
ON THE PATH HOMOLOGY THEORY OF DIGRAPHS AND
EILENBERG-STEENROD AXIOMS

ALEXANDER GRIGOR’YAN, ROLANDO JIMENEZ, YURI MURANOV,
AND SHING-TUNG YAU

Abstract. In the paper we continue the investigation of the path homology theory
of digraphs that was constructed in our previous papers. We prove basic theorems
that are similar to the theorems of classical algebraic topology and introduce sev-
eral natural constructions of digraphs which are very helpful to investigate the path
homology theory. We describe relation of our results to the Eilenberg-Steenrod ax-
iomatic of homology theory.
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1. Introduction

The homology and homotopy theory of digraphs considered in this paper were in-
troduced in [16],[17], [18], and [19]. Our approach is closely related to geometric and
algebraic topology [14], [13], [30], [25], [22], to physical applications of graph theory
[33], [11], [10], [4], [9], to Atkins homotopy theory [1], [2], [3], [6], to the theory of
quivers [8], [23], [15], [19], and to various discrete (co)homology and homotopy theories
[5], [3], [6], [32], [12], [29], [24], [7].

In the present paper we introduce a path homology theory on the category of digraph
pairs (Section 3). We verify that this homology theory satisfies the properties that are
analogous to Eilenberg-Steenrod axioms (Section 5). In particular, we prove that the
path homologies satisfy a digraph version of the excision axiom of Eilenberg-Steenrod
(Theorem 3.29).

Another important result is construction of the Mayer-Vietoris exact sequence for
certain triads of digraphs (Theorem 3.25). This result is used, in particular, to obtain

Date: August 2016.

1



2 A. GRIGOR’YAN, R. JIMENEZ, YU. MURANOV, AND S.-T. YAU

the homology groups of suspensions and wedge sums (Theorems 4.13, 4.14, Corollary
3.28).

We construct new exact sequences and a braid of exact sequence for various pairs
and triples of digraphs (Theorems 3.15, 3.18, 3.21).

Note that many results of this paper can be transferred to the case of non-directed
graphs, using the natural identification of the category of non-directed graphs with a
full subcategory of digraphs (see [16]).

The paper is organized as follows. In Section 2, we give some preliminary material
concerning the homotopy theory for digraphs (see also [16], [18]) and prove several
technical results.

In Section 3, we introduce and study the path homology theory for the category of
digraph pairs. In particular, we construct new exact sequences of the homology groups
and describe new relations between cones, suspensions, and cylinders of digraphs.

In Section 4, we introduce the natural homotopical generalizations of cylinder, cone,
and suspension for digraphs and prove their properties.

In Section 5, we discuss basic properties of path homology in connection with the
Eilenberg-Steenrod axioms of homology theory on topological spaces. It seems that
the discrete analogue of this system of axioms does not possess completeness, and an
interesting question arises of what additional axioms are needed.

In Section 6, we provide several examples which illustrate the distinction between
path homology theory and homology theory for topological spaces.

Acknowledgements. The first and third authors were supported by SFB 1283 of the
German Research Council. The second author was partially supported by the CONA-
CyT Grant 284621. The fourth author is partially supported by the grant ”Geometry
and Topology of Complex Networks”, no. FA-9550-13-1-0097.

2. On homotopy theory for digraphs

In this Section we give necessary definitions and preliminary material about the
homotopy theory for digraphs constructed in [16]. We also prove several technical
results.

Definition 2.1. A directed graph (digraph) X is a couple (VX , EX) where VX is an
arbitrary set whose elements are called vertices, and EX ⊂ {VX × VX \ diag}. The
elements of EX are called arrows (or directed edges). The fact that (v, w) ∈ EX will
be denoted by v → w. We write v−→=w if either v = w or v → w.

A based digraph X∗ is a digraph X together with a fixed vertex ∗ ∈ VX .

Definition 2.2. A digraph map (or simply map) from a digraph X to a digraph Y is
a map f : VX → VY such that, for any arrow v → w in X we have f (v)−→=f (w) on Y .

A digraph map of based digraphs f : Xv → Y w is a digraph map of digraphs such
that f(v) = w.

The image f (X) of a digraph map f : X → Y is a digraph whose vertices are f (v) ,
v ∈ VX and whose arrows are f (v)→ f (w) provided v → w and f (v) 6= f (w).

A digraph map f : X → Y is called an isomorphism if f is a bijection and v → w in
X is equivalent to f (v) → f (w) in Y . If there is an isomorphism f : X → Y then X
and Y are called isomorphic. We write in this case X ∼= Y .

Denote by D the category of digraphs in which the morphisms are digraph maps and
by D∗ the category of based digraphs and based digraph maps.
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Definition 2.3. A Cartesian product Π = X�Y of two digraphs X = (VX , EX) and
Y = (VY , EY ) is a digraph Π with the set of vertices VΠ = VX × VY and the set of
arrows EΠ that is defined as follows: for all x, x′ ∈ VX and y, y′ ∈ Vy

(x, y)→ (x′, y′) in Π ⇔ x′ = x, y → y′ or x→ x′, y′ = y.

Let In(n ≥ 0) denote a digraph with the set of vertices VIn = {0, 1, . . . , n} and the
set of arrows EIn containing exactly one of the arrows i → (i + 1), (i + 1) → i for
each i = 0, 1, . . . , n− 1, and no other edges. Such a digraph In is called a line digraph.
The number n is called the height of In. If I is a line digraph, then its height will be
denoted by |I|. Denote by I∗n the based line digraph with base vertex ∗ = 0 .

Denote by In the set of all line digraphs of height n, and by I∗n the set of all based
line digraphs of height n. Set also

I =
⋃

n≥0

In, I∗ =
⋃

n≥0

I∗n,

Note that there is only one line digraph of height 0, that is {0}, and two line digraphs
of height 1: I = (0→ 1) and I− = (0← 1).

Definition 2.4. i) We call digraph maps f, g : X → Y homotopic and write f ' g, if
there exists a line digraph In ∈ I and a digraph map

F : X�In → Y such that F |X�{0} = f, F |X�{n} = g,

where we identify X with X�{0} and with X�{n} by means of the natural inclusions.
If n = 1 then we refer to F as a one-step homotopy from f to g, and the maps f and
g will be called one-step homotopic.

ii) Two based digraph maps f, g : Xv → Y ∗ are called homotopic if there is a homo-
topy F as in i) with the additional property F ({v}�In) = ∗ ∈ Y.

Now the homotopy equivalence X ' Y of two digraphs and a contractible digraph
are defined by a standard way.

Denote by HoD the category of digraphs with classes of homotopic maps and by
HoD∗ the category of based digraphs with classes of based homotopic maps.

Definition 2.5. i) A digraph Y is called a sub-digraph of a digraph X if VY ⊂ VX and
EY ⊂ EX . In this case we shall write Y @ X.

ii) If in addition

v, w ∈ VY and v → w in X ⇒ v → w in Y,

then we say that Y is an induced sub-digraph of X and write Y ⊂ X.

Clearly Y ⊂ X implies Y @ X. A pair (X,Y ) consisting of of digraph X with a
sub-digraph Y @ X will be called a digraph pair.

Let (X,Y ) be a digraph pair with Y ⊂ X. Then we have the standard definition
of a retraction r : X → Y and a (strong) deformation retraction F : X�In → Y of X
onto Y .

Definition 2.6. If we have a deformation retraction F with n = 1, then we refer to F
as a one-step retraction.

Note, that if Y @ X but Y 6⊂ X , then there is no retraction of X onto Y .
The following results follows directly from Definition 2.6.

Proposition 2.7. Consider a digraph X and two sub-digraphs Yi ∈ X (i = 1, 2) such
that X = Y1 ∪ Y2 and there is a strong deformation retraction F : Y2�In → Y1 ∩ Y2.
Then there is a strong deformation retraction Φ: X�In → Y1 such that Φ|Y2�In = F .
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Proposition 2.8. Consider a triple of digraphs Z ⊂ Y ⊂ X. Let Z be a retract (defor-
mation retract, strong deformation retract) of Y , and let Y be a retract (deformation
retract, strong deformation retract) of X. Then Z is a retract (deformation retract,
strong deformation retract) of X.

