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ON THE EXISTENCE OF POSITIVE FUNDAMENTAL
SOLUTIONS OF THE LAPLACE EQUATION

ON RIEMANNIAN MANIFOLDS
UDC 514.7

A. A. GRIGOR'YAN

ABSTRACT. A Riemannian manifold is said to be parabolic if there does no exist a positive
fundamental solution of the Laplace equation on it. The purpose of this article is to obtain
geometric conditions, both necessary and sufficient, for a manifold to be parabolic.
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Introduction
A noncompact Riemannian manifold is said to be parabolic if there is no positive

fundamental solution of the Laplace equation on it. For example, R2 is parabolic, while R3

is not. The question of whether a particular manifold is parabolic is of interest from
various points of view. One reason is that fundamental solutions bounded from below are
natural, physical. For example, temperature is always bounded from below, as is the
transition probability density of a Brownian motion. In the language of the theory of
random processes, parabolicity means recurrence of a Brownian motion on the manifold.
Parabolicity is also connected with Liouville theorems: A manifold is parabolic if and only
if every positive superharmonic (all the more so, harmonic) function is equal to a constant
(see [1]). This connection is the basis for one of the approaches to proving theorems of
Bernstein type for minimal surfaces, namely, the establishment of parabolicity for the
surface under consideration (see [2]). In the monograph [1] parabolicity, along with other
properties of harmonic functions, serves for classifying Riemannian manifolds.

Our purpose is to find geometric conditions for parabolicity, both necessary conditions
and sufficient conditions. In this direction there is the remarkable paper [3] of Cheng and
Yau, where it is proved that if the volume of a geodesic ball of radius r on a complete
Riemannian manifold does not grow more rapidly than r2, then this manifold is
parabolic. In particular, this result explains why R2 is parabolic, in contrast to R3. Some
refinements of the Cheng-Yau theorem are given in [4]. We remark that these authors
proved parabolicity in the following formulation: every negative subharmonic function is
equal to a constant. The proof used the standard device of multiplying by a suitable
compactly supported function, with subsequent estimates.
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In the present article we present another, more geometric approach. It is based on two

points: 1) the well-known connection between the Green's function and the Wiener

capacity (this connection is used, for example, in [5]; see §1 below), and 2) estimates of the

capacity in terms of geometric characteristics of the manifold. These estimates are proved

in §§2 and 3. They are used to derive estimates of positive fundamental solutions, along

with a necessary condition and (separately) a sufficient condition for parabolicity,

formulated as follows.

SUFFICIENT CONDITION. Suppose that Μ is a complete manifold, ar is the measure of

codimension 1 of a geodesic sphere of radius r (it is assumed that the sphere is a smooth

surface; there is a more general formulation in §2), and

r°°dr

— = °°· (!)
Then the manifold Μ is parabolic.

This gives us results in [3] and [4] as corollaries.

NECESSARY CONDITION. // the isoperimetric inequality with a function f is valid on a

parabolic manifold of infinite volume (i.e., if for every compact set with smooth boundary the

measure of the boundary is at least f(v), where ν is the volume of the compact set), then

dv , ,
= oo. (2)Γ f(°Y

For example, ar ~ rn~l and f(v)2 ~ v2~2/n in R", and conditions (1) and (2) are

equivalent to the condition that η < 2.

There are examples in §4 showing that conditions (1) and (2) are sharp.

We mention finally that the manifold can have a boundary in all the questions under

consideration. Here a fundamental solution is assumed to satisfy the homogeneous

Neumann condition on the boundary.

The main results in this paper were published in the brief communication [6]. They were

reported in part at the Ukrainian Republic conference on nonlinear equations in mathe-

matical physics in 1983 (see [7]) and at the joint sessions of the Moscow Mathematical

Society and the Petrovskii seminar in 1984.

The author thanks Ε. Μ. Landis and A. Ibragimov for useful discussions.

Notation and terminology. Everywhere below, Μ is a smooth connected noncompact

Riemannian manifold, and 3M is its boundary (possibly empty). If A is a proper subset of

M, then d0A denotes the part d0A = dA n(M\dM) of its boundary. A smooth

hypersurface is defined to be a submanifold of codimension 1 that is transversal to dM.

