
Laplace operator on weighted graphs

Alexander Grigor’yan

Nankai University, September 2019



Contents

1 Laplace operator on finite graphs 4
1.1 The notion of graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The weighted Laplace operator . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Distance function and expansion rate . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Cheeger’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5 Eigenvalues in a weighted path graph . . . . . . . . . . . . . . . . . . . . . . 50
1.6 Products of weighted graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.7 Eigenvalues in Zm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.8 Eigenvalues in Zn

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.9 Additional properties of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 68

2 Infinite graphs 75
2.1 The Dirichlet Laplacian and its eigenvalues . . . . . . . . . . . . . . . . . . . 75
2.2 The Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3 Geometric estimates of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 84
2.4 Isoperimetric inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.5 Isoperimetric inequalities on Cayley graphs . . . . . . . . . . . . . . . . . . . 90

1



3 Heat kernel on infinite graphs 97
3.1 Transition function and heat kernel . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 One-dimensional simple random walk . . . . . . . . . . . . . . . . . . . . . . 101
3.3 Carne-Varopoulos estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4 On-diagonal lower bound of the heat kernel via volume . . . . . . . . . . . . 119
3.5 On-diagonal lower bound via the Dirichlet eigenvalues . . . . . . . . . . . . . 124
3.6 On-diagonal upper bounds of the heat kernel . . . . . . . . . . . . . . . . . . 130

4 The type problem 144
4.1 Recurrence of the random walk via the heat kernel . . . . . . . . . . . . . . 144
4.2 The type problem on Cayley graphs . . . . . . . . . . . . . . . . . . . . . . . 158
4.3 Volume test for recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2



3



1 Laplace operator on finite graphs

1.1 The notion of graph

A graph is a pair (V,E) where V is a set of vertices and E is a set of edges, that is, E
consists of some unordered pairs (x, y) where x, y are distinct vertices. We write

x ∼ y if (x, y) ∈ E.

In this case we say: x is connected to y, or x is joint to y, or x is adjacent to y, or x is a
neighbor of y.

The edge (x, y) will also be denoted by xy.
A graph (V,E) is called finite if the number |V | of vertices is finite. For each vertex x,

define its degree
deg (x) = # {y ∈ V : x ∼ y} .

The graph is called regular if deg (x) is the same for all x ∈ V . Consider some examples.
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1. A complete graph Kn: |V | = n and i ∼ j for any two distinct i, j ∈ V .

K2 = K3 = K4 =

2. A complete bipartite graph Kn,m: V = V + t V −, where |V +| = n and |V −| = m, and
the edges are defined as follows: i ∼ j if either i ∈ V + and j ∈ V − or i ∈ V − and j ∈ V +.

K1,1 = K2,2 = K3,3 =

3. A cycle graph Cm = Zm: V = {0, 1, ...,m − 1}, and i ∼ j if i − j = ±1 mod m.

Z2 = Z3 = Z4 =

3. A path graph Pm : V = {0, 1, ...,m − 1}, and i ∼ j if |i − j| = 1.

P16 =
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Product of graphs.

Definition. The Cartesian product of graphs (X,E1) and (Y,E2) is the graph

(V,E) = (X,E1)� (Y,E2) ,

where V = X × Y is the set of pairs (x, y) where x ∈ X and y ∈ Y , and the set E of edges
is defined by

(x, y) ∼ (x′, y) if x′ ∼ x and (x, y) ∼ (x, y′) if y ∼ y′, (1.1)

which is illustrated on the following diagram:
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Clearly, we have |V | = |X| |Y | and deg (x, y) = deg (x) + deg (y) for all x ∈ X and y ∈ Y .

For example, we have

Z2�Z2 = Z4 = and Z2�Z3 =

This definition can be iterated to define the product of a finite sequence of graphs.
The graph

Zn
2 := Z2�Z2�...�Z2︸ ︷︷ ︸

n

is called the n-dimensional binary cube. For example,

Z3
2 =
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Cayley graphs. Let (G, ∗) be a group and S be a subset of G with the property that if
x ∈ S then x−1 ∈ S and that e /∈ S. Such a set S will be called symmetric.

A group G and a symmetric set S ⊂ G determine a graph (V,E) as follows: the set V of
vertices coincides with G, and the set E of edges is defined by the relation ∼ as follows:

x ∼ y ⇔ x−1 ∗ y ∈ S,

or, equivalently,
x ∼ y ⇔ y = x ∗ s for some s ∈ S.

Note that the relation x ∼ y is symmetric in x, y, that is, x ∼ y implies y ∼ x, because, by
the symmetry of S,

y−1 ∗ x =
(
x−1 ∗ y

)−1
∈ S.

Hence, (V,E) is indeed a graph.

Definition. The graph (V,E) defined as above is denoted by (G,S) and is called the Cayley
graph of the group G with the edge generating set S.

There may be many different Cayley graphs based on the same group since they depend
also on the choice of S. It follows from the construction that deg (x) = |S| for any x ∈ V. In
particular, if S is finite then the graph (V,E) is locally finite.
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Consider some example. Here (Zm, +) is the additive group of residues mod m and
Zm = {0, 1, ...,m − 1} , and (Zn, +) is the additive group of n-tuples (x1, ..., xn) with xk ∈ Z.

1. Let G = (Z2, +) . The only possibility for S is S = {1}. Then (Z2, S) = .

2. Let G = (Zm, +) where m > 2, and S = {±1}. That is, each residue k = 0, 1, ...,m−1
has two neighbors: k − 1 and k + 1 mod m. The graph (Zm, S) coincides with the m-cycle.

3. Let G = (Zm, +) with the symmetric set S = Zm \ {0}. That is, every two distinct
elements x, y ∈ Zm are connected by an edge. Hence, (Zm, S) = Km.

4. G = (Z, +) and S = {1,−1} . Then x ∼ y if x − y = 1 or x − y = −1. Hence, (G,S)
coincides with the lattice graph Z:

If S = {±1,±2} then x ∼ y if |x − y| = 1 or |x − y| = 2 so that we obtain a different graph.

5. Let G = (Zn, +) . Let S consist of points (x1, ..., xn) ∈ Zn such that exactly one of xi

is equal to ±1 and the others are 0. The connection x ∼ y means that x− y has exactly one
component ±1, and all others are 0.

The Cayley graph of (Zn, S) with this S is called the lattice graph Zn.
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For example, in the case n = 2 we have S = {(1, 0) , (−1, 0) , (0, 1) , (0,−1)} and (Z2, S) is

6. Here is the Cayley graph (Z2, S) with another edge generating set

S = {(1, 0) , (−1, 0) , (0, 1) , (0,−1) , (1, 1) , (−1,−1)} .
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1.2 The weighted Laplace operator

Definition. A weighted graph is a couple ((V,E) , μ) where (V,E) is a graph and μxy is a
non-negative function on V × V such that

1. μxy = μyx;

2. μxy > 0 if and only if x ∼ y.

The weighted graph is also denoted by (V, μ) because μ determines the set of edges E.

Example. Set μxy = 1 if x ∼ y and μxy = 0 otherwise. Then μxy is a weight. This specific
weight is called simple.

Any weight μxy gives rise to a function on vertices as follows:

μ (x) =
∑

{y∈V,y∼x}

μxy =
∑

y∈V

μxy. (1.2)

Then μ (x) is called the weight of the vertex x. It can be extended to a measure of subsets:
for any subset A ⊂ V , set μ (A) =

∑
x∈A μ (x) .

For example, if the weight μxy is simple then μ (x) = deg (x) and μ (A) =
∑

x∈A deg (x) .
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Definition. Let (V, μ) be a finite weighted graph without isolated points. For any function
f : V → R, define the function Δμf by

Δμf (x) =
1

μ (x)

∑

y∼x

f (y) μxy − f (x) . (1.3)

The operator Δμ is called the (weighted) Laplace operator of (V, μ).

This operator can also be written in equivalent forms as follows:

Δμf (x) =
1

μ (x)

∑

y∈V

f (y) μxy − f (x) =
1

μ (x)

∑

y∈V

(f (y) − f (x)) μxy. (1.4)

Example. If μ is a simple weight then we obtain the Laplace operator of the graph (V,E):

Δf (x) =
1

deg (x)

∑

y∼x

f (y) − f (x) .

Denote by F the set of all real-valued functions on V . Then F is a linear space with
respect to addition of functions and multiplication by a constant, and dim F = |V |. The
Laplace operator Δμ is a linear operator in F , and Δμ1 = 0.
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Define the Markov kernel P (x, y) =
μxy

μ(x)
so that

Δμf (x) =
∑

y

P (x, y) f (y) − f (x) .

Defining the Markov operator P on F by

Pf (x) =
∑

y

P (x, y) f (y) ,

we see that the Laplace operator Δμ and the Markov operator P are related by a simple
identity Δμ = P − id, where id is the identity operator in F .

Since ∑

y∈V

P (x, y) ≡ 1,

the Markov kernel determine the Markov chain on V , that is, a random walk {Xn}
∞
n=0 such

that
P (Xn+1 = y | Xn = x) = P (x, y) .

Moreover, this random walk is reversible because

P (x, y) μ (x) = μxy = P (y, x) μ (y) .

The operator Δμ is the generator of this random walk.
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Green’s formula. Define for all x, y ∈ V the difference operator ∇xy : F → R:

∇xyf = f (y) − f (x) ,

so that

Δμf (x) =
1

μ (x)

∑

y∈V

(∇xyf) μxy.

For any set Ω ⊂ V denote Ωc = V \ Ω.

Theorem 1.1 (Green’s formula) Let (V, μ) be a weighted graph without isolated points, and
let Ω be a non-empty finite subset of V . Then, for any two functions f, g on V ,

∑

x∈Ω

Δμf(x)g(x)μ(x) = −
1

2

∑

x,y∈Ω

(∇xyf) (∇xyg) μxy +
∑

x∈Ω,y∈Ωc

(∇xyf) g(x)μxy (1.5)

If Ω = V then Ωc is empty so that the last “boundary” term in (1.5) vanishes, and we
obtain ∑

x∈V

Δμf(x)g(x)μ(x) = −
1

2

∑

x,y∈V

(∇xyf) (∇xyg) μxy. (1.6)
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Proof. We have

∑

x∈Ω

Δμf(x)g(x)μ(x) =
∑

x∈Ω

(
1

μ (x)

∑

y∈V

(∇xyf) μxy

)

g(x)μ(x)

=
∑

x∈Ω

∑

y∈V

(∇xyf) g(x)μxy

=
∑

x∈Ω

∑

y∈Ω

(∇xyf) g(x)μxy +
∑

x∈Ω

∑

y∈Ωc

(∇xyf) g(x)μxy

=
∑

y∈Ω

∑

x∈Ω

(∇yxf) g(y)μxy +
∑

x∈Ω

∑

y∈Ωc

(∇xyf) g(x)μxy,

where in the last line we have switched notation of the variables x and y in the first sum
using μxy = μyx. Adding together the last two lines and dividing by 2, we obtain

∑

x∈Ω

Δμf(x)g(x)μ(x) =
1

2

∑

x,y∈Ω

(∇xyf) (g(x) − g(y)) μxy +
∑

x∈Ω,y∈Ωc

(∇xyf) g(x)μxy,

which was to be proved.
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Eigenvalues of the Laplace operator. Let |V | = N so that dimF = N . We investigate
the spectrum of the operator L = −Δμ that is called positive definite Laplace operator. This
operator acts in F and, hence, has N (complex) eigenvalues λ determined by Lf = λf for
some f ∈ F \ {0} that is called an eigenfunction of L.

In the next examples the weight μxy is simple so that

Lf (x) = f (x) −
1

deg (x)

∑

y∼x

f (y) .

1. For Z2 = •0 − •1 we have

Lf (0) = f (0) − f (1) , Lf (1) = f (1) − f (0)

and, in the matrix form,
(
Lf (0)

Lf (1)

)

=

(
1 −1
−1 1

)(
f (0)

f (1)

)

.

Hence, the eigenvalues of L coincide with those of the matrix

(
1 −1
−1 1

)

. Its characteristic

equation is (1 − λ)2 − 1 = 0, whence we obtain two eigenvalues λ = 0 and λ = 2.
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2. For Z3 we have

Lf (x) = f (x) −
1

2
(f (x − 1) + f (x + 1)) , x = 0, 1, 2 mod 3.

The action of L can be written as a matrix multiplication:



Lf (0)
Lf (1)
Lf (2)



 =




1 −1/2 −1/2

−1/2 1 −1/2
−1/2 −1/2 1








f (0)
f (1)
f (2)



 .

The characteristic equation of the above 3×3 matrix is λ3−3λ2 + 9
4
λ = 0. Hence, we obtain

the following eigenvalues of L: λ = 0 (simple) and λ = 3/2 with multiplicity 2.
3. For the path graph P3 = •0 − •1 − •2 we have

Lf (0) = f (0) − f (1) , Lf (1) = f (1) −
1

2
(f (0) + f (2)) , Lf (2) = f (2) − f (1) ,

the matrix of L =




1 −1 0

−1/2 1 −1/2
0 −1 1



 .

The characteristic equation is λ3 − 3λ2 + 2λ = 0 whence λ = 0, λ = 1, λ = 2.
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Let (V, μ) be any finite weighted graph. Define in F an inner product by

(f, g) :=
∑

x∈V

f (x) g (x) μ (x) .

Lemma 1.2 The operator L is symmetric: (Lf, g) = (f,Lg) for all f, g ∈ F .

Proof. Indeed, by the Green formula (1.6), we have

(Lf, g) = −
∑

x∈V

Δμf (x) g (x) μ (x) =
1

2

∑

x,y∈V

(∇xyf) (∇xyg) μxy = (f,Lg) .

Alternatively, since L = id−P , it suffices to prove that P is symmetric. Using the reversibil-
ity of P, we obtain

(Pf, g) =
∑

x
Pf (x) g (x) μ (x) =

∑

x

∑

y
P (x, y) f (y) g (x) μ (x)

=
∑

x

∑

y
P (y, x) f (y) g (x) μ (y) = (Pg, f ) .

Corollary 1.3 All the eigenvalues of L are real.
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To state the next theorem, we need the notion of a bipartite graph.

Definition. A graph (V,E) is called bipartite if V admits a partition into two non-empty
disjoint subsets V +, V − such that if both x, y are contained in the same set V + or V − then
x 6∼ y.

In terms of coloring, one can say that a graph is bipartite if its vertices can be colored
by two colors, so that the vertices of the same color are not connected by an edge.

Here are some examples of bipartite graphs.
1. A complete bipartite graph Kn,m is bipartite.
2. The cycle graph Zm and the path graph Pm are bipartite provided m is even.
3. Product of bipartite graphs is bipartite.
In particular, Zn

m and P n
m are bipartite provided m is even. For the example, here is P 2

8

– a chessboard:
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Theorem 1.4 For any finite, connected, weighted graph (V, μ) with N = |V | > 1, the
following is true.

(a) Zero is a simple eigenvalue of L.
(b) All the eigenvalues of L are contained in [0, 2].
(c) If (V, μ) is not bipartite then all the eigenvalues of L lie in [0, 2).

Proof. (a) Since L1 = 0, the constant function is an eigenfunction with the eigenvalue
0. Assume now that f is an eigenfunction of the eigenvalue 0 and prove that f ≡ const,
which will imply that 0 is a simple eigenvalue. If Lf = 0 then it follows from (1.6) with
g = f that ∑

{x,y∈V :x∼y}

(f (y) − f (x))2 μxy = 0.

In particular, f (x) = f (y) for any two neighboring vertices x, y. The connectedness of
the graph means that any two vertices x, y ∈ V can be connected to each other by a path
{xk}

m
k=0 where

x = x0 ∼ x1 ∼ ... ∼ xm = y

whence it follows that f (x0) = f (x1) = ... = f (xm) and f (x) = f (y). Since this is true for
all couples x, y ∈ V , we obtain f ≡ const.
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(b) Let λ be an eigenvalue of L with an eigenfunction f . Using Lf = λf and the Green
formula (1.6), we obtain

λ
∑

x∈V

f 2 (x) μ (x) =
∑

x∈V

Lf (x) f (x) μ (x)

=
1

2

∑

{x,y∈V :x∼y}

(f (y) − f (x))2 μxy. (1.7)

It follows from (1.7) that λ ≥ 0. Using (a + b)2 ≤ 2 (a2 + b2), we obtain

λ
∑

x∈V

f 2 (x) μ (x) ≤
∑

{x,y∈V :x∼y}

(
f (y)2 + f (x)2)μxy

=
∑

x,y∈V

f (y)2 μxy +
∑

x,y∈V

f (x)2 μxy

=
∑

y∈V

f (y)2 μ (y) +
∑

x∈V

f (x)2 μ (x)

= 2
∑

x∈V

f (x)2 μ (x) . (1.8)

It follows from (1.8) that λ ≤ 2.
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Alternatively, one can first prove that ‖P‖ ≤ 1 , which follows from
∑

y P (x, y) = 1 and
which implies spec P ⊂ [−1, 1], and then conclude that spec L = 1 − spec P ⊂ [0, 2] .

(c) We need to prove that λ = 2 is not an eigenvalue. Assume from the contrary that
λ = 2 is an eigenvalue with an eigenfunction f , and prove that (V, μ) is bipartite. Since λ = 2,
all the inequalities in the above calculation (1.8) must become equalities. In particular, we
must have for all x ∼ y that

(f (x) − f (y))2 = 2
(
f (x)2 + f (y)2) ,

which is equivalent to
f (x) + f (y) = 0.

If f (x0) = 0 for some x0 then it follows that f (x) = 0 for all neighbors of x0. Since the
graph is connected, we obtain that f (x) ≡ 0, which is not possible for an eigenfunction.
Hence, f (x) 6= 0 for all x ∈ Γ. Then V splits into a disjoint union of two sets:

V + = {x ∈ V : f (x) > 0} and V − = {x ∈ V : f (x) < 0} .

The above argument shows that if x ∈ V + then all neighbors of x are in V −, and vice versa.
Hence, (V, μ) is bipartite, which finishes the proof.
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Hence, we can enumerate all the eigenvalues of L in the increasing order as follows:

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN−1 ≤ 2.

Example. As an example of application of Theorem 1.4, let us investigate the solvability of
the equation Lu = f for a given f ∈ F . Since by the Green formula (1.6)

∑

x

(Lu) (x) μ (x) = 0,

a necessary condition for solvability is
∑

x

f (x) μ (x) = 0. (1.9)

Assuming that, let us show that the equation Lu = f has a solution. Indeed, condition (1.9)
means that f⊥1. Consider the subspace F0 of F that consists of all functions orthogonal to
1. Since 1 is the eigenfunction of L with eigenvalue λ0 = 0, the space F0 is invariant for the
operator L, and the spectrum of L in F0 is λ1, ...λN−1. Since all λj > 0, we see that L is
invertible in F0, that is, the equation Lu = f has for any f ∈ F0 a unique solution u ∈ F0

given by u = L−1f .