Definition 2.9. i) Let (X,Y ) and (X ′, Y ′) be digraph pairs. A digraph map f : X →
X ′ is called a digraph map of pairs if f(Y ) @ Y ′. In this case we write

f : (X,Y )→ (X ′, Y ′).

ii) Two digraph maps of pairs

f, g : (X,Y )→ (X ′, Y ′)

are called homotopic if there exists a map of digraph pairs

F : (X�In, Y�In)→ (X ′, Y ′),

such that
F |(X�{0},Y�{0}) = f, F |(X�{n},Y�{n}) = g.

It is easy to check that we obtain a well defined category D2 of digraph pairs and
digraph maps of pairs, and a well defined category HoD2 of digraph pairs and homotopy
classes of digraph maps of pairs. Note that a based digraph X∗ can be considered as
a digraph pair (X, ∗). The based digraph map f : Xv → Y w can be considered as a
digraph map of pairs f : (X, v) → (Y,w). Thus, the category D∗ is a full subcategory
of D2, and similarly HoD∗ is a full subcategory of HoD2.

Definition 2.10. Let f : X → Y be a digraph map. The cylinder Cf of f is a digraph
with the set of vertices VCf

= VX ∪ VY and with the set of arrows that consists of all
arrows of X, all arrows of Y , and of all arrows of the form v → f (v), v ∈ VX .

The inverse cylinder C−f has the same set of vertices as Cf and in the definition of
the set of arrows v → f (v) should be replaced by v ← f(v).

In particular, we have natural inclusions j : X → Cf and i : Y → Cf , and similarly
for C−f . For example, for f = IdX : X → X we obtain digraphs

Cf
∼= X�I ∼= C−f

∼= X�I−,

that are called cylinders over the digraph X.

Definition 2.11. The cylinder of the map X → {a} of a digraph X to a single vertex
digraph {a} is called a cone over the digraph X and is denoted by Conea(X) or simply
by Cone (X). The inverse cylinder of this map is called an inverse cone over the digraph
X and is denoted Cone−a (X) or simply by Cone− (X).

Definition 2.12. The suspension S(X) of a digraph X is a digraph defined as the
union

Conea(X)
⋃

X∼X

Coneb (X)

of two cones Conea(X) and Coneb (X) where a 6= b, and we identify X ⊂ Conea(X)
with X ⊂ Coneb(X). Similarly, the inverse suspension S−(X) is the union of Cone−a (X)
and Cone−b (X) .

Definition 2.13. Let f : X → Y be a digraph map. The cone of f is a digraph Conef

whose set of vertices is VConef
= VY ∪{∗} and whose set of arrows consists of all arrows

of Y and all arrows ∗ → f (v), v ∈ VX . Similarly one defines the inverse cone of f
where ∗ → f (v) is replaced by ∗ ← f(v).
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For example, for an identity map f = IdX : X → X, we have

Conef
∼= Cone−(X)

and

Cone−f
∼= Cone(X).

Definition 2.14. i) For any n ≥ 0 define a digraph Δn by

VΔn = {0, 1, . . . , n}, i→ j in Δn ⇔ i < j.

An n-simplex is any digraph that is isomorphic to Δn.
ii) For any n ≥ 0, define a digraph In as

I0 = {∗} , In = I� . . .�I︸ ︷︷ ︸
n times

.

An n-cube is any digraph that is isomorphic to In.

Proposition 2.15. [16] i) For any digraph X and for any line digraph In there are
homotopy equivalences:

X�In ' X, Cone(X) ' Cone−(X) ' {∗} .

ii) For any digraph map f : X → Y we have homotopy equivalences

Cf ' Y ' C−f .

iii) For any n ≥ 0, we have homotopy equivalences

In ' {∗} ' Δn.

Now we state and prove yet several results about homotopy properties of digraphs
that will be needed in the following sections.

For an n-simplex Δn (n ≥ 1) and for any 0 ≤ k ≤ n, define its k-face as a sub-
digraph Δn−1

k obtained from Δn by deleting one vertex k ∈ VΔn and all arrows that
are incident to k.

Recall that the n-cube In can be described as a digraph of 2n vertices such that
any vertex α ∈ VIn can be identified with a sequence α = (a1, . . . , an) of binary digits
so that α → β in In if and only if the sequence β = (b1, . . . , bn) is obtained from
α = (a1, . . . , an) by replacing a digit 0 by 1 at exactly one position.

Let In be an n-cube digraph with n ≥ 1. For any 1 ≤ p ≤ n we have two inclusions
In−1 to sub-digraphs In−1

p0 and In−1
p1 of In, that are defined in the following way. For

I1 = 0→ 1, we have the inclusions

V 0
10 : {0} → I0

10 = {0} ⊂ I1

and

V 0
11 : {0} → I0

11 = {1} ⊂ I1.

For n ≥ 2 the inclusions on the sub-digraphs

V n−1
p0 : In−1 → In−1

p0 ⊂ In and V n−1
p1 : In−1 → In−1

p1 ⊂ In

are given by

V n−1
pε (i1, . . . , in−1) = (i1, . . . , ip−1, ε, ip, . . . , in−1)

where ε = 0, 1. We shall call the images In−1
pε ⊂ In of the maps V n−1

pε for ε = 0, 1 by
first and second p-faces of the digraph In, respectively.
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Proposition 2.16. Let Y be a digraph.
i) Let X = Y ∪ Δn and Y ∩ Δn = Δn−1

k where n ≥ 1, 0 ≤ k ≤ n. Then there is a
one-step strong deformation retraction F : X�I → X of X onto Y .

ii) Let X = Y ∪ In and Y ∩ In = In−1
pε where n ≥ 1, 0 ≤ p ≤ n. Then there is a

one-step strong deformation retraction F : X�I → X of X onto Y .

Proof. i) Define a strong deformation retraction of Δn to Δn−1
k for two different cases

of k. In the case k 6= n define F : Δn�I → Δn on the set of vertices as

F (v, i) =






v, for i = 0,

v, for i = 1, v 6= k,

k + 1, for i = 1, v = k.

In the case k = n define F : Δn�I− → Δn on the set of vertices as

F (v, i) =






v, for i = 0,

v, for i = 1, v 6= n,

n− 1, for i = 1, v = n.

Now statement i) follows from Proposition 2.7.
ii) Consider the case ε = 1. Define a strong deformation retraction F : In�I → In

of In to In−1
p1 on the set of vertices as

F ((i1, . . . , in), i) =






(i1, . . . , in), for i = 0,

(i1, . . . , in), for i = 1, ip = 1,

(i1, . . . , ip−1, 1, ip, . . . , in), for i = 1, ip = 0.

Consider the case ε = 0. Define a strong deformation retraction F : In�I− → In of In

to In−1
p0 on the set of vertices as

F ((i1, . . . , in), i) =






(i1, . . . , in), for i = 0

(i1, . . . , in), for i = 1, ip = 0

(i1, . . . , ip−1, 0, ip, . . . , in), for i = 1, ip = 1.

Now statement ii) follows from Proposition 2.7. �

Proposition 2.17. Let Y1 ⊂ Y be a digraph pair. Assume that there is a strong
deformation retraction F : Y�In → Y of Y to Y1. Then, for any digraph X, there is a
strong deformation retraction Id�F : X�(Y�In)→ X�Y of X�Y to X�Y1.

Proof. The digraph homomorphism Id�F is a deformation retraction. �

Corollary 2.18. Let K = In�Δm. Assume that K1 is a sub-digraph of K that is equal
to In�Δn−1

m or In−1
pε , where Δn−1

m ⊂ Δn and In−1
pε ⊂ In are the faces of the cube and

simplex, respectively. Then there is a strong deformation retraction F : K�I → K of
K to K1.

