Analysis on manifolds and volume growth

Alexander Grigor'yan

"Analysis and PDEs on manifolds and fractals" Nankai University, September 23–26, 2019

Setup

Let M be always a Riemannian manifold that is geodesically complete and non-compact. Let d(x, y) denote the geodesic distance on M and μ be the Riemannian measure. Consider geodesic balls

$$B(x,r) = \{y \in M : d(x,y) < r\},\$$

that are necessarily precompact, and their volumes:

$$V(x,r) = \mu \left(B(x,r) \right).$$

In this lecture we collect some old and new results relating the rate growth of V(x,r) as $r \to \infty$ to the properties of certain PDEs on M.

Recall that the Laplace operator Δ on M is given in the local coordinates $x_1, ..., x_n$ as follows:

$$\Delta = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x_i} \left(\sqrt{\det g} g^{ij} \frac{\partial}{\partial x_j} \right)$$

where $g = (g_{ij})$ is the Riemannian metric tensor and $(g^{ij}) = (g_{ij})^{-1}$.

Parabolicity

A function $u \in C^2(M)$ is called superharmonic if $\Delta u \leq 0$. Manifold M is called *parabolic* if any positive superharmonic function on M is constant, and *non-parabolic* otherwise. Equivalent characterizations of the parabolicity:

- there exists no positive fundamental solution of $-\Delta$;
- $\int_{-\infty}^{\infty} p_t(x,y) dt = \infty$ for all/some $x, y \in M$, where $p_t(x,y)$ is the heat kernel of Δ ;
- the capacity of any compact set is zero;
- Brownian motion on M is recurrent.

Theorem of Polya (1921): \mathbb{R}^n is parabolic for $n \leq 2$ and non-parabolic for n > 2. Let us fix a reference point x_0 and denote $V(r) = V(x_0, r)$.

Theorem 1 (Cheng-Yau, '75) If for all large enough r

$$V\left(r\right) \le Cr^2 \tag{1}$$

then M is parabolic.

Theorem 2 (AG '83, Karp '82, Varopoulos '83) If

$$\int^{\infty} \frac{rdr}{V(r)} = \infty \tag{2}$$

then M is parabolic.

For example, (2) is satisfied if

$$V\left(r\right) \le Cr^2\log r.$$

The condition (2) is sharp: if f(r) is a smooth convex function such that f'(r) > 0 and

$$\int^{\infty} \frac{r dr}{f\left(r\right)} < \infty$$

then there is a non-parabolic manifold such that V(r) = f(r) for large r.

Stochastic completeness

Manifold M is called *stochastically complete* if for all $x \in M$ and t > 0

$$\int_{M} p_t(x, y) \, d\mu\left(y\right) = 1.$$

Equivalent characterizations of the stochastic completeness:

- Lifetime of Brownian motion on M is ∞ almost surely.
- For some/any $\lambda > 0$, any bounded solution u to $\Delta u \lambda u = 0$ on M is identical zero.
- For some/any $T \in (0, \infty]$, the Cauchy problem

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u & \text{in } M \times (0, T) \\ u|_{t=0} = 0 \end{cases}$$
(3)

has the only bounded solution $u \equiv 0$.

Theorem 3 (AG '86) If

$$\int^{\infty} \frac{r dr}{\log V(r)} = \infty \tag{4}$$

then M is stochastically complete.

In particular, M is stochastically complete provided

$$V(r) \le \exp\left(Cr^2\right). \tag{5}$$

(Davies '92, Karp and Li '83, Takeda '89). The condition (4) is sharp: if f(r) is a smooth convex function such that f'(r) > 0 and

$$\int^{\infty} \frac{r dr}{f(r)} < \infty$$

then there exists a stochastically incomplete manifold with $V(r) = \exp(f(r))$.

Liouville properties

Theorem 4 (S.T. Yau '78) If u is a harmonic function on M and $u \in L^p(M,\mu)$ with $1 then <math>u \equiv \text{const}$.

In other words, any geodesically complete manifold satisfies L^p -Liouville property if 1 . For <math>p = 1 and $p = \infty$ this is not true: there are manifolds with non-trivial L^1 harmonic function as well as those with non-trivial L^{∞} harmonic functions.

