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1 Laplace operator on finite graphs

1.1 The notion of graph

A graph is a pair (V, E) where V is a set of vertices and E is a set of edges, that is, F
consists of some unordered pairs (x,y) where x,y are distinct vertices. We write

r~y if (x,y) € E.

In this case we say: x is connected to y, or x is joint to y, or x is adjacent to y, or x is a

neighbor of .
The edge (z,y) will also be denoted by Ty.
A graph (V, E) is called finite if the number |V of vertices is finite. For each vertex =,

define its degree
deg (z) =#{y eV :z~y}.

The graph is called regular if deg () is the same for all x € V. Consider some examples.



1. A complete graph K,: |V| =n and i ~ j for any two distinct 7,7 € V.

o= — K= A K= A

2. A complete bipartite graph K, ,,,: V = VT UV~ where |VT| =n and |V~| = m, and
the edges are defined as follows: ¢ ~ j if either i € VTt and j€e V- orie V™ and j € VT .

SIS Ko AR

3. A cycle graph C,,, = Z,,: V ={0,1,....m — 1}, and i ~ j if i — j = £1 mod m.

L= — k= A Zy=

3. A path graph P, : V ={0,1,....m — 1}, and i ~ j if |i — j| = 1.
Pig =




Product of graphs.
Definition. The Cartesian product of graphs (X, E1) and (Y, Es) is the graph

(‘/7 E) — (X7 El) L] (Y7 E2)7

where V' = X x Y is the set of pairs (z,y) where z € X and y € Y, and the set E of edges
is defined by

(z,y) ~ (@y) if s’ ~z and (z,y) ~ (z,y) fy~y, (1.1)
which is illustrated on the following diagram:
Yi
14 (") )
y
| (x.y) (x'y)
""""""" x X



Clearly, we have |V| = |X||Y]| and deg (x,y) = deg (z) + deg (y) for all x € X and y € Y.

For example, we have

ZQDZQ — Z4 = a,nd Z2|:|Z3 =

This definition can be iterated to define the product of a finite sequence of graphs.
The graph

is called the n-dimensional binary cube. For example,

z3 =




Cayley graphs. Let (G, %) be a group and S be a subset of G with the property that if
x € S then 27! € S and that e ¢ S. Such a set S will be called symmetric.

A group G and a symmetric set S C G determine a graph (V, E) as follows: the set V' of
vertices coincides with G, and the set E of edges is defined by the relation ~ as follows:

T~y S xlxy €S,

or, equivalently,
x~1y< y=xx*s for some s € S.

Note that the relation x ~ y is symmetric in z,y, that is, z ~ y implies y ~ x, because, by
the symmetry of S,

y xx=(z7" *y)_l e S.

Hence, (V, F) is indeed a graph.
Definition. The graph (V, F) defined as above is denoted by (G, .S) and is called the Cayley
graph of the group G with the edge generating set S.

There may be many different Cayley graphs based on the same group since they depend
also on the choice of S. It follows from the construction that deg (z) = |S| for any z € V. In
particular, if S is finite then the graph (V, E) is locally finite.



Consider some example. Here (Z,,,+) is the additive group of residues mod m and
L, = {0,1,....,m — 1}, and (Z", +) is the additive group of n-tuples (1, ..., z,) with z; € Z.

1. Let G = (Zy,+) . The only possibility for S is S = {1}. Then (Z,, S) = +—..

2. Let G = (Zy,, +) where m > 2, and S = {£1}. That is, each residue k = 0,1, ....,m—1
has two neighbors: & — 1 and k + 1 mod m. The graph (Z,,, S) coincides with the m-cycle.

3. Let G = (Z,,,+) with the symmetric set S = Z,, \ {0}. That is, every two distinct
elements z,y € Z,, are connected by an edge. Hence, (Z,,,S) = K.

4. G = (Z,+) and S ={1,—1}. Thenx ~y if xt —y =1 or x —y = —1. Hence, (G, 95)
coincides with the lattice graph Z:

If S={+£1,4+2} then z ~yif |z —y| =1 or |z — y| = 2 so that we obtain a different graph.

5. Let G = (Z™,+) . Let S consist of points (z1, ..., x,) € Z" such that exactly one of x;
is equal to +1 and the others are 0. The connection x ~ y means that x — y has exactly one

component 1, and all others are 0.
The Cayley graph of (Z",S) with this S is called the lattice graph Z".



For example, in the case n = 2 we have S = {(1,0),(—1,0),(0,1),(0,—1)} and (Z?,9) is

6. Here is the Cayley graph (Z?2,S) with another edge generating set
S ={(1,0),(-1,0),(0,1),(0,—1),(1,1),(=1,—-1)}.

10



1.2 The weighted Laplace operator

Definition. A weighted graph is a couple ((V, E),u) where (V, E) is a graph and pu,, is a
non-negative function on V' x V such that

L oy = By
2. gy, > 0if and only if z ~ y.

The weighted graph is also denoted by (V, ) because p determines the set of edges FE.

Example. Set p,, = 1if x ~ y and p,, = 0 otherwise. Then p,, is a weight. This specific
weight is called simple.

Any weight p,, gives rise to a function on vertices as follows:
p(E) = Y =Dy (1.2)
{yeVy~a} yev

Then p (x) is called the weight of the vertex x. It can be extended to a measure of subsets:
for any subset A C V, set pu(A) => 1 (x).
For example, if the weight 1, is simple then p () = deg (z) and pu (A) = > ., deg(z).

11



Definition. Let (V| ) be a finite weighted graph without isolated points. For any function
f 'V — R, define the function A, f by

A, f

Y) oy — f (). (1.3)

Y~

The operator A, is called the (weighted) Laplace operator of (V, ).

This operator can also be written in equivalent forms as follows:

LS W) - f @)y (14)

(@) &

ALf

Y) foy — f () =
yGV

Example. If p is a simple weight then we obtain the Laplace operator of the graph (V, E):

Af (x (hg }jf

Y~

Denote by F the set of all real-valued functions on V. Then F is a linear space with
respect to addition of functions and multiplication by a constant, and dim F = |V|. The
Laplace operator A, is a linear operator in F, and A,1 = 0.

12



Define the Markov kernel P (x,y) = 5(””;’) so that

Auf(2) =) Plxy)f(y)— f(2).

Defining the Markov operator P on F by

Pf(z)=) P(zy) f),

we see that the Laplace operator A, and the Markov operator P are related by a simple
identity A, = P —id, where id is the identity operator in F.

Since
Y Plzy) =1,

yeVv

the Markov kernel determine the Markov chain on V/, that is, a random walk {X,,} "/ such
that
P(Xp1=y | Xy=2)=P(z,y).

Moreover, this random walk is reversible because

P(z,y) p(x) = pipy, = P (y,2) ().
The operator A, is the generator of this random walk.

13



Green’s formula. Define for all z,y € V' the difference operator V,, : F — R:

Vayf = f(y) = f(2),

so that

A @)= 5 3 (Vo) by

For any set {2 C V denote Q¢ =V"\ Q.

Theorem 1.1 (Green’s formula) Let (V, u) be a weighted graph without isolated points, and
let Q) be a non-empty finite subset of V. Then, for any two functions f,qg on 'V,

> A @e@u) = —3 3 (Vo) (Ve i+ Y (V)o@ (L5)

€] x,ye) zeN,yee

If Q@ =V then Q° is empty so that the last “boundary” term in (1.5) vanishes, and we

obtain
1

> A @g@HE) = =5 3 (Vayd) (Veys) by (16)

zeV z,yeV

14



Proof. We have

Y Auf(@)g(@ulx) = (ﬁ > (Vayf) uxy> 9(x)p(x)

€N e yev
zeQ yeVv
— Z Z xyf :uxy =+ Z Z :cyf luxy
e yeN e yeNe
- Z Z ya:f Nmy + Z Z nyf :uxya
NSVEASY) e yee

where in the last line we have switched notation of the variables  and y in the first sum
using ft,, = fi,,- Adding together the last two lines and dividing by 2, we obtain

S A @e@i@) = 5 3 (Veuf) (60) = 9D g+ D0 (V) 9Dy

e x,y€ x€eNyeNe

which was to be proved. =

15



Eigenvalues of the Laplace operator. Let |V| = N so that dim F = N. We investigate
the spectrum of the operator £ = —A, that is called positive definite Laplace operator. This
operator acts in F and, hence, has N (complex) eigenvalues A determined by Lf = Af for
some f € F \ {0} that is called an eigenfunction of L.

In the next examples the weight ., is simple so that

Lf(z) = f( deg 72 1)

Yy~x

1. For Zy = ey — e; we have

LFO)=f0)=fQ@), Lf1)=rfQ1)=f(0)

and, in the matrix form,
(erm) = (4 7))

Hence, the eigenvalues of £ coincide with those of the matrix ( _11 _11 ) . Its characteristic

equation is (1 — /\)2 — 1 =0, whence we obtain two eigenvalues A =0 and A = 2.

16



2. For Zs3 we have

Lf@) =f@)—=(Ff@—1)+fl@+1), z=0,1,2mod3.

2
The action of £ can be written as a matrix multiplication:
£f(0) 1 -1z —1/2 [ £(0)
cr) | = -2 1 <2 || @
Lf(2) -1/2 -1/2 1 f(2)

The characteristic equation of the above 3 x 3 matrix is A* —3\% + %/\ = 0. Hence, we obtain
the following eigenvalues of £: A = 0 (simple) and A\ = 3/2 with multiplicity 2.
3. For the path graph P; = e; — e; — ey we have

LFO)=FO) 1), LFQ) =W~ FO+[@), LI@=F@ I,
1 —1 0
the matrix of L= —-1/2 1 —1/2
0 —1 1

The characteristic equation is A* —3A\? + 2\ = 0 whence A =0, A =1, A = 2.

17



Let (V, ) be any finite weighted graph. Define in F an inner product by

=Y f@)g(@)p().

zeV

Lemma 1.2 The operator L is symmetric: (Lf,q) = (f,Lg) for all f,g € F.

Proof. Indeed, by the Green formula (1.6), we have

(£F.0) =~ S Af @ g @) p(@) = 5 3 (Vayf) (Vays) g = (£ L9).

xzeV z,yeV

Alternatively, since £ = id — P, it suffices to prove that P is symmetric. Using the reversibil-
ity of P, we obtain

(Pf.9) = D, Pf(w)g =3 > Py f @)@ n)
= ZnyP y,2) f(y) 9 (2) 1 (y) = (Pg, f)

Corollary 1.3 All the eirgenvalues of L are real.

18



To state the next theorem, we need the notion of a bipartite graph.

Definition. A graph (V) E) is called bipartite if V' admits a partition into two non-empty
disjoint subsets V', V'~ such that if both x,y are contained in the same set V* or V= then

In terms of coloring, one can say that a graph is bipartite if its vertices can be colored
by two colors, so that the vertices of the same color are not connected by an edge.

Here are some examples of bipartite graphs.

1. A complete bipartite graph K, ,, is bipartite.

2. The cycle graph 7Z,, and the path graph P,, are bipartite provided m is even.

3. Product of bipartite graphs is bipartite.

In particular, Z" and P" are bipartite provided m is even. For the example, here is P?
— a chessboard:




Theorem 1.4 For any finite, connected, weighted graph (V,u) with N = |V| > 1, the
following s true.

(a) Zero is a simple eigenvalue of L.

(b) All the eigenvalues of L are contained in [0, 2].

(c) If (V, p) is not bipartite then all the eigenvalues of L lie in [0,2).

Proof. (a) Since £1 = 0, the constant function is an eigenfunction with the eigenvalue
0. Assume now that f is an eigenfunction of the eigenvalue 0 and prove that f = const,
which will imply that 0 is a simple eigenvalue. If £f = 0 then it follows from (1.6) with
g = [ that

{z,yeViz~y}
In particular, f(x) = f(y) for any two neighboring vertices x,y. The connectedness of
the graph means that any two vertices x,y € V can be connected to each other by a path
{x)},r, where
T=Tyg~T1r~...~VTmy =Y

whence it follows that f (xg) = f (z1) = ... = f (2,,) and f (x) = f (y). Since this is true for
all couples z,y € V', we obtain f = const.

20



(b) Let A be an eigenvalue of £ with an eigenfunction f. Using Lf = Af and the Green
formula (1.6), we obtain

AN @) = > Lf() f(2)p(z)

zeV zeV

=2 Y ()@ u, (1.7

{zyeV:z~y}

It follows from (1.7) that A > 0. Using (a + b)* < 2 (a® 4 b?), we obtain

N FP@p@ <0 Y (F@P+f@)?) by

et o)
= > fW eyt D f (@),
= D) f@r@)+) f@)’u(x)
= Y @ u). (19

It follows from (1.8) that A < 2.

21



Alternatively, one can first prove that ||P[| <1, which follows from }_ P (z,y) =1 and
which implies spec P C [—1, 1], and then conclude that spec £L =1 — spec P C [0, 2].

(¢c) We need to prove that A = 2 is not an eigenvalue. Assume from the contrary that
A = 2is an eigenvalue with an eigenfunction f, and prove that (V, u) is bipartite. Since A\ = 2,
all the inequalities in the above calculation (1.8) must become equalities. In particular, we
must have for all x ~ y that

(f(@) = f@)=2(f @)+ f)),

which is equivalent to
f(z)+ f(y)=0.

If f(xzg) = 0 for some z( then it follows that f (x) = 0 for all neighbors of zy. Since the
graph is connected, we obtain that f (x) = 0, which is not possible for an eigenfunction.
Hence, f (z) # 0 for all x € I'. Then V splits into a disjoint union of two sets:

Vi={zeV:f(x)>0}and V- ={z eV : f(z) <0}.

The above argument shows that if € V' then all neighbors of x are in V~, and vice versa.
Hence, (V, ) is bipartite, which finishes the proof. m

2



Hence, we can enumerate all the eigenvalues of £ in the increasing order as follows:

O=X <A < M <. <Ay <2

Example. As an example of application of Theorem 1.4, let us investigate the solvability of
the equation Lu = f for a given f € F. Since by the Green formula (1.6)

> (Lu) (@) p () =0,

T

a necessary condition for solvability is
Y @) p@) =0. (1.9)

Assuming that, let us show that the equation Lu = f has a solution. Indeed, condition (1.9)
means that f11. Consider the subspace Fy of F that consists of all functions orthogonal to
1. Since 1 is the eigenfunction of £ with eigenvalue \qg = 0, the space F; is invariant for the
operator £, and the spectrum of £ in Fy is Ay,...Ay—_1. Since all A\; > 0, we see that L is
invertible in JFy, that is, the equation Lu = f has for any f € Fy a unique solution u € Fy
given by u = L71f.

