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Abstract. Let (X, d, µ) be a metric measure space satisfying the volume doubling condition.
In this paper, the authors provide a new and direct method of constructing stochastic complete
(signed) heat kernels by virtue of the multiresolution analysis (for short, MRA) structure. For
any β ∈ (0,∞), two kinds of applications are given: (i) via taking a non-smooth MRA generated
by Haar wavelets, such construction gives rise to a heat kernel satisfying only stable-like upper
estimate of index β (no continuity and near-diagonal lower estimate); (ii) via taking a smooth
MRA generated by smooth wavelets/splines, such construction gives rise to a signed heat kernel
(no positivity) satisfying the stable-like upper estimate of index β, as well as the almost Lipschitz
regularity and the near-diagonal lower estimate.
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1 Introduction

Let (X, d) be a separable metric space. For any x ∈ X and r ∈ (0,∞), define the ball

B(x, r) := {y ∈ X : d(y, x) < r}.

We always assume that the closure of every open ball is compact. Suppose that on (X, d) there is a
nonnegative Radon measure µ such that 0 < µ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0,∞). The triple
(X, d, µ) will be referred to as a metric measure space.

For any x, y ∈ X and r > 0, we use the following notation throughout the whole paper:

V(x, r) := µ(B(x, r)) and V(x, y) := µ(B(x, d(x, y))).

We say that (X, d, µ) satisfies the volume doubling condition (VD) if there exists CD ∈ (1,∞) such that

V(x, 2r) ≤ CDV(x, r) for all x ∈ X and r ∈ (0,∞). (VD)

Note that (VD) holds if and only if there exist constants C′D ∈ (1,∞) and n ∈ (0,∞) such that for all
x, y ∈ X and 0 < r ≤ R < ∞,

V(x,R)
V(y, r)

≤ C′D

(
d(x, y) + R

r

)n

. (1.1)

The condition (VD) also implies the following geometrical doubling property: there exists an integer
M ∈ (0, C4

D] (see, e.g. [20, p. 67] or [36, p. 489]) such that:

every open ball B(x, r) can be covered by at most M open balls of radius r/2. (1.2)

Many important underlying spaces, such as the (weighted) Euclidean space Rn, convex unbounded do-
mains inRn, Riemannian manifolds of nonnegative Ricci curvature, nilpotent Lie groups with polynomial
growth and fractals, are all fall into the scope of metric measure spaces fulfilling (VD).

According to [35, Proposition 5.2], if (X, d, µ) is connected and satisfies (VD), then it satisfies the
following reverse volume doubling condition (RVD): there exist constants CRD ∈ (0,∞) and κ ∈ (0,∞)
such that

V(x,R)
V(x, r)

≥ CRD

(R
r

)κ
for all x ∈ X and 0 < r ≤ R < diam(X). (RVD)

In other words, (RVD) is a very mild condition, which is occasionally used in analysis on doubling metric
measure spaces.
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Definition 1.1. A family of jointly measurable function {pt}t>0 on X × X is called a heat kernel, if it
satisfies the following properties for all values of the variables involved:

(P1) (positivity) pt(x, y) ≥ 0 and
´
X

pt(x, y) dµ(y) ≤ 1;

(P2) (symmetry) pt(x, y) = pt(y, x);

(P3) (semigroup property)
´
X

pt(x, z)ps(z, y) dµ(z) = pt+s(x, y);

(P4) (approximation of identity) for any f ∈ L2(X),
ˆ
X

pt(x, y) f (y) dµ(y)→ f (x) as t → 0,

where the convergence is in L2(X, µ).

The family {pt}t>0 is called a signed heat kernel if it satisfies (P2)-(P3)-(P4) and the following weaker
property (P1′):

(P1′) there exists a positive constant C such that for any t ∈ (0,∞) and x ∈ X,
ˆ
X

|pt(x, y)| dµ(y) ≤ C;

Given a (signed) heat kernel {pt}t>0, if for all t ∈ (0,∞) and x ∈ X,
ˆ
X

pt(x, y) dµ(y) = 1, (1.3)

then {pt}t>0 is called stochastically complete.

Heat kernel is a universal gadget that plays a central role in diverse areas of mathematics and physics;
see [4, 11, 23, 32, 40, 51] and the references therein. We remark that there do exist various scenarios
where the signed heat kernel appears (see, e.g. [3]). In particular, the heat kernel of the biharmonic
operator ∆2 has infinitely negative-valued points (see, e.g. [29]). Such phenomenon plays an important
role in constructing counterexamples for both the Szegö and Boggio-Hadamard conjectures (see, e.g.
[53]).

Constructing a heat kernel on different kinds of underlying spaces has been extensively studied in
literature; see [14, 30, 32, 46, 48, 50] for the study of heat kernels on manifolds, [5, 9, 33, 49] on graphs,
and [6, 8, 42, 43] on fractals. Intuitively, constructing a heat kernel on a metric measure space X is in
some sense equivalent to building a heat conductor in X. By encoding the conduction information from
heat kernel, one can explore the underlying geometric structure of X.

Let β ∈ (0,∞). A heat kernel {pt}t>0 is said to satisfy the two-sided stable-like estimate (ULE)β
provided that

pt(x, y) '
1

V(x, t1/β) + V(x, y)

(
t1/β

t1/β + d(x, y)

)β
for all x, y ∈ X and t ∈ (0,∞). (ULE)β

We say that (UE)β (resp. (LE)β) is satisfied, if the upper (resp. lower) estimate in (ULE)β holds.
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One method of obtaining a heat kernel satisfying (ULE)β is by subordinating a heat kernel {pt}t>0
that satisfies the sub-Gaussian estimate (SG)dw of the form

pt(x, y) �
C

V(x, t1/dw)
exp

−c
(
d(x, y)
t1/dw

) dw
dw−1

 for all x, y ∈ X and t ∈ (0,∞), (SG)dw

where the sign � means that both ≤ and ≥ hold but with different values of positive constants C, c, and
dw is a parameter from [2,∞) that is called the walk dimension of the heat kernel. Such a method can
be found in [31, Section 5.4] when (X, d, µ) is α-regular for some α ∈ (0,∞), that is, V(x, r) ' rα for
all x ∈ X and r ∈ (0,∞). See also [13, Section 4] when (X, d, µ) is a general metric measure spaces
satisfying (VD). From [7], it follows that any heat kernel satisfying (SG)dw is jointly continuous (it
indeed satisfies the Hölder continuity estimate), so does the subordinated heat kernel.

Another widely used method in literature is obtaining a heat kernel from a regular Dirichlet form
(see, e.g. [28, 34, 35, 15, 16]). Consider the following jump-type bilinear form

Eβ( f , f ) :=
ˆ
X

ˆ
X

| f (x) − f (y)|2

d(x, y)β
dµ(y) dµ(x)

V(x, y)
, (1.4)

with a natural domain

Fβ :=
{
f ∈ L2(X) : Eβ( f , f ) < ∞

}
. (1.5)

In the case β ∈ (0, 2), since the collection of Lipschitz functions with compact support is dense in Fβ,
it follows that (Eβ, Fβ) is a regular Dirichlet form. Invoking this fact, on an α-regular space (X, d, µ),
Chen and Kumagai [15] proved that when β ∈ (0, 2) the heat kernel {pt}t>0 of (Eβ,Fβ) exists and satisfies
(ULE)β. Further, we have by [16, Lemma 5.6] that the two-sided estimate (ULE)β of such {pt}t>0 ensures
a Hölder continuity estimate, but with a very small Hölder exponent.