3. Path homology of digraphs and digraphs pairs

In this section we recall the definition of path homology for a finite digraph X =
(V,E) with coefficients in an arbitrary abelian group K (see [16], [18], and [20]) and
introduce the path homology theory for the category of digraph pairs. Then we con-
struct new exact sequences of the homology groups and describe new relations between
cones, suspensions, and cylinders of digraphs.
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Let G = (V,E) be a digraph. At first, we define a chain complex Λ∗(V,K) of arbitrary
paths on the set V of vertices. Then, using a digraph structure given by arrows, we
define a chain complex of digraph G and the notion of homology of digraphs. [16],
[18]. This approach is dual to the construction of the cochain complex and cohomology
groups of digraphs that is based on the universal calculus on the algebra of functions
on the vertices [17].

Definition 3.1. For any non-negative integer p, an elementary p-path on the set V
of vertices is any sequence {ik}

p
k=0 of p + 1 vertices of V . For p = −1, an elementary

p-path is the empty set ∅.

The elementary p-path {ik}
p
k=0 will also be denoted simply by i0...ip, without delim-

iters between the vertices.
Denote by Λp = Λp (V,K) the abelian group that consists of all formal K-linear

combinations of all elementary p-paths.

Definition 3.2. The elements of Λp are called p-paths on V .

An elementary p-path i0...ip as an element of Λp will be denoted by ei0...ip . The empty
set as an element of Λ−1 will be denoted by e. By definition, the set

{
ei0...ip | i0, ..., ip ∈ V

}

is a basis of Λp. Each p-path v can be presented by a unique way as a finite sum

(3.1) v =
∑

i0,...,ip∈V

vi0...ip ei0...ip ,

where vi0...ip ∈ K. Note that Λ−1 consists of all multiples of e, so that Λ−1
∼= K.

Definition 3.3. For any p ≥ 0, define a homomorphism ∂ : Λp → Λp−1 on the elemen-
tary paths

(3.2) ∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip

(where îq means omission of the index iq) and then extend ∂ to Λp by K-linearity. We
shall refer to ∂ as the boundary operator.

For an arbitrary p-path (3.1) with p ≥ 0, we have

∂v =
∑

i0,...,ip

vi0...ip ∂ei0...ip =
∑

i0,...,ip

p∑

q=0

(−1)q vi0...ip ei0...îq ...ip
,

whence

(∂v)j0...jp−1 =
∑

i0,...,ip

p∑

q=0

(−1)q vi0...ip (ei0...îq ...ip
)j0...jp−1

=
∑

k∈V

p∑

q=0

(−1)q vj0...jq−1k jq ...jp−1 ,(3.3)

where the index k is inserted in the path j0...jp−1 between jq−1 and jq if 1 ≤ q < p,
before j0 if q = 0, and after jp−1 if q = p.

Set also Λ−2 = {0} and define ∂ : Λ−1 → Λ−2 to be zero.

Lemma 3.4. We have ∂2 = 0.
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Proof. The operator ∂2 acts from Λp to Λp−2, so that the identity ∂2 = 0 makes sense
for all p ≥ 0. In the case p = 0 the identity ∂2 = 0 is trivial. For p ≥ 1, we have by
(3.1)

∂2ei0...ip =
p∑

q=0

(−1)q ∂ei0...îq ...ip

=
p∑

q=0

(−1)q




q−1∑

r=0

(−1)r ei0...îr...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip





=
∑

0≤r<q≤p

(−1)q+r ei0...îr...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence
∂2ei0...ip = 0. This implies ∂2v = 0 for all v ∈ Λp. �

Consequently, we have the following chain complex:

(3.4) 0← K ← Λ0 ← ∙ ∙ ∙ ← Λp−1 ← Λp ← ∙ ∙ ∙ ,

where the arrows are given by the boundary operator ∂.

Definition 3.5. We say that an elementary path ei0...ip(p ≥ 1) is non-regular if ik−1 =
ik for some k = 1, ..., p, and regular otherwise.

For p ≥ 1, consider the subgroup Ip of Λp spanned by non-regular elementary paths:

Ip = Ip (V ) = span
{
ei0...ip | i0...ip is non-regular

}
.

We set also I0 = I−1 = I−2 = 0.

Lemma 3.6. If ei0...ip ∈ Ip(p ≥ 1) then ∂ei0...ip ∈ Ip−1 and, putting Rp := Λp/Ip, we
obtain the chain factor complex

(3.5) 0← K ← R0 ← ∙ ∙ ∙ ← Rp−1 ← Rp ← ∙ ∙ ∙ .

Proof. For an ei0...ip ∈ Ip there exists an index k such that ik = ik+1. Then we have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+(−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip(3.6)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (3.6) cancel out, whereas all other
terms are non-regular, whence ∂ei0...ip ∈ Ip−1. �

Note that the chain complex R∗ in 3.5 is defined for a finite set V . Thus we can
denote it by R∗(V ), and similarly Λp(V ) and Ip(V ) are defined. Any map of finite sets
f : V → V ′ defines for any p ≥ 0 the induced homomorphism

f∗ : Λp(V )→ Λp(V
′)

by the rule f∗
(
ei0...ip

)
= ef(i0)...f(ip), extended to Λp(V ) by linearity. The map f∗ can

be considered as a morphism of chain complexes, because by (3.2) ∂f∗ = f∗∂. Since
f∗(Ip(V )) ⊂ Ip(V ′), we obtain the induced morphism of chain complexes (see [16])

(3.7) R∗ (V )→ R∗
(
V ′
)
,
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which we also denote by f∗. We can define this homomorphism on basic elements by
the rule

(3.8) f∗
(
ei0...ip

)
=

{
ef(i0)...f(ip), if ef(i0)...f(ip) is regular,

0, if ef(i0)...f(ip) is non-regular.

Now consider a digraph X = (V,E).

Definition 3.7. An elementary regular p-path ei0...ip on X is called allowed if ik → ik+1

for any k = 0, ..., p − 1, and non-allowed otherwise.

For p ≥ 0, let Ap (X) denote a subgroup of Rp (X) := Rp (V ) spanned by the allowed
elementary p-paths. We put A−1 (X) = K. The elements of Ap(X) are called allowed
p-paths. Note that Ap(X) = Rp(X) for p = −1, 0, 1.

Consider the following subgroup of Ap(X)

(3.9) Ωp ≡ Ωp (X) := {v ∈ Ap : ∂v ∈ Ap−1}

that is ∂-invariant. Indeed, v ∈ Ωp implies ∂v ∈ Ap−1 and ∂ (∂v) = 0 ∈ Ap−2, whence
∂v ∈ Ωp−1. The elements of Ωp are called ∂-invariant p-paths.

Hence, for any digraph X we obtain a chain complex of abelian groups

(3.10) 0 ← K
∂
← Ω0

∂
← Ω1

∂
← ∙ ∙ ∙

∂
← Ωp−1

∂
← Ωp

∂
← ∙ ∙ ∙ ,

which we shall denote by Ω̃∗ = Ω̃∗ (X) = Ω̃∗(X,K). By construction we have Ω−1 = K,
Ω0 = R0(X) and Ω1 = R1(X), while in general

Ωp ⊂ Ap(X) ⊂ Rp(X).

We shall call the chain complex 3.10 the reduced path chain complex of the digraph X.
Its homology groups are denoted by H̃∗ (X,K) and are referred to as the reduced path
homologies of the digraph X with coefficients from K. We consider also the following
part of the chain complex (3.10)

(3.11) 0← Ω0 ← ∙ ∙ ∙ ← Ωn−1 ← Ωn ← Ωn+1 ← ∙ ∙ ∙ ,

where the definition of the boundary operator ∂ on Ω0 is modified by setting ∂ ≡ 0.
Note that (3.11) is a chain complex and our modification does not affect ∂ on Ωn with
n ≥ 1. We shall denote this chain complex by Ω∗(X). The homology groups of Ω∗(X)
(3.11) are referred to as the path homology groups of the digraph X and are denoted by
H∗ (X) = H∗ (X,K) , n ≥ 0. Let us note that the homology groups Hp (X) (as well as
the groups Ωp (X)) can be computed directly by definition using simple tools of linear
algebra, in particular, those implemented in modern computational software.