The next statement contains an additional information about the spectrum of L for
bipartite graphs.

23



Theorem 1.5 Let (V, ) be finite, connected, and bipartite. If X is an eigenvalue of L then
2 — X s also an eigenvalue of L, with the same multiplicity. In particular, 2 s a simple
eigenvalue of L.

Hence, we conclude that a graph is bipartite if and only if Ay_; = 2.

Proof. Since the eigenvalues « of the Markov operator P = id —L are related to the
eigenvalues A\ of £ by a = 1 — ), the claim is equivalent to the following: if « is an eigenvalue
of P then —a is also an eigenvalue of P with the same multiplicity (indeed, & = 1 — X implies
—a=1—(2—-X)). Let V', V= be a partition of V such that x ~ y only if z and y belong to
same of the subset V', V~. Given an eigenfunction f of P with the eigenvalue «, consider

g (x) ={ Jigfx()x’)’ iigf . (1.10)

Let us show that ¢ is an eigenfunction of P with the eigenvalue —a. For all z € VT, we have

Pg(z) = > Px,y)gy) =D Pxy gy

= - ) Py f@)=-Pf(w)=-af(z) =—ag(x),

24



and for z € V'~ we obtain in the same way

Pg(z) = Y P(z,y)g(y)

yev+

= ) P(z,y)f(y) =Pf(z) =af (z) = —ag(z).

yeVv+

Hence, —a is an eigenvalue of P with the eigenfunction g.

Let m be the multiplicity of a as an eigenvalue of P, and m’ be the multiplicity of —a.
Let us prove that m’ = m. There exist m linearly independent eigenfunctions fi, ..., f,, of
the eigenvalue o. Using (1.10), we construct m eigenfunctions ¢, ..., g, of the eigenvalue
—a, that are obviously linearly independent, whence we conclude that m’ > m. Since
— (—a) = «, applying the same argument to the eigenvalue —« instead of «, we obtain the
opposite inequality m > m/, whence m = m’.

Finally, since 0 is a simple eigenvalue of L, it follows that 2 is also a simple eigenvalue of
L. Tt follows from the proof that the eigenfunction ¢ (z) with the eigenvalue 2 is as follows:
g(x)=con VT and g (z) = —c on V~, for any non-zero constant c. m

25



1.3 Distance function and expansion rate

Definition. A finite sequence {z}};_, of vertices on a graph (V, E) is called a path if
o~ T~ ... ¥ Tk ~ T41 ™~ ... ~ Ty

The number n of edges in the path is referred to as the length of the path. We say that the
path {x;},_, connects xy and z,,.

Definition. A graph (V, E) is called connected if, for any two vertices x,y € V, there is
a path connecting = and y. If (V, E) is connected then define the graph distance d(z,y)
between any two distinct vertices x,y as the minimal length of a path that connects x and
Y.

The connectedness here is needed to ensure that d (x,y) < oo for any two points. It is
easy to see that on any connected graph, the graph distance is a metric, so that (V,d) is a
metric space. For any two non-empty subsets X, Y C V, set

d(X,Y)= min d(z,y)

zeX,yey

Note that d (X,Y) > 0 and d (X,Y) > 0 if and only if X and Y are disjoint.

26



Let now (V, 1) be a weighted connected graph. For disjoint subsets X, Y of V' define one

more quantity:
1 X)p(Ye
2 LX) p ()
Since X C Y¢and Y C X¢, it follows that [ (X,Y) > 0. Furthermore, [ (X,Y) = 0 if and
only if X = Y. To understand better [ (X,Y’), express it in terms of the set Z = V\ (X UY)

so that 1 n(2) u(Z)
HXY) 2ln<1+u(X)><HN(Y)>'

Hence, the quantity [ (X,Y’) measures “space” between X and Y in terms of the measure of
the set Z.
Let |V| = N and let the eigenvalues of the Laplace operator £ on (V, u) be

0:)\0<)\1§---§/\N—1§2-

We will use the following notation:

AN_1— A
5= ANt 1

_ 2Bl T o, 1.11
AN—1+ M\ ( )

so that § € [0, 1).

27



Theorem 1.6 (F.Chung, AG, S.-T.Yau '96) For any two disjoint sets X, Y C V, we have

[(X,)Y
d(X,)Y)<1+ ( = ) (1.12)
In 3

(if 6 = 0 then set by definition l(i’f) =0).

é
Example. Let us show that

v
diam (V) < 1+ -~ In ’”‘fn ). (1.13)

)

where m = min,cy i (). Indeed, set in (1.12) X = {x}, Y = {y} where z,y are two distinct

vertices. Then )
e p()

s 1n

w () p(y) m

L (V)
d <1 | )

[(X,Y) <

DO | —

whence

Taking in the left hand side the supremum in all z,y € V', we obtain (1.13).

28



For any subset X C V, denote by U, (X) the r-neighborhood of X, that is,
Un(X)={yeV:d(y,X)<r}.

Corollary 1.7 For any non-empty set X C V and any integer r > 1, we have

%
u () > —A0 (114
T m(X)
Proof. Set Y =V \ U, (X) so that U, (X) = Y°and d(X,Y) = r + 1. By (1.12), we
have

which implies

st (X)  p() _ p(V)—p¥) _ pV)
p(X) — p(Ye) p(Ye) p(U (X))

whence (1.14) follows. =

29



Example. Given a non-empty set X C V', define the expansion rate of X to be the minimal
positive integer R such that

p(UR (X)) 2 51 (V).

Imagine a communication network as a graph where the vertices are the communication
centers (like computer servers) and the edges are direct links between the centers. If X is
a set of selected centers, then it is reasonable to ask, how many steps from X are required
to reach the majority (at least 50%) of all centers? This is exactly the expansion rate of X,
and the networks with short expansion rate provide better connectivity.

Let X consist of a singe vertex. Then

p(X) (V)

; =: M, 1.15
D00 e ) (1.15)
and (1.14) yields
p(V)
U,
(U ( ))_HM(SQT

Hence, if

Mé&* <1, (1.16)

30



then (U, (X)) > 2 (V). The condition (1.16) is equivalent to

M

T2
In

Y

DN | —
|

from where we see that the expansion rate R of any singleton satisfies

1 InM
<_
R_Q(ln%

1. (1.17)

Hence, a good communication network should have the number ¢ as small as possible. For
that, all non-zero eigenvalues of £ must lie in a neighborhood of 1. Indeed, if

)\1 and )\N—l E [1—€,1+8] (118)
then

_)\N—1_>\1< 2e . £
C wen=dw T 9—e d—¢

= €.

For many large practical networks, (1.18) holds with



which implies
1
In N
In this case we obtain the following estimate of the expansion rate:

55

r<iM o oM (1.19)
2Ing Inln N
Typically M ~ N so that M in (1.19) can be replaced by N.

For the internet graph, we have N ~ 10° and, hence, R < 7. This very fast expansion rate
is called “a small world” phenomenon, and it is actually observed in large communication
networks.

The same phenomenon occurs in the coauthor network: two mathematicians are con-
nected by an edge if they have a joint publication. Although the number of recorded
mathematicians is quite high (~ 10°), a few links are normally enough to get from one
mathematician to a substantial portion of the entire network. Formula (1.19) gives in this
case R < 5.

32



Proof of Theorem 1.6. Recall that (V, 1) is a weighted connected graph, N = |V| > 1.
For non-empty disjoint subsets X, Y of V', we define

d(X,Y)= inf d(z,y)

zeXyeY

and

1 (X0 u(re)
[(X,Y)==In . 1.20
XY ) = 3 e ) (1.:20)
Let 0 = Ao < A1 < ... < Ay_1 be the eigenvalues of the weighted Laplacian L. Set
AN-1— A1
6 = ———. 1.21
AN—1+ M\ ( )
We need to prove that
(XY
d(X,Y) <1+ ( ’1 ) ) (1.22)
ln g
As before, F is the space of all functions V' — R. Let wq, w,....,wy_1 be an orthonormal

basis in F that consists of the eigenfunctions of £, so that Lw;, = Apwy.

33



Any function u € F admits an expansion in the basis {wy} as follows:

N—-1
U = E AW
k=0

1

with some coefficients a,. Since wg = T

and ag = (u,wy), we obtain

(u, 1) 1 -
0Wo = > Zu(a:),u(x):u
I wV) =
Denote
N-1
v =u—1u= apWi
k=1

so that u = u + «' and v’ L.
Let ® (A) be a polynomial with real coefficient. We have

N-1 N—-1
O(L)u=Y a®N)we=P(0)a+ Y ap® () wy.
k=0 k=1

34

(1.23)



If v is another function from F with expansion

then

(@ (L)u,v) = (@ (0) 11,17)—|—Z_akbk<b(>\k)

N—-1
> @ (0)avu (V) — max |® ()| ) lax| b
k=1

1<k<N-1

> @ (0)avp (V) — max | (\g)| [[/] [v']]-

1<k<N-1
Assume now that suppu C X, suppv C Y and that
D:=d(X,Y)>2
(if D <1 then (1.12) is trivially satisfied). Let us show that if deg® < D — 1 then
(® (L) u,v)=0.
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Indeed, the function L*u is supported in Uy (suppu), whence it follows that ® (L£)u is

supported in Up_1 (X). Since Up_; (X) is disjoint with Y, we obtain (1.25).

(1.25) and (1.24), we obtain

uvp (V)
SN >P(0) ————=.
e, 12 Al 2 2 O
Let us take now © = 1x and v = 1y. We have
- p(X) o p(X)? 2
a=M2 g = C ol = (X)),
LS =Rl = ()

whence

/| = +/Tfull® = [l = \/u () - P \/ i (X) p(X)

Using similar identities for v and substituting into (1.26), we obtain

1 (X) i (Y)
B (X) (V)

max [P (A\g)| > @ (0) \/

1<k<N-1
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Finally, let us specify ® (A) as follows:

o)) = (w ~ A) |
2
Since max |® (A)| on the set A € [A;, Ax_1] is attained at A = A\ and A = Ay_; and

Ava =M\
) = | ——
[Afg;&v}iﬂ | ()\)‘ ( 2 ) ’

it follows from (1.27) that

(o) (o) R

Using definitions (1.20) of [ (X,Y’) and (1.21) of 4, we obtain

exp (1 (X, 1)) > (g)D |

Taking In, we obtain (1.12). m
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1.4 Cheeger’s inequality

Let (V,u) be a weighted graph with the edges set E. Recall that, for any vertex subset
Q2 C V, its measure u (Q2) is defined by

p(@) =3 u(a).

xze)

Similarly, for any edge subset S C FE, define its measure u (S) by

p(S) = pe

£es

where p, := p,, for any edge £ =7y,
For any set Q0 C V, define its edge boundary OS2 by

N={zyeE:z€Qy¢O}.

Definition. Given a finite weighted graph (V, ), define its Cheeger constant by

. p (092)
= = f . 1.2
h=h(V,p) L) (1.28)
w(Q)<su(V)
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In other words, A is the largest constant such that the following inequality is true
1 (00) = b (©)

for any subset  of V with measure p () < u (V).

Lemma 1.8 We have \; < 2h.

Proof. For any f € F \ {0}, consider the Rayleigh quotient

(L1, f)

RU="57

Since

M RO,

it suffices to find a function f such that f11 and R (f) < 2h.

(1.29)

Let € be a set at which the infimum in (1.28) is attained. Consider the following function

f(x):{ 1, zeq

—a, x € Q°
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where a is chosen so that f11, that is, p (£2) = ap (2°) whence

We have
(f )= F@)?p(@)=pn(Q)+du(Q)=(1+a)pu )

zeV
and by the Green formula (1.6)

(L) = 35 (Vhal tny= 3 (Yl by

zeN,yee

= (1+a)’ >y =0+0a)u(09).

reN,yeNe

Hence,
(1+0) 1 (00)
(1+a)p ()

R(f) < = (14 a)h < 2h,

which was to be proved. =
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Theorem 1.9 (Alon, Milman ’86) We have

A > (1.30)

The inequality (1.30) is called Cheeger’s inequality because it is similar to an inequality
proved by J.Cheeger "70 for Riemannian manifolds.

We precede the proof Theorem 1.9 by two lemmas. Given a function f:V — R and an
edge & = 7y, let us use the following notation:

VeS| = [Vay fI = |f () = F ()]
Lemma 1.10 (Co-area formula). Given any real-valued function f on 'V, set for anyt € R
Q={zxeV:f(x)>t}

Then the following tdentity holds:

> (Veflug= [ (o)t (1.31)

O
D) =63
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A similar formula holds for differentiable functions on R:

/|f = #o: o) =tha

and the common value of the both sides is called the total variation of f.
Proof. For any edge { = 7y, there corresponds an interval I C R that is defined as
follows:

e = [f(z), f(y))

where we assume that f(z) < f(y) (otherwise, switch the notations x and y). Denoting by
|I¢| the Euclidean length of the interval I, we see that |V¢f| = |I¢].

Claim. § € 0, <=t c I;.
Indeed, 0€); consists of edges & = Ty such that

z€Qf and y e <= f(z)<tand f(y) >t < t€[f(z),f(y) =1

Thus, we have

O = D me= D ne=) peli(t)

&€ EeEqtel, (el
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whence

/_ m w(0Q) dt = /_ mzug 1y, (t)dt

= Z/ oo,ugllg(t)dt

EebE Y

= Zﬂg | Le| = Z/ﬁdv&f‘-

IS (eE

Lemma 1.11 For any non-negative function f on V', such that

ple eV f(@)> 0} < 5u(V),

the following is true:

S IVeflue = b f (@) p(z),

EeE zeV

where h is the Cheeger constant of (V, ).
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Note that for the function f = 1q the condition (1.32) means that p (Q) < su(V), and
the inequality (1.33) is equivalent to

p(09) = hu (€),

because
d f@pl) =) p)=
eV TEQ
and
S IVeflue= D @) = F@) o= D tay=pn(09Q).
¢ekb e, yele e, yee

Proof. By the co-area formula, we have
> IVeflne= [ w0 de= [ uoa
¢CE 0

By (1.32), the set Q; = {z € V : f (z) >t} has measure < (V) for any ¢ > 0. Therefore,
by (1.29)
1 (0€) = hp ().
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It follows that -
Z‘vff‘ﬂg > h/ o (S%) dt
¢EE 0
Observe that, for t > 0,

r e <=te|0,f(x)),

we obtain

| n@a = " u@a
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Proof of Theorem 1.9. Let f be the eigenfunction of A\;. Consider two sets
Vt={zeV:f(x) >0} andV ={xeV:f(zx)<0}.