In general, we follow [13] and define the critical index β] that relates to the possible values of β in
(ULE)β as follows:

β# := sup
{
β > 0 : there exists a stochastically complete

continuous heat kernel {pt}t>0 on X satisfying (ULE)β
}
.

(1.6)

Under (VD) and (RVD), we know from [13] that β] ∈ [2,∞) and, moreover, for any β ∈ (0, β]), the bilin-
ear form (Eβ, Fβ) in (1.4)-(1.5) becomes a regular Dirichlet form and there is a stochastically complete
continuous heat kernel {pt}t>0 satisfying (ULE)β which exists as the transition probability of the Markov
process corresponding to (Eβ, Fβ). This extends the work of Chen and Kumagai [15], which treats only
the case β ∈ (0, 2). Again, applying [16, Lemma 5.6] (see also [12, Theorem 2.22]) yields that such
{pt}t>0 satisfies the Hölder regularity estimate.

Under (VD) and (RVD), we know from [13, Theorem 1.3] that the critical index β# is invariant under
quasi-isometry of two metric measure spaces, where (X, d, µ) is quasi-isometric to (X, d′, µ′) if and only
if d ' d′ and µ ' µ′. Assuming only (VD), if there is a stochastically complete continuous heat kernel
{pt}t>0 on X satisfying (SG)dw , then (see [13, Theorem 1.5])

β] = dw = β∗,

where β∗ is another critical index of Besov spaces on (X, d, µ), defined by

β∗ := sup
{
β > 0 : Λ

β/2
2,∞(X) is dense in L2(X)

}
,
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with the Besov space Λ
β/2
2,∞(X) defined to the collection of all functions f ∈ L2(X) such that

‖ f ‖
Λ
β/2
2,∞(X) := ‖ f ‖L2(X) +

 sup
r∈(0,∞)

ˆ
X

(
1

V(x, r)

ˆ
B(x,r)

| f (x) − f (y)|2

rβ
dµ(y)

)
dµ(x)

1/2

< ∞.

In conclusion, the critical index β# is not only an intrinsic value of the underlying space X but also a
good candidate for the walk dimension in future attempts to construct a diffusion process on X.

We are wondering what happens beyond the critical index β]. It turns out that β] can be broke through
if certain requirements of the heat kernel in (1.6) are sacrificed. The key point for the occurrence of this
interesting phenomenon is that, under (VD), the familyD of dyadic cubes on (X, d, µ) (see Theorem 4.1
below) exists and therefore induces an ultra-metric dD on X (see Definition 4.4 below). For any given
β ∈ (0,∞), by following the general procedure of heat kernel construction on ultra-metric spaces in [10],
the authors in [13] construct a stochastically complete heat kernel {pDt }t>0 via defining

pDt (x, y) :=
ˆ ∞

dD(x,y)

d(σ(r))t

µ(BD(x, r))
for all t ∈ (0,∞) and x, y ∈ X, (1.7)

where
σ(r) := exp(−r−β)

and
BD(x, r) := {y ∈ X : dD(y, x) ≤ r}.

Such {pDt }t>0 satisfies the two-sided stable-like estimate with respect to dD (see [13, Theorem 5.6]):

pDt (x, y) '
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
for all t ∈ (0,∞) and x, y ∈ X, (1.8)

which implies that {pDt }t>0 satisfies the upper estimate

0 ≤ pDt (x, y) ≤
C

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
for all t ∈ (0,∞) and x, y ∈ X (1.9)

with respect to the original metric d. However, the near-diagonal lower estimate breaks down because
pDt (x, y) = 0 whenever the points x, y are very close to each other but can not be covered by any dyadic
cube. As a consequence, there is no Hölder continuity for {pDt }t>0. Further, via considering the adjacent
family of dyadic cubes (see [37])

{Dτ : τ = 1, . . . ,K},

it turns out that (see [13]) the summation of the heat kernels{
{pD

τ

t }t>0 : τ = 1, . . . ,K}
}

forms a family of functions {pt}t>0 on X×X which satisfies (ULE)β and all properties of a stochastically
complete heat kernel, except the semigroup property.

Let us remark that the heat kernel {pDt }t>0 constructed in (1.7) can be expressed by means of the
eigenfunction expansion because by [10, Theorem 3.8] the generator of the corresponding semigroup
has a sequence of eigenfunctions that form an orthonormal basis in L2(X). Denote this sequence by {φ j}

and let the eigenvalue of φ j be λ j. Then

pDt (x, y) =
∑

j

e−tλ jφ j(x)φ j(y).



6 Jun Cao, Alexander Grigor’yan and Liguang Liu

It was also shown in [10] that the eigenvalues λ j are determined by the function σ in (1.7), and the
eigenfunctions φ j are similar to Haar functions but determined by pairs of concentric ultra-metric balls.

It is known that, on a metric measure space satisfying (VD), there do exist Haar wavelets (see [41])
and Hölder-continuous wavelets with exponential decay (see [2]), which form an orthonormal basis in
L2(X). Thus, the above discussions inspire us to consider the following question:

On a general metric measure space, is it possible to use a certain family of wavelets
to construct a heat kernel with “good” estimates?

Since each family of orthogonal wavelets generates a multiresolution analysis (for short, MRA) structure
[22, 47], it is more natural to ask the following general question:

Given an MRA structure on a metric measure space, is it possible to construct a heat
kernel with “good” estimates?

The main aim of this paper is to address the above questions. Indeed, without referring to the deep theory
of Dirichlet forms, we provide a new and direct method of constructing (signed) heat kernels:

– By using only the MRA structure of the underlying space, we construct explicitly stochastically
complete (signed) heat kernels (see Theorem 2.6 and Corollary 2.7 below).

– As the first application, taking a non-smooth MRA that is formed by Haar wavelets (see [41]),
we show that the corresponding heat kernel {pt}t>0 recovers the one {pDt }t>0 given in (1.7), which
certainly satisfies stochastic completeness property (1.3) and the stable-like upper estimate (1.9)
by terms of [13] (see Theorem 2.8 below).

– As the second application, taking a smooth MRA that is generated by smooth splines/wavelets of
Auscher-Hytönen (cf. [2]), we obtain a stochastic complete signed heat kernel {pt}t>0 and then
prove that it satisfies the stable-like upper estimate, the almost Lipschitz regularity and the near-
diagonal lower estimate (see Theorem 2.9 below).

