Construction of Heat Kernels on Metric Measure Spaces via
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Jun Cao, Alexander Grigor’yan and Liguang Liu

Abstract. Let (X,d,u) be a metric measure space satisfying the volume doubling condition.
In this paper, the authors provide a new and direct method of constructing stochastic complete
(signed) heat kernels by virtue of the multiresolution analysis (for short, MRA) structure. For
any 3 € (0, c0), two kinds of applications are given: (i) via taking a non-smooth MRA generated
by Haar wavelets, such construction gives rise to a heat kernel satisfying only stable-like upper
estimate of index 8 (no continuity and near-diagonal lower estimate); (ii) via taking a smooth
MRA generated by smooth wavelets/splines, such construction gives rise to a signed heat kernel
(no positivity) satisfying the stable-like upper estimate of index 3, as well as the almost Lipschitz
regularity and the near-diagonal lower estimate.
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1 Introduction
Let (X, d) be a separable metric space. For any x € X and r € (0, o), define the ball
Bx,r):={ye X: d(y,x) <r}.

We always assume that the closure of every open ball is compact. Suppose that on (X, d) there is a
nonnegative Radon measure u such that 0 < u(B(x,r)) < oo for all x € X and r € (0, ). The triple
(X, d, ) will be referred to as a metric measure space.

For any x,y € X and r > 0, we use the following notation throughout the whole paper:

V(x,r) := u(B(x,r)) and V(x,y) = u(B(x, d(x,y))).
We say that (X, d, u) satisfies the volume doubling condition (VD) if there exists Cp € (1, o) such that
V(x,2r) < CpV(x,r) forall x € Xandr € (0, ). (VD)

Note that (VD) holds if and only if there exist constants C}, € (1,00) and n € (0, %) such that for all
x,yeXand0<r <R < oo,

VR ., (d(x,y)+R) . (1.1)

Vp,r) — P

The condition (VD) also implies the following geometrical doubling property: there exists an integer
M € (0, C4D] (see, e.g. [20, p. 67] or [36, p.489]) such that:

every open ball B(x, r) can be covered by at most M open balls of radius /2. (1.2)

Many important underlying spaces, such as the (weighted) Euclidean space R”, convex unbounded do-
mains in R”, Riemannian manifolds of nonnegative Ricci curvature, nilpotent Lie groups with polynomial
growth and fractals, are all fall into the scope of metric measure spaces fulfilling (VD).

According to [35, Proposition 5.2], if (X, d, u) is connected and satisfies (VD), then it satisfies the
following reverse volume doubling condition (RVD): there exist constants Cgp € (0, 00) and « € (0, o0)
such that

V(x,R) S

R K
> Cro (—) forall x € X and 0 < r < R < diam(X). (RVD)
V(x,r) r

In other words, (RVD) is a very mild condition, which is occasionally used in analysis on doubling metric
measure spaces.
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Definition 1.1. A family of jointly measurable function {p;},~0 on X X X is called a heat kernel, if it
satisfies the following properties for all values of the variables involved:

(P1) (positivity) p/(x,y) = 0 and [y p,(x,y)du(y) < 1;
(P2) (symmetry) p/(x,y) = p:(y, x);
(P3) (semigroup property) [y pi(x,2)ps(z,y) du(z) = pras(x, y);

(P4) (approximation of identity) for any f € L*(X),

/X Pi(x, ) f() du(y) = f(x) as t — 0,

where the convergence is in L*(X, ).

The family {p;};~0 is called a signed heat kernel if it satisfies (P2)-(P3)-(P4) and the following weaker
property (P1’):

(P1’) there exists a positive constant C such that for any 7 € (0, c0) and x € X,
/ lpCx, Y1 du(y) < C;
X
Given a (signed) heat kernel {p,};~¢, if for all # € (0, o) and x € X,

/X pi(x,y)du(y) = 1, (1.3)

then {p;};~0 is called stochastically complete.

Heat kernel is a universal gadget that plays a central role in diverse areas of mathematics and physics;
see [4, 11, 23, 32, 40, 51] and the references therein. We remark that there do exist various scenarios
where the signed heat kernel appears (see, e.g. [3]). In particular, the heat kernel of the biharmonic
operator A? has infinitely negative-valued points (see, e.g. [29]). Such phenomenon plays an important
role in constructing counterexamples for both the Szegd and Boggio-Hadamard conjectures (see, e.g.
[53D.

Constructing a heat kernel on different kinds of underlying spaces has been extensively studied in
literature; see [14, 30, 32, 46, 48, 50] for the study of heat kernels on manifolds, [5, 9, 33, 49] on graphs,
and [6, 8, 42, 43] on fractals. Intuitively, constructing a heat kernel on a metric measure space X is in
some sense equivalent to building a heat conductor in X. By encoding the conduction information from
heat kernel, one can explore the underlying geometric structure of X.

Let B € (0,00). A heat kernel {p;}~ is said to satisfy the two-sided stable-like estimate (ULE)g
provided that

1 /B
pi(x,y) = (

B
V(x, tYB) + V(x,y) \t!/P +d(x,y)) orall x,y an (0, ) ( )

We say that (UE)g (resp. (LE)p) is satisfied, if the upper (resp. lower) estimate in (ULE)g holds.
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One method of obtaining a heat kernel satisfying (ULE)g is by subordinating a heat kernel {p;}0
that satisfies the sub-Gaussian estimate (SG),,, of the form

dy
c d(x,y) |
pr(x,y) < W exp [—C( 1dy ) ] for all X,y € Xand t € (0, ), (SG)dW

where the sign < means that both < and > hold but with different values of positive constants C, ¢, and
d,, is a parameter from [2, co) that is called the walk dimension of the heat kernel. Such a method can
be found in [31, Section 5.4] when (X, d, u) is a-regular for some a € (0, ), that is, V(x,r) =~ r® for
all x € X and r € (0,00). See also [13, Section 4] when (X, d, 1) is a general metric measure spaces
satisfying (VD). From [7], it follows that any heat kernel satisfying (SG),, is jointly continuous (it
indeed satisfies the Holder continuity estimate), so does the subordinated heat kernel.

Another widely used method in literature is obtaining a heat kernel from a regular Dirichlet form
(see, e.g. [28, 34, 35, 15, 16]). Consider the following jump-type bilinear form

lf(xX) = FOP du(y) du(x)
& = 1.4
6(f, ) /X o dGyp Voy) (1.4)
with a natural domain
Fp = {f € LX(X): Ep(f. f) < o). (1.5)

In the case § € (0,2), since the collection of Lipschitz functions with compact support is dense in g,
it follows that (Eg, Fp) is a regular Dirichlet form. Invoking this fact, on an a-regular space (X, d, u),
Chen and Kumagai [15] proved that when g € (0, 2) the heat kernel {p,}>o of (Eg, Fp) exists and satisfies
(ULE)g. Further, we have by [16, Lemma 5.6] that the two-sided estimate (ULE)g of such {p;};~0 ensures
a Holder continuity estimate, but with a very small Holder exponent.

In general, we follow [13] and define the critical index B* that relates to the possible values of 8 in
(ULE)g as follows:

gt = sup{B > 0 : there exists a stochastically complete (1.6)
continuous heat kernel {p,};>o on X satisfying (ULE)g}. ’

Under (VD) and (RVD), we know from [13] that /B’ﬁ € [2, o0) and, moreover, for any S8 € (0, ﬂ#), the bilin-
ear form (Eg, Fp) in (1.4)-(1.5) becomes a regular Dirichlet form and there is a stochastically complete
continuous heat kernel {p,}>o satisfying (ULE)g which exists as the transition probability of the Markov
process corresponding to (Eg, ). This extends the work of Chen and Kumagai [15], which treats only
the case 8 € (0,2). Again, applying [16, Lemma 5.6] (see also [12, Theorem 2.22]) yields that such
{p:}>0 satisfies the Holder regularity estimate.

Under (VD) and (RVD), we know from [13, Theorem 1.3] that the critical index 8 is invariant under
quasi-isometry of two metric measure spaces, where (X, d, u) is quasi-isometric to (X, d’, u’) if and only
if d ~d and u = y’. Assuming only (VD), if there is a stochastically complete continuous heat kernel
{P:}i>0 on X satisfying (SG), , then (see [13, Theorem 1.5])

B=d,=p"
where 8* is another critical index of Besov spaces on (X, d, u), defined by

B :=sup {/3 >0: Ag’/i(X) is dense in LZ(X)},
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with the Besov space Ag/ i(X ) defined to the collection of all functions f € L*(X) such that

/( 1 lf(0) = fFO)P
X

1/2
Ve Lo o d,u(y)) dﬂ(X)] < co.

g ) 2= Wl + (,5(‘3,130 )
In conclusion, the critical index 8 is not only an intrinsic value of the underlying space X but also a
good candidate for the walk dimension in future attempts to construct a diffusion process on X.

We are wondering what happens beyond the critical index *. It turns out that ¥ can be broke through
if certain requirements of the heat kernel in (1.6) are sacrificed. The key point for the occurrence of this
interesting phenomenon is that, under (VD), the family D of dyadic cubes on (X, d, u) (see Theorem 4.1
below) exists and therefore induces an ultra-metric dgp on X (see Definition 4.4 below). For any given
B € (0, 00), by following the general procedure of heat kernel construction on ultra-metric spaces in [10],
the authors in [13] construct a stochastically complete heat kernel { p,D }r>0 via defining

0o d t
p,D(x,y) = / ﬂ forall t € (0,00) and x,y € X, (1.7)
dp(xy) H(Bp(x, 1))
where
o(r) = exp(—r‘ﬁ)
and

Bp(x,r):={y e X : dp(y,x) <r}.
Such { ptD }=0 satisfies the two-sided stable-like estimate with respect to dy (see [13, Theorem 5.6]):

1 [1/,3
V(x, 8 + dp(x,)) (f”ﬁ +dp(x,y)

B
pP(x,y) ~ ) forall 7 € (0,c0) and x,y € X, (1.8)

which implies that { p[D }i>0 satisfies the upper estimate

C 1P
V(x, tYF + d(x,y)) (t”ﬁ +d(x,y)

B
0 < pP(x,y) < ) forallz € (0,00) and x,y € X (1.9)
with respect to the original metric d. However, the near-diagonal lower estimate breaks down because
ptD (x,¥) = 0 whenever the points x, y are very close to each other but can not be covered by any dyadic
cube. As a consequence, there is no Holder continuity for { ptD }>0. Further, via considering the adjacent
family of dyadic cubes (see [37])
O":7=1,...,K},

it turns out that (see [13]) the summation of the heat kernels

(PP V0 T=1,....K})

forms a family of functions {p;};>0 on X x X which satisfies (ULE)g and all properties of a stochastically
complete heat kernel, except the semigroup property.

Let us remark that the heat kernel { pf) }r=0 constructed in (1.7) can be expressed by means of the
eigenfunction expansion because by [10, Theorem 3.8] the generator of the corresponding semigroup
has a sequence of eigenfunctions that form an orthonormal basis in L?(X). Denote this sequence by {¢ I
and let the eigenvalue of ¢; be 4;. Then

PPy = ) e (x)6,0).

J
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It was also shown in [10] that the eigenvalues A; are determined by the function o in (1.7), and the
eigenfunctions ¢; are similar to Haar functions but determined by pairs of concentric ultra-metric balls.

It is known that, on a metric measure space satisfying (VD), there do exist Haar wavelets (see [41])
and Holder-continuous wavelets with exponential decay (see [2]), which form an orthonormal basis in
L*(X). Thus, the above discussions inspire us to consider the following question:

On a general metric measure space, is it possible to use a certain family of wavelets
to construct a heat kernel with “good” estimates?

Since each family of orthogonal wavelets generates a multiresolution analysis (for short, MRA) structure
[22, 47], it is more natural to ask the following general question:

Given an MRA structure on a metric measure space, is it possible to construct a heat
kernel with “good” estimates?

The main aim of this paper is to address the above questions. Indeed, without referring to the deep theory
of Dirichlet forms, we provide a new and direct method of constructing (signed) heat kernels:

— By using only the MRA structure of the underlying space, we construct explicitly stochastically
complete (signed) heat kernels (see Theorem 2.6 and Corollary 2.7 below).

— As the first application, taking a non-smooth MRA that is formed by Haar wavelets (see [41]),
we show that the corresponding heat kernel {p,},~o recovers the one { ptD }=0 given in (1.7), which
certainly satisfies stochastic completeness property (1.3) and the stable-like upper estimate (1.9)
by terms of [13] (see Theorem 2.8 below).

— As the second application, taking a smooth MRA that is generated by smooth splines/wavelets of
Auscher-Hytonen (cf. [2]), we obtain a stochastic complete signed heat kernel {p,},~o and then
prove that it satisfies the stable-like upper estimate, the almost Lipschitz regularity and the near-
diagonal lower estimate (see Theorem 2.9 below).

Detailed descriptions of these results are presented in Section 2 below. Before that, based on the previous
discussions, we summarize briefly in Table 1 the existence and properties of stochastically complete
stable-like heat kernels with index 8 € (0, c0).
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Range of 3 | Structure used Heat kernels
exists a jump-type regular Dirichlet form,

e 0.5 associated to a stochastic complete positive heat kernel
’ satistying (ULE)g and Holder continuity
with small Holder exponent (cf. [13])

exists a stochastic complete

MRA . no “good” estimates
signed heat kernel £
exists a stochastic complete no continuity,
non-smooth MRA .. p . 4
. positive heat kernel no near-diagonal
B €(0,00) | via Haar wavelets C . .
satisfying upper estimate (UE)g lower estimate

exists a stochastic complete
smooth MRA via signed heat kernel satisfying
Auscher-Hytonen upper estimate (UE)g, no positivity
wavelets/splines near-diagonal lower estimate,
almost Lipschitz continuity

Table 1: Good and missing properties of stable-like heat kernels on X with index 3

2 Statement of main results

2.1 Construction of signed heat kernels via MRA

We adopt the following definition of multiresolution analysis from [54, Definition 3.1].

Definition 2.1. Let {V;};cz be a sequence of closed linear subspaces in L*(X). Then {V}}rez is called a
multiresolution analysis (denoted by MRA for short) in L2(X) if the following hold:

(i) (nested property) for any k € Z, Vi C Viy1;
(i) (density property) UrezVic = L*(X); ;

(iii) (intersection property) for some fixed integer ko € Z,

_ {{0} as u(X) = oo;
v
Vg as u(X) < oo;

(iv) (Riesz basis) each Vi has a Riesz basis {¢x ¢}aca,, Where Ay is a countable index set. In other
words,

Vi = spanfgrq : @ € Ax}

and, for any sequence {Ay}qesn, C C with only finite non-zero elements,

12
> el = (DB
LX) aeAy

aeA
where the implicit constant may depend on k but independent of {1, }qea,-
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Now we recall some known facts about orthogonal projections in Hilbert spaces (see [57, pp. 81-84]).
For any closed linear subspace V of a Hilbert space H, there is a decomposition

H=Veo V.

In other words, any x € H can be uniquely written as x = v, + v/, where v, € V and v, € V*+. The
orthogonal projector P from H to V is naturally defined by

Px = v,.

Clearly, P is a linear self-adjoint operator that maps H onto V and P> = P. Moreover, x—Px is orthogonal
to Px and
XI5 = Bl + x = Pz,

which implies that P is a bounded linear operator with operator norm no more than 1. With this in mind,
we introduce the following projectors {Py}rez and {Qy}rez.

Definition 2.2. Let {Vi}iez be an MRA in L*(X) as in Definition 2.1. For any k € Z, let Wy be the
orthogonal complement of Vj in V., that is,

Wi = Viy1 8 Ve 2.1

For any k € Z, define P, to be the orthogonal projector from L*(X) to the closed linear space Vy, and
define Qy to be the orthogonal projector from L*(X) to Wy. !

Based on the discussions in Remark 3.3 below, if {Vi}rez is an MRA in L*(X), then the projectors Py
and Qg in Definition 2.2 have integral kernels Pi(x, y) and Qg (x, y), respectively. Thus, it makes sense to
introduce the following definitions of admissible MRA and admissible spectrum.

Definition 2.3. A multiresolution analysis {V}iez in L*(X) is called an admissible MRA if the family of
projectors {P}xez, with each P; being an orthogonal projector from L*(X) to Vg, satisfy the following
properties:

(A1) there exists a positive constant C > 0 such that for any k € Z and x € X,
/ IPx(x, )l du(y) < C;
X

(A2) forany k € Zand x € X,
Ammwww=n

(A3) when u(X) = co, assume further that for any x,y € X,

klim Pr(x,y) = 0.

