Analysis on manifolds and volume growth

Alexander Grigor’yan

“Analysis and PDEs on manifolds and fractals”
Nankai University, September 2326, 2019



Setup

Let M be always a Riemannian manifold that is geodesically complete and non-compact.
Let d (z,y) denote the geodesic distance on M and p be the Riemannian measure. Consider

geodesic balls
B(z,r)={yeM:d(z,y) <r},

that are necessarily precompact, and their volumes:
Vi(z,r)=p(B(z,r)).

In this lecture we collect some old and new results relating the rate growth of V (z,7) as
r — oo to the properties of certain PDEs on M.
Recall that the Laplace operator A on M is given in the local coordinates z, ..., z, as

follows: . . .
A= v/ det gg" —
Vdet g 0x; ( “99 8xj>
1

where g = (g;;) is the Riemannian metric tensor and (¢”) = (g;;) " .




Parabolicity

A function u € C? (M) is called superharmonic if Au < 0. Manifold M is called parabolic if
any positive superharmonic function on M is constant, and non-parabolic otherwise.
Equivalent characterizations of the parabolicity:

e there exists no positive fundamental solution of —A;

[ pi (z,y) dt = oo for all/some x,y € M, where p; (z,y) is the heat kernel of A;

the capacity of any compact set is zero;

e Brownian motion on M is recurrent.

Theorem of Polya (1921): R™ is parabolic for n < 2 and non-parabolic for n > 2.
Let us fix a reference point xy and denote V (1) =V (zg,r).

Theorem 1 (Cheng-Yau, 75) If for all large enough r
V(r) < Cr? (1)

then M 1s parabolic.



Theorem 2 (AG 83, Karp '82, Varopoulos '83) If

/oox:?%:oo

then M 1s parabolic.
For example, (2) is satisfied if
V(r) < Cr?logr.
The condition (2) is sharp: if f(r) is a smooth convex function such that f’(r) > 0 and

© rdr

(7)

then there is a non-parabolic manifold such that V (r) = f (r) for large .
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Stochastic completeness

Manifold M is called stochastically complete if for all x € M and t > 0

/Mpt (z,y)dp (y) = 1.

Equivalent characterizations of the stochastic completeness:
e Lifetime of Brownian motion on M is oo almost surely.
e For some/any A > 0, any bounded solution v to Au — Au = 0 on M is identical zero.

e For some/any T € (0, o], the Cauchy problem

% — Au in M x (0,T)
uly_g =0

(3)
has the only bounded solution u = 0.
Theorem 3 (AG ’86) If
/ _rdr (4)

log V' (r)
then M 1s stochastically complete.



In particular, M is stochastically complete provided
V(r) <exp (Cr2> . (5)

(Davies 92, Karp and Li ’83, Takeda ’89).
The condition (4) is sharp: if f (r) is a smooth convex function such that f’(r) > 0 and

© rdr

(7)

then there exists a stochastically incomplete manifold with V' (r) = exp (f (r)) .

< 0



Liouville properties

Theorem 4 (S.T.Yau "78) If u is a harmonic function on M and uw € LP(M,pu) with
1 < p< oo then u = const .

In other words, any geodesically complete manifold satisfies LP-Liouwille property if 1 <
p < oo. For p = 1 and p = oo this is not true: there are manifolds with non-trivial L'
harmonic function as well as those with non-trivial L> harmonic functions.

Theorem 5 (AG '89) Assume that

/OO rdr ~
log V' (r) -

Then any positive superharmonic function u € L* (M, i) is identical constant.

Open Questions:. Find “good” conditions to ensure that

(a) any harmonic function u € L' is identical constant;

(b) any harmonic function u € L*®identical constant.



Bounded solutions of Schrodinger equations
Let @ (x) be a nonnegative continuous function on M, () # 0. Consider the equation
Au—Qu =20 (6)

and ask if (6) has a non-trivial bounded solution (equivalently: a positive bounded solution).
Set |z| = d (x,z¢) and denote

r/2
q(r)=inf Q(z) and F (r) :/o Vg (t)dt.

|z|=r
Theorem 6 (AG, '90) If for all large enough r
V (r) < Criexp (CF (7“)2) (7)
then (6) has no bounded solution except for u = 0.

