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Alexander Grigor’yan ∗

STOCHASTIC COMPLETENESS OF SYMMETRIC MARKOV

PROCESSES AND VOLUME GROWTH

Abstract. We discuss sufficient conditions for stochastic completeness of various types of
Markov processes (diffusions on Riemannian manifolds, jump processes, random walks on
graphs) in terms of the volume growth function of the underlying metric measure space.

1. Brownian motion on Riemannian manifolds

Let (M,g) be a Riemannian manifold andμ be the Riemannian measure onM. The
Laplace operator (or Laplace-Beltrami operator)Δ is defined to satisfy the Green for-
mula: for allu,v∈C∞

0 (M)

(1)
∫

M
Δu vdμ= −

∫

M
〈∇u,∇v〉dμ,

where∇ is the Riemannian gradient and〈∙, ∙〉 is the Riemannian inner product (see [2],
[6], [10]).

The symmetry of the operatorΔ with respect toμ (that follows from (1)) allows
to extend it to a self-adjoint operator inL2 (M,μ). In general, this extension may not be
unique, but ifM is geodesically complete (which will be assumed throughout) then this
extension is unique, that is,Δ is essentially self-adjoint. With some abuse of notation,
the self-adjoint extension ofΔ will be denoted by the same letter.

As one can see from (1), the operatorΔ is non-positive definite, which implies
that the operatorPt := etΔ is a bounded self-adjoint operator for anyt ≥ 0. The fam-
ily {Pt}t≥0 is called theheat semigroupof Δ for the reason that it resolves the heat
equation. More precisely, the following is true:

• for any f ∈ L2, the functionu(t,x)= Pt f (x) isC∞ smooth in(t,x)∈ (0,+∞)×M,

satisfies the heat equation∂u
∂t = Δu and the initial conditionu(t, ∙)

L2
→ f ast →

0+ .

• If f ≥ 0 thenPt f ≥ 0; if f ≤ 1 thenPt f ≤ 1.

• The semigroup property:PtPs = Pt+s.

Furthermore, the operatorPt is in fact an integral operator with a kernelpt (x,y)
that is a smooth positive function oft > 0 andx,y∈ M such that

(2) Pt f (x) =
∫

M
pt (x,y) f (y)dμ(y)
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for all f ∈ L2. The functionpt (x,y) is called theheat kernelof Δ (or of M). It is also the
minimal positive fundamental solution of the heat equation and the transition density
of Brownian motion onM. For example, ifM = Rn then

pt (x,y) =
1

(4πt)n/2
exp

(

−
|x−y|2

4t

)

.

For general manifolds there is no explicit formula for the heat kernel.

The existence of the heat kernel allows to extend the domain of the operatorPt

from L2 to other spaces. For that, let us use now the identity (2) as the definition ofPt

where f is any function such that the integral converges. In particular,Pt extends to a
bounded operator onL∞.

DEFINITION 1. A manifold(M,g) is calledstochastically completeif Pt1≡ 1.

Note that in general we have 0≤ Pt1 ≤ 1. If Pt1 6≡ 1 then the manifoldM is
calledstochastically incomplete.

Easy examples of stochastically incomplete processes are given by diffusions in
bounded domains with the Dirichlet boundary condition. A by far less trivial example
was discovered by R.Azencott [1] in 1974: he showed that Brownian motion on a
geodesically complete non-compact manifold can be stochastically incomplete. In his
example, the manifold has negative sectional curvature that grows to−∞ very fast
with the distance to an origin. The stochastic incompleteness occurs because negative
curvature plays the role of a drift towards infinity, and a very high negative curvature
produces an extremely fast drift that sweeps the Brownian particle to infinity in a finite
time.

The first sufficient condition for stochastic completeness of geodesically com-
plete manifolds in terms of lower bound of Ricci curvature was proved by S.-T. Yau
[15]. Below we present a condition in terms of the volume growth function.

Let us first state various equivalent conditions for the stochastic completeness.
Fix 0 < T ≤ ∞, setI = (0,T) and consider the Cauchy problem inI ×M

(3)

{ ∂u
∂t = Δu in I ×M,
u|t=0 = 0.

The problem (3) is understood in the classical sense, that is,u∈C∞(I×M) andu(t,x)→
0 locally uniformly inx∈ M ast → 0. We are interested in the uniqueness of the trivial
solutionu≡ 0 of (3).