Definition 2.4. Let {V}}iez be an MRA in L*(X) and ko € Z be the integer given in Definition 2.1(iii).
The sequence {Ax}iez is called a family of admissible spectrum if the following hold:

! Under the case u(X) < oo, we derive from (i) and (iii) of Definition 2.1 that V; = Vi, for all k < ko, thereby leading to that
W, = {0} and Q; = 0 whenever k < ky — 1.
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(@) {Akkez C [0, c0) is increasing;
(b) if u(X) = oo, then 4x — 0 as k — —oo; if u(X) < oo, then Ay = 0 for all k < ko;
(C) for any re (O’ OO)’ Z[ZN e_t/lk — 0as N — +oo.

Example 2.5. In this paper, we mainly focus on the following family of spectrum. Let 6 € (0,1). If
u(X) = oo, then we set

A =6 foranyk e Z. (2.2)
If u(X) < oo, then we set
58 k > ko;
A o= @ m=R0 (2.3)
0 as k < ky.

No matter u(X) is finite or not, one easily verifies that { A }xez is admissible.
The first main result of this paper is as follows.

Theorem 2.6. Let {Viliez be an admissible MRA in L*(X) and {A;}iez be a family of admissible spec-
trum. For any t € (0,0) and x, y € X, define

Z e—t/lek(x’ y) as M(X) = 005
ty) keZ 2.4)
pilX,y) = = ‘
e~ Mo 1Py (x,y) + Z e Qu(x,y)  as p(X) < .
k=ko

Then, the family {p;}o is a stochastic complete signed heat kernel.

We do not know if {p,};~0 in Theorem 2.6 is positive or not. To gain its positivity, we usually need to
add more conditions on MRA.

Corollary 2.7. In addition to the assumptions in Theorem 2.6, assume that for any k € Z and x, y € X,
Pr(x,y) > 0.
Then, {p;}=0 in (2.4) is a stochastic complete heat kernel.

The proofs of Theorem 2.6 and Corollary 2.7 are presented in Section 3 (see the much stronger results
in Theorems 3.8-3.9-3.10).

As a concluding remark of this subsection, we mention that Theorem 2.6 indicates a fundamental
fact that the signed heat kernel and the MRA structure are in some sense equivalent to each other (see,
e.g. [19] for the converse direction that heat kernels imply MRA structures).

2.2 Construction of heat kernels via non-smooth MRA

Given a metric measure space (X, d, 1) satisfying (VD), there exists a family D of dyadic cubes (see
[39, 37, 2] or Subsection 4.1 below). For any k € Z, denote by Dy, the family of dyadic cubes in the k-th
generation. The diameter of each dyadic cube Q in Dy is comparable to 6%, where § € (0, 1) is a small
enough and fixed number.

With these concepts, we state the second main result of this paper, which serves as an application of
Theorem 2.6 and Corollary 2.7.
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Theorem 2.8. Let (X, d, i) be a metric measure space satisfying (VD). For any k € Z, define

(2.5)

— 1120
Vi := span {,u(Q) 1p: Q€ Dk}

For any B € (0, ), let { A }kez be the admissible spectrum as in Example 2.5. Then, the sequence {Vi}rez
in (2.5) forms an admissible MRA and the heat kernel {p;}~0 in (2.4) coincides exactly with { ptD }s0 IR
(1.7). In particular, {p;}~0 is a stochastic complete heat kernel satisfying

0 P < A Y 2.6
< = < .
= Py = (x’y)‘V(x,ﬂ/ﬁ+d(x,y>)(r”ﬁ+d(x,y)) 20

where C is a positive constant independent of t € (0, ) and x,y € X.

The proof of Theorem 2.8 is presented in Subsection 4.2 below. The preliminary step is show that
{Vi}kez given in (2.5) is an admissible MRA so that Corollary 2.7 can be applied to produce a stochastic
complete heat kernel. The subsequence argument is to verify that the two heat kernels in (2.4) and
(1.7) coincides with each other. Then the upper estimate (2.6) follows directly from the already known
estimates in (1.8) and (1.9).

Note that {Vj }rez in (2.5) is called a non-smooth MRA because it is formed by the Haar wavelets (see
Remark 4.9 below) that are not continuous on X.

2.3 Construction of signed heat kernels via smooth MRA

In this subsection, we give another application of Theorem 2.6. Again let (X, d, u) be a metric mea-
sure space satisfying (VD). Auscher and Hytonen [2] constructed a smooth MRA constituting of smooth
wavelets/splines (see Subsection 5.2 below). Using this smooth MRA and the admissible spectrum given
in Example 2.5, we deduce from Theorem 2.6 a signed heat kernel satisfying stable-like upper estimate,
almost Lipschitz-continuity and near-diagonal estimate.

Theorem 2.9. Let (X, d, i) be a metric measure space satisfying (VD). For any k € Z, define

}n T2

Vi := span {s’é D a e A , 2.7)
where every sfy is a spline function located near the dyadic cube Qlfy and Ay is a countable index set. For
any B € (0, 00), let {Ax}rez be the admissible spectrum as in Example 2.5. Then, the sequence {Vi}iez in
(2.7) forms an admissible MRA and {p;};~o in (2.4) is a stochastic complete signed heat kernel enjoying
the following properties:

(1) (upper stable-like estimate) there exists a positive constant C such that for any t € (0, 00) and
x,y € X,

c B\
< :
IPi(x I < V(x, tV8 + d(x,y)) (f”ﬁ +d(x,y)) ,

(i1) (near-diagonal lower estimate) there exist a positive constant ¢ and a small constant € € (0,1)
such that for any t € (0, ) and any x,y € X satisfying d(x,y) < et'/P,

> [
pt(X,)’) = V(x, tl/ﬁ)’
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(iii)

(Holder regularity) there exists a positive constant C such that for any t > O and x, y, y) € X
satisfying d(y,y’) < t'/8,

A < o[ d0D\" I Rt
s - ) SC )
pi) = pit ') ( 1B ) V(x, 178 + d(x, ) \1VB + d(x,y)

8
wherens = 1 — l(iig‘l‘%)) tendsto 1 as 6 — 0, and 6 € (0, 1/(84M®)) is the parameter appeared in

the construction of dyadic cubes on X with the integer M being taken as in (1.2).

The proof of Theorem 2.9 is given in Section 5 below (see Theorems 5.6-5.7-5.8-5.9 below). The
key ingredients of the proof are as follows. For the sequence {V;}iez in (2.7), it is an MRA (see Lemma
5.2 below) and the integral kernels of the projectors

Py : LZ(X) — V. and Q: LZ(X) - Wr=Vimi8V;

have exponential decay off the diagonal and almost Lipschitz continuity (see Lemma 5.3 below). Such
properties of P, and Qy, are proved by Auscher and Hytonen [2]. This will not only ensure that {Vi}xez in
(2.7) to be an admissible MRA so that Theorem 2.6 can be applied, but also yield the desired estimates
in (i)-(ii)-(iii) of Theorem 2.9.

Remark 2.10. Below we give several comments on Theorems 2.8 and 2.9.

®

(i)

(iii)

Let us remark that in [41, 2] both the Haar wavelets and smooth wavelets are constructed in a
quasi-metric measure space satisfying (VD). Due to this reason, in Theorems 2.8 and 2.9, the
assumption of d being a metric can be relaxed to a quasi-metric, that is, the triangle inequality of
d is replaced by the following:

d(x,y) < K(d(x,2) + d(z,y)),

where K € [1, 00) is a constant independent of x, y, z € X. If d is a quasi-metric, then through minor
modifications of the current proof of Theorems 4.10-5.7-5.8-5.9, we find that all conclusions of
Theorems 2.8-2.9 remain true, except that the Holder exponent 75 in Theorem 2.9(iii) will depend
on the constant K and it can not approach 1 when 6 — 0.

A novelty of the method of heat kernel construction in Theorem 2.9 is that, without using the
Dirichlet form theory as in [15, 16, 34, 12], we still produce a signed heat kernel that satisfies a
number of good properties such as the stable-like upper estimate, near-diagonal lower estimate,
stochastic completeness and almost Lipschitz regularity estimate. The price we pay is that for the
constructed {p;};~o there may exist # € (0, c0) and x, y € X such that

pi(x,y) <0.

But this disadvantage can be neglected in many situations such as analysis of differential operators
(see, e.g. [26, 27, 21]), etc.

For the heat kernel {p;};~o constructed in Theorem 2.9, it is natural to ask that if one can show
the positivity of p,(x,y) and then obtain a stable-like two-sided estimate (ULE)g. Unfortunately,
the answer in general is no. Indeed, although each p;(x,y) has a near-diagonal lower estimate,
it may be negative when x and y are far away from each other. The latter can be seen from the
representations (3.21) and (3.22) below, together with the fact that P(x,y) may be negative off
the diagonal (see Remark 5.4 below for more details). As was pointed out earlier, heat kernels
with negative value arise in various scenarios such as integral kernels of semigroups generated by
higher order differential operators (see, e.g. [24, 25]).
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2.4 Organization of the paper

This paper is organized as follows.

The main aim of Section 3 is to show Theorem 2.6 and Corollary 2.7. Let us be more precise. In
Subsection 3.1, we establish some basic properties of the projectors {Py}rez and {Qy}rez that are defined
in Definition 2.2. In Subsection 3.2, we show that (see Theorem 3.7 below) the projectors {Py}iez and
{Qx}kez induce a strongly continuous contractive semigroup {P;};>0 on L%(X), whose integral kernels are
precisely {p;}r~o defined in (2.4). Then, in Subsection 3.3, we show Theorem 2.6 (see Theorems 3.8 and
3.9 below) and a stronger version of Corollary 2.7 (see Theorem 3.10 below). Moreover, in Subsection
3.4, we study the spectrum and functional calculus of the generator of the heat kernel {p;};0 in (2.4).

Section 4 is devoted to the proof of Theorem 2.8. In Subsection 4.1, we recall the construction of
dyadic cubes (see [17, 37]) on a metric measure space satisfying (VD). In Subsection 4.2, we show that
{Vi}kez given in (2.5) is an admissible MRA so that Corollary 2.7 can be applied to produce a stochastic
complete heat kernel {p;};~0 as given in (2.4). In this case, this heat kernel {p;};~o coincides exactly with
{ p,D }>0 in (1.7). In Subsection 4.3, we give a direct proof of Theorem 2.8. Subsection 4.4 consists of
several examples of heat kernels that are constructed by Haar wavelets on various underlying spaces.

Section 5 is devoted to the proof of Theorem 2.9. In Subsection 5.1, we recall the construction of
random dyadic cubes on a metric measure space satisfying (VD) (see [2, 39]). Next, in Subsection 5.2,
we review Auscher-Hytonen’s construction (see [2]) of MRA generated by smooth splines/wavelets, and
then we show that such smooth MRA is admissible (see Theorem 5.5 below) in the sense of Definition
2.3. In Subsection 5.3, using this admissible smooth MRA, we follow (2.4) and construct a stochastic
complete signed heat kernel {p,};~o (see (5.1) and Theorem 5.6 below). Further, we prove in Subsection
5.4 that such {p,};>0 satisfies the stable-like upper estimate (see Theorem 5.7). Moreover, in Subsection
5.5, we validate the almost Lipschitz regularity estimate (see Theorem 5.8 below) and the near-diagonal
lower estimate (see Theorem 5.9 below). Altogether, we obtain Theorem 2.9.

Notation. Let N = {0,1,...,},Z = {0, +1,£2,...} and diam(X) := sup{d(x,y) : x,y € X}. For any set
E c X, E denotes the closure of E, and EC = Xx \ E. The letters C and c are used to denote positive
constants that are independent of the variables in question, but may vary at each occurrence. The relation
u < v (resp., u 2 v) between functions u and v means that u < Cv (resp., u > Cv) for a positive constant
C. Wewritteu =vifu <vsu.

3 Construction of heat kernels via general MRA

Throughout this section, we always assume that (X, d, i) is a metric measure space endowing with a
multiresolution analysis structure {V}irez as in Definition 2.1. The conditions (VD) and (RVD) are not
used throughout this section.

3.1 Preliminaries on MRA

The following facts of Riesz basis come from [18, Theorems 3.6.2 and 3.6.6, Corollary 3.6.3].

Lemma 3.1. Let {Vi}iez be an MRA in L*(X). For any k € Z, if {@ka}eca, is a Riesz basis of Vi, then
there exists a unique dual Riesz basis {pr.q}aca, Of Vi, that is, {Qk o}aca, is the unique Riesz basis in Vi
satisfying that for all o, € Ay,

1 whena = p;

—_— , — 6 =
(Pra> Pkp) = ba.p {() when a #* 3,
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where (-, -) denotes the inner product of L*(X). Moreover; forany f € Vy,
F= @ D ora= Y. ko NPra in LX), (3.1)
aeA aeA

Next, we collect some basic properties of the orthogonal projectors {Pi}rez and {Qg}rez that are
defined in Definition 2.2.

Lemma 3.2. Let {Pilrez and {Qilrez be the orthogonal projectors defined in Definition 2.2. Then, for
any k € Z, the following hold:

(i) both Py and Qy, are self-adjoint linear bounded operators on L*(X), PI% = Py and Qi = Qg
(i) if j > k, then P(P; = PPy = Py and Q;P, = 0;
(iii) if j # k, then Q;Qy = 0;
(iv) if Vi has a Riesz basis {¢k.q}acn, and a dual Riesz basis (g o }aca,, then for any f € L*(X),

Pef = ) @oar P era = ), Pras Pro

acA €A
Proof. Based on the basic facts of orthogonal projections in Hilbert spaces (see [57, pp. 81-84]), we
easily obtain (i).
Now, we prove (ii). For any j > k and f € L*(X), we have by Definition 2.1(i) that Py f € V; c V;,
which implies
P;Prf = Prf.
By this, together with the self-adjoint properties of Py and IP;, we see that for any f, g € LX(X),

(PiPjg, [) =<8 PiPrf) =8, Prf) = (Prg, [,
whence
PyPjg = Prg.
As a consequence, it holds that
QjPr = (Pjy1 — PPy =P —Px = 0.
Thus, we obtain (ii).
To show (iii), by symmetry, we assume without loss of generality that k < j. Then the second equality
in (ii) implies
Q;Qk = QjP+1 — QP =0,
as desired.

Finally, we verify (iv). If f € L*(X), then P f € V; and it can be represented as in (3.1). By this and
the self-adjoint property of Py, together with Pxgy o = Pro and Prgro = ¢r.qe» We obtain

Pef = D Bhar Pl G = ) Pidbkas [YPha = ) Brar ) P
€Ay a€Ay €Ay
and
Pef = D (ko BeD Pra = ), Pistkar PBra = D | Bhar )P
aceAx aeA acA

which proves (iv). O
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Remark 3.3. By Definition 2.1 and Lemma 3.1, if {Vj}zez is an MRA in L*(X), then each Vj has a Riesz
basis {¢xq}ecn, and a dual Riesz basis {¢k q}aeca,. Thus, if Py is an orthogonal projector from L*(X) to
Vi, then Py is associated to an integral kernel in the following way:

Pef(x) = / Pr(x, V) f () du(y)  forany f e L*(X) and x € X,
X
where (see Lemma 3.2(iv))

Py(x,y) = Z Cka(DPia(y)  forallk€Z and x,y € X.

aceAy

For the orthogonal projector Q; which maps L*(X) to Wy := Viyq © Vg, since Pryi f — Pif € Vigr and
Pt f — Prf LV hold for all f € L*(X), it follows that

Qk = Pry1 — Pr. (3.2)

Consequently, each Q; has also an integral kernel Q(x, y) such that

Quf(x) = /X Q) f)du(y)  forall f e L*(X) and x € X

and
Qr(x,y) = Pry1(x,y) — Pr(x,y) forallk € Z and x,y € X.

Remark 3.4. Applying (ii) and (iii) of Lemma 3.2, together with the self-adjoint property of Qi, we
deduce that for all f, g € L*(X),

(Prf, Qi) =(QPif, ) =0 as k< j; (3.3)
and

(Qif, Qjg) =<(Q;Qxf, &) =0 as k#j 3.4

Lemma 3.5. For the orthogonal projectors {Pylrez and {Qilrez that are defined in Definition 2.2, the
following hold:

(i) no matter u(X) is finite or not, limy_, .« Py = id in L*(X);
(ii) if u(X) = oo, then limy_,_o Py = 0 in L*(X);
(iii) for any f € L*(X), we have

D s as p(X) = oo;
f _ keZ - (3‘5)
Prof+ ), Quf  as p(X) < oo,
k=ko
and
D ISR as p(X) = eo;
kezZ

11Z2 ) = (3.6)

P 12, + D NSy, as p(X) < o,
k=kg

where the equality in (3.5) holds in L*(X), and ky is the integer given in Definition 2.1(iii).