Detailed descriptions of these results are presented in Section 2 below. Before that, based on the previous
discussions, we summarize briefly in Table 1 the existence and properties of stochastically complete
stable-like heat kernels with index β ∈ (0,∞).
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Range of β Structure used Heat kernels

β ∈ (0, β])

exists a jump-type regular Dirichlet form,
associated to a stochastic complete positive heat kernel

satisfying (ULE)β and Hölder continuity
with small Hölder exponent (cf. [13])

β ∈ (0,∞)

MRA
exists a stochastic complete

signed heat kernel
no “good” estimates

non-smooth MRA
via Haar wavelets

exists a stochastic complete
positive heat kernel

satisfying upper estimate (UE)β

no continuity,
no near-diagonal
lower estimate

smooth MRA via
Auscher-Hytönen
wavelets/splines

exists a stochastic complete
signed heat kernel satisfying

upper estimate (UE)β,
near-diagonal lower estimate,
almost Lipschitz continuity

no positivity

Table 1: Good and missing properties of stable-like heat kernels on X with index β

2 Statement of main results

2.1 Construction of signed heat kernels via MRA

We adopt the following definition of multiresolution analysis from [54, Definition 3.1].

Definition 2.1. Let {Vk}k∈Z be a sequence of closed linear subspaces in L2(X). Then {Vk}k∈Z is called a
multiresolution analysis (denoted by MRA for short) in L2(X) if the following hold:

(i) (nested property) for any k ∈ Z, Vk ⊂ Vk+1;

(ii) (density property) ∪k∈ZVk = L2(X); ;

(iii) (intersection property) for some fixed integer k0 ∈ Z,

⋂
k∈Z

Vk =

{0} as µ(X) = ∞;
Vk0 as µ(X) < ∞;

(iv) (Riesz basis) each Vk has a Riesz basis {ϕk,α}α∈Ak , where Ak is a countable index set. In other
words,

Vk = span{ϕk,α : α ∈ Ak}

and, for any sequence {λα}α∈Ak ⊂ C with only finite non-zero elements,∥∥∥∥∥ ∑
α∈Ak

λαϕk,α

∥∥∥∥∥
L2(X)

'

( ∑
α∈Ak

|λα|
2
)1/2

,

where the implicit constant may depend on k but independent of {λα}α∈Ak .
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Now we recall some known facts about orthogonal projections in Hilbert spaces (see [57, pp. 81-84]).
For any closed linear subspace V of a Hilbert spaceH , there is a decomposition

H = V ⊕ V⊥.

In other words, any x ∈ H can be uniquely written as x = vx + v′x, where vx ∈ V and v′x ∈ V⊥. The
orthogonal projector P fromH to V is naturally defined by

Px = vx.

Clearly, P is a linear self-adjoint operator that mapsH onto V and P2 = P. Moreover, x−Px is orthogonal
to Px and

‖x‖2
H

= ‖Px‖2
H

+ ‖x − Px‖2
H
,

which implies that P is a bounded linear operator with operator norm no more than 1. With this in mind,
we introduce the following projectors {Pk}k∈Z and {Qk}k∈Z.

Definition 2.2. Let {Vk}k∈Z be an MRA in L2(X) as in Definition 2.1. For any k ∈ Z, let Wk be the
orthogonal complement of Vk in Vk+1, that is,

Wk := Vk+1 	 Vk. (2.1)

For any k ∈ Z, define Pk to be the orthogonal projector from L2(X) to the closed linear space Vk, and
define Qk to be the orthogonal projector from L2(X) to Wk. 1

Based on the discussions in Remark 3.3 below, if {Vk}k∈Z is an MRA in L2(X), then the projectors Pk

and Qk in Definition 2.2 have integral kernels Pk(x, y) and Qk(x, y), respectively. Thus, it makes sense to
introduce the following definitions of admissible MRA and admissible spectrum.

Definition 2.3. A multiresolution analysis {Vk}k∈Z in L2(X) is called an admissible MRA if the family of
projectors {Pk}k∈Z, with each Pk being an orthogonal projector from L2(X) to Vk, satisfy the following
properties:

(A1) there exists a positive constant C > 0 such that for any k ∈ Z and x ∈ X,
ˆ
X

|Pk(x, y)| dµ(y) ≤ C;

(A2) for any k ∈ Z and x ∈ X, ˆ
X

Pk(x, y) dµ(y) = 1;

(A3) when µ(X) = ∞, assume further that for any x, y ∈ X,

lim
k→−∞

Pk(x, y) = 0.

Definition 2.4. Let {Vk}k∈Z be an MRA in L2(X) and k0 ∈ Z be the integer given in Definition 2.1(iii).
The sequence {λk}k∈Z is called a family of admissible spectrum if the following hold:

1 Under the case µ(X) < ∞, we derive from (i) and (iii) of Definition 2.1 that Vk = Vk0 for all k ≤ k0, thereby leading to that
Wk = {0} and Qk = 0 whenever k ≤ k0 − 1.



Construction of Heat Kernels onMetricMeasure Spaces viaMultiresolution Analysis 9

(a) {λk}k∈Z ⊂ [0,∞) is increasing;

(b) if µ(X) = ∞, then λk → 0 as k → −∞; if µ(X) < ∞, then λk = 0 for all k < k0;

(c) for any t ∈ (0,∞),
∑∞

k=N e−tλk → 0 as N → +∞.

Example 2.5. In this paper, we mainly focus on the following family of spectrum. Let δ ∈ (0, 1). If
µ(X) = ∞, then we set

λk := δ−kβ for any k ∈ Z. (2.2)

If µ(X) < ∞, then we set

λk :=

δ−kβ as k ≥ k0;
0 as k < k0.

(2.3)

No matter µ(X) is finite or not, one easily verifies that {λk}k∈Z is admissible.

The first main result of this paper is as follows.

Theorem 2.6. Let {Vk}k∈Z be an admissible MRA in L2(X) and {λk}k∈Z be a family of admissible spec-
trum. For any t ∈ (0,∞) and x, y ∈ X, define

pt(x, y) :=


∑
k∈Z

e−tλkQk(x, y) as µ(X) = ∞;

e−tλk0−1Pk0(x, y) +

∞∑
k=k0

e−tλkQk(x, y) as µ(X) < ∞.
(2.4)

Then, the family {pt}t>0 is a stochastic complete signed heat kernel.

We do not know if {pt}t>0 in Theorem 2.6 is positive or not. To gain its positivity, we usually need to
add more conditions on MRA.

Corollary 2.7. In addition to the assumptions in Theorem 2.6, assume that for any k ∈ Z and x, y ∈ X,

Pk(x, y) ≥ 0.

Then, {pt}t>0 in (2.4) is a stochastic complete heat kernel.

The proofs of Theorem 2.6 and Corollary 2.7 are presented in Section 3 (see the much stronger results
in Theorems 3.8-3.9-3.10).

As a concluding remark of this subsection, we mention that Theorem 2.6 indicates a fundamental
fact that the signed heat kernel and the MRA structure are in some sense equivalent to each other (see,
e.g. [19] for the converse direction that heat kernels imply MRA structures).