The next statement contains an additional information about the spectrum of L for
bipartite graphs.
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Theorem 1.5 Let (V, μ) be finite, connected, and bipartite. If λ is an eigenvalue of L then
2 − λ is also an eigenvalue of L, with the same multiplicity. In particular, 2 is a simple
eigenvalue of L.

Hence, we conclude that a graph is bipartite if and only if λN−1 = 2.
Proof. Since the eigenvalues α of the Markov operator P = id−L are related to the

eigenvalues λ of L by α = 1−λ, the claim is equivalent to the following: if α is an eigenvalue
of P then −α is also an eigenvalue of P with the same multiplicity (indeed, α = 1−λ implies
−α = 1− (2 − λ)). Let V +, V − be a partition of V such that x ∼ y only if x and y belong to
same of the subset V +, V −. Given an eigenfunction f of P with the eigenvalue α, consider

g (x) =

{
f (x) , x ∈ V +

−f (x) , x ∈ V − . (1.10)

Let us show that g is an eigenfunction of P with the eigenvalue −α. For all x ∈ V +, we have

Pg (x) =
∑

y∈V

P (x, y) g (y) =
∑

y∈V −

P (x, y) g (y)

= −
∑

y∈V −

P (x, y) f (y) = −Pf (x) = −αf (x) = −αg (x) ,
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and for x ∈ V − we obtain in the same way

Pg (x) =
∑

y∈V +

P (x, y) g (y)

=
∑

y∈V +

P (x, y) f (y) = Pf (x) = αf (x) = −αg (x) .

Hence, −α is an eigenvalue of P with the eigenfunction g.
Let m be the multiplicity of α as an eigenvalue of P , and m′ be the multiplicity of −α.

Let us prove that m′ = m. There exist m linearly independent eigenfunctions f1, ..., fm of
the eigenvalue α. Using (1.10), we construct m eigenfunctions g1, ..., gm of the eigenvalue
−α, that are obviously linearly independent, whence we conclude that m′ ≥ m. Since
− (−α) = α, applying the same argument to the eigenvalue −α instead of α, we obtain the
opposite inequality m ≥ m′, whence m = m′.

Finally, since 0 is a simple eigenvalue of L, it follows that 2 is also a simple eigenvalue of
L. It follows from the proof that the eigenfunction g (x) with the eigenvalue 2 is as follows:
g (x) = c on V + and g (x) = −c on V −, for any non-zero constant c.
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1.3 Distance function and expansion rate

Definition. A finite sequence {xk}
n
k=0 of vertices on a graph (V,E) is called a path if

x0 ∼ x1 ∼ ... ∼ xk ∼ xk+1 ∼ ... ∼ xn

The number n of edges in the path is referred to as the length of the path. We say that the
path {xk}

n
k=0 connects x0 and xn.

Definition. A graph (V,E) is called connected if, for any two vertices x, y ∈ V , there is
a path connecting x and y. If (V,E) is connected then define the graph distance d (x, y)
between any two distinct vertices x, y as the minimal length of a path that connects x and
y.

The connectedness here is needed to ensure that d (x, y) < ∞ for any two points. It is
easy to see that on any connected graph, the graph distance is a metric, so that (V, d) is a
metric space. For any two non-empty subsets X,Y ⊂ V , set

d (X,Y ) = min
x∈X,y∈Y

d (x, y)

Note that d (X,Y ) ≥ 0 and d (X,Y ) > 0 if and only if X and Y are disjoint.
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Let now (V, μ) be a weighted connected graph. For disjoint subsets X,Y of V define one
more quantity:

l (X,Y ) =
1

2
ln

μ (Xc) μ (Y c)

μ (X) μ (Y )
,

Since X ⊂ Y c and Y ⊂ Xc, it follows that l (X,Y ) ≥ 0. Furthermore, l (X,Y ) = 0 if and
only if X = Y c. To understand better l (X,Y ), express it in terms of the set Z = V \(X ∪ Y )
so that

l (X,Y ) =
1

2
ln

(

1 +
μ (Z)

μ (X)

)(

1 +
μ (Z)

μ (Y )

)

.

Hence, the quantity l (X,Y ) measures “space” between X and Y in terms of the measure of
the set Z.

Let |V | = N and let the eigenvalues of the Laplace operator L on (V, μ) be

0 = λ0 < λ1 ≤ ... ≤ λN−1 ≤ 2.

We will use the following notation:

δ =
λN−1 − λ1

λN−1 + λ1

, (1.11)

so that δ ∈ [0, 1).
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Theorem 1.6 (F.Chung, AG, S.-T.Yau ’96) For any two disjoint sets X,Y ⊂ V , we have

d (X,Y ) ≤ 1 +
l (X,Y )

ln 1
δ

(1.12)

(if δ = 0 then set by definition l(X,Y )

ln 1
δ

= 0).

Example. Let us show that

diam (V ) ≤ 1 +
1

ln 1
δ

ln
μ (V )

m
, (1.13)

where m = minx∈V μ (x). Indeed, set in (1.12) X = {x}, Y = {y} where x, y are two distinct
vertices. Then

l (X,Y ) ≤
1

2
ln

μ (V )2

μ (x) μ (y)
≤ ln

μ (V )

m

whence

d (x, y) ≤ 1 +
1

ln 1
δ

ln
μ (V )

m
.

Taking in the left hand side the supremum in all x, y ∈ V , we obtain (1.13).
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For any subset X ⊂ V , denote by Ur (X) the r-neighborhood of X, that is,

Ur (X) = {y ∈ V : d (y,X) ≤ r} .

Corollary 1.7 For any non-empty set X ⊂ V and any integer r ≥ 1, we have

μ (Ur (X)) ≥
μ (V )

1 + μ(Xc)
μ(X)

δ2r
. (1.14)

Proof. Set Y = V \ Ur (X) so that Ur (X) = Y c and d (X,Y ) = r + 1. By (1.12), we
have

r ≤
1

2

1

ln 1
δ

ln
μ (Xc) μ (Y c)

μ (X) μ (Y )
,

which implies

δ2r μ (Xc)

μ (X)
≥

μ (Y )

μ (Y c)
=

μ (V ) − μ (Y c)

μ (Y c)
=

μ (V )

μ (Ur (X))
− 1,

whence (1.14) follows.
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Example. Given a non-empty set X ⊂ V , define the expansion rate of X to be the minimal
positive integer R such that

μ (UR (X)) ≥
1

2
μ (V ) .

Imagine a communication network as a graph where the vertices are the communication
centers (like computer servers) and the edges are direct links between the centers. If X is
a set of selected centers, then it is reasonable to ask, how many steps from X are required
to reach the majority (at least 50%) of all centers? This is exactly the expansion rate of X,
and the networks with short expansion rate provide better connectivity.

Let X consist of a singe vertex. Then

μ (Xc)

μ (X)
≤

μ (V )

minx∈V μ (x)
=: M, (1.15)

and (1.14) yields

μ (Ur (X)) ≥
μ (V )

1 + Mδ2r .

Hence, if
Mδ2r ≤ 1, (1.16)
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then μ (Ur (X)) ≥ 1
2
μ (V ). The condition (1.16) is equivalent to

r ≥
1

2

M

ln 1
δ

,

from where we see that the expansion rate R of any singleton satisfies

R ≤
1

2
d
ln M

ln 1
δ

e. (1.17)

Hence, a good communication network should have the number δ as small as possible. For
that, all non-zero eigenvalues of L must lie in a neighborhood of 1. Indeed, if

λ1 and λN−1 ∈ [1 − ε, 1 + ε] (1.18)

then

δ =
λN−1 − λ1

λN−1 + λ1

≤
2ε

2 − ε
=

ε

1 − ε
' ε.

For many large practical networks, (1.18) holds with

ε '
1

ln N
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which implies

δ .
1

ln N
.

In this case we obtain the following estimate of the expansion rate:

R ≤
1

2

ln M

ln 1
δ

.
ln M

ln ln N
. (1.19)

Typically M ' N so that M in (1.19) can be replaced by N .
For the internet graph, we have N ' 109 and, hence, R . 7. This very fast expansion rate

is called “a small world” phenomenon, and it is actually observed in large communication
networks.

The same phenomenon occurs in the coauthor network : two mathematicians are con-
nected by an edge if they have a joint publication. Although the number of recorded
mathematicians is quite high (' 105), a few links are normally enough to get from one
mathematician to a substantial portion of the entire network. Formula (1.19) gives in this
case R . 5.
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Proof of Theorem 1.6. Recall that (V, μ) is a weighted connected graph, N = |V | > 1.
For non-empty disjoint subsets X,Y of V , we define

d (X,Y ) = inf
x∈X,y∈Y

d (x, y)

and

l (X,Y ) =
1

2
ln

μ (Xc) μ (Y c)

μ (X) μ (Y )
. (1.20)

Let 0 = λ0 < λ1 ≤ ... ≤ λN−1 be the eigenvalues of the weighted Laplacian L. Set

δ =
λN−1 − λ1

λN−1 + λ1

. (1.21)

We need to prove that

d (X,Y ) ≤ 1 +
l (X,Y )

ln 1
δ

. (1.22)

As before, F is the space of all functions V → R. Let w0, w1, ...., wN−1 be an orthonormal
basis in F that consists of the eigenfunctions of L, so that Lwk = λkwk.
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Any function u ∈ F admits an expansion in the basis {wk} as follows:

u =
N−1∑

k=0

akwk (1.23)

with some coefficients ak. Since w0 = 1
‖1‖ and a0 = (u,w0), we obtain

a0w0 =
(u, 1)

‖1‖2 =
1

μ (V )

∑

x∈V

u (x) μ (x) =: ū

Denote

u′ = u − ū =
N−1∑

k=1

akwk

so that u = ū + u′ and u′⊥ū.
Let Φ (λ) be a polynomial with real coefficient. We have

Φ (L) u =
N−1∑

k=0

akΦ (λk) wk = Φ (0) ū +
N−1∑

k=1

akΦ (λk) wk.
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If v is another function from F with expansion

v =
N−1∑

k=0

bkwk = v̄ +
N−1∑

k=1

bkwk = v̄ + v′,

then

(Φ (L) u, v) = (Φ (0) ū, v̄) +
N−1∑

k=1

akbkΦ (λk)

≥ Φ (0) ūv̄μ (V ) − max
1≤k≤N−1

|Φ (λk)|
N−1∑

k=1

|ak| |bk|

≥ Φ (0) ūv̄μ (V ) − max
1≤k≤N−1

|Φ (λk)| ‖u
′‖ ‖v′‖ . (1.24)

Assume now that supp u ⊂ X, supp v ⊂ Y and that

D := d (X,Y ) ≥ 2

(if D ≤ 1 then (1.12) is trivially satisfied). Let us show that if deg Φ ≤ D − 1 then

(Φ (L) u, v) = 0. (1.25)
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Indeed, the function Lku is supported in Uk (supp u) , whence it follows that Φ (L) u is
supported in UD−1 (X). Since UD−1 (X) is disjoint with Y , we obtain (1.25). Comparing
(1.25) and (1.24), we obtain

max
1≤k≤N−1

|Φ (λk)| ≥ Φ (0)
ūv̄μ (V )

‖u′‖ ‖v′‖
. (1.26)

Let us take now u = 1X and v = 1Y . We have

ū =
μ (X)

μ (V )
, ‖ū‖2 =

μ (X)2

μ (V )
, ‖u‖2 = μ (X) ,

whence

‖u′‖ =
√
‖u‖2 − ‖ū‖2 =

√

μ (X) −
μ (X)2

μ (V )
=

√
μ (X) μ (Xc)

μ (V )
.

Using similar identities for v and substituting into (1.26), we obtain

max
1≤k≤N−1

|Φ (λk)| ≥ Φ (0)

√
μ (X) μ (Y )

μ (Xc) μ (Y c)
. (1.27)
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Finally, let us specify Φ (λ) as follows:

Φ (λ) =

(
λ1 + λN−1

2
− λ

)D−1

.

Since max |Φ (λ)| on the set λ ∈ [λ1, λN−1] is attained at λ = λ1 and λ = λN−1 and

max
[λ1,λN−1]

|Φ (λ)| =

(
λN−1 − λ1

2

)D−1

,

it follows from (1.27) that

(
λN−1 − λ1

2

)D−1

≥

(
λN−1 + λ1

2

)D−1
√

μ (X) μ (Y )

μ (Xc) μ (Y c)
.

Using definitions (1.20) of l (X,Y ) and (1.21) of δ, we obtain

exp (l (X,Y )) ≥

(
1

δ

)D−1

.

Taking ln, we obtain (1.12).
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1.4 Cheeger’s inequality

Let (V, μ) be a weighted graph with the edges set E. Recall that, for any vertex subset
Ω ⊂ V , its measure μ (Ω) is defined by

μ (Ω) =
∑

x∈Ω

μ (x) .

Similarly, for any edge subset S ⊂ E, define its measure μ (S) by

μ (S) =
∑

ξ∈S

μξ,

where μξ := μxy for any edge ξ = xy.
For any set Ω ⊂ V , define its edge boundary ∂Ω by

∂Ω = {xy ∈ E : x ∈ Ω, y /∈ Ω} .

Definition. Given a finite weighted graph (V, μ), define its Cheeger constant by

h = h (V, μ) = inf
Ω⊂V

μ(Ω)≤ 1
2
μ(V )

μ (∂Ω)

μ (Ω)
. (1.28)

38



In other words, h is the largest constant such that the following inequality is true

μ (∂Ω) ≥ hμ (Ω) (1.29)

for any subset Ω of V with measure μ (Ω) ≤ 1
2
μ (V ).

Lemma 1.8 We have λ1 ≤ 2h.

Proof. For any f ∈ F \ {0}, consider the Rayleigh quotient

R (f) :=
(Lf, f)

(f, f)
.

Since
λ1 = inf

f∈F , f⊥1
R (f) ,

it suffices to find a function f such that f⊥1 and R (f) ≤ 2h.
Let Ω be a set at which the infimum in (1.28) is attained. Consider the following function

f (x) =

{
1, x ∈ Ω
−a, x ∈ Ωc
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where a is chosen so that f⊥1, that is, μ (Ω) = aμ (Ωc) whence

a =
μ (Ω)

μ (Ωc)
≤ 1.

We have
(f, f) =

∑

x∈V

f (x)2 μ (x) = μ (Ω) + a2μ (Ωc) = (1 + a) μ (Ω)

and by the Green formula (1.6)

(Lf, f) =
1

2

∑

x,y

(∇fxy)
2 μxy =

∑

x∈Ω,y∈Ωc

(∇xyf)2 μxy

= (1 + a)2
∑

x∈Ω,y∈Ωc

μxy = (1 + a)2 μ (∂Ω) .

Hence,

R (f) ≤
(1 + a)2 μ (∂Ω)

(1 + a) μ (Ω)
= (1 + a) h ≤ 2h,

which was to be proved.
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Theorem 1.9 (Alon, Milman ’86) We have

λ1 ≥
h2

2
. (1.30)

The inequality (1.30) is called Cheeger’s inequality because it is similar to an inequality
proved by J.Cheeger ’70 for Riemannian manifolds.

We precede the proof Theorem 1.9 by two lemmas. Given a function f : V → R and an
edge ξ = xy, let us use the following notation:

|∇ξf | := |∇xyf | = |f (y) − f (x)| .

Lemma 1.10 (Co-area formula). Given any real-valued function f on V , set for any t ∈ R

Ωt = {x ∈ V : f(x) > t}.

Then the following identity holds:

∑

ξ∈E

|∇ξf |μξ =

∫ ∞

−∞
μ(∂Ωt) dt. (1.31)
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A similar formula holds for differentiable functions on R:

∫ b

a

|f ′ (x)| =

∫ ∞

−∞
# {x : f (x) = t} dt,

and the common value of the both sides is called the total variation of f .
Proof. For any edge ξ = xy, there corresponds an interval Iξ ⊂ R that is defined as

follows:
Iξ = [f(x), f(y))

where we assume that f(x) ≤ f(y) (otherwise, switch the notations x and y). Denoting by
|Iξ| the Euclidean length of the interval Iξ, we see that |∇ξf | = |Iξ| .

Claim. ξ ∈ ∂Ωt ⇐⇒ t ∈ Iξ.
Indeed, ∂Ωt consists of edges ξ = xy such that

x ∈ Ωc
t and y ∈ Ωt ⇐⇒ f(x) ≤ t and f(y) > t ⇐⇒ t ∈ [f (x) , f (y)) = Iξ

Thus, we have

μ(∂Ωt) =
∑

ξ∈∂Ωt

μξ =
∑

ξ∈E:t∈Iξ

μξ =
∑

ξ∈E

μξ 1Iξ
(t) ,
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whence
∫ +∞

−∞
μ(∂Ωt) dt =

∫ +∞

−∞

∑

ξ∈E

μξ 1Iξ
(t)dt

=
∑

ξ∈E

∫ +∞

−∞
μξ 1Iξ

(t)dt

=
∑

ξ∈E

μξ |Iξ| =
∑

ξ∈E

μξ|∇ξf | .

Lemma 1.11 For any non-negative function f on V , such that

μ {x ∈ V : f (x) > 0} ≤
1

2
μ (V ) , (1.32)

the following is true: ∑

ξ∈E

|∇ξf |μξ ≥ h
∑

x∈V

f (x) μ (x) , (1.33)

where h is the Cheeger constant of (V, μ) .
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Note that for the function f = 1Ω the condition (1.32) means that μ (Ω) ≤ 1
2
μ (V ), and

the inequality (1.33) is equivalent to

μ (∂Ω) ≥ hμ (Ω) ,

because ∑

x∈V

f (x) μ (x) =
∑

x∈Ω

μ (x) = μ (Ω)

and ∑

ξ∈E

|∇ξf |μξ =
∑

x∈Ω,y∈Ωc

|f (y) − f (x)|μxy =
∑

x∈Ω,y∈Ωc

μxy = μ (∂Ω) .

Proof. By the co-area formula, we have

∑

ξ∈E

|∇ξf |μξ =

∫ ∞

−∞
μ(∂Ωt) dt ≥

∫ ∞

0

μ(∂Ωt) dt.