The words "the set A c Μ has smooth boundary" usually mean that d0A is a smooth

hypersurface. The letter μ stands for the measure on Μ induced by the Riemannian

metric; μι is the measure on submanifolds of codimension 1; \A\ stands for μ A or μγΑ,

depending on the context. Finally, Δ, V, and 9/3 ν are the standard notation for the

Laplace operator, the gradient, and the normal derivative in the Riemannian metric (see

[8])-

§1. Capacity and fundamental solutions

Suppose that A and Β are precompact subsets of Μ, Β is open, and A c B.

DEFINITION. The capacity of A with respect to Β is defined to be the number

= inf (
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where the infimum is over all Lipschitz functions φ such that φ\Α > 1 and φ\Μ\Β < 0.

The capacity decreases as Β increases in size; therefore the limit

lim cap(^4, B) = cap^l
B->M

exists, and is called the capacity of A (here Β -» Μ is an exhaustion of Μ by precompact

open sets).

PROPOSITION 1. Let u be a weak solution in H1(B\A) of the problem

du , χ

' ° ' ° ' dv 3Μη~Β\ΐ

Then

2
cap(A,B) = f Jvw|2<iju; (4)

JB\A

if D is an open set with smooth boundary d0D, and if A C D C B, then

f 9"

(where the normal ν is directed into D).

The proof is completely analogous to the case of R" (see [5]).

The function u determined in (3) is called the capacity potential of A with respect to B.

DEFINITION. Every function E(x) e Cl(M\ {#}) such that

= 0,

where δ(χ) is the Dirac delta-function with pole at O, is called a fundamental solution of

the Laplace equation with pole at the point Ο e M.

Among the positive fundamental solutions with a given pole there is always a smallest

one, constructed as follows. For every precompact open set Β with smooth boundary we

construct a Green's function, i.e., a solution of the problem

= 0. (6)
BMnB

It follows from the maximum principle that GB < Ε for an arbitrary positive fundamental

solution E. As Β increases in size, the sequence GB increases and converges to a function

G < Ε that is the smallest positive fundamental solution and is called the Green's function

of the manifold M.

PROPOSITION 2. a) Suppose that GB is a solution of problem (6), A is an open set

containing the point O, and A c B. Then

max GB > cap(^4, By > min GB.
d0A d0A

b) If Μ has a Green's function G(x), then

max G 5s (cap^4) > min G.
d0A d0A

The proof repeats an argument in [5]. Let Bt = {χ ^ B\GB> t}. Then
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since, by (6),

ί
Let a = ma.xdoAG and b = minSoAG. It follows from the monotonicity of the capacity

and the obvious inclusions Ba c A c Bb that I/a = cap(£ a, B) < cap(^4, B) <

Assertion b) is obtained by an obvious passage to the limit.

PROPOSITION 3. The manifold Μ is parabolic if and only if the capacity of any compact set

is equal to zero.

PROOF. If the capacity of any compact set is equal to zero, then the Green's function

cannot exist because of the estimate

max G > (cap^4)~ = oo.

If the capacity of some compact set is positive, then there is a precompact open set A of

positive capacity containing the pole O. For any Β 3 A

min GB < cap(^, B)'1 < (capA)'1;
BA

consequently, ming AGB has a finite limit as Β -» Μ. Therefore, the limit XvcaB^MGB{x)

exists at each point χ Φ Ο (by the local Harnacks' inequality [9], for example) and is the

Green's function.

COROLLARIES. 1. Positive fundamental solutions with poles at points Ox, O2 e Μ exist or

fail to exist simultaneously.

1. If gx and g2 are two Riemannian metrics on Μ that have finite ratios, then the

Riemannian manifolds (M, gj) and (M, g2) are or are not parabolic simultaneously.

Indeed, the gx- and g2~
c aPa cities have finite ratios by the definition of capacity.

3. If Μ is covered by a compact set Κ and finitely many disjoint open subsets Mx,..., Ms

with smooth boundaries 9M,-, then Μ is parabolic if and only if all the M;, regarded as

manifolds with boundary, are parabolic.

The proof follows from the relation cap A = L; = 1 cap M {A C\ Mf), which is valid for any

compact set A 3 K.

§2. Sufficient conditions for parabolicity

A function p(x) e C^iM) is called an exhaustion function if for any / e (-oo, + oo)

the set Ω, = { x e M\p(x) < t) is precompact. Let St = {x e M\p(x) = i}. It follows

from Sard's theorem that St is a smooth hypersurface and 30Ω, = St for almost all t. Let

P,= f

(the integral is taken to be zero for empty St).
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THEOREM 1. If Μ has an exhaustion function p(x) such that

Γ dt <n\

then Μ is a parabolic manifold.