ConsTtrUCTION OF HEAT KERNELS ON METRIC MEASURE SPACES VIA MULTIRESOLUTION ANALYSIS 15
Proof. First, we show (i). From Definition 2.1(i), it follows that {VkL }kez 1s decreasing. For any f € L*(X)
and j < k, we know from L*(X) = V, & V! that

Pof —fe Vi cVi.
This implies that for all f € L>(X) and g € U jezVi,

lim (Prf - f, &) = 0.
k—+00

Invoking Definition 2.1(ii) yields that lim_, 1o Prf = f in L*(X). This proves (i).
Now, we assume that u(X) = oo and show (ii). By the definition of Wy, in (2.1) and Definition 2.1(ii),
we see that Ugez Wy = L2(X). Let f € L>(X). If k< jand g € W;, then from Py f € Vi C V; we derive

<Pkf9 g> =0.

Therefore, for all j € Z and g € W; we have
Jim (P f, g) =0

This, together with the aforementioned fact Ugez Wy, = LX(X), yields

Jim (Pif, ) =0 forallge L*(X).

So, we obtain that limy_,_o Pxf = 0 in L*(X).
It remains to show (iii). Let f € L*(X). For any m < n, applying Q; = Pr;1 — Px in (3.2) gives

Zn:Qk = zn:Pkﬂ - Zn:Pk =Ppi1 — P
k=m k=m k=m

This, along with the just proved (i) and (ii), yields that when u(X) = oo,

N
2,Qf = Jim > Quf = lim Byaf-Pyf)=f in LX).
k=-N

keZ

Meanwhile, when u(X) < oo,

0 N
Brof + ), Quf = Biof + nggwl;] Qf = lim Pyaf=f in LQX).
=Ko

k=ko

Thus (3.5) holds in L*(X). By (3.5), Qf = Qi and Pgo = Py,, we derive that when u(X) < oo,

1R, = <Pkof £, f> = Biof, )+ D AQfs
k=ko k=ko

[e9)

=@ . H+ ) (QFf f)

k=ko
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= Bofs Pro) + ) (Qufs Quf)

k=ko
ﬂmm@m+iﬂ@mgm
In a similar manner, when p(X) = oo, we have _
m@&{Z@ﬁﬁ=Z@mﬁ=Z@%ﬁ=Z@¢Qm=me@m
= = = = =

Combining the last two formulae yields (3.6). Altogether, we obtain (iii). O

3.2 Heat semigroups generated by MRA

The aim of this subsection is to show that the projectors {Pi}rez and {Qg}iez that are defined in
Definition 2.2 will induce a strongly continuous contractive semigroup {P;};>o on L*(X). To achieve this,
we begin with the definition of the operators {P;};0.

Definition 3.6. Given any sequence {Ai}rez C [0, 00), define the family of linear operators {P,};>¢ as
follows: for any ¢ € [0, 0) and f € L*(X),

S oy 0=
Pf =" %0 (3.7)
e—t/lkoflpkof + Z e—t/lekf as u(X) < oo,
k=ko

where ky is the integer given in Definition 2.1(iii), {P}rez and {Qg}rez are defined as in Definition 2.2.

Intuitionally, the construction in Definition 3.6 views each subspace Wy (see Definition 2.2) as the
eigenspace of the eigenvalue A;. Invoking Remark 3.3, we find that {p,},~o defined in (2.4) are just the
integral kernels of the operators {P;};>0 in (3.7).

Theorem 3.7. The family {P,};so in (3.7) is a strongly continuous contractive semigroup on L*(X), that
is, it satisfies the following properties:

(i) each P; is a symmetric linear operator with domain LX(X);
(ii) (contraction property) for any t € (0, 00) and f € L*(X), P fllz2cxy < N2y
(ii1) (semigroup property) for any t, s € (0, 00), P;Pgs = Pyg;
(iv) (strongly continuous property) for any f € L*(X), lim;o P.f = f in L*(X).
Proof. We will prove items (i) through (iv) in the following 4 steps.

Step 1: proof of (i). When ¢ = 0, it follows from (3.5) that Py = id in L*(X). Since {P}iez and
{Qx}kez are symmetric linear operators, so does P; for each ¢ € (0, o).
Suppose that ¢ € (0, ) and f € L*(X). For any m < n, applying (3.4) yields

2 n n
=), D e e Qs Qif)

L2(X)  k=m j=m

n

D e auf

k=m
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= > e (Quf, Quf)
k=m

< > IS (3.8)
k=m

By (3.6), (3.8) and f € L*(X), we see that both {3}__, e Qx f}nerr (When u(X) = co) and (X7, e Qi flnert
(when u(X) < o) are Cauchy sequences in L*(X). Thus, for any f € L*(X), each P,f in (3.7) is a well-
defined L2(X)-function.

Step 2: proof of (ii). Fix ¢ € (0,0) and f € L*(X). As was proved in Step 1, the series of defining
P, f converges in L*(X). Thus, when 1(X) = oo, applying (3.4) and (3.6) yields

1P fI1 2 ) = <Z NS, ) e‘“fQ,-f>

keZ JEZ

= Z Z e e (Quf, Qif)

keZ jeZ

= ) e (Quf, Quf)

keZ

< >IN

keZ
= 1113 - (3.9)

In a similar manner, under the case u(X) < oo, we derive from (3.3), (3.4) and (3.6) that

1P f11 2y = <e—“ko-1Pkof £ EIf, B f 4 Y Y, f>
k=ko J=ko

(o)

— e—2t/lk0_1 <Pkof’ Pk0f> + e—t/lko-l Z e—t/lj <Pk0f, ij>

J=ko

FeT ot Y QS B f) + ) D e e Q. Qi)
k=ko k=ko j=ko

[

= ¢ 21 <Pkof’ pk0f> + Z P Qrfs Quf

k=ko

<Pk Py + D IQUCOI 2

k=ko
= 11172 (3.10)

where in the second equality we used the convergence of Z,‘:’:ko e Qy f in L*(X). Thus, {P;}>0 1S
contractive.

Step 3: proof of (iii). Let f € L>(X) and s, € (0, o). Again, no matter u(X) is finite or not, we
know from Step 1 that the series in defining P, f converges in L*(X). From this and the boundedness of
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P, on L*(X), it follows that when u(X) = oo,

P(P,f) = P, [Z e_Mkaf] = Y e kP uf =) e [Z e‘“fQ,-Qkf], 3.11)

keZ keZ keZ JEZ

and that, when u(X) < oo,

P(Psf) = P, [e—“kolpkof ) e‘“kaf]
k=ko

[e9)

= ¢ Mo PPy, f + Z e P Qi f

k=ko

= e_S/lk()fl [e_[/lkOIPk()Pkof + Z e_t/leijof]

J=ko
+ Z e—sﬂk [e—l/lko—lpkoQkf + Z e_s}ijQkf] . (312)
k=ko j=ko

By (ii) and (iii) of Lemma 3.2, we have Q;P;, = O for all j > ko and Q,Q; = O for all / # k. Also, Lemma
3.2(i) implies that P,%O = Py, and Qi = Qy for all k € Z. With these facts, we continue (3.11) and (3.12)
respectively as follows: when u(X) = oo,

PiPf) = ) e (M@ f) = )| e RS = Py,

kezZ kezZ

and, when u(X) < oo,

Ms

Py(Pyf) = e Mo (e Mo By By f) + ) e (e QuQuf)

k=ko
— e—(s+t)/1k0_]Pk0f + Z e—(s+t)/lekf
k=ko

= Pt+sf-

This verifies the semigroup property of {P;}so.

Step 4: proof of (iv). Let f € L*>(X). Consider first the case u(X) = co. For any ¢ € (0, c0), since
the series (3.5) and (3.7) both converge in L*(X), we derive

If = Peflifa ) = <f = Pef f = Puf)

= <Z<1 - TS, Y (- e—mj)ij>

keZ JEZ
= Z Z(l - e_t’lk)(l - e_t/l'/) <Qkf7 Q]f>
keZ jeZ

= >0 = e, Q)

keZ
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= > (1 = NS

keZ

where the penultimate step follows from (3.4). Noting that (3.6) implies > ;<7 [|Qrf II? 120 < oo, we then

derive from that
HmLf = Pf I, = lim [Z(l YIS 2 | = D im0 = e NQuf 2 ) = 0
keZ keZ

The argument for the case u(X) < oo follows in a similar way. Indeed, if u(X) < oo, then we use
(3.3) and (3.4) to write

1f = PefIBax, = <f = Pufs | = Pif
= <<1 —e M f+ Y (1= e Qef, (1= e o )Py f+ Y (1 - e‘“-f)ij>

k=ko J=ko

= (1= e M)y f 2y + (1= €SI

k=ko

which, together with the dominated convergence theorem, again leads to
hm “f Pff”LZ(X)

Thus, we obtain the strongly continuous property of {P;}>¢. O

3.3 Heat kernels generated by MRA

Applying Theorem 3.7, we are about to show Theorem 2.6 and Corollary 2.7 in this subsection.
Indeed, Theorem 2.6 follows from the forthcoming Theorems 3.8 and 3.9; Corollary 2.7 is a consequence
of a stronger result in Theorem 3.10.

Theorem 3.8. Let {Viliez be an MRA in L*(X). Assume that the following hold:
(i) the sequence {Ai}rez C [0, o) is increasing;

(ii) there exists a positive constant C > 0 such that for any k € Z and x € X,
/ IPr(x, y)l du(y) < C,
X

where Py is the orthogonal projector from L*(X) to V.

Then, the family {p;}~o defined in (2.4) is a signed heat kernel. In particular, if u(X) = oo, then

N
pix,y) = lim [e—“NPNH(x, M+ > (e = e Y P(x,y) - e VP, y)] (3.13)
—+00
k=—N
and, if u(X) < oo, then
N
pi(x.y) = lim [e—”NPNH(x, W+ (e = e ) B, y)]. (3.14)
k=ko
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Proof. For any t € (0, ), it can be seen that p; in (2.4) is the integral kernel of the operator P, in (3.7).
To obtain that {p,};>¢ is a signed heat kernel, based on Theorem 3.7 and the definition of a signed heat
kernel in Definition 1.1, we only need to verify that

sup sup / |p:(x, )| du(y) < oo. (3.15)
te(0,00) xeX J X

Under the case u(X) = oo, we have by (2.4) and (3.2) that

pxy) = ) M Qux,y)

keZ
N
= Jim 3 e (Prii () = Pi(x, )
N+1 N
= lim [ > e Ry - Y e R, Y)
T =N+ 1 k=N

N
_ : —tA —tAy— —tA —tA_N—
= N1—1>Too [e MPr+1(x,y) + k_ZN (e l—e ") Pr(x,y) — e MP_y(x, y)] .

This proves (3.13). Moreover, combining with the assumptions (i) and (ii), we further have

/ |piCx, Y dpa(y)
X
N
< lim sup / [|PN+1<x, Wi+ Y (et — e By, )l + [Py, y)I] du(y)
N—o+o JX k=—N
N
< 2C + Clim sup Z (e‘“"*l - e‘”k)
N—oo k=N
=2C + Climsup (e_”l""‘l - e‘”"’)
N—ooo
< 3C,

which gives the desired estimate (3.15) under the case u(X) = co.
Consider now the case u(X) < oo. Via an argument similar to that used in (3.13), we again utilize
(2.4) to write

[ee)

piCx,y) = e Mo By (x,y) + > e Q)
k=ko

N

BT —tA —tAk-1 _ 1A

‘A}E&[e NPNH(JCJH;;(e e k)Pk(x,y)],
=Ko

which proves (3.14). Again, applying the assumptions (i) and (ii) gives

N
|pi(x, )| dpu(y) < lim sup / [IPN+1(x, W+ D (e — e ) By, y)l] dp(y)
X N-o+co JX k=ko
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N
< C+ Climsup Z (e_”l"*l - e_m">
N—oo k=ko

= C + Climsup (e‘”lko-1 - e‘t’l"’)

N>

<2C,
which again implies that (3.15) holds when u(X) < co. O

In the forthcoming theorem, we use Theorem 3.8 to show Theorem 2.6 by validating the stochastic
completeness property of {p;};~o that is defined in (2.4).

Theorem 3.9. Let {Vi}iez be an admissible MRA in LZ(X ) and {Ax}kez C [0, 00) be a family of admissible
spectrum. Then, the family {p;};~o defined in (2.4) is a stochastic complete signed heat kernel.

Proof. Since {Vi}rez is an admissible MRA and {Ai}iez C [0, o0) is a family of admissible spectrum, it
follows from Definitions 2.3 and 2.4 that the hypothesis of Theorem 3.8 are satisfied. Thus, by Theorem
3.8, we know that {p,},~¢ is a signed heat kernel.

It remains to validate the stochastic completeness property (1.3). Consider first the case u(X) = co.
Given a large integer N € N, we utilize (2.4) to write

pixy) = Y e HQux,y)

keZ
-N-1 oo

= ) Q) + ) e Uy + ) e Qulx, y). (3.16)
k=—co [kl<N k=N+1

From Qj = Pry1 — Px (see (3.2)) and the condition (A2) of Definition 2.3, it follows that

/ (Z G (x,y)

X \jk<n

i) = D e [ Q) duty) =0

[kl<N

Moreover, note that the condition (A1) in Definition 2.3 implies

/X Q)] i) < /X Bt (e )] dia(y) + /X By )l duy) < 2C

and, hence,

(o)

Z e M Qu(x, y)

k=N+1

s D e [ 1wl ducy)

k=N+1

<2C i e

k=N+1

J

which tends to 0 as N — +oo by terms of Definition 2.4(c). So, to obtain (1.3), it suffices to validate

-N-1
Nl—i>r-li—loo X[ Z e_t/lek(x’ )’)] dlu(.))) =1 (317)

=—00
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To prove (3.17), for any m < —N — 1, by Q = P41 — Pg, we write (see also the proof of (3.13))

—-N-1 -N-1
Dl ety = Y e (Bra(xy) - Palx,y))
k=m k=m
-N -N-1
= D Ry - ) e B(x,y)
k=m+1 k=m
-N-1
= P () + ) (€7 = e NB(x, ) = e B, Y), (3.18)
k=m

Observe that the condition (A3) of Definition 2.3 implies

lim ¢ 1P, (x,y) < lim |Pu(x,y) = 0.
m—-—0oo

m——oo
So, letting m — —oo in both sides of (3.18) leads to

-N-1 -N-1

Z e MQu(x, y) = e NP _y(x, y) + Z (e_mk" - e_mk)Pk(X, y). (3.19)

k=—c0 k=—c0
For all k € Z, by Definition 2.4(a) and the fact that 1 — e™* < s for all s € (0, 00), we derive
|e—l/lk-1 _ e—l/lk| = o k- |1 _ e—l(/lk—/lk-l)| <1- e~ T(=dk-1) <t = A1),
where we remark that 4; — ;1 > 0 for all k£ € Z. Consequently, the first condition in Definition 2.4(b)
implies that when N — +oo,

—N-1 -N-1
2l = < 3 =ty = (v = fim ) 0.

k=—00 k=—0c0
From this and condition (A1) of Definition 2.3, it follows that

-N-1 -N-1

Nl_ig_loo i kzz_oo (e—t/lk—l _ e—f/lk)]Pk(x, V)| du(y) < Nl—igloo k;oo |e—t/lk71 _ e—t/lk| /X IP(x, )| du(y)
-N-1

=0.

Moreover, by condition (A2) of Definition 2.3 and the first condition in Definition 2.4(b), we also obtain

N—+oco

lim (e—”—N-' / P_N(x,y)d,u(y))z lim e N1 = 1.
X N—o+oo

Invoking these last two formulae and (3.19), we derive (3.17). This proves (1.3) under the case u(X) = oo.
Now, we are left to validate (1.3) under u(X) < co. In this case, instead of (3.16), we derive from
(2.4) and Ay,—1 = O (see the second condition of Definition 2.4(b)) that

(o8]

e Qu(x, y) + Z e M Qy(x, y).
) k=N+1

pt(x’y) = Pko(x5y) +

M=

k

]
>~
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Just like the argument for the case u(X) = oo, we still have

N

/ {Z e MQu(x,y) | du(y) =0 forall N e N
X

k=ko
/;Y

These last two formulae, along with condition (A2) of Definition 2.3, again yields (1.3). O

and

(o9

D, MUy du) 5 0 asN - +eo.
k=N+1

Applying Theorem 3.8, we consider the positivity of {p;};0 in (2.4).
Theorem 3.10. In addition to the assumptions of Theorem 3.8, assume that the following hold:
(a) foranyk e Zand x, y € X, Pi(x,y) = 0;
(b) when u(X) = oo, assume further that for all x,y € X, limy_,_, Pr(x,y) = 0.
Then, the family {p;}~o in (2.4) is a heat kernel.

