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STOCHASTIC COMPLETENESS OF SYMMETRIC MARKQOV
PROCESSES AND VOLUME GROWTH

Abstract. We discuss sufficient conditions for stochastic completeness of various types of
Markov processes (diffusions on Riemannian manifolds, jump processes, random walks on
graphs) in terms of the volume growth function of the underlying metric measure space.

1. Brownian motion on Riemannian manifolds

Let (M,g) be a Riemannian manifold andbe the Riemannian measure bh The
Laplace operator (or Laplace-Beltrami operatbiis defined to satisfy the Green for-
mula: for allu,v e C3 (M)

Q) /MAu vdu= f/M<Du, Ovydy,

wherel is the Riemannian gradient afd-) is the Riemannian inner product (see [2],
6], [10]).

The symmetry of the operatérwith respect tqu (that follows from (1)) allows
to extend it to a self-adjoint operatorlid (M, ). In general, this extension may not be
unique, but ifM is geodesically complete (which will be assumed throughout) then this
extension is unique, that i4 is essentially self-adjoint. With some abuse of notation,
the self-adjoint extension & will be denoted by the same letter.

As one can see from (1), the operafois non-positive definite, which implies
that the operatoR := €2 is a bounded self-adjoint operator for any 0. The fam-
ily {R}~¢ is called theheat semigroumf A for the reason that it resolves the heat
equation. More precisely, the following is true:

e foranyf € L2, the functioru(t,x) = R f (x) isC® smooth in(t,x) € (0, +o) x M,

2
satisfies the heat equati(%h = Au and the initial conditioru(t, -) 5t oast—
0+.

o If f>0thenRf>0;if f <1lthenRf <1
e The semigroup propertyPs = P 1.

Furthermore, the operatéy is in fact an integral operator with a kerngl(x, y)
that is a smooth positive function bf> 0 andx,y € M such that

@ AT00 = [ Py T () duy)
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forall f € L2. The functionp (x,y) is called theneat kernebf A (or of M). Itis also the
minimal positive fundamental solution of the heat equation and the transition density
of Brownian motion orM. For example, iM = R" then

N s
(4m)n/2 P 4t '

For general manifolds there is no explicit formula for the heat kernel.

The existence of the heat kernel allows to extend the domain of the opBrator
from L? to other spaces. For that, let us use now the identity (2) as the definit@n of
wheref is any function such that the integral converges. In particEagxtends to a
bounded operator ao™.

Pt (X,y) =

DEerINITION 1. A manifold(M, g) is calledstochastically completié B1 = 1.

Note that in general we have<OR1 < 1. If R1# 1 then the manifoldM is
calledstochastically incomplete.

Easy examples of stochastically incomplete processes are given by diffusions in
bounded domains with the Dirichlet boundary condition. A by far less trivial example
was discovered by R.Azencott [1] in 1974: he showed that Brownian motion on a
geodesically complete non-compact manifold can be stochastically incomplete. In his
example, the manifold has negative sectional curvature that growsoteery fast
with the distance to an origin. The stochastic incompleteness occurs because negative
curvature plays the role of a drift towards infinity, and a very high negative curvature
produces an extremely fast drift that sweeps the Brownian particle to infinity in a finite
time.

The first sufficient condition for stochastic completeness of geodesically com-
plete manifolds in terms of lower bound of Ricci curvature was proved by S.-T. Yau
[15]. Below we present a condition in terms of the volume growth function.

Let us first state various equivalent conditions for the stochastic completeness.
Fix0< T <, setl = (0,T) and consider the Cauchy problemlir M

ou _ .
3) { F=Au inlxM,
U|t:0 =0.

The problem (3) is understood in the classical sense, tha&i€” (I x M) andu (t,x) —
0 locally uniformly inx € M ast — 0. We are interested in the uniqueness of the trivial
solutionu = 0 of (3).

THEOREM 1. (Khas'minskii [9])For anya > 0 and T € (0, ], the following
conditions are equivalent.

(a) M is stochastically complete.

(b) The equatio\v = av in M has the only bounded non-negative solutiea @.
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(c) The Cauchy problem ifD,T) x M has a unique bounded solutior=u0.
DEFINITION 2. Define thevolume function \(x,r) of a manifold (M, g) by
V (x,r):=u(B(xr)), whereB(x,r) is the geodesic ball of radiuscentered at.

Note that 0< V (x,r) < o for all x € M andr > 0 providedM is geodesically
complete.

THEOREM 2. Let (M,g) be a geodesically complete connected Riemannian
manifold. If, for some pointgxe M,

® rdr
@ | gt =

then M is stochastically complete.

Condition (4) holds, in particular, if
(5) V(xo,r) < exp(Cr?)
for all r large enough or even if (5) holds for a sequefigg of valuesr that goes t@o

ask — oo,

Theorem 2 follows from the equivalen¢e) < (c) of Theorem 1 and the fol-
lowing more general result.