THEOREM 2. If p(x) is an exhaustion function and G(x) is a Green's function with pole at

the point O e S l a , then

<?(*)> Γ y . (8)max

Theorems 1 and 2 are easy to get from the following lemma and Propositions 2 and 3.

LEMMA 1. If the set Ωα is nonempty, then for b > a

and, consequently,

(capSj'S Γ f.

In particular·, if the exhaustion function is such that |Vp| < 1, then

^a-yl > Γ'w
The following formula for integrating over level surfaces is used in proving the lemma.

PROPOSITION 4. Ifh(x) e ϋ(Μ,μ), h > 0, then

f Ηάμ>Γ dtlf A lvpfV) (9)
JM J-<x \JS, I

and for almost all t

j-j hdy,>l h\V9\'XdH. (10)
ί r

See [10] for a proof.

PROOF OF LEMMA 1. Let u be the capacity potential of Ωα with respect to O,h. Then (4)

and (9) give us that

cap(aa,B4)= j \vuf d\>,> \hdt\ |vw|
Jab\Qa

 Ja Js,

By the Cauchy-Schwarz-Bunyakovskfi inequality,

f IVM
s,

i.e.,

Using the fact



354 Α. Α. GRIGOR'YAN

we get that

a,Qb) > f Ρ;1

which implies the desired result.

We give some sufficient conditions for parabolicity that follow from Theorem 1.

COROLLARY 1. If Μ has a Lipschitz exhaustion function such that

/

oo At

^ = 0 0 , (11)

then Μ is parabolic.

Indeed, it follows from the Lipschitz condition |Vp| =ζ const that

Pt~ I I Vpl dui < const|S,|. (12)
Js,

We remark that a complete manifold always has a Lipschitz exhaustion function—for

example, it can be obtained by smoothing the distance function (see [11] for correspond-

ing approximation methods).

COROLLARY 2. Suppose that Μ is a complete manifold and that for some Ο e Μ the

volume Vr of a geodesic ball of radius r about Ο satisfies the relation

rf=°o. (13)
r

Then Μ is a parabolic manifold.

PROOF. Let p(x) be the smoothed distance function to the point O, and let φ(/) = |Ω(|.

Obviously,

/-00 tdt

φ ( ί )

It follows from (10) with h = 1 that

άμ,χ > const|5,|;
s,

therefore, by Corollary 1, it suffices for us to prove that

r00 dtr0 0 dt _
= oo.

By induction on k it is easy to construct a sequence of positive numbers ck and a

sequence of measurable sets Ek c [0,2&] having the following properties: 1) the Ek are

disjoint; 2) meas£A = 1; and 3) φ'(ί) < ck for t e Ek, and φ'(ί) > ck for t e Fk =

[Q,2k]\{ExU ••• UEk).

Note that meas Fk = k by construction. We have that

<p(2fc) > f k φ'{ί)Λ > f ckdt = kck.
•Ό JFk

If t e [2k, 2k + 2], then φ(/) > φ(2Α:) > £cA = (k/t)tck > /c^/4. Therefore,

ώ f2k + 2 ι j ο ^ ι £ ι/
2 <p{t) k = 1 hk
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From this we get

•» dt " r dt S !

ί Λ ? "
/•» dt

We mention that if we assume a growth of volume such that the integral (13) converges,

then it is possible to construct an example of a complete nonparabolic manifold on which

this growth is realized (see §4).

COROLLARY 3 (CHENG AND YAU [3]). //Iimr_ ̂  Vr/r2 < oo in the notation of Corollary

2, then Μ is parabolic.

Indeed, if Vrt < Crl for some sequence rk | oo, then

• ( r2
= oo,

rdr " r * i rJr 1 f / r 2

[x rdr_ y rrt+i rdr = J _ v- L _ _ ^ _

A Fr " Λ = ι 4 O f c

2

+ 1

 2 C

A t ' i \ /*2

+1

since the product T\f rk/rk+1 diverges.

COROLLARY 4. // a manifold has an exhaustion function that is subharmonic outside some

compact set (i.e., Δρ < 0 and dp/dv 19M > 0, w/zere ι» is the outward normal to 3M), then

it is parabolic.

Indeed, using Green's formula, we see that the flow decreases; in particular, (7) holds.