Proof. By Theorem 3.8, we already know that {p,};~¢ is a signed heat kernel. To prove that {p;},~¢ is a
heat kernel, it suffices to validate that, for any 7 € (0,0) and x, y € X,

pi(x,y) = 0. (3.20)

Indeed, when u(X) = oo, we have by (3.13) and the assumption (b) that

N
pi(x.y) = lim [e‘“NPN+1<x, R T | 1e y)], (3.21)
k=—N

Meanwhile, when p(X) < oo, we know directly from (3.14) that

N
pi(x.y) = lim [e‘”NPNH(x, W+ (e - e ) B, y)]. (3.22)
k=ko

From the assumption (i) of Theorem 3.8, it follows that e %1 — ¢="% > ( for all k € Z and t € (0, o).
Combining this with (a), we deduce that all the terms in the right hand sides of (3.21) and (3.22) are
nonnegative. This implies that (3.20) holds. O

3.4 Generator of the heat kernel

Under the hypothesis of Theorem 3.8, the family {p;};~o defined in (2.4) is a signed heat kernel. In
this subsection, we discuss the spectrum and the functional calculus of the generator of {p;};0.

The family {p;};~o defined in (2.4) gives rise to the semigroup {P;};>0 in (3.7). According to [28,
p- 19, Lemma 1.3.2(ii)], any strongly continuous symmetric semigroup {P;};>0 corresponds uniquely to a
nonnegative self-adjoint densely defined operator £ in L*(X). Indeed, for any

f e Dom(L) = {f & LX) : 1Lfll20x) < ).
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it holds that

Lf =lim in L*(X). (3.23)

t10

f-Pif
t

The operator L is called the generator of the semigroup {P,};~¢ (or the heat kernel {p;};~9). By (3.5),
(3.7) and (3.23), we easily deduce

D At as u(X) = oo;
£r=1" S (3.24)
Ao 1Prof + D" MQuf  as p(X) < oo,
k=ko

Moreover, by Lemma 3.2, we argue as in the proofs of (3.9) and (3.10) to derive

D RIS as u(X) = oo;
keZ

ILA1I72 ) = i
(@9)
B B[+ D Ay, a8 u(X) < oo
k=ko

Below we will discuss the spectrum and the functional calculus of the generator £ in (3.24).

Lemma 3.11. Let L be the operator as in (3.24) and o(L) be its spectrum. Then

o (L) = {Akes,
with Jo = Z when u(X) = oo and Jy = {ko — 1, ko, ...} when u(X) < oo.
Proof. To simplify the notation, let J = Jy when u(X) = oo and J = Jy \ {ko — 1} when u(X) < co. Denote
by o ,(£) the point spectrum of £, namely,

op(L) :={1€C: Ais aeigenvalue of L}.

We split the proof into the following 3 steps.

Step 1: proof of {A;}ics, C 0,(L). Without loss of generality, we only consider the case p(X) < oo
in this step. Fix k € J. Recall that each closed linear subspace of a separable Hilbert space has a complete
countable orthonormal basis (see [57, p. 89, Corollary]). Thus, we respectively denote by {¢x, o }ec y
and {1, }yew, the orthonormal basis of Vi, and Wy, where 27, and %, are countable index sets. By the
definitions of Py, and Qi, we derive from (3.24) that for any k € J and y € ¢4,

Ly = Ao
and, for any @ € %,
Lory.a = Ag-1Pkp.a-
Thus, any A4 with k € Jy is an eigenvalue of £ and, hence, {Ax}res, C 0 p(L).

Step 2: proof of {A}iej, O 0,(L). Suppose that A € C is an eigenvalue of £, that is, there exists a
non-zero function f € Dom(Z£) such that

L(f) = Af.
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We are going to show that A € {Ax}kes,-

Consider the case u(X) < co. Since f € L*(X) and f # 0, we derive from (3.6) that either
Pxo fllr2cx) # O or |Qjo fll2x) # O for some jo > ko. Using (3.5) and (3.24), together with Lemma
3.2, we proceed as the proof of (3.10) to derive

2
0= If = LIz, = |1~ Up)Prof + D (A= ADQ;f
jEZ LZ(X)
= 1A= g 1 PPk, f2 ) + D 1A= PN 1

JEZ
Thus, we must have with A = A1 or A = A, which implies A € {Ai}rey,-
When u(X) = oo, since f € L*(X) is non-zero, we deduce from (3.6) that 1Qjoflr2x) # O for some

Jo € Z. Applying (3.5), (3.24) and Lemma 3.2, we now follow the proof of (3.9) and obtain

2

0 =1IAf = LA, = |[D A= ADQif

JEZ

= > =PI

X I

This implies that A = A, € {Ax}rey,, as desired.

Step 3: proof of o(L) = {Ai}kes,- Based on Step 1 and Step 2, we have {Ax}ies, = 0,(L). Then, by
the fact that o,(£) C o/(£), we obtain {A;}kes, C 0(L), thereby leading to

{Atkes, € o(D),

since o(L) is a closed subset of C. Thus, it remains to show that 0(L) C {Ax}rey,- For any A € C\{Ax}re,»
we have by Step 2 that the mapping

A—L: Dom(L) - L*(X)

is injective. So, it suffices to prove that 1 — £ is surjective, (1 — £)! exists and bounded on L*(X).
Since A € C\ {Ax}res,» we see that ¢ := mingey, |4 — A«| exists and ¢ > 0. For any f € L*(X), define

>a-apTaf as p(X) = oo;
B JEZ -
(A= Ay )Py f+ D (A= )7 Qif  as pu(X) < oo,
J=ko

Applying Lemma 3.2 and proceeding as the proofs of (3.9)-(3.10), we easily deduce that

D= QA as u(X) = oo;

2 B JjE€Z -

||g||L2(X) - ) 5 _ )

= gt 2B IR ) + D A= A1 HQ Iy, a8 (XD < o0,

J=ko

DIl as u(X) = oo;
<2 kezZ
C

Bk /sy + D IS oy | a5 (&) < oo,
k=ko
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= U2
where the last step is due to (3.6). Further, observing that the expression of g and Lemma 3.2 imply
Qg =@-)'Qf forallkel
and
Plyg = (A= At) ™' Pio f.

we therefor deduce from (3.5) that

DA - g as u(X) = oo;
keZ
1-Lg= >
(A= Ay P8 + D (A= WU as u(X) < .
k=ko
D s as u(X) = oo;
_ keZ -
Pof+ ), Quf as u(X) < oo,
k=ko
= f
This proves that A — £ : Dom([) — [X(X) is surjective and, moreover, its inverse (1 — £)~! exists and
is bounded on L*(X). O

Next, we discuss the spectral resolution family of L.

Lemma 3.12. Let Jo = Z when w(X) = oo and Jo = {ko — 1, ko, ...} when u(X) < oco. Assume that
{Aktkes, C [0, 00) is strictly increasing. For any A € R, define

> & if >0 and u(X) = oo;
{keZ: <A}
Ey={P + Z Q if 1= A1 and u(X) < oo; (3.25)
{kelko, ... }: A<}
0 otherwise.

Then {E ) icr is a spectral resolution of the identity in L*(X), that is, it satisfies the following:
(i) E—eo :=1limy_oo Ex = 0 in L*(X);
(i) Eico = limisie0 Eq = id in L*(X);
(iii) ift < s and f € LX(X), then {E.f, f) <(Esf, f) and E,E; = E; = EsE, in L*(X);
(iv) forany A € R, there is Ey = E;, = limg) Es in L*(X).

Proof. Based on Lemma 3.5, all these properties are easy except (iii). We take the case u(X) = oo to
explain (iii); the proof for the case u(X) < oo follows in a similar manner. Assume without loss of
generality that ¢ > 0. Then, for any ¢ < s and f € L*(X), we have by Lemma 3.2(i) that

EfH= D AhH= D Iy,

{keZ: Ak <t} {keZ: 4k <t}
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2
< D QA = DL (Qfs Y =(Ef .
{keZ: Ak <s} {keZ: Ak <s}

Moreover, for any # < s and f € L*(X), by Lemma 3.2(iii), we obtain

EEf= D QEf= ) >, QQf= ) QQf= > Qf=Ef

{keZ: A, <t} {(k€Z: A <t} {jEZ: A;<s5} {keZ: A <t} {keZ: Ak <t}
The same argument also yields that E¢E,f = E,f. This ends the proof. O

Let ¢ be a real-valued continuous function on R. For any f € L*(X), since {E )} er in (3.25) is a
spectral resolution of the identity in L?(X), we have by the spectral theory (see [57, p. 310, Proposition 2
and Corollary]) that it makes sense to define

Tof = / (D) dE,f = lim / (D) dELf (3.26)

ﬁ'—w—oo

whenever the limit exists as an L?(X)-function. Here, the integral | <p(/l) dE, f is understood as the limit
(again we mean limit in the sense of L2(X) norm) of Riemannian sum

> 0t (Eqpo f - Essf). (3.27)
j=1

where @ = 59 < 51 <--- <, =f,1t; € (5j-1,5;] and 6 := max;|s; — s;_1| tends to 0. In this sense, the
operator T, f in (3.26) with the domain

Dom(Tcp) = {f € LZ(X) ||T<pf”L2(X) / |90(/1)|2 d”E/lf“LZ(X) }

is a self-adjoint operator in L*(X) (see [57, p. 311, Theorem 2]). Of course, when f € Dom(T), we can
take 7; = 5; in (3.27).

Theorem 3.13. Let Jo = Z when u(X) = co and J = tkg — 1,ko,...} when u(X) < co. Assume that
{Akes, C [0, 00) is strictly increasing. If ¢ is a real-valued continuous function on R, then for any
f € Dom(Ty), the equality

> eas as p(X) =
T,f=1"" e (3.28)
o Brof + Y @IQS  as u(X) < oo,
k=ko

holds in L*(X). Moreover, forany f € Dom(T)), there is

D IS, as u(X) = oo
Ty =4 . (3.29)
eINL2x) .
S PR T T 9 ;:‘ PSRy as p(X) < oo,
=ko
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Proof. Once we have obtained (3.28), by using Lemma 3.2 and proceeding the arguments in the proofs
of (3.9)-(3.10), we then obtain (3.29). So, it remains to show (3.28).

Let @ and 8 be as in (3.26). Consider the integral f(a’ 5l ©(1)dE, f, which is understood as the limit of
the Riemannian sum in (3.27). Our aim is to show that, for any € > 0, there exists some ¢ > 0 such that
whenever max; [s; — s;_1| < ¢, the Riemannian sum in (3.27) satisfies the following: when u(X) = oo,

D Egf~Ef) = D ef|  <3elflieg. (3.30)
Jj=1 {keZ: a<Ak<B} LZ(X)
and, when u(X) < oo,
o) (Esif = Eqif) =0l DBuf = 3, @Qf|  <3elflizg. (331
j=1 {k>ko: a<Ax<B} 12(X)

Indeed, once we have proved (3.30) and (3.31), then we take the limit in the Riemannian sum in (3.27),
thereby deriving

B
/ ) dELf = Z e(A)Qrf as u(X) = oo

{keZ: a<x<B}

and

B
/ QW AELSf = e DBlf+ Y pAIS  as p(X) < oo,

{k>ko: a</lk§ﬁ}

In both sides of these last two formulae, letting @ — —oco and 8 — +oco, we know from (3.26) that (3.28)
holds. Therefore, we are left to validate (3.30) and (3.31).
No matter p(X) is finite or not, by the fact that {Ax}xcs, C [0, o0) is strictly increasing, we see that

"= lim A
k—+00

may exist as a real positive number or may be +oco. Meanwhile, when p(X) = oo, the limit

oy = lim A

k——00
does exist and 0 < o, < 0* < +00. Note that ¢ is uniformly continuous on [a, 3], so that for any € > 0

there exists 6 > 0 small enough such that when max;|s; — s;_1| < ¢, we have

sup  sup () — @(s)| < €. (3.32)

1<j<n s,te(sj-1,5}]

We may take 6 to be small enough so that each interval (s;_, s;] contains at most one element of
{0+, 0"} U {A}kes,- Then, we consider the following five cases:

Case 1: Let j € {1,2,...,n}. If (s;_1, s;] does not contain any element from {A;}ses,, then by (3.25),
we have

Esjf_ Esj,lf =0. (333)
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Case 2: Let je{1,2,...,n}. SetJ = Jy = Z when u(X) = oo and J = Jy \ {ko — 1} when u(X) < co.
If (sj-1, s;] contains exactly one element from {A;}c;, denoted by Ak;s then

A1 S 8jm1 < Ay <85 < A1
so that (3.25) implies

Eij_ESj_lf: ijf‘

Case 3: Consider the case u(X) < oo and for some jy € {1,2,...,n} the interval (s,_1, 5,] contains
Agy—1. Forany i < jo — 1, the interval (s;_1, s;] does not contain any element of {A}xes, so (3.33) implies
that

Egf—-E  f=0 foralli< jj—1.

Observe that 5,1 < Ai,-1 < 5, < Ak,. Hence, by (3.25), we have

ESjOf - Esjo—lf = Pkof-
This, combined with (3.32), further yields
Jo

D GHEf = Eg ) = ¢ D)Pro f

i=1

= ”‘p(sjo)(EA,Of - ES_m-]f) - ()D(/lko—l)Pkof”Lz(X)
LX(X)

= lp(sjy) = @(Ako- DI Pk f1l 2200
< €llPiy fllz2x)- (3.34)

Case 4: Consider the case u(X) = oo and that for some jo € {1,2,...,n} the interval (s;,_1, 5,1
contains 0. Noting that Ax > 0. > 5,1 > « for all k € Z, we have by (3.25) that

E,f-E, f=0 foralli<jo-1
and

Eyf-Es . f= >

{k€Z: a<i<sjy}

Further, by (3.32) and Lemma 3.2, we proceed as the proof of (3.9), thereby leading to

2

Jo
DHEf ~Eq = D ¢S
i=1 {keZ: a</lk5sj0} 2(X)

2

=lleCsi) (oo f = Eg i f) = D) #0Qf

{(keZ: a<Ai<sjy}

L2(X)
2

=1 D0 (i) - e(0) Quf

{keZ: (I</lkSSj0}

L2(X)
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= >0 Jesi) = e[ QAR

{keZ: a<A<sj, }

<€ D ISy,

{keZ: a<Ai<sjy}

201 £112
Case 5: Assume that o exists and 0 € (Sy,-1, Sm,] for some my € {1,2,...,n}. In this case,
A < 04 < 5y, < Borall k € Z. Thus, applying (3.25) and (3.5) yields
Egf—-E; f=0 foralli>my+1
and
d- ) &= ) as u(X) = oo;
{KEZ: A< smy-1} {KEZ: B2 > Sy -1}
Esmof - Esmo—lf =
id= P+ Y @=L Qe oas pX) <o,
{k>ko: /lkgsm()—l } {kaO:ﬁZ/lk>5m0—l }
which, together with an argument similar to that of (3.35), also implies
2
n
DLEHESf—Eq H= Y eAf
i=mq [kGJZ,BZ/lk>SWO,1 } LZ(X)
2
= ¢Cm) (Esyo f = Esyo /)= DL ¢S
{keJ: B2 > Smy-1} LX)
2
= D (elsm) — () Quf
{kEJ:,BZ/lk>SmO,1} LZ(X)
2
= D et — e QA1
{keJ:IBZ/lk>5m0—l}
<€ Dy,
{kGJZﬁZ/lk>S,,,O,1}
20 112

Based on the above arguments in Case 1 through Case 5, let us prove (3.30) and (3.31) in the
following two steps.

Step 1: proof of (3.30) under u(X) = co. If all the intervals {(s;-1,s;] : j=1,...,n} do not contain
{o., 0}, then by Case 1 and Case 2, we obtain

2 2

D e (Egf—E f)= ). ¢AQf
J=1

{k€Z: a<A,<B}

> (s = ) Qi f
=1

L2(X) L2(X)
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Next, by (3.32) and Lemma 3.2, we proceed as the proof of (3.9), thereby obtaining

2
n n
Detn—e) Q| = D et = )] 12 Al
J=1 2 /=7l
n
2
<é Z ||ijf”L2(X)
j=1
< Nl -
Thus, we obtain
n
DG (Egf—Eg f)= D> e0Qf|| < elflize, (3.37)
j=1 (keZ: < <B) 12(X)

which is just (3.30).

Since now u(X) = oo, it might happen that either o, or o is contained in some interval (s;_1, s;].
In this case, we shall need Case 4 or Case 5. Without loss of generality, we may as well assume that
Oy € (8jy-1,5j,] and 0™ € (Symy—1, Smy ], Where 1 < jo < mo < n. Then, by an argument similar to that of
(3.37), we now have

mo—1
N e Ef-E =Y || Selflig. G38)
s {k€Z: 5y <Ak <Smy-1}

LX(X)
This, combined with (3.35)-(3.36) and the Minkowski inequality, further derives

D HEf~Eq = D ¢S
i=1

{kEZZ (I</lk§ﬁ} LZ(X)
Jo
<D eGHEf—Es = D ef
i=1 {keZ: (1/</lkSSj0] LZ(X)
mo—1
| D CIES-Ee = DL QS
i=jo+1 {keZ: Sj0<ﬂkSSm0_1] Lz(X)
n
D eNEF—Es D= D> eAf
i=mg {kE]:ﬁZ/lk>Sm0_1} LZ(X)
< 3ell fllz2x)s (3.39)

as desired.