2.2 Construction of heat kernels via non-smooth MRA

Given a metric measure space (X, d, µ) satisfying (VD), there exists a familyD of dyadic cubes (see
[39, 37, 2] or Subsection 4.1 below). For any k ∈ Z, denote byDk the family of dyadic cubes in the k-th
generation. The diameter of each dyadic cube Q in Dk is comparable to δk, where δ ∈ (0, 1) is a small
enough and fixed number.

With these concepts, we state the second main result of this paper, which serves as an application of
Theorem 2.6 and Corollary 2.7.
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Theorem 2.8. Let (X, d, µ) be a metric measure space satisfying (VD). For any k ∈ Z, define

Vk := span
{
µ(Q)−

1
2 1Q : Q ∈ Dk

}‖ · ‖L2(X)
. (2.5)

For any β ∈ (0,∞), let {λk}k∈Z be the admissible spectrum as in Example 2.5. Then, the sequence {Vk}k∈Z

in (2.5) forms an admissible MRA and the heat kernel {pt}t>0 in (2.4) coincides exactly with {pDt }t>0 in
(1.7). In particular, {pt}t>0 is a stochastic complete heat kernel satisfying

0 ≤ pt(x, y) = pDt (x, y) ≤
C

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
(2.6)

where C is a positive constant independent of t ∈ (0,∞) and x, y ∈ X.

The proof of Theorem 2.8 is presented in Subsection 4.2 below. The preliminary step is show that
{Vk}k∈Z given in (2.5) is an admissible MRA so that Corollary 2.7 can be applied to produce a stochastic
complete heat kernel. The subsequence argument is to verify that the two heat kernels in (2.4) and
(1.7) coincides with each other. Then the upper estimate (2.6) follows directly from the already known
estimates in (1.8) and (1.9).

Note that {Vk}k∈Z in (2.5) is called a non-smooth MRA because it is formed by the Haar wavelets (see
Remark 4.9 below) that are not continuous on X.

2.3 Construction of signed heat kernels via smooth MRA

In this subsection, we give another application of Theorem 2.6. Again let (X, d, µ) be a metric mea-
sure space satisfying (VD). Auscher and Hytönen [2] constructed a smooth MRA constituting of smooth
wavelets/splines (see Subsection 5.2 below). Using this smooth MRA and the admissible spectrum given
in Example 2.5, we deduce from Theorem 2.6 a signed heat kernel satisfying stable-like upper estimate,
almost Lipschitz-continuity and near-diagonal estimate.

Theorem 2.9. Let (X, d, µ) be a metric measure space satisfying (VD). For any k ∈ Z, define

Vk := span
{
sk
α : α ∈ Ak

}‖ · ‖L2(X)
, (2.7)

where every sk
α is a spline function located near the dyadic cube Qk

α andAk is a countable index set. For
any β ∈ (0,∞), let {λk}k∈Z be the admissible spectrum as in Example 2.5. Then, the sequence {Vk}k∈Z in
(2.7) forms an admissible MRA and {pt}t>0 in (2.4) is a stochastic complete signed heat kernel enjoying
the following properties:

(i) (upper stable-like estimate) there exists a positive constant C such that for any t ∈ (0,∞) and
x, y ∈ X,

|pt(x, y)| ≤
C

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
;

(ii) (near-diagonal lower estimate) there exist a positive constant c and a small constant ε ∈ (0, 1)
such that for any t ∈ (0,∞) and any x, y ∈ X satisfying d(x, y) ≤ εt1/β,

pt(x, y) ≥
C

V(x, t1/β)
;
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(iii) (Hölder regularity) there exists a positive constant C such that for any t > 0 and x, y, y′ ∈ X
satisfying d(y, y′) ≤ t1/β,∣∣∣pt(x, y) − pt(x, y′)

∣∣∣ ≤ C
(
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
,

where ηδ = 1 − log(84M8)
log(1/δ) tends to 1 as δ → 0, and δ ∈ (0, 1/(84M8)) is the parameter appeared in

the construction of dyadic cubes on X with the integer M being taken as in (1.2).

The proof of Theorem 2.9 is given in Section 5 below (see Theorems 5.6-5.7-5.8-5.9 below). The
key ingredients of the proof are as follows. For the sequence {Vk}k∈Z in (2.7), it is an MRA (see Lemma
5.2 below) and the integral kernels of the projectors

Pk : L2(X)→ Vk and Qk : L2(X)→ Wk = Vk+1 	 Vk

have exponential decay off the diagonal and almost Lipschitz continuity (see Lemma 5.3 below). Such
properties of Pk and Qk are proved by Auscher and Hytönen [2]. This will not only ensure that {Vk}k∈Z in
(2.7) to be an admissible MRA so that Theorem 2.6 can be applied, but also yield the desired estimates
in (i)-(ii)-(iii) of Theorem 2.9.

Remark 2.10. Below we give several comments on Theorems 2.8 and 2.9.

(i) Let us remark that in [41, 2] both the Haar wavelets and smooth wavelets are constructed in a
quasi-metric measure space satisfying (VD). Due to this reason, in Theorems 2.8 and 2.9, the
assumption of d being a metric can be relaxed to a quasi-metric, that is, the triangle inequality of
d is replaced by the following:

d(x, y) ≤ K (d(x, z) + d(z, y)) ,

where K ∈ [1,∞) is a constant independent of x, y, z ∈ X. If d is a quasi-metric, then through minor
modifications of the current proof of Theorems 4.10-5.7-5.8-5.9, we find that all conclusions of
Theorems 2.8-2.9 remain true, except that the Hölder exponent ηδ in Theorem 2.9(iii) will depend
on the constant K and it can not approach 1 when δ→ 0.

(ii) A novelty of the method of heat kernel construction in Theorem 2.9 is that, without using the
Dirichlet form theory as in [15, 16, 34, 12], we still produce a signed heat kernel that satisfies a
number of good properties such as the stable-like upper estimate, near-diagonal lower estimate,
stochastic completeness and almost Lipschitz regularity estimate. The price we pay is that for the
constructed {pt}t>0 there may exist t ∈ (0,∞) and x, y ∈ X such that

pt(x, y) < 0.

But this disadvantage can be neglected in many situations such as analysis of differential operators
(see, e.g. [26, 27, 21]), etc.

(iii) For the heat kernel {pt}t>0 constructed in Theorem 2.9, it is natural to ask that if one can show
the positivity of pt(x, y) and then obtain a stable-like two-sided estimate (ULE)β. Unfortunately,
the answer in general is no. Indeed, although each pt(x, y) has a near-diagonal lower estimate,
it may be negative when x and y are far away from each other. The latter can be seen from the
representations (3.21) and (3.22) below, together with the fact that Pk(x, y) may be negative off

the diagonal (see Remark 5.4 below for more details). As was pointed out earlier, heat kernels
with negative value arise in various scenarios such as integral kernels of semigroups generated by
higher order differential operators (see, e.g. [24, 25]).