§3. A necessary condition for parabolicity

Suppose that the isoperimetric inequality with function f(v) holds on M, i.e., |90AT| >

f(\K\) for any compact set Κ with smooth boundary dQK.

THEOREM 3. If the isoperimetric function f satisfies the condition

then Μ has a Green's function.

THEOREM 4. If Μ satisfies the conditions of Theorem 3, Ω is a precompact open subset of

M, andG(x) is a Green's function with pole at a point Ο e Ω, then

(15)
f(vY

Theorems 3 and 4 can be proved from the following estimate of the capacity in terms of

the measure.

LEMMA 2. If A and Β are open precompact subsets of Μ and A c B, then

•\B\ dv

U f(vf'
and, consequently,

r\M\ dv1 < f
'Ml f(vf

We give a proof of Lemma 2 for the case of smooth boundaries d0A and 305. In the

general case one should approximate A from the inside and Β from the outside by

domains with smooth boundaries.



356 Α. Α. GRIGOR'YAN

Let u be the capacity potential of A with respect to B. Let Bt= {x\u(x) > t} U A. It

follows from (10) that for almost all t

By (5),

p1= f ~άμι =

and |9 0 JB, | > f(\Bt\) by the isoperimetric inequality. Therefore,

Integrating the last inequality with respect to dt from 0 to 1 and making the substitution

υ — \Bt\in the integral, we get that

r\B\ dv
cap(A,B)

fivf
REMARK. For complete manifolds condition (14) can be satisfied only if \M\ = oo (by

the Cheng-Yau theorem, a complete manifold of finite volume is parabolic). In this case

condition (14) is sharp in the following sense. If f(v) is a function such that the integral

(14) diverges (and satisfies some regularity conditions), then there exists a complete

parabolic manifold on which the isoperimetric inequality with function const/(U) holds

for large υ (see §4).

§4. Examples

Let φ(ί) be a positive smooth upwards convex function defined on (0, + oo). Denote by

Μφ the solid of revolution determined by rotating φ about the .χ,,-axis in R". We regard

Μψ as a manifold with boundary (the boundary is smoothed at the origin), and endow it

with an arbitrary Riemannian metric whose ratios with the Euclidean metric are finite.

Consider the exhaustion function p(x) - xn on the manifold Μψ. Then 15,1 x φ ( ί ) " " 1

and |Ω,| x t<p(t)"~l as / —> oo in the notation of §2 (where the sign χ means "has finite

ratios with").

The sufficient conditions (11) and (13) for parabolicity are equivalent to the condition

d t <Λ<Λ

ϊϋτ1^- (16)

It can be proved that the manifold Μφ satisfies the isoperimetric inequality with the

function const/(u), where / is determined from the condition

/(^(O'l^W""1 (17)
(for sufficiently large /).

We show that the sufficient condition (16) for parabolicity is equivalent in this case to

the necessary condition
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Indeed, let υ = ίφ(ζ)" " 1 . Then

f(v) = < p ( 0 " •> dv = ψ"~1 dt + t(n — 1 ) φ " ~ 2 φ ' dt,

φ-Ut < <fo < «φ- 1*, -A_ < - ^ - < η—^— ,

φ"'1 /( ,) 2 φίΟ""1

which implies that (16) and (18) are equivalent.

What has been proved implies that both the sufficient conditions (11) and (13) and the

necessary condition (18) are sharp. Indeed, if / is a function such that

r°° dv

~7Ti = °°

(and such that certain regularity conditions hold under which the function <p(t) de-

termined from (17) is convex for sufficiently large n), then Μφ (where φ is determined

from (17)) is parabolic and has isoperimetric function const/.

It can be proved similarly that (11) and (13) are sharp.

As an example of the application of Theorems 2 and 4 we get estimates of the Green's

function G(x) of Μφ in the case when Μφ is not parabolic. We remark that in Euclidean

coordinates G is a fundamental solution of the uniformly elliptic equation in divergence

form with conormal condition on the boundary 3Μφ.

Let

M(t) = max G(x), m(t) = min G(x).

Then it follows from Theorems 2 and 4 that

, / \ rx dt , χ rx dt
M(t) > const / — j - , m{t) < const / —j-

(for large t). After using Harnack's inequality [9] and the convexity of Μφ, we get that

M(t) < constm(t). Consequently,

/
oo At

*. φ(ί)

In particular, G(x) x χ^ ("~ 1 ) γ for <p(t) = t7 (1 > γ > l/(« - 1)).
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