THEOREM 3. Let (M, g) be a complete connected Riemannian manifold, and
let u(x,t) be a solution to the Cauchy proble). Assume that, for someg ¥ M and
forallR > 0,

T
©6) / / W2(x,t) dp(x)dt < exp(f(R)),

0 JB(xoR)
where f(r) is a positive increasing function i, +) such that
) LR

f(r)
Thenu=0in| x M.

Condition (6) determines hence a uniqueness class for the Cauchy problem.
Clearly, (7) holds forf (r) = Cr?, but fails for f (r) = Cr?*¢ with € > 0.

Theorems 2 and 3 were proved in [4] (see also [5] and [6]). Without going into
details, let us emphasize, that the argument repeatedly uses the following property of
the geodesic distance functidron the manifold]Cd| < 1.

Let us mention the following consequence Kit.

COROLLARY 1. If M =R"and u(t,x) be a solution tq3) satisfying the condi-
tion

(8) lu(t,x)| < Cexp(C|x|2) forallt 1, xe R",
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then u= 0. Moreover, the same is true if u satisfies instead&)fthe condition
9) lu(t,x)| <Cexp(f(|x])) foralltel, xeR",
where f(r) is a convex increasing function @0, +) satisfying(7).

The class of functions! satisfying (8) is called thdikhonov classand the
conditions (9) and (7) define tiigcklind class The uniqueness of the Cauchy problem
in R" in each of these classes is a classical result of Tikhonov [13] and Tacklind [12],
respectively.

The hypothesis (4) of Theorem 2 is sufficient for the stochastic completeness of
M but not necessary. Moreover, there are examples of stochastically complete mani-
folds with arbitrarily large volume function.

Nevertheless, the condition (4) is sharp in the following sensef: (if) is a
smooth positive convex function @@, +c) with f/(r) > 0 and such that

® rdr
7<00’

f(r)

then there exists a geodesically complete but stochastically incomplete maxdifold
such that loy (xo,r) = f (r), for somexp € M and large enough(see [5]).

2. Jump processes

Let (M,d) be a metric space such that all closed metric balls
B(x,r)={yeM:d(xy) <r}

are compact. In particulatM,d) is locally compact and separable. lyebe a Radon
measure o with a full support.

Recall that aDirichlet form (£, ) in L2 (M, ) is a symmetric, non-negative
definite, bilinear formE : ¥ x # — R defined on a dense subspageof L? (M, ),
which satisfies in addition the following properties:

e Closedness¥ is a Hilbert space with respect to the following inner product:

o The Markov property: iff € ¥ then alsof := (f A1), belongs tof andZ(f) <
(), where (f) = £ (¥, f).

Then (£, ¥) has thegenerator £ that is a non-positive definite, self-adjoint
operator orL.? (M, W) with domain® C ¥ such thate (f,g) = (—Lf,g) forall f € D
andg € ¥. The generator. determines thdieat semigroug P}~ by B = €£ in
the sense of functional calculus of self-adjoint operators. It is known{tRat. , is
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strongly continuous, contractive, symmetric semigroup4nand isMarkovian that
is,0<Rf<lforanyt>0if0<f <1.

The Markovian property of the heat semigroup implies that the opePafue-
serves the inequalities between functions, which allows to use monotone limits to ex-
tend P, from L2 to L® (in fact, B extends to any.9, 1 < q < « as a contraction). In
particular,R 1 is defined.

DerINITION 3. The form(‘E, ¥) is calledconservativeor stochastically com-
pleteif B1 =1 for everyt > 0.

Assume in addition thatE, F ) is regular, that is, the sefF NCy (M) is dense
both in F with respect to the norm (10) and@ (M) with respect to the sup-norm. By
a theory of Fukushima [3], for any regular Dirichlet form there exists a Hunt process
{X}1>0 such that, for all bounded Borel functiofison M,

(11) Exf(X)=Rf(x)

for allt > 0 and almost alk € M, whereEy is expectation associated with the law of
{X} started ak. Using the identity (11), one can show that the lifetimepis almost
surely oo if and only if R1 =1 for all t > 0, which motivates the term “stochastic
completeness” in the above definition.

One distinguishes local and non-local Dirichlet forms. The Dirichlet f0ENF )
is calledlocal if £ (f,g) = 0 for all functionsf,g € F with disjoint compact support.
It is calledstrongly localif the same is true under a milder assumption that const
on a neighborhood of sugp

For example, the classical Dirichlet form on a Riemannian manifold
£(1,g) :/ Of - Ogdy
M

is strongly local. The domain of this form is the Sobolev spdéethe generator is the
self-adjoint Laplace-Beltrami operatAr and the Hunt process is Brownian motion on
M.