By (1.32), the set Ωt = {x ∈ V : f (x) > t} has measure ≤ 1
2
μ (V ) for any t ≥ 0. Therefore,

by (1.29)
μ (∂Ωt) ≥ hμ (Ωt) .
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It follows that ∑

ξ∈E

|∇ξf |μξ ≥ h

∫ ∞

0

μ (Ωt) dt

Observe that, for t ≥ 0,
x ∈ Ωt ⇐⇒ t ∈ [0, f (x)),

we obtain
∫ ∞

0

μ (Ωt) dt =

∫ ∞

0

∑

x∈Ωt

μ (x) dt

=

∫ ∞

0

∑

x∈V

μ (x) 1[0,f(x)) (t) dt

=
∑

x∈V

μ (x)

∫ ∞

0

1[0,f(x)) (t) dt

=
∑

x∈V

μ (x) f (x) .
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Proof of Theorem 1.9. Let f be the eigenfunction of λ1. Consider two sets

V + = {x ∈ V : f (x) ≥ 0} and V − = {x ∈ V : f (x) < 0} .

Without loss of generality, we can assume that μ (V +) ≤ μ (V −) (if not then replace f by
−f). It follows that μ (V +) ≤ 1

2
μ (V ) . Consider the function

g = f+ :=

{
f, f ≥ 0,
0, f < 0.

Applying the Green formula (1.6)

(Lf, g) =
1

2

∑

x,y∈V

(∇xyf) (∇xyg) μxy

and using so that Lf = λ1f , we obtain

λ1

∑

x∈V

f(x)g(x)μ(x) =
1

2

∑

x,y∈V

(∇xyf) (∇xyg) μxy.

Observing that fg = g2 and

(∇xyf) (∇xyg) = (f (y) − f (x)) (g (y) − g (x)) ≥ (g (y) − g (x))2 = |∇xyg|
2 .
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we obtain

λ1 ≥

∑

ξ∈E

|∇ξg|
2 μξ

∑

x∈V

g2 (x) μ (x)
.

Note that g 6≡ 0 because otherwise f+ ≡ 0 and (f, 1) = 0 imply that f− ≡ 0 whereas f 6≡ 0.
Hence, to prove (1.30) it suffices to verify that

∑

ξ∈E

|∇ξg|
2 μξ ≥

h2

2

∑

x∈V

g2 (x) μ (x) . (1.34)

Since

μ (x ∈ V : g (x) > 0) ≤ μ
(
V +
)
≤

1

2
μ (V ) ,

we can apply Lemma 1.11 to function g2 and obtain

∑

ξ∈E

∣
∣∇ξ

(
g2
)∣∣μξ ≥ h

∑

x∈V

g2 (x) μ (x) . (1.35)

Let us estimate from above the left hand side as follows:
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∑

ξ∈E

∣
∣∇ξ

(
g2
)∣∣μξ =

1

2

∑

x,y∈V

∣
∣g2(x) − g2(y)

∣
∣μxy

=
1

2

∑

x,y

|g(x) − g(y)|μ1/2
xy |g(x) + g(y)|μ1/2

xy

≤

(
1

2
(
∑

x,y

(g(x) − g(y))2μxy)
1

2
(
∑

x,y

(g(x) + g(y))2μxy)

)1/2

,

where we have used the Cauchy-Schwarz inequality

∑

k

akbk ≤

(
∑

k

a2
k

)1/2(∑

k

b2
k

)1/2

that is true for arbitrary sequences of non-negative reals ak, bk. Next, using the inequality

1

2
(a + b)2 ≤ a2 + b2,

we obtain
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∑

ξ∈E

∣
∣∇ξ

(
g2
)∣∣μξ ≤

(
∑

ξ∈E

|∇ξg|
2 μξ

∑

x,y

(
g2(x) + g2(y)

)
μxy

)1/2

=

(

2
∑

ξ∈E

|∇ξg|
2 μξ

∑

x,y

g2(x)μxy

)1/2

=

(

2
∑

ξ∈E

|∇ξg|
2 μξ

∑

x∈V

g2(x)μ (x)

)1/2

,

which together with (1.35) yields

h
∑

x∈V

g2 (x) μ (x) ≤

(

2
∑

ξ∈E

|∇ξg|
2 μξ

)1/2(∑

x∈V

g2(x)μ (x)

)1/2

.

Dividing by
(∑

x∈V g2 (x) μ (x)
)1/2

and taking square, we obtain (1.34).

Go to Chapter 2
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1.5 Eigenvalues in a weighted path graph

Consider a path graph PN with the set of vertices V = {0, 1, ...N − 1} and the edges

0 ∼ 1 ∼ 2 ∼ ... ∼ N − 1.

Define the weights μk−1,k := mk, where {mk}
N−1
k=1 is a given sequence of positive numbers.

Then, for 1 ≤ k ≤ N − 2, we have

μ (k) = μk−1,k + μk,k+1 = mk + mk+1,

and the same is true also for k = 0, N − 1 if we define m−1 = mN = 0. The Markov kernel
is then

P (k, k + 1) =
μk,k+1

μ (k)
=

mk+1

mk + mk+1

.

Claim. Assume that the sequence {mk}
N−1
k=1 is increasing, that is, mk ≤ mk+1. Then h ≥ 1

2N
.

Proof. Let Ω be a subset of V with μ (Ω) ≤ 1
2
μ (V ), and let k − 1, k be an edge of

the boundary ∂Ω with the largest possible k. We claim that either Ω or Ωc is contained in
[0, k − 1]. Indeed, if there were vertices from both sets Ω and Ωc outside [0, k−1], that is, in
[k,N−1], then there would have been an edge j − 1, j ∈ ∂Ω with j > k, which contradicts the
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choice of k. It follows that either μ (Ω) ≤ μ ([0, k − 1]) or μ (Ωc) ≤ μ ([0, k − 1]) . However,
since μ (Ω) ≤ μ (Ωc), we obtain that in the both cases μ (Ω) ≤ μ ([0, k − 1]) . We have

μ ([0, k − 1]) =
k−1∑

j=0

μ (j) =
k−1∑

j=0

(
μj−1,j + μj,j+1

)

=
k−1∑

j=0

(mj + mj+1)

≤ 2kmk (1.36)

where we have used that mj ≤ mj+1 ≤ mk. Therefore

μ (Ω) ≤ 2kmk.

On the other hand, we have
μ (∂Ω) ≥ μk−1,k = mk,

whence it follows that
μ (∂Ω)

μ (Ω)
≥

mk

2kmk

=
1

2k
≥

1

2N
,

which proves that h ≥ 1
2N

.

51



Consequently, Theorem 1.9 yields

λ1 ≥
1

8N 2
. (1.37)

If the weight μ is simple then λ1 = 1 − cos π
N−1

so that, for large N ,

λ1 ≈
π2

2 (N − 1)2 ≈
5

N 2
,

which is of the same order in N as the estimate (1.37).
Let us estimate the expansion rate of (V, μ) . Since this graph is bipartite, we have

δ :=
λN−1 − λ1

λN−1 + λ1

=
2 − λ1

2 + λ1

≤ 1 −
λ1

2

and by (1.17)

R ≤
1

2
d
ln M

ln 1
δ

e ≤
1

2
d

ln M

ln 1
1−λ1/2

e ≤
1

2
d
ln M

λ1/2
e ≤

ln M

λ1

+ 1

where

M = max
k

μ (V )

μ (k)
.
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Observe that

μ (V ) =
N−1∑

j=0

(mj + mj+1) ≤ 2
N−1∑

j=1

mj

where we put m0 = mN = 0, whence

M = max
k

μ (V )

μ (k)
≤

2
∑N−1

j=1 mj

m1

=: M0,

It follows

R ≤
ln M0

λ1

+ 1. (1.38)

For an arbitrary increasing sequence {mk}, we obtain using (1.37) that

R ≤ 8N 2 ln M0 + 1.

If the sequence {mk} increases at most polynomially, say mk ≤ kpm0, then

M0 . Np+1,

and we obtain
R . CN 2 ln N.
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Now assume that the weights mk satisfy a stronger condition

mk+1 ≥ cmk,

for some constant c > 1 and all k = 0, ..., N − 2. Then mk ≥ ck−jmj for all k ≥ j, which
allows to improve the estimate (1.36) as follows

μ ([0, k − 1]) =
k−1∑

j=0

(mj + mj+1) ≤
k−1∑

j=0

(
cj−kmk + cj+1−kmk

)

= mk

(
c−k + c1−k

) (
1 + c + ...ck−1

)
= mk

(
c−k + c1−k

) ck − 1

c − 1

≤ mk
c + 1

c − 1
.

Therefore, we obtain
μ (∂Ω)

μ (Ω)
≥

c − 1

c + 1

whence h ≥ c−1
c+1

and, by Theorem 1.9,

λ1 ≥
1

2

(
c − 1

c + 1

)2

. (1.39)
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Consider the specific weights mk = ck where c > 1. Then we have

M0 = 2

N−1∑

j=1

cj−1 = 2
cN−1 − 1

c − 1

whence
ln M0 ≈ N ln c.

By (1.38) and (1.39), we obtain

R . 2

(
c + 1

c − 1

)2

N ln c.

Note that in this case R is linear in N !
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1.6 Products of weighted graphs

Definition. Let (X, a) and (Y, b) be two finite weighted graphs. Fix two numbers p, q > 0
and define the product graph

(V, μ) = (X, a)�p,q (Y, b)

as follows: V = X × Y and the weight μ on V is defined by

μ(x,y),(x′,y) = pb (y) axx′

μ(x,y),(x,y′) = qa (x) byy′

and μ(x,y),(x′,y′) = 0 otherwise. The numbers p, q are called the parameters of the product.

Clearly, the product weight μ(x,y),(x′,y′) is symmetric. The weight on the vertices of V is
given by

μ (x, y) =
∑

x′,y′

μ(x,y),(x′,y′) = p
∑

x′

axx′b (y) + q
∑

y′

a (x) byy′

= (p + q) a (x) b (y) .
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Claim. If A and B are the Markov kernels on X and Y , then the Markov kernel P on the
product (V, μ) is given by

P ((x, y) , (x′, y′)) =






p
p+q

A (x, x′) , if y = y′,
q

p+q
B (y, y′) , if x = x′,

0, otherwise.

(1.40)

Proof. Indeed, we have in the case y = y′ (and the case x = x′ is similar):

P ((x, y) , (x′, y′)) =
μ(x,y),(x′,y′)

μ (x, y)
=

paxx′b (y)

(p + q) a (x) b (y)
=

p

p + q

axx′

a (x)
=

p

p + q
A (x, x′) .

For the random walk on (V, μ), the identity (1.40) means the following: the random
walk at (x, y) chooses first between the directions X and Y with probabilities p

p+q
and q

p+q
,

respectively, and then chooses a vertex in the chosen direction accordingly to the Markov
kernel there.

In particular, if a and b are simple weights, then we obtain

μ(x,y),(x′,y) = p deg (y) if x ∼ x′

μ(x,y),(x,y′) = q deg (x) if y ∼ y′
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and μ(x,y),(x′,y′) = 0 otherwise.
If in addition the graphs A and B are regular, that is, deg (x) = const =: deg (A) and

deg (y) = const =: deg (B) then the most natural choice of the parameter p and q is as
follows

p =
1

deg (B)
and q =

1

deg (A)
,

so that the weight μ is also simple. We obtain the following statement.

Lemma 1.12 If (X, a) and (Y, b) are regular graphs with simple weights, then the product

(X, a)� 1
deg(B)

, 1
deg(A)

(Y, b) (1.41)

is again a regular graph with a simple weight. The degree of the product graph (1.41) is
deg (A) + deg (B).

Example. Consider the graphs Zn
m and Zk

m with simple weights. Since their degrees are
equal to 2n and 2k, respectively, we obtain

Zn
m� 1

2k
, 1
2n
Zk

m = Zn+k
m .
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Theorem 1.13 Let (X, a) and (Y, b) be finite weighted graphs without isolated vertices, and
let {αk}

n−1
k=0 and {βl}

m−1
l=0 be the sequences of the eigenvalues of the Markov operators A

and B respectively, counted with multiplicities. Then all the eigenvalues of the Markov

operator P on the product (V, μ) = (X, a)�p,q (Y, b) are given by the sequence
{

pαk+qβl

p+q

}

where k = 0, ..., n − 1 and l = 0, ...,m − 1.

In other words, the eigenvalues of P are the convex combinations of eigenvalues of A
and B, with the coefficients p

p+q
and q

p+q
. The same relation holds for the eigenvalues of the

Laplace operators because

1 −
pαk + qβl

p + q
=

p (1 − αk) + q (1 − βl)

p + q
.

Proof. Let f be an eigenfunction of A with the eigenvalue α and g be the eigenfunction of
B with the eigenvalue β. Let us show that the function h (x, y) = f (x) g (y) is the eigenvalue
of P with the eigenvalue pα+qβ

p+q
.

We have

Ph (x, y) =
∑

x′,y′

P ((x, y) , (x′, y′)) h (x′, y′)

59



=
∑

x′

P ((x, y) , (x′, y)) h (x′, y) +
∑

y′

P ((x, y) , (x, y′)) h (x, y′)

=
p

p + q

∑

x′

A (x, x′) f (x′) g (y) +
q

p + q

∑

y′

B (y, y′) f (x) g (y′)

=
p

p + q
Af (x) g (y) +

q

p + q
f (x) Bg (y)

=
p

p + q
αf (x) g (y) +

q

p + q
βf (x) g (y)

=
pα + qβ

p + q
h (x, y) ,

which was to be proved.
Let {fk} be a basis in the space of functions on X such that Afk = αkfk, and {gl} be

a basis in the space of functions on Y , such that Bgl = βlgl. Then hkl (x, y) = fk (x) gl (y)
is a linearly independent sequence of functions on V = X × Y . Since the number of such
functions is nm = |V |, we see that {hkl} is a basis in the space of functions on V . Since hkl

is the eigenfunction with the eigenvalue pαk+qβl

p+q
, we conclude that the sequence

{
pαk+qβl

p+q

}

exhausts all the eigenvalues of P .
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Corollary 1.14 Let (V,E) be a finite connected regular graph with N > 1 vertices, and set

(V n, En) = (V,E)�n . Let μ be a simple weight on V , and {αk}
N−1
k=0 be the sequence of the

eigenvalues of the Markov operator on (V, μ), counted with multiplicity. Let μn be a simple
weight on V n. Then the eigenvalues of the Markov operator on (V n, μn) are given by the
sequence {

αk1 + αk2 + ... + αkn

n

}

(1.42)

for all ki ∈ {0, 1, ..., N − 1} , where each eigenvalue is counted with multiplicity.

It follows that if {λk}
N−1
k=0 is the sequence of the eigenvalues of the Laplace operator on

(V, μ) then the eigenvalues of Laplace operator on (V n, μn) are given by the sequence

{
λk1 + λk2 + ... + λkn

n

}

. (1.43)

Proof. Induction in n. If n = 1 then there is nothing to prove. Let us make the inductive
step from n to n + 1. Let degree of (V,E) be D, then deg (V n) = nD. Note that.

(
V n+1, En+1

)
= (V n, En)� (V,E)
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It follows from Lemma 1.12 that

(
V n+1, μn+1

)
= (V n, μn)� 1

D
, 1
nD

(V, μ) .

By the inductive hypothesis, the eigenvalues of the Laplacian on (V n, μn) are given by the
sequence (1.42). Hence, by Theorem 1.13, the eigenvalues on

(
V n+1, μn+1

)
are given by

1/D

1/D + 1/ (nD)

αk1 + αk2 + ... + αkn

n
+

1/ (nD)

1/D + 1/ (nD)
αk

=
n

n + 1

αk1 + αk2 + ... + αkn

n
+

1

n + 1
αk

=
αk1 + αk2 + ... + αkn + αk

n + 1
,

which was to be proved.
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1.7 Eigenvalues in Zm

Let us compute the eigenvalues of the Markov operator P on the cycle graph Zm with simple
weight:

0 ∼ 1 ∼ 2 ∼ ... ∼ m − 1 ∼ 0.

The Markov operator is given by

Pf (k) =
1

2
(f (k + 1) + f (k − 1)) for any k = 0, ...,m − 1 mod m.

The eigenvalue equation Pf = αf becomes

f (k + 1) − 2αf (k) + f (k − 1) = 0. (1.44)

We know already that α = 1 is always a simple eigenvalue of P , and α = −1 is a (simple)
eigenvalue if and only if Zm is bipartite, that is, if m is even. Assume in what follows that
α ∈ (−1, 1) .

Consider first the difference equation (1.44) on Z, that is, for all k ∈ Z, and find all
solutions f as functions on Z. The set of all solutions of (1.44) is a linear space, and the
dimension of this space is 2, because function f is uniquely determined by (1.44) and by two
initial conditions f (0) = a and f (1) = b. Therefore, to find all solutions of (1.44), it suffices
to find two linearly independent solutions and take their linear combination.
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Let us search specific solution of (1.44) in the form f (k) = rk where the number r is to
be found. Substituting into (1.44) and cancelling by rk, we obtain the equation for r:

r2 − 2αr + 1 = 0.

It has two complex roots
r = α ± i

√
1 − α2 = e±iθ,

where θ ∈ (0, π) is determined by the condition

cos θ = α (and sin θ =
√

1 − α2).

Hence, we obtain two independent complex-valued solutions of (1.44)

f1 (k) = eikθ and f2 (k) = e−ikθ.

Taking their linear combinations and using the Euler formula, we arrive at the following
real-valued independent solutions:

f1 (k) = cos kθ and f2 (k) = sin kθ. (1.45)

In order to be able to consider a function f (k) on Z as a function on Zm, it must be
m-periodic, that is,

f (k + m) = f (k) for all k ∈ Z.
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The functions (1.45) are m-periodic provided mθ is a multiple of 2π, that is,

θ =
2πl

m
,

for some integer l. The restriction θ ∈ (0, π) is equivalent to

l ∈ (0,m/2) .

Hence, for each l from this range we obtain an eigenvalue α = cos θ of multiplicity 2 (with
eigenfunctions cos kθ and sin kθ).

Let us summarize this result in the following statement.

Proposition 1.15 The eigenvalues of the Markov operator P on the graph Zm are as fol-
lows:

1. If m is odd then the eigenvalues are α = 1 (simple) and α = cos 2πl
m

for all l = 1, ..., m−1
2

(double);
2. if m is even then the eigenvalues are α = ±1 (simple) and α = cos 2πl

m
for all

l = 1, ..., m
2
− 1 (double).

In the both case, all the eigenvalues of P with multiplicities are listed in the following
sequence: {

cos
2πj

m

}m−1

j=0

.
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For example, in the case m = 3 we obtain the Markov eigenvalues α = 1 and α = cos 2π
3

=
−1

2
(double). The eigenvalues of L are as follows: λ = 0 and λ = 3/2 (double). If m = 4

then the Markov eigenvalues are α = ±1 and α = cos 2π
4

= 0 (double). The eigenvalues of L
are as follows: λ = 0, λ = 1 (double), λ = 2.