THEOREM 1. (Khas’minskii [9])For anyα > 0 and T∈ (0,∞], the following
conditions are equivalent.

(a) M is stochastically complete.

(b) The equationΔv = αv in M has the only bounded non-negative solution v≡ 0.
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(c) The Cauchy problem in(0,T)×M has a unique bounded solution u≡ 0.

DEFINITION 2. Define thevolume function V(x, r) of a manifold(M,g) by
V (x, r) := μ(B(x, r)) , whereB(x, r) is the geodesic ball of radiusr centered atx.

Note that 0< V (x, r) < ∞ for all x ∈ M andr > 0 providedM is geodesically
complete.

THEOREM 2. Let (M,g) be a geodesically complete connected Riemannian
manifold. If, for some point x0 ∈ M,

(4)
∫ ∞ rdr

logV(x0, r)
= ∞,

then M is stochastically complete.

Condition (4) holds, in particular, if

(5) V(x0, r) ≤ exp
(
Cr2)

for all r large enough or even if (5) holds for a sequence{rk} of valuesr that goes to∞
ask→ ∞.

Theorem 2 follows from the equivalence(a) ⇔ (c) of Theorem 1 and the fol-
lowing more general result.

THEOREM 3. Let (M,g) be a complete connected Riemannian manifold, and
let u(x, t) be a solution to the Cauchy problem(3). Assume that, for some x0 ∈ M and
for all R > 0,

(6)
∫ T

0

∫

B(x0,R)
u2(x, t)dμ(x)dt ≤ exp( f (R)) ,

where f(r) is a positive increasing function on(0,+∞) such that

(7)
∫ ∞ rdr

f (r)
= ∞.

Then u≡ 0 in I ×M.

Condition (6) determines hence a uniqueness class for the Cauchy problem.
Clearly, (7) holds forf (r) = Cr2, but fails for f (r) = Cr2+ε with ε > 0.

Theorems 2 and 3 were proved in [4] (see also [5] and [6]). Without going into
details, let us emphasize, that the argument repeatedly uses the following property of
the geodesic distance functiond on the manifold:|∇d| ≤ 1.

Let us mention the following consequence forRn.

COROLLARY 1. If M =Rn and u(t,x) be a solution to(3) satisfying the condi-
tion

(8) |u(t,x)| ≤Cexp
(
C|x|2

)
for all t ∈ I , x∈ Rn,
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then u≡ 0. Moreover, the same is true if u satisfies instead of(8) the condition

(9) |u(t,x)| ≤Cexp( f (|x|)) for all t ∈ I , x∈ Rn,

where f(r) is a convex increasing function on(0,+∞) satisfying(7).

The class of functionsu satisfying (8) is called theTikhonov class, and the
conditions (9) and (7) define theTäcklind class. The uniqueness of the Cauchy problem
in Rn in each of these classes is a classical result of Tikhonov [13] and Täcklind [12],
respectively.

The hypothesis (4) of Theorem 2 is sufficient for the stochastic completeness of
M but not necessary. Moreover, there are examples of stochastically complete mani-
folds with arbitrarily large volume function.

Nevertheless, the condition (4) is sharp in the following sense: iff (r) is a
smooth positive convex function on(0,+∞) with f ′ (r) > 0 and such that

∫ ∞ rdr
f (r)

< ∞,

then there exists a geodesically complete but stochastically incomplete manifoldM
such that logV (x0, r) = f (r) , for somex0 ∈ M and large enoughr (see [5]).

2. Jump processes

Let (M,d) be a metric space such that all closed metric balls

B(x, r) = {y∈ M : d(x,y) ≤ r}

are compact. In particular,(M,d) is locally compact and separable. Letμ be a Radon
measure onM with a full support.

Recall that aDirichlet form (E ,F ) in L2 (M,μ) is a symmetric, non-negative
definite, bilinear formE : F ×F → R defined on a dense subspaceF of L2 (M,μ),
which satisfies in addition the following properties:

• Closedness:F is a Hilbert space with respect to the following inner product:

(10) E1( f ,g) := E( f ,g)+( f ,g) .

• The Markov property: iff ∈F then alsõf := ( f ∧1)+ belongs toF andE( f̃ )≤
E ( f ) , whereE ( f ) := E ( f , f ) .