12 Jun Cao, Alexander Grigor’yan and Liguang Liu

2.4 Organization of the paper

This paper is organized as follows.
The main aim of Section 3 is to show Theorem 2.6 and Corollary 2.7. Let us be more precise. In

Subsection 3.1, we establish some basic properties of the projectors {Pk}k∈Z and {Qk}k∈Z that are defined
in Definition 2.2. In Subsection 3.2, we show that (see Theorem 3.7 below) the projectors {Pk}k∈Z and
{Qk}k∈Z induce a strongly continuous contractive semigroup {Pt}t≥0 on L2(X), whose integral kernels are
precisely {pt}t>0 defined in (2.4). Then, in Subsection 3.3, we show Theorem 2.6 (see Theorems 3.8 and
3.9 below) and a stronger version of Corollary 2.7 (see Theorem 3.10 below). Moreover, in Subsection
3.4, we study the spectrum and functional calculus of the generator of the heat kernel {pt}t>0 in (2.4).

Section 4 is devoted to the proof of Theorem 2.8. In Subsection 4.1, we recall the construction of
dyadic cubes (see [17, 37]) on a metric measure space satisfying (VD). In Subsection 4.2, we show that
{Vk}k∈Z given in (2.5) is an admissible MRA so that Corollary 2.7 can be applied to produce a stochastic
complete heat kernel {pt}t>0 as given in (2.4). In this case, this heat kernel {pt}t>0 coincides exactly with
{pDt }t>0 in (1.7). In Subsection 4.3, we give a direct proof of Theorem 2.8. Subsection 4.4 consists of
several examples of heat kernels that are constructed by Haar wavelets on various underlying spaces.

Section 5 is devoted to the proof of Theorem 2.9. In Subsection 5.1, we recall the construction of
random dyadic cubes on a metric measure space satisfying (VD) (see [2, 39]). Next, in Subsection 5.2,
we review Auscher-Hytönen’s construction (see [2]) of MRA generated by smooth splines/wavelets, and
then we show that such smooth MRA is admissible (see Theorem 5.5 below) in the sense of Definition
2.3. In Subsection 5.3, using this admissible smooth MRA, we follow (2.4) and construct a stochastic
complete signed heat kernel {pt}t>0 (see (5.1) and Theorem 5.6 below). Further, we prove in Subsection
5.4 that such {pt}t>0 satisfies the stable-like upper estimate (see Theorem 5.7). Moreover, in Subsection
5.5, we validate the almost Lipschitz regularity estimate (see Theorem 5.8 below) and the near-diagonal
lower estimate (see Theorem 5.9 below). Altogether, we obtain Theorem 2.9.

Notation. Let N = {0, 1, . . . , }, Z = {0,±1,±2, . . . } and diam(X) := sup{d(x, y) : x, y ∈ X}. For any set
E ⊂ X, E denotes the closure of E, and E{ = X \ E. The letters C and c are used to denote positive
constants that are independent of the variables in question, but may vary at each occurrence. The relation
u . v (resp., u & v) between functions u and v means that u ≤ Cv (resp., u ≥ Cv) for a positive constant
C. We write u ' v if u . v . u.

3 Construction of heat kernels via general MRA

Throughout this section, we always assume that (X, d, µ) is a metric measure space endowing with a
multiresolution analysis structure {Vk}k∈Z as in Definition 2.1. The conditions (VD) and (RVD) are not
used throughout this section.

3.1 Preliminaries on MRA

The following facts of Riesz basis come from [18, Theorems 3.6.2 and 3.6.6, Corollary 3.6.3].

Lemma 3.1. Let {Vk}k∈Z be an MRA in L2(X). For any k ∈ Z, if {ϕk,α}α∈Ak is a Riesz basis of Vk, then
there exists a unique dual Riesz basis {ϕ̃k,α}α∈Ak of Vk, that is, {ϕ̃k,α}α∈Ak is the unique Riesz basis in Vk

satisfying that for all α, β ∈ Ak,

〈ϕ̃k,α, ϕk,β〉 = δα, β :=

1 when α = β;
0 when α , β,
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where 〈·, ·〉 denotes the inner product of L2(X). Moreover, for any f ∈ Vk,

f =
∑
α∈Ak

〈ϕ̃k,α, f 〉ϕk,α =
∑
α∈Ak

〈ϕk,α, f 〉 ϕ̃k,α in L2(X). (3.1)

Next, we collect some basic properties of the orthogonal projectors {Pk}k∈Z and {Qk}k∈Z that are
defined in Definition 2.2.

Lemma 3.2. Let {Pk}k∈Z and {Qk}k∈Z be the orthogonal projectors defined in Definition 2.2. Then, for
any k ∈ Z, the following hold:

(i) both Pk and Qk are self-adjoint linear bounded operators on L2(X), P2
k = Pk and Q2

k = Qk;

(ii) if j ≥ k, then PkP j = P jPk = Pk and Q jPk = 0;

(iii) if j , k, then Q jQk = 0;

(iv) if Vk has a Riesz basis {ϕk,α}α∈Ak and a dual Riesz basis {ϕ̃k,α}α∈Ak , then for any f ∈ L2(X),

Pk f =
∑
α∈Ak

〈ϕ̃k,α, f 〉ϕk,α =
∑
α∈Ak

〈ϕk,α, f 〉 ϕ̃k,α.

Proof. Based on the basic facts of orthogonal projections in Hilbert spaces (see [57, pp. 81-84]), we
easily obtain (i).

Now, we prove (ii). For any j ≥ k and f ∈ L2(X), we have by Definition 2.1(i) that Pk f ∈ Vk ⊂ V j,
which implies

P jPk f = Pk f .

By this, together with the self-adjoint properties of Pk and P j, we see that for any f , g ∈ L2(X),

〈PkP jg, f 〉 = 〈g, P jPk f 〉 = 〈g, Pk f 〉 = 〈Pkg, f 〉,

whence
PkP jg = Pkg.

As a consequence, it holds that

Q jPk = (P j+1 − P j)Pk = Pk − Pk = 0.

Thus, we obtain (ii).
To show (iii), by symmetry, we assume without loss of generality that k < j. Then the second equality

in (ii) implies

Q jQk = Q jPk+1 − Q jPk = 0,

as desired.
Finally, we verify (iv). If f ∈ L2(X), then Pk f ∈ Vk and it can be represented as in (3.1). By this and

the self-adjoint property of Pk, together with Pkϕ̃k,α = ϕ̃k,α and Pkϕk,α = ϕk,α, we obtain

Pk f =
∑
α∈Ak

〈ϕ̃k,α, Pk f 〉ϕk,α =
∑
α∈Ak

〈Pkϕ̃k,α, f 〉ϕk,α =
∑
α∈Ak

〈ϕ̃k,α, f 〉ϕk,α

and

Pk f =
∑
α∈Ak

〈ϕk,α, Pk f 〉 ϕ̃k,α =
∑
α∈Ak

〈Pkϕk,α, f 〉 ϕ̃k,α =
∑
α∈Ak

〈ϕk,α, f 〉 ϕ̃k,α,

which proves (iv). �
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Remark 3.3. By Definition 2.1 and Lemma 3.1, if {Vk}k∈Z is an MRA in L2(X), then each Vk has a Riesz
basis {ϕk,α}α∈Ak and a dual Riesz basis {ϕ̃k,α}α∈Ak . Thus, if Pk is an orthogonal projector from L2(X) to
Vk, then Pk is associated to an integral kernel in the following way:

Pk f (x) =

ˆ
X

Pk(x, y) f (y) dµ(y) for any f ∈ L2(X) and x ∈ X,

where (see Lemma 3.2(iv))

Pk(x, y) =
∑
α∈Ak

ϕk,α(x)ϕ̃k,α(y) for all k ∈ Z and x, y ∈ X.