Step 2: proof of (3.31) under u(X) < co. Since @ — —oco, we may assume that @ < Ai,—1. Suppose
that A,—1 € (5,1, 5j,] for some jo € {1,2,...,n}. Thus, the estimate (3.34) in Case 3 is true.

If for any j > jo the interval (s;_1, s;] does not contain o, then by Case 1 and Case 2, we argue as
the proof of (3.37) and then obtain

n

DL s Esf—E /)= Y, S

i=jo+1 {k=ko: @<t <B}

< ellfllzzxy
LX(X)
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which, together with (3.34) and the Minkowski inequality, yields

D @) (Enf = B f) = o DB f = . @(A)Quf

j=1 {keZ: a<A <P}

LX(X)

<

Jjo
D PHEsf = E ) = ¢(iy-DPr, f
i=1

L2(X)

n

D eHEGf—Eo )= D ¢S

i=jo+1 {k>ko: a<A;<B}

< 2ellfllz2x)s

+

L2(X)

which proves (3.31).

Consider now the case when o™ exists and 0™ € (Sy,—1, Sm,] for some mg € {jo + 1,...,n}. Then we
have the estimate (3.36) in Case 5. Again, by Case 1 and Case 2, we now still have (3.38). Like the
estimate of (3.39), but now we apply (3.34), (3.38) and (3.36), then we have

D) (Esf = Eq )= ¢g-DPiof = Y @()Quf
i=1

{kGZZ (Y</1k§ﬁ} LZ(X)
Jo
<D @B f = s f) = (g 1)Bio f
i=1 L2(X)
mo—1
| D eP(EGF—Eg f)= D, oS
Jj=Jjo+1 {k=ko: (1/</1k35m0—1 } L2(X)
n
D eNEf B D= D QS
i=mg {kGJZﬁZ/lk>SmO,1 } LZ(X)
< 3ell fll 2 x)-
This also proves (3.31).
Summarizing all, we complete the proof of the theorem. O

Corollary 3.14. Under the hypothesis of Theorem 3.13, let {E 1} xer be a spectral resolution of the identity
in L*(X) as defined in (3.25). Then, the operator L in (3.24) satisfies

L= AdE,. (3.40)
[0, )

Moreover, for any t € (0, 00), the operator P; defined in (3.7) satisfies
P = / e dE,. (3.41)
[0, 00)

Proof. In (3.28), taking ¢(1) = A or ¢(1) = e~ yields (3.40) and (3.41), respectively. O
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4 Construction of heat kernels via non-smooth MRA

Let (X, d, u) be a metric measure space satisfying (VD). The main aim of this section is to show
Theorem 2.8; see Subsections 4.2 and 4.3. Moreover, in Subsection 4.4, we provide examples of heat
kernels that are based on Haar wavelets in three different underlying spaces.

4.1 Dyadic cubes

It is known that on the Euclidean space R" there is a standard dyadic system
D= {270, 1)" +m): ke Z, meZ"},

which enjoys many basic properties. For instance, any two different cubes are either disjoint or one
is contained in another, all cubes of the same generation form a partition of R”, and etc. The first
systematic work of constructing a dyadic structure on a doubling metric measure space was due to Christ
[17]. Recent constructions of dyadic systems that have been developed in [2, 37, 38, 39] turn out to be
very delicate, with the underlying space (X, d, 1) satisfying only the geometrical doubling property (1.2)
and the metric d being weaken to be a quasi-metric.

Assuming (VD), we review the construction of dyadic cubes from [37, 39]. Fix ¢ € (0, 1). Since d is
a metric, it follows from [39, Theorem 2.4] that there is a set of reference dyadic points

(& kez ae

enjoying the following properties:

inf d(zf,,25) > o, min d(x, 2) < & (4.1)
a#y Q€AY
and
{Zf, e ﬂk} - {zﬁ” @€ ?{k“} forany k € Z, 4.2)

where Ay is an index set of countable cardinality. Let G be the family of parameter pairs from the
reference dyadic points

G ={ka): keZ, acA}. (4.3)
For any k € Z, let
re € [6%/4, 6°/2].

According to [39, Lemma 2.8], there is a partial order < in G enjoying the following property: each
(k + 1,7) satisfies (k + 1,y) < (k, @) for exactly one (k, @) in such a way that

A& d) <n = Grly <o) = & A <dn. “-4)

With the partial order <, it is constructed in [39, Theorem 2.9] a system of dyadic cubes on (X, d, ), by
terms of the procedure of the construction in [37, Theorem 2.2, Proposition 2.11]. Indeed, for any k € Z
and a € Ay, define the preliminary dyadic cubes

0k ={d: Ly < ko),
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and then set
o _\C
@i = 0 and Qﬁ = interior@ﬁ = (U Q\ky) ,
yFa

which are called the closed and open dyadic cubes, respectively. The forthcoming theorem collects some
basic properties of the dyadic cubes on (X, d, u).

Theorem 4.1 ([39, 37]). Let (X,d, u) be a metric measure space satisfying (VD). Let 6 € (0,1/60) and
M be as in (1.2). Suppose that the reference dyadic points {z’; : k€ Z, a € A} satisfy (4.1) and (4.2).
Then there exists a family of Borel sets (called dyadic cubes)

D:={0k: keZ aedl
such that the following assertions hold:
() forany k € Z and a € Ay, the interior of QF is Qﬁ and the closure of QF is @Z

(i1) for any k € Z and a € Ay, éﬁ and @Z are one another’s interior and closure;
(iii) foranyk € Z, {Q’;}aeﬂk are disjoint and X = | ez, ok,

(iv) if j > k a € Ay andy € A, then either Q) ¢ Q% or Q) N 0% = 0;

(v) foranyk € Z, a € A and j < k, there exists a unique 'y € A; such that Qﬁ C Q{;;
(vi) foranyk € Z and a € Ay, B(ZK,57'6%) c Q% < B(ZK,36).

For any k € Z, denote by Dy, := {Q]fl 1 @ € Ay} the set of all dyadic cubes of k-th generation.

Next, we recall the notion of quadrants. Being more precisely, for any Q € D, the set

co =)o (4.5)
0'eD
020

is called a quadrant of X containing Q. In other words, C(Q) is the union of all ancestors of Q. According
to [1, Lemma 2.2], the quadrants have the following properties.

Lemma 4.2 ([1]). Let (X,d, u) be a metric measure space satisfying (VD). Suppose that D is a dyadic
system as in Theorem 4.1. Then the family of quadrants defined in (4.5) satisfies the following properties:

(i) for each quadrant C, the triple (C, d, u) satisfies (VD);
(i1) any two intersecting quadrants coincide;
(iii) X is a disjoint union of finitely many quadrants;

(iv) if W(X) < oo then X coincides with one quadrant C, where C coincides with some dyadic cube
QeD;

(v) if u(X) = oo then for every quadrant C we have u(C) = oo.
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Remark 4.3. If two points x, y belong to the same dyadic cube then, clearly, they belong to one quadrant.
Conversely, if x, y belong to the same quadrant C then there is a dyadic cube containing both x, y.

According to [13, Section 5.2], each dyadic system D that is stated in Theorem 4.1 gives rise to an
ultra-metric dp on X. A metric d on X is called an ultra-metric if for any x, y, 7 € X,

d(x,y) < max {d(x,z),d(z,y)}.

Of course, any ultra-metric is a metric. Usually a metric must take non-negative real values, but we will
allow an ultra-metric to take also the value +co.

Definition 4.4. For any two distinct points x, y € X that belong to the same quadrant, denote by Q, , the
smallest dyadic cube from D containing both x and y; then denote by k, , the unique integer k such that
Oyxy € D. If x,y do not belong to the same quadrant then we set k,, = —oo. Finally, if x = y then we set
kyy = +oo. For any x, y € X, set

dp(x,y) := &%,
In particular, if x = y then dp(x, x) = 0, and if x, y do not belong to one quadrant then dgp(x,y) = oo.
The following results are from [13, Section 5.2].

Proposition 4.5. Let (X, d, u) be a metric measure space satisfying (VD). Suppose that dy is defined as
in Definition 4.4. Then, the following hold:

(i) dop is an ultra-metric on X.
(ii) There exists a positive constant C such that d(x,y) < Cdp(x,y) for all x,y € X.
(iii) For any x € X and r € (0, 00), let
Bp(x,r) :={y € X : dp(y,x) <r}.

Choose k € Z to satisfy 6 < r < & and let Q., € Dy be the unique dyadic cube of k-th
generation that contains x. Then

Bp(x,r) = Qx, and  u(Bp(x, 1)) = V(x,r).

4.2 A stochastic complete heat kernel via non-smooth MRA

Let (X, d, u) be a metric measure space satisfying (VD). With all the notation as in Theorem 4.1, we
define for any k € Z that

}:|~||L2<X>

Vi = span {u(Q) 1o : Q € Dy (4.6)
Clearly,

Vi = {f € LZ(X) . fis u-a.e. constant on each Q € Z)k}.
In particular, if u(X) < oo, then there exists the largest integer, denoted by my, such that

when k < my, the space X itself is the unique dyadic cube in Dy, 4.7
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thereby leading to that
Vi = {f € L*(X): fisp-a.e. constant on X} when k < my. (4.8)

It was proved in [1] that the sequence {Vi}kez in (4.6) forms a standard MRA in L*(X) in the sense of
Definition 2.1, where the Riesz basis of each V; is given by

fuo o 0eni.

For any k € Z, we denote by W, the orthogonal complement of Vj in V.. Following Definition 2.2, for
any k € Z, denote by E; and ID; the orthogonal projectors from L?(X) onto V; and Wy, respectively. As a
consequence of Lemma (3.2), for any k € Z and f € L*(X), we can easily deduce that

1
Erf = Q;)k (,LTQ)/Qfd#) 1p,

which is also known as the conditional expectation operator. Note that for any k € Z and x,y € X,

Lo(0)1o(y)
Ei(xy)= » L= >0, 4.9)
&b, MO

Meanwhile, the projector Dy, which is usually called the martingale difference operator, satisfies
Dy =Ex+1 —Ex  and  Di(x,y) = Biks1(x,y) — Ex(x, y). (4.10)
To begin with, we give the following properties of E; and Dy in (4.9) and (4.10).

Lemma 4.6. Let (X,d, 1) be a metric measure space satisfying (VD). Define By and Dy, as in (4.9) and
(4.10).

(1) If x and y are in different quadrants of X, then By(x,y) = Di(x,y) = 0 for all k € Z.

(i1) If x and y are in the same quadrants of X, then Ex(x,y) = Di(x,y) = O for all k > ky,, where
kyy € Z is determined by dp(x,y) as in Definition 4.4.

(i) If u(X) = oo, then for all x,y € X,
klim Ei(x,y) = 0.

(iv) The MRA determined by {Vi}iez in (4.6) is admissible in the sense of Definition 2.3.
(v) There exist positive constants C and Cy, independent of k € Z and x, y € X, such that

d(x,y)<Codp(x,y)<Co6*}

1
{
Ex(x,y) + [Di(x,y)l < C
k(x,y) + [Dy(x, y)l Vix.oH

Proof. For all x,y € X, we recall that

1o(x) 19(y)
Elxy) =y —2 8
Q;k Q)
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If x and y are in two different quadrants of X, there does not exist a dyadic cube Q contains both x and y
simultaneously, which induces

Ex(x,y) = Di(x,y) = 0
and, hence, both (i) and (iii) hold.

Now, suppose that x and y are in the same quadrant. By the definition of k, ,, we see that if k > &,
then any dyadic cube Q € D; can not contain x and y simultaneously, which implies that E(x,y) = 0
and Dy (x,y) = Bry1(x,y) — Bx(x,y) = 0. This proves (ii).

Still assume that x and y are in the same quadrant. If k < k., then there exists a unique dyadic cube
Oy € Dy, containing both x and y simultaneously. Then

Qk 2 Qx,y =2 {x’ y},

where we recall that O,y € Dy, and it is the smallest dyadic cube from D containing both x and y.
Invoking the definition of quadrant in (4.5), we find that

cow= J o

{keZ: kky)

whose y-measure is co by terms of Lemma 4.2(v). This further induces that

1
lim By(ry) = lim

1
= = 0
koo u(Qr)  u(C(Qxy))

Thus, we obtain (iii). As a consequence of (iii) and Definition 2.3, we easily obtain (iv).
It remains to show (v). By (ii), if x and y are in the same quadrant such that Ei(x,y) # 0O, then we
have not only k,, > k and dp(x,y) < 5%, but also (see Theorem 4.1)

d(x,y) < diamQ, , < 65" = 6dp(x,y).

Moreover, the condition (VD) implies

1(Q) ~ u(B(x,8%) ~ u(B(y, 8")).

Therefore,
1 : «
{d(x,y)<6dp(x,y)<65¢)
Ex(x,y) <
k(X Y) Vix. o5
Obviously, the above estimate holds for |Dy(x, y)| by terms of Dy = Ey4; — E; and (VD). O

Theorem 4.7. Let (X,d, u) be a metric measure space satisfying (VD). Assume that {Vj ez is the MRA
defined in (4.6). For any k € Z, let Wy, = V11 © V. and denote by Dy, the orthogonal projector from L*(X)
to Wy as in (4.10). Fix 8 € (0, ). For any t € (0,0) and x, y € X, define

2 e Dy(x, y) as u(X) = oo;
kezZ
pt(x7 )’) = 1

u(X)

& ) (4.11)
+ 2, e Dy as uX) <,
k=my

where my is as in (4.7). Then {p;};~0 is a stochastic complete heat kernel.
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Proof. By Lemma 4.6(iv), we know that {Vj};cz in (4.6) is an admissible MRA. Let § € (0, 1) be as in
Theorem 4.1. Let {A;}xez be as given in Example 2.5, which is a family of admissible spectrum. Assume
for the moment that under the situation u(X) < oo it holds that

1
Epo(x,y) = — forall x,y € X. 4.12)
(XY e y (

Once we have obtained (4.12), then the two expressions of p, in (2.4) and (4.11) coincide with each
other, which enables us to apply Theorems 3.9 and 3.10 (with ky therein taken to be mx now) to deduce
that {p;};~0 in (4.11) is a stochastic complete heat kernel.

It remains to verify (4.12) under u(X) < oco. Indeed, for any k < mx, we have by (4.7) and (4.8) that
the orthogonal projector By : L2(X) — V; fulfills that

Eif = ey forall f e LA(X),

where ¢y ¢ is a constant. To determine cy ¢, observing that f — EfLVj for all f € L*(X) (see the
discussion before Definition 2.2), we then derive that for any constant ¢ € C,

0=<c,f—Ekf>=/Xc(f—ck,f)du=c(/deu—ck,fu<X>),

which in turn gives

1
Eif = cif= —— / fdu forall fe L*(X).
17 Jx
In particular, taking k = my implies (4.12). This ends the proof. O

The following lemma gives a representation of {p;},~o in (4.11) by using E(x,y) and dp.

Lemma 4.8. Let (X, d, 1) be a metric measure space satisfying (VD). Suppose that B € (0, 00) and {p;}~0
is the heat kernel defined in (4.11). Then, for any t € (0, 00) and x,y € X,

Py = (e = ) By, y) (4.13)
keZ
and
o de r”
pi,y) = / A Py, @.14)
dp(xy) W(Bp(x, 1))

where p[D is defined in (1.7), and we take it for granted that the right hand side integral in (4.14) is O
when dp(x,y) = oo.

Proof. Let us first show (4.13) under the case u(X) = co. For any ¢ € (0, o) and x,y € X, observing each
Ei(x,y) = 0 and fX Ex(x,y) du(y) = 1, we take A = 6% and Py = Ey in (3.13) and then obtain

N

. _15-NB _15~k=1)B —15~B —_tsN+DB
pl‘(xey) = 1\1,1_1;130{6 16 EN+1(xay)+ Z (6 g —e 0 )Ek(x,)’)_e 1 E_N(an) . (415)
k=—N
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If x and y are in different quadrants of X, then we have by Lemma 4.6(i) that Ey(x,y) = O for all k € Z.
If x and y are in the same quadrant of X, then we have by Lemma 4.6(ii) that E;(x,y) = O for all k > k.
Whatever the cases, for the first term in the right hand side of (4.15), we always have

lim (¢ Ey.1(x.) < lim Eyoi(x.y) = 0. (4.16)

N—oo

For the third term in the right hand side of (4.15), applying Lemma 4.6(iii) and u(X) = oo yields

lim (¢ E_y(x.y)) = lim E_y(x,y) = 0. 4.17)

N—oo

Inserting (4.16) and (4.17) into (4.15) yields the desired equality in (4.13) when u(X) = o
The proof of (4.13) under u(X) < oo is similar. In this case, applying (3.14) with ky = my, Ay = 5kB
and P, = E; therein, we write

N
pmw=§$&%wmmmw+Zﬂwww—aw%mmw) (4.18)

k=my

Observe that (4.16) remains true when u(X) < co. From this and (4.18), it follows that (4.13) remains
true when u(X) < oo.