A well-studied non-local Dirichlet form ifR" is given by

(12) £(f,g) :/RHXRH (f(0— fbiy_))y(ﬂ:)—g(y»dxdy

where 0< a < 2. The domain of this form is the Besov spaB%/zz, the generator is

(up to a constant multiple) the operatel(—A)“/z, whereA is the Laplace operator in
R", and the Hunt process is the the symmetric stable process of index

By a theorem of Beurling and Deny (cf. [3]), any regular Dirichlet form can be
represented in the form
z — ¢ + z() + 'E<k>,

whereZ(© is a strongly local part that has the form

£ (1.9) = [ T(f.9dn
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wherer (f,g) is a so callecenergy densitygeneralizingJf - (g on manifolds); ()
is a jJump part that has the form

209 =5 [ [ (100-1() (@00 -g)dIxy)

with some measur&onM x M that is called gump measureandZ®) is a killing part
that has the form

Z<k)(f,g):/ fgdk
M

wherek is a measure oM that is called &illing measure

In terms of the associated process this means4hiatin some sense a mixture
of a diffusion process, jump process and a killing condition.

The log-volume test of Theorem 2 can be extended to strongly local Dirichlet
forms, provided the distance function satisfies the condition

for some point, € M and constant, and the volume functiol (x,r) := pu(B(x,r))
satisfies (4). The method of the proof is basically the same as in Theorem 2 because
for strongly local forms the same chain rule and product rules are available, and the
condition (13) replaces the conditigid| < 1 (see [11]).

Now let us turn to jump processes. For simplicity let us assume that the jump
measurel has a density (x,y). Namely, letj(x,y) be is a non-negative Borel function
onM x M that satisfies the following two conditions:

() j(xy) is symmetric:j (x,y) = j (¥,X);

(b) there is a positive consta@tsuch that
(14) /(lAd(x,y)z)j(x,y)du(y) <C forallxe M.
M

DEFINITION 4. We say that a distance functidris adaptedto a kernelj(x,y)
(or j is adapted tal) if (b) is satisfied.

For the purpose of investigation of stochastic completeness the confiion
plays the same role as (13) does for diffusion.

Consider the following bilinear functional

1) Efg=5 [ [ (- 13)ex—g)ixyduRdu)

that is defined on Borel functionsandg whenever the integral makes sense. Define
the maximal domain of by

Fmax={f € L2 1 E(f,f) <o},



Stochastic completeness 7

wherel? = L2(M, u). By the polarization identityE(f,g) is finite for all f,g € Fmax.
Moreover, Tmax is a Hilbert space with the following norm:

115 = Ea(f, 1) = || f| 2+ E(F, T).

Denote by Lig(M) the class of Lipschitz functions dvi with compact support.
It follows from (14) that Lig(M) C Fmax. Define the spacé as the closure of Lig{M)
in (Fmax |||l ,,,)- Under the above hypothesigZ, 7 ) is a regular Dirichlet form in
L?(M, ). The associated Hunt proce§¥ } is a pure jump process with the jump
densityj(X,y).

Many examples of jump processes are provided by Lévy-Khintchine theorem
where the Lévy measure corresponds te,y) du(y). The condition (14) appears also
in Lévy-Khintchine theorem, so that the Euclidean distanc®'Ins adapted to any
Lévy measure. An explicit example of a jump densityRihis

const
n+a

|x—y]

wherea € (0,2), which defines the Dirichlet form (12).

Sufficient condition for stochastic completeness of the Dirichlet form of jump
type is given in the following theorem that was proved in [7].

j(xy)

THEOREM 4. Assume that j satisfig®) and (b) and let(E, F) be the jump
form defined as above. Fix a constankb%. If, for some ¥ € M and for all large
enoughir,

(16) V (xo,r) < exp(brlogr),
then the Dirichlet form(‘E, ¥) is stochastically complete.

It is not known if the borderline valué for bis sharp.
For example, (16) is satisfied if, for some const@rind all larger,

V (Xo,r) < exp(Cr)

For the proof of Theorem 4 we split the jump kerjél,y) into the sum of two
parts:

i'(%Y) = 1(6Y) Ldxy)<1y andj”(xy) = j(%,Y) L{dxy)>1}

and show first the stochastic completeness of the Dirichlet {@&m7 ) associated with

i’. For that we adapt the methods used for stochastic completeness for the local form.
The bounded range gf allows to treat the Dirichlet forndZ’, ) as “almost” local:

if f,gare two functions fron such that (suppf,suppg) > 1 then (f,g) =0. The
condition (14) plays in the proof the same role as the condition (13) in the local case.
However, the lack of locality brings up in the estimates various additional terms that

*In fact it suffices to have (16) far= ry where{ry} is any sequence such thgt— o ask — co.
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have to be compensated by a stronger hypothesis of the volume growth (16), instead of
the quadratic exponential growth in Theorem 2.