Theorem 3.8. [16] i) Let f : X → X ′ be a digraph map. Then the map f∗ : R∗(V )→
R∗(V ′) in (3.7) satisfies the condition

f∗(Ap(X)) ⊂ Ap(X
′)

and its restriction f∗|Ωp(X) provides a morphism of reduced chain complexes

Ω̃∗(X,K)→ Ω̃∗(X
′,K)

and, consequently, a homomorphism of reduced homology groups

H̃∗(X,K)→ H̃∗(X
′,K)

that will also be denoted by f∗. The same is true for the non-reduced complex and its
homology groups.
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ii) The homotopy equivalent digraph maps f, g : X → X ′ induce the equal homomor-
phisms of (reduced) homology groups. Hence, the (reduced) homology groups introduced
above are homotopy invariant.

Now we develop the path homology theory for the category of digraphs pairs. Let
Y @ X be a sub-digraph of a digraph X and denote by i the natural inclusion.

Proposition 3.9. The induced by i morphism of reduced chain complexes

i∗ : Ω̃∗(Y )→ Ω̃∗(X)

is an inclusion.

Proof. As follows directly from the definition Λ∗(Y ) ⊂ Λ∗(X) and R∗(Y ) ⊂ R∗(X).
We have A−1(Y ) = A−1(X) = K and

A0(Y ) = span{v | v ∈ VG} ⊂ span{v | v ∈ VX} = A0(X).

For any p ≥ 1 we have the natural inclusion Ap(Y ) ⊂ Ap(X) since ik−1 → ik in Y
implies ik−1 → ik in X. Hence

[v ∈ Ωp(Y ) ⊂ Ap(Y ) ⊂ Ap(X)]⇒ [∂v ∈ Ap−1(Y ) ⊂ Ap−1(X)]

and Ω̃∗(Y ) ⊂ Ω̃∗(X). �

Note that the inclusion map i∗ in Proposition 3.9 is the identity map K → K in
dimension −1, so that Ω̃−1 (X) /Ω̃−1 (Y ) = 0. Now we define a chain complex Ω∗(X,Y )
as factor-complex Ω∗(X)/Ω∗(Y ) that coincides with Ω̃∗ (X) /Ω̃∗ (Y ). The homology
groups of this complex are denoted by H∗(X,Y ) = H∗(X,Y ; K) and are called the
relative path homology groups.

Let us give a graph interpretation of the factor-complex in a special case. If U is
a subset of VX then denote by AU

p (X) the subgroup of Ap (X) spanned by all the
elementary paths ei0...ip that intersect U (where the latter means that at least one of
the vertices i0...ip belongs to U). Set also

ΩU
p (X) = Ωp (X) ∩ AU

p (X) .

Lemma 3.10. Let Y @ X and let U = VX \ VY . If there are no arrows from U to VY

then

(3.12) Ωp(X)/Ωp(Y ) ∼= ΩU
p (X) .

Proof. Any x ∈ Ωp (X) is a linear combination of elementary paths:

x =
∑

i0...ip∈VX

xi0...ipei0...ip .

Each term xi0...ipei0...ip with non-zero xi0...ip will be called an elementary term of x.
Denote by u the sum of all the elementary terms of x that intersect U , and by v
the rest of x, that is the sum of the elementary terms of x that lie in Y . Hence,
x = u + v. Since x is allowed, both u and v are allowed. Since x is ∂-invariant, the
sum ∂u + ∂v = ∂x is allowed. Let cei0...ip be an elementary term of u. Since ei0...ip

is allowed and there is no arrow from U to Y , we see that the sequence i0...ip looks
as follows: some first part, say i0...iq lies in Y , and the rest iq+1...ip lies in U , where
the second part is non-empty, in particular, ip ∈ U . Then all the elementary terms of
∂ei0...ip intersect U except for one case: if ip is the only vertex of ei0...ip in U then the
elementary term ei0...ip−1 of ∂ei0...ip does not intersect U . Note that in the latter case
ei0...ip−1 is an allowed path in Y . Hence, we obtain

∂u = (allowed path in Y ) + (sum of terms intersecting U).
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Since
∂v = sum of terms lying in Y,

and ∂u + ∂v is allowed, we see that the sum of the terms of ∂u intersecting U must be
allowed, that is,

∂u = (allowed path in Y ) + (allowed path in U).

Hence, ∂u is allowed. It follows that ∂v = ∂x− ∂u is also allowed. Hence, both u and
v are ∂-invariant, consequently, u ∈ ΩU

p (X) and v ∈ Ωp (Y ).
Therefore, the decomposition x = u + v determines a homomorphism

Ωp (X) → ΩU
p (X) ,

x 7→ u,

which is obviously an epimorphism. Clearly, its kernel is Ωp (Y ), which implies (3.12).
�

Now we transfer to path homology groups the standard results from algebraic topol-
ogy (see, for example, [21, Chpt. 2.1] and [28, Chpt. 1.3]).

Theorem 3.11. Let Y @ X be a sub-digraph of a digraph X. Then there is a relative
homology long exact sequence

0← H0(X,Y )← H0(X)← H0(Y )← ∙ ∙ ∙ ← Hn−1(Y )← Hn(X,Y )← Hn(X)← . . .

in which the homomorphisms Hn(Y )→ Hn(X) are induced by the inclusion i : Y → X.
In particular, if the inclusion Y → X is a homotopy equivalence, then Hn(X,Y ) = 0
for all n ≥ 0.

Proof. By definition, we have the short exact sequences of chain complexes

0→ Ω∗(Y )→ Ω∗(X)→ Ω∗(X,Y )→ 0

from which the result follows by standard arguments. �

As follows from our construction, there is also a long exact sequence of reduced
homology groups for a pair (X,Y ) that has exactly the same form and the groups
H̃n(X,Y ) are the same as Hn(X,Y ).

Proposition 3.12. Let X be a connected digraph. Then H0(X) = K. For any digraph
X we have H0(X) ∼= ⊕

n
K where n is the number of connectivity components of X.

Proof. Consider a connected digraph X. We can join any two vertices v, w ∈ VX by a
sequence of edges v = i0 ∼ v1 ∼ ∙ ∙ ∙ ∼ in = w where ik ∼ ik+1 means that at least one
of the cases ik → ik+1 or ik ← ik+1 is realized. In Ω0(X) we have

ein = ei0 + ∂




n−1∑

k=0,(ik→ik+1)

eikik+1
−

n−1∑

k=0,(ik←ik+1)

eik+1ik



 ,

and hence any element from Ω0(X) has the form ei0 + Im ∂. The element ei0 does not
lie in the image ∂, since for any x =

∑
k akeikjk

∈ Ω1(X) we have

∂

(
∑

k

akeikjk

)

=
∑

k

akejk
−
∑

k

akeek
,

where the sum of coefficients in the right part is zero. The general case can be considered
in a similar way. �
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Corollary 3.13. Let X be a connected digraph, and let Y @ X be a non-empty con-
nected sub-digraph of X. Then H0(X,Y ) = 0.

Proof. Follows from Theorem 3.11 and Proposition 3.12. �

Proposition 3.14. For a digraph X we have

Hn(X) =

{
H̃(X), n ≥ 1,

H̃0(X)⊕K, n = 0.

Proof. The proof is standard (see, for example, [21] and [28]). �

Theorem 3.15. A map f : (X,Y ) → (X ′, Y ′) of digraph pairs induces a homomor-
phism f∗ : Hn(X,Y )→ Hn(X ′, Y ′) (n ≥ 0) fitting into a commutative diagram

∙ ∙ ∙ → Hn(Y ) → Hn(X) → Hn(X,Y ) → Hn−1(Y ) → ∙ ∙ ∙
↓ ↓ ↓ ↓

∙ ∙ ∙ → Hn(Y ′) → Hn(X ′) → Hn(X ′, Y ′) → Hn−1(Y ′) → ∙ ∙ ∙

in which the rows are the relative long homology exact sequences.