Without loss of generality, we can assume that p (V™) < p (V™) (if not then replace f by
—f). It follows that (V") < 24 (V). Consider the function

— P f7 f Z 07
g_f+'_{ 0, f<0.
Applying the Green formula (1.6)
1
z,yeV
and using so that Lf = A\ f, we obtain
1
MY F@o@n@) = 5 3 (Vo) (Vo) 1y

zeV z,yeV

Observing that fg = ¢ and
(Vayf) (Vayg) = (f () — f () (9 () — 9 () = (9 (y) — 9(2))* = |Vaygl”.
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we obtain

> ‘vég‘zﬂg

{elE

NAOIIO)

zeV

Note that g # 0 because otherwise f, =0 and (f,1) = 0 imply that f_ = 0 whereas f # 0.
Hence, to prove (1.30) it suffices to verify that

S IVeol e = 5 @) (a). (1.34)

(e zeV

A1

Since

preVig(x)>0)<pu(Vh) <-pV),

we can apply Lemma 1.11 to function ¢ and obtain

S IVe (@) ue=hd g (@ (1.35)

¢elb z€eV

Let us estimate from above the left hand side as follows:
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> Ve (@) ne = %Z 19%(2) = 9° (V)| 1y

(el z,yeV

= —Zlg s lg(x) + g(y) |y

1 1

1/2
< (5(2(9(56)g(y))zuxy)§(2(g($)+g(y))2umy)> :

T,y T,y

where we have used the Cauchy-Schwarz inequality

oo (2 (24

k k

that is true for arbitrary sequences of non-negative reals ay, by. Next, using the inequality
1
5(a+b)2 < a4 b7

we obtain
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1/2
> Ve (@) pe < (Z Vegl* 1e Y (9°(x) + 9°()) uxy>

§EE ¢cE
1/2
= <2Z|Vgg ugzg %;,)
EeE
1/2
— <2Z|V592u5292($)u($)> ,
EeE zeV

which together with (1.35) yields

1/2 1/2

hYy g (x)p(z) < (2 > |Vegl? Mg) (Z g () (93)) -

eV ¢EE eV

Dividing by (3>,cy 92 (z) (x))1/2 and taking square, we obtain (1.34). =
Go to Chapter 2
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1.5 Eigenvalues in a weighted path graph
Consider a path graph Py with the set of vertices V = {0,1,...N — 1} and the edges

O~1~2~ .. ~N—1.

Define the weights gy 4, := my, where {mk}g:_ll is a given sequence of positive numbers.
Then, for 1 < kK < N — 2, we have

p(k) = Mr—1k T Hi g1 = Mk + Mg,

and the same is true also for k = 0, N — 1 if we define m_; = my = 0. The Markov kernel

is then
_ Heg+1  Mip

Pk k+1)= = .
( ) (k) My + Mgt

Claim. Assume that the sequence {mk}ivz_ll is 1ncreasing, that is, my < mgyq. Then h > ﬁ

Proof. Let Q be a subset of V' with () < $u(V), and let k& — 1,k be an edge of
the boundary 02 with the largest possible k. We claim that either €2 or €2¢ is contained in
[0, k — 1]. Indeed, if there were vertices from both sets Q2 and Q¢ outside [0, k — 1], that is, in
[k, N —1], then there would have been an edge 7 — 1, j € 02 with j > k, which contradicts the
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choice of k. It follows that either p () < p([0,k —1]) or pu(Q°) < u
since 1 () < p (€2°), we obtain that in the both cases u (2) < ([0, k
k—1 k—1
p(0,k=1]) = > u(G) =Y (1, +1,1)
=0 =0
k—1
= Z (m; + mjp1)
=0

where we have used that m; < m;,; < my. Therefore
(1 (8) < 2kmy.

On the other hand, we have

whence it follows that

which proves that h > ﬁ |

51

(1.36)



Consequently, Theorem 1.9 yields

1
M2 (1.37)

If the weight p is simple then A\; = 1 — cos 17— so that, for large NV,

2 D
2(N —1)> N

~~
~

A

which is of the same order in IV as the estimate (1.37).
Let us estimate the expansion rate of (V) ). Since this graph is bipartite, we have

5::>\N_1—)\1:2—)\1§1_ﬁ
AN—1+ A 24N 2
and by (1.17)
1 InM 1. InM 1 InM In M
R<S[TF] <ol 1< s [r ] S ——+1
2 lng 2 lnl_)\l/2 2 )\1/2 >\1
where v
M:maxu( )
Eoop (k)
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Observe that

N—-1 N-—1
p(V)y= ) (mj+mj) <2 Z my
Jj=0 j=1

It follows

1
For an arbitrary increasing sequence {my}, we obtain using (1.37) that

R < 8N?In M, + 1.
If the sequence {my} increases at most polynomially, say my < kPmg, then
MO 5 Np-l-l’

and we obtain
R < CN?In N.
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Now assume that the weights my satisty a stronger condition
Mg+1 = CM,

for some constant ¢ > 1 and all £ = 0,..., N — 2. Then m; > ck_jmj for all & > j, which
allows to improve the estimate (1.36) as follows

k—1 k—1
p(0,k—1]) = (m; +mj1) < (Oj_kmkvLCjH_kmk)
j=0 j=0
k 1—k k—1 k 1—k t—1
= mk(c_ +c‘)(1+c+...c‘):mk(c_ +c_)—1
C_
< mkc—|—1'
c—1
Therefore, we obtain
 (092) >c—1
w(2) —c+1

and, by Theorem 1.9,

1 /c—1\2
vl () -

c—1
whence h > -
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Consider the specific weights m;, = ¢* where ¢ > 1. Then we have

N—l_l

N—-1
, ©
My=2 ) ——

whence

InMy~ Nlnec.
By (1.38) and (1.39), we obtain

1\ 2
R<2<C+ ) Nlnec.

~ c—1

Note that in this case R is linear in N'!
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1.6 Products of weighted graphs

Definition. Let (X, a) and (Y,b) be two finite weighted graphs. Fix two numbers p,q > 0
and define the product graph

(Vi) = (X, a) Oy g (Y, 0)
as follows: V = X x Y and the weight p on V is defined by

Hey), @y = Pb(Y)as
Hzy),(zy) — 49 () byyr

and f, .y (o) = 0 otherwise. The numbers p, ¢ are called the parameters of the product.

Clearly, the product weight p, .y v, 18 symmetric. The weight on the vertices of V' is
given by

M (.CU, y) = Z :u(x,y),(x’,y’) =P Z awm'b (y) +4q Z a (x) byy'
w/ y/ a,:/ y/

= (p+qa(x)b(y).
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Claim. If A and B are the Markov kernels on X and Y, then the Markov kernel P on the
product (V, p) is given by

LA (z,2"), ify=1y,

ptq
P((z,y), @ y) =4 ;5BWy), fz=2, (1.40)
0, otherwise.

Proof. Indeed, we have in the case y = ¢/ (and the case x = &’ is similar):

I Hay),(=' y) paxx’b(y) P Qgy p /
P L, Y),\ T, Y = = — = A T,T ).
) ) =Dy ~ o )e@be)  prae@  pra )
]
For the random walk on (V,p), the identity (1.40) means the following: the random

walk at (z,y) chooses first between the directions X and Y with probabilities -2 and ~T-,

respectively, and then chooses a vertex in the chosen direction accordingly to the Markov

kernel there.
In particular, if a and b are simple weights, then we obtain

Bay @y = pdeg(y) if z~ a2
By @y) = ddeg(x) if y~y
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and f, ) (o) = 0 otherwise.
If in addition the graphs A and B are regular, that is, deg (z) = const =: deg (A) and
deg (y) = const =: deg (B) then the most natural choice of the parameter p and ¢ is as

follows
1 1

pr— d pu—
deg(B) " " deg(A)’
so that the weight p is also simple. We obtain the following statement.

p

Lemma 1.12 [f (X,a) and (Y,b) are reqular graphs with simple weights, then the product
(X, a)D 1 1 (Y, b) (141)

deg(B)’deg(A)

is again a reqular graph with a simple weight. The degree of the product graph (1.41) is
deg (A) + deg (B).

Example. Consider the graphs Z" and ZF with simple weights. Since their degrees are
equal to 2n and 2k, respectively, we obtain

Z' O, . ZF =77

2k’ 2n
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Theorem 1.13 Let (X, a) and (Y,b) be finite weighted graphs without isolated vertices, and
let {ak}Z;é and {ﬁl}ﬁgl be the sequences of the eigenvalues of the Markov operators A
and B respectively, counted with multiplicities. Then all the eigenvalues of the Markov

operator P on the product (V,u) = (X,a)0,,(Y,b) are given by the sequence {p—o‘”qﬂl}

ptq
where k =0,...n—1 and [ =0,...,m — 1.

In other words, the eigenvalues of P are the convex combinations of eigenvalues of A
and B, with the coefficients zﬁq and zﬁq' The same relation holds for the eigenvalues of the
Laplace operators because

,_Pautab _p(l—a) +q(l-5)

p+q P+q

Proof. Let f be an eigenfunction of A with the eigenvalue v and g be the eigenfunction of
B with the eigenvalue (. Let us show that the function h (z,y) = f () g (y) is the eigenvalue
of P with the eigenvalue pz—igﬂ.

We have

Ph(z,y) =Y P((x,y),(«,y))h(y)
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= ) P(@y), @ y))h y)+> Py, @y) h(xy)

- ]%q;fux,xvf(x')g(y)+]%q§3<y,y’>f<x>g<y'>
= L Af( .

= 1 @)+ f(@) Bgy)

_ P e AP

= g @)+ B (@) ()

_ patab,

T p+q h( 7y)7

which was to be proved.

Let {fx} be a basis in the space of functions on X such that Afy = ayfx, and {g;} be
a basis in the space of functions on Y, such that Bg, = §,9;. Then hy, (z,vy) = fr (z) g (v)
is a linearly independent sequence of functions on V = X X Y. Since the number of such
functions is nm = |V|, we see that {hy} is a basis in the space of functions on V. Since hy,

is the eigenfunction with the eigenvalue 22t9% po"“—ﬂﬁl}

e o We conclude that the sequence { o

exhausts all the eigenvalues of P. =
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Corollary 1.14 Let (V, E) be a finite connected reqular graph with N > 1 vertices, and set
(V" E,) = (V,E)™™. Let p be a simple weight on V, and {ak},ivz_ol be the sequence of the
eigenvalues of the Markov operator on (V, ), counted with multiplicity. Let u, be a simple
weight on V™. Then the eigenvalues of the Markov operator on (V™ u,) are given by the

sequence
{akl —I—Oékg —l—...—l—Oékn} (1 42)
n

for all k; € {0,1,.... N — 1}, where each eigenvalue is counted with multiplicity.

It follows that if {Ak}é\fz_ol is the sequence of the eigenvalues of the Laplace operator on
(V, ) then the eigenvalues of Laplace operator on (V" u,,) are given by the sequence

{)\kl + Ak, +...+)\kn} (1.43)

n

Proof. Induction in n. If n = 1 then there is nothing to prove. Let us make the inductive
step from n to n + 1. Let degree of (V, E) be D, then deg (V") = nD. Note that.

(VM Ep) = (V™ E,)O(V,E)
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It follows from Lemma 1.12 that

(Vn+17 :un—i—l) - (Vn7 Mn) L (‘/; /“L) :

1 1
D’>nD

By the inductive hypothesis, the eigenvalues of the Laplacian on (V" u,,) are given by the
sequence (1.42). Hence, by Theorem 1.13, the eigenvalues on (V”“, L, +1) are given by

1/D 07 + 077 + ...+ (077 1/ (TlD)
1/D + 1/ (nD) n 1/D + 1/ (nD)*
_ n Ckk1+&k2+...+&kn+ 1 o
n+1 n n+1
Oy Qg T T O, T O
B n+1 ’

which was to be proved. =
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1.7 Eigenvalues in 7Z,,

Let us compute the eigenvalues of the Markov operator P on the cycle graph 7Z,, with simple
weight:
O~1~2~...~m—1~0.

The Markov operator is given by

Pf (k) zl(f(k+1)+f(k:—1)) for any k =0, ...,m — 1 mod m.

2
The eigenvalue equation Pf = af becomes
fk+1)—2af (k)+ f(k—1)=0. (1.44)
We know already that a = 1 is always a simple eigenvalue of P, and a = —1 is a (simple)
eigenvalue if and only if Z,, is bipartite, that is, if m is even. Assume in what follows that
ae(—-1,1).

Consider first the difference equation (1.44) on Z, that is, for all k € Z, and find all
solutions f as functions on Z. The set of all solutions of (1.44) is a linear space, and the
dimension of this space is 2, because function f is uniquely determined by (1.44) and by two
initial conditions f (0) = a and f (1) = b. Therefore, to find all solutions of (1.44), it suffices
to find two linearly independent solutions and take their linear combination.
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Let us search specific solution of (1.44) in the form f (k) = ¥ where the number r is to
be found. Substituting into (1.44) and cancelling by r*, we obtain the equation for 7:

r? —2ar +1=0.
It has two complex roots
r:aiim:eiw,
where 6 € (0, 7) is determined by the condition
cosf = a (and sinf =1 — a?).
Hence, we obtain two independent complex-valued solutions of (1.44)
fi (k) = e™ and fy (k) = e,

Taking their linear combinations and using the Euler formula, we arrive at the following
real-valued independent solutions:

fi (k) =coskf and f5 (k) = sin k6. (1.45)

In order to be able to consider a function f (k) on Z as a function on Z,,, it must be
m-periodic, that is,
f(k+m)=f(k) for all k € Z.

64



The functions (1.45) are m-periodic provided m#@ is a multiple of 2, that is,

g 2l

m
for some integer [. The restriction 6 € (0, 7) is equivalent to

[ € (0,m/2).

Hence, for each [ from this range we obtain an eigenvalue a = cos 6 of multiplicity 2 (with
eigenfunctions cos kf and sin k@).
Let us summarize this result in the following statement.

Proposition 1.15 The eigenvalues of the Markov operator P on the graph Z.,, are as fol-

lows:

1. Ifm is odd then the eigenvalues are « = 1 (simple) and o = cos %l foralll =1, ..., mTfl
(double);

2. if m is even then the eigenvalues are a = +1 (simple) and o = cos%”l for all

l=1,..,% —1 (double).
In the both case, all the eigenvalues of P with multiplicities are listed in the following

sequence:
.\ m—1
21]
Ccos —— )
m J ;g
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For example, in the case m = 3 we obtain the Markov eigenvalues o = 1 and a = cos 2?” =
—2 (double). The eigenvalues of £ are as follows: A = 0 and A = 3/2 (double). If m = 4
then the Markov eigenvalues are o = 1 and a = cos %f = 0 (double). The eigenvalues of £
are as follows: A =0, A =1 (double), A = 2.