The tail j” can regarded as a small perturbationjofn the following sense:
(E, F) is stochastically complete if and only (', F) is so. The proof is based on
the fact that the integral operator with the keriféls a bounded operator ir? (M, ),
because by (14)

[ 1" oeydu) <c.
M

It is not clear if the volume growth condition (16) in Theorem 4 is sharp.

Let us briefly mention a recent result of Xueping Huang [8], that is analogous
of Theorem 3 about the uniqueness class for the Cauchy problem on a geodesically
complete manifold. X.Huang proved a similar theorem for the heat equation associated
with the jump Dirichlet form on graphs satisfyirig) and(b): namely, the associated
heat equation has the following uniqueness class

.
// u? (t,x) dp(x) dt < exp(brlogr)
0 JBxR

whereb is as above any constant smaller tl"%n Moreover, he has shown that for

b > 21/2 this statement fails. The optimal valuelfemains unknown. Note that the
functionu in that example is unbounded, so that it cannot serve to show the sharpness
of the condition (16) in Theorem 4.

3. Random walks on graphs

Let us now turn to random walks on graphs. (&t E) be a locally finite, infinite,
connected graph, whebgis the set of vertices arnfd is the set of edges. We assume
that the graph is undirected, simple, without loops. (Lbé the counting measure &n
Define the jump kernel by(x,y) = 1.y}, Wherex ~ y means thak,y are neighbors,
that is,(x,y) € E. The corresponding Dirichlet form is

E(f) = ;{X’y:zxwy}u(x)—f(y»%

and its generator is
Af(x) = (f(y) - f(x)).
y~X
The operatoA is calledunnormalizedor physical)Laplace operator ofX,E). This
is to distinguish from th@ormalizedor combinatorialLaplace operator

A100 = gogis 3 (1)~ 100)

Yy

where de¢x) is the number of neighbors of The normalized Laplaciah is the
generator of the same Dirichlet form but with respect to the degree measupg.deg
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Both A andA generate the heat semigroughs andtgtA and, hence, associated
continuous time random walks of It is easy to prove thak is a bounded operator in
L2(X,deg), which then implies that the associated random walk is always stochastically
complete. On the contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete.

We say that the grapfX, E) is stochastically complete if the heat semigroup
€2 is stochastically complete.

Denote byp(x,y) the graph distance oX, that is the minimal number of edges
in an edge chain connectingandy. Let By(x,r) be closed metric balls with respect
to this distancep and sed,(x,r) = |By(x,r)| where|-| := (-) denotes the number of
vertices in a given set.

The stochastic completeness can be determined in terms of the fuligtam
follows.

THEOREMD. If there is a point ¥ € X and a constant & 0 such that
(17) Vp(Xo,r) < cr®
for all large enough r, then the graptX, E) is stochastically complete.

Note that the cubic rate of the volume growth is sharp here. Indeed, Woj-
ciechowski [14] has shown that, for amy> O there is a stochastically incomplete
graph that satisfieg, (xo,r) < cr3*t. For any non-negative integerset

S ={xeX:pk,X)=r}.
In the example of Wojciechowski every vertex §ris connected to all vertices &_1
ands.

For this type of graphs, that are calladti-trees the stochastic incompleteness
is equivalent to the following condition ([14]):

Vp(Xo,r) <o
4 1S4l 1S
Indeed, assuming (18), one constructs a non-trivial bounded solution to the equation

Au—u =0, which is enough to ensure the stochastic incompleteness (cf. Theorem 1).
For a radial functioru = u(r) this equation acquires the form

(18)

1 ! .
u(r+1) :U(r)+mi;|5|u(')-

Settingu (0) = 1 and solving this equation inductivelyiinwe obtain a positive solution
u(r) that increases in. It follows that

1 r
u(r+1) < <1+S+1I 5] iZ}ISEI) u(r)
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whence by induction
R-1
) < |‘L <1+ Volo.r) )
S 41l 1S
The condition (18) implies that the product in the right hand side is bounded so that
is a bounded function.

If |S| ~ r2*€ thenVp (o, r) ~ r+¢ and the condition (18) is satisfied so that the
graph is stochastically incomplete.

The proof of Theorem 5 is based on the following ideas. First observe that the
graph distance is in general not adapted. More precisglyis adapted if and only if
the graph has uniformly bounded degree, which is not an interesting case.

Let us construct an adapted distance as follows. For anyxedggdefine first
its lengtho (x,y) by

1 A 1
Vdegx) \/dedy)

Then, for allx,y € X defined(x,y) as the smallest total length of all edges in an edge
chain connecting andy. It is easy to verify thatl satisfies (14) witlC = 1.

Next one proves that (17) farballs implies that thel-balls have at most expo-
nential volume growth, so that the stochastic completeness follows by Theorem 4.

o(x,y) =
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