Example. Let Q = 1. Then (6) has no bounded solution (except for zero) if and only if M
is stochastically complete. We have ¢ = 1, F (r) = r/2, and (7) becomes V (r) < exp (Cr?),
which coincides with the condition (5) for the stochastic completeness.
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Example. Let ) have compact support. In this case (6) has no bounded solution (except
for zero) if and only if M is parabolic. Since ¢ (r) = 0 for large enough r, we obtain that
F (r) = const for large 7, and (7) becomes V (r) < Cr?, which coincides with the condition
(1) for the parabolicity.

Example. Assume that, for large |z|

Q(z) 2

" Ja|*log |2|

C

Then

r/2
F(r)> 1
)2 | gyt = Ve

so that (7) is satisfied provided
V(r)<Crh.
In this case (6) has no bounded solution except for zero.

On the other hand, if in R”

C

r) <
Q( )— |$|210g1+€

]

then (6) has a positive solution in R".



Escape rate

Let {Xt}tzo be Brownian motion on M, that is the diffusion process generated by A, whose
transition density is p; (z,y) .

An increasing function R(t) is called an upper rate function if, with probability 1, we
have | X;| < R (t) for all ¢ large enough.

Similarly, an increasing function r (¢) is called a lower rate function if, with probability
1, we have | X;| > r () for all ¢ large enough.

Hence, for large enough t,
X, is contained in the annulus

\

\
|
]
1

B (w0, R () \ B (20,7 (t))

10B(x0,R(t))

almost surely.



For example, in R™ the following upper rate function is known:

R(t)=+/(4+¢)tloglogt (Khinchin’s law of iterated log).

If n > 2 and r (t) /+/t is decreasing then r (¢) is a lower rate function in R” if and only if

[

(Dvoretzky and Erds, '50). Here is an example of such a function: r () = %4
logn—2t¢

Theorem 7 (AG and M.Kelbert 98, AG °99) Assume that, for all r large enough,

V(r)<CrY, (9)
with some N,C > 0. Then the following function is an upper rate function:

R(t) = \/2Ntlogt. (10)

Under assumption (9), the upper rate function (10) is optimal (AG, Kelbert ’00).

Similar result for simple random walks on graphs: Hardy-Littlewood (1914, for Z) and
M.Barlow—E.Perkins ’89.
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Theorem 8 (AG and E.P. Hsu '09) Let M be a Cartan-Hadamard manifold and assume

that - p
rdr

. 11

/ log V' (1) > (11)

e pdy
t= —
/m log V' (r)

Then R (t) = ¢ (Ct) is an upper rate function.

Define a function ¢ (t) as follows:

Example. If V (r) = Cr" then

o* (t)
log ¢ (#)
whence R (t) ~ ¢ (t) ~ /tlogt that matches (10).

Example. If V (r) = exp (r*) where 0 < o < 2 then

t~

te ()
whence R (t) = Ct7a.
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Example. If V (r) = exp (r?) then
t ~logy(t)
whence R (t) = exp (Ct).

Theorem 9 (E.P. Hsu and G.Qin '10) On any complete manifold M, satisfying (11), define
function ¢ (t) as follows:

/ o (?) rdr

t = :
v logV (r)+loglogr
Then R (t) = Cp (Ct) is an upper rate function.

Example. Let V (r) < Clogr. Then

RO )
~ loglog ¢ (t)

and we obtain an upper rate function

R (t) = Cy/tloglogt.
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Theorem 10 (AG '99) Assume that a relative Faber-Krahn inequality holds on M (for
example, this is the case when Ricciy > 0). Assume that

/OOVTC(Z;)“O

so that M 1is non-parabolic and X; is transient. Denote

([ 28)

Let r(t) be an increasing positive function on (0,00) such that

*(r(t)
/ VD dt < 0. (13)

Then r(t) is a lower rate function for Brownian motion on M.

Example. Let V(z,r) ~ " for large r and some N > 2. We obtain from (12) y(t) ~ tV 2,

and (13) amounts to
N2 (t)dt
—z <,
which coincides with the Dvoretzky—Erdos condition (8).
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Semilinear PDE

Consider on M the inequality
Au+u® <0 (14)

and ask if it has a non-negative solution u except for u = 0. Here ¢ > 1 is a given parameter.
Any solution of (14) is superharmonic. Hence, if M is parabolic then u must be identical
zero. In particular, this is the case if V (r) < Cr?.