Proof. Follows from [26, Chpt. 2, 4]. �

Theorem 3.16. i) Let two digraph maps f, g : (X,Y ) → (X ′, Y ′) be homotopic as
digraph maps of pairs (see Definition 2.9). Then f∗ = g∗ : Hn(X,Y )→ Hn(X ′, Y ′) for
any n ≥ 0.

ii) Let a digraph map f : (X,Y )→ (X ′, Y ′) be such that its restrictions f |X and f |Y
are homotopy equivalences. Then f∗ : Hn(X,Y ) → Hn(X ′, Y ′) is an isomorphism for
any n ≥ 0.

Proof. Follows from the Five Lemma [26, Chpt. 1,3] and Theorem 3.8. �

Proposition 3.17. Let ∗ ⊂ X be the one-vertex sub-digraph of a digraph X. Then

Hn(∗) =

{
K, for n = 0,

0, for n ≥ 1,
and H̃n(∗) = 0 ∀n ∈ Z.

We have natural isomorphisms

H∗(X, ∗) ' H̃∗(X)

and
Hn(X, ∗) ' Hn(X) for n ≥ 1.

Proof. The first statement follows directly from definition of path homology groups.
The next statement follows from Proposition 3.14 and definition of relative homology
groups (see also [28, §3.2]). �

Now we give a digraph interpretation of the relative homology groups H∗(X,Y ) and
introduce the relative homology groups H∗(f) for a digraph map f : X → X ′.

Theorem 3.18. For a digraph map f : X → X ′ there is a homology long exact sequence

∙ ∙ ∙ → Hn(X)
f∗→ Hn(X ′)→ Hn(Cf , X)→ Hn−1(X)→ ∙ ∙ ∙ ,

where we identify X with j(X) ⊂ Cf by means of the natural inclusion j : X ⊂ Cf

from Definition 2.10.
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Proof. Consider a commutative diagram of digraphs and digraph maps

(3.13)

X
j
−→ Cf

|| ↓r

X
f
−→ X ′

in which r is the deformation retraction. From (3.13) we obtain the commutative
diagram of groups and homomorphisms

∙ ∙ ∙ −→ Hn(X)
j∗−→ Hn(Cf ) −→ Hn(Cf , X) −→ ∙ ∙ ∙

|| ∼=↓r∗
Hn(X)

f∗−→ Hn(X ′)

and the statement of the theorem follows �

In what follows we shall denote by H∗(f) the relative homology groups H∗(Cf , X).
Note that there is a result that is similar to Theorem 3.18 for reduced homology groups.
It is an easy exercise to reformulate the result for the inverse cylinder C−f .

Proposition 3.19. Let Y @ X and assume that there is a deformation retraction
r : Y → ∗ ⊂ Y . Then we have isomorphisms of relative homology groups

H∗(X,Y ) ∼= H∗(X, ∗).

Proof. The natural map (X, ∗) → (X,Y ) of digraph pairs induces the commutative
diagram

Ω∗(∗) → Ω∗(X)
i ↓ ↓Id

Ω∗(Y ) → Ω∗(X).

Now the result follows from Theorem 3.15 and he Five Lemma, since the maps induced
by i and the identity map Id are isomorphisms. �

Corollary 3.20. For any inclusion i : Y → X of digraphs we have isomorphisms of
relative homology groups

H∗(Conei, Cone(Y )) ∼= H∗(Conei, ∗).

Proof. Any inclusion i induces the inclusion Cone(Y ) ⊂ Conei. Now the result follows
from Proposition 3.19, since there is a deformation retraction of Cone(Y ) onto its vertex
∗. �

Now consider a triple of digraphs Z @ Y @ X. Denote the inclusions of the digraphs
in the following way

i : Y → X, j : Z → Y, k = i ◦ j : Z → X.

Theorem 3.21. For a triple of digraphs Z @ Y @ X there is the commutative diagram
of abelian groups and homomorphisms

(3.14)

∙ ∙ ∙ → Hn+1(X,Y ) −→ Hn(Y,Z) −→ Hn−1(Z) → ∙ ∙ ∙
↗ ↘ ↗ ↘ ↗ ↘

Hn(Y ) Hn(X,Z)
↘ ↗ ↘ ↗ ↘ ↗

∙ ∙ ∙ → Hn(Z) −→ Hn(X) −→ Hn(X,Y ) → ∙ ∙ ∙
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consisting of the following relative long exact sequences

∙ ∙ ∙ → Hn+1(X,Y ) −→ Hn(Y )
i∗−→ Hn(X) −→ Hn(X,Y )→ ∙ ∙ ∙ ,

∙ ∙ ∙ → Hn+1(X,Z) −→ Hn(Z)
k∗−→ Hn(X) −→ Hn(X,Z)→ ∙ ∙ ∙ ,

∙ ∙ ∙ → Hn+1(Y,Z) −→ Hn(Z)
j∗−→ Hn(Y ) −→ Hn(Y,Z)→ ∙ ∙ ∙ ,

∙ ∙ ∙ → Hn+1(X,Y ) −→ Hn(Y,Z) −→ Hn(X,Z) −→ Hn(X,Y )→ ∙ ∙ ∙ .

Proof. By Proposition 3.9, there are the natural inclusions of chain complexes

Ω∗(Z) −→ Ω∗(Y ) −→ Ω∗(X).

By the Noether isomorphism theorem (see [31, Chpt. 4]) there is a short exact sequence
of chain complexes

0 −→ Ω∗(Y )/Ω∗(Z) −→ Ω∗(X)/Ω∗(Z) −→ Ω∗(X)/Ω∗(Y ) −→ 0.

Thus we can write down the commutative diagram of chain complexes and chain ho-
momorphisms

0 0
↓ ↓

0 −→ Ω∗(Z) −→ Ω∗(Y ) −→ Ω∗(Y )/Ω∗(Z) −→ 0
|| ↓ ↓

0 −→ Ω∗(Z) −→ Ω∗(X) −→ Ω∗(X)/Ω∗(Z) −→ 0
↓ ↓

Ω∗(X)/Ω∗(Y )
∼=−→ Ω∗(X)/Ω∗(Y )

↓ ↓
0 0

in which two rows and two columns are short exact sequences. Now, passing to the
homology long exact sequences of these short exact sequences of chain complexes we
obtain commutative diagram (3.14). �

As follows from the proof, there exists the braid of exact sequence (3.14) also for
reduced homology groups of the triple of digraphs.

Corollary 3.22. Assume that, for a triple of digraphs Z @ Y @ X, one of the inclu-
sions i : Y → X or j : Z → Y is a homotopy equivalence. Then in the first case we have
an isomorphism H∗(Y,Z) ∼= H∗(X,Z), and in the second case H∗(X,Z) ∼= H∗(X,Y ).

Proof. Follows from Theorem 3.11 and diagram (3.14). �

Note that the braid (3.14) of exact sequences is natural relative to digraph maps of
triples of digraphs.

Now for the path homology groups, we formulate and prove a result that is similar
to the classical Mayer-Vietoris exact sequence.

Let X = Y1∪Y2 and Z = Y1∩Y2 be, respectively, the union and intersection of two
digraphs. Then we can write down the following commutative diagram of the natural
inclusions of the digraphs:

(3.15)

Z
i1
−→ Y1

i2 ↓ ↓j
1

Y2
j2

−→ X.



PATH HOMOLOGY THEORY AND EILENBERG-STEENROD AXIOMS 15

For any p ≥ −1 the commutative square (3.15) induces a commutative square of abelian
groups

(3.16)

Ap(Z)
i1∗−→ Ap(Y1)

↓i
2
∗ ↓j

1
∗

Ap(Y2)
j2
∗−→ Ap(X),

in which all homomorphisms are injective.