1.8 Eigenvalues in Zn
m

Consider the graph Zn
m with odd m. In the case n = 1, all the eigenvalues of P in Zm are

listed in the following sequence (without multiplicity):

{

cos
2πl

m

}

, l = 0, 1, ...,
m − 1

2
. (1.46)

This sequence is obviously decreasing in l, and its maximal and minimal values are

1 and cos

(
2π

m

m − 1

2

)

= − cos
π

m
,

respectively. For a general n, by Corollary 1.14, the eigenvalue of P have the form

αk1 + αk2 + ... + αkn

n
(1.47)
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where αki
are the eigenvalues of P for n = 1, that is, elements of the sequence (1.46). In

particular, the minimal value of (1.47) is equal to the minimal value of αk, that is, to − cos π
m

.
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1.9 Additional properties of eigenvalues

Theorem 1.16 Let (V, μ) be a finite, connected, weighted graph with N := |V | > 1.

(a) Then we have
λ1 + ... + λN−1 = N (1.48)

and, hence,

λ1 ≤
N

N − 1
≤ λN−1 (1.49)

(b) If (V, μ) = KN , that is, (V, μ) is a complete graph with a simple weight then

λ1 = ... = λN−1 =
N

N − 1
.

(c) If (V, μ) is non-complete then λ1 ≤ 1. Consequently, a graph with a simple weight is
complete if and only if λ1 > 1.

For example, for K4 = , we obtain that the eigenvalues of L are 0 (simple) and 4
3

(with multiplicity 3).

68



Proof. (a) Let {vk}
N−1
k=0 be an orthonormal basis in F that consists of the eigenfunctions

of L, so that Lvk = λkvk. In the basis {vk}, the matrix of L is

diag (λ0, λ1, ...λN−1) .

Since λ0 = 0, we obtain

traceL = λ0 + λ1 + ... + λN−1 = λ1 + ... + λN−1. (1.50)

Note that the trace traceL does not depend on the choice of a basis. Let us choose another
basis as follows: enumerate all the vertices of V by 0, 1, ..., N − 1 and consider the indicator
functions 1{k} (where k = 0, 1, ..., N − 1) that obviously form a basis in F . The components
of any function f ∈ F in this basis are the values f (k). Rewrite the definition of L in the
form

Lf (i) = f (i) −
∑

j

P (i, j) f (xj) = f (i) −
∑

j 6=i

P (i, j) f (xj) .

We see that the matrix of L in this basis has the values 1 on the diagonal and −P (i, j) in
the intersection of the column i and the row j off the diagonal. It follows that trace L = N
whence (1.48) follows. Since λ1 is the minimum of the sequence {λ1, ..., λN−1} of N − 1
numbers and λN−1 is its maximum, we obtain (1.49).
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(b) We need to construct N − 1 linearly independent eigenfunctions with the eigenvalue
N

N−1
. As above, set V = {0, 1, ..., N − 1} and consider the following N − 1 functions fk for

k = 1, 2, ...N − 1 :

fk (i) =






1, i = 0,
−1, i = k,
0, otherwise.

We have

Lfk (i) = fk (i) −
1

N − 1

∑

j 6=i

fk (j) .

If i = 0 then fk (0) = 1 and in the sum
∑

j 6=0 fk (j) there is exactly one term = −1, for
j = k, and all others vanish, whence

Lfk (0) = fk (0) −
1

N − 1

∑

j 6=0

fk (j) = 1 +
1

N − 1
=

N

N − 1
fk (0) .

If i = k then fk (k) = −1 and in the sum
∑

j 6=k fk (j) there is exactly one term = 1, for
j = 0, whence

Lfk (k) = fk (k) −
1

N − 1

∑

j 6=k

fk (j) = −1 −
1

N − 1
=

N

N − 1
fk (k) .
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If i 6= 0, k then fk (i) = 0, while in the sum
∑

j 6=k fk (j) there are terms 1,−1 and all others
are 0, whence

Lfk (i) = 0 =
N

N − 1
fk (i) .

Hence, Lfk = N
N−1

fk. Since the sequence {fk}
N−1
k=1 is linearly independent, we see that N

N−1

is the eigenvalue of multiplicity N − 1, which finishes the proof.
(c) By the variational principle, we have

λ1 = inf
f⊥1

R (f) ,

where R (f) is the Rayleigh quotient and the condition f⊥1 comes from the fact that the
eigenfunction of λ0 is constant. Hence, to prove that λ1 ≤ 1 it suffices to construct a function
f⊥1 such that R (f) ≤ 1.

Claim 1. Fix z ∈ V and consider the indicator function f = 1{z}. Then R (f) ≤ 1.

We have
(f, f) =

∑

x∈V

f (x)2 μ (x) = μ(z)
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and, by the Green formula,

(Lf, f) =
1

2

∑

x,y∈V

(f (x) − f (y))2 μxy

=
1

2

(
∑

x=z,y 6=z

+
∑

x 6=z,y=z

)

(f (x) − f (y))2 μxy

=
∑

y 6=z

(f (z) − f (y))2 μzy =
∑

y 6=z

μzy ≤ μ(z),

whence R (f) ≤ 1 (note that if the graph has no loops then we obtain the identity R (f) = 1).
Clearly, we have also R (cf) ≤ 1 for any constant c.

Claim 2. Let f, g be two functions on V such that

R (f) ≤ 1, R (g) ≤ 1,

and their supports

A = {x ∈ V : f (x) 6= 0} and B = {x ∈ V : g (x) 6= 0}

are disjoint and not connected, that is, x ∈ A and y ∈ B implies that x 6= y and x 6∼ y.
Then R (f + g) ≤ 1.
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It is obvious that fg ≡ 0. Let us show that also (Lf) g ≡ 0. Indeed, if g (x) = 0 then
(Lf) g (x) = 0. If g (x) 6= 0 then x ∈ B. It follows that f (x) = 0 and f (y) = 0 for any
y ∼ x whence

Lf (x) = f (x) −
∑

y∼x

P (x, y) f (y) = 0,

whence (Lf) g (x) = 0. Using the identities fg = (Lf) g = (Lg) f = 0, we obtain

(f + g, f + g) = (f, f) + 2 (f, g) + (g, g) = (f, f) + (g, g)

and

(L (f + g) , f + g) = (Lf, f) + (Lg, f ) + (Lf, g) + (Lg, g)

= (Lf, f) + (Lg, g) .

Since by hypothesis
(Lf, f) ≤ (f, f) and (Lg, g) ≤ (g, g)

it follows that

R (f + g) =
(Lf, f) + (Lg, g)

(f, f) + (g, g)
≤ 1.
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Now we construct a function f⊥1 such that R (f) ≤ 1. Since the graph is non-complete,
there are two distinct vertices, say z1 and z2, such that z1 6∼ z2. Consider function f in the
form

f (x) = c11{z1} + c21{z2},

where the coefficients c1 and c2 are chosen so that f⊥1 (for example, c1 = 1/μ (z1) and
c2 = −1/μ (z2)). Since R

(
ci1{zi}

)
≤ 1 and the supports of 1{z1} and 1{z2} are disjoint and

not connected, we obtain that also R (f) ≤ 1, which finishes the proof.
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2 Infinite graphs

Here (V, μ) is always a connected locally finite weighted graph, finite or infinite, and |V | > 1.

2.1 The Dirichlet Laplacian and its eigenvalues

Given a finite subset Ω ⊂ V , denote by FΩ the set of functions V → R such that f |Ωc ≡ 0.
Then FΩ is a linear space of dimension N = |Ω|. Define the operator LΩ on FΩ as follows:

LΩf =

{
Lf in Ω
0 in Ωc

so that LΩf ∈ FΩ and LΩ : FΩ → FΩ.

Definition. The operator LΩ is called the Dirichlet Laplace operator in Ω.

Example. Recall that the Laplace operator in Z2 with a simple weight is defined by

Lf (x) = f (x) −
1

4

∑

y∼x

f (y) .
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Let Ω be the subset of Z2 that consists of three vertices a = (0, 0), b = (1, 0), c = (2, 0) , so
that a ∼ b ∼ c. Then we obtain for LΩ the following formulas:

LΩf (a) = f (a) −
1

4
f (b)

LΩf (b) = f (b) −
1

4
(f (a) + f (c))

LΩf (c) = f (c) −
1

4
f (b) .

Consequently, the matrix of LΩ is




1 −1/4 0

−1/4 1 −1/4
0 −1/4 1





and the eigenvalues are 1, 1 ± 1
4

√
2.

For comparison, consider Ω as a finite graph itself. Then Ω = P3 and we know that the
eigenvalues are 0, 1, 2. As we see, the Dirichlet Laplace operator of Ω as a subset of Z2 and
the Laplace operator of Ω as a graph are different operators with different spectra.
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Returning to the general setting, introduce in FΩ the inner product

(f, g) =
∑

x∈Ω

f (x) g (x) μ (x) .

Lemma 2.1 (Green’s formula) For any two functions f, g ∈ FΩ, we have

(LΩf, g) =
1

2

∑

x,y∈Ω1

(∇xyf) (∇xyg) μxy, (2.1)

where Ω1 = U1 (Ω) .

Proof. Applying the Green formula of Theorem 1.1 in Ω1 and using that g = 0 outside
Ω, we obtain

(LΩf, g) =
∑

x∈Ω1

Lf (x) g (x) μ (x)

=
1

2

∑

x,y∈Ω1

(∇xyf) (∇xyg) μxy −
∑

x∈Ω1,y∈Ωc
1

(∇xyf) g(x)μxy (2.2)

=
1

2

∑

x,y∈Ω1

(∇xyf) (∇xyg) μxy.
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We have used the fact that the last sum in (2.2) vanishes. Indeed, the summation can be
restricted to neighboring x, y. Therefore, if y ∈ Ωc

1 then necessarily x ∈ Ωc and g (x) = 0.
Since the right hand side of (2.1) is symmetric in f, g, we obtain the following consequence.

Corollary 2.2 LΩ is a symmetric operator in FΩ.

Hence, the spectrum of LΩ is real. Denote the eigenvalues of LΩ in increasing order by

λ1 (Ω) ≤ λ2 (Ω) ≤ ... ≤ λN (Ω) ,

Since LΩ is symmetric, the smallest eigenvalue λ1 (Ω) admits the variational characterization:

λ1 (Ω) = inf
f∈FΩ\{0}

R (f) , (2.3)

where the Rayleigh quotient R (f) is defined by

R (f) :=
(LΩf, f)

(f, f)
=

1
2

∑
x,y∈Ω1

(∇xyf)2 μxy∑
x∈Ω f 2(x)μ(x)

, (2.4)

where the second equality is true by Lemma 2.1. Note that the ranges x ∈ Ω and x, y ∈ Ω1

of summations in (2.4) can be extended to x ∈ V and x, y ∈ V respectively, because f is
supported in Ω.
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Theorem 2.3 Let Ω be a finite non-empty subset of V with non-empty Ωc. Then the fol-
lowing is true.

(a) 0 < λ1 (Ω) ≤ 1.
(b) λ1 (Ω) + λN (Ω) ≤ 2.Consequently,

specLΩ ⊂ [λ1 (Ω) , 2 − λ1 (Ω)] ⊂ (0, 2) . (2.5)

(c) λ1 (Ω) decreases when Ω increases.

Proof. (a) Let f be the eigenfunction of λ1 (Ω). Then we have

λ1 (Ω) =
(LΩf, f)

(f, f)
=

1
2

∑
x,y∈Ω1

|∇xyf |
2 μxy∑

x∈Ω f 2(x)μ(x)
, (2.6)

which implies λ1 (Ω) ≥ 0. Let us show that λ1 (Ω) > 0. Assume from the contrary that
λ1 (Ω) = 0. It follows from (2.6) that ∇xyf = 0 for all neighboring vertices x, y ∈ Ω1.

That is, ∀x, y ∈ Ω1, if x ∼ y then f (x) = f (y). Since the complement Ωc is non-empty,
∃z ∈ Ωc. Since (V, μ) is connected, for any x ∈ Ω there is a path {xi}

n
i=1 connecting x and

z, let x0 = x and xn = z. Let k be the minimal index such that xk ∈ Ωc. Since xk−1 ∈ Ω
and xk−1 ∼ xk, it follows that xk ∈ Ω1.
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Hence, all the vertices in the path x0 ∼ x1 ∼ ... ∼ xk−1 ∼ xk belong to Ω1 whence we
conclude that

f (x0) = f (x1) = ... = f (xk) .

Since f (xk) = 0 it follows that f (x) = f (x0) = 0. Hence, f ≡ 0 in Ω. This contradiction
proves that λ1 (Ω) > 0.

To prove that λ1 (Ω) ≤ 1, we use the trace of the operator LΩ. On the one hand,

trace (LΩ) = λ1 (Ω) + ... + λN (Ω) ≥ Nλ1 (Ω) . (2.7)

On the other hand, since

LΩf(x) = f(x) −
∑

y 6=x

P (x, y)f(y),

the matrix of the operator LΩ in the basis
{
1{x}

}
x∈Ω

has all diagonal values 1 so that
trace (LΩ) = N. Comparing with (2.7), we obtain λ1 (Ω) ≤ 1.

(b) Let f be an eigenfunction with the eigenvalue λN (Ω). Then we have similarly to (2.6)

λN (Ω) = R (f) =
1
2

∑
x,y∈V (∇xyf)2 μxy∑
x∈V f 2(x)μ(x)

.
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Applying (2.3) to the function |f | , we obtain

λ1 (Ω) ≤ R (|f |) =
1
2

∑
x,y∈V (∇xy |f |)

2 μxy∑
x∈V f 2(x)μ(x)

.

Since

(∇xyf)2 + (∇xy |f |)
2 = (f(x) − f(y))2 + (|f(x)| − |f(y)|)2 ≤ 2

(
f 2(x) + f 2(y)

)
,

it follows that

λ1 (Ω) + λN (Ω) ≤

∑
x,y∈V (f 2(x) + f 2(y)) μxy∑

x∈V f 2(x)μ(x)

=
2
∑

x∈V

∑
y∈V f 2(x)μxy∑

x∈V f 2(x)μ(x)
=

2
∑

x∈V f 2(x)μ (x)
∑

x∈V f 2(x)μ(x)
= 2.

(c) If Ω ⊂ Ω′ then FΩ ⊂ FΩ′ and

λ1 (Ω) = inf
f∈F(Ω)

R (f) ≥ inf
f∈F(Ω′)

R (f) = λ1 (Ω′) .

which was to be proved.
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2.2 The Dirichlet problem

In this section we assume that Ω is a finite non-empty subset of V such that Ωc is non-empty.

Theorem 2.4 Let Ω be a finite non-empty subset of V with non-empty Ωc. Consider the
following Dirichlet problem: {

Δμu = f in Ω,
u = g in Ωc,

(2.8)

where u : V → R is an unknown function while the functions f : Ω → R and g : Ωc → R are
given. Then (2.8) has a unique solution u.

Proof. Let us extend g arbitrarily to Ω, set v = u − g and rewrite (2.8) as follows:
{

Δμv = h in Ω,
v = 0 in Ωc,

(2.9)

where h = f − Δμg. Equivalently, (2.9) means that

v ∈ FΩ and LΩv = −h in Ω. (2.10)

By Theorem (2.3), specLΩ does not contain 0 so that LΩ is invertible in FΩ, which yields a
unique solvability of (2.10) and, hence, that of (2.9) and (2.8).
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For any function u : V → R define its Dirichlet energy in Ω by

D (u) :=
1

2

∑

x,y∈Ω1

(∇xyu)2 μxy where Ω1 = U1 (Ω) .

Theorem 2.5 (The Dirichlet principle) If u ∈ F is the solution of the Dirichlet problem
{

Lu = 0 in Ω
u = g in Ωc (2.11)

then D (u) ≤ D (v) for any function v ∈ F such that v = g in Ωc.

Proof. Set w = u − v so that w = 0 in Ωc. Since D (∙) is quadratic, we have

D (v) = D (u + w) = D (u) +
∑

x,y∈Ω1

(∇xyu) (∇xyw) μxy + D (w) .

Since w = 0 in Ωc and Lu = 0 in Ω, we obtain by (2.2) that

1

2

∑

x,y∈Ω1

(∇xyu) (∇xyw) μxy =
∑

x∈Ω1

Lu(x)w(x)μ(x) = 0,

whence D (v) = D (u) + D (w) ≥ D (u) .
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2.3 Geometric estimates of eigenvalues

Recall that, for any subset Ω of V , the edge boundary ∂Ω is defined by

∂Ω = {xy ∈ E : x ∈ Ω, y ∈ Ωc} .

Also, for any subset S ⊂ E, its measure is defined by

μ (S) =
∑

ξ∈S

μξ.

Definition. For any finite subset Ω ⊂ V , define its Cheeger constant by

h (Ω) = inf
U⊂Ω

μ (∂U)

μ (U)
,

where the infimum is taken over all non-empty subsets U of Ω.

In other words, h (Ω) is the largest constant such that the following inequality is true

μ (∂U) ≥ h (Ω) μ (U) (2.12)

for any non-empty subset U of Ω.
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Theorem 2.6 (Cheeger’s inequality) We have

λ1 (Ω) ≥
1

2
h (Ω)2 .

The proof is similar to the case of finite graphs. We start with the following lemma.

Lemma 2.7 For any non-negative function f ∈ FΩ, the following is true:

∑

ξ∈E

|∇ξf |μξ ≥ h (Ω)
∑

x∈V

f (x) μ (x) . (2.13)

Proof. By the co-area formula of Lemma 1.10, we have

∑

ξ∈E

|∇ξf |μξ ≥
∫ ∞

0

μ(∂Ut) dt,

where Ut = {x ∈ V : f (x) > t} . Since Ut ⊂ Ω for non-negative t, we obtain by (1.29)

μ (∂Ut) ≥ h (Ω) μ (Ut)
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whence ∑

ξ∈E

|∇ξf |μξ ≥ h (Ω)

∫ ∞

0

μ (Ut) dt

On the other hand, as in the proof of Lemma 1.11, we have

∫ ∞

0

μ (Ut) dt =
∑

x∈V

f (x) μ (x) ,

which implies (2.13).
Proof of Theorem 2.6. Let f be the eigenfunction of λ1 (Ω). Rewrite (2.6) in the

form

λ1 (Ω) =

∑
ξ∈E |∇ξf |

2 μξ∑
x∈V f 2 (x) μ (x)

.