For the orthogonal projector Qk which maps L2(X) to Wk := Vk+1 	 Vk, since Pk+1 f − Pk f ∈ Vk+1 and
Pk+1 f − Pk f⊥Vk hold for all f ∈ L2(X), it follows that

Qk = Pk+1 − Pk. (3.2)

Consequently, each Qk has also an integral kernel Qk(x, y) such that

Qk f (x) =

ˆ
X

Qk(x, y) f (y) dµ(y) for all f ∈ L2(X) and x ∈ X

and

Qk(x, y) = Pk+1(x, y) − Pk(x, y) for all k ∈ Z and x, y ∈ X.

Remark 3.4. Applying (ii) and (iii) of Lemma 3.2, together with the self-adjoint property of Qk, we
deduce that for all f , g ∈ L2(X),

〈Pk f , Q jg〉 = 〈Q jPk f , g〉 = 0 as k ≤ j; (3.3)

and

〈Qk f , Q jg〉 = 〈Q jQk f , g〉 = 0 as k , j. (3.4)

Lemma 3.5. For the orthogonal projectors {Pk}k∈Z and {Qk}k∈Z that are defined in Definition 2.2, the
following hold:

(i) no matter µ(X) is finite or not, limk→+∞ Pk = id in L2(X);

(ii) if µ(X) = ∞, then limk→−∞ Pk = 0 in L2(X);

(iii) for any f ∈ L2(X), we have

f =


∑
k∈Z

Qk f as µ(X) = ∞;

Pk0 f +

∞∑
k=k0

Qk f as µ(X) < ∞,
(3.5)

and

‖ f ‖2L2(X) =


∑
k∈Z

‖Qk f ‖2L2(X) as µ(X) = ∞;

‖Pk0 f ‖2
L2(X) +

∞∑
k=k0

‖Qk f ‖2L2(X) as µ(X) < ∞,
(3.6)

where the equality in (3.5) holds in L2(X), and k0 is the integer given in Definition 2.1(iii).
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Proof. First, we show (i). From Definition 2.1(i), it follows that {V⊥k }k∈Z is decreasing. For any f ∈ L2(X)
and j ≤ k, we know from L2(X) = Vk ⊕ V⊥k that

Pk f − f ∈ V⊥k ⊂ V⊥j .

This implies that for all f ∈ L2(X) and g ∈ ∪ j∈ZV j,

lim
k→+∞

〈Pk f − f , g〉 = 0.

Invoking Definition 2.1(ii) yields that limk→+∞ Pk f = f in L2(X). This proves (i).
Now, we assume that µ(X) = ∞ and show (ii). By the definition of Wk in (2.1) and Definition 2.1(ii),

we see that ∪k∈ZWk = L2(X). Let f ∈ L2(X). If k ≤ j and g ∈ W j, then from Pk f ∈ Vk ⊂ V j we derive

〈Pk f , g〉 = 0.

Therefore, for all j ∈ Z and g ∈ W j we have

lim
k→−∞

〈Pk f , g〉 = 0

This, together with the aforementioned fact ∪k∈ZWk = L2(X), yields

lim
k→−∞

〈Pk f , g〉 = 0 for all g ∈ L2(X).

So, we obtain that limk→−∞ Pk f = 0 in L2(X).
It remains to show (iii). Let f ∈ L2(X). For any m ≤ n, applying Qk = Pk+1 − Pk in (3.2) gives

n∑
k=m

Qk =

n∑
k=m

Pk+1 −

n∑
k=m

Pk = Pn+1 − Pm.

This, along with the just proved (i) and (ii), yields that when µ(X) = ∞,

∑
k∈Z

Qk f = lim
N→+∞

N∑
k=−N

Qk f = lim
N→+∞

(PN+1 f − P−N f ) = f in L2(X).

Meanwhile, when µ(X) < ∞,

Pk0 f +

∞∑
k=k0

Qk f = Pk0 f + lim
N→+∞

N∑
k=k0

Qk f = lim
N→+∞

PN+1 f = f in L2(X).

Thus (3.5) holds in L2(X). By (3.5), Q2
k = Qk and P2

k0
= Pk0 , we derive that when µ(X) < ∞,

‖ f ‖2L2(X) =

〈
Pk0 f +

∞∑
k=k0

Qk f , f
〉

= 〈Pk0 f , f 〉 +
∞∑

k=k0

〈Qk f , f 〉

= 〈P2
k0

f , f 〉 +
∞∑

k=k0

〈
Q2

k f , f
〉
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= 〈Pk0 f , Pk0 f 〉 +
∞∑

k=k0

〈Qk f , Qk f 〉

= ‖Pk0 f ‖2L2(X) +

∞∑
k=k0

‖Qk f ‖2L2(X).

In a similar manner, when µ(X) = ∞, we have

‖ f ‖2L2(X) =

〈∑
k∈Z

Qk f , f
〉

=
∑
k∈Z

〈Qk f , f 〉 =
∑
k∈Z

〈
Q2

k f , f
〉

=
∑
k∈Z

〈Qk f , Qk f 〉 =
∑
k∈Z

‖Qk f ‖2L2(X).

Combining the last two formulae yields (3.6). Altogether, we obtain (iii). �

3.2 Heat semigroups generated by MRA

The aim of this subsection is to show that the projectors {Pk}k∈Z and {Qk}k∈Z that are defined in
Definition 2.2 will induce a strongly continuous contractive semigroup {Pt}t≥0 on L2(X). To achieve this,
we begin with the definition of the operators {Pt}t≥0.

Definition 3.6. Given any sequence {λk}k∈Z ⊂ [0,∞), define the family of linear operators {Pt}t≥0 as
follows: for any t ∈ [0,∞) and f ∈ L2(X),

Pt f :=


∑
k∈Z

e−tλkQk f as µ(X) = ∞;

e−tλk0−1Pk0 f +

∞∑
k=k0

e−tλkQk f as µ(X) < ∞,
(3.7)

where k0 is the integer given in Definition 2.1(iii), {Pk}k∈Z and {Qk}k∈Z are defined as in Definition 2.2.

Intuitionally, the construction in Definition 3.6 views each subspace Wk (see Definition 2.2) as the
eigenspace of the eigenvalue λk. Invoking Remark 3.3, we find that {pt}t>0 defined in (2.4) are just the
integral kernels of the operators {Pt}t≥0 in (3.7).