1.8 Eigenvalues in Z;,

Consider the graph Z! with odd m. In the case n = 1, all the eigenvalues of P in Z,, are
listed in the following sequence (without multiplicity):

2l = 1
{_} =g, ==t (1.46)
m

This sequence is obviously decreasing in [, and its maximal and minimal values are

2 —1
1 and cos (—W—m )z—cosi,
m 2 m

respectively. For a general n, by Corollary 1.14, the eigenvalue of P have the form

g, + Qpy + ..o + O,
n

(1.47)
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where ay, are the eigenvalues of P for n = 1, that is, elements of the sequence (1.46). In
particular, the minimal value of (1.47) is equal to the minimal value of oy, that is, to —cos -.
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1.9 Additional properties of eigenvalues

Theorem 1.16 Let (V, ) be a finite, connected, weighted graph with N := |V| > 1.

(a) Then we have

M+ ...+ Ay =N (148)
and, hence,
N
A < T < Ava (1.49)
(b) If (V,pu) = Ky, that is, (V, ) is a complete graph with a simple weight then
N
Al =...=Ay_1= ——.
1 N-1= N

(¢) If (V, ) is non-complete then Ay < 1. Consequently, a graph with a simple weight is
complete if and only if A\ > 1.

For example, for K, = A , we obtain that the eigenvalues of £ are 0 (simple) and %
(with multiplicity 3).

68



Proof. (a) Let {v;}r -, be an orthonormal basis in F that consists of the eigenfunctions
of £, so that Lv, = Agvg. In the basis {v;}, the matrix of L is

dlag ()\07 )\17 ---)\N—l) 5
Since \g = 0, we obtain
trace£:>\0+>\1—|—...+)\N_1 :)\1+---+)\N—1- (150)

Note that the trace trace £ does not depend on the choice of a basis. Let us choose another
basis as follows: enumerate all the vertices of V by 0,1,..., N — 1 and consider the indicator
functions 14y (where £ = 0,1,..., N — 1) that obviously form a basis in F. The components
of any function f € F in this basis are the values f (k). Rewrite the definition of £ in the

form
Lf ZPZ] ZP’L]

JF#i

We see that the matrix of £ in this basis has the values 1 on the diagonal and —P (4, j) in
the intersection of the column 7 and the row j off the diagonal. It follows that trace L = N
whence (1.48) follows. Since A; is the minimum of the sequence {A;,...,Any_1} of N —1
numbers and Ay_; is its maximum, we obtain (1.49).

69



(b) We need to construct N — 1 linearly independent eigenfunctions with the eigenvalue

NL As above, set V ={0,1,..., N — 1} and consider the following N — 1 functions fj for
k= LN —1:
1, =0,
fr (i) = -1, 1=k,
0, otherwise.
We have |
Lfr () = fu (@) — mZﬁc (7) -

If i = 0 then f; (0) = 1 and in the sum »_,, fi (j) there is exactly one term = —1, for
j = k, and all others vanish, whence

LHO) = fi0) ~ s 3 () =14 o = = 1 (0).

If i = k then fi, (k) = —1 and in the sum >, fx (j) there is exactly one term = 1, for
j =0, whence

Efk(k):fk(k>_m2fk(j):_1_N_l:N_lfk(k)'




If i # 0,k then f, (1) = 0, while in the sum » ., fi (j) there are terms 1, —1 and all others

are 0, whence
N

L () =0=5"

i () -

Hence, Lf; = % fr- Since the sequence { fk}kN:_ll is linearly independent, we see that %
is the eigenvalue of multiplicity N — 1, which finishes the proof.
(¢) By the variational principle, we have

Alz}ﬂl_gR(f)v

where R (f) is the Rayleigh quotient and the condition f11 comes from the fact that the

eigenfunction of )\ is constant. Hence, to prove that A\; < 1 it suffices to construct a function
fL1 such that R (f) < 1.

Claim 1. Fiz z € V and consider the indicator function f = 1y,y. Then R(f) < 1.
We have
(£,) =D f (@)’ p(2) = u()

zeV
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and, by the Green formula,

(L] f) =

> (f@) = fF @) iy
_ %( oo+ )(f(af)f(y))Qumy
T=2,y#z  TFEZY=2
yF#

N | —

z YF#£z

whence R (f) < 1 (note that if the graph has no loops then we obtain the identity R (f) = 1).
Clearly, we have also R (¢f) <1 for any constant c.

Claim 2. Let f,g be two functions on V' such that
R(f)<1, R(g =1,
and their supports
A={z eV :f(zx)#0} and B={x eV :g(x)#0}

are disjoint and not connected, that is, x € A and y € B implies that x # y and x +# y.
Then R (f +g) < 1.
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It is obvious that fg = 0. Let us show that also (L£f) g = 0. Indeed, if g (z) = 0 then
(Lf)g(z) =0. If g(x) # 0 then x € B. It follows that f(x) = 0 and f(y) = 0 for any

y ~ x whence

Lf(@)=f(x)=) P(zy)f(y) =0

Yy~

whence (Lf) g () = 0. Using the identities fg = (Lf) g = (Lg) f = 0, we obtain
(f+a9.f+9) =) +2(f9)+(g9.9) = (. f)+(9,9)

and

(L(f+g),f+g) = (Lf,f)+(Ly, f)+(LSf,g9)+(Lg,9g)

Since by hypothesis
(Lf, f) < (f, f) and (Lg,g) < (9,9)

it follows that




Now we construct a function f11 such that R (f) < 1. Since the graph is non-complete,
there are two distinct vertices, say z; and zs, such that z; ¢ z9. Consider function f in the
form

f(x) =caley +ely,,

where the coefficients ¢; and ¢y are chosen so that f11 (for example, ¢; = 1/u(2;) and
o = —1/p(29)). Since R (cz-l{zi}) < 1 and the supports of 1,3 and 1g.,, are disjoint and
not connected, we obtain that also R (f) < 1, which finishes the proof. =
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2 Infinite graphs

Here (V, i) is always a connected locally finite weighted graph, finite or infinite, and |V] > 1.

2.1 The Dirichlet Laplacian and its eigenvalues

Given a finite subset 2 C V, denote by Fq the set of functions V' — R such that f|g. = 0.
Then Fq is a linear space of dimension N = |{)|. Define the operator Lg on Fq as follows:

_J Lf inQ
EQf_{O in Q¢

so that Lqof € Fq and Lq : Fo — Fq.
Definition. The operator L is called the Dirichlet Laplace operator in €.

Example. Recall that the Laplace operator in Z? with a simple weight is defined by

Li@) =f@) -7 f ).

Yy~x
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Let Q be the subset of Z? that consists of three vertices a = (0,0), b = (1,0), ¢ = (2,0), so
that a ~ b ~ ¢. Then we obtain for Lq the following formulas:

Lof(a) = f(@)~3f0)
Laf () = F(B)=3(fla)+ /()
Lof(0) = f(0) =7/ ().
Consequently, the matrix of Lg is
1 —1/4 0
~1/4 1 —1/4
0 -1/4 1

and the eigenvalues are 1, 1 &+ }1\/5

For comparison, consider () as a finite graph itself. Then {2 = P; and we know that the
eigenvalues are 0,1,2. As we see, the Dirichlet Laplace operator of Q) as a subset of Z? and
the Laplace operator of 2 as a graph are different operators with different spectra.
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Returning to the general setting, introduce in Fq the inner product
= f@)g@) p(z).
€
Lemma 2.1 (Green’s formula) For any two functions f,g € Fq, we have

(Laf.0) =5 3 (Vaf) (Vo) oy 2.1)

x7y€QI

where 1 = Uy ().

Proof. Applying the Green formula of Theorem 1.1 in €2; and using that ¢ = 0 outside
(), we obtain

(Laf.g) = Y Lf(x)g(x)p()

33691
T yEQl x€Q1,y€f
a8 y€Q1
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We have used the fact that the last sum in (2.2) vanishes. Indeed, the summation can be
restricted to neighboring x,y. Therefore, if y € Qf then necessarily z € Q¢ and g (z) =0. =
Since the right hand side of (2.1) is symmetric in f, g, we obtain the following consequence.

Corollary 2.2 Lg is a symmetric operator in Fq.
Hence, the spectrum of Lg is real. Denote the eigenvalues of L in increasing order by
AL () < () <. < AN (Q),
Since Lg is symmetric, the smallest eigenvalue A\, (2) admits the variational characterization:

A (Q) = et R (f), (2.3)

where the Rayleigh quotient R (f) is defined by

(Laf f) _ 3D ayeas (Vayl) tay
(f: ) Yeea F2@)ulz)

where the second equality is true by Lemma 2.1. Note that the ranges = € €} and z,y €
of summations in (2.4) can be extended to x € V and x,y € V respectively, because f is
supported in €.

R(f) = (2.4)
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Theorem 2.3 Let ) be a finite non-empty subset of V' with non-empty Q°. Then the fol-
lowing s true.

(@) 0 <A\ () <1

(D) A1 (22) + An () < 2.Consequently,

spec Lo C [A(2),2 =X ()] € (0,2). (2.5)
() A\ (Q) decreases when ) increases.

Proof. (a) Let f be the eigenfunction of A; (€2). Then we have

1 2
7 (@) = Lol ) 3 Eenenn Vel |ty 26)

(f, f) 2 weq fH()p(x)

which implies A\ (©2) > 0. Let us show that A; (2) > 0. Assume from the contrary that
A1 (©) = 0. It follows from (2.6) that V,, f = 0 for all neighboring vertices x,y € ;.

That is, Vx,y € Oy, if  ~ y then f (x) = f (y). Since the complement Q¢ is non-empty,
3z € Q°. Since (V, p) is connected, for any x € € there is a path {z;},_, connecting = and
z, let g = x and x,, = z. Let k£ be the minimal index such that x, € Q¢ Since x,_; € Q)
and x_1 ~ 1, it follows that x; € ;.
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Hence, all the vertices in the path xy ~ 1 ~ ... ~ xp_1 ~ x; belong to €); whence we
conclude that

f(@o) = f(z1) =... = f(2x).

Since f (x) = 0 it follows that f (x) = f(z9) = 0. Hence, f = 0 in 2. This contradiction
proves that A\; () > 0.
To prove that A\ (€2) < 1, we use the trace of the operator Lg. On the one hand,

trace (Lq) = A1 (Q) + ... + An () > N (). (2.7)

On the other hand, since

Lof(a )= _Play)f
y#T

the matrix of the operator Lq in the basis {1{“?}}9569 has all diagonal values 1 so that
trace (Lq) = N. Comparing with (2.7), we obtain A; (©2) < 1.
(b) Let f be an eigenfunction with the eigenvalue Ay (€2). Then we have similarly to (2.6)

% Zx,yev (vaf)z :uacy
Y wev [A(@)u(z)
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Av () =R (f) =




Applying (2.3) to the function |f|, we obtain

% Zx,yEV (va ‘f|)2 Mgy
D ey FA@)pu(z)

A (Q) <R (f]) =

Since

(Ve f)* + (Vay |f1)* = (f (=) = F@)* + (1f (@) = [F@)])* <2 (F2(2) + () ,
it follows that
Zw,yEV (fz(x) =+ f2(y)) quy

A1 (Q) + Ay (Q) <

- > vy [P(@)p(z)
B 2> eev 2yev I (B)bizy _ 2> ey [P(@)p (@) _9
> wev [2(@)p(z) > zev [ (@)p(z) '

(c) If Q C € then Fo C For and

M@= inf R(f)> inf R(f)=h(Q).

which was to be proved. m
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2.2 The Dirichlet problem

In this section we assume that €2 is a finite non-empty subset of V' such that ¢ is non-empty.

Theorem 2.4 Let Q) be a finite non-empty subset of V' with non-empty Q2°. Consider the
following Dirichlet problem:
Aju=f inQ,
{ u=yg in Q°, 25)
where u : 'V — R is an unknown function while the functions f : 0 — R and g : 2° — R are
given. Then (2.8) has a unique solution u.

Proof. Let us extend g arbitrarily to €2, set v = u — g and rewrite (2.8) as follows:

Ayw=~h inQ,
{ v=20 in Q°, 28
where h = f — A, g. Equivalently, (2.9) means that
veFq and Lov=—h in Q. (2.10)

By Theorem (2.3), spec Lg does not contain 0 so that Lq is invertible in Fq, which yields a
unique solvability of (2.10) and, hence, that of (2.9) and (2.8). =
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For any function u : V' — R define its Dirichlet energy in 2 by
D (u) := = Z (Vayu)? g,  Where Q) = U ().
:E,yEQl
Theorem 2.5 (The Dirichlet principle) If uw € F is the solution of the Dirichlet problem

Lu=0 1
{ u=g nQ° (2.11)
then D (u) < D (v) for any function v € F such that v =g in Q°.

Proof. Set w = u — v so that w = 0 in °. Since D (+) is quadratic, we have

D(w)=D(u+w)=D )+ Y (Vayu)(Vayw) i, + D (w).
z,yeM
Since w = 0 in Q¢ and Lu = 0 in 2, we obtain by (2.2) that

9 Z xyu wyw :uwy Z ‘Cu ) 07

x,yeM e

whence D (v) = D (u) + D (w) > D (u). m
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2.3 Geometric estimates of eigenvalues

Recall that, for any subset €2 of V| the edge boundary 0f2 is defined by
N={Ty e FE:ze,yecY.

Also, for any subset S C F, its measure is defined by

p(S)=> e

¢es
Definition. For any finite subset 2 C V', define its Cheeger constant by

_ o #0OU)
h(Q)_Uch‘z p(U)’

where the infimum is taken over all non-empty subsets U of ).

In other words, h (£2) is the largest constant such that the following inequality is true
1 (3U) = h(Q) (V) (2.12)

for any non-empty subset U of 2.
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Theorem 2.6 (Cheeger’s inequality) We have

A (Q) > Sh(Q).

The proof is similar to the case of finite graphs. We start with the following lemma.