Hence, to prove (2.13), it suffices to verify that

∑

ξ∈E

|∇ξf |
2 μξ ≥

h (Ω)2

2

∑

x∈V

f 2 (x) μ (x) . (2.14)
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Applying (2.13) to function f 2, we obtain

∑

ξ∈E

∣
∣∇ξ

(
f 2
)∣∣μξ ≥ h (Ω)

∑

x∈V

f 2 (x) μ (x) . (2.15)

The same computation as in the proof of Theorem 1.9 shows that

∑

ξ∈E

∣
∣∇ξ

(
f 2
)∣∣μξ ≤

(

2
∑

ξ∈E

|∇ξf |
2 μξ

∑

x∈V

f 2(x)μ (x)

)1/2

.

Combining this with (2.15) yields

h (Ω)
∑

x∈V

f 2 (x) μ (x) ≤

(

2
∑

ξ∈E

|∇ξf |
2 μξ

)1/2(∑

x∈V

f 2(x)μ (x)

)1/2

.

Dividing by
(∑

x∈V f 2 (x) μ (x)
)1/2

and taking square, we obtain (2.14).
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2.4 Isoperimetric inequalities

Definition. We say that a weighted graph (V, μ) satisfies the isoperimetric inequality with
a function Φ (s) if, for any finite non-empty subset Ω ⊂ V ,

μ (∂Ω) ≥ Φ (μ (Ω)) . (2.16)

We always assume that Φ (s) is a non-negative function that is defined for all

s ≥ inf
x∈V

μ (x) (2.17)

so that the value μ (Ω) is in the domain of Φ for all non-empty subsets Ω ⊂ V .

Example. A connected infinite graph with a simple weight always satisfies the isoperimet-
ric inequality with function Φ (s) ≡ 1. Indeed, any finite subset Ω has at least one edge
connecting Ω with Ωc (because of the connectedness).

For the lattice graph Z the sharp isoperimetric function is Φ (s) ≡ 2.
As we will show later on, Zm satisfies the isoperimetric inequality with the function

Φ (s) = cms
m−1

m for some constant cm > 0.

There is a tight relation between isoperimetric inequalities and the Dirichlet eigenvalues.

88



Definition. We say that (V, μ) satisfies the Faber-Krahn inequality with a function Λ (s) if

λ1 (Ω) ≥ Λ (μ (Ω)) (2.18)

for any finite non-empty subset Ω ⊂ V .

Theorem 2.8 Let (V, μ) satisfy the isoperimetric inequality with a function Φ (s) such that
Φ (s) /s is decreasing in s. Then (V, μ) satisfies the Faber-Krahn inequality with the function

Λ (s) =
1

2

(
Φ (s)

s

)2

. (2.19)

Example. Any connected infinite graph with a simple weight satisfies the Faber-Krahn
inequality with function Λ (s) = 1

2s2 .
The lattice graph Zm satisfies the Faber-Krahn inequality with function Λ (s) = c′ms−2/m.

Proof. We have

h (Ω) = inf
U⊂Ω

μ (∂U)

μ (U)
≥ inf

U⊂Ω

Φ (μ (U))

μ (U)
≥

Φ (μ (Ω))

μ (Ω)
,

whence, by Theorem 2.6, λ1 (Ω) ≥ 1
2
h (Ω)2 ≥ 1

2

(
Φ(μ(Ω))

μ(Ω)

)2

= Λ (μ (Ω)) .
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2.5 Isoperimetric inequalities on Cayley graphs

Let G be an infinite group and S be a finite symmetric generating set of G. Let μ be the
simple weight on the Cayley graph (G,S). Recall that μ (x) = deg(x) = |S| for any x ∈ G.
Let e be the neutral element of G, and define the ball centered at e of radius r ≥ 0 by

Br = {x ∈ V : d (x, e) ≤ r} (2.20)

Theorem 2.9 (Coulhon–Saloff-Coste ’93) Assume that, for a Cayley graph (G,S),

μ (Br) ≥ V (r) for all integers r ≥ 0, (2.21)

where V (r) is a non-negative continuous strictly increasing function on [0,∞) such that
V (r) → ∞ as r → ∞. Then (G,S) satisfies the isoperimetric inequality with function

Φ (u) = c0
u

V−1 (2u)
, where c0 > 0. (2.22)

Example. In Zm (and on nilpotent groups) we have μ (Br) ' rm for r ≥ 1 so that we can
take V (r) = crm. Then V−1 (u) = c′u1/m, and we conclude that Zm satisfies the isoperimetric
inequality with function

Φ (u) = c′′
u

u1/m
= c′′u

m−1
m .
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Example. If V (r) = exp (cr) then

Φ (u) = c′
u

ln u
.

This isoperimetric function is sharp on polycyclic groups.

Combining Theorems 2.8 and 2.9, we obtain the following:

Corollary 2.10 Under the conditions of Theorem 2.9, the Cayley graph (G,S) satisfies the
Faber-Krahn inequality with the function

Λ (u) = c

(
1

V−1 (2u)

)2

.

Example. In Zm we obtain
Λ (u) = cu−2/m

as was mentioned above. On the groups with exponential volume growth, we have

Λ (u) = c (ln u)−2 .
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Proof of Theorem 2.9. Denote (V,E) = (G,S). For any function f on V with finite
support, set

‖f‖ :=
∑

x∈V

|f (x)|

and

‖∇f‖ :=
∑

ξ∈E

|∇ξf | =
1

2

∑

x,y∈V : x∼y

|f (x) − f (y)| .

For example, for f = 1Ω we have

‖f‖ = |Ω| =
1

|S|
μ (Ω) ,

|∇ξf | =

{
1, ξ ∈ ∂Ω
0, ξ /∈ ∂Ω

and
‖∇f‖ = |∂Ω| = μ (Ω) . (2.23)

For any z ∈ G, define a function fz on G by

fz (x) = f (xz) .
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Claim 1. If s ∈ S then
‖f − fs‖ ≤ 2 ‖∇f‖ .

Recall that x ∼ y is equivalent to y = xs for some s ∈ S. Hence, for any s ∈ S, we have

‖f − fs‖ =
∑

x∈V

|f (x) − f (xs)| =
∑

x,y∈V : x∼y

|f (x) − f (y)| = 2 ‖∇f‖ . (2.24)

Claim 2. If z ∈ Bn then
‖f − fz‖ ≤ 2n ‖∇f‖ .

Any z ∈ Bn can be represented in the form z = s1s2...sk where si ∈ S and k ≤ n. Then

‖f − fz‖ =
∑

x∈V

|f (x) − f (xz)|

≤
∑

x∈V

|f(x) − f(xs1)| +
∑

x∈V

|f(xs1) − f(xs1s2)| + ...

+
∑

x∈V

|f(xs1...sk−1) − f(xs1...sk−1sk)| ≤ 2k ‖∇f‖ ≤ 2n ‖∇f‖ .
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Claim 3. For any n ∈ N and any function f on V with finite support, set

Anf (x) =
1

|Bn|

∑

{y:d(x,y)≤n}

f (y) .

Then the following inequality is true:

‖f − Anf‖ ≤ 2n ‖∇f‖ . (2.25)

The condition d (x, y) ≤ n means that y = xs1...sk for some k ≤ n and s1, ..., sk ∈ S.
Setting z = s1...sk we obtain that d (x, y) ≤ n ⇐⇒ y = xz for some z ∈ Bn. Hence, we have

‖f − Anf‖ =
∑

x∈V

|f (x) − Anf (x)| =
∑

x∈V

∣
∣
∣
∣
∣
f (x) −

1

|Bn|

∑

z∈Bn

f (xz)

∣
∣
∣
∣
∣

=
∑

x∈V

∣
∣
∣
∣
∣

1

|Bn|

∑

z∈Bn

(f (x) − f (xz))

∣
∣
∣
∣
∣
≤

1

|Bn|

∑

z∈Bn

∑

x∈V

|f (x) − f (xz)|

=
1

|Bn|

∑

z∈Bn

‖f − fz‖ ≤ 2n ‖∇f‖ .
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Claim 4. Let Ω be a non-empty finite subset of V , and n ∈ N be such that |Bn| ≥ 2 |Ω|.
Then we have

μ (∂Ω) ≥
1

4n |S|
μ (Ω) .

Set f = 1Ω. Then we have, for any x ∈ V ,

Anf (x) =
1

|Bn|

∑

{y:d(x,y)≤n}

f (y)

≤
1

|Bn|

∑

y∈V

f (y)

=
1

|Bn|
|Ω| ≤

1

2
.

It follows that

‖f − Anf‖ ≥
∑

x∈Ω

|f (x) − Anf (x)| ≥
1

2
|Ω| .

Combining with (2.23) and (2.25), we obtain

μ (∂Ω) = ‖∇f‖ ≥
1

2n
‖f − Anf‖ ≥

1

4n
|Ω| =

1

4n |S|
μ (Ω) .

95



Claim 5. For any non-empty finite set Ω ⊂ V , we have μ (∂Ω) ≥ Φ (μ (Ω)) where

Φ (u) = c0
u

V−1 (2u)
.

Choose n to be minimal positive integer with the property that

V (n) ≥ 2μ (Ω) .

This implies μ (Bn) ≥ 2μ (Ω) which is equivalent to |Bn| ≥ 2 |Ω| so that by Claim 4

μ (∂Ω) ≥
1

4n |S|
μ (Ω) . (2.26)

The minimality of n implies that

n ≤ 1 + V−1 (2μ (Ω)) ≤ CV−1 (2μ (Ω)) ,

because otherwise n− 1 > V−1 (2μ (Ω)) and V (n − 1) ≥ 2 (Ω) . Substituting this into (2.26),
we obtain

μ (∂Ω) ≥
1

4C |S|
μ (Ω)

V−1 (2μ (Ω))
= c0

μ (Ω)

V−1 (2μ (Ω))
= Φ (μ (Ω)) ,

which was to be proved.
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3 Heat kernel on infinite graphs

Everywhere (V, μ) is a connected locally finite weighted graph with |V | > 1.

3.1 Transition function and heat kernel

Recall that the Markov kernel on a weighted graph (V, μ) is defined by

P (x, y) =
μxy

μ (x)
,

and the Markov operator P : F → F by

Pf (x) =
∑

y∼x

P (x, y) f (y) =
∑

y∈V

P (x, y) f (y)

For any non-negative integer n, consider operator P n = P ◦ P ◦ ... ◦ P︸ ︷︷ ︸
n

.

The family {P n} is called the heat semigroup. It satisfies

P0 = id and P nPm = P n+m.
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It is easy to show that, for any f : V → R and all x ∈ V and n ≥ 1

P nf (x) =
∑

y∈

Pn (x, y) f (y) ,

where the kernel Pn (x, y) of the operator P n can be defined inductively by

P1 (x, y) = P (x, y) and Pn+1 (x, y) =
∑

z∈V

Pn (x, z) P (z, y) . (3.1)

Since P nPm = P n+m, it follows that for all non-negative integers n,m,

Pn+m (x, y) =
∑

z∈V

Pn (x, z) Pm (z, y) .

By induction one proves that ∑

y∈V

Pn (x, y) = 1.

and
Pn (x, y) μ (x) = Pn (y, x) μ (y) .
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The Markov kernel P (x, y) determines a random walk {Xn}
∞
n=0 on V as follows:

Px0 (X1 = x1, X2 = x2, ..., Xn = xn) := P (x0, x1) P (x1, x2) ...P (xn−1, xn) .

It follows Px (Xn = y) =
∑

x1,...xn−1∈V P (x, x1) P (x1, x2) ...P (xn−1, y) = Pn (x, y) , so that
Pn (x, y) is the n-step transition function of the random walk.

Definition. The function

pn (x, y) :=
Pn (x, y)

μ (y)

is called the heat kernel of (V, μ) or the transition density of the random walk.

The heat kernel is non-negative and satisfies the following identities:

1. P nf (x) =
∑

y∈V
pn (x, y) f (y) μ (y) (by definition)

2. pn+m (x, y) =
∑

z∈V
pn (x, z) pm (z, y) μ (z) (the semigroup identity)

3.
∑

y∈V
pn (x, y) μ (y) ≡ 1 (stochastic completeness)

4. pn (x, y) = pn (y, x) (symmetry, reversibility)
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Lemma 3.1 We have for all x, y ∈ V and n,m ∈ N:

pn+m (x, y) ≤ (p2n (x, x) p2m (y, y))1/2 (3.2)

Proof. It follows from the symmetry and semigroup identity that

pn+m (x, y) ≤

(
∑

z∈V

pn (x, z)2 μ (z)

)1/2(∑

z∈V

pm (z, y)2 μ (z)

)1/2

=

(
∑

z∈V

pn (x, z) pn (z, x) μ (z)

)1/2(∑

z∈V

pm (y, z) pm (z, y) μ (z)

)1/2

= (p2n (x, x) p2m (y, y))1/2 .

The following question is one of the most interesting problems on infinite graphs:
How quickly pn (x, y) converges to 0 as n → ∞?

The question amounts to obtaining upper and lower estimates of pn (x, y) for large n,
that will be discussed in this Chapter.
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3.2 One-dimensional simple random walk

Let (V, μ) be Z with a simple weight. Let us determine Pn (0, x) . We have, for any x ∈ Z
and n ∈ N

Pn (0, x) = P0 (Xn = x) =
∑

x1,...xn−1∈Z

P (0, x1) P (x1, x2) ...P (xn−1, x) =

(
1

2

)n

Cn,

where Cn is a number of all paths 0 ∼ x1 ∼ x2... ∼ xn−1 ∼ x, that is, Cn is equal to the
number of representations of x in the form

z1 + z2 + ... + zn = x where zk ∈ {+1,−1} . (3.3)

If Cn > 0 then |x| ≤ n and x ≡ n mod 2. Assuming that the latter conditions are satisfies,
(3.3) is equivalent to

u1 + u2 + ... + un =
x + n

2
where uk =

zk + 1

2
∈ {0, 1} ,

and the number of such representations is
(

n
x+n

2

)
. Hence, we conclude that

Pn (0, x) =

{
1
2n

(
n

x+n
2

)
, |x| ≤ n and x ≡ n mod 2,

0, otherwise,
(3.4)
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Using the Stirling formula

n! ∼
√

2πn
(n

e

)n

as n → ∞, (3.5)

and assuming that n is even, we obtain

Pn (0, 0) =
1

2n

(
n

n/2

)

=
1

2n

n!

((n/2)!)2 ∼
1

2n

√
2πn

(
n
e

)n

√
2π n

2

2 ( n
2e

)n =

√
2

πn
,

so that

Pn (0, 0) ∼

√
2

πn
as n → ∞, n even. (3.6)

Theorem 3.2 For all positive integers n and for all x ∈ Z such that |x| ≤ n and x ≡
n mod 2, the following inequalities hold:

C2√
n

e−(ln 2) x2

n ≤ Pn (0, x) ≤
C1√

n
e−

x2

2n , (3.7)

where C1, C2 are some positive constants.

Note that ln 2 ≈ 0.69315 > 1
2
.
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Proof. Given two sequences {an} and {bn} of positive numbers, we write an ' bn (and
say that an is comparable to bn) if there exists a constant C ≥ 1 such that

C−1 ≤
an

bn

≤ C for all n.

Stirling’s formula (3.5) implies, for any integer n ≥ 0,

n! =
(n + 1)!

(n + 1)
'

√
n + 1

n + 1

(
n + 1

e

)n+1

' (n + 1)n+ 1
2 e−n. (3.8)

Assuming that m is an even non-negative integer and applying (3.8) to n = m/2, we obtain

(m

2

)
! '

(m

2
+ 1
)m+1

2

e−m/2 ' (m + 2)
m+1

2 (2e)−m/2 .

We would like to replace here m + 2 my m + 1. For that observe that

(
m + 2

m + 1

)m+1

=

(

1 +
1

m + 1

)m+1

≤ e

whence
(m + 2)m+1 ' (m + 1)m+1
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and (m

2

)
! ' (m + 1)

m+1
2 (2e)−m/2 . (3.9)

Using (3.8) to estimate n! and (3.9) with m = n ± x to estimate
(

n±x
2

)
!, we obtain from

(3.4)

Pn (0, x) =
1

2n

(
n

x+n
2

)

=
1

2n

n!
(

n+x
2

)
!
(

n−x
2

)
!

'
1

2n−1

(n + 1)n+ 1
2 e−n

(n + x + 1)
n+x+1

2 (2e)−
n+x

2 (n − x + 1)
n−x+1

2 (2e)−
n−x

2

(3.10)

=
2

√
n + 1

(
1 + x

n+1

)n+x+1
2
(
1 − x

n+1

)n−x+1
2

=
2

√
N

1
(
1 + x

N

)N+x
2
(
1 − x

N

)N−x
2

, (3.11)

where N = n + 1.
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Using the Taylor expansion

ln (1 + α) = α −
α2

2
+

α3

3
− ..., −1 < α ≤ 1,

and the fact that |x|
N

< 1, we obtain

ln
(
1 +

x

N

)N+x

= (N + x) ln
(
1 +

x

N

)

= (N + x)

(
x

N
−

x2

2N 2
+

x3

3N3
−

x4

4N 4
+

x5

5N 5
−

x6

6N 6
+ ...

)

=

(

x −
x2

2N
+

x3

3N 2
−

x4

4N3
+

x5

5N4
−

x6

6N5
+ ...

)

+

(
x2

N
−

x3

2N 2
+

x4

3N 3
−

x5

4N 4
+

x6

5N 5
− ...

)

= x +
1

2N
x2 −

1

2 ∙ 3N2
x3 +

1

3 ∙ 4N 3
x4 −

1

4 ∙ 5N 4
x5 +

1

5 ∙ 6N 5
x6 − ...
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Changing here x to −x, we obtain

ln
(
1 −

x

N

)N−x

= −x +
1

2N
x2 +

1

2 ∙ 3N 2
x3 +

1

3 ∙ 4N 3
x4 +

1

4 ∙ 5N 4
x5 +

1

5 ∙ 6N 5
x6 − ...

Adding up the two expressions and observing that all the odd powers of x cancel out, we
obtain

ln

((
1 +

x

N

)N+x
2
(
1 −

x

N

)N−x
2

)

=
1

2

(

ln
(
1 +

x

N

)N+x

+ ln
(
1 −

x

N

)N−x
)

=
1

2N
x2 +

1

3 ∙ 4N 3
x4 +

1

5 ∙ 6N 5
x6 + ...

=
∑

k even, k≥0

xk+2

(k + 1) (k + 2) Nk+1

=
x2

N

∑

k even, k≥0

1

(k + 1) (k + 2)

( x

N

)k

.
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Substituting into (3.11), we obtain

Pn (0, x) '
1

√
N

exp

(

−
x2

N

(
1

2
+

1

3 ∙ 4

( x

N

)2

+
1

5 ∙ 6

( x

N

)4

+ ...