Then (E ,F ) has thegeneratorL that is a non-positive definite, self-adjoint
operator onL2 (M,μ) with domainD ⊂ F such thatE ( f ,g) = (−L f ,g) for all f ∈ D
andg ∈ F . The generatorL determines theheat semigroup{Pt}t≥0 by Pt = etL in
the sense of functional calculus of self-adjoint operators. It is known that{Pt}t≥0 is
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strongly continuous, contractive, symmetric semigroup inL2, and isMarkovian, that
is, 0≤ Pt f ≤ 1 for anyt > 0 if 0 ≤ f ≤ 1.

The Markovian property of the heat semigroup implies that the operatorPt pre-
serves the inequalities between functions, which allows to use monotone limits to ex-
tendPt from L2 to L∞ (in fact, Pt extends to anyLq, 1≤ q ≤ ∞ as a contraction). In
particular,Pt1 is defined.

DEFINITION 3. The form(E ,F ) is calledconservativeor stochastically com-
pleteif Pt1 = 1 for everyt > 0.

Assume in addition that(E ,F ) is regular, that is, the setF ∩C0 (M) is dense
both inF with respect to the norm (10) and inC0 (M) with respect to the sup-norm. By
a theory of Fukushima [3], for any regular Dirichlet form there exists a Hunt process
{Xt}t≥0 such that, for all bounded Borel functionsf onM,

(11) Ex f (Xt) = Pt f (x)

for all t > 0 and almost allx∈ M, whereEx is expectation associated with the law of
{Xt} started atx. Using the identity (11), one can show that the lifetime ofXt is almost
surely ∞ if and only if Pt1 = 1 for all t > 0, which motivates the term “stochastic
completeness” in the above definition.

One distinguishes local and non-local Dirichlet forms. The Dirichlet form(E ,F )
is calledlocal if E ( f ,g) = 0 for all functionsf ,g∈ F with disjoint compact support.
It is calledstrongly localif the same is true under a milder assumption thatf = const
on a neighborhood of suppg.

For example, the classical Dirichlet form on a Riemannian manifold

E ( f ,g) =
∫

M
∇ f ∙∇gdμ

is strongly local. The domain of this form is the Sobolev spaceH1, the generator is the
self-adjoint Laplace-Beltrami operatorΔ, and the Hunt process is Brownian motion on
M.

A well-studied non-local Dirichlet form inRn is given by

(12) E ( f ,g) =
∫

Rn×Rn

( f (x)− f (y))(g(x)−g(y))

|x−y|n+α dxdy

where 0< α < 2. The domain of this form is the Besov spaceBα/2
2,2 , the generator is

(up to a constant multiple) the operator−(−Δ)α/2 , whereΔ is the Laplace operator in
Rn, and the Hunt process is the the symmetric stable process of indexα.

By a theorem of Beurling and Deny (cf. [3]), any regular Dirichlet form can be
represented in the form

E = E (c) +E ( j) +E (k),

whereE (c) is a strongly local part that has the form

E (c) ( f ,g) =
∫

M
Γ( f ,g)dμ,
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whereΓ( f ,g) is a so calledenergy density(generalizing∇ f ∙∇g on manifolds);E ( j)

is a jump part that has the form

E ( j) ( f ,g) =
1
2

∫ ∫

M×M
( f (x)− f (y))(g(x)−g(y))dJ(x,y)

with some measureJ onM×M that is called ajump measure; andE (k) is a killing part
that has the form

E (k) ( f ,g) =
∫

M
f gdk

wherek is a measure onM that is called akilling measure.

In terms of the associated process this means thatXt is in some sense a mixture
of a diffusion process, jump process and a killing condition.

The log-volume test of Theorem 2 can be extended to strongly local Dirichlet
forms, provided the distance function satisfies the condition

(13) Γ(d(∙,x0) ,d(∙,x0)) ≤C,

for some pointx0 ∈ M and constantC, and the volume functionV (x, r) := μ(B(x, r))
satisfies (4). The method of the proof is basically the same as in Theorem 2 because
for strongly local forms the same chain rule and product rules are available, and the
condition (13) replaces the condition|∇d| ≤ 1 (see [11]).

Now let us turn to jump processes. For simplicity let us assume that the jump
measureJ has a densityj (x,y). Namely, letj(x,y) be is a non-negative Borel function
onM×M that satisfies the following two conditions:

(a) j (x,y) is symmetric: j (x,y) = j (y,x) ;

(b) there is a positive constantC such that

(14)
∫

M
(1∧d(x,y)2) j(x,y)dμ(y) ≤C for all x∈ M.