Theorem 5 (AG '89) Assume that

$$\int^{\infty} \frac{r dr}{\log V(r)} = \infty.$$

Then any positive superharmonic function $u \in L^1(M, \mu)$ is identical constant.

Open Questions:. Find "good" conditions to ensure that

- (a) any harmonic function $u \in L^1$ is identical constant;
- (b) any harmonic function $u \in L^{\infty}$ identical constant.

Bounded solutions of Schrödinger equations

Let Q(x) be a nonnegative continuous function on $M, Q \neq 0$. Consider the equation

$$\Delta u - Qu = 0 \tag{6}$$

and ask if (6) has a non-trivial bounded solution (equivalently: a positive bounded solution). Set $|x| = d(x, x_0)$ and denote

$$q(r) = \inf_{|x|=r} Q(x)$$
 and $F(r) = \int_0^{r/2} \sqrt{q(t)} dt.$

Theorem 6 (AG, '90) If for all large enough r

$$V(r) \le Cr^2 \exp\left(CF(r)^2\right) \tag{7}$$

then (6) has no bounded solution except for $u \equiv 0$.

Example. Let $Q \equiv 1$. Then (6) has no bounded solution (except for zero) if and only if M is stochastically complete. We have $q \equiv 1$, F(r) = r/2, and (7) becomes $V(r) \leq \exp(Cr^2)$, which coincides with the condition (5) for the stochastic completeness.

Example. Let Q have compact support. In this case (6) has no bounded solution (except for zero) if and only if M is parabolic. Since q(r) = 0 for large enough r, we obtain that F(r) = const for large r, and (7) becomes $V(r) \leq Cr^2$, which coincides with the condition (1) for the parabolicity.

Example. Assume that, for large |x|

$$Q\left(x\right) \ge \frac{c}{\left|x\right|^{2} \log \left|x\right|}.$$

Then

$$F(r) \ge \int_{2}^{r/2} \frac{c}{t\sqrt{\log t}} dt \simeq \sqrt{\log r}$$

so that (7) is satisfied provided

 $V\left(r\right) \le Cr^{N}.$

In this case (6) has no bounded solution except for zero. On the other hand, if in \mathbb{R}^n

$$Q(x) \le \frac{C}{\left|x\right|^2 \log^{1+\varepsilon} \left|x\right|}$$

then (6) has a positive solution in \mathbb{R}^n .

Escape rate

Let $\{X_t\}_{t\geq 0}$ be Brownian motion on M, that is the diffusion process generated by Δ , whose transition density is $p_t(x, y)$.

An increasing function R(t) is called an upper rate function if, with probability 1, we have $|X_t| < R(t)$ for all t large enough.

Similarly, an increasing function r(t) is called a *lower rate function* if, with probability 1, we have $|X_t| > r(t)$ for all t large enough.

Hence, for large enough t, X_t is contained in the annulus

 $B(x_0, R(t)) \setminus B(x_0, r(t))$

almost surely.

For example, in \mathbb{R}^n the following upper rate function is known:

 $R(t) = \sqrt{(4+\varepsilon)t \log \log t}$ (Khinchin's law of iterated log).

If n > 2 and $r(t) / \sqrt{t}$ is decreasing then r(t) is a lower rate function in \mathbb{R}^n if and only if

$$\int^{\infty} \left(\frac{r(t)}{\sqrt{t}}\right)^{n-2} \frac{dt}{t} < \infty \tag{8}$$

(Dvoretzky and Erdös, '50). Here is an example of such a function: $r(t) = \frac{C\sqrt{t}}{\log^{\frac{1+\varepsilon}{n-2}}t}$.

Theorem 7 (AG and M.Kelbert '98, AG '99) Assume that, for all r large enough, $V(r) \leq Cr^{N},$

with some N, C > 0. Then the following function is an upper rate function:

$$R(t) = \sqrt{2Nt\log t}.$$
(10)

(9)

Under assumption (9), the upper rate function (10) is optimal (AG, Kelbert '00). Similar result for simple random walks on graphs: Hardy–Littlewood (1914, for Z) and M.Barlow–E.Perkins '89. **Theorem 8** (AG and E.P. Hsu '09) Let M be a Cartan-Hadamard manifold and assume that

$$\int^{\infty} \frac{r dr}{\log V(r)} = \infty.$$
(11)

Define a function $\varphi(t)$ as follows:

$$t = \int_{r_0}^{\varphi(t)} \frac{r dr}{\log V(r)}.$$

Then $R(t) = \varphi(Ct)$ is an upper rate function.