Theorem 11 (AG and Y.Sun ’1}) Assume that, for all large r,
V(r) < CrPlog?r, (15)

where
20 1

q:

p:

o—1’ G — 1

Then any nonnegative solution of (14) is identical zero.

The values of the exponents p and ¢ in (16) are sharp: if either p > 2% or p = 2% and

o—1 o—1
q > -1 then there is a manifold satisfying (15) where the inequality (14) has a positive

solution.
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Equivalent reformulation: if, for some a > 2
V(r) <Cr® log“ r, (17)

then, for any o < —%5, any nonnegative solution of (14) is identical zero.
For example, in R" with n > 2 (17) holds with a = n which implies that, for o < 5,
any nonnegative solution of (14) is identical zero.

It is known that, for any o > -5, (14) has a positive solution in R" (Mitidieri and

Pohozaev, '98).
o0 20—1d
[ a8
V(r)

Conjecture. If
then any nonnegative solution of (14) is identical zero.

In particular, the function (17) satisfies (18) with o = —%5.

Similar results for the semilinear heat equation: Yuhua Sun.
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Heat kernel lower bounds
Theorem 12 (Coulhon and AG, '97) Assume that, for all r > ro > 0,
V(r) < Cre, (19)

for some C,ac > 0. Then, for all large enough t,

pe(o, To) > V(\/}(/%ogt)’ (20)
where K = K (xg,79,C,a) > 0. Consequently,
c
Pt (2o, To) = (tlog 1) (21)
The best possible lower bound would be
pe (To, Tg) > ¢
¢ (Zo, To) = VA

that is valid on manifolds of non-negative Ricci curvature (Li and Yau ’85). However, under
the hypothesis (19), the lower bound (20) is optimal (AG and Kelbert, ’00).
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Theorem 13 (Coulhon and AG, '97) Assume that the function V (r) is doubling, that is,
V(2r)<CV(r),

and that, for all t > 0,

Then, for all t > 0,
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Recurrence revisited

For any « € (0, 2), the operator (—A)O‘/ “isa generator of a jump process on M that is called
the a-process. It is a natural generalization of the symmetric stable Levy process of index «
in R%. By a general semigroup theory, the Green function G(®)(z,y) of (—A)a/ ? is given by

G(O‘)(aj,y):/ t92 7 p(t, x, y)dt,
0

and the recurrence of the a-process is equivalent to G(® = oo, that is, to

/to‘/z_lp(t, x,x)dt = 0. (22)
Theorem 14 (AG ’99) If for all v > 1o > 0
V(r) < Cre, (23)
then the a-process 1s recurrent.

Indeed, by Theorem 12 we have p;(zg, z¢) > W. Substituting into (22) we see that

the integral diverges.
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Heat kernel upper bounds

Theorem 15 (Barlow, Coulhon, AG ’01) Let M be a manifold of bounded geometry. As-
sume that, for allx € M and r > ry >0

V(z,r) > cer?
Then, for all x € M and large enough t,
pi(z,z) < Ct 7 (24)

For any N > 1, there exists an example of a manifold with V (z,r) ~ ¥ and

e (2, 2) =~ £

Indeed, take any fractal graph where the volume function is 7* and the on-diagonal decay of
the heat kernel is given by ¢t~*/. It is known that such a graph exists for any «, 3 satisfying

2<p<a+1

(Barlow ’04). Choose a = N and = N + 1 and then inflate the graph into a manifold.
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Here is one of such graphs,
the Vicsek tree:

For this fractal
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Biparabolic manifolds

A function u € 04(M) is called bi-superharmonic if Au < 0 and A2u > 0.
For example, let M be nonparabolic and consider the Green operator

sz/ooog(af,y)f(y)du(y)

where g (z,y) = [, p: (x,y) dt is the Green function. Then u = G f is bi-superharmonic if
is finite and f is non-negative and superharmonic.

Another example of bi-superharmonic functions in a precompact domain €2 C M: if f is
a non-negative continuous function on 02 then

solves the following boundary value problem

A?u =0 in Q
_AU‘aQ — f7
ulon =0,

and, hence, is bi-superharmonic in €.
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A manifold M is called biparabolic, if any positive bi-superharmonic function on M is
harmonic, that is Au = 0.

Note that the notion of parabolicity also admits a similar equivalent definition: M is
parabolic if and only if any positive superharmonic function on M is harmonic.