Finally, let us verify (4.14). Consider first the case when x and y are in the same quadrant but x # y.
With all the notation as in Definition 4.4, we write for some k., € Z that

dp(x,y) = 6"

If k > k., then by Definition 4.4, any dyadic cube Q in 9 can not contain x and y simultaneous, which
implies
Er(x,y) =0

If k < kyy and 6% < r < 6*71, then we use Proposition 4.5(iii) to deduce that

Qx,r = EZ)(X, l"),

where Q. , denotes the unique dyadic cube in Oy that contains x. Since k < k., it follows that Q, , must
contain y, thereby leading to that

lo()1p(y) 1 !
Ex(x,y) = B '
k Q;)k u(Q) ,Ll(Qx r) U(Bp(x,1))

Thus, applying (4.13) yields

pey)= 0 (e = e B, y)

k<kyy

B
( - )Ek(x, y)
[5k Sk 1)

B

/ de—tr
K<k, 7 164871 u(Bp(x, 1))
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/ *© de "
dp(xy) U(Bp(x, 7))
=Dt (x )
as desired.
If x =y, then k), = +o0 and dp(x,y) = 0. In this case, the above arguments remain valid with the
summation ;< =~ therein replaced by >iez.
If xand y are in different quadrants, then by Lemma 4.6(i) we know that each E(x,y) = 0 so that

ptD (x,y) = 0 by terms of (4.13), which implies that (4.14) holds with both sides being zero.
Summarizing all, we obtain (4.14). O

Remark 4.9. Let M denote the number of children of a dyadic cube Q € D, which depends on Q but
is uniformly bounded (cf. [2, 37]). Let us use the family of Haar functions

(he: 0eD uell2,. .. . My-1}},

that forms an orthogonal basis in L*(X), which was constructed in [41]. Note that if 0 has itself as its
only child, then there is no Haar functions associated to Q. For any f € L*(X), we have by [41, (4.6)]
that each Dy f has the following decomposition:

Mo-1

Def = ), Do hDh? in LX),

0Dy u=1

In other words, for any k € Z, the MRA {V;}1ez in (4.6) fulfills that

5 I ll200)
Wi = Vi1 © Vi=span {hl : Q€ D u={1,2,..., Mg - 1}}

Clearly, the integral kernel Dy (x, y) of Dy satisfies

Mp-1

Diey) = Y, > h2@hlo).

Q€D u=1
Thus, the heat kernel { ptD }r=0 in (4.11) can be expressed via Haar functions as follows:

Mo-1

PN =t ) ) Z R ORL (). (4.19)

keZ QeDy u=

Moreover, invoking (2.2) and (2.3), we deduce from (3.24) that the generator of { ptD }=0, denoted by Ly,
has the following expression:

Mo-1
Lof=6Def =) > D, S hDh?
keZ keZ QeDy u=1

with domain

Mp-1
Dom(£Lp) = {fe LX) ILofllzen =D, Y, ), 6 PR hP < oo}.

keZ QeDy u=1
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4.3 Stable-like estimates

Due to (4.14), we can apply (1.8)-(1.9) (see [13]) and obtain the following two-sided estimate of the
heat kernel {p?}o.

Theorem 4.10. Let 5 € (0, 00) and (X, d, i) be a metric measure space satisfying (VD). Suppose that
the two heat kernels {p;}~0 and {pZD }i=0 are defined, respectively, as in (4.11) and (1.7). Then, for any
t € (0,00) and x,y € X,

) " 1 by 420
< = = ' .
< pi(xy) = pr(x.y) V(x, tYF + dp(x,y)) (t”ﬁ +dp(x, y)) 0

In particular, there exists a positive constant C such that for any t € (0, 00) and x,y € X,

0 2 < Y 421
< = < . .
= PO PR S YT dey) (ﬂ/ﬁ + d(x,y>) @20

For the completeness of the paper, instead of using (1.8)-(1.9), we will use Lemma 4.6(v) and (4.13)
to give a direct proof of the two-sided estimate (4.20) of {p;}s~0.

Proof of Theorem 4.10. Note that (4.21) follows directly from (4.20) and the fact d < dp (see Proposi-
tion 4.5). Thus, we only need to prove (4.20).

By (4.13), the heat kernel p;(x,y) in (4.11) is nonnegative. If x and y are in different quadrants of X,
then dp(x,y) = co and we have by Lemma 4.6 that E;(x,y) = O for all k € Z, thereby leading to

Pt(x,y) = O

and, hence, (4.20) holds. So, it suffices to show (4.20) in the case when x and y are in the same quadrant
of X.

Part 1: verifying the upper estimate in (4.20) under the case y(X) = co. Since x, y are in the same
quadrant of X, we let k., € Z such that dp(x,y) = 5k, By Lemma 4.6(ii), if Ex(x, y) # 0 or Di(x,y) # 0,
then

k <ky,y. (4.22)
Moreover, by Lemma 4.6(v), for any k € Z and x, y € X, there is

1{d(x,y)SZCOd@(x,y)SZCodk}

0 < Ei(x,y) <
k(X, ) Vir. o5

(4.23)

Let k; be the unique integer such that
6B < 1 < g% DB, (4.24)

Since p(X) = oo, we have by (4.11) that

_t5Pk _s—Bk
Py = > e Dy + Y e (Bran(x,y) - Balx,y)
k>k; k<k;—1
—t5Pk —t5~Blka=1) —t5~Bk=1) — 5Pk
=) e D) + e B+ ) (e = e ) B, )
k>k; k<k;—1
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=71+ 7, + Z5. (425)

It suffices to consider each Z;, where i € {1, 2, 3}.
First, we estimate Z,. If k > k;, then by (4.22), we have dp(x,y) = "= < 6F < §% < t'/B. By this and
(4.23), we obtain

§ a1 : K
—t5Pk —t5 Pk Hd(x,y)L2Codp(x,y)<2C5"}
21l > e Bra s 3 e SRR ISR,

oMB<t MB<t

Further, since 6 < t'/8 and dp(x, y) < 6, we deduce from (VD) that

WMW+%@wLJWf%<(WY

Vi(x, &) TV od) T\ s
thereby leading to
ld y)<rl/B Pk tl/'gn
Z1l < {l/z;(x}) S (_k)
V(x, 1P +dp(x.y)) & 2 0
Liap(xy<ip)
T V(x, VB + dp(x, y)
B 1 1B F
T V(x, Y8 + dp(x, ) \1VB + dp(x,y))
as desired.

To estimate Zy, it follows from (4.22) that if Ey,(x,y) # 0 then dp(x,y) = ¢ < §& < ¢1/A. This,
combined with (VD) and (4.23), further derives

o Moty Lapep<n 1 i'P g
V(x, 6k) V(x,t' By ™ V(x, VB + dp(x, ) \1VE + dp(x,y))

Finally, we deal with Z3. For k < k; — 1, we have 6* > §%~18 > ¢ which implies that

N B S
‘e 16 R

6P (1=68) 1| o —15F* ooy _ U
p 1‘~e 6P (1 55)’“5%'

This, combined with (4.23), yields

Bt _ 1 ; k
_15-Pk=1) _57Bk T Hd(x,y)<2Codp(x,y)<2Co8%}
Zls Y | - B £ Y o .
kskz,—l kskz,—l ot V(x, 6)

Since now we are summing over those k’s satisfying both 6* > /8 and 6* > dp(x,y), we then derive
from (VD) that
Vix, 1'% + dp(x,y)) 5 V(x,8")

and, hence,

1 t
123l § —— > —
B kB

V(x, t/5 +dp(x.y)) {keZ: sk >max{r!/B, dp(x,y)}} 0
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1 t
<
T V(x, tYB + dp(x,y)) max{t'/B, dp(x,y)}

1 Y/ P
T V(x, 1B + dp(x, y)) (t”ﬁ +dp(x, y)) ’
Inserting the estimates of Z;, Z, and Z3 into (4.25), we obtain the desired upper bound for p;(x, y).

Part 2: verifying the upper estimate in (4.20) under the case u(X) < co. Letk; € Z be as in (4.24).
In the case k; > myx + 1, instead of (4.25), we have

k1
pi(x,y) = Z e Dy(x, y) + e"éfﬁ(kﬁDEk,(x, y) + Z (e‘“sfﬁ(kfl) - e_téfﬁk) Di(x,y)

k=k, k=my

=71+7> +Zg.

Note that the estimate of |Z3| remains true for |Z}|. By this and the estimates of Z; and Z,, we again
deduce that p, satisfies the upper estimate in (4.20) under u(X) < oo and k; > mx + 1.
If k; < my, then the formula (4.11) directly gives

1

pt(x>y) = ,Ll(X)

e 1
+ D x,y) = — + 7. 4.26
k; () = e + 7 (4.26)

Observing that if k > mx then k > k, and 5" < t, we obtain that the estimate of Z; also gives

1 tl/’B ﬁ
AR .
V(x, Y8 + d(x,y)) \1'/B + d(x,y)

By (4.7) and the fact VB > 55 > §Mx we have

Lo 1 (1 N d(x,y))_'g 3 1 ( {118 )ﬁ
u(X) = V(x, 6" +d(x,y)) omx T V(x, VB +d(x, ) \tVB +d(x,y)]

Inserting the last two estimates into (4.26), we deduce that p; satisfies the upper estimate in (4.20) under
the situation p(X) < oo and k; < my.

Part 3: verifying the lower estimate in (4.20). Suppose that x and y are both contained in the same
quadrant of X. Let Q., € D be the smallest dyadic cube containing both x and y. In other words, any
child of O, does not contain x, y simultaneously. Let k., € Z be the unique integer such that Q,, € Dy
and, hence, A

dp(x,y) = 6.

For simplicity, set ko = k,,. Assume without loss of generality that Q,, = Qﬁ‘;{o for some ay, € Ay,.
For any k < ko, applying Theorem 4.1 implies that there exists a unique dyadic cube Qﬁk € Dy such that
X,y € Q’;k and
k k+1 k
QCY?(O c.--C Qflk+1 C Qak C--- .
This in turn gives

Eo(x.9) 0 as k > ko;
(X, Y) = 1 <
gy 8 ksk
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No matter u(X) is finite or nor, by (4.13) in Lemma 4.8, we obtain

Py = Y (e =) B, y)

k<ko
_ Z o 10 (eza-ﬁk(l—aﬁ) _ 1) lk
kSk() /J(Qa/k)
> e—z(s—ﬁk ( eté-ﬁk(l—aﬂ) _ 1) 1

k
{keZ: s*>max{st0, r1/F}} u(Qa,)

: 4.27
H(Q%,) @27

=~

{keZ: k=max{s*o, r1/8})
where the last step is due to
—pk —Bk
e 0 (et‘s Ha-#) _ 1) ~16PF  as 68 > /P,

Under 6¢ > max{d*, ¢'/8}, from {x,y} C Oxy = ];2(0 c Q’ék € Dy and Theorem 4.1, it follows that

d(x,y) < diam(Q,,) < diam(Q%) < 2Co*,
which, along with (VD), yields

sk \™
H(0h,) < u(B(x,2Co8%)) = V(x,2Co6") < (tl—/ﬂ) Vix,1'P),

With these facts, we continue the estimates of (4.27) by considering the cases dp(x,y) = 5% > /8 and
dp(x,y) = 65 < t1/B, respectively.

o Ifdp(x,y) = 6% > ¢1/F_ then we consider only the term k = kg in (4.27) and obtain

1/ B
p(x,y) 2 o1 > 15Pko 1 N 1 /
o V(x,2Co6k) — V(x, 18 + dp(x,y)) \1'/8 + dpp(x, )

Q’ko

o Ifdp(x,y) = 5% < 18 then it follows form (4.27) and (VD) that

Pz g 3 ()
/B k
Vix, £17) (keZ: 6k >11/B)} 0

1

V(x, t1/By)
1

V(x, 18 + dp(x,y))

Q

1 (/B B
T V(x, (V8 + dp(x,y)) (zl/ﬁ + dop(x, y)) '

Combining the arguments in the above two cases we obtain the lower estimate of p; in (4.20). O
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4.4 Examples of heat kernels
4.4.1 A heat kernel on R” based on Haar wavelets

Suppose that X is the n-dimensional Euclidean space R”, endowed with the classical Euclidean dis-
tance and the Lebesgue measure. On R” there is a natural dyadic system

Der = 27510, 1)" +m) : ke Z, meZ"}.
Note that each dyadic cube Q € Dg» has exactly 2" children of equal sizes. Let

hF = 1[0’1) and hM = 1[0,1/2) - 1[1/2,1).

Set
G"™ = {F, M}*" \ {F}".

Forany ke Z, m = (my,--- ,m,) € 2",G = (Gy,--- ,G,) € G™ and x € R", define
n
HS ) = [ | ho, (o = my)
r=1

and
Hy(x) := 2" HE (2 x).

Then {H,lf;G : keZ,meZ",G € G} form the family of Haar functions on R” (see, e.g. [55, Proposition
1.53] for the inhomogeneous case). Based on the previous discussions, there is a heat kernel { ptD Y50
such that for all ¢ € (0, o) and almost all x,y € X,

Py = Y > e HES (o S )

keZ meZ" GeG™

and

t
(1P + dp,, (x,y)y"#’

P (x,y) ~

where dgp,, is the ultra-metric induced by the dyadic system Dg-. In this case, the generator Ly, is give
by

Lo, (=) > > 255 HEOHLS,

keZ mezZ" GeG"™*

whose domain is

Dom (Lp,, ) :={f € L2R"): L7 (f) e L*R").
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4.4.2 A heat kernel on Z

Let X = Z be the one-dimensional integer lattice endowing with a graph distance d and counting
measure u, namely, for any m, [ € Z and any set A C Z,

dim,l):=|m—1 and u(A):=#A).
Recall that on the Euclidean space R there is a standard system of dyadic intervals
D :={[27m, 27¥m + 1)) : keZ mez}. (4.28)
It is natural to define the dyadic cubes on Z via
D:=ZNDg = {lim:=Z0[2%m, 2 m+1)): keZ meZ|. (4.29)
For any k € Z, the family of dyadic cubes of the k-th generation is defined by
Dy :={lym: meZj.

If k = 0, then Iy, is a isolated point m. If k > 0, then every dyadic cube I, is either empty or contains
at most one point 2 %m. If k < 0, then for any m € Z we have

Iem={2*m+1:1=0,1,...,27% - 1}.

For any k € Z and any function f : Z — R, we follow (4.9) and set

5= Y (o [ran)

1eDy,

and
Di(f) := Bir1 f — Bx(f).
For any k > 0 and i € Z, we find that I; ,, > i if and only if i = 27%m, which implies that

Ex(H@) = f()

and, hence,

Di(f) = Ex1(f) —Ex(f) =0 as k> 0.

Note that if I € Dy then u(l) = 27k, So, the integral kernels of E; and Dy, are represented as follows: for
alli,jeZ,
Ei(i, ) =25 )" 1))
1€Dy,
and
Dk(i7 .]) = Ek+1(i’ .]) - Ek(i7 .])
Then, applying (4.19) yields that the heat kernel associated to D satisfies that, for any ¢t > O and i, j € Z,

-1

.. _ Pk ..
pii, ) = Z e 2 Dy, )

k=—c0
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-1

= lim 3 D)

-1
= lim e Brar (i, ) = Baliy )))

N—+oco
k=—N
0 -1
. _pBk=D L, Bk L
= lim_ e B, )= . ¢ Byl )
k=—N+1 k=—N

-1

P . _ok-DB; kB .. . N8 ..

= Eo(i, j) + - Ex(i, j)— 1 E_n(i, j)-
e B+ ) (e e ) Exdi, j) Jim e NG, J)

k=—0c0

By the expression of Ex(i, j), we easily see that

lim e "B G, j)=0 and Eo(i.)) = i,

N—+c0
where
P 1 asi=j;
Y0 asi#
Therefore,
-1
pui )= 54+ > 2k (e—z“'”ﬂ’—e—zkﬁ’)[z 11(1')11(1)} (4.30)
k=—c0 1Dy

From (4.30), it can be seen that the associated Markov chain jumps only between points i, j € Z lying
in the same dyadic cubes of 9. Moreover, this jump has larger transition probability if there are more
generations of dyadic cubes that contain both i, j. For instance, i is more likely to jump to j if they are
close to each other. However, i = 1 is impossible to jump to j = —1, since they can not lie in the same
dyadic cube of D.