DEFINITION 4. We say that a distance functiond is adaptedto a kernelj(x,y)
(or j is adapted tod) if (b) is satisfied.

For the purpose of investigation of stochastic completeness the condition(b)
plays the same role as (13) does for diffusion.

Consider the following bilinear functional

(15) E( f ,g) =
1
2

∫ ∫

M×M
( f (x)− f (y))(g(x)−g(y)) j(x,y)dμ(x)dμ(y)

that is defined on Borel functionsf andg whenever the integral makes sense. Define
the maximal domain ofE by

Fmax =
{

f ∈ L2 : E( f , f ) < ∞
}

,
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whereL2 = L2(M,μ). By the polarization identity,E( f ,g) is finite for all f ,g∈ Fmax.
Moreover,Fmax is a Hilbert space with the following norm:

‖ f‖2
Fmax

= E1( f , f ) := ‖ f‖2
L2 +E( f , f ).

Denote by Lip0(M) the class of Lipschitz functions onM with compact support.
It follows from (14) that Lip0(M)⊂Fmax. Define the spaceF as the closure of Lip0(M)
in (Fmax,‖∙‖Fmax

). Under the above hypothesis,(E ,F ) is a regular Dirichlet form in
L2(M,μ). The associated Hunt process{Xt} is a pure jump process with the jump
density j(x,y).

Many examples of jump processes are provided by Lévy-Khintchine theorem
where the Lévy measure corresponds toj (x,y)dμ(y). The condition (14) appears also
in Lévy-Khintchine theorem, so that the Euclidean distance inRn is adapted to any
Lévy measure. An explicit example of a jump density inRn is

j(x,y) =
const

|x−y|n+α ,

whereα ∈ (0,2), which defines the Dirichlet form (12).

Sufficient condition for stochastic completeness of the Dirichlet form of jump
type is given in the following theorem that was proved in [7].

THEOREM 4. Assume that j satisfies(a) and (b) and let(E ,F ) be the jump
form defined as above. Fix a constant b< 1

2. If, for some x0 ∈ M and for all large
enough∗ r,

(16) V (x0, r) ≤ exp(br logr) ,

then the Dirichlet form(E ,F ) is stochastically complete.

It is not known if the borderline value12 for b is sharp.

For example, (16) is satisfied if, for some constantC and all larger,

V (x0, r) ≤ exp(Cr)

For the proof of Theorem 4 we split the jump kernelj(x,y) into the sum of two
parts:

j ′(x,y) = j(x,y)1{d(x,y)≤1} and j ′′(x,y) = j(x,y)1{d(x,y)>1}

and show first the stochastic completeness of the Dirichlet form(E ′,F ) associated with
j ′. For that we adapt the methods used for stochastic completeness for the local form.
The bounded range ofj ′ allows to treat the Dirichlet form(E ′,F ) as “almost” local:
if f ,g are two functions fromF such thatd(suppf ,suppg) > 1 thenE ( f ,g) = 0. The
condition (14) plays in the proof the same role as the condition (13) in the local case.
However, the lack of locality brings up in the estimates various additional terms that

∗In fact it suffices to have (16) forr = rk where{rk} is any sequence such thatrk → ∞ ask→ ∞.
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have to be compensated by a stronger hypothesis of the volume growth (16), instead of
the quadratic exponential growth in Theorem 2.

The tail j ′′ can regarded as a small perturbation ofj ′ in the following sense:
(E ,F ) is stochastically complete if and only if(E ′,F ) is so. The proof is based on
the fact that the integral operator with the kernelj ′′ is a bounded operator inL2 (M,μ),
because by (14) ∫

M
j ′′ (x,y)dμ(y) ≤C.

It is not clear if the volume growth condition (16) in Theorem 4 is sharp.

Let us briefly mention a recent result of Xueping Huang [8], that is analogous
of Theorem 3 about the uniqueness class for the Cauchy problem on a geodesically
complete manifold. X.Huang proved a similar theorem for the heat equation associated
with the jump Dirichlet form on graphs satisfying(a) and(b): namely, the associated
heat equation has the following uniqueness class

∫ T

0

∫

B(x,R)
u2 (t,x)dμ(x)dt ≤ exp(br logr)

whereb is as above any constant smaller than1
2. Moreover, he has shown that for

b > 2
√

2 this statement fails. The optimal value ofb remains unknown. Note that the
functionu in that example is unbounded, so that it cannot serve to show the sharpness
of the condition (16) in Theorem 4.