One can show that R™ is biparabolic if and only if n < 4. For example, if n > 4 then
u(z) = |z|"" ™ is bi-superharmonic but not harmonic.

Theorem 16 (Faraji and AG, to appear) Manifold M is biparabolic provided

7,4

V(ir)<C for large r. (25)

log r

The condition (25) is not far from optimal in the following sense: for any § > 1 there
exists a manifold M with
V(r) < Cr'log’r
that is not biparabolic.
Conjecture. If
r3dr

Vi(r)

V (r) < Crtlogr or even /

then M s biparabolic.

e



Recall that M is parabolic if and only if G = oo that is, G f = oo for any non-zero f > 0.

Lemma 17 The following conditions are equivalent:
(1) M 1s biparabolic.
(i1) G? = oo (that is, G*f = oo for any non-zero f >0)

Proof of Theorem 16. Assuming (25), we prove that G2f = oo for any non-negative
non-zero function f. It is easy to compute that

sz(g:):/o tPf (z)dt = //tpt:cy )dp(y)dt.

Fix an arbitrary x € M and choose R > 0 so big that the ball B(xy, R) contains both supp f
and z. By the local Harnack inequality, we have, for all z,y € B (x¢, R) and t > 2R?

pe(x,y) > epi_ge (20, o) > cpr (o, To)

where ¢ = ¢ (zy, R) > 0. Hence, we obtain, for large enough ¢,

e / / )W > el / e

to
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By Theorem 12, we have, for large t,

1/4 c
> >
o) = TR 0 (Vioe1)
where A
r
u(r) = logr’
For large ¢ we have
v(y/tlogt) ~ t*logt,
whence
/oot ( it > /OO tdt /°° dt
Tg, T c — ~ = 00
to P, Fo)eh = U (vtlogt) ., tlogt
We conclude that
G*f (z) = o0,

which was to be proved. m
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Now let us construct for any > 1 an example of a manifold M that is not biparabolic

and satisfies
V (r) < Crilog’r.

Fix n > 2 and consider a smooth manifold M = R x S*!, where any point x € M is
represented in the polar form as (r,0) where r € R and 6 € S" 1.
Define the Riemannian metric g on M by

g = dr? +*(r)do?, (26)

where df? is the standard Riemannian metric on S*~! and ¢(r) is a smooth positive function
on R. Define the area function S (r), r € R, by

S (r) = wath (r)",

where w, is the volume of S"~'. We choose S (r) as follows:

e ", r> 2,
Str) = { rFlog? Ir], < —2, (27)

where «, 3 are arbitrary real numbers such that

a>2 and (> 1. (28)
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Proposition 18 Under the hypotheses (27) and (28), the manifold M is not biparabolic,
and the volume growth function of M satisfies

V (r) < Crtlog?r. (29)
Proof. Fix a reference point xy = (0,0). The volume estimate (29) follows from

V(r)z/_TS(t)dt.

In order to prove that M is not biparabolic, it suffices to construct a positive harmonic
function A on M such that the function

u:= Gh
is finite at least at one point. Indeed, in this case we have u € C*°(M) and Au = —h. Hence,
Au < 0 and
A’y =Ah=0

so that w is bi-superharmonic, but not harmonic; hence, M is not biparabolic.
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Choose h as follows: "
h(r) = —
=] .50

It is finite by (27) and harmonic on M because it depends only on r and

2h Smoh 1 0 oh
M_arﬁS(T)E_S(r)ﬁ(s(”5>_o‘

Then one proves that, for any x = (r,6),

h(r), ifr< -2,
1, if r > 2.

g (o, ) 1’{

We have

=2

Gh(xzg) = /Mg(ajo,a:)h(x)du(x) ~2 | —i—/

— 00

For r < —2 we have

r dt 1
S(r) = |r|?log? |r| and h?“Z/ = '
(r) = |r[*log” |r| D= ) iFoef Tl P Ele ]

28

h*(r)S(r)dr + /200 h(r)S(r)dr.



Since > 1, we obtain

For r > 2

) =2 1
/ h%(r) S (r)dr ~ / —————5—dr < co.
s —oo || 10g” ||

Ta—l'

S(r)=e™ and h(r)~ / e dt ~
0

Since a > 2, we have

+oo o0
/ h(r)S(r)dr:/ d: < 00.
2 2 T

Hence, Gh (xy) < oo, which was to be proved. m
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