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Setup

Let M be always a Riemannian manifold that is geodesically complete and non-compact.
Let d (x, y) denote the geodesic distance on M and μ be the Riemannian measure. Consider
geodesic balls

B (x, r) = {y ∈ M : d (x, y) < r} ,

that are necessarily precompact, and their volumes:

V (x, r) = μ (B (x, r)) .

In this lecture we collect some old and new results relating the rate growth of V (x, r) as
r → ∞ to the properties of certain PDEs on M.

Recall that the Laplace operator Δ on M is given in the local coordinates x1, ..., xn as
follows:

Δ =
1

√
det g

∂

∂xi

(√
det ggij ∂

∂xj

)

where g = (gij) is the Riemannian metric tensor and (gij) = (gij)
−1 .
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Parabolicity

A function u ∈ C2 (M) is called superharmonic if Δu ≤ 0. Manifold M is called parabolic if
any positive superharmonic function on M is constant, and non-parabolic otherwise.

Equivalent characterizations of the parabolicity:

• there exists no positive fundamental solution of −Δ;

•
∫∞

pt (x, y) dt = ∞ for all/some x, y ∈ M , where pt (x, y) is the heat kernel of Δ;

• the capacity of any compact set is zero;

• Brownian motion on M is recurrent.

Theorem of Polya (1921): Rn is parabolic for n ≤ 2 and non-parabolic for n > 2.
Let us fix a reference point x0 and denote V (r) = V (x0, r) .

Theorem 1 (Cheng-Yau, ’75) If for all large enough r

V (r) ≤ Cr2 (1)

then M is parabolic.
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Theorem 2 (AG ’83, Karp ’82, Varopoulos ’83) If

∫ ∞ rdr

V (r)
= ∞ (2)

then M is parabolic.

For example, (2) is satisfied if

V (r) ≤ Cr2 log r.

The condition (2) is sharp: if f (r) is a smooth convex function such that f ′ (r) > 0 and

∫ ∞ rdr

f (r)
< ∞,

then there is a non-parabolic manifold such that V (r) = f (r) for large r.
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Stochastic completeness

Manifold M is called stochastically complete if for all x ∈ M and t > 0
∫

M

pt (x, y) dμ (y) = 1.

Equivalent characterizations of the stochastic completeness:

• Lifetime of Brownian motion on M is ∞ almost surely.

• For some/any λ > 0, any bounded solution u to Δu − λu = 0 on M is identical zero.

• For some/any T ∈ (0,∞], the Cauchy problem
{

∂u
∂t

= Δu in M × (0, T )
u|t=0 = 0

(3)

has the only bounded solution u ≡ 0.

Theorem 3 (AG ’86) If ∫ ∞ rdr

log V (r)
= ∞ (4)

then M is stochastically complete.
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In particular, M is stochastically complete provided

V (r) ≤ exp
(
Cr2

)
. (5)

(Davies ’92, Karp and Li ’83, Takeda ’89).
The condition (4) is sharp: if f (r) is a smooth convex function such that f ′ (r) > 0 and

∫ ∞ rdr

f (r)
< ∞

then there exists a stochastically incomplete manifold with V (r) = exp (f (r)) .
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Liouville properties

Theorem 4 (S.T.Yau ’78) If u is a harmonic function on M and u ∈ Lp (M,μ) with
1 < p < ∞ then u ≡ const .

In other words, any geodesically complete manifold satisfies Lp-Liouville property if 1 <
p < ∞. For p = 1 and p = ∞ this is not true: there are manifolds with non-trivial L1

harmonic function as well as those with non-trivial L∞ harmonic functions.

Theorem 5 (AG ’89) Assume that
∫ ∞ rdr

log V (r)
= ∞.

Then any positive superharmonic function u ∈ L1 (M,μ) is identical constant.