))

. (3.12)

Clearly, this implies the upper bound

Pn (0, x) ≤
C1√
N

exp

(

−
x2

2N

)

. (3.13)

For the lower bound, observe that by |x|
N

< 1

1

2
+

1

3 ∙ 4

( x

N

)2

+
1

5 ∙ 6

( x

N

)4

+ ... <
1

1 ∙ 2
+

1

3 ∙ 4
+

1

5 ∙ 6
+ ...

= 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ... = ln 2,

whence by (3.12)

Pn (0, x) ≥
C2√
N

exp

(

− (ln 2)
x2

N

)

. (3.14)

Finally, N = n + 1 can be replaced in (3.13) and (3.14) by n since
√

N '
√

n and x2

n
− x2

N
=

x2

n(n+1)
≤ x2

n2 ≤ 1. Hence, (3.13) and (3.14) imply (3.7).
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Corollary 3.3 In the domain where |x|
n3/4 is bounded, we have the following estimate

Pn (0, x) '
1
√

n
exp

(

−
x2

2n

)

. (3.15)

Proof. The upper bound in 3.15) is the same as in (3.7), so that we need only to prove
the lower bound. The expression under the exponential function in (3.12) can be estimated
from above as follows:

x2

N

(
1

2
+

1

3 ∙ 4

( x

N

)2

+
1

5 ∙ 6

( x

N

)4

+ ...

)

=
x2

2N
+

x4

3 ∙ 4N 3
+

x6

5 ∙ 6N 5
+

x8

7 ∙ 8N 7
+ ...

=
x2

2N
+

x4

N 3

(
1

3 ∙ 4
+

1

5 ∙ 6
x2

N 2
+

1

7 ∙ 8
x4

N 4
+ ...

)

(3.16)

≤
x2

2N
+ c

(
1

3 ∙ 4
+

1

5 ∙ 6
+

1

7 ∙ 8
+ ...

)

<
x2

2N
+

c

3
,

where c is a constant that bounds x4

N3 . Substituting this into (3.12) and replacing as before
N by n, we obtain the lower bound in (3.15).
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The following lemma will be used in the next section.

Lemma 3.4 For a simple random walk in Z, we have, for all positive integers r, n,

P0 (Xn ≥ r) ≤ exp

(

−
r2

2n

)

. (3.17)

Proof. Let {Zn}
∞
n=1 be a sequence of independent random variables each taking values

±1 with probabilities 1/2. Then

Xn = Z1 + ... + Zn

is a simple random walk on Z started at 0. We have, for any α > 0,

P (Xn ≥ r) = P
(
eαXn ≥ eαr

)
≤ e−αrEeαXn .

Using the independence of Zk and

EeαZk =
1

2

(
eα + e−α

)
= cosh α,

we obtain
EeαXn = E

(
eαZ1 ...eαZn

)
= EeαZ1 ...EeαZn = (cosh α)n .
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Since

cosh α = 1 +
α2

2!
+

α4

4!
+ ... ≤ exp

(
1

2
α2

)

,

we obtain

P (Xn ≥ r) ≤ e−αr (cosh α)n ≤ exp

(

−αr +
1

2
α2n

)

.

Finally, setting here α = r
n

that minimizes −αr + 1
2
α2n, we obtain

P (Xn ≥ r) ≤ exp

(

−
r2

2n

)

, (3.18)

which was to be proved.
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Set for all n ∈ N and k ∈ Z

Qn (k) =






1
2n

(
n

k+n
2

)

, k ≡ n mod 2

0, otherwise.

so that by (3.4) Pn (0, x) = Qn (x) .

Corollary 3.5 For all positive integers r, n

∞∑

k=r

Qn (k) ≤ exp

(

−
r2

2n

)

. (3.19)

Proof. We have

∞∑

k=r

Qn (k) =
∑

x≥r

Pn (0, x) = P0 (Xn ≥ r) ≤ exp

(

−
r2

2n

)

.

111



3.3 Carne-Varopoulos estimate

The main result of this section is the following theorem and its consequences. Consider the
Markov operator P as an operator in the Hilbert space

L2 (V, μ) :=

{

f : V → R :
∑

x∈V

f 2 (x) μ (x) < ∞

}

,

and observe that P is a symmetric operator and ‖P‖ ≤ 1.

Theorem 3.6 Carne ’85, Varopoulos ’85) Let f, g be two functions from L2 (V, μ) and let
r = d (supp f, supp g). Then, for all n ≥ 1,

|(P nf, g)| ≤ 2 ‖f‖ ‖g‖ exp

(

−
r2

2n

)

. (3.20)

Note that always |(P nf, g)| ≤ ‖f‖ ‖g‖ so that (3.20) is non-trivial only if r > 1.

Corollary 3.7 For all x, y ∈ V and positive integers n,

pn (x, y) ≤
2

√
μ (x) μ (y)

exp

(

−
d2 (x, y)

2n

)

. (3.21)
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Proof. Setting in (3.20) f = 1{x} and g = 1{y} and noticing that r = d (x, y),

‖f‖ =
√

μ (x), ‖g‖ =
√

μ (y)

and
(P nf, g) =

∑

x,y∈V

pn (x, y) f (x) g (y) μ (x) μ (y) = pn (x, y) μ (x) μ (y) ,

we obtain (3.21).
For the proof of Theorem 3.6 we use the Chebyshev polynomials Tk:

Tk (λ) = cos (k arccos λ) , λ ∈ [−1, 1] ,

where k ∈ Z and λ ∈ [−1, 1]. Since Tk ≡ T−k, we restrict so far our consideration to
non-negative k. Setting θ = arccos λ, we obtain

Tk (λ) = cos kθ = Re eikθ = Re (cos θ + i sin θ)k

= cosk θ −

(
k

2

)

cosk−2 θ sin2 θ +

(
k

4

)

cosk−4 θ sin4 θ − ...

= λk −

(
k

2

)

λk−2
(
1 − λ2

)
+

(
k

4

)

λk−4
(
1 − λ2

)2
− ...,
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whence we see that Tk (λ) is indeed a polynomial of λ of degree k. Note that the leading
coefficient in front of λk is equal to

1 +

(
k

2

)

+

(
k

4

)

+ ... = 2k−1.

A distinguished property of Chebyshev polynomials is that |Tk (λ)| ≤ 1 for all λ ∈ [−1, 1]
that is obvious from the definition.

Graph of T9:
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Lemma 3.8 For all non-negative integers n we have the identity

λn =
n∑

k=−n

Qn (k) Tk (λ) ∀λ ∈ [−1, 1] , (3.22)

where

Qn (k) =






1
2n

(
n

k+n
2

)

, k ≡ n mod 2

0, otherwise.

Proof. As above, let θ = arccos λ so that λ = cos θ. Setting

z = cos θ + i sin θ

and observing that z = 1
z
, we obtain, for any m ∈ Z,

Tm (λ) = Tm (cos θ) = cos mθ = Re zm =
1

2

(
zm + z−m

)
.

On the other hand,

λ = Re z =
1

2

(

z +
1

z

)
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and

λn =
1

2n

(

z +
1

z

)n

=
1

2n

n∑

m=0

(
n

m

)

zm

(
1

z

)n−m

=
1

2n

n∑

m=0

(
n

m

)

zn−2m =
1

2n

n∑

k=−n

(
n

n−k
2

)

zk

where k = n− 2m and summation is restricted to k ≡ n mod 2. Changing k to −k we obtain

λn =
1

2n

n∑

k=−n

(
n

n+k
2

)

z−k.

Taking the half-sum of the two expressions for λn and noticing that
(

n
n−k

2

)

=

(
n

n+k
2

)

we obtain

λn =
1

2n

n∑

k=−n

(
n

n+k
2

)
zk + z−k

2
=

1

2n

n∑

k=−n

(
n

n+k
2

)

Tk (λ) =
n∑

m=−n

Qn (k) Tk (λ) ,

which was to be proved.
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Proof of Theorem 3.6. Applying the identity (3.22) Lemma 3.8 to the operator P ,
we obtain

P n =
n∑

k=−n

Qn (k) Tk (P ) . (3.23)

That ‖P‖ ≤ 1 implies spec P ⊂ [−1, 1]. Since also sup[−1,1] |Tk| ≤ 1, it follows by the spectral
mapping theorem that

spec Tk (P ) ⊂ Tk (spec P ) ⊂ Tk ([−1, 1]) ⊂ [−1, 1] .

Hence, we have ‖Tk (P )‖ ≤ 1.
It follows from (3.1) that

(P nf, g) =
n∑

k=−n

Qn (k) (Tk (P ) f, g) .

Observe that (Tk (P ) f, g) = 0 provided |k| < r, because

d (supp f, supp g) = r > |k| = deg Tk
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(cf. the proof of Theorem 1.6). Therefore, we obtain

|(P nf, g)| =

∣
∣
∣
∣
∣
∣

∑

r≤|k|≤n

Qn (k) (Tk (P ) f, g)

∣
∣
∣
∣
∣
∣

≤
∑

r≤|k|≤n

Qn (k) |(Tk (P ) f, g)|

≤




∑

|k|≥r

Qn (k)



 ‖Tk (P )‖ ‖f‖ ‖g‖

≤ 2

(
∑

k≥r

Qn (k)

)

‖f‖ ‖g‖

≤ 2 exp

(

−
r2

2n

)

‖f‖ ‖g‖

where we have used that ‖Tk (P )‖ ≤ 1 and (3.19).
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3.4 On-diagonal lower bound of the heat kernel via volume

Theorem 3.9 (F.Lust-Piquard ’95) Assume that μ0 := infx∈V μ (x) > 0. Fix a vertex x0 ∈
V , set for all r > 0

Br = {x ∈ V : d (x, x0) ≤ r}

and V (r) = μ (Br). Assume that, for all r large enough,

V (r) ≤ Crα (3.24)

for some constants C and α. Then, for all large enough n,

p2n (x0, x0) ≥
1/4

V
(√

2αn ln n
) ≥

c′

(n ln n)α/2
. (3.25)

Example. In Zm (3.24) holds with α = m so that for all x ∈ Zm

p2n (x, x) ≥
c

(n ln n)m/2
.

In fact, as we will see, in Zm

p2n (x, x) '
1

nm/2
.
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Proof. By the semigroup property, we have the identity

p2n (x0, x0) =
∑

x∈V

pn (x0, x) pn (x, x0) μ (x) =
∑

x∈V

p2
n (x0, x) μ (x) . (3.26)

Fix some r > 0, restrict the summation to x ∈ Br and apply the Cauchy-Schwarz inequality:

p2n (x0, x0) ≥
∑

x∈Br

pn (x0, x)2 μ (x)

≥
1

μ (Br)

(
∑

x∈Br

pn (x0, x) μ (x)

)2

=
1

V (r)



1 −
∑

x∈Bc
r

pn (x0, x) μ (x)





2

. (3.27)

Suppose that, for a given n, we can find r = r (n) so that

∑

x∈Bc
r

pn (x0, x) μ (x) ≤
1

2
. (3.28)
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Then (3.27) implies

p2n (x0, x0) ≥
1/4

V (r)
,

which will yield (3.25) provided r =
√

2αn ln n.
To prove (3.28) with this r, let us apply Corollary 3.7:

pn (x0, x) ≤
2

√
μ (x0) μ (x)

exp

(

−
d2 (x0, x)

2n

)

≤
2

μ0

exp

(

−
d2 (x0, x)

2n

)

,

whence, for large enough r,

∑

x∈Bc
r

pn (x0, x) μ (x) ≤
2

μ0

∑

x∈Bc
r

exp

(

−
d2 (x0, x)

2n

)

μ (x)

=
2

μ0

∞∑

k=0

∑

x∈B
2k+1r

\B
2kr

exp

(

−
d2 (x0, x)

2n

)

μ (x)

≤
2

μ0

∞∑

k=0

∑

x∈B
2k+1r

\B
2kr

exp

(

−

(
2kr
)2

2n

)

μ (x)
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≤
2

μ0

∞∑

k=0

exp

(

−

(
2kr
)2

2n

)

μ (B2k+1r)

≤
2C

μ0

∞∑

k=0

exp

(

−
4kr2

2n

)
(
2k+1r

)α
,

where we have used μ (B2k+1r) ≤ C
(
2k+1r

)α
. Setting

ak = exp

(

−
4kr2

2n

)
(
2k+1r

)α
,

we see that
ak+1

ak

= exp

(

−
4k+1 − 4k

2

r2

n

)

2α ≤ exp

(

−
r2

n

)

2α.

If r2

n
≥ α then

ak+1

ak

≤ e−α2α =: q < 1,

so that the sequence {ak} decays faster than the geometric sequence with the ratio q, whence

∞∑

k=0

ak ≤
∞∑

k=0

a0q
k =

a0

1 − q
=

1

1 − q
exp

(

−
r2

2n

)

(2r)α .
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It follows that
∑

x∈Bc
r

pn (x0, x) μ (x) ≤ C ′ exp

(

−
r2

2n

)

rα. (3.29)

Choose here
r =

√
2αn ln n

so that the condition
r2

n
≥ α

is satisfied for n ≥ 2. Then we obtain

∑

x∈Bc
r

pn (x0, x) μ (x) ≤ C ′ exp (−α ln n) (2αn ln n)
α
2

= C ′′ (ln n)
α
2

n
α
2

<
1

2
,

provided n is large enough, which finishes the proof.
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3.5 On-diagonal lower bound via the Dirichlet eigenvalues

Theorem 3.10 (AG, Coulhon ’97) For any even integer n ≥ 0 and for any non-empty finite
set Ω ⊂ V , the following estimate holds:

sup
x∈Ω

pn(x, x) ≥
(1 − λ1(Ω))n

μ(Ω)
. (3.30)

In particular, if λ1(Ω) ≤ 1/2 then

sup
x∈Ω

pn(x, x) ≥
exp (−2λ1(Ω)n)

μ(Ω)
. (3.31)

Proof. The estimate (3.31) follows from (3.30) using the inequality

1 − λ ≥ exp (−2λ)

that is true for 0 ≤ λ ≤ 1/2. Indeed, it is obviously true for λ = 0 and λ = 1
2

and, hence, is
true for λ ∈ [0, 1/2] because the function 1 − λ is linear and exp (−2λ) is convex.

Let us prove (3.30). Fix a non-empty finite set Ω ⊂ V and consider in FΩ the operator

Q := id−LΩ,
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that is, for any f ∈ FΩ,

Qf (x) =
∑

y∈Ω

P (x, y) f (y) for all x ∈ Ω

and Qf (x) = 0 for x ∈ Ωc. By induction, we have, for any n ∈ N

Qnf (x) =
∑

y∈Ω

Qn (x, y) f (y) , (3.32)

where Q1 (x, y) = P (x, y) and

Qn+1 (x, y) =
∑

z∈Ω

Qn (x, z) P (z, y) . (3.33)

The function Qn (x, y) can be regarded as the transition function for a random walk with
the killing condition outside Ω. The comparison of (3.1) and (3.33) shows that

Qn (x, y) ≤ Pn (x, y) .

Consider trace Qn. By (3.32), the matrix of Qn in the basis
{
1{x}

}
x∈Ω

has on the diagonal
the values Qn (x, x) so that

trace Qn =
∑

x∈Ω

Qn (x, x) ≤
∑

x∈Ω

Pn (x, x) .
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On the other hand, Q has the eigenvalues 1 − λk(Ω), k = 1, ..., N where N = |Ω|, and Qn

has the eigenvalues (1 − λk (Ω))n , whence

trace Qn =
N∑

k=1

(1 − λk(Ω))n ≥ (1 − λ1 (Ω))n .

We have used that all the terms in the above sum are non-negative since n is even. Comparing
the two estimates of the trace, we obtain

(1 − λ1(Ω))n ≤ trace Qn ≤
∑

x∈Ω

Pn(x, x)

=
∑

x∈Ω

pn(x, x)μ(x)

≤ sup
x∈Ω

pn(x, x)μ(Ω),

whence (3.30) follows.
The following lemma enables us to obtain the lower bounds for pn (x, x) on Cayley graphs.

Lemma 3.11 On any Cayley graph (G,S) with a simple weight, the value of pn (x, x) does
not depend on x, that is, pn (x, x) = pn (y, y) for all x, y.
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Proof. Let us show that the heat kernel is invariant under the left multiplication:

pn (x, y) = pn (zx, zy) (3.34)

for all x, y, z ∈ G, which will imply for y = x and z = x−1 that pn (x, x) = pn (e, e) .
Recall that x ∼ y is equivalent to x−1y ∈ S. It follows that x ∼ y is equivalent to zx ∼ zy

because (zx)−1 (zy) = x−1z−1zy = x−1y.
Inductive basis for n = 1:

p1 (x, y) =
P (x, y)

μ (y)
=

μxy

μ (x) μ (y)
=

μxy

deg (x) deg (y)
=

μxy

|S|2
.

Since μxy = μ(zx)(zy), we obtain p1 (x, y) = p1 (zx, zy), that is, (3.34) for n = 1.
Inductive step from n to n + 1:

pn+1 (zx, zy) =
∑

w∈G

pn (zx, w) p1 (w, zy) μ (w) (w = zu)

=
∑

u∈G

pn (zx, zu) p1 (zu, zy) μ (u) (p1 (zu, zy) = p1 (u, z))

=
∑

u∈G

pn (x, u) p1 (u, y) μ (u) = pn+1 (x, y) .
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Corollary 3.12 Let (V, μ) be a Cayley graph with a simple weight. Then, for any finite set
Ω ⊂ V with λ1 (Ω) ≤ 1/2 we have

pn (x, x) ≥
exp (−2λ1(Ω)n)

μ(Ω)
(3.35)

for all x ∈ V and even n ≥ 0.

Proof. By Lemma 3.11, we have, for any x ∈ V ,

pn(x, x) = sup
x∈Ω

pn (x, x) ,

so that (3.35) follows from (3.31).

Example. Let us show that in Zm

pn (x, x) ≥ cn−m/2 (3.36)

for all even positive integers n and x ∈ Zm. Indeed, fix r ∈ N and take Ω = Br. By
considering a tent function in Br, one can show that

λ1 (Br) ≤
C

r2
.
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It follows that, for large enough r,

pn (x, x) ≥
exp (−2λ1(Br)n)

μ(Br)
≥ c′

exp
(
− C

r2 n
)

rm
.

Choosing r ≈
√

n, we obtain (3.36).
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3.6 On-diagonal upper bounds of the heat kernel

In this section (V, μ) is an infinite locally finite connected weighted graph that satisfies in
addition the conditions

1 ≤ μxy ≤ M for all x ∼ y,
deg (x) ≤ D for all x ∈ V,

(3.37)

for some constants M and D. The first condition is trivially satisfied for a simple weight,
the second condition is always satisfied on Cayley graphs.