Lemma 2.7 For any non-negative function f € Fq, the following is true:

S IVeflue > @Y f @) p(a). (213)

EeE zeV
Proof. By the co-area formula of Lemma 1.10, we have
> Veflpe > / 1(0Uy) dt,
0

{eE

where Uy = {x € V : f(x) > t}. Since U; C Q for non-negative ¢, we obtain by (1.29)

1 (OU) > h () p (Uy)
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whence

> IVeflue 2 h(@) [ n(at

S

On the other hand, as in the proof of Lemma 1.11, we have
/ (Udt=> " f(z
0 zeV
which implies (2.13). =
Proof of Theorem 2.6. Let f be the eigenfunction of A; (2). Rewrite (2.6) in the

form ,
deE Ve f] He
> wev 2 (T) p(z)

Hence, to prove (2.13), it suffices to verify that

A1 (Q) -

S VesPue = LY @), 2.14)

EeE zeV
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Applying (2.13) to function f2, we obtain

DIV () e 2 (@D 12 (@) (@) (2.15)

(eE zeV

The same computation as in the proof of Theorem 1.9 shows that

D Ve (£)] e < <2Z|ng ey (@ >/

¢cE €€E z€V

Combining this with (2.15) yields

1/2 1/2
Q)ZfQ(w)u(w)S(2ZV5f2ug> <Zf2(x)u(fv)> :

z€V ¢EE z€V

Dividing by (3 ,cy 2 (z) p (x))1/2 and taking square, we obtain (2.14). =
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2.4 Isoperimetric inequalities

Definition. We say that a weighted graph (V, ) satisfies the isoperimetric inequality with
a function @ (s) if, for any finite non-empty subset Q2 C V,

1 (09) > B (u(9). (2.16)
We always assume that ® (s) is a non-negative function that is defined for all

s > inf p(z) (2.17)

zeV
so that the value p (£2) is in the domain of ® for all non-empty subsets 2 C V.

Example. A connected infinite graph with a simple weight always satisfies the isoperimet-
ric inequality with function ® (s) = 1. Indeed, any finite subset () has at least one edge
connecting € with ¢ (because of the connectedness).

For the lattice graph Z the sharp isoperimetric function is ® (s) = 2.

As we will show later on, Z™ satisfies the isoperimetric inequality with the function
D (s) =cps m

' for some constant ¢,,, > 0.
There is a tight relation between isoperimetric inequalities and the Dirichlet eigenvalues.
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Definition. We say that (V, u) satisfies the Faber-Krahn inequality with a function A (s) if
A () > A (s () (2.13)
for any finite non-empty subset 2 C V.

Theorem 2.8 Let (V, u) satisfy the isoperimetric inequality with a function ® (s) such that
O (s) /s is decreasing in s. Then (V, ) satisfies the Faber-Krahn inequality with the function

Ads) = ((D(S))Q. (2.19)

2 S

Example. Any connected infinite graph with a simple weight satisfies the Faber-Krahn

inequality with function A (s) = 5.
! «—2/m

The lattice graph Z™ satisfies the Faber-Krahn inequality with function A (s) = ¢/ s

Proof. We have
e (u)) _ @)
()

u
whence, by Theorem 2.6, A (Q) > 1h (Q)? > 2 (%) =Ap(Q). =



2.5 Isoperimetric inequalities on Cayley graphs

Let G be an infinite group and S be a finite symmetric generating set of GG. Let u be the
simple weight on the Cayley graph (G, S). Recall that u (z) = deg(z) = |S| for any z € G.
Let e be the neutral element of (G, and define the ball centered at e of radius r > 0 by

B, ={x eV :d(z,e)<r} (2.20)
Theorem 2.9 (Coulhon—Saloff-Coste '93) Assume that, for a Cayley graph (G, S),
w(Br) >V (r) for all integers r > 0, (2.21)

where V (r) is a non-negative continuous strictly increasing function on [0,00) such that
V(r) — oo as r — oo. Then (G, S) satisfies the isoperimetric inequality with function

U

D (u) :Cov—l—(Qu)’

where ¢y > 0. (2.22)

Example. In Z™ (and on nilpotent groups) we have u (B,) ~ r™ for r > 1 so that we can
take V (1) = er™. Then V™! (u) = cu!/™, and we conclude that Z™ satisfies the isoperimetric

inequality with function
Uu o m—1
m € U

O (u) ="
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Example. If V (r) = exp (c¢r) then
u
P — —
(u) =c Inu
This isoperimetric function is sharp on polycyclic groups.

Combining Theorems 2.8 and 2.9, we obtain the following:

Corollary 2.10 Under the conditions of Theorem 2.9, the Cayley graph (G, S) satisfies the
Faber-Krahn inequality with the function

A(u):c<v_+(2u)>2.

A(u) = cu™?m
as was mentioned above. On the groups with exponential volume growth, we have

A(u) =c(nu)>.

Example. In Z" we obtain
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Proof of Theorem 2.9. Denote (V, E) = (G, S). For any function f on V with finite

support, set
I£1 = 1f ()]

zeV
and

IVil=IVefl=5 3 lf@ 7@l

¢ek z,yeV: x~y
For example, for f = 1o we have

1
—1Q| = —u (D
£ =190 = 1o (@).

05
verl={ 5 £% 00

and

IVl =109 = n ().

(2.23)
For any 2z € (G, define a function f, on G by



Claim 1. Ifs e S then
If = fsll <2|V£Il-

Recall that = ~ y is equivalent to y = xs for some s € S. Hence, for any s € S, we have

If=fl =D If@—fls)l= D |f@@—fl=2|VSl. (2.24)

zeV z,yeV: x~y

Claim 2. [fz € B, then
If = £l <2n V1.

Any z € B, can be represented in the form z = sy55...5; where s; € S and £ < n. Then

If = £ = D If (@) — f(z2)]

zeV
< > @) = fles)l+ ) If(ws1) — flzsisa)| + ..
zeV zeV
+ > | f(@s1.s5-1) — f(@siesioisk)] < 2k V]| < 20|V
zeV
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Claim 3. For anyn € N and any function f on V with finite support, set

Af@=m X ).

Then the following inequality s true:

If = Anfll <20 IV ] (2.25)

The condition d (z,y) < n means that y = zs;...s; for some k < n and sq,...,s, € S.
Setting z = s;...s; we obtain that d (z,y) < n <= y = zz for some z € B,,. Hence, we have

1= 4fl = S @-4f @I =2 |f @) -2 T £62)

xeV eV z2EB,
= Y S @) € SN @) - £ (e2)]
zeV |B”‘ 2€Bp |Bn| 2EBp z€V
= 7 2 I - £ <20V
n z€B,
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Claim 4. Let Q be a non-empty finite subset of V, and n € N be such that |B,| > 29)].
Then we have

p(092) > 4n1‘5‘u(9)-

Set f = 1g. Then we have, for any z € V,

A

~
M s
S~
S

It follows that !
£ = Aufl 2 317 (@) = Anf ()] 2 519,

e

Combining with (2.23) and (2.25), we obtain

1 1 1
B (@2 = IVF 2 5o 1f = Al 2 32190 = Zorn (@)
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Claim 5. For any non-empty finite set Q C V, we have p(0€2) > @ (1 (2)) where

u

O (u) = 0012—1—(2u)’

Choose n to be minimal positive integer with the property that
V(n)>2u(Q).
This implies p (B,,) > 2p (§2) which is equivalent to |B,,| > 2| so that by Claim 4

>
p(09) = -~

1‘ 574 (@). (2.26)

The minimality of n implies that
n<1+V7(2p(Q) <OV (21(Q),

because otherwise n —1 > V=1 (2u(Q)) and V (n — 1) > 2(€) . Substituting this into (2.26),
we obtain

p (092)

e o
2 ORIV @e@) - V) W)

which was to be proved. =
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3 Heat kernel on infinite graphs

Everywhere (V, i) is a connected locally finite weighted graph with |V| > 1.

3.1 Transition function and heat kernel

Recall that the Markov kernel on a weighted graph (V, i) is defined by

:u:cy
p(x)’

P(z,y) =
and the Markov operator P : F — F by

Pf(z)=> Px,y) fy)=>_ P(zy [y

Yy~ yev

For any non-negative integer n, consider operator P* = Po Po...o P.
TV

n

The family {P"} is called the heat semigroup. It satisfies

Py=id and P"P™ = pP"t™,
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It is easy to show that, forany f:V — Randallz € V andn > 1

P"f(x ZP z,y) f

where the kernel P, (z,y) of the operator P can be defined inductively by

Py (z,y) = P(x,y) and P,y (z,y) ZP x,z) L Y) - (3.1)
zeV

Since P"P™ = P™t™ it follows that for all non-negative integers n,m,

Poim (z,y) ZP x,z) L Y) -

By induction one proves that

and



The Markov kernel P (z,y) determines a random walk {X,} —, on V as follows:

]P)mo (X1 = SCl,XQ = d9) ,Xn = In) =P (370,5171) P (LCl, 1?2) ..P (lUn_l,SCn) 0
It follows P, (X =y) = >, o ev P (@, 21) P(21,22) .. P (2n-1,y) = P (,y), so that
P, (z,y) is the n-step transition function of the random walk.

Definition. The function
. (z,y)

()
is called the heat kernel of (V, u) or the transition density of the random walk.

Pn (SU, y) =

The heat kernel is non-negative and satisfies the following identities:
LPf(@) =D  pn(@y)fu)p(y) (by definition)
2. Pogm (T,9) =) oy Pn (2:2) P (2, 9) 1 (2) (the semigroup identity)

3. ZyEV o (z,y) 1t (y) = 1 (stochastic completeness)

4. p,(z,y) = pn (y, ) (symmetry, reversibility)
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Lemma 3.1 We have for all x,y € V and n,m € N:

Prtm (2,9) < (Pan (2, 2) pam (9, 9))"/ (3.2)

Proof. It follows from the symmetry and semigroup identity that

1/2 1/2
Prim (2,y) < (Zm(%@%(@) (me(z,y)zu(2)>

< Zev1/2 1/2
= <Z o (T,2) P (2, ) 1 (z)) (Z P (Y, 2) Pm (2, Y) 1 (Z)>

= (an (.I, SL’) Pom (y7 y))1/2 :
|
The following question is one of the most interesting problems on infinite graphs:
How quickly p, (z,y) converges to 0 as n — 00 ?
The question amounts to obtaining upper and lower estimates of p, (x,y) for large n,
that will be discussed in this Chapter.
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3.2 One-dimensional simple random walk

Let (V, ) be Z with a simple weight. Let us determine P, (0,z). We have, for any x € Z
and n € N

P” (0733) - IP)O (Xn = I’) - Z P (07 xl) P (171,112) oad (xn—hx) - <1> Cna
T1,...Tn—1€%Z

where (), is a number of all paths 0 ~ xy ~ xz5... ~ x,_1 ~ x, that is, (), is equal to the
number of representations of x in the form

21+ 294 ... + 2, =x where 2z, € {+1,—1}. (3.3)

If C,, > 0 then |z| < n and x = nmod 2. Assuming that the latter conditions are satisfies,
(3.3) is equivalent to

1
a:—;—n where uy, = Zk; € {0,1},

and the number of such representations is ( otn ) Hence, we conclude that
2

UL+ ug + ... +u, =

! (%), |z] <mn and £ =n mod 2,

Pn(O,:c)—{ 2

0, otherwise,
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Using the Stirling formula

n! ~ 2mn (E)n as n — o0, (3.5)
e

and assuming that n is even, we obtain

1(n> 1 nl 1 V2mn (2)" 2

2 \n/2) T2 (@) 2 o (p) Vo

2
P, (0,0) ~4y/— as n — 00, n even. (3.6)
™m

Theorem 3.2 For all positive integers n and for all x € Z such that |z| < n and x =
n mod 2, the following inequalities hold:

P, (0,0) =

so that

w < P,(0,2) < —e 2n, (3.7)

where C1, Cy are some positive constants.

Note that In2 ~ 0.69315 > %
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Proof. Given two sequences {a,} and {b,} of positive numbers, we write a,, ~ b, (and
say that a, is comparable to b,) if there exists a constant C' > 1 such that

Cc~1 <b < C for all n.

n

Stirling’s formula (3.5) implies, for any integer n > 0,

_(n+1! V41 (n+1>”+1

_ ~ ~ (n+1)" 2, 3.8
(n+1) n+1 e (n+1)"2e (38)

Assuming that m is an even non-negative integer and applying (3.8) to n = m/2, we obtain

m+41

(5)!=(F+1) 7 e™ = (m+2)™ (@20

We would like to replace here m + 2 my m + 1. For that observe that
9 m+1 1 m+1
mtz 1+ —— <e
m+1 m+ 1

m—|—1

whence

m—+1

(m+ 2) ~ (m+1)
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and

(5)! = m+1)" (@)™ (3.9)

Using (3.8) to estimate n! and (3.9) with m = n £ z to estimate (232)!, we obtain from
(3.4)

1 n 1 n!
R0 = 5(d) - F e

1 (n+ D" 2em (3.10)
-~ on-l ntat+l _nte n—zctl —n=E '
(ntz+1) 2 (2077 (n—z+1) = (20 2

- 2
— ntxz41 n—x+1
VitI(l+:%5) 2 (1-:%) 7
9 1
- = — — (3.11)
1+%) > (-%)°

where N =n + 1.
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Using the Taylor expansion

a? ol

In (1 —— — 4+ — — ..
n(l+a)=a 2+3 ,

and the fact that % < 1, we obtain

In (1+%)N+m — (N+2)ln(1++)

T $2 $3

—1l<a<l,

1, 1 1

3
2N 5. 3n2t T
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Changing here x to —z, we obtain

| (1 m)N—w i 1 i 1 5 1 4 1 5 1 6
i (| L= = = =45 G ——1 GF A ————ts 7 " =
N 2N 2.3N? 3-4N3 4-5N4 5-6N°

Adding up the two expressions and observing that all the odd powers of x cancel out, we

obtain
N+zx N—x
T\ 2 75 5 1 T\ N+z T \N—=z
(1) 7 0-57) = 305 en(-5)
n( +N N 5 n +N + In N
1 I 1 4 1
= —z T T
2N 3-4N3 5-6N°
k42

B Z_ (k + 1) (k + 2) NF+1

B % 2 (k+1)1(k+2)<%)k'

k even, k>0

64 ..
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Substituting into (3.11), we obtain

Clearly, this implies the upper bound

P, (0,2) < \% exp <—x—2) . (3.13)

For the lower bound, observe that by % <1

1 1 T\ 2 1 T\4 1 1 1

2T 3.4\N N 1.2 3.4 5.6
TR I I Y
= 1l—-—4+-———+_-———-+4+..=In
273 45 6 !
whence by (3.12)
P (0.2) > e ( 1 2)x2> (3.14)
. (0,2) > —=exp | — (In2) — ). :
VNP N

2

25 < %5 < 1. Hence, (3.13) and (3.14) imply (3.7). =
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Corollary 3.3 In the domain where n';% 18 bounded, we have the following estimate

Py (0,2) ~ — i (3.15)
w(0,2) ~ —exp| —— | . :
vn P\
Proof. The upper bound in 3.15) is the same as in (3.7), so that we need only to prove
the lower bound. The expression under the exponential function in (3.12) can be estimated
from above as follows:

22 [1 1 /x\2 1 /x\4 x? z? z0 z8
W(T“ﬂ(N) +ﬁ(ﬁ) +> = N "34N® T5.6N5 T T.eNT
z? 1 1 z? 1 z*
BERRE (3-4+5-6N2+7-8N4{3"’1§)
< I—Q—i-c(l + ! + ! +>
=~ 2N 3.4 5.6 7-8
c B L
ON 3’

4

where c is a constant that bounds <. Substituting this into (3.12) and replacing as before

N by n, we obtain the lower bound in (3.15). =
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The following lemma will be used in the next section.