Open Questions:. Find “good” conditions to ensure that

(a) any harmonic function u ∈ L1 is identical constant;

(b) any harmonic function u ∈ L∞identical constant.
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Bounded solutions of Schrödinger equations

Let Q (x) be a nonnegative continuous function on M , Q 6≡ 0. Consider the equation

Δu − Qu = 0 (6)

and ask if (6) has a non-trivial bounded solution (equivalently: a positive bounded solution).
Set |x| = d (x, x0) and denote

q (r) = inf
|x|=r

Q (x) and F (r) =

∫ r/2

0

√
q (t)dt.

Theorem 6 (AG, ’90) If for all large enough r

V (r) ≤ Cr2 exp
(
CF (r)2) (7)

then (6) has no bounded solution except for u ≡ 0.

Example. Let Q ≡ 1. Then (6) has no bounded solution (except for zero) if and only if M
is stochastically complete. We have q ≡ 1, F (r) = r/2, and (7) becomes V (r) ≤ exp (Cr2) ,
which coincides with the condition (5) for the stochastic completeness.
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Example. Let Q have compact support. In this case (6) has no bounded solution (except
for zero) if and only if M is parabolic. Since q (r) = 0 for large enough r, we obtain that
F (r) = const for large r, and (7) becomes V (r) ≤ Cr2, which coincides with the condition
(1) for the parabolicity.

Example. Assume that, for large |x|

Q (x) ≥
c

|x|2 log |x|
.

Then

F (r) ≥
∫ r/2

2

c

t
√

log t
dt '

√
log r

so that (7) is satisfied provided
V (r) ≤ CrN .

In this case (6) has no bounded solution except for zero.
On the other hand, if in Rn

Q (x) ≤
C

|x|2 log1+ε |x|

then (6) has a positive solution in Rn.
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Escape rate

Let {Xt}t≥0 be Brownian motion on M , that is the diffusion process generated by Δ, whose
transition density is pt (x, y) .

An increasing function R(t) is called an upper rate function if, with probability 1, we
have |Xt| < R (t) for all t large enough.

Similarly, an increasing function r (t) is called a lower rate function if, with probability
1, we have |Xt| > r (t) for all t large enough.

Hence, for large enough t,
Xt is contained in the annulus

B (x0, R (t)) \ B (x0, r (t))

almost surely.
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For example, in Rn the following upper rate function is known:

R (t) =
√

(4 + ε) t log log t (Khinchin’s law of iterated log ).

If n > 2 and r (t) /
√

t is decreasing then r (t) is a lower rate function in Rn if and only if

∫ ∞(r(t)
√

t

)n−2
dt

t
< ∞ (8)

(Dvoretzky and Erdös, ’50). Here is an example of such a function: r (t) = C
√

t

log
1+ε
n−2 t

.

Theorem 7 (AG and M.Kelbert ’98, AG ’99) Assume that, for all r large enough,

V (r) ≤ CrN , (9)

with some N,C > 0. Then the following function is an upper rate function:

R(t) =
√

2Nt log t. (10)

Under assumption (9), the upper rate function (10) is optimal (AG, Kelbert ’00).
Similar result for simple random walks on graphs: Hardy–Littlewood (1914, for Z) and

M.Barlow–E.Perkins ’89.
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Theorem 8 (AG and E.P. Hsu ’09) Let M be a Cartan-Hadamard manifold and assume
that ∫ ∞ rdr

log V (r)
= ∞. (11)

Define a function ϕ (t) as follows:

t =

∫ ϕ(t)

r0

rdr

log V (r)
.

Then R (t) = ϕ (Ct) is an upper rate function.

Example. If V (r) = CrN then

t '
ϕ2 (t)

log ϕ (t)

whence R (t) ' ϕ (t) '
√

t log t that matches (10).

Example. If V (r) = exp (rα) where 0 < α < 2 then

t ' ϕ (t)2−α

whence R (t) = Ct
1

2−α .
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Example. If V (r) = exp (r2) then
t ' log ϕ (t)

whence R (t) = exp (Ct) .

Theorem 9 (E.P. Hsu and G.Qin ’10) On any complete manifold M, satisfying (11), define
function ϕ (t) as follows:

t =

∫ ϕ(t)

r0

rdr

log V (r) + log log r
.