Theorem 3.7. The family {Pt}t≥0 in (3.7) is a strongly continuous contractive semigroup on L2(X), that
is, it satisfies the following properties:

(i) each Pt is a symmetric linear operator with domain L2(X);

(ii) (contraction property) for any t ∈ (0,∞) and f ∈ L2(X), ‖Pt f ‖L2(X) ≤ ‖ f ‖L2(X);

(iii) (semigroup property) for any t, s ∈ (0,∞), PtPs = Pt+s;

(iv) (strongly continuous property) for any f ∈ L2(X), limt↓0 Pt f = f in L2(X).

Proof. We will prove items (i) through (iv) in the following 4 steps.

Step 1: proof of (i). When t = 0, it follows from (3.5) that P0 = id in L2(X). Since {Pk}k∈Z and
{Qk}k∈Z are symmetric linear operators, so does Pt for each t ∈ (0,∞).

Suppose that t ∈ (0,∞) and f ∈ L2(X). For any m ≤ n, applying (3.4) yields∥∥∥∥∥∥∥
n∑

k=m

e−tλkQk f

∥∥∥∥∥∥∥
2

L2(X)

=

n∑
k=m

n∑
j=m

e−tλk e−tλ j
〈
Qk f , Q j f

〉
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=

n∑
k=m

e−2tλk 〈Qk f , Qk f 〉

≤

n∑
k=m

‖Qk f ‖2L2(X). (3.8)

By (3.6), (3.8) and f ∈ L2(X), we see that both {
∑n

k=−n e−tλkQk f }n∈N (when µ(X) = ∞) and {
∑n

k=k0
e−tλkQk f }n∈N

(when µ(X) < ∞) are Cauchy sequences in L2(X). Thus, for any f ∈ L2(X), each Pt f in (3.7) is a well-
defined L2(X)-function.

Step 2: proof of (ii). Fix t ∈ (0,∞) and f ∈ L2(X). As was proved in Step 1, the series of defining
Pt f converges in L2(X). Thus, when µ(X) = ∞, applying (3.4) and (3.6) yields

‖Pt f ‖2L2(X) =

〈∑
k∈Z

e−tλkQk f ,
∑
j∈Z

e−tλ jQ j f
〉

=
∑
k∈Z

∑
j∈Z

e−tλk e−tλ j
〈
Qk f , Q j f

〉
=

∑
k∈Z

e−2tλk 〈Qk f , Qk f 〉

≤
∑
k∈Z

‖Qk( f )‖2L2(X)

= ‖ f ‖2L2(X). (3.9)

In a similar manner, under the case µ(X) < ∞, we derive from (3.3), (3.4) and (3.6) that

‖Pt f ‖2L2(X) =

〈
e−tλk0−1Pk0 f +

∞∑
k=k0

e−tλkQk f , e−tλk0−1Pk0 f +

∞∑
j=k0

e−tλ jQ j f
〉

= e−2tλk0−1
〈
Pk0 f , Pk0 f

〉
+ e−tλk0−1

∞∑
j=k0

e−tλ j
〈
Pk0 f , Q j f

〉
+ e−tλk0−1

∞∑
k=k0

e−tλk
〈
Qk f , Pk0 f

〉
+

∞∑
k=k0

∞∑
j=k0

e−tλk e−tλ j
〈
Qk f , Q j f

〉
= e−2tλk0−1

〈
Pk0 f , Pk0 f

〉
+

∞∑
k=k0

e−2tλk 〈Qk f , Qk f 〉

≤ ‖Pk0( f )‖2L2(X) +

∞∑
k=k0

‖Qk( f )‖2L2(X)

= ‖ f ‖2L2(X), (3.10)

where in the second equality we used the convergence of
∑∞

k=k0
e−tλkQk f in L2(X). Thus, {Pt}t≥0 is

contractive.

Step 3: proof of (iii). Let f ∈ L2(X) and s, t ∈ (0,∞). Again, no matter µ(X) is finite or not, we
know from Step 1 that the series in defining Ps f converges in L2(X). From this and the boundedness of
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Pt on L2(X), it follows that when µ(X) = ∞,

Pt(Ps f ) = Pt

∑
k∈Z

e−sλkQk f

 =
∑
k∈Z

e−sλk PtQk f =
∑
k∈Z

e−sλk

∑
j∈Z

e−tλ jQ jQk f

 , (3.11)

and that, when µ(X) < ∞,

Pt(Ps f ) = Pt

e−sλk0−1Pk0 f +

∞∑
k=k0

e−sλkQk f


= e−sλk0−1 PtPk0 f +

∞∑
k=k0

e−sλk PtQk f

= e−sλk0−1

e−tλk0−1Pk0Pk0 f +

∞∑
j=k0

e−tλ jQ jPk0 f


+

∞∑
k=k0

e−sλk

e−tλk0−1Pk0Qk f +

∞∑
j=k0

e−sλ jQ jQk f

 . (3.12)

By (ii) and (iii) of Lemma 3.2, we have Q jPk0 = 0 for all j ≥ k0 and QlQk = 0 for all l , k. Also, Lemma
3.2(i) implies that P2

k0
= Pk0 and Q2

k = Qk for all k ∈ Z. With these facts, we continue (3.11) and (3.12)
respectively as follows: when µ(X) = ∞,

Pt(Ps f ) =
∑
k∈Z

e−sλk
(
e−tλkQkQk f

)
=

∑
k∈Z

e−(s+t)λkQk f = Pt+s f ,

and, when µ(X) < ∞,

Pt(Ps f ) = e−sλk0−1
(
e−tλk0−1Pk0Pk0 f

)
+

∞∑
k=k0

e−sλk
(
e−sλkQkQk f

)
= e−(s+t)λk0−1Pk0 f +

∞∑
k=k0

e−(s+t)λkQk f

= Pt+s f .

This verifies the semigroup property of {Pt}≥0.

Step 4: proof of (iv). Let f ∈ L2(X). Consider first the case µ(X) = ∞. For any t ∈ (0,∞), since
the series (3.5) and (3.7) both converge in L2(X), we derive

‖ f − Pt f ‖2L2(X) = 〈 f − Pt f , f − Pt f 〉

=

〈∑
k∈Z

(1 − e−tλk )Qk f ,
∑
j∈Z

(1 − e−tλ j)Q j f
〉

=
∑
k∈Z

∑
j∈Z

(1 − e−tλk )(1 − e−tλ j)
〈
Qk f , Q j f

〉
=

∑
k∈Z

(1 − e−tλk )2 〈Qk f , Qk f 〉
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=
∑
k∈Z

(1 − e−tλk )2‖Qk f ‖2L2(X),

where the penultimate step follows from (3.4). Noting that (3.6) implies
∑

k∈Z ‖Qk f ‖2
L2(X) < ∞, we then

derive from that

lim
t→0
‖ f − Pt f ‖2L2(X) = lim

t→0

∑
k∈Z

(1 − e−tλk )2‖Qk f ‖2L2(X)

 =
∑
k∈Z

lim
t→0

(1 − e−tλk )2‖Qk f ‖2L2(X) = 0.