Lemma 3.4 For a simple random walk in Z, we have, for all positive integers r,n,

2

Py (X, > 1) < exp (—;—n> . (3.17)

Proof. Let {Z,} -, be a sequence of independent random variables each taking values
+1 with probabilities 1/2. Then

X, =Z1+ ..+ 72,
is a simple random walk on Z started at 0. We have, for any a > 0,
P(Xn > ’l“) — P (eaXn > ear) < e—arEeaXn.

Using the independence of Z; and

Ee®%r = (eo‘ — e_o‘) = cosh a,

N | —

we obtain
Ee** = E (e*7'...e*") = Ee*?' .. Ee*”" = (cosh )"
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Since
ha=1 @ o < L2
cosha = +E+Z+"'_6Xp 504 ,

we obtain

n 1
P(X,>r) <e *(cosha)” <exp (—047’ + 504%) :
Finally, setting here o = ~ that minimizes —ar + %a2n, we obtain
2

P (X, >r) < exp <—T—) , (3.18)

2n

which was to be proved. =
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Set foralln e Nand k€ Z

afn ) k=mn mod?2
Qn (k) - 2 <k+Tn
0, otherwise.
so that by (3.4) P, (0,2) = Q, ().
Corollary 3.5 For all positive integers r,n

S au® <en (-3,

k=r

Proof. We have

S Qu(k) =S P (0,2) = By (X, > 7) < exp <_;"_) |

n
z>r
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3.3 Carne-Varopoulos estimate

The main result of this section is the following theorem and its consequences. Consider the
Markov operator P as an operator in the Hilbert space

lﬂMm:{ﬁV%Rriﬁ%@M@<m}

zeV

and observe that P is a symmetric operator and ||P|| < 1.

Theorem 3.6 Carne ’85, Varopoulos ’85) Let f,g be two functions from L*(V,u) and let
r =d(supp f,suppg). Then, for alln > 1,

2
(71,001 < 215 Dl s (5 ) (3.20)

Note that always |(P™f,g)| < |||l |lg]] so that (3.20) is non-trivial only if r > 1.

Corollary 3.7 For all x,y € V and positive integers n,

o (,y) < 2 ) exp (—%?) . (3.21)

() p
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Proof. Setting in (3.20) f = 1y, and g = 1y, and noticing that r = d (z,y),

A= v (), gl = v (y)

and
(P"f,9) = > pn () f () g (y) (@) 1 (y) = pn (2,9) p (x) p (y) ,

z,ycV

we obtain (3.21). =
For the proof of Theorem 3.6 we use the Chebyshev polynomials T:

Ty (A) = cos (karccos \), A e [—1,1],

where k € Z and A € [—1,1]. Since T = T, we restrict so far our consideration to
non-negative k. Setting # = arccos \, we obtain

Ti (\) = coskf = Ree™ = Re(cos + isin )"

k k
= costf — <2> cos* 2 0sin% 0 + <4> cosF 4 0sin*0 — ...
k k 2
= N — N2 (1 — \2 Nt (1 =227 —
()= + (D) a-2 -
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whence we see that Ty (\) is indeed a polynomial of A\ of degree k. Note that the leading
coefficient in front of A\* is equal to

1+ (5) + () + =2

A distinguished property of Chebyshev polynomials is that |T; (\)| < 1 for all A € [—1,1]

that is obvious from the definition.
A

1.0 T

Graph of Ty:

a]
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Lemma 3.8 For all non-negative integers n we have the identity

= zn: Q. (k)T (\)  VAe[-1,1], (3.22)

k=—n

where

a (" —
Qn (k) = 2n<k+Tn>’ k=n mod?2

0, otherwise.
Proof. As above, let 8 = arccos A so that A = cosf. Setting
2z =cosf +isind

and observing that z = %, we obtain, for any m € Z,

T (N) =T, (cosB) = cosmb = Re 2™ =

On the other hand,



and

1 I\" 1 X /n NN 1< /n ] —
)\n:_ - - m [ — — n—2m:_
5 (43) =32 ()7 () a7 =mX(

m=0 m=0

n
k
n—k)z
2

where £ = n — 2m and summation is restricted to £ = nmod 2. Changing k£ to —k we obtain

] — n
== <n k)z_k.
2n k=—n %

Taking the half-sum of the two expressions for A" and noticing that

n—k - n+k
2 2
we obtain

1 & k —k 1 & i
=Y ()T =5 Y ()50 = X BB,
k=—n

2 k=—n 2 m=—n

which was to be proved. =
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Proof of Theorem 3.6. Applying the identity (3.22) Lemma 3.8 to the operator P,
we obtain

=3 QB T(P). (323)

k=—n

That || P|| < 1 implies spec P C [—1,1]. Since also sup_; 1) |Tx| < 1, it follows by the spectral
mapping theorem that

spec Ty (P) C T}, (spec P) C Ty ([-1,1]) C [-1,1].

Hence, we have ||T}, (P)|| < 1.
It follows from (3.1) that

(P"f.g) = Z@n (P)f,9).

k=—n

Observe that (T}, (P) f,g) = 0 provided |k| < r, because

d (supp f,supp g) = r > |k| = deg T
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(cf. the proof of Theorem 1.6). Therefore, we obtain

(P fo9)l = | D Qu(k) (T (P)f9)
r<lk|<n
< D QuB)(TH(P) fr9)l
r<|k|<n
< (Z Qn (k )Tk Lolinvalird
|k|>r

< 2 (Z Qn <k>> 141l

k>r

,,42
< 2exp (-2 ) 119

where we have used that ||T; (P)|| <1 and (3.19). m
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3.4 On-diagonal lower bound of the heat kernel via volume

Theorem 3.9 (F.Lust-Piquard '95) Assume that p, := inf,eyv p(x) > 0. Fiz a vertex xg €
V', set for allr > 0
B, ={x eV :d(z,x9) <1}

and V (r) = u(B,). Assume that, for all v large enough,
V(r) < Cr® (3.24)
for some constants C' and «. Then, for all large enough n,
1/4 - o
v (VaanTan) — (nlnn)*

pan (o, To) > (3.25)

Example. In Z™ (3.24) holds with @ = m so that for all x € Z™
c

Pon (2, 2) 2 ————.
2:E) (n1nn)™?

In fact, as we will see, in Z™




Proof. By the semigroup property, we have the identity

Pon (an 1’0) = an (3307 ZU) Pn (xv xO) 2 (33) = Zpi (3307 ZU) 2 (x) . (3'26)

zeV zeV

Fix some r > 0, restrict the summation to x € B, and apply the Cauchy-Schwarz inequality:

pan (Zo, To) > an($0,$)zﬂ(x)

| 2
- s (o)
1
= 5 ") 1— Z Pn (o, ) (z) | . (3.27)

reB¢

Suppose that, for a given n, we can find r = r (n) so that

> pu (o, x) pu(x) < % (3.28)

rEBS
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Then (3.27) implies
1/4

Pan (To, To) > V)

which will yield (3.25) provided r = v/2an Inn.
To prove (3.28) with this r, let us apply Corollary 3.7:

o (0 2) —ow (_M) 2 <_M> |

p (o 2n o 2n

whence, for large enough r,

S e nu(m) < =3 exp (—M)mx)

TEBS 0 zeBe

T

zii > eXP(-W)M(?U)

NO k=0 mEBQk‘i‘lr\Bri

Ei > eXp<(2;—;)2)u(fﬂ)

Ho k=0 2€Byk+1,\Byk,.

IA
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2 & (24r)?
< M—O;exp ( o )N(szﬂr)
o0 k.2
< 2¢ exp <_4_7’> (2k+1r)a’
Ho o 2n

where we have used y (Byr+1,) < C (25+1r). Setting

k.2
ap = exp <_42—77;> (2k+1r)a,

4k:-|—1 _ 4k: 2 2
e exp (——T—> 2% < exp (—T—) 2.
ag 2 n n

we see that

If = > o then

a
L < g = q <1,
ag
so that the sequence {a;} decays faster than the geometric sequence with the ratio ¢, whence
= = a 1 72 o
ap <Y apg® = 1 — = exp <__> (2r)”.
—qg 1-—g 2n
k=0 k=0



It follows that

Choose here

r=+v2anlnn

so that the condition

742

— >a
n
is satisfied for n > 2. Then we obtain

3" b (@ 2) p(e) < Cexp(—alnn) (2anlnn)

rEBS
— C/l (ln n)§
nz
1
< —
27

provided n is large enough, which finishes the proof. m
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3.5 On-diagonal lower bound via the Dirichlet eigenvalues

Theorem 3.10 (AG, Coulhon '97) For any even integer n > 0 and for any non-empty finite
set ) C V., the following estimate holds:
(1= M(2)"
sup pp(x,x) > : 3.30
(@) > =20 (3.30)

el

In particular, if \(2) < 1/2 then

sup pp(z,r) > o (;2(?21;9)%) (3.31)

zel)

Proof. The estimate (3.31) follows from (3.30) using the inequality

1 — A >exp(—2)\)

that is true for 0 < A < 1/2. Indeed, it is obviously true for A =0 and A = % and, hence, is
true for A € [0,1/2] because the function 1 — A is linear and exp (—2)) is convex.

Let us prove (3.30). Fix a non-empty finite set 2 C V' and consider in F, the operator
Q@ =id —Lq,
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that is, for any f € Fq,
— ZP(x,y)f(y) for all z € €2

ye

and Qf (x) =0 for x € Q°. By induction, we have, for any n € N

=> Qnlzy) fy), (3.32)

yeN
where Q1 (x,y) = P (z,y) and
z€Q

The function @, (z,y) can be regarded as the transition function for a random walk with
the killing condition outside €2. The comparison of (3.1) and (3.33) shows that

Qn (7,y) < Pu(z,y).

Consider trace Q™. By (3.32), the matrix of Q™ in the basis {1{93} }er has on the diagonal
the values @, (z,x) so that

trace Q" = Z Qn (z,2) < Z P, (xz,z).

el ze)
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On the other hand, @ has the eigenvalues 1 — A\¢(Q2), K = 1,..., N where N = [Q)|, and Q"
has the eigenvalues (1 — A\ (Q2))", whence

N

trace Q" = (1= A(Q)" > (1 — A ()"

k=1

We have used that all the terms in the above sum are non-negative since n is even. Comparing
the two estimates of the trace, we obtain

(1—=A()" < traceQ" < ZPn(:z:,a:)
_ S mlmale
x€QN

sup pp(x, ) pu($2),

e

IA

whence (3.30) follows. =
The following lemma enables us to obtain the lower bounds for p,, (z,x) on Cayley graphs.

Lemma 3.11 On any Cayley graph (G, S) with a simple weight, the value of p, (x,z) does
not depend on x, that is, p, (z,x) = p, (y,y) for all x,y.
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Proof. Let us show that the heat kernel is invariant under the left multiplication:

Pn (2,y) = pn (22, 2y) (3.34)

for all z,y, z € G, which will imply for y = x and z = 2~ ! that p, (z,2) = p, (e, ¢e) .

Recall that x ~ y is equivalent to 2~y € S. It follows that x ~ y is equivalent to za ~ 2y
because (zz)”" (zy) = 2727 lzy = 27 1y

Inductive basis for n = 1:

P(z,y o oy 2
Py =l e ke M
p(y)  plr)p(y) deg(x)deg(y) |S|

Since fi,, = fi(.z)(zy)> We obtain pi (z,y) = p1 (2, 2y), that is, (3.34) for n = 1.

Inductive step from n to n + 1:

Prs1 (23,2y) = Y pn(zz,w)pr (w, zy) p(w) (w = zu)
welG
= an (zz, zu) p1 (2u, 2y) 1 (u) (p1 (2u, 2y) = p1 (u, 2))
uelG
— an (l’, u) D1 (U, y) M (u) = Pn+1 (.%', y) :
uelG
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Corollary 3.12 Let (V, ) be a Cayley graph with a simple weight. Then, for any finite set
Q CV with A () < 1/2 we have

exp (—2A1(Q2)n)

pn(T,2) 2 3.35
(@.3) > TR (3.3)
for all x € V and even n > 0.
Proof. By Lemma 3.11, we have, for any x € V,
pn(ajn 37) = sSup pn (37, CC) )
e

so that (3.35) follows from (3.31). =
Example. Let us show that in Z™

Pn (2, 2) > en~ ™2 (3.36)

for all even positive integers n and z € Z™. Indeed, fix r € N and take Q2 = B,. By
considering a tent function in B,., one can show that

n(B)< S

r2
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It follows that, for large enough r,

exp (—2A1(B,)n) ,€Xp (—%n)

20(() = 1(B;) =

Tm

Choosing r &~ /n, we obtain (3.36).
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3.6 On-diagonal upper bounds of the heat kernel

In this section (V, ) is an infinite locally finite connected weighted graph that satisfies in

addition the conditions
1 < pyy, < M for all z ~ y,

deg(z) < D for all z € V,

for some constants M and D. The first condition is trivially satisfied for a simple weight,
the second condition is always satisfied on Cayley graphs.

(3.37)

Lemma 3.13 The conditions (3.37) imply that, for any non-empty finite set A C 'V,
p (U1 (A) < Cop (A), (3.38)
where Cy = Co (D, M) .

Proof. Since p(z) = > it follows from (3.37) that

Yy~T lU’a:y7
1 <p(xr)<MD.
Therefore, for any finite set A, we have

Al < u(A) < MD[A].
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Recall that the the r-neighborhood of A is defined by
U (A)={yeV:d(z,y) <r for some z € A},
and the balls of radius r are defined by
B.(x)={yeV :d(z,y) <r}.