Then R (t) = Cϕ (Ct) is an upper rate function.

Example. Let V (r) ≤ C log r. Then

t '
ϕ2 (t)

log log ϕ (t)

and we obtain an upper rate function

R (t) = C
√

t log log t.
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Theorem 10 (AG ’99) Assume that a relative Faber-Krahn inequality holds on M (for
example, this is the case when RicciM ≥ 0). Assume that

∫ ∞ rdr

V (r)
< ∞

so that M is non-parabolic and Xt is transient. Denote

γ(r) :=

(∫ ∞

r

sds

V (s)

)−1

. (12)

Let r(t) be an increasing positive function on (0,∞) such that
∫ ∞ γ(r(t))

V (
√

t)
dt < ∞. (13)

Then r(t) is a lower rate function for Brownian motion on M .

Example. Let V (x, r) ' rN for large r and some N > 2. We obtain from (12) γ(t) ' tN−2,
and (13) amounts to ∫ ∞ rN−2(t)dt

tN/2
< ∞ ,

which coincides with the Dvoretzky–Erdös condition (8).

13



Semilinear PDE

Consider on M the inequality
Δu + uσ ≤ 0 (14)

and ask if it has a non-negative solution u except for u ≡ 0. Here σ > 1 is a given parameter.
Any solution of (14) is superharmonic. Hence, if M is parabolic then u must be identical
zero. In particular, this is the case if V (r) ≤ Cr2.

Theorem 11 (AG and Y.Sun ’14) Assume that, for all large r,

V (r) ≤ Crp logq r, (15)

where

p =
2σ

σ − 1
, q =

1

σ − 1
. (16)

Then any nonnegative solution of (14) is identical zero.

The values of the exponents p and q in (16) are sharp: if either p > 2σ
σ−1

or p = 2σ
σ−1

and

q > 1
σ−1

then there is a manifold satisfying (15) where the inequality (14) has a positive
solution.
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Equivalent reformulation: if, for some α > 2

V (r) ≤ Crα log
α−2

2 r, (17)

then, for any σ ≤ α
α−2

, any nonnegative solution of (14) is identical zero.
For example, in Rn with n > 2 (17) holds with α = n which implies that, for σ ≤ n

n−2
,

any nonnegative solution of (14) is identical zero.
It is known that, for any σ > n

n−2
, (14) has a positive solution in Rn (Mitidieri and

Pohozaev, ’98).

Conjecture. If ∫ ∞ r2σ−1dr

V (r)σ−1 = ∞ (18)

then any nonnegative solution of (14) is identical zero.

In particular, the function (17) satisfies (18) with σ = α
α−2

.
Similar results for the semilinear heat equation: Yuhua Sun.
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Heat kernel lower bounds

Theorem 12 (Coulhon and AG, ’97) Assume that, for all r ≥ r0 > 0,

V (r) ≤ Crα, (19)

for some C, α > 0. Then, for all large enough t,

pt(x0, x0) ≥
1/4

V (
√

Kt log t)
, (20)

where K = K (x0, r0, C, α) > 0. Consequently,

pt (x0, x0) ≥
c

(t log t)α/2
(21)

The best possible lower bound would be

pt (x0, x0) ≥
c

V (
√

t)

that is valid on manifolds of non-negative Ricci curvature (Li and Yau ’85). However, under
the hypothesis (19), the lower bound (20) is optimal (AG and Kelbert, ’00).
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Theorem 13 (Coulhon and AG, ’97) Assume that the function V (r) is doubling, that is,

V (2r) ≤ CV (r) ,

and that, for all t > 0,

pt (x0, x0) ≤
C

V
(√

t
) .

