n(V) > c\}} b_n(V).$$
 (3.54)

Since  $V' \leq V$ , (3.54) implies (3.51), which finishes the proof. **Remark.** In fact, we have proved a slightly better inequality (3.54) than (3.51).

# 3.12 Proof of Theorem 3.1

Let us prove the main Theorem 3.1, that is, for any potential V in  $\mathbb{R}^2$ ,

Neg 
$$(V) \le 1 + C \sum_{\{n \in \mathbb{Z}: A_n > c\}} \sqrt{A_n} + C \sum_{\{n \in \mathbb{Z}: B_n > c\}} B_n,$$
 (3.55)

where

$$A_n(V) = \int_{U_n} V(x) \left(1 + |\ln |x||\right) dx, \quad B_n(V) = \left(\int_{W_n} V^p(x) |x|^{2(p-1)} dx\right)^{1/p},$$

$$U_n = \begin{cases} \{e^2 < |x| < e^2 \}, & n \ge 1, \\ \{e^{-1} < |x| < e\}, & n = 0, \\ \{e^{-2^{|n|}} < |x| < e^{-2^{|n|-1}}\}, & n \le -1, \end{cases}$$

and

$$W_n = \left\{ e^n < |x| < e^{n+1} \right\}.$$

Consider an open set  $\Omega = \mathbb{R}^2 \setminus L$  where  $L = \{ x_1 \ge 0, x_2 = 0 \}$  and the mapping  $\Psi : \Omega \to \widetilde{S}$  where  $\Psi(z) = \ln z$  and

$$\widetilde{S} = \{(y_1, y_2) \in \mathbb{R}^2 : 0 < y_2 < 2\pi\}.$$



Using the inverse mapping  $\Phi = \Psi^{-1}$ , define a potential  $\widetilde{V}$  on  $\widetilde{S}$  by  $\widetilde{V}(y) = V(\Phi(y)) |J_{\Phi}(y)|$  where  $J_{\Phi}$  is the Jacobian of  $\Phi$ . It is possible to prove that

$$\operatorname{Neg}\left(V, \mathbb{R}^2\right) \le \operatorname{Neg}\left(V, \Omega\right) = \operatorname{Neg}(V, \widetilde{S}). \tag{3.56}$$

Since the strips  $\widetilde{S}$  and S are bilipschitz equivalent, Theorem 3.16 holds also for  $\widetilde{S}$ , that is,

$$\operatorname{Neg}(\widetilde{V},\widetilde{S}) \le 1 + C \sum_{\{n:a_n > c\}} \sqrt{a_n} + C \sum_{\{n:b_n(V) > c\}} b_n, \qquad (3.57)$$

where

$$a_n = \int_{S_n} \left(1 + |y_1|\right) \widetilde{V}(y) \, dy, \quad b_n = \left(\int_{Q_n} \widetilde{V}^p dy\right)^{1/p},$$

and

$$Q_n = \Psi (W_n \setminus L), \qquad S_n = \Psi (U_n \setminus L).$$

Since  $J_{\Psi} = \frac{1}{|x|^2}$ , we obtain, using the change  $y = \Psi(x)$ ,

$$b_n^p = \int_{Q_n} \widetilde{V}^p(y) \, dy = \int_{W_n} V^p(x) \, |J_\Phi(y)|^p \, |J_\Psi(x)| \, dx$$
  
=  $\int_{W_n} V^p(x) \, |J_\Psi(x)|^{1-p} \, dx$   
=  $\int_{W_n} V^p(x) \, |x|^{2(p-1)} \, dx = B_n^p.$ 

Similarly, computing  $a_n$  and observing that

$$y_1 = \operatorname{Re}\Psi(x) = \operatorname{Re}\ln x = \ln|x|,$$

we obtain

$$a_n = \int_{S_n} \widetilde{V}(y) (1 + |y_1|) dy = \int_{U_n} V(x) |J_{\Phi}(y)| (1 + |\ln|x||) |J_{\Psi}(x)| dx$$
  
= 
$$\int_{U_n} V(x) (1 + |\ln|x||) dx = A_n.$$

Combining together (3.56), (3.57), we obtain (3.55).