It follows that

U, (4) = U B, (@).

r€A

The ball By (z) consists of the vertex x and of the vertices y ~ z so that | B ()| < D + 1.
Hence,
UL (A)] < |Bi(2)] < (D +1)]4],

z€A

whence it follows that
4 (Uy (A)) < MD (D +1) i ().
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The next theorem is the main result of this section.

Theorem 3.14 (AG, Telcs '01) If (V, u) satisfies (3.37) and the Faber-Krahn inequality with
function A (s) = cs™V%, for some o, c > 0, then the following estimate is true

pn(z,y) < Cn™°. (3.39)

forall z,y € V, n>1 and some C = C («, ¢, Cy) .

Example. If the weight is simple then we always have the Faber-Krahn inequality with
function A (s) = 555, that is, with a = 1/2. Assuming that the degree is uniformly bounded,

252

we obtain by Theorem 3.14 that p, (z,y) < Cn~/2.

Example. If (V, 1) is a Cayley graphs satisfying the volume growth condition

p(B,) = cr™ (3.40)
then we have the Faber-Krahn inequality with the function A (s) = ¢/s~%™ whence
Pn (2,y) < Cn~ ™2, (3.41)
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Since (3.40) is satisfied in Z™, we see that the estimate (3.41) holds in Z™. Combining with
the lower bounds, we obtain that p, (z,2) ~ n~"/2 for all x € Z™ and all even n,

Proof. As before, we use in the space L? (V, i) the inner product.

=Y f@g@p)), (3.42)

zeV

Let Fy be the set of all functions f on V with a finite support

supp f ={z € V : f (z) # 0},

so that Fj is a subspace of L?. Observe that f € F, implies that £f and Pf belong to Fo,
because

supp (Pf) C Uy (supp f).

The approach to the proof is as follows. For a fixed z € V', denote f, (z) = p, (z, 2) and
set

fnafn an ZC Z an( )

zeV

We will show that {b,} is a decreasing sequence and will estimate the difference b, — b,11
from below, which will imply an upper bound for b, and, hence, for ps, (2, z) . Then Lemma
3.1 will allow to estimate p, (z,y) for all z,y € V.
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The technical implementation of this approach is quite long and will be split into steps.

Claim 0. If f € Fy then (Pf,1)=(f,1).

Note that
=> f@)p(x)

zeV

Using the Green formula of Theorem 1.1 in domain Q = U; (supp f), we obtain

= ) Lf(x)1(z)p()

wEQ
:I:yEQ e yEQC

The first sum is 0 because V,,1 = 0. In the second sum, y ¢ €2 and = ~ y imply that
x ¢ supp f whence V,, f = 0 so that the second sum is also 0, which proves the claim.
Consider now the following functional

that is defined for all f,g € Fy. Also, we write Q (f) = Q (f, f) .
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Claim 1. IfQ is a finite non-empty subset of V', f € Fo and Uy (supp f) C Q) then

Q) =M (Q)(f. f). (3.43)

Clearly, supp (Pf) C Q so that Pf = Py f where
Py =id —Lg.
Set a; = 1 — A\q () so that ay is the top eigenvalue of P,. Theorem 2.3(b) implies that
spec P =1—specLo C[1—(2—-X1(Q)),1 =X ()] =[—aq,1],
whence ||Py|| < a;. Then we have

Q(f)

(fs f) = (Paf, Paf)
1A% = a3 1L £11

(1 =) (1 +ay) | fII*
M () [1£17

Vv

Vv
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Claim 2. For all f € Fy we have

QU =3, (@)= F W) Py p). (3.44)

Using the symmetry of the Markov operator P, we obtain

(Pf.Pf)=(P°f,.f) =) Py(zy) f(z)f(y)n),

z,yeVv

whence
QU = X F@u@=> Py f@fb)e
= D o PR@n @@= Py @)@
= vayev By (z,y) f () (f () = f(y)) (). (3.45)
Tnterchanging z,y we obtain also
QN =, Py @G- @)k, (3.46)

Adding up (3.45) and (3.46), we obtain (3.44).
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Claim 3. If f € Fy and s is a positive constant then

Q((f—9),) Q). (3.47)

Define a function ¢ : R — R by ¢ (t) = (t —s)_ . Since ¢ is a Lipschitz function with
the Lipschitz constant 1, we obtain by (3.44)

Q(f-5).) = Qe = % > (@ (f @)~ o (F W) Pr (a0 (@)

z,ycV

—Z )" Py (z,y) po =Q(f)-

z,yeV

IA

Claim 4. Let f be a non-negative function from Fy. For any s > 0 define the set (g by

Q, = Uy (supp (f — ), ) -
Then
Q(f) = M () ((f, f) = 25 (f, 1)) (3.48)
(f>f)

2= we obtain

In particular, for s = i( 0

Q) 2 M () (.).
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Set g = (f —s),. By (3.43) and (3.47), we have

Q(f) =2 Q(g9) =2 () (g9,9)-

On the other hand, we have
9° > f* —2sf.
Indeed, if f > s then g = f — s and

§* = f*—2sf +5* > f* - 2sf,
and if f < s then g = 0 and
f2—2sf=(f—2s)f<0.
Integrating (3.49) against measure yu (x), we obtain

(gag) > (faf)_QS(f71)7

whence (3.48) follows.
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Claim 5. Let {fn}zozo be a sequence of non-negative functions on V' such that fo € Fo,
(fo,1) =1, and fry1 = Pf,. Set

Then
b — bpg1 > LY (3.50)

where ¢ = %0(400)_1/0‘.
By induction, we obtain that f,, € Fy and (f,,,1) =1 (by Claim 0). Note that
Estimating @ (f,,) by Claim 4 and choosing

1(fufa) 1
4 (fn,1) 4

by,

S =

we obtain 1
b, — by > 5)\1 (Qs) by, (3.51)

where



On the other hand, we have

p(supp (fn —s),) = peV: fo(z)> 8)
< Y = (ful) = -
=
By Lemma 3.13, we obtain that
p(Q) < % = 4;’: °
Hence, by the Faber-Krahn inequality,
A () 2 en (R0) 7" > ¢ (4C0) b/, (3.52)

which together with (3.51) yields (3.50).
Claim 6. If{b,} —, is a sequence of positive real numbers satisfying (3.50) then b, < C'n=*

where C" = (a /)™ .
We use an elementary inequality

y_ﬁ_x_/3>6(33_y)

s (3.53)
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that is true for all # > 0 and z > y > 0. Indeed, by the mean-value theorem, we have

—B —B -8 —B
o =@ Uy =3 _
—— = e
95 = W —

where £ € (y, x), whence (3.53) follows. Applying (3.53) with § = =, we obtain

e potje s b= b d%wa_g
n+1 &bl—i-l/a — ab1+1/a o a’

Summing up this inequality from 0 to n, we conclude that b, L/e > %n and b, < C'n~?.

Now we can finish the proof as follows. Fix a vertex z € V and set fy = e )1{z} Then
fo € Fo and (fo, 1) = 1. Define the sequence {f,} inductively by

fn—H — an
and show that, in fact,
fn (x) = py, (z,2) for any n > 1.
We have

fi(x) = Pfo(x prﬁyfo Plz, Z):Pl(fcaz)

yeV ( )
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and

far1 () =Y P(@,9) fo () = Y1 (2,9) Po (4, 2) () = puia (@, 2).

yeV yev
The sequence {f,} satisfies the hypotheses of Claim 5. Setting

bn - (fny fn) = Pon (Z, Z) )
we obtain by Claims 5,6 that

Pon (2,2) < C'n™¢, (3.54)
for all z € V. Using Lemma 3.1 and (3.54), we obtain that
Pt (2,) < (por (z,) pa (y, )2 < C (k1) /2, (3.55)

for all x,y € V and positive integers k,[. Given an integer n > 2, represent it in the form
n =k + [ where [ = k for even n and [ = k£ + 1 for odd n. In the both cases, we have

whence by (3.55)
pn ( ) C// 7&
Finally, for n = 1 we obtain p; (z,y) = 222 < 1 because P (z,y) < 1 and u(y) > 1 by
(3.37) 1(y)
37). m
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Remark. As we have seen in the last part of the proof, the estimate (3.39) is equivalent to

the on-diagonal estimate
o (z,2) < Cn™c.

For that reason, (3.39) is also frequently referred to as an on-diagonal estimate of the heat
kernel. The point is that this estimate does not take into account the distance between points
x, 1y, which could improve the estimate. Indeed, if d (x,y) > n then obviously p, (z,y) = 0.
Combining the on-diagonal estimate (3.39) with the Carne-Varopoulos estimate (3.21), it is
easy to show that, for any 0 < ¢ < a

Pn (%,y) < ¢ exp (—%@) (3.56)

na—s

with some ¢. > 0. Using much more complicated method, one can show that (3.56) holds
also for ¢ = 0 (Hebisch-Saloff-Coste).
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4 The type problem

4.1 Recurrence of the random walk via the heat kernel

We say that an event A,,n € N, occurs wnfinitely often if there is a sequence ny — oo of
indices such that A, takes place for all k.

Definition. We say that the random walk {X,} on (V, u) is recurrent if, for any = € V,
P, (X, = z infinitely often) = 1,
and transient otherwise, that is, if there is x € V' such that

P, (X,, = x infinitely often) < 1.
The type problem is the problem of deciding whether the random walk is recurrent or

transient.

Theorem 4.1 (Khas'minski '60) {X,,} is transient if and only if for some/all x € V

> pu(z,7) < 00. (4.1)
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Corollary 4.2 (Polya '21) In Z™ the random walk is transient if and only if m > 2.

Proof. Indeed, in Z™ we have

Splma) =Y —

and the latter series converges if and only if m > 2. =
We start the proof of Theorem 4.1 with the following lemma.

Lemma 4.3 If the condition
Y pal@,y) < oo (4.2)
n=1

holds for some x,y € V then it holds for all x,y € V. In particular, if (4.1) holds for some
x €V then it holds for all x € V and, moreover, (4.2) holds for all z,y € V.

Proof. Let us show that if (4.2) holds for some z,y € V then the vertex = can be replaced
by any of its neighbors, and (4.2) will be still true. Since the graph (V, u) is connected, in a
finite number of steps the initial point x can be then replaced by any other point. By the
symmetry, the same applies to y so that in the end both x and y can take arbitrary values.
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Fix a vertex 2’ ~ x and prove that

> paley) < oo
n=1

We have
Pors (09) = P (2,3 Pa (59) 2 P (5,) Pa (&),

whence

P, (xlv y)
1 (y)

o 1 o
/
;pn (2", y) < W;pnﬂ (z,y) < o0

which was to be proved. =

/

Pn+1 ([E, y) _ Pn+1 ([E, y)
P(z,a)ply) Pza)

pn(x,y) -

It follows that
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Proof of Theorem 4.1: the sufficiency of (4.1). Fix a vertex xg € V' and denote
by A, the event {X,, = x¢} so that, for any x € V|

P, (A,) =P, (X, = x9) = P, (x,20) = pn (T, x0) pt (z0) -

By Lemma 4.3, the condition (4.1) implies ) p, (2, 2¢) < co whence
Y P(A,) < oo (4.3)

By the Borel-Cantelli lemma, the probability that the events A, occur infinitely often, is

equal to 0 that is,
P, (X,, = xo infinitely often) = 0, (4.4)

and the random walk is transient. =
Note that the condition (4.4) is in fact stronger than the definition of the transience as
the latter is
P,, (X, = xo infinitely often) < 1

for some xy € V. We will take advantage of (4.4) later on.
The proof of the necessity of condition (4.1) in Theorem 4.1 will be preceded by some
lemmas.
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Definition. A function v : V' — R is called subharmonic in Q if Lu(z) < 0 for all z € Q,
and superharmonic in Q if Lu(x) > 0 for all z € Q. A function w is called harmonic in
Q) if it is both subharmonic and superharmonic, that is, if it satisfies the Laplace equation
Lu = 0.

For example, the constant function is harmonic on all sets.

Lemma 4.4 (A maximum/minimum principle) Let Q be a non-empty finite subset of V
such that Q¢ is non-empty. Then, for any function u : V — R, that is subharmonic in (1,
we have
max u < sup u,
Q Qc

and for any function u : V — R, that is superharmonic in ), we have

min v > inf w.
Q Qe

Proof. It suffices to prove the first claim. If supg.u = 400 then there is nothing to
prove. If supg. u < oo then, by replacing u by u + const, we can assume that supg. v = 0.
Set

M = mgxu
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and show that M < 0, which will settle the claim. Assume from the contrary that M > 0
and consider the set

S={zxeV :u(x)=M}. (4.5)
Clearly, S C €2 and S is non-empty.

Claim 1. [fx € S then all neighbors of x also belong to S.
Indeed, we have Lu (z) < 0 which can be rewritten in the form

u(z) <Y Plx,y)uly).
Yy~x
Since u (y) < M for all y € V', we have
Y P(zy)uly) <MY P(z,y)=M.
Yy~ Yy~x

Since u (z) = M, all inequalities in the above two lines must be equalities, whence it follows
that u (y) = M for all y ~ . This implies that all such y belong to S.

Claim 2. Let S be a non-empty set of vertices of a connected graph such that x € S implies
that all neighbors of x belong to S. Then S =V
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Indeed, let © € S and y be any other vertex. Then there is a path {z;},_, between x
and y, that is,
T=Tg~T1 ~Tgyg~...~vTy=1.

Since xg € S and x1 ~ xg, we obtain x; € S. Since zy ~ x1, we obtain x5, € S. By induction,
we conclude that all x; € S, whence y € S.

It follows from the two claims that the set (4.5) must coincide with V| which is not
possible since u (z) < 0 in Q°. This contradiction shows that M < 0. =

Lemma 4.5 (Strong maximum principle) Let u be a subharmonic function on V', that is,
such that Lu < 0 on V. If, for some point x € V,

u (z) = sup u,

then u = const . In other words, a subharmonic function on V cannot attain its supremum
unless it 1s a constant.

Proof. Set M = supu and let x be a vertex where u (xr) = M. Since Lu(xz) < 0, it
follows that
M =u(x) < Pu(x ZP T, Y)u
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The right hand side here is bounded by M because u (y) < M for all y. If u(y) < M for
some y ~ x, then we obtain that the right hand side < M, which is a contradiction. Hence,
u(y) = M for all y ~ x. Hence, the set

S={zeV :u(x)=M}

has the property that if x € S then all neighbors of x also belong to S. Since S is non-empty
and the graph V' is connected, it follows that S =V, that is, u= M. =

Definition. Fix a finite non-empty set K C V' and consider the function
vk () =P, (In>0 X, € K).