Now, we can construct an adjacent family of dyadic interval systems on R. For any 7 € {0, 1, 2}, let

of = 2 * (10, ) +m+ (-Df1/3) : mez).
keZ

Note that for 7 = 0, Z)IQK reduces to the dyadic cube system Dy as in (4.28). In view of this and (4.29),

we may define the adjacent family {Z)T}f:0 of dyadic cube systems on Z by setting for any 7 € {0, 1,2},

D" :=ZNDg.

Thus, we can define the heat kernel pIDT(i, Jj) in the way similar to (4.30). For simplicity, when t = 1, we
write

P G, j) = pP G, ), (4.31)

which represents the transition probability from i to j in a unit time. For any two points i, j € Z, observe
that there exists 7 € {0, 1, 2} such that both i and j lie in the same dyadic cube of D7.

The existence of adjacent family of dyadic cube systems enable us to define a new kind of random
walk on Z, which may be described in the following way that in each step the jumper has a chance to
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choose a dyadic structure randomly from the adjacent family and then jump by the law of the chosen
dyadic structure. To be precise, let Q := {0, 1, 2} be a sample space equipped with the natural probability
P that for any 7 € Q,

1
Plw=1)= 3 4.32)
Now, for any i, j € Z, define
2 1 2
Lo _ DT oo L DT .
Pl j) = ZO Pw=1)p" )= ZO P2, ). 4.33)

where pDT(i, j)is asin (4.31). By (4.32) and the stochastically completeness of each pDT, we know that
the function p(-, -) in (4.33) is a Markov kernel, namely, for any i € Z,

D P p=1.

JEZ
Recall that each Markov kernel defines a random walk {X,,},cz, on Z (see, e.g. [33]) such that for any
n € Nand i, j € Z, the n-step transition probability from i to j equals to p;(i, j) in (4.30) with ¢ = n. This
is essentially what we have done in [13] by summing up all adjacent heat kernels and Dirichlet forms.

4.4.3 A heat kernel via p-adic MRA

Let p € N be a prime number and Q, the p-adic field defined as the set of all numbers x that can be
represented as the series such that

X = Z xl-p", (4.34)
i=y
where y € Z and x; € {0,...,p — 1} (see, e.g. [56]). By (4.34), it is easy to see each x € Q, has a
decomposition
x = [x] + {x},

where [x] 1= 2.7, x; pland {x} := Zi_:ly x;p' are respectively the integer and fractional parts of x. For any
x as in (4.34), its p-adic norm is defined by

|xlp == p77.
Thus, for any x € Q, and y € Q,,, they have the distance

dp(X,)’) =lx - ylp-

Such d), is an ultra metric. Moreover, there exists a Haar measure y on Q, so that (Q,d,,u) is an
ultra-metric measure space (see, e.g. [10, Section 2.5] for more details).

Recall in [45] that a function ¢ € LZ(QP) is called a scaling function if it satisfies the following
refinement equation

6y = and(p™ - -m) (4.35)

nelp
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for some @, € Cand I, := {x € Q, : {x} = x}. In particular, if we let B,(0,1) := {x € Q, : |x|, < 1} be
the unit closed ball in Q,, then a possible solution of (4.35) is the following function

¢ = 1p,0.1)-

For any k € Z, let

Vi :=span{¢(p~* - —n): nel,}. (4.36)

It is proved in [52] that such {V;}rez forms an MRA as in Definition 2.1. The sequence {Vi}rez defined
in (4.36) is called p-adic Haar MRA.

Based on [45], the corresponding Haar wavelets are of the form that forany je {l,...,p—-1}L, ke Z
and n € I,

Yjgen(x) 1= p_k/2 exp (27ri {p‘ljx}) ¢(pkx —n),

which forms an orthogonal basis of LZ(QP). For any k € Z, if Q; denotes the projector from LZ(Q,,) to
Wi := Viy1 © Vi, then its integral kernel takes the form of

Qu(x,y) = Z Zlﬁj;k,n(x)lﬂj;k,n()’)-

Jell,...,p—1} nel,

Let 8 € (0,00). By using (4.11), one can construct a stochastic complete nonnegative heat kernel
{p:}>0 such that

Py =3 3 Y e (W aaly) forall £ € (0,00) and x,y € X.

keZ jefl,...,p—1} nel,

In this case, the generator £ of {p;};~o coincides to the following Vladimirov operator (or, equivalently,
Taibleson operator) of p-adic fractional differential D? defined by for any 8 > 0,

1-p'F [ f(x) - )
DB = d s
J(x) P=T Jo, ey u(y)

which is viewed as the corresponding Laplacian in Q,, (see, e.g. [10, 45]).

5 Construction of heat kernels via smooth MRA

The whole section is devoted to the proof of Theorem 2.9 under (VD). To this end, we will apply
Theorem 2.6 to a specific smooth MRA generated by smooth splines from [2].

5.1 Random dyadic cubes

Let us follow [39] and randomize the construction of dyadic cubes in Theorem 4.1 of Section 4.1.
We still fix ¢ € (0, 1), which is a sufficiently small number (for example, 6 < 1/60). Then there exists a
set of reference dyadic points

{z';: keZ,aeﬂk}
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satisfying (4.1) and (4.2). Let G be as in (4.3) and < the partial order of G as in (4.4). Denote by
Q:=1{0,1,2,...,11/6)}*

the sample space. Elements of Q are called the parameterized points. A parameterized point w € Q is
denoted by w := (wi)kez, Where
wr €{0,1,2,...,[1/8]}.

Equip Q with the natural probability measure P,,, which makes all coordinates wy independent of each
other and uniformly distributed over the finite set {0,1,...,[1/8]}. In other words, if ¢ : Q —
{0,1,2,...,]1/6]} is a random variable, with

ar({wiliez) = wg,

then forevery k€ Zand T € {0,1,...,]1/5]},

1

Pw(ak = T) = m

For any k € Z, we denote
1
T = (6" + akék“).

For any w := (wp)rez € Q, instead of (4.4), now there is a new partial order <, which is defined as
follows:
A& (W), ) <re = *k+1,) <, he) =  d (W), Hw) <4r.

Define the preliminary, the closed, and the open random dyadic cubes as below:

—k = . = o —k
Okw) :={z): (6.7) <o (@)}, Q(w) := O4w), Ok(w) := interior of 0, (w).
Next, we collect a series of facts on the random dyadic cubes from [39, Theorem 5.2].

Theorem 5.1 ([39]). Let (X,d,u) be a metric measure space satisfying (VD) and & € (0,1/(84M?)),
where M is as in (1.2). For any fixed parameter

weQ:=10,1,2,...,[1/6]}%,
there exist Borel sets (called random dyadic cubes)
P(w) = {0k(w): k€ Z, a e A
satisfying the following properties:
(i) for any k € Z and a € Ay, the interior of Q’;(w) is Qﬁ(w}, and the closure of Qﬁ(w) is @i(a));
(i1) for any k € Z and a € Ay, Qfl(a)) and @Z(w} are one another’s interior and closure;
(iii) foranyk € Z, {Q](;((U)}aeﬂk are disjoint and X = | ez, Q’C‘,(w);

(iv) if j >k, a € Ay and y € A, then either Qi(w) C Q’;(w) or Q!y.(a)) N Q’;(w) =0;
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(v) foranyk € Z, a € A and j < k, there exists a unique y € A; such that Q’(‘,(w) C Q4(a));
(vi) for any k € Z and a € Ay, B(ZE(w), 5716%) ¢ O (w) c B(Zk (w), 36%);
(vii) forany x € X, k € Z and € € (0, 00),

P, [x € U aeQ’;(w)] < %6'76,

aeA

8 —k —~
where 15 := 1 — lﬁgg‘]‘%)) and 8.0 (w) = {y € O (w) : d(y, Ok(w)C) < ed*).

5.2 An admissible smooth MRA

Let us adopt all the notation in the previous subsection. For any k € Z and a € Ay, define the spline
Junction

£ (x) 1= P, (x c @’;(w)) forall x € X.

Each spline function s’; locates near the dyadic cube Q’g[(w). According to [2, Theorem 3.1] and [39,
Corollary 6.13], we have

k k —
Lyt sigt) < 56 < Lyt gy and ) sE =1,
acAL

and that s¥ enjoys the following Holder continuity:

d(x,y)
5

N
|S§(X) - S]é()’)| < C5( ) forall x, y€ X,

where 75 € (0, 1) is the same constant as in Theorem 5.1(vii). Under u(X) < oo, we let my be as in (4.7),
which implies that s = 1 whenever k < my and @ € A;. According to [2, Theorem 5.1], the spline
functions produce an MRA in the sense of Definition 2.1.

Lemma 5.2 ([2]). Let (X, d,u) be a metric measure space satisfying (VD). For any k € Z, let Vy, be the
closed linear span of {sﬁ}ae A, in L*(X). Then the following hold:

(i) foreachk € Z, Vi C Vii1;
(i) Ukez Vi = LX(X);
(iii) when u(X) = oo, Mz Vi = {O);

(iii)" when u(X) < 00, (Niez Vi = Vi, = {constant functions}, where my is as in (4.7); 2

(iv) for each k € Z, with the notation uﬁ = ,u(B(zﬁ,ék)), the functions {s’(‘,/ p’(‘,}ae 7, form a Riesz
basis of Vi, namely, for any scalar sequence {Aq}oea,,

12
Z /lasﬁ = {Z Malzﬂﬁ] s
L2(X)

a€A a€A

where the implicit positive constants are independent of k and {1y }eea,.

2Note that in Lemma 5.2 we have V, = Vi, Whenever k < my. The value my plays the same role as the integer ko in
Definition 2.1(iii).
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Consequently, the sequence {Vi}ez forms an MRA in L*(X).

In this and the forthcoming subsections, we will always assume that {V; };ez is the MRA constructed
in Lemma 5.2. For any k € Z, we still denote by W; the orthogonal complement of Vj in Vi,;. For
any k € Z, denote by P; and Qi the orthogonal projectors from L*(X) onto Vj and W;, respectively. Of
course, for any k € Z, one still has (see (3.2))

Qk = Prs1 — Pi.

By using a very delicate construction of orthogonal basis® of Vi and Wj, Auscher and Hytonen (see [2,
Lemma 10.1]) derives the following properties of the integral kernels of P, and Q.

Lemma 5.3 ([2]). Let (X,d,u) be a metric measure space satisfying (VD) and {Vi}iez be the MRA
constructed in Lemma 5.2. Then, for any k € Z, the orthogonal projectors

Pe: L2(X) > Vi and Q: L*(X) - W,
have integral kernels Py(x,y) and Q(x,y), which satisfy the following properties:
(i) (symmetric) for any k € Z, both Pr(x,y) and Qi(x,y) are symmetric in x and y.

(i1) (exponential decay) forany k € Z and x, y € X,

d b
IPeCe, )| + Qe )] < M)

sl
exp|—c.
V(x, $V(y, 8) "
(iii) (Holder regularity) for any k € Z and x, v, y' € X such that d(y,y") < 6,

c (d(y,y’))"" ( d(x, y))
€X —Cx
VV(x, V@, )\ o ot

(iv) (stochastic completeness of P; and vanishing property of Q;) for any k € Z and x € X,

b

IPr(x,y) = Pe(x, )l + [Qu(x, y) — Qi(x, y')| <

/X Pe(x,)du) =1 and /X Q) du(y) = O,

where 6, ns are as in Theorem 5.1 and C, ¢, are positive constants independent of k, x,y and y’.

Remark 5.4. Let {V;}icz be as in Lemma 5.2. We present a three-fold comment of the corresponding
projectors {Py}rez and {Qg}xez in m Lemma 5.3.

(i) According to [2, Section 6], for any k € Z and x, y € X, the integral kernel P(x,y) has the
following representation

st (085 ()
Pry) = D0 > M@,y L ,
b R NIERDCERS

3The orthonormal basis of V; and W, constructed in [2] have exponential decay at infinity and Holder regularity property,
which are called smooth wavelets.
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where {M,;l(a/, Y)}a,y is the inverse of the infinite matrix {My(a, ¥)}q,, With

sk(®)sk )

Mi(a,y) := )
\/V(zg, SV, 0%)

By the support conditions of the spline functions, we see that he matrix {M(a,y)}q,, is banded,
that is, My(a,y) = 0 when d(zﬁ, zf;) > ¢6, where ¢ is some positive constant independent of a, y
and k. For a banded matrix, its inverse matrix {Mk‘1 (@, y)}a,y may have negative elements off the
diagonal (see, e.g. [44]). Thus, Pr(x,y) may have many negative-valued points when x is far away
from y.

(i) Consider only the case u(X) = co. For any k € Z, Auscher and Hytdnen [2] constructed an
orthonormal basis {1//'; .y € Gk} of Wy, where Gy = Aps1 \ Ay, such that the following properties
hold:

— (exponential decay) forany k € Z,y € Gy and x € X,

B

d@Z5H, x)]

C
0] < ——S—ewp . S

Vg, o)

— (Holder regularity) for any k € Z, y € Gy and x, y € X satisfying d(x, y) < 5k,

A0\
& )

exp (—c*

d(x,y)\" 1
I%m—%®HC(””)
V(

ok Z§+1,5k+])
— (vanishing mean) for any k € Z and y € Gy,
A%m@m=a

where 6, 1 are as in Theorem 5.1 and C, c. are positive constants independent of &, y, x and y. In
this way, the family {t//; : k € Z, y € G} forms an orthonormal basis of L*(X), whose elements
are called smooth wavelets. For any f € L*(X), there is the wavelet decomposition formula (see

[2]):
F=YQf =Y Ykt in LX),

keZ keZ yeGk

k+1
Y

random dyadic cube Q’;“(cu) and has exponential decay at infinity. The wavelets {w’;, 1 keZ, ye
G} can be understood as a smooth version of the Haar wavelets (see [41]).

Note that each ¢ﬁ§ is associated to a reference dyadic point z;,"". Moreover, z/xﬁ is located near a

(iii) In view of (ii) and the Holder regularity of Px(x, y) in Lemma 5.3(iii), the multiresolution analysis
{Vi}kez in Lemma 5.2 is referred to as a smooth MRA.

As a consequences of Lemmas 5.2 and 5.3, we arrive at the following conclusion.
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Theorem 5.5. Let (X, d,u) be a metric measure space satisfying (VD) and {Vi}xez be the MRA con-
structed in Lemma 5.2. Then, {Vi}iez is an admissible MRA.

Proof. Let {P;}rez be as in Lemma 5.3. We are about to validate that the three conditions in Definition
2.3 are all satisfied.

Note that (A2) in Definition 2.3 follows directly from Lemma 5.3. Now, assuming u(X) = oo, we
validate (A3) in Definition 2.3. For any x, y € X, note that Lemma 5.3(ii) yields

1
VVx, OV(y, 68

If k — —oo, then B(x, 5*) — X and, hence, V(x, §) — u(X) = oco. In a similar way, we have V(y, 5 -
u(X) = 00 as k — —oo. This leads to

IP(x, )| <

Jim Pe(x, y) =0,

as desired.
It remains to show (A1) of Definition 2.3. To this end, for any k € Z and x,y € X, we have by (1.1)
that

V(x, 6 +d(x,y)) <C (5k +2d(x,y) ) . ( - d(x,y) )

V(x, 6)V(, 05 o o

which, along with Lemma 5.3(ii), induces that

1 d(x,y)\" d(x,y)
[Pr(x, ¥ < Vir ot 1 d(x’y))(l T ) eXp(—c* 5 )
< ! ex (_Cd(x,y))
SV o +dy) (T

holds for some constant ¢ € (0, ¢*). Consequently, we obtain

/ 1 extd“”
TV S+ day) P T

— 1 d(x,y) )
o~ + exp|—c d
[/d(x,y)<5k ; /5kf<d(x,y)<5kf1] V(x, 6% +d(x,y)) p( o HOY)

[ee)

1 1 .
< . duy) + / —exp(—c67) duly)
/d(x,y)<6k V(x, 6) jzz(; Si<d(xy)<st-i-t V(x, 6F7) ( )

Ammmwws )ww

(o)

<1+ Z exp (—cé‘j)

/=0

A

1.

Thus, the condition (A1) in Definition 2.3 is satisfied. O

5.3 Construction of a stochastic complete signed heat kernel

Since we have already the smooth MRA (see Lemma 5.2), by using the smooth projectors {Py}xez and
{Qk}kez from Lemma 5.3, we follow (2.4) and construct a family of functions {p;},~0 (see (5.1) below).
Such {p,};>0 will be exactly the one required in Theorem 2.9.
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Theorem 5.6. Let (X,d,u) be a metric measure space satisfying (VD). Assume that {Vi}iez is the
MRA in Lemma 5.2. For any k € Z, denote by Qy the orthogonal projector from L*(X) to Wy, where
Wi = Vie1 © V. Fix 8 € (0,00). For anyt € (0,00) and x, y € X, define

e Q) as u(X) = oo;
keZ

pily) = S 5.1)
ﬁ + kZm] Q) as p(X) < oo,

where my is as in (4.7). Then {p;};>0 is a stochastic complete signed heat kernel.