Then, for all t > 0,

pt (x0, x0) ≥
c

V
(√

t
) .
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Recurrence revisited

For any α ∈ (0, 2), the operator (−Δ)α/2 is a generator of a jump process on M that is called
the α-process. It is a natural generalization of the symmetric stable Levy process of index α
in Rd. By a general semigroup theory, the Green function G(α)(x, y) of (−Δ)α/2 is given by

G(α)(x, y) =

∫ ∞

0

tα/2−1p(t, x, y)dt,

and the recurrence of the α-process is equivalent to G(α) ≡ ∞, that is, to

∞∫
tα/2−1p(t, x, x)dt = ∞. (22)

Theorem 14 (AG ’99) If for all r ≥ r0 > 0

V (r) ≤ Crα, (23)

then the α-process is recurrent.

Indeed, by Theorem 12 we have pt(x0, x0) ≥ c

tα/2 logα/2 t
. Substituting into (22) we see that

the integral diverges.
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Heat kernel upper bounds

Theorem 15 (Barlow, Coulhon, AG ’01) Let M be a manifold of bounded geometry. As-
sume that, for all x ∈ M and r ≥ r0 > 0

V (x, r) ≥ crN

Then, for all x ∈ M and large enough t,

pt(x, x) ≤ Ct−
N

N+1 . (24)

For any N ≥ 1, there exists an example of a manifold with V (x, r) ' rN and

pt (x, x) ' t−
N

N+1 .

Indeed, take any fractal graph where the volume function is rα and the on-diagonal decay of
the heat kernel is given by t−α/β. It is known that such a graph exists for any α, β satisfying

2 ≤ β ≤ α + 1

(Barlow ’04). Choose α = N and β = N + 1 and then inflate the graph into a manifold.
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Here is one of such graphs,
the Vicsek tree :

For this fractal

α = log 5
log 3

and

β = α + 1 = log 15
log 3
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Biparabolic manifolds

A function u ∈ C4(M) is called bi-superharmonic if Δu ≤ 0 and Δ2u ≥ 0.
For example, let M be nonparabolic and consider the Green operator

Gf =

∫ ∞

0

g (x, y) f (y) dμ (y)

where g (x, y) =
∫∞

0
pt (x, y) dt is the Green function. Then u = Gf is bi-superharmonic if u

is finite and f is non-negative and superharmonic.
Another example of bi-superharmonic functions in a precompact domain Ω ⊂ M : if f is

a non-negative continuous function on ∂Ω then

u (x) = Ex (τΩf (XτΩ
))

solves the following boundary value problem





Δ2u = 0 in Ω
−Δu|∂Ω = f,
u|∂Ω = 0,

and, hence, is bi-superharmonic in Ω.
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A manifold M is called biparabolic, if any positive bi-superharmonic function on M is
harmonic, that is Δu = 0.

Note that the notion of parabolicity also admits a similar equivalent definition: M is
parabolic if and only if any positive superharmonic function on M is harmonic.

One can show that Rn is biparabolic if and only if n ≤ 4. For example, if n > 4 then
u (x) = |x|−(n−4) is bi-superharmonic but not harmonic.

Theorem 16 (Faraji and AG, to appear) Manifold M is biparabolic provided

V (r) ≤ C
r4

log r
for large r. (25)

The condition (25) is not far from optimal in the following sense: for any β > 1 there
exists a manifold M with

V (r) ≤ C r4 logβ r

that is not biparabolic.

Conjecture. If

V (r) ≤ Cr4 log r or even

∫ ∞ r3dr

V (r)
= ∞,

then M is biparabolic.
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Recall that M is parabolic if and only if G ≡ ∞ that is, Gf ≡ ∞ for any non-zero f ≥ 0.

Lemma 17 The following conditions are equivalent:
(i) M is biparabolic.
(ii) G2 ≡ ∞ (that is, G2f ≡ ∞ for any non-zero f ≥ 0)

Proof of Theorem 16. Assuming (25), we prove that G2f ≡ ∞ for any non-negative
non-zero function f . It is easy to compute that

G2f (x) =

∫ ∞

0

tPtf (x) dt =

∫ ∞

0

∫

M

tpt(x, y)f(y)dμ(y)dt.