3. Random walks on graphs

Let us now turn to random walks on graphs. Let(X,E) be a locally finite, infinite,
connected graph, whereX is the set of vertices andE is the set of edges. We assume
that the graph is undirected, simple, without loops. Letμbe the counting measure onX.
Define the jump kernel byj(x,y) = 1{x∼y}, wherex∼ y means thatx,y are neighbors,
that is,(x,y) ∈ E. The corresponding Dirichlet form is

E ( f ) =
1
2 ∑
{x,y:x∼y}

( f (x)− f (y))2 ,

and its generator is
Δ f (x) = ∑

y∼x
( f (y)− f (x)).

The operatorΔ is calledunnormalized(or physical)Laplace operator on(X,E). This
is to distinguish from thenormalizedor combinatorialLaplace operator

Δ̂ f (x) =
1

deg(x) ∑
y∼x

( f (y)− f (x)),

where deg(x) is the number of neighbors ofx. The normalized Laplacian̂Δ is the
generator of the same Dirichlet form but with respect to the degree measure deg(x).



Stochastic completeness 9

Both Δ andΔ̂ generate the heat semigroupsetΔ andetΔ̂ and, hence, associated
continuous time random walks onX. It is easy to prove that̂Δ is a bounded operator in
L2(X,deg), which then implies that the associated random walk is always stochastically
complete. On the contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete.

We say that the graph(X,E) is stochastically complete if the heat semigroup
etΔ is stochastically complete.

Denote byρ(x,y) the graph distance onX, that is the minimal number of edges
in an edge chain connectingx andy. Let Bρ(x, r) be closed metric balls with respect
to this distanceρ and setVρ(x, r) =

∣
∣Bρ(x, r)

∣
∣ where|∙| := μ(∙) denotes the number of

vertices in a given set.

The stochastic completeness can be determined in terms of the functionVρ as
follows.

THEOREM 5. If there is a point x0 ∈ X and a constant c> 0 such that

(17) Vρ(x0, r) ≤ cr3

for all large enough r, then the graph(X,E) is stochastically complete.

Note that the cubic rate of the volume growth is sharp here. Indeed, Woj-
ciechowski [14] has shown that, for anyε > 0 there is a stochastically incomplete
graph that satisfiesVρ(x0, r) ≤ cr3+ε. For any non-negative integerr, set

Sr = {x∈ X : ρ(x0,x) = r} .

In the example of Wojciechowski every vertex onSr is connected to all vertices onSr−1

andSr .

For this type of graphs, that are calledanti-trees, the stochastic incompleteness
is equivalent to the following condition ([14]):

(18)
∞

∑
r=1

Vρ(x0, r)
|Sr+1| |Sr |

< ∞.

Indeed, assuming (18), one constructs a non-trivial bounded solution to the equation
Δu−u = 0, which is enough to ensure the stochastic incompleteness (cf. Theorem 1).
For a radial functionu = u(r) this equation acquires the form

u(r +1) = u(r)+
1

|Sr+1| |Sr |

r

∑
i=0

|Si |u(i) .

Settingu(0) = 1 and solving this equation inductively inr, we obtain a positive solution
u(r) that increases inr. It follows that

u(r +1) ≤

(

1+
1

|Sr+1| |Sr |

r

∑
i=0

|Si |

)

u(r)
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whence by induction

u(R) ≤
R−1

∏
r=0

(

1+
Vρ (x0, r)
|Sr+1| |Sr |

)

.

The condition (18) implies that the product in the right hand side is bounded so thatu
is a bounded function.

If |Sr | ' r2+ε thenVρ(x0, r) ' r3+ε and the condition (18) is satisfied so that the
graph is stochastically incomplete.

The proof of Theorem 5 is based on the following ideas. First observe that the
graph distanceρ is in general not adapted. More precisely,ρ is adapted if and only if
the graph has uniformly bounded degree, which is not an interesting case.

Let us construct an adapted distance as follows. For any edgex∼ y define first
its lengthσ(x,y) by

σ(x,y) =
1

√
deg(x)

∧
1

√
deg(y)

.

Then, for allx,y∈ X defined(x,y) as the smallest total length of all edges in an edge
chain connectingx andy. It is easy to verify thatd satisfies (14) withC = 1.

Next one proves that (17) forρ-balls implies that thed-balls have at most expo-
nential volume growth, so that the stochastic completeness follows by Theorem 4.
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