Lemma 3.23. Suppose that any allowed elementary path on X lies in Y1 or Y2. Then
for p ≥ −1 the square (3.16) induces the following short exact sequence of abelian
groups:

(3.17) 0 −→ Ap(Z)
δ
−→ Ap(Y1)⊕Ap(Y2)

d
−→ Ap(X) −→ 0,

where δ = (i1∗, i
2
∗) and

(3.18) d(a, b) = j1
∗(a)− j2

∗(b).

Proof. The map δ is evidently a monomorphism. The map d is an epimorphism by
the assumptions. The condition d ◦ δ = 0 follows from the definition of these maps
and commutativity of (3.16). The condition d(a, b) = 0 implies that the paths j1

∗(a)
and j2

∗(b) coincide in Ap(X), and since the maps j1
∗ and j2

∗ are monomorphisms, this
implies that elementary allowed p-paths fitting into basis decompositions of a and b are
the same and hence these elementary p-paths lay in Ap(Y1∩Y2) = Ap(Z). This means,
that Ker d ⊂ Im δ, and the lemma is proved. �

Lemma 3.24. Let the assumption of Lemma 3.23 be satisfied. Assume in addition
that the homomorphism

(3.19) Ωp(Y1)⊕ Ωp(Y2) −→ Ωp(X)

that is induced by d from Lemma 3.23 is an epimorphism for any p. Then there is a
short exact sequence of chain complexes

(3.20) 0 −→ Ω̃∗(Z)
δ
−→ Ω̃∗(Y1)⊕ Ω̃∗(Y2)

d
−→ Ω̃∗(X) −→ 0.

Proof. It follows from Proposition 3.9 that there is a commutative diagram of chain
complexes

(3.21)
Ω̃∗(Z)

i1∗−→ Ω̃∗(Y1)
↓i

2
∗ ↓j

1
∗

Ω̃∗(Y2)
j2
∗−→ Ω̃∗(X)

in which all maps are inclusions. Hence the map δ in (3.20) is a monomorphism. The
map d is an epimorphism by the assumptions of the lemma. From commutativity of
(3.21) we obtain that d ◦ δ = 0 in (3.17).

Now let d(a, b) = j1
∗(a)− j2

∗(b) = 0 in (3.17), where

a ∈ Ω̃n(Y1) ⊂ An(Y1), b ∈ Ω̃n(Y2) ⊂ An(Y2).

By Lemma 3.23, there is an element x ∈ An(Z) such that

i1∗(x) = a, i2∗(x) = b, j1
∗ ◦ i1∗(x) = j2

∗ ◦ i2∗(x) ∈ An(X).

Since all maps in (3.16) are inclusions, we conclude that x ∈ Ω̃n(Y1) and x ∈ Ω̃n(Y2).
Hence ∂x ∈ An−1(Y1) and ∂x ∈ An−1(Y2), that is ∂x ∈ An−1(Z). Hence x ∈ Ω̃n(Z)
and lemma is proved. �
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Theorem 3.25. (Mayer-Vietoris exact sequence) Under the assumptions of Lemma
3.24 the square (3.14) induces a long exact sequence of homology groups:

∙ ∙ ∙ −→ H̃n(Z)
δ
−→ H̃n(Y1)⊕ H̃n(Y2)

d
−→ H̃n(X)

∂
−→ H̃n−1(Z) −→ ∙ ∙ ∙ ,

where δ = (i1∗, i
2
∗), d(a, b) = j1

∗(a)− j2
∗(b), and ∂ is a connecting homomorphisms.

Proof. Follows from Lemma 3.24 by the zig-zag lemma. �

Note that under the assumptions of Lemma 3.24 there is also the similar Mayer-
Vietoris exact sequence of non-reduced homology groups.

Now we give yet one example in which the Mayer-Vietoris exact sequence exists.

Definition 3.26. Let (Y1, y1) and (Y2, y2) be based digraphs. The wedge sum (or
bouquet)

X = Y1

∨

y1∼y2

Y2

of these digraphs is a digraph X with the set VX of vertices that is obtained from
the disjoint union VY1

⋃
VY2 by identification of based vertices y1 and y2, and with the

set of edges EX = EY1

⋃
EY2 . We shall denote by ∗ the vertex that is obtained by

identification of y1 and y2.

Identifying Yi with the sub-digraph of X and denoting ∗ = Z, we have natural
inclusions of digraphs as in commutative diagram (3.15).

Lemma 3.27. Let X = Y1
∨

y1∼y2
Y2 and Z = ∗ ⊂ X. Then there is a short exact

sequence of chain complexes (3.20) and hence the Mayer-Vietoris exact sequence as in
Theorem 3.25.

Proof. We have the commutative square (3.21) in which all the maps are inclusions.
Hence the map δ is a monomorphism and it follows from the commutativity that
d ◦ δ = 0.

Let us show that Ker d ⊂ Im δ. If ω ∈ Ker d then ω = (a, b) where a ∈ Ω̃∗(Y1),
b ∈ Ω̃∗(Y2) and j1

∗(a) = j2
∗(b). However, the latter is possible only if a and b have

dimensions 0 or −1. For these two cases the result follows directly from (3.21).
Finally, let us check that d in (3.20) is an epimorphism. In the dimensions −1, 0, 1

this is evidently. If p ≥ 2 and ω ∈ Ω̃∗(X) then consider an elementary term cei0...ip of
ω (c 6= 0). We need only to show that all the vertices i0...ip lie either in Y1 or in Y2.
Indeed, assume that this is not the case, that is, ∗ is one of the vertices i1, ..., ip−1. The
path ∂

(
cei0...ip

)
contains the term cei0...∗̂...ip that is not allowed. This term must be

cancelled in ∂ω using another elementary term of ω. However, the latter term should
then be −cei0...ip , which is not possible. �

Corollary 3.28. (Cf. [17, Th.4.17].) Under assumptions of Lemma 3.27 we have
isomorphisms

H̃n(Y1

∨
Y2,K) ∼= H̃n(Y1,K)⊕ H̃n(Y2,K).

Proof. Follows from the Mayer-Vietoris exact sequence for ∗, Y1, Y2, Y1
∨

Y2 and the
isomorphisms H̃∗(∗,K) = 0 in Proposition 3.17. �

Now we give the path homology version of the excision axiom of Eilenberg-Steenrod.

Theorem 3.29. Let X = (VX , EX) be a digraph in which there are two subsets U1, U2

of VX such that there are no outcoming arrows from Ui to VX \Ui for i = 1, 2. Denote
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by Yi (i = 1, 2) the digraph that is obtained from X by deleting all the vertices from
Uk with k 6= i and all arrows adjoint to these vertices (see Fig. 3). Then the inclusion

j : (Y1, Y1 ∩ Y2)→ (X,Y2)

induces an isomorphism of chain complexes

j∗ : Ω∗ (Y1) /Ω∗ (Y1 ∩ Y2)→ Ω∗ (X) /Ω∗ (Y2)

and, hence, an isomorphism of homology groups

j∗ : Hn(Y1, Y1 ∩ Y2)→ Hn(X,Y2).

 

X=  Y1 Y2 
U1 

U2 

Y1 Y2 

Y2 

Y1 … 

… 

Figure 1. Digraphs X, Y1, Y2.

Proof. By Lemma 3.10 we have isomorphisms

Ωn (X) /Ωn (Y2) ∼= ΩU1
n (X)

and

Ωn (Y1) /Ωn (Y1 ∩ Y2) ∼= ΩU1
n (Y1) .

The inclusion j induces a morphism j∗ of chain complexes, so that we have the following
commutative diagram:

Ωn (X) /Ωn (Y2) ∼= ΩU1
n (X)

↑ j∗ ↑=
Ωn (Y1) /Ωn (Y1 ∩ Y2) ∼= ΩU1

n (Y1) .