Example. If $V(r) = Cr^N$ then $t \simeq \frac{\varphi^2(t)}{\log \varphi(t)}$ whence $R(t) \simeq \varphi(t) \simeq \sqrt{t \log t}$ that matches (10). **Example.** If $V(r) = \exp(r^{\alpha})$ where $0 < \alpha < 2$ then $t \simeq \varphi(t)^{2-\alpha}$

whence $R(t) = Ct^{\frac{1}{2-\alpha}}$.

Example. If $V(r) = \exp(r^2)$ then

$$t \simeq \log \varphi \left(t \right)$$

whence $R(t) = \exp(Ct)$.

Theorem 9 (E.P. Hsu and G.Qin '10) On any complete manifold M, satisfying (11), define function $\varphi(t)$ as follows:

$$t = \int_{r_0}^{\varphi(t)} \frac{r dr}{\log V(r) + \log \log r}$$

Then $R(t) = C\varphi(Ct)$ is an upper rate function.

Example. Let $V(r) \leq C \log r$. Then

$$t \simeq \frac{\varphi^2\left(t\right)}{\log\log\varphi\left(t\right)}$$

and we obtain an upper rate function

$$R(t) = C\sqrt{t}\log\log t$$

Theorem 10 (AG '99) Assume that a relative Faber-Krahn inequality holds on M (for example, this is the case when $Ricci_M \ge 0$). Assume that

$$\int^{\infty} \frac{r dr}{V\left(r\right)} < \infty$$

so that M is non-parabolic and X_t is transient. Denote

$$\gamma(r) := \left(\int_{r}^{\infty} \frac{sds}{V(s)}\right)^{-1}.$$
(12)

Let r(t) be an increasing positive function on $(0,\infty)$ such that

$$\int^{\infty} \frac{\gamma(r(t))}{V(\sqrt{t})} dt < \infty.$$
(13)

Then r(t) is a lower rate function for Brownian motion on M.

Example. Let $V(x,r) \simeq r^N$ for large r and some N > 2. We obtain from (12) $\gamma(t) \simeq t^{N-2}$, and (13) amounts to

$$\int^{\infty} \frac{r^{N-2}(t)dt}{t^{N/2}} < \infty \,,$$

which coincides with the Dvoretzky–Erdös condition (8).

Semilinear PDE

Consider on M the inequality

$$\Delta u + u^{\sigma} \le 0 \tag{14}$$

and ask if it has a non-negative solution u except for $u \equiv 0$. Here $\sigma > 1$ is a given parameter. Any solution of (14) is superharmonic. Hence, if M is parabolic then u must be identical zero. In particular, this is the case if $V(r) \leq Cr^2$.

Theorem 11 (AG and Y.Sun '14) Assume that, for all large r,

$$V(r) \le Cr^p \log^q r,\tag{15}$$

where

$$p = \frac{2\sigma}{\sigma - 1}, \quad q = \frac{1}{\sigma - 1}.$$
(16)

Then any nonnegative solution of (14) is identical zero.

The values of the exponents p and q in (16) are sharp: if either $p > \frac{2\sigma}{\sigma-1}$ or $p = \frac{2\sigma}{\sigma-1}$ and $q > \frac{1}{\sigma-1}$ then there is a manifold satisfying (15) where the inequality (14) has a positive solution.

Equivalent reformulation: if, for some $\alpha > 2$

$$V(r) \le Cr^{\alpha} \log^{\frac{\alpha-2}{2}} r, \tag{17}$$

then, for any $\sigma \leq \frac{\alpha}{\alpha-2}$, any nonnegative solution of (14) is identical zero.

•

For example, in \mathbb{R}^n with n > 2 (17) holds with $\alpha = n$ which implies that, for $\sigma \leq \frac{n}{n-2}$, any nonnegative solution of (14) is identical zero.