Proof. As was proved in Theorem 5.5, we know that {V;}1ez in Lemma 5.2 is an admissible MRA. Let
0 € (0,1) be as in Theorem 5.1 and {Ax}xez be the admissible spectrum given in Example 2.5. The
remaining argument runs the same lines as that in the proof of Theorem 4.7. O

5.4 Stable-like upper estimate

In this subsection, we show that {p;};~o in (5.1) satisfies the stable-like upper estimate as stated in
Theorem 2.9.

Theorem 5.7. Let (X, d,u) be a metric measure space satisfying (VD). Suppose that 5 € (0, c0) and
{pi}i>0 is the signed heat kernel defined in (5.1). Then, there exists a positive constant C such that for all
t€(0,00)and x,y € X,

C VB A
|mudﬂsV@tW+d@JD@W+d@JJ' (5.2)

Proof. By symmetry, we may as well assume that V(x, /%) > V(y,1'/#). Let k, be the unique integer
such that

Ml s B > gk (5.3)

Consider first the case u(X) = co. Then by (5.1) and (3.19) (taking 4 = 6P% and N = —k, therein), we
write

pey) = Y e + D e Qe y)

k=k; k<k;—1
= > ey + e B+ Y (e =) Bec )
k>k; k<k;—1
=Y +Yy+ Y3. (54)

To estimate Y, observe that any k > k; satisfies 5 < 1. By this and (1.1), we deduce

V(x, t'8 + d(x,y))
V(x, 6

VB 4+ d(x,y)\"
5k ’

<y

and

Vix, V8 +d(x,y)) ., (1Y +2d(x,y)\"
< CD b
V(y, 6%) 5
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where the constants C}, and 7 are as in (1.1). Further, it follows from Lemma 5.3(ii) that

Y11 <) e iQux )

k>k;

5P 1 d(x,y)
2" e eXp(_C* Z )

k>k;

(B n
< 1 Z o (L2 +d(x,Y) exp[—c. d(x,y)\
V(x, 18 + d(x,y)) &= ok ok

Observing that

d(x,y) d(x,y) K 1/B
exp(—c* o < exp _C*tl—/ﬁ aso" <t''”,

and
(t‘/ﬁ+d(x,y))"+ﬁ ( d(x,y))
—_— exp | —c.

< n+f —c.t
Y c e sup(l + 7)""e < 00,

™0

we then obtain

UB 4+ d(x,y)\" d(x,
(t +5k(x y)) exp(_c* (;cky))

IA

VBN (VP + d(x, )" d(x,y)
ra 1B XP\ = p

1B\ Y
ok VB + d(x,y)

A

Consequently,

B
Y1l S ! v Z e )
TV, VP +dCe y) \tVE +d(x,y) ] & 5*

1 /B B
< .
T V(x, 1VB + d(x,y)) (t”ﬁ +d(x, y))
Now, we consider Y,. Indeed, by Lemma 5.3 and &P ~ ¢, together with (1.1) and the fact

sup(l +7)"™*Pe™7 < oo,
™0

we also derive

IYs| < e

Bl 1 d(x,y)
- 3 eXp|—Cx« 5kr
VV(x, 85) V(y, 6k)

B 1 | d(x,y)\" d(x,y)
< + exp | —ci——==
V(x, 6% + d(x,y)) Okt okt

-B
< 1 (1 N d(x, y))
V(x, 6% + d(x,y)) ok

1 B B
CV(x, V8 + d(x,y)) (tl/ﬂ +d(x, y)) '
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as desired.
It remains to estimate Ys. If k < k, — 1, then 6% > ¢ and, hence,

| o 16PED s | s a-0h) | o L
ok
This, combined with Lemma 5.3(ii), further yields
15 BED) 5Bk
Yal< 37 e = e By, y)
k<k—1
t 1 d(x,y)
< Z (% exp (—c* - .
kG107 AV(x, ) V(y, 6 g

By using (1.1) (when Y8 + d(x,y) > 6%), we see that

Vix, 18 + d(x,y)) B VB 4 d(x,y)\”
V(x, 6 5K

holds uniformly in {x, y, ¢, k}, where

_nas Y8 + d(x,y) > 6
|0 as 1B+ d(x,y) < 6,

where n is as in (1.1). In a similar manner, if we change V(x, 5) to V(y, 5%), then we still have

Ve i+ d(xy) VoL P+ day) | (z”ﬁ +d(x,y) )"
V(y, 6% B V(y, 65 ~ S5k '

With these, we continue with the estimate of |Y3|. If d(x,y) < t'/8, then we have by 5% ~ (1B that

1 1 (1B +d(x, ) d(x,y)
Yl S ST d)) 2 (ﬁ) ( S ) exp (_c* Sk )

k<ki—1
B+
e
V(x, Y8 + d(x,y)) et ok
1

V(x, tVF + d(x, y))

1 1B A
© V(x, V8 + d(x,y)) (zl/ﬁ +d(x, y)) '

If d(x,y) > t'/B, then

1 t d pro d
Ysl < ( (x,y)) exp(_c* (x,y))
k<k;—1

V(x, tY8 + d(x,y)) d(x, y)B ok ok

N I Yy /5"‘(d<x,y))ﬁ+”ex (_c d(x,y)) ds
TV B dy) dyP L Jy o S W
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1 t o (d(x,y))ﬁ+“ ( d(x,y)) ds
< exp | —c. —
V(x, 118 + d(x,y)) d(x, )P -1 s s s
1 t e dr
< Pro —C,T) —
T Vix, tVB +d(x,y)) d(x,y)P /o exp (=¢.7) T
1 t

V(x, tY8 + d(x,y)) d(x, y)’

1 1B o
_vmﬂw+ﬂxwiﬂw+mnw)'

Substituting the estimates of Y through Y3 into (5.4), we derive the desired estimate of p,(x,y) in
(5.2) under u(X) = oo.

Now, we consider the case u(X) < co. Let k, € Z be as in (5.3). If k;, < my, then the formula (5.1)
directly gives

Py = Y e Quy) + Py, y) = Y+ Y5, (5.5)

k>my

Since any k > my also satisfies 0¥ < ¢, we find that the same estimate of Y also implies

1 /B B
Y| < .
Yl V(x, tY/8 + d(x,y)) (t”ﬁ + d(x,y))

By (4.7), the fact tVB > §% > §™x and that

1
Puy(x,y) = — forallx,y € X,

u(X)
we have
-B 1/8 B
|Y’2| _ 1 < 1 1+ d(x,y) < 1 t '
w(X) = V(x, 6mx +d(x,y)) omx V(x, 18 + d(x,y)) \t1/8 + d(x,y)

So, inserting the estimates of Y| and Y/, into (5.5), we derive that (5.2) also holds under the situation
U(X) < oo and k; < mx.
If k, > mx + 1, then by (5.1) and (3.18) (taking A = 5P m = mx and N = —k, therein), we write

k-1
—_157PBk _157Pk
pixy) = ) e Q) + D e QU y) + By (x,3)
k>k; k=myx
k=1
—t57 Pk —t§5Bke=1) —t5~Blk=1) —t67 Pk
=Y e Uy + e Ry + D (e - e P, )
=k, K=myx
=Y +Yy+ Yg (56)

Note that the estimate of |Y3| remains true for |Y3|. By this and the estimates of Y| and Y;, we derive
from (5.6) the desired upper estimate of p,(x,y) in (5.2) under u(X) < co and k; > mx + 1.
Altogether, we conclude the proof of Theorem 5.7. O
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5.5 Almost Lipschitz regularity and near-diagonal lower estimate

The maim aim of this subsection is to show that {p,},~o in (5.1) satisfies the almost Lipschitz regu-
larity (see Theorem 5.8 below) and near-diagonal lower estimate (see Theorem 5.9 below) as stated in
Theorem 2.9.

Theorem 5.8. Let (X, d,u) be a metric measure space satisfying (VD). Suppose that 5 € (0, c0) and
{p:}i=0 is the signed heat kernel defined in (5.1). Then, there exists a positive constant C such that for
any t € (0,00) and x,y,y' € X satisfying d(y,y’) < t'/P,

; B
, diy.y)\"* 1 1P
s - s S C )
|pi(x,y) = pi(x,y) ( T Vo P+ diy) \ T+ day)

(5.7)

where ns € (0, 1) is the constant from Theorem 5. 1(vii).

Proof. Let k; € Z be the unique integer satisfy (5.3), that is, &8 > ¢t > §%8_ If u(X) = o, then by
using (5.4), we have

Pi53) = Py < Y e Q) - Quley)
k>k;

_ 185 Blk=1)
+e

Py, (x6,) = Pl (5,

_t5Bk=1) _t57Pk ’
£ (T =) P ) — Bulx,y)
k<k;—1

=Z1+7Zr+7Zs. (5.8)

The estimates of Z,Z, and Z3 are similar to that of Y, Y, Y3 in Theorem 5.7.
First we estimate Z;. When d(y,y’) < 6, applying Lemma 5.3(iii) and using (VD), we derive

o (400" 1 _ dxy)
e 3) ~ Qul )N 5 ( v ) T exp( e 2% ) (59)
Ifd(y,y) > 5%, then applying (VD) and the size condition of Q in Lemma 5.3(1), we derive that
Qi (x, y) = Qu(x, YOI < 1Qu(x, Y| + Qi (x, ¥ (5.10)
7\ \ 716
< (d(y,ky )) 1 exp (_C* d(x;y))
0 VV(x, 6% V(y, 6%) o
N\ ’
N (d(y,ky )) 1 exp (_C* d(x,k y )).
0 VV(x, ) V(y, 65 &

When k > k;, we observe that 6 < 6% < !/f, which implies

exp|—c dx.) <exp|-c M and exp|-c dx.y) <exp|-c dx,Y)
P{=G— g | S P\ 718 PlmG—g | =P\~ |

Regarding the second inequality in the last formula, since d(y,y’) < /8, it follows that

d(x,y) < d(x,y)+d(,y) < d(x,y") + 1P,
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thereby leading to

X _Cd(xey,) < exp|—c d(X,)’)_tl/'B = ¢ expl—c d(x7y)
PUTe s ) =P\ e )T P T )

Moreover, by 6¢ < /8, (1.1) and the fact d(x,y’) < d(x,y) + d(,y’) < d(x,y) + t'/8, we have

Ve M +dy)) (17 4 deny) +d@y)) (2 4 dey))
V(y, %) = 5k - 5k '

Similarly, we also have

V(x, '8 + d(x,y)) B VB 1+ d(x,y)\" and V(x, t'8 + d(x,y)) - B+ d(x, )\
V(x, 6% ~ 5k V(y, 65 ~ 5k '

Invoking these facts, we derive from (5.9) and (5.10) that when d(y,y’) < VB it always holds

|Qk(x, ) — Qi(x, ")

d(yy))'” 1 (t”ﬁ+d(x,y))" (_ d(x,y))
ok V(x, tY8 + d(x,y)) ok P\

) (5) s () el
ok 5t ) Ve (08 + d(x,y)) B | P\T T
(d(y,y ))"5(t”ﬁ) 1 (1 . d(x,y))_ﬁ

ok Sk | Vi(x, tYB + d(x,y)) t1/B

fl /B \Tst1 d(y, y/) ns 1 l,] /B B
= — 1 1 1 , (5.11)
o /B V(x, 18 + d(x,y)) \t'/F + d(x, y)

A

1

A

where the penultimate step is due to the fact that sup,. (1 + 7)"Pe™7 < c0. As a consequence of (5.11),
we arrive at the conclusion

d(y’ y,) s 1 l‘l/ﬁ B g tl/ﬁ ns+n
VAR Z ¢ 3
VB ] Vix, (VB +dx,y) \ 1V +d(x,y)) & o

- d(y,y,) s 1 tl/ﬁ B
T\ VB ) Vix, (VB + d(x,y) \ 1V + d(x,y))

as desired.

The estimate of Z; is similar to that of Z;, but using the size and Holder regularity conditions of Py
that was given in Lemma 5.3; we thus omit the details.

To estimate Z3, we observe that for k < k; — 1 there is d(y,y’) < t'/8 < §k~1 < 6%, which, combined
with Lemma 5.3(ii), leads to

3 , dy,y)\" 1 _d(xy)
[Pr(x,y) Pk(x,y)ls( 5 ) TN ex ( s )

With this, we proceed as the estimate of Y3 in Theorem 5.7, thereby obtaining

(d(y Y ))"" 1 ox (_C d(x,y))
o VV(x, )V, 65) o

Zs1s )
k<k,—1

‘ e—t&‘ﬁ(k‘” o 10 Bk
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zdmwr (_dww)
( wie k<2_1 o V(x, 6’<)V(y 5 LT

3 (d(y,y))'” 1 ( {118 )ﬁ
~\ B Vix, 18 +d(x,y) \tV/B + d(x,y)] ~

Combining the estimates of Z,Z, and Z3, we derive from (5.8) that (5.7) holds when u(X) = oo
Under the case u(X) < oo, we consider the cases k; < mx and k;, > mx + 1, respectively. Instead of
(5.8), we apply (5.5) and (5.6), thereby writing

P ) = PN D € Q) = Q)| B (6 3) = B ()

k>my
and
—i5~ Pk ,
P 3) = Pyl < Y e Q) - O By (x,y) - B (1))

k>k,

= Bk-1) Pk
+ Z (e_’6 —e" )|Pk(X, y) = Pr(x, y,)’~

k=my

Running with almost the same lines as that of Z; through Z3, we can estimate the terms in the right hands
of the above two formulae, thereby leading to (5.7); the details are omitted. This finishes the proof of
Theorem 5.8. O

Based on the Holder regularity estimate in Theorem 5.8 and the stochastic completeness property in
Theorem 5.6, we now give the near-diagonal lower estimate of {p;};0.

Theorem 5.9. Let (X, d,u) be a metric measure space satisfying (VD). Suppose that 5 € (0, o) and
{p:}i=0 is the signed heat kernel defined in (5.1). Then, for any t € (0, 00) and x € X,

pi(x, x) > (5.12)

C
V(x, t1F)’
Consequently, there exists a small constant € € (0, 1) such that for any t € (0, ) and x,y € X satisfying

d(x,y) < st!/B,

pix,y) 2 (5.13)

V(x, (1B)

Here, the constants C and € in (5.12) and (5.13) are positive and independent of t and x, y.

Proof. Once we have proved (5.12), then (5.13) follows from (5.12) and Theorem 5.8, by writing
pi(x, ) 2 pi(x, x) = |pi(x, x) = pi(x, )

and letting d(x,y) < st'/P with & being a sufficiently small positive number.
It remains to show (5.12). Let 4 € (1, c0), which will be determined later. For any ¢ € (0, c0) and
x € X, by the semigroup property, the Holder inequality and | x P1(x,2) du(z) = 1, we have

P2t(x’ X) = /X pt(-x’ Z)Pt(z, -x) dIJ(Z)
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= / pi(x,2)* du(2)
X

> / pi(x 2 du(2)
B(x, /ll‘l/ﬂ)

1 2
> — .2 d,
V(x, /ltl/ﬁ) (/B(x,/ltl/ﬁ) pi(x,2) ,U(Z))
1 2
=—|[1- x,2)du(z
V(x, At'/B) ( /d(z,x)z/ltl/ﬁ Pi(x,2) du( ))

2
1
=— |1 - x, )lduz)] .
Vi(x, /Ul/ﬁ) ( /d(z,x)z/lt]/ﬁ P, Dl dp ))

Moreover, note that Theorem 5.7 implies

1 tl/ﬂ
Ipi(x, 2| d (Z)S/ (
/d(z,x)z/lt]/ﬁ Pr K d(z, x)=AtV/B V(x, VB + d(x,z2)) 118 + d(x,z)
i 1 tl/ﬁ B
s Z/ . B ( B ) A (z)
= Jartae<ae, v<aiane VX EF 4 d(z, D)) \ P+ d(z, x)

2 )—ﬁ V(x, 271'/P)
V(x, t1/8 + 271 211/B)

B
) du(z)

<

De 1M

A

()"

A
o
& =

In other words, there exists a positive constant Cy (independent of #, x and 1) such that
/ |p(x, D)l dp(z) < Coa P
d(z, x)z At/

Since B > 0, we choose A > 1 large enough so that CoA# < 1/2, thereby giving

1
0> — s
Pl X) 2 Jo TR, Vix. 1)

in terms of (VD). This ends the proof of (5.12). O

Remark 5.10. Theorem 2.9 is an immediate consequence of Theorems 5.6, 5.7, 5.8 and 5.9.
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