Here the homomorphism ΩU1
n (X)→ ΩU1

n (Y1) is induced by the inclusion and the fact
that it is the identity follows from the hypothesis that there are no outcoming arrows
from U2 = VX \VY1 to VY1 . Hence, j∗ is an isomorphism of chain complexes, which was
to be proved. �

Note that a similar result to Theorem 3.29 is true if we change in this theorem
“outcoming arrows” to “incoming arrows”.
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4. Homotopy constructions: cylinder, cone and suspension

In this section we give several new constructions of digraphs which are very helpful
for developing path homology theory. In particular, we describe several transformations
of digraphs that preserve homology groups.

Definition 4.1. For any digraph X and any line digraph In ∈ In define a direct
cylinder of X as the digraph

Cyld(X) = X�In, In ∈ In, n ≥ 1.

Note that there exist 2n digraphs X�In and hence, the cylinder is not unique.
It is easy to check that there is a strong deformation retraction Cyld(X) → X (see

[16]), and hence we have a homotopy equivalence Cyld(X) ' X.

Definition 4.2. [16] A digraph map h : In → Im is called shrinking if h (0) = 0,
h(n) = m, and h (i) ≤ h (j) whenever i ≤ j.

Any shrinking map h : In → Im is surjective and the preimage of any arrow of Im

consists of exactly one arrow of In. Furthermore, we have necessarily m ≤ n, and if
n = m then h is a bijection.

Let h : In → Im be a shrinking map. Then the cylinder Ch and inverse cylinder C−h
of the map h were defined in Definition 2.10. Define a double cylinder Chh of the map
h as the following digraph:

Chh = Ch ∪ C−h ,

where
VChh

= VIn ∪ VIm

and
EChh

= EIn ∪ EIm ∪ {i→ h(i) | i ∈ VIn} ∪ {i← h(i) | i ∈ VIn}.

Fix a digraph X = (VX , EX). We write v ∼ w if v and w are adjacent vertices of
X. In order to define a homotopy cylinder of X we need the following preliminary
construction:

i) Choose a collection C (V ) = {I (v)}v∈V where each I (v) is a line digraph from
In(v) with n (v) ≥ 0.

ii) For any pair v ∼ w we choose either a shrinking map hv,w : I(v) → I(w) or a
shrinking map hw,v : I(w)→ I(v).

iii) For any pair v ∼ w we define a digraph Cv∼w as follows. In the case (v → w) ∈
EX , (w → v) /∈ EX we set

Cv∼w =

{
Chv,w if hv,w was chosen in ii),
C−hw,v

if hw,v was chosen in ii).

In the case (v → w) ∈ EX , (w → v) ∈ EX set

Cv∼w =

{
Chv,whv,w if hv,w was chosen in ii),
Chw,vhw,v if hw,v was chosen in ii).

Definition 4.3. Assume that X is a connected digraph and EX 6= ∅. A homotopy
cylinder Cylh(X) of X is a digraph that is given by the union

⋃

v∼w

Cv∼w ,

where we identify the sub-digraphs I(v) lying in various digraphs Cv∼w in a natural
way.



PATH HOMOLOGY THEORY AND EILENBERG-STEENROD AXIOMS 19

By definition, we have natural inclusions

iv : I(v)→ Cylh(X) and jvw : Cv∼w → Cylh(X),

for any vertex v ∈ VX and for any pair v ∼ w.
Note that any direct cylinder Cyld(X) has a natural structure of homotopy cylinder.

For the next statements, we always assume that X is connected and EX 6= ∅.

Proposition 4.4. For a homotopy cylinder Cylh(X) there are natural inclusions

i0 : X −→ Cylh(X) and i1 : X −→ Cylh(X)

and a retraction

r : Cylh(X) −→ X

such that r ◦ i0 = IdX , r ◦ i1 = IdX .

Proof. Define an inclusion i0 : X → Cylh(X) on the set of vertices by the composition

v
v→0
−→ I(v)

iv−→ Cylh(X),

where the first map is the inclusion v → 0 ∈ I(v). Define an inclusion i1 : X → Cylh(X)
on the set of vertices by the composition

v
v→n(v)
−→ I(v)

iv−→ Cylh(X),

where the first map is the inclusion v → n(v) ∈ I(v), where n(v) = |I(v)|. Define the
map r on the set of vertices by r(v, k) = v for v ∈ VX , k ∈ VI(v). �

Theorem 4.5. The map r in Proposition 4.4 is a strong deformation retraction.

Proof. Denote by C the digraph Cylh(X). If all n (v) = 0 then there is nothing to
prove. Consider a vertex v ∈ VX with n(v) ≥ 1. Then (v, n(v)− 1) ∼ (v, n(v)) in C.

Consider a set W of all vertices w of X that satisfy the following property: there is
a sequence of vertices v = v0, v1, . . . , vs = w on X such that vi ∼ vi+1 in X for any
i = 0, ..., s − 1, and

(vi, n(vi)) ∼ (vi+1, n(vi+1)), (vi, n(vi)− 1) ∼ (vi+1, n(vi+1)− 1),

in C. Define a digraph map φ : C → C on the set of vertices of C by

φ(u, k) =

{
(u, k − 1), for (u, k) = (w, n(w)), w ∈W ∪ {v} ,

(u, k), otherwise.

The map φ is a strong deformation retraction (see [16, Corollary 3.7]) of C to a sub-
digraph that is also a homotopical cylinder over X and that has |VC |− |W |−1 vertices.
From now the result follows by induction using Proposition 2.8. �

Corollary 4.6. For any finite digraph X and any homotopy cylinder digraph Cylh(X)
we have an isomorphism

H̃∗(X) ∼= H̃∗

(
Cylh(X)

)
.

Proof. Follows from Theorem 3.8. �

Now we introduce a new definition of homotopy and prove that it is equivalent to
our previous definition. As we shall see below this generalization is very natural.
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Definition 4.7. Let f, g : X → Y be digraph maps. A digraph map F : Cylh(X)→ Y
is called a generalized homotopy of f and g if

F ◦ i0 = f, F ◦ i1 = g ,

where i0, i1 are the inclusions from Proposition 4.4. In this case the maps f and g are
called generalized homotopic.

Theorem 4.8. Let X be a finite digraph. Two digraph maps f, g : X → Y are gener-
alized homotopic if and only if they are homotopic.

Proof. In one direction the statement is trivial since a homotopy provides evidently a
generalized homotopy.

Now by Theorem 4.5 there is a strong deformation retraction

R : Cylh(X)�In → Cylh(X)

such that

R|Cylh(X)�{0} = Id, R|Cylh(X)�{n} : Cylh(X)�{n} → i0(X),

where the last map is the identity on i0(X), and as follows from the proof of Theorem
4.5 it maps isomorphically the sub-digraph i1(X) to i0(X) (for any vertex v ∈ VX we
have R(i1(v)) = i0(v).

Let F be a generalized homotopy of f and g. Consider a composition Ψ of digraph
maps

X�In
i� Id
−→ i1(X)�In

R
−→ Cylh(X)

F
−→ Y ,

where Ψ|X�{0} = F ◦i1(X) = g and Ψ|X�{n} = F ◦i0(G) = f . Clearly, Ψ is a homotopy
of f, g. �

Corollary 4.9. Generalized homotopy digraph maps induce the same homomorphism
of (reduced) path homology groups.

Definition 4.10. i) Define a homotopy cone Coneh(X) of a digraph X as a digraph
that is obtained from a homotopy cylinder Cylh(X) by adding a new vertex a and the
set of arrows

{(v, n(v))→ a | ∀v ∈ VX}.

ii) Define an inverse homotopy cone Coneh−(X) of a digraph X as a digraph that
is obtained from a homotopy cylinder Cylh(X) by adding a new vertex a and the set
of arrows

{(v, n(v))← a | ∀v ∈ VX}.

The vertex a will be referred to as a vertex of the (inverse) homotopy cone.

Note, that the cone Cone(X) and the inverse cone Cone−(X) of a digraph X (see
Definition 2.9) are particular cases of a homotopy cone and inverse homotopy cone,
respectively. It follows directly from Definition 4.10, that there are natural inclusions
i : X → Coneh(X) and i− : X → Coneh−(X) that are induced by the inclusion i0 : X →
Cylh(X). Using these inclusions we can consider the digraph X as a sub-digraph of
Coneh(X) and Coneh−(X).