It is known that, for any $\sigma > \frac{n}{n-2}$, (14) has a positive solution in \mathbb{R}^n (Mitidieri and Pohozaev, '98).

Conjecture. If

$$\int^{\infty} \frac{r^{2\sigma-1}dr}{V(r)^{\sigma-1}} = \infty$$
(18)

then any nonnegative solution of (14) is identical zero.

In particular, the function (17) satisfies (18) with $\sigma = \frac{\alpha}{\alpha - 2}$. Similar results for the semilinear heat equation: Yuhua Sun.

Heat kernel lower bounds

Theorem 12 (Coulhon and AG, '97) Assume that, for all $r \ge r_0 > 0$, $V(r) \le Cr^{\alpha}$,

for some $C, \alpha > 0$. Then, for all large enough t,

$$p_t(x_0, x_0) \ge \frac{1/4}{V(\sqrt{Kt \log t})},$$
(20)

(19)

where $K = K(x_0, r_0, C, \alpha) > 0$. Consequently,

$$p_t(x_0, x_0) \ge \frac{c}{(t \log t)^{\alpha/2}}$$
 (21)

The best possible lower bound would be

$$p_t\left(x_0, x_0\right) \ge \frac{c}{V(\sqrt{t})}$$

that is valid on manifolds of non-negative Ricci curvature (Li and Yau '85). However, under the hypothesis (19), the lower bound (20) is optimal (AG and Kelbert, '00).

Theorem 13 (Coulhon and AG, '97) Assume that the function V(r) is doubling, that is,

 $V\left(2r\right) \le CV\left(r\right),$

and that, for all t > 0,

$$p_t(x_0, x_0) \le \frac{C}{V(\sqrt{t})}.$$

Then, for all t > 0,

$$p_t\left(x_0, x_0\right) \ge \frac{c}{V\left(\sqrt{t}\right)}.$$

Recurrence revisited

For any $\alpha \in (0,2)$, the operator $(-\Delta)^{\alpha/2}$ is a generator of a jump process on M that is called the α -process. It is a natural generalization of the symmetric stable Levy process of index α in \mathbb{R}^d . By a general semigroup theory, the Green function $G^{(\alpha)}(x,y)$ of $(-\Delta)^{\alpha/2}$ is given by

$$G^{(\alpha)}(x,y) = \int_0^\infty t^{\alpha/2-1} p(t,x,y) dt,$$

and the recurrence of the α -process is equivalent to $G^{(\alpha)} \equiv \infty$, that is, to

$$\int_{0}^{\infty} t^{\alpha/2-1} p(t, x, x) dt = \infty.$$
(22)

Theorem 14 (AG '99) If for all $r \ge r_0 > 0$

$$V(r) \le Cr^{\alpha},\tag{23}$$

then the α -process is recurrent.

Indeed, by Theorem 12 we have $p_t(x_0, x_0) \ge \frac{c}{t^{\alpha/2} \log^{\alpha/2} t}$. Substituting into (22) we see that the integral diverges.

Heat kernel upper bounds

Theorem 15 (Barlow, Coulhon, AG '01) Let M be a manifold of bounded geometry. Assume that, for all $x \in M$ and $r \geq r_0 > 0$

 $V\left(x,r\right) \ge cr^{N}$

Then, for all $x \in M$ and large enough t,

$$p_t(x,x) \le Ct^{-\frac{N}{N+1}}.\tag{24}$$

For any $N \geq 1$, there exists an example of a manifold with $V(x,r) \simeq r^N$ and

$$p_t\left(x,x\right) \simeq t^{-\frac{N}{N+1}}.$$

Indeed, take any fractal graph where the volume function is r^{α} and the on-diagonal decay of the heat kernel is given by $t^{-\alpha/\beta}$. It is known that such a graph exists for any α, β satisfying

$$2 \le \beta \le \alpha + 1$$

(Barlow '04). Choose $\alpha = N$ and $\beta = N + 1$ and then inflate the graph into a manifold.