Lemma 3.13 The conditions (3.37) imply that, for any non-empty finite set A ⊂ V ,

μ (U1 (A)) ≤ C0μ (A) , (3.38)

where C0 = C0 (D,M) .

Proof. Since μ (x) =
∑

y∼x μxy, it follows from (3.37) that

1 ≤ μ (x) ≤ MD.

Therefore, for any finite set A, we have

|A| ≤ μ (A) ≤ MD |A| .
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Recall that the the r-neighborhood of A is defined by

Ur (A) = {y ∈ V : d (x, y) ≤ r for some x ∈ A} ,

and the balls of radius r are defined by

Br (x) = {y ∈ V : d (x, y) ≤ r} .

It follows that
Ur (A) =

⋃

x∈A

Br (x) .

The ball B1 (x) consists of the vertex x and of the vertices y ∼ x so that |B1 (x)| ≤ D + 1.
Hence,

|U1 (A)| ≤
∑

x∈A

|B1 (x)| ≤ (D + 1) |A| ,

whence it follows that
μ (U1 (A)) ≤ MD (D + 1) μ (A) .
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The next theorem is the main result of this section.

Theorem 3.14 (AG, Telcs ’01) If (V, μ) satisfies (3.37) and the Faber-Krahn inequality with
function Λ (s) = cs−1/α, for some α, c > 0, then the following estimate is true

pn(x, y) ≤ Cn−α. (3.39)

for all x, y ∈ V , n ≥ 1 and some C = C (α, c, C0) .

Example. If the weight is simple then we always have the Faber-Krahn inequality with
function Λ (s) = 1

2s2 , that is, with α = 1/2. Assuming that the degree is uniformly bounded,
we obtain by Theorem 3.14 that pn (x, y) ≤ Cn−1/2.

Example. If (V, μ) is a Cayley graphs satisfying the volume growth condition

μ (Br) ≥ crm (3.40)

then we have the Faber-Krahn inequality with the function Λ (s) = c′s−2/m whence

pn (x, y) ≤ Cn−m/2. (3.41)
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Since (3.40) is satisfied in Zm, we see that the estimate (3.41) holds in Zm. Combining with
the lower bounds, we obtain that pn (x, x) ' n−m/2 for all x ∈ Zm and all even n,

Proof. As before, we use in the space L2 (V, μ) the inner product.

(f, g) =
∑

x∈V

f (x) g (x) μ (x) , (3.42)

Let F0 be the set of all functions f on V with a finite support

supp f = {x ∈ V : f (x) 6= 0} ,

so that F0 is a subspace of L2. Observe that f ∈ F0 implies that Lf and Pf belong to F0,
because

supp (Pf) ⊂ U1 (supp f) .

The approach to the proof is as follows. For a fixed z ∈ V , denote fn (x) = pn (x, z) and
set

bn := (fn, fn) =
∑

x∈V

pn (x, z)2 μ (x) = p2n (z, z) .

We will show that {bn} is a decreasing sequence and will estimate the difference bn − bn+1

from below, which will imply an upper bound for bn and, hence, for p2n (z, z) . Then Lemma
3.1 will allow to estimate pn (x, y) for all x, y ∈ V.
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The technical implementation of this approach is quite long and will be split into steps.

Claim 0. If f ∈ F0 then (Pf, 1) = (f, 1) .

Note that
(f, 1) =

∑

x∈V

f (x) μ (x) .

Using the Green formula of Theorem 1.1 in domain Ω = U1 (supp f), we obtain

(f, 1) − (Pf, 1) = (Lf, 1)

=
∑

x∈Ω

Lf (x) 1 (x) μ (x)

=
1

2

∑

x,y∈Ω

(∇xyf) (∇xy1) μxy −
∑

x∈Ω

∑

y∈Ωc

(∇xyf) μxy.

The first sum is 0 because ∇xy1 = 0. In the second sum, y /∈ Ω and x ∼ y imply that
x /∈ supp f whence ∇xyf = 0 so that the second sum is also 0, which proves the claim.

Consider now the following functional

Q (f, g) = (f, g) − (Pf, Pg) ,

that is defined for all f, g ∈ F0. Also, we write Q (f) = Q (f, f) .
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Claim 1. If Ω is a finite non-empty subset of V , f ∈ F0 and U1 (supp f) ⊂ Ω then

Q (f) ≥ λ1 (Ω) (f, f) . (3.43)

Clearly, supp (Pf) ⊂ Ω so that Pf = PΩf where

PΩ = id−LΩ.

Set α1 = 1 − λ1 (Ω) so that α1 is the top eigenvalue of PΩ. Theorem 2.3(b) implies that

spec PΩ = 1 − specLΩ ⊂ [1 − (2 − λ1 (Ω)) , 1 − λ1 (Ω)] = [−α1, α1] ,

whence ‖PΩ‖ ≤ α1. Then we have

Q (f) = (f, f) − (PΩf, PΩf)

≥ ‖f‖2 − α2
1 ‖f‖

2

= (1 − α1) (1 + α1) ‖f‖
2

≥ λ1 (Ω) ‖f‖2 .
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Claim 2. For all f ∈ F0 we have

Q (f) =
1

2

∑

x,y∈V
(f (x) − f (y))2 P2 (x, y) μ (x) . (3.44)

Using the symmetry of the Markov operator P , we obtain

(Pf, Pf ) =
(
P 2f, f

)
=
∑

x,y∈V
P2 (x, y) f (x) f (y) μ (x) ,

whence

Q (f) =
∑

x∈V
f 2 (x) μ (x) −

∑

x,y∈V
P2 (x, y) f (x) f (y) μ (x)

=
∑

x,y∈V
P2 (x, y) f 2 (x) μ (x) −

∑

x,y∈V
P2 (x, y) f (x) f (y) μ (x)

=
∑

x,y∈V
P2 (x, y) f (x) (f (x) − f (y)) μ (x) . (3.45)

Interchanging x, y we obtain also

Q (f) =
∑

x,y∈V
P2 (x, y) f (y) (f (y) − f (x)) μ (x) . (3.46)

Adding up (3.45) and (3.46), we obtain (3.44).
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Claim 3. If f ∈ F0 and s is a positive constant then

Q
(
(f − s)+

)
≤ Q (f) . (3.47)

Define a function ϕ : R → R by ϕ (t) = (t − s)+ . Since ϕ is a Lipschitz function with
the Lipschitz constant 1, we obtain by (3.44)

Q
(
(f − s)+

)
= Q (ϕ ◦ f) =

1

2

∑

x,y∈V

(ϕ (f (x)) − ϕ (f (y)))2 P2 (x, y) μ (x)

≤
1

2

∑

x,y∈V

(f (x) − f (y))2 P2 (x, y) μx = Q (f) .

Claim 4. Let f be a non-negative function from F0. For any s ≥ 0 define the set Ωs by

Ωs = U1

(
supp (f − s)+

)
.

Then
Q (f) ≥ λ1 (Ωs) ((f, f) − 2s (f, 1)) . (3.48)

In particular, for s = 1
4

(f,f)
(f,1)

, we obtain

Q (f) ≥
1

2
λ1 (Ωs) (f, f) .
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Set g = (f − s)+. By (3.43) and (3.47), we have

Q (f) ≥ Q (g) ≥ λ1 (Ωs) (g, g) .

On the other hand, we have
g2 ≥ f 2 − 2sf. (3.49)

Indeed, if f ≥ s then g = f − s and

g2 = f 2 − 2sf + s2 ≥ f 2 − 2sf,

and if f < s then g = 0 and

f 2 − 2sf = (f − 2s) f ≤ 0.

Integrating (3.49) against measure μ (x), we obtain

(g, g) ≥ (f, f) − 2s (f, 1) ,

whence (3.48) follows.
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Claim 5. Let {fn}
∞
n=0 be a sequence of non-negative functions on V such that f0 ∈ F0,

(f0, 1) = 1, and fn+1 = Pfn. Set
bn = (fn, fn) .

Then
bn − bn+1 ≥ c′b1+1/α

n , (3.50)

where c′ = 1
2
c (4C0)

−1/α .

By induction, we obtain that fn ∈ F0 and (fn, 1) = 1 (by Claim 0). Note that

bn − bn+1 = (fn, fn) − (Pfn, Pfn) = Q (fn) .

Estimating Q (fn) by Claim 4 and choosing

s =
1

4

(fn, fn)

(fn, 1)
=

1

4
bn,

we obtain

bn − bn+1 ≥
1

2
λ1 (Ωs) bn, (3.51)

where
Ωs = U1

(
supp (fn − s)+

)
.
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On the other hand, we have

μ
(
supp (fn − s)+

)
= μ (x ∈ V : fn (x) > s)

≤
1

s

∑

x∈V

fn (x) μ (x) =
1

s
(fn, 1) =

1

s
.

By Lemma 3.13, we obtain that

μ (Ωs) ≤
C0

s
=

4C0

bn

.

Hence, by the Faber-Krahn inequality,

λ1 (Ωs) ≥ cμ (Ωs)
−1/α ≥ c (4C0)

−1/α b1/α
n , (3.52)

which together with (3.51) yields (3.50).

Claim 6. If {bn}
∞
n=0 is a sequence of positive real numbers satisfying (3.50) then bn ≤ C ′n−α

where C ′ = (α/c′)α .

We use an elementary inequality

y−β − x−β ≥
β (x − y)

xβ+1
, (3.53)
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that is true for all β > 0 and x > y > 0. Indeed, by the mean-value theorem, we have

y−β − x−β

x − y
= −

y−β − x−β

y − x
= βξ−β−1

where ξ ∈ (y, x), whence (3.53) follows. Applying (3.53) with β = 1
α
, we obtain

b
−1/α
n+1 − b−1/α

n ≥
bn − bn+1

αb
1+1/α
n

≥
c′b

1+1/α
n

αb
1+1/α
n

=
c′

α
.

Summing up this inequality from 0 to n, we conclude that b
−1/α
n ≥ c′

α
n and bn ≤ C ′n−α.

Now we can finish the proof as follows. Fix a vertex z ∈ V and set f0 = 1
μ(z)

1{z}. Then

f0 ∈ F0 and (f0, 1) = 1. Define the sequence {fn} inductively by

fn+1 = Pfn

and show that, in fact,
fn (x) = pn (x, z) for any n ≥ 1.

We have

f1 (x) = Pf0 (x) =
∑

y∈V

P (x, y) f0 (y) =
P (x, z)

μ (z)
= p1 (x, z)
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and
fn+1 (x) =

∑

y∈V

P (x, y) fn (y) =
∑

y∈V

p1 (x, y) pn (y, z) μ (y) = pn+1 (x, z) .

The sequence {fn} satisfies the hypotheses of Claim 5. Setting

bn = (fn, fn) = p2n (z, z) ,

we obtain by Claims 5,6 that
p2n (z, z) ≤ C ′n−α, (3.54)

for all z ∈ V . Using Lemma 3.1 and (3.54), we obtain that

pk+l (x, y) ≤ (p2k (x, x) p2l (y, y))1/2 ≤ C ′ (kl)−α/2 , (3.55)

for all x, y ∈ V and positive integers k, l. Given an integer n ≥ 2, represent it in the form
n = k + l where l = k for even n and l = k + 1 for odd n. In the both cases, we have

l ≥ k ≥
n − 1

2
≥

n

4
,

whence by (3.55)
pn (x, y) ≤ C ′′n−α.

Finally, for n = 1 we obtain p1 (x, y) = P (x,y)
μ(y)

≤ 1 because P (x, y) ≤ 1 and μ (y) ≥ 1 by

(3.37).
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Remark. As we have seen in the last part of the proof, the estimate (3.39) is equivalent to
the on-diagonal estimate

pn (x, x) ≤ Cn−α.

For that reason, (3.39) is also frequently referred to as an on-diagonal estimate of the heat
kernel. The point is that this estimate does not take into account the distance between points
x, y, which could improve the estimate. Indeed, if d (x, y) > n then obviously pn (x, y) = 0.
Combining the on-diagonal estimate (3.39) with the Carne-Varopoulos estimate (3.21), it is
easy to show that, for any 0 < ε < α,

pn (x, y) ≤
C

nα−ε
exp

(

−cε
d2 (x, y)

n

)

(3.56)

with some cε > 0. Using much more complicated method, one can show that (3.56) holds
also for ε = 0 (Hebisch–Saloff-Coste).
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4 The type problem

4.1 Recurrence of the random walk via the heat kernel

We say that an event An, n ∈ N, occurs infinitely often if there is a sequence nk → ∞ of
indices such that Ank

takes place for all k.

Definition. We say that the random walk {Xn} on (V, μ) is recurrent if, for any x ∈ V ,

Px (Xn = x infinitely often) = 1,

and transient otherwise, that is, if there is x ∈ V such that

Px (Xn = x infinitely often) < 1.

The type problem is the problem of deciding whether the random walk is recurrent or
transient.

Theorem 4.1 (Khas’minski ’60) {Xn} is transient if and only if for some/all x ∈ V

∞∑

n=1

pn (x, x) < ∞. (4.1)
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Corollary 4.2 (Polya ’21) In Zm the random walk is transient if and only if m > 2.

Proof. Indeed, in Zm we have

∑

n

pn (x, x) '
∑

n

1

nm/2

and the latter series converges if and only if m > 2.
We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.3 If the condition
∞∑

n=1

pn (x, y) < ∞ (4.2)

holds for some x, y ∈ V then it holds for all x, y ∈ V. In particular, if (4.1) holds for some
x ∈ V then it holds for all x ∈ V and, moreover, (4.2) holds for all x, y ∈ V .

Proof. Let us show that if (4.2) holds for some x, y ∈ V then the vertex x can be replaced
by any of its neighbors, and (4.2) will be still true. Since the graph (V, μ) is connected, in a
finite number of steps the initial point x can be then replaced by any other point. By the
symmetry, the same applies to y so that in the end both x and y can take arbitrary values.
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Fix a vertex x′ ∼ x and prove that

∞∑

n=1

pn (x′, y) < ∞.

We have
Pn+1 (x, y) =

∑

z

P (x, z) Pn (z, y) ≥ P (x, x′) Pn (x′, y) ,

whence

pn (x′, y) =
Pn (x′, y)

μ (y)
≤

Pn+1 (x, y)

P (x, x′) μ (y)
=

pn+1 (x, y)

P (x, x′)
.

It follows that
∞∑

n=1

pn (x′, y) ≤
1

P (x, x′)

∞∑

n=1

pn+1 (x, y) < ∞,

which was to be proved.
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Proof of Theorem 4.1: the sufficiency of (4.1). Fix a vertex x0 ∈ V and denote
by An the event {Xn = x0} so that, for any x ∈ V ,

Px (An) = Px (Xn = x0) = Pn (x, x0) = pn (x, x0) μ (x0) .

By Lemma 4.3, the condition (4.1) implies
∑

n pn (x, x0) < ∞ whence

∑

n

Px (An) < ∞. (4.3)

By the Borel-Cantelli lemma, the probability that the events An occur infinitely often, is
equal to 0 that is,

Px (Xn = x0 infinitely often) = 0, (4.4)

and the random walk is transient.
Note that the condition (4.4) is in fact stronger than the definition of the transience as

the latter is
Px0 (Xn = x0 infinitely often) < 1

for some x0 ∈ V . We will take advantage of (4.4) later on.
The proof of the necessity of condition (4.1) in Theorem 4.1 will be preceded by some

lemmas.
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Definition. A function u : V → R is called subharmonic in Ω if Lu (x) ≤ 0 for all x ∈ Ω,
and superharmonic in Ω if Lu (x) ≥ 0 for all x ∈ Ω. A function u is called harmonic in
Ω if it is both subharmonic and superharmonic, that is, if it satisfies the Laplace equation
Lu = 0.

For example, the constant function is harmonic on all sets.

Lemma 4.4 (A maximum/minimum principle) Let Ω be a non-empty finite subset of V
such that Ωc is non-empty. Then, for any function u : V → R, that is subharmonic in Ω,
we have

max
Ω

u ≤ sup
Ωc

u,

and for any function u : V → R, that is superharmonic in Ω, we have

min
Ω

u ≥ inf
Ωc

u.

Proof. It suffices to prove the first claim. If supΩc u = +∞ then there is nothing to
prove. If supΩc u < ∞ then, by replacing u by u + const, we can assume that supΩc u = 0.
Set

M = max
Ω

u
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and show that M ≤ 0, which will settle the claim. Assume from the contrary that M > 0
and consider the set

S := {x ∈ V : u (x) = M} . (4.5)

Clearly, S ⊂ Ω and S is non-empty.

Claim 1. If x ∈ S then all neighbors of x also belong to S.
Indeed, we have Lu (x) ≤ 0 which can be rewritten in the form

u (x) ≤
∑

y∼x

P (x, y) u (y) .

Since u (y) ≤ M for all y ∈ V , we have

∑

y∼x

P (x, y) u (y) ≤ M
∑

y∼x

P (x, y) = M.

Since u (x) = M , all inequalities in the above two lines must be equalities, whence it follows
that u (y) = M for all y ∼ x. This implies that all such y belong to S.

Claim 2. Let S be a non-empty set of vertices of a connected graph such that x ∈ S implies
that all neighbors of x belong to S. Then S = V .
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Indeed, let x ∈ S and y be any other vertex. Then there is a path {xk}
n
k=0 between x

and y, that is,
x = x0 ∼ x1 ∼ x2 ∼ ... ∼ xn = y.

Since x0 ∈ S and x1 ∼ x0, we obtain x1 ∈ S. Since x2 ∼ x1, we obtain x2 ∈ S. By induction,
we conclude that all xk ∈ S, whence y ∈ S.

It follows from the two claims that the set (4.5) must coincide with V , which is not
possible since u (x) ≤ 0 in Ωc. This contradiction shows that M ≤ 0.

Lemma 4.5 (Strong maximum principle) Let u be a subharmonic function on V , that is,
such that Lu ≤ 0 on V . If, for some point x ∈ V ,

u (x) = sup u,

then u ≡ const . In other words, a subharmonic function on V cannot attain its supremum
unless it is a constant.

Proof. Set M = sup u and let x be a vertex where u (x) = M . Since Lu (x) ≤ 0, it
follows that

M = u (x) ≤ Pu (x) =
∑

y∼x

P (x, y) u (y) .

150



The right hand side here is bounded by M because u (y) ≤ M for all y. If u (y) < M for
some y ∼ x, then we obtain that the right hand side < M , which is a contradiction. Hence,
u (y) = M for all y ∼ x. Hence, the set

S = {x ∈ V : u (x) = M}

has the property that if x ∈ S then all neighbors of x also belong to S. Since S is non-empty
and the graph V is connected, it follows that S = V , that is, u ≡ M .