The function vk (z) is called the hitting (or visiting) probability of K. Consider also the
function
hi () = P, (X,, = ¢ infinitely often) ,

that is called the recurring probability of K.

Clearly, we have v =1 on K and 0 < hg (z) <wvg (x) < 1forall x € V.
In the next two lemmas, the set K will be fixed so that we write v () and h (x) instead
of vi () and hg (x), respectively.
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Lemma 4.6 We have Lv(x) =0 ifx ¢ K (that is, v is harmonic outside K ), and Lv (z) >
0 for any r € K.

Proof. If x ¢ K then we have by the Markov property

v(z) = P,(In>0X, € K)
= P,(3n>1X,€K)
= ) P(z,y)P,(In>1X,, € K)
Yy

= ) P(z,y)P,(In>0X, € K)
= > P(z,y)v(y)

so that v (z) = Pv (z) and Lv (x) = 0. If z € K then
Ly(z)=v(x)—Pv(z)=1—Pov(z) >0

because Pv(z) < Pl(z)=1. m
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Lemma 4.7 The sequence of functions { P"v} is decreasing in n and

lim P"v(x) = h(x) (4.6)

n—oo

for any x € V.
Proof. Since Lv > 0, we obtain
P" — P""y = P" (v — Pv) = P" (Lv) >0

so that { P"v} is decreasing. Hence, the limit in (4.6) exists.

Consider the events
Bn,={In>m X, € K}.

Obviously, the sequence {B,,} is decreasing and the event

ABn={Yman>m X, e K}
is identical to the event that X, € K infinitely often. Hence, we have

h(z) =P, (Q Bm) = lim P, (B,). (4.7)

m—0o0
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We claim that
P, (Bn) = P™v(x). (4.8)

Indeed, for m = 0 this is the definition of v (x). Here is the inductive step from m — 1 to m
using the Markov property:

P,(3n>m X,cK) = ZPa:y (Gn>m X, ;€K)

= P™v(x).

Combining (4.7) with (4.8), we obtain (4.6). =
Proof of Theorem 4.1: the necessity of (4.1). Assume that the random walk is
transient and show that (4.1) is true. Let zy € V be a point where

P,, (X, = x¢ infinitely often) < 1.
Consider the hitting and recurring probabilities v (x) and h (z) with respect to the set K =
{zo}. The above condition means that h(zg) < 1. It follows that v # 1 because otherwise
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P™ =1 for all n and by Lemma 4.7 h = 1. As we know, Lv(z) = 0 for z # xo and
Lo (xg) > 0.

Claim 1. Lv(x) > 0.

Assume from the contrary that Lv (z¢) = 0, that is, Lv (z) = 0 for all x € V. Since v
takes its maximal value 1 at some point (namely, at z(), we obtain by the strong maximum
principle that v = 1, which contradicts the assumption of the transience.

Denote f = Lv so that f (z) =0 for x # z¢ and f (z9) > 0.
Claim 2. We have for all x € V

S Pr(@) <o), (19)
n=0
Fix a positive integer m and observe that

(id—P) (id+P+ P° + ...+ P"") =id—P™

whence it follows that

<ZP”> (id—P™) f = f— P"f < f.
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Set .
U, = Z pP"f.
n=0

Obviously, v,, has a finite support and Lv,, < f. For comparison, we have Lv = f and
v > 0 everywhere. We claim that v,, < v in V. Indeed, let 2 = supp v,, so that outside €2,,
the inequality v,, < v is trivially satisfied. In 2 we have L (v — v,,) > 0. By the minimum
principle of Lemma 4.4, we have

m(%n (v —vp) =inf (v —vy) .

QC

Since the right hand side is > 0, it follows that v — v,, > 0 in 2, which was claimed. Hence,
we have

whence (4.9) follows by letting m — oo.
Using that supp f = {z¢}, rewrite (4.9) in the form

S b (2, 20) f (20) p (20) < v (@)

156



whence it follows that Y >° 'p, (x,29) < co. Setting here & = xy we finish the proof. m

Corollary 4.8 Let K be a non-empty finite subset of V. If the random walk is recurrent
then v = hxg = 1. If the random walk is transient then v £ 1 and hx = 0.

Hence, we obtain a 0-1 law for the recurring probability: either hy =1 or hx = 0.
Proof. Let zy be a vertex from K. Obviously, we have

Vizo} (7) < v (7).
Therefore, if the random walk is recurrence and, hence, v, = 1 then also vx () = 1. Since
hK = lim PmUK, (410)

it follows that hx = 1.
Let the random walk be transient. Then by Theorem 4.1 and Lemma 4.3, we have

an (g, x) < 00
n=1
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for all zg,x € V. It follows from the proof of Theorem 4.1 that A (x) = 0 (cf. (4.4)). If
{X,} visits K infinitely often then {X,} visits infinitely often at least one of the vertices in

K. Hence, we have
hix < Z hiao}-

roEK
Since h{zy = 0, we conclude that hx = 0. Finally, (4.10) implies that vx Z1. m

4.2 The type problem on Cayley graphs
Now we can completely solve the type problem for Cayley graphs.

Theorem 4.9 (Varopoulos ’83) Let (V, E) be a Cayley graph and p be a simple weight on
it. Let B, ={x €V :d(z,e) <r}.

(a) If u(B,) < Cr? for large enough v with some constant C' then (V, i) is recurrent.

(b) If p(B,) > cr® for large enough r with some constants o« > 2 and ¢ > 0 then (V, ) is
transient.

Remark. It is known from Group Theory (H.Bass) that for Cayley graphs the following
two alternatives take places:
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1. either p (B,) ~ r™ for some positive integer m (the power volume growth),

2. or, for any C, N, we have u(B,) > CrY for large enough r (the superpolynomial
volume growth).

It follows from Theorem 4.9 that, in the first case, the random walk is recurrent if and
only if m < 2, while in the second case the random walk is always transient.

Proof. (a) This part is true for an arbitrary weighted graph since by Theorem 3.9 we

have "
cons
Pan (€,€) > , for large n,
nlnn

and, hence, > po, (e,e) = 0o, so that the recurrence follows by Theorem 4.1.
(b) By Corollary 2.10, the graph (V, i) has the Faber-Krahn function A (s) = c¢s~%/® and

by Theorem 3.14, we obtain
C

na/Q :

Pn (z,7) <

Since o > 2, it follows that

an (x,7) < 00,

so that the graph is transient by Theorem 4.1. =
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4.3 Volume test for recurrence

In this section, let us fix an integer-valued function p (z) on V with the following two prop-
erties:

e For any non-negative integer r, the set
B, ={zeV:px)<r}
is finite and non-empty.

o If v ~ y then |V, p| <1
For example, p (z) can be the distance function to any finite non-empty subset of V.

Theorem 4.10 (Nash-Williams ’59) If

> . (81&) = 00, (4.11)

r=0

then the random walk on (V, ) is recurrent.
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Note that 0B, is non-empty because otherwise the graph (V, ) would be disconnected.

An alternative way of stating this theorem is the following. Assume that V is a disjoint
union of a sequence {A;},, of non-empty finite subsets with the following property: if
x € Ay and y € A, with |k — m| > 2 then z and y are not neighbors. Denote by E} the set
of edges between A; and A;,; and assume that

= 1
kz:; B =™ (4.12)

Then the random walk on (V, u) is recurrent. Indeed, defining p (z) = k if © € Ay we obtain
that B, = |J,_, Ak and 0B, = E,. Hence, (4.12) is equivalent to (4.11).
Let us give two simple examples when (4.12) is satisfied:

1. if p(Ey) < Ck for all large enough k;

2. if p(BEy,) < C for a sequence k; — oo (in this case, p(Ej) for k # k; may take
arbitrarily big values).

Proof of Theorem 4.10. Consider the hitting probability of By:

v(z)=vp, () =P, (In>0: X, € By).
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Recall that 0 < v <1, v =1 on By, and Lv = 0 outside By (cf. Lemma 4.6). Our purpose
is to show that v = 1, which will imply the recurrence by Corollary 4.8.

We will compare v (x) to the sequence of functions {uy},-, that is constructed as follows.
Define uy () as the solution to the following Dirichlet problem in Q, = By \ Bo:

{ Lur, =0 in Q (4.13)

Uk;:f 1HQZ

where f = 1p,. In other words, uy = 1 on By and u; = 0 outside By, while uy, is harmonic in
k. By Theorem 2.4, the problem (4.13) has a unique solution. By the maximum /minimum
principle of Lemma 4.4, we have 0 < u, < 1.

Since up4+1 = ui on By and ugy, > 0 = u in By, we obtain by the maximum principle
that ugy1 > ug in Q. Therefore, the sequence {uy} increases and converges to a function
U @S k — o0. The function u., has the following properties: 0 < uy, < 1, Uy = 1 on By,
and Lu,, = 0 outside By (note that Luy — Lus as k — 00). Comparing v with ug in
and using the maximum principle, we obtain that v > wuy, whence it follows that v > u.
Hence, in order to prove that v = 1, it suffices to prove that u., = 1, which will be done in
the rest of the proof.
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By the Dirichlet principle of Theorem 2.5, the solution uy of the Dirichlet problem (4.13)
it minimizes the energy

1
D (U) = 5 Z (vfyu)2 :uxy
$,y€U1(Qk)

among all functions w such that v = f in €f. Since v = 1 in By, v = 0 in By, and
Ui (By) C Byy1, we have

x7y€Bk+l

Choose a function u with the above boundary condition in the form

where ¢ () is a function on Z such that ¢ (s) =1 for s <0 and ¢ (s) =0 for s > k+ 1. Set
So = By and

Sr={zeV:px)=r}
for positive integers r. Clearly, B, is a disjoint union of Sy, 51, ...,.5,. Observe also that if
x ~ y then z,y belong either to the same S, (and in this case V,,u = 0) or the one to S,
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and the other to 5,1, because |p (z) — p(y)| < 1. Having this in mind, we obtain

D(w) = Y > (Vau) p,

r=0 z€Sr,y€Sr+1

=) > (e —wlr+1)’pu,

r=0 z€Sr,y€Sr+1

= |

= D (p(r)—p(r+1)°u(9B,).

Denote
m (r) = u(9B,)

and define ¢ (r) for r = 0, ..., k from the following conditions: ¢ (0) = 1 and

p(r)—pr+1)= r=0,..k (4.14)

164



where the constant ¢ is to be found. Indeed, we have still the condition ¢ (k + 1) = 0 to be
satisfied. Summing up (4.14), we obtain

B

@ (0)—p(k+1)

so that ¢ (k+ 1) = 0 is equivalent to

Cr = <Z m1(r>> . (4.15)

By the Dirichlet principle, we have D (ug) < D (u) whence

D (ug) < c. (4.16)
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On the other hand, by the Green formula
1
> Lug (@) up () p(z) = 5 > Vayun) gy — > D (Vaytie) we(@) phy,
By z,YyEBL 11 TEBE 11 yEBkJr1

The last sum vanishes because if y € B, and  ~ y then x € B}, and u, (x) = 0. The range
of summation in the first sum can be reduced to B; because u;, = 0 outside By, and then
further to By because Luy = 01in By, \ By. Finally, since u, = 1 in By, we obtain the identity

S Lo (@ (@) =5 3 (Vayu sty = D ().

It follows from (4.16) that

Since u takes the maximal value 1 at any point of By, we have at any point x € By that
Puy () <1 and
Luy () = ug () — Puy () > 0.

Hence, at any point x € B, we have

0 < Lug (z)p(x) < .
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By (4.11) and (4.15), we have ¢; — 0 as k — oo, whence it follows that
Luy (x) — 0 for all z € By.

Hence, Lu, (x) = 0 for all z € By. Since Luy, () = 0 also for all x ¢ By, we see that u. is

harmonic on the whole graph V. Since u, takes its supremum value 1 at any point of By,

we conclude by the strong maximum principle that u., = 1, which finishes the proof. =
The following theorem provides a convenient volume test for the recurrence.

Theorem 4.11 If

(©.9]

r
= 00 (4.17)
; p(Br)
then the random walk is recurrent. In particular, this is the case when
p(Br) < Cri (4.18)

f07’ a sequence rp — OQ.

The condition (4.18) holds in Z™ with m < 2 for the function p (x) = d (x,0). Hence, we
obtain one more proof of the recurrence of Z™ for m < 2 (cf. Corollary 4.2).
We need the following lemma for the proof of Theorem 4.11.
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Lemma 4.12 Let {o,}_, be a sequence of positive reals and let

Uy = zr:Ui. (419)
1=0

Then

whence
1 k+1>12k+1

Ok~ Vokt1 2 Vogt1

Similarly, if 0 < k& < 5 then



and
1 k _12/<:

Ok~ Uk 20U

. (5] [5]
4252 > 2k+1

(%
k=0 k=0 2k+1

It follows that

2/4:_”7“
N v

v
k=0 2k —o VT

Y

which was claimed. Now consider the general case when the sequence {0, } is not necessarily
increasing. Let {o,} _, be an increasing permutation of {o,} _, and set

r
Uy = E 0.
1=0

Note that v, < v, because v, is the sum of r smallest terms of the sequence {o;} whereas v,
is the sum of some r terms of the same sequence. By the first part of the proof,

1 1 r
- > - _
Z Z 5215 2y
which finishes the proof. m
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Proof of Theorem 4.11. Set for any r > 1
Syr={zxeV:p(x)=r}=DB.\B_1

and Sop = By. Then we have

pOB) = D hgy= D My S D ey = p(@) =p(S).

TE€By,y¢ By TESr YESr+1 €S, YyeV €S,

Denoting v, = p (B,) and o, = 11 (S,.) and observing that the sequences {v,} and {0} satisfy
(4.19), we obtain by Lemma 4.12 and (4.17) that

— 1 — 1 1
2 ezl 2y ™

=)

<

Hence, (4.11) is satisfied, and we conclude by Theorem 4.10 that the random walk on (V/, i)
1s recurrent.
We are left to show that (4.18) implies (4.17). Given positive integers a < b, we have

b b a
b(b+1) a(a+1) _ b*—a?
=] — = — >
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whence it follows that

162 —
DA Ll

r=a+1

By choosing a subsequence of {ry}, we can assume that rp > 2r;_;. Then we have, using
(4.18),

Yley Yy L

r=0 k r=rp_1+1 T

B 2
S, L _
- 2C ; T,%,

which was to be proved. =
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