Here is one of such graphs, the *Vicsek tree*:

For this fractal

 $\alpha = \frac{\log 5}{\log 3}$

and

 $\beta = \alpha + 1 = \frac{\log 15}{\log 3}$

Biparabolic manifolds

A function $u \in C^4(M)$ is called *bi-superharmonic* if $\Delta u \leq 0$ and $\Delta^2 u \geq 0$. For example, let M be nonparabolic and consider the Green operator

$$Gf = \int_0^\infty g(x, y) f(y) \, d\mu(y)$$

where $g(x, y) = \int_0^\infty p_t(x, y) dt$ is the Green function. Then u = Gf is bi-superharmonic if u is finite and f is non-negative and superharmonic.

Another example of bi-superharmonic functions in a precompact domain $\Omega \subset M$: if f is a non-negative continuous function on $\partial \Omega$ then

$$u(x) = \mathbb{E}_x\left(\tau_\Omega f(X_{\tau_\Omega})\right)$$

solves the following boundary value problem

$$\begin{cases} \Delta^2 u = 0 & \text{in } \Omega \\ -\Delta u|_{\partial\Omega} = f, \\ u|_{\partial\Omega} = 0, \end{cases}$$

and, hence, is bi-superharmonic in Ω .

A manifold M is called *biparabolic*, if any positive bi-superharmonic function on M is harmonic, that is $\Delta u = 0$.

Note that the notion of parabolicity also admits a similar equivalent definition: M is parabolic if and only if any positive superharmonic function on M is harmonic.

One can show that \mathbb{R}^n is biparabolic if and only if $n \leq 4$. For example, if n > 4 then $u(x) = |x|^{-(n-4)}$ is bi-superharmonic but not harmonic.

Theorem 16 (Faraji and AG, to appear) Manifold M is biparabolic provided

$$V(r) \le C \frac{r^4}{\log r} \quad for \ large \ r. \tag{25}$$

The condition (25) is not far from optimal in the following sense: for any $\beta > 1$ there exists a manifold M with

$$V(r) \le C r^4 \log^\beta r$$

that is not biparabolic.

Conjecture. If

$$V(r) \le Cr^4 \log r$$
 or even $\int^{\infty} \frac{r^3 dr}{V(r)} = \infty$,

then M is biparabolic.

Recall that M is parabolic if and only if $G \equiv \infty$ that is, $Gf \equiv \infty$ for any non-zero $f \ge 0$.

Lemma 17 The following conditions are equivalent:

(i) M is biparabolic. (ii) $G^2 \equiv \infty$ (that is, $G^2 f \equiv \infty$ for any non-zero $f \ge 0$)

Proof of Theorem 16. Assuming (25), we prove that $G^2 f \equiv \infty$ for any non-negative non-zero function f. It is easy to compute that

$$G^{2}f(x) = \int_{0}^{\infty} tP_{t}f(x) dt = \int_{0}^{\infty} \int_{M} tp_{t}(x,y)f(y)d\mu(y)dt$$

Fix an arbitrary $x \in M$ and choose R > 0 so big that the ball $B(x_0, R)$ contains both supp fand x. By the local Harnack inequality, we have, for all $x, y \in B(x_0, R)$ and $t > 2R^2$

$$p_t(x,y) \ge cp_{t-R^2}(x_0,x_0) \ge cp_t(x_0,x_0),$$

where $c = c(x_0, R) > 0$. Hence, we obtain, for large enough t_0 ,

$$G^{2}f(x) \geq \int_{t_{0}}^{\infty} \int_{B(x_{0},R)} tp_{t}(x,y)f(y)d\mu(y)dt \geq c||f||_{L^{1}} \int_{t_{0}}^{\infty} tp_{t}(x_{0},x_{0})dt.$$

By Theorem 12, we have, for large t,

$$p_t(x_0, x_0) \ge \frac{1/4}{V\left(\sqrt{Kt\log t}\right)} \ge \frac{c}{v\left(\sqrt{t\log t}\right)},$$
$$v(r) = \frac{r^4}{\log r}.$$

For large t we have

$$v(\sqrt{t\log t}) \simeq t^2\log t$$

where

$$\int_{t_0}^{\infty} t p_t(x_0, x_0) dt \ge c \int_{t_0}^{\infty} \frac{t dt}{v \left(\sqrt{t \log t}\right)} \simeq \int_{t_0}^{\infty} \frac{dt}{t \log t} = \infty.$$

We conclude that

 $G^{2}f\left(x\right) =\infty,$

which was to be proved. \blacksquare

Now let us construct for any $\beta > 1$ an example of a manifold M that is not biparabolic and satisfies

$$V(r) \le Cr^4 \log^\beta r.$$

Fix $n \geq 2$ and consider a smooth manifold $M = \mathbb{R} \times \mathbb{S}^{n-1}$, where any point $x \in M$ is represented in the polar form as (r, θ) where $r \in \mathbb{R}$ and $\theta \in \mathbb{S}^{n-1}$.