Theorem 4.11. Let X be a digraph and let Coneh(X) be a homotopy cone with a
vertex ∗. Then there are strong deformation retractions

r : Coneh(X) −→ ∗, r− : Coneh−(X) −→ ∗,

and hence, in particular, Coneh(X) ' ∗ ' Coneh−(X).
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Proof. Similar to Theorem 4.5. �

Definition 4.12. The homotopy suspension Sh(X) of a digraph X is a digraph defined
as a union of two not necessarily equal digraphs of Coneh

1(X) and Coneh
2(X) that

intersect in X:

Sh(X) = Coneh
1(X)

⋃

X

Coneh
2(X).

The inverse homotopy suspension Sh−(X) of a digraph X is a digraph defined as a union
of two not necessarily equal digraphs of Coneh

1
−
(X) and Coneh

2
−
(X) that intersect in

X:

Sh−(X) = Coneh
1
−
(X)

⋃

X

Coneh
2
−
(X).

Note that the suspension S(X) and inverse suspension S−(X) of a digraph X (see
Definition 2.12) are particular cases of homotopy suspensions.

Now we would like to describe homology properties of homotopy suspensions.

Theorem 4.13. Let X be a digraph. Then for any n ≥ 0 there is an isomorphism
H̃n+1(S(X)) ∼= H̃n(X).

Proof. By Definition 2.12 we have

S(X) = Y1

⋃

X

Y2,

where Yi = Coneai (X), i = 1, 2 with distinct vertices a1, a2. Observe that any allowed
elementary path x on S(X) lies in Y1 or Y2, so that the hypothesis of Lemma 3.23
is satisfied. Let us verify also the hypothesis (3.19) of Lemma 3.24, that is, any ∂-
invariant path on S (X) is a sum of ∂-invariant paths on Y1 and Y2. Clearly, any path
x ∈ An (S (X)) can be represented in the form

x = w + w1 + w2,

where w ∈ An(X), w1 ∈ A
{a1}
n (Y1), w2 ∈ A

{a2}
n (Y2) (in the notation of Lemma 3.10).

Let now x ∈ Ωn(S(X)) so that ∂x ∈ An−1(S(X)). Since ∂x = ∂w+∂w1 +∂w2, arguing
as in the proof of Lemma 3.10 we obtain that ∂w ∈ An−1 (X) and ∂wi = ui + vi where

ui ∈ An−1 (X) and vi ∈ A
(ai)
n−1 (Yi). Consequently, w ∈ Ωn (X), wi ∈ Ωn (Yi).

Hence, any x ∈ Ωn (S (X)) can be written in the form x = (w + w1) + w2 where

(w + w1) ∈ Ωn(Y1) and w2 ∈ Ωn(Y2).

By Lemma 3.24 we obtain the Mayer-Vietoris exact sequence of reduced homology
groups

∙ ∙ ∙ → H̃n(X)→ H̃n(Y1)⊕ H̃n(Y2)→ H̃n(S(X))→ H̃n−1(X)→ ∙ ∙ ∙ .

The cone Yi is homotopy equivalent to a one-vertex digraph, hence all reduced homology
groups of Yi are trivial. Now from the exact sequence we obtain the claim. �

Theorem 4.14. For any finite digraph X and for n ≥ 0 there are isomorphisms

H̃n+1(S
h(X)) ∼= H̃n(X),

where Sh(X) is a homotopy suspension of the digraph X.

Proof. The proof is similar to Theorem 4.13. �



22 A. GRIGOR’YAN, R. JIMENEZ, YU. MURANOV, AND S.-T. YAU

5. Path homology theory and Eilenberg-Steenrod axioms

In this section we present an axiomatic approach to the definition of path homology
theory on the category of digraph pairs. The situation here is very similar to the
classical Eilenberg-Steenrod axioms of algebraic topology (see, for example, [27, §26]).

Denote by R a functor D2 → D2 defined by the rule

R(X,Y ) = (Y, ∅) and R(f) = f |Y
(
f : (X,Y )→ (X ′, Y ′)

)
.

This functor evidently induces the functor Ho R : HoD2 → HoD2 by the rule

(Ho R)(X,Y ) = (Y, ∅) and (Ho R)[f ] = [f |Y ] (f : (X,Y )→ (X ′, Y ′)),

where [f ] denote the homotopy class of the map f . Let A be the category of abelian
groups and homomorphisms of abelian groups.

Definition 5.1. A non-reduced homology theory on the category HoD2 of digraph pairs
and homotopy classes of digraph maps of pairs consists of the sequence of functors

Hp : HoD2 → A for p ∈ Z

and natural transformations

∂n : Hn −→ Hn−1 ◦R for p ∈ Z,

such that the following axioms are satisfied.
i) Exactness axiom: for every pair (X,Y ) ∈ HoD2 the sequence

∙ ∙ ∙ → Hn+1(X,Y )
∂n+1(X,Y )
−→ Hn(Y, ∅)

Hn(i)
−→ Hn(X, ∅)

Hn(j)
−→ Hn(X,Y )

∂n(X,Y )
−→ . . .

is exact, where
i : (Y, ∅)→ (X, ∅), j : (X, ∅)→ (X,Y )

are the natural inclusions.
ii) Excision axiom. Consider two cases.
(a) Let X be a digraph in which there are two sub-digraphs A1 and A2 such that

there are no outcoming arrows from VAi to VX \ VAi for i = 1, 2. Let Yi(i = 1, 2) be
obtained from X by deleting the digraph Ai and all incoming to VAi arrows starting from
VX \ VAi . (”Outcoming arrows” can be replaced everywhere by ”incoming arrows”.)

(b) Let X = Y1 ∪ Y2 and Y1 ∩ Y2 = ∗ is a one-vertex digraph.
In both cases (a) , (b) the inclusion

j : (Y1, Y1 ∩ Y2)→ (X,Y2)

induces isomorphisms

Hn(j) : Hn(Y1, Y1 ∩ Y2)→ Hn(X,Y2), n ∈ Z.

iii) Additivity axiom: if X =
⋃

α Xα is the disjoint union of digraphs then

Hn(X, ∅) =
⊕

α

Hn(Xα, ∅).

iv) Dimension axiom: for a one-vertex digraph ∗ we have

Hn(∗, ∅) =

{
K, n = 0,

0, n 6= 0,

where K is fixed abelian group.

Theorem 5.2. There exists a homology theory that satisfies this system of axioms.

Proof. The proof follows from the results of Section 3. �
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Remark 5.3. The question remains, though, of what additional axioms are necessary
to ensure that the path homology theory is a unique realization.

6. Examples

In this section we consider several examples which illustrate the difference between
the path homology theory and the homology theory for topological or simplicial spaces.

Example 6.1. i) Let i : Y = ∗ ∪ ? ⊂ X where X is the following digraph ∗ ← • → ?.
Then H0(Y ) = K ⊕K,H0(X) = K and other homology groups of these digraphs are
trivial. Hence H1(X,Y ) = K and H1(X,Y ) ∼= H1(Conei).

ii) Let i : Y = ∗ ∪ ? ⊂ X where X is the following digraph ∗ → • ← ?. Then
H0(Y ) = K ⊕K,H0(X) = K and other homology groups of these digraphs are trivial.
Hence H1(X,Y ) = K and H1(Conei) = 0.

Example 6.2. i) Consider a digraph X

1 → 2
↓ ↑
3 ← 4.

Taking one point sub-digraphs A1 = {2}, A2 = {3} we can define sub-digraphs Y1 and
Y2 and apply the excision axiom for computing Hp(X). We obtain that Hp (X) ∼= K
for p = 0, 1 and trivial for p ≥ 2.

ii) Consider a digraph X
1 → 2
↑ ↓
3 ← 4.

In this case we cannot cut X in two parts for applying the excision axiom. However,
the homology groups of this digraph are the same as those in the previous example.
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