Definition. Fix a finite non-empty set K ⊂ V and consider the function

vK (x) = Px (∃n ≥ 0 Xn ∈ K) .

The function vK (x) is called the hitting (or visiting) probability of K. Consider also the
function

hK (x) = Px (Xn = x0 infinitely often) ,

that is called the recurring probability of K.

Clearly, we have v ≡ 1 on K and 0 ≤ hK (x) ≤ vK (x) ≤ 1 for all x ∈ V .
In the next two lemmas, the set K will be fixed so that we write v (x) and h (x) instead

of vK (x) and hK (x), respectively.
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Lemma 4.6 We have Lv (x) = 0 if x /∈ K (that is, v is harmonic outside K), and Lv (x) ≥
0 for any x ∈ K.

Proof. If x /∈ K then we have by the Markov property

v (x) = Px (∃n ≥ 0 Xn ∈ K)

= Px (∃n ≥ 1 Xn ∈ K)

=
∑

y

P (x, y)Py (∃n ≥ 1 Xn−1 ∈ K)

=
∑

y

P (x, y)Py (∃n ≥ 0 Xn ∈ K)

=
∑

y

P (x, y) v (y)

so that v (x) = Pv (x) and Lv (x) = 0. If x ∈ K then

Lv (x) = v (x) − Pv (x) = 1 − Pv (x) ≥ 0

because Pv (x) ≤ P1 (x) = 1.
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Lemma 4.7 The sequence of functions {P nv} is decreasing in n and

lim
n→∞

P nv (x) = h (x) (4.6)

for any x ∈ V .

Proof. Since Lv ≥ 0, we obtain

P nv − P n+1v = P n (v − Pv) = P n (Lv) ≥ 0

so that {P nv} is decreasing. Hence, the limit in (4.6) exists.
Consider the events

Bm = {∃n ≥ m Xn ∈ K} .

Obviously, the sequence {Bm} is decreasing and the event

⋂

m

Bm = {∀m ∃n ≥ m Xn ∈ K}

is identical to the event that Xn ∈ K infinitely often. Hence, we have

h (x) = Px

(
⋂

m

Bm

)

= lim
m→∞

Px (Bm) . (4.7)

153



We claim that
Px (Bm) = Pmv(x). (4.8)

Indeed, for m = 0 this is the definition of v (x). Here is the inductive step from m − 1 to m
using the Markov property:

Px (∃n ≥ m Xn ∈ K) =
∑

y

P (x, y)Py (∃n ≥ m Xn−1 ∈ K)

=
∑

y

P (x, y)Py (∃n ≥ m − 1 Xn ∈ K)

=
∑

y

P (x, y) Pm−1v (y)

= Pmv (x) .

Combining (4.7) with (4.8), we obtain (4.6).
Proof of Theorem 4.1: the necessity of (4.1). Assume that the random walk is

transient and show that (4.1) is true. Let x0 ∈ V be a point where

Px0 (Xn = x0 infinitely often) < 1.

Consider the hitting and recurring probabilities v (x) and h (x) with respect to the set K =
{x0}. The above condition means that h (x0) < 1. It follows that v 6≡ 1 because otherwise
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P nv ≡ 1 for all n and by Lemma 4.7 h ≡ 1. As we know, Lv (x) = 0 for x 6= x0 and
Lv (x0) ≥ 0.

Claim 1. Lv (x0) > 0.
Assume from the contrary that Lv (x0) = 0, that is, Lv (x) = 0 for all x ∈ V . Since v

takes its maximal value 1 at some point (namely, at x0), we obtain by the strong maximum
principle that v ≡ 1, which contradicts the assumption of the transience.

Denote f = Lv so that f (x) = 0 for x 6= x0 and f (x0) > 0.

Claim 2. We have for all x ∈ V

∞∑

n=0

P nf (x) ≤ v (x) . (4.9)

Fix a positive integer m and observe that

(id−P )
(
id +P + P 2 + ... + Pm−1

)
= id−P m

whence it follows that

L

(
m−1∑

n=0

P nf

)

= (id−Pm) f = f − Pmf ≤ f.
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Set

vm =
m−1∑

n=0

P nf.

Obviously, vm has a finite support and Lvm ≤ f . For comparison, we have Lv = f and
v ≥ 0 everywhere. We claim that vm ≤ v in V . Indeed, let Ω = supp vm so that outside Ωm

the inequality vm ≤ v is trivially satisfied. In Ω we have L (v − vm) ≥ 0. By the minimum
principle of Lemma 4.4, we have

min
Ω

(v − vm) = inf
Ωc

(v − vm) .

Since the right hand side is ≥ 0, it follows that v − vm ≥ 0 in Ω, which was claimed. Hence,
we have

m−1∑

n=0

P nf ≤ v,

whence (4.9) follows by letting m → ∞.
Using that supp f = {x0}, rewrite (4.9) in the form

∞∑

n=0

pn (x, x0) f (x0) μ (x0) ≤ v (x)
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whence it follows that
∑∞

n=0 pn (x, x0) < ∞. Setting here x = x0 we finish the proof.

Corollary 4.8 Let K be a non-empty finite subset of V . If the random walk is recurrent
then vK ≡ hK ≡ 1. If the random walk is transient then vK 6≡ 1 and hK ≡ 0.

Hence, we obtain a 0-1 law for the recurring probability: either hk ≡ 1 or hK ≡ 0.
Proof. Let x0 be a vertex from K. Obviously, we have

v{x0} (x) ≤ vK (x) .

Therefore, if the random walk is recurrence and, hence, v{x0} ≡ 1 then also vK (x) ≡ 1. Since

hK = lim
m→∞

P mvK , (4.10)

it follows that hK ≡ 1.
Let the random walk be transient. Then by Theorem 4.1 and Lemma 4.3, we have

∞∑

n=1

pn (x0, x) < ∞
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for all x0, x ∈ V . It follows from the proof of Theorem 4.1 that h{x0} (x) = 0 (cf. (4.4)). If
{Xn} visits K infinitely often then {Xn} visits infinitely often at least one of the vertices in
K. Hence, we have

hK ≤
∑

x0∈K

h{x0}.

Since h{x0} ≡ 0, we conclude that hK ≡ 0. Finally, (4.10) implies that vK 6≡ 1.

4.2 The type problem on Cayley graphs

Now we can completely solve the type problem for Cayley graphs.

Theorem 4.9 (Varopoulos ’83) Let (V,E) be a Cayley graph and μ be a simple weight on
it. Let Br = {x ∈ V : d (x, e) ≤ r}.

(a) If μ (Br) ≤ Cr2 for large enough r with some constant C then (V, μ) is recurrent.

(b) If μ (Br) ≥ crα for large enough r with some constants α > 2 and c > 0 then (V, μ) is
transient.

Remark. It is known from Group Theory (H.Bass) that for Cayley graphs the following
two alternatives take places:
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1. either μ (Br) ' rm for some positive integer m (the power volume growth),

2. or, for any C,N , we have μ (Br) ≥ CrN for large enough r (the superpolynomial
volume growth).

It follows from Theorem 4.9 that, in the first case, the random walk is recurrent if and
only if m ≤ 2, while in the second case the random walk is always transient.

Proof. (a) This part is true for an arbitrary weighted graph since by Theorem 3.9 we
have

p2n (e, e) ≥
const

n ln n
, for large n,

and, hence,
∑

n p2n (e, e) = ∞, so that the recurrence follows by Theorem 4.1.
(b) By Corollary 2.10, the graph (V, μ) has the Faber-Krahn function Λ (s) = cs−2/α and

by Theorem 3.14, we obtain

pn (x, x) ≤
C

nα/2
.

Since α > 2, it follows that ∑

n

pn (x, x) < ∞,

so that the graph is transient by Theorem 4.1.
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4.3 Volume test for recurrence

In this section, let us fix an integer-valued function ρ (x) on V with the following two prop-
erties:

• For any non-negative integer r, the set

Br = {x ∈ V : ρ (x) ≤ r}

is finite and non-empty.

• If x ∼ y then |∇xyρ| ≤ 1.

For example, ρ (x) can be the distance function to any finite non-empty subset of V .

Theorem 4.10 (Nash-Williams ’59) If

∞∑

r=0

1

μ (∂Br)
= ∞, (4.11)

then the random walk on (V, μ) is recurrent.
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Note that ∂Br is non-empty because otherwise the graph (V, μ) would be disconnected.
An alternative way of stating this theorem is the following. Assume that V is a disjoint

union of a sequence {Ak}
∞
k=0 of non-empty finite subsets with the following property: if

x ∈ Ak and y ∈ Am with |k − m| ≥ 2 then x and y are not neighbors. Denote by Ek the set
of edges between Ak and Ak+1 and assume that

∞∑

k=0

1

μ (Ek)
= ∞. (4.12)

Then the random walk on (V, μ) is recurrent. Indeed, defining ρ (x) = k if x ∈ Ak we obtain
that Br =

⋃r
k=0 Ak and ∂Br = Er. Hence, (4.12) is equivalent to (4.11).

Let us give two simple examples when (4.12) is satisfied:

1. if μ (Ek) ≤ Ck for all large enough k;

2. if μ
(
Ekj

)
≤ C for a sequence kj → ∞ (in this case, μ (Ek) for k 6= kj may take

arbitrarily big values).

Proof of Theorem 4.10. Consider the hitting probability of B0:

v (x) = vB0 (x) = Px (∃n ≥ 0 : Xn ∈ B0) .
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Recall that 0 ≤ v ≤ 1, v = 1 on B0, and Lv = 0 outside B0 (cf. Lemma 4.6). Our purpose
is to show that v ≡ 1, which will imply the recurrence by Corollary 4.8.

We will compare v (x) to the sequence of functions {uk}
∞
k=1 that is constructed as follows.

Define uk (x) as the solution to the following Dirichlet problem in Ωk = Bk \ B0:

{
Luk = 0 in Ωk

uk = f in Ωc
k

(4.13)

where f = 1B0 . In other words, uk = 1 on B0 and uk = 0 outside Bk, while uk is harmonic in
Ωk. By Theorem 2.4, the problem (4.13) has a unique solution. By the maximum/minimum
principle of Lemma 4.4, we have 0 ≤ uk ≤ 1.

Since uk+1 = uk on B0 and uk+1 ≥ 0 = uk in Bc
k, we obtain by the maximum principle

that uk+1 ≥ uk in Ωk. Therefore, the sequence {uk} increases and converges to a function
u∞ as k → ∞. The function u∞ has the following properties: 0 ≤ u∞ ≤ 1, u∞ = 1 on B0,
and Lu∞ = 0 outside B0 (note that Luk → Lu∞ as k → ∞). Comparing v with uk in Ωk

and using the maximum principle, we obtain that v ≥ uk, whence it follows that v ≥ u∞.
Hence, in order to prove that v ≡ 1, it suffices to prove that u∞ ≡ 1, which will be done in
the rest of the proof.
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By the Dirichlet principle of Theorem 2.5, the solution uk of the Dirichlet problem (4.13)
it minimizes the energy

D (u) :=
1

2

∑

x,y∈U1(Ωk)

(∇xyu)2 μxy

among all functions u such that u = f in Ωc
k. Since u ≡ 1 in B0, u ≡ 0 in Bc

k, and
U1 (Bk) ⊂ Bk+1, we have

D (u) =
1

2

∑

x,y∈Bk+1

(∇xyu)2 μxy.

Choose a function u with the above boundary condition in the form

u (x) = ϕ (ρ (x)) ,

where ϕ (s) is a function on Z such that ϕ (s) = 1 for s ≤ 0 and ϕ (s) = 0 for s ≥ k + 1. Set
S0 = B0 and

Sr = {x ∈ V : ρ (x) = r}

for positive integers r. Clearly, Br is a disjoint union of S0, S1, ..., Sr. Observe also that if
x ∼ y then x, y belong either to the same Sr (and in this case ∇xyu = 0) or the one to Sr
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and the other to Sr+1, because |ρ (x) − ρ (y)| ≤ 1. Having this in mind, we obtain

D (u) =
k∑

r=0

∑

x∈Sr ,y∈Sr+1

(∇xyu)2 μxy

=
k∑

r=0

∑

x∈Sr ,y∈Sr+1

(ϕ (r) − ϕ (r + 1))2 μxy

=
k∑

r=0

(ϕ (r) − ϕ (r + 1))2 μ (∂Br) .

Denote
m (r) := μ (∂Br)

and define ϕ (r) for r = 0, ..., k from the following conditions: ϕ (0) = 1 and

ϕ (r) − ϕ (r + 1) =
ck

m (r)
, r = 0, ..., k (4.14)
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where the constant ck is to be found. Indeed, we have still the condition ϕ (k + 1) = 0 to be
satisfied. Summing up (4.14), we obtain

ϕ (0) − ϕ (k + 1) = ck

k∑

r=0

1

m (r)

so that ϕ (k + 1) = 0 is equivalent to

ck =

(
k∑

r=0

1

m (r)

)−1

. (4.15)

Hence, assuming (4.15), we obtain

D (u) =
k∑

r=0

c2
k

m (r)2m (r) = c2
k

k∑

r=0

1

m (r)
= ck.

By the Dirichlet principle, we have D (uk) ≤ D (u) whence

D (uk) ≤ ck. (4.16)
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On the other hand, by the Green formula

∑

Bk+1

Luk (x) uk (x) μ (x) =
1

2

∑

x,y∈Bk+1

(∇xyuk)
2 μxy −

∑

x∈Bk+1

∑

y∈Bc
k+1

(∇xyuk) uk(x)μxy.

The last sum vanishes because if y ∈ Bc
k+1 and x ∼ y then x ∈ Bc

k and uk (x) = 0. The range
of summation in the first sum can be reduced to Bk because uk = 0 outside Bk, and then
further to B0 because Luk = 0 in Bk \B0. Finally, since uk ≡ 1 in B0, we obtain the identity

∑

B0

Luk (x) μ (x) =
1

2

∑

x,y∈Bk+1

(∇xyuk)
2 μxy = D (uk) .

It follows from (4.16) that ∑

B0

Luk (x) μ (x) ≤ ck.

Since u takes the maximal value 1 at any point of B0, we have at any point x ∈ B0 that
Puk (x) ≤ 1 and

Luk (x) = uk (x) − Puk (x) ≥ 0.

Hence, at any point x ∈ B0, we have

0 ≤ Luk (x) μ (x) ≤ ck.
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By (4.11) and (4.15), we have ck → 0 as k → ∞, whence it follows that

Luk (x) → 0 for all x ∈ B0.

Hence, Lu∞ (x) = 0 for all x ∈ B0. Since Lu∞ (x) = 0 also for all x /∈ B0, we see that u∞ is
harmonic on the whole graph V . Since u∞ takes its supremum value 1 at any point of B0,
we conclude by the strong maximum principle that u∞ ≡ 1, which finishes the proof.

The following theorem provides a convenient volume test for the recurrence.

Theorem 4.11 If
∞∑

r=0

r

μ (Br)
= ∞ (4.17)

then the random walk is recurrent. In particular, this is the case when

μ (Brk
) ≤ Cr2

k (4.18)

for a sequence rk → ∞.

The condition (4.18) holds in Zm with m ≤ 2 for the function ρ (x) = d (x, 0). Hence, we
obtain one more proof of the recurrence of Zm for m ≤ 2 (cf. Corollary 4.2).

We need the following lemma for the proof of Theorem 4.11.

167



Lemma 4.12 Let {σr}
n
r=0 be a sequence of positive reals and let

vr =
r∑

i=0

σi. (4.19)

Then
n∑

r=0

1

σr

≥
1

4

n∑

r=0

r

vr

.

Proof. Assume first that the sequence {σr} is monotone increasing. If 0 ≤ k ≤ n−1
2

then

v2k+1 ≥
2k+1∑

i=k+1

σi ≥ (k + 1) σk

whence
1

σk

≥
k + 1

v2k+1

≥
1

2

2k + 1

v2k+1

.

Similarly, if 0 ≤ k ≤ n
2

then

v2k ≥
2k∑

i=k+1

σi ≥ kσk
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and
1

σk

≥
k

v2k

=
1

2

2k

v2k

.

It follows that

4
n∑

k=0

1

σk

≥

[n−1
2 ]∑

k=0

2k + 1

v2k+1

+

[n
2 ]∑

k=0

2k

v2k

=
n∑

r=0

r

vr

,

which was claimed. Now consider the general case when the sequence {σr} is not necessarily
increasing. Let {σ̃r}

n
r=0 be an increasing permutation of {σr}

n
r=0 and set

ṽr =
r∑

i=0

σ̃i.

Note that ṽr ≤ vr because ṽr is the sum of r smallest terms of the sequence {σi} whereas vr

is the sum of some r terms of the same sequence. By the first part of the proof,

n∑

r=0

1

σr

=
n∑

r=0

1

σ̃r

≥
1

4

n∑

r=0

r

ṽr

≥
1

4

n∑

r=0

r

vr

,

which finishes the proof.
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Proof of Theorem 4.11. Set for any r ≥ 1

Sr = {x ∈ V : ρ (x) = r} = Br \ Br−1

and S0 = B0. Then we have

μ (∂Br) =
∑

x∈Br ,y /∈Br

μxy =
∑

x∈Sr ,y∈Sr+1

μxy ≤
∑

x∈Sr ,y∈V

μxy =
∑

x∈Sr

μ (x) = μ (Sr) .

Denoting vr = μ (Br) and σr = μ (Sr) and observing that the sequences {vr} and {σr} satisfy
(4.19), we obtain by Lemma 4.12 and (4.17) that

∞∑

r=0

1

μ (∂Br)
≥

∞∑

r=0

1

σr

≥
1

4

∞∑

r=0

r

vr

= ∞.

Hence, (4.11) is satisfied, and we conclude by Theorem 4.10 that the random walk on (V, μ)
is recurrent.

We are left to show that (4.18) implies (4.17). Given positive integers a < b, we have

b∑

r=a+1

r =
b∑

r=1

r −
a∑

r=1

r =
b (b + 1)

2
−

a (a + 1)

2
≥

b2 − a2

2
,
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whence it follows that
b∑

r=a+1

r

vr

≥
1

vb

b2 − a2

2
.

By choosing a subsequence of {rk}, we can assume that rk ≥ 2rk−1. Then we have, using
(4.18),

∞∑

r=0

r

vr

≥
∑

k

rk∑

r=rk−1+1

r

vr

≥
∑

k

1

vrk

r2
k − r2

k−1

2

≥
1

2C

∑

k

r2
k − r2

k−1

r2
k

=
1

2C

∑

k

(

1 −
r2
k−1

r2
k

)

≥
1

2C

∑

k

3

4
= ∞,

which was to be proved.
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