Define the Riemannian metric g on M by

$$g = dr^2 + \psi^2(r)d\theta^2, \qquad (26)$$

where $d\theta^2$ is the standard Riemannian metric on \mathbb{S}^{n-1} and $\psi(r)$ is a smooth positive function on \mathbb{R} . Define the area function $S(r), r \in \mathbb{R}$, by

$$S(r) = \omega_n \psi(r)^{n-1},$$

where ω_n is the volume of \mathbb{S}^{n-1} . We choose S(r) as follows:

$$S(r) = \begin{cases} e^{-r^{\alpha}}, & r > 2, \\ |r|^{3} \log^{\beta} |r|, & r < -2, \end{cases}$$
(27)

where α, β are arbitrary real numbers such that

$$|\alpha > 2 \text{ and } \beta > 1.$$
 (28)

Proposition 18 Under the hypotheses (27) and (28), the manifold M is not biparabolic, and the volume growth function of M satisfies

$$V(r) \le Cr^4 \log^\beta r. \tag{29}$$

Proof. Fix a reference point $x_0 = (0, 0)$. The volume estimate (29) follows from

$$V(r) \simeq \int_{-r}^{r} S(t) dt.$$

In order to prove that M is not biparabolic, it suffices to construct a positive harmonic function h on M such that the function

$$u := Gh$$

is finite at least at one point. Indeed, in this case we have $u \in C^{\infty}(M)$ and $\Delta u = -h$. Hence, $\Delta u < 0$ and

$$\Delta^2 u = \Delta h = 0$$

so that u is bi-superharmonic, but not harmonic; hence, M is not biparabolic.

Choose h as follows:

$$h(r) = \int_{-\infty}^{r} \frac{dt}{S(t)}.$$
(30)

It is finite by (27) and harmonic on M because it depends only on r and

$$\Delta h = \frac{\partial^2 h}{\partial r^2} + \frac{S'(r)}{S(r)}\frac{\partial h}{\partial r} = \frac{1}{S(r)}\frac{\partial}{\partial r}\left(S(r)\frac{\partial h}{\partial r}\right) = 0.$$

Then one proves that, for any $x = (r, \theta)$,

$$g(x_0, x) \simeq \begin{cases} h(r), & \text{if } r < -2, \\ 1, & \text{if } r > 2. \end{cases}$$

We have

$$Gh(x_0) = \int_M g(x_0, x)h(x)d\mu(x) \simeq 1 + \int_{-\infty}^{-2} h^2(r)S(r)dr + \int_2^{\infty} h(r)S(r)dr.$$

For r < -2 we have

$$S(r) = |r|^3 \log^\beta |r|$$
 and $h(r) \simeq \int_{-\infty}^r \frac{dt}{|t|^3 \log^\beta |t|} \simeq \frac{1}{|r|^2 \log^\beta |r|}$.

Since $\beta > 1$, we obtain

$$\int_{-\infty}^{-2} h^2(r) S(r) dr \simeq \int_{-\infty}^{-2} \frac{1}{|r| \log^\beta |r|} dr < \infty.$$

For r > 2

$$S(r) = e^{-r^{\alpha}}$$
 and $h(r) \simeq \int_0^r e^{t^{\alpha}} dt \simeq \frac{e^{r^{\alpha}}}{r^{\alpha-1}}$.

Since $\alpha > 2$, we have

$$\int_{2}^{+\infty} h(r) S(r) dr \simeq \int_{2}^{\infty} \frac{dr}{r^{\alpha-1}} < \infty.$$

Hence, $Gh(x_0) < \infty$, which was to be proved.