Fix an arbitrary x ∈ M and choose R > 0 so big that the ball B(x0, R) contains both supp f
and x. By the local Harnack inequality, we have, for all x, y ∈ B (x0, R) and t > 2R2

pt (x, y) ≥ cpt−R2 (x0, x0) ≥ cpt (x0, x0) ,

where c = c (x0, R) > 0. Hence, we obtain, for large enough t0,

G2f(x) ≥
∫ ∞

t0

∫

B(x0,R)

tpt(x, y)f(y)dμ(y)dt ≥ c||f ||L1

∫ ∞

t0

tpt(x0, x0)dt.
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By Theorem 12, we have, for large t,

pt (x0, x0) ≥
1/4

V
(√

Kt log t
) ≥

c

v
(√

t log t
) ,

where

v(r) =
r4

log r
.

For large t we have
v(
√

t log t) ' t2 log t,

whence ∫ ∞

t0

tpt(x0, x0)dt ≥ c

∫ ∞

t0

tdt

v
(√

t log t
) '

∫ ∞

t0

dt

t log t
= ∞.

We conclude that
G2f (x) = ∞,

which was to be proved.
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Now let us construct for any β > 1 an example of a manifold M that is not biparabolic
and satisfies

V (r) ≤ Cr4 logβ r.

Fix n ≥ 2 and consider a smooth manifold M = R × Sn−1, where any point x ∈ M is
represented in the polar form as (r, θ) where r ∈ R and θ ∈ Sn−1.

Define the Riemannian metric g on M by

g = dr2 + ψ2(r)dθ2, (26)

where dθ2 is the standard Riemannian metric on Sn−1 and ψ(r) is a smooth positive function
on R. Define the area function S (r), r ∈ R, by

S (r) = ωnψ (r)n−1 ,

where ωn is the volume of Sn−1. We choose S (r) as follows:

S(r) =

{
e−rα

, r > 2,

|r|3 logβ |r|, r < −2,
(27)

where α, β are arbitrary real numbers such that

α > 2 and β > 1. (28)
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Proposition 18 Under the hypotheses (27) and (28), the manifold M is not biparabolic,
and the volume growth function of M satisfies

V (r) ≤ Cr4 logβ r. (29)

Proof. Fix a reference point x0 = (0, 0) . The volume estimate (29) follows from

V (r) '
∫ r

−r

S (t) dt.

In order to prove that M is not biparabolic, it suffices to construct a positive harmonic
function h on M such that the function

u := Gh

is finite at least at one point. Indeed, in this case we have u ∈ C∞(M) and Δu = −h. Hence,
Δu < 0 and

Δ2u = Δh = 0

so that u is bi-superharmonic, but not harmonic; hence, M is not biparabolic.
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Choose h as follows:

h(r) =

∫ r

−∞

dt

S(t)
. (30)

It is finite by (27) and harmonic on M because it depends only on r and

Δh =
∂2h

∂r2
+

S ′ (r)

S (r)

∂h

∂r
=

1

S (r)

∂

∂r

(

S (r)
∂h

∂r

)

= 0.

Then one proves that, for any x = (r, θ) ,

g (x0, x) '

{
h (r) , if r < −2,
1, if r > 2.

We have

Gh(x0) =

∫

M

g(x0, x)h(x)dμ(x) ' 1 +

∫ −2

−∞
h2(r)S(r)dr +

∫ ∞

2

h(r)S(r)dr.

For r < −2 we have

S (r) = |r|3 logβ |r| and h (r) '
∫ r

−∞

dt

|t|3 logβ |t|
'

1

|r|2 logβ |r|
.

28



Since β > 1, we obtain

∫ −2

−∞
h2 (r) S (r) dr '

∫ −2

−∞

1

|r| logβ |r|
dr < ∞.

For r > 2

S (r) = e−rα

and h (r) '
∫ r

0

etαdt '
erα

rα−1
.

Since α > 2, we have ∫ +∞

2

h (r) S (r) dr '
∫ ∞

2

dr

rα−1
< ∞.

Hence, Gh (x0) < ∞, which was to be proved.
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