The argument for the case µ(X) < ∞ follows in a similar way. Indeed, if µ(X) < ∞, then we use
(3.3) and (3.4) to write

‖ f − Pt f ‖2L2(X) = 〈 f − Pt f , f − Pt f 〉

=

〈
(1 − e−tλk0−1)Pk0 f +

∞∑
k=k0

(1 − e−tλk )Qk f , (1 − e−tλk0−1)Pk0 f +

∞∑
j=k0

(1 − e−tλ j)Q j f
〉

= (1 − e−tλk0−1)‖Pk0 f ‖2L2(X) +

∞∑
k=k0

(1 − e−tλk )2‖Qk f ‖2L2(X),

which, together with the dominated convergence theorem, again leads to

lim
t→0
‖ f − Pt f ‖2L2(X) = 0.

Thus, we obtain the strongly continuous property of {Pt}≥0. �

3.3 Heat kernels generated by MRA

Applying Theorem 3.7, we are about to show Theorem 2.6 and Corollary 2.7 in this subsection.
Indeed, Theorem 2.6 follows from the forthcoming Theorems 3.8 and 3.9; Corollary 2.7 is a consequence
of a stronger result in Theorem 3.10.

Theorem 3.8. Let {Vk}k∈Z be an MRA in L2(X). Assume that the following hold:

(i) the sequence {λk}k∈Z ⊂ [0,∞) is increasing;

(ii) there exists a positive constant C > 0 such that for any k ∈ Z and x ∈ X,ˆ
X

|Pk(x, y)| dµ(y) ≤ C,

where Pk is the orthogonal projector from L2(X) to Vk.

Then, the family {pt}t>0 defined in (2.4) is a signed heat kernel. In particular, if µ(X) = ∞, then

pt(x, y) = lim
N→+∞

e−tλNPN+1(x, y) +

N∑
k=−N

(
e−tλk−1 − e−tλk

)
Pk(x, y) − e−tλ−N−1P−N(x, y)

 (3.13)

and, if µ(X) < ∞, then

pt(x, y) = lim
N→∞

e−tλNPN+1(x, y) +

N∑
k=k0

(
e−tλk−1 − e−tλk

)
Pk(x, y)

 . (3.14)
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Proof. For any t ∈ (0,∞), it can be seen that pt in (2.4) is the integral kernel of the operator Pt in (3.7).
To obtain that {pt}t>0 is a signed heat kernel, based on Theorem 3.7 and the definition of a signed heat
kernel in Definition 1.1, we only need to verify that

sup
t∈(0,∞)

sup
x∈X

ˆ
X

|pt(x, y)| dµ(y) < ∞. (3.15)

Under the case µ(X) = ∞, we have by (2.4) and (3.2) that

pt(x, y) =
∑
k∈Z

e−tλkQk(x, y)

= lim
N→+∞

N∑
k=−N

e−tλk (Pk+1(x, y) − Pk(x, y))

= lim
N→+∞

 N+1∑
k=−N+1

e−tλk−1Pk(x, y) −
N∑

k=−N

e−tλkPk(x, y)


= lim

N→+∞

e−tλNPN+1(x, y) +

N∑
k=−N

(
e−tλk−1 − e−tλk

)
Pk(x, y) − e−tλ−N−1P−N(x, y)

 .
This proves (3.13). Moreover, combining with the assumptions (i) and (ii), we further have

ˆ
X

|pt(x, y)| dµ(y)

≤ lim sup
N→+∞

ˆ
X

|PN+1(x, y)| +
N∑

k=−N

(
e−tλk−1 − e−tλk

)
|Pk(x, y)| + |P−N(x, y)|

 dµ(y)

≤ 2C + C lim sup
N→∞

N∑
k=−N

(
e−tλk−1 − e−tλk

)
= 2C + C lim sup

N→∞

(
e−tλ−N−1 − e−tλN

)
≤ 3C,

which gives the desired estimate (3.15) under the case µ(X) = ∞.
Consider now the case µ(X) < ∞. Via an argument similar to that used in (3.13), we again utilize

(2.4) to write

pt(x, y) = e−tλk0−1Pk0(x, y) +

∞∑
k=k0

e−tλkQk(x, y)

= lim
N→∞

e−tλNPN+1(x, y) +

N∑
k=k0

(
e−tλk−1 − e−tλk

)
Pk(x, y)

 ,
which proves (3.14). Again, applying the assumptions (i) and (ii) gives

ˆ
X

|pt(x, y)| dµ(y) ≤ lim sup
N→+∞

ˆ
X

|PN+1(x, y)| +
N∑

k=k0

(
e−tλk−1 − e−tλk

)
|Pk(x, y)|

 dµ(y)
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≤ C + C lim sup
N→∞

N∑
k=k0

(
e−tλk−1 − e−tλk

)
= C + C lim sup

N→∞

(
e−tλk0−1 − e−tλN

)
≤ 2C,

which again implies that (3.15) holds when µ(X) < ∞. �

In the forthcoming theorem, we use Theorem 3.8 to show Theorem 2.6 by validating the stochastic
completeness property of {pt}t>0 that is defined in (2.4).

Theorem 3.9. Let {Vk}k∈Z be an admissible MRA in L2(X) and {λk}k∈Z ⊂ [0,∞) be a family of admissible
spectrum. Then, the family {pt}t>0 defined in (2.4) is a stochastic complete signed heat kernel.

Proof. Since {Vk}k∈Z is an admissible MRA and {λk}k∈Z ⊂ [0,∞) is a family of admissible spectrum, it
follows from Definitions 2.3 and 2.4 that the hypothesis of Theorem 3.8 are satisfied. Thus, by Theorem
3.8, we know that {pt}t>0 is a signed heat kernel.

It remains to validate the stochastic completeness property (1.3). Consider first the case µ(X) = ∞.
Given a large integer N ∈ N, we utilize (2.4) to write

pt(x, y) =
∑
k∈Z

e−tλkQk(x, y)

=

−N−1∑
k=−∞

e−tλkQk(x, y) +
∑
|k|≤N

e−tλkQk(x, y) +

∞∑
k=N+1

e−tλkQk(x, y). (3.16)

From Qk = Pk+1 − Pk (see (3.2)) and the condition (A2) of Definition 2.3, it follows that

ˆ
X

∑
|k|≤N

e−tλkQk(x, y)

 dµ(y) =
∑
|k|≤N

e−tλk

ˆ
X

Qk(x, y) dµ(y) = 0.

Moreover, note that the condition (A1) in Definition 2.3 implies
ˆ
X

|Qk(x, y)| dµ(y) ≤
ˆ
X

|Pk+1(x, y)| dµ(y) +

ˆ
X

|Pk(x, y)| dµ(y) ≤ 2C

and, hence,

ˆ
X

∣∣∣∣∣∣∣
∞∑

k=N+1

e−tλkQk(x, y)

∣∣∣∣∣∣∣ dµ(y) ≤
∞∑

k=N+1

e−tλk

ˆ
X

|Qk(x, y)| dµ(y)

≤ 2C
∞∑

k=N+1

e−tλk ,

which tends to 0 as N → +∞ by terms of Definition 2.4(c). So, to obtain (1.3), it suffices to validate

lim
N→+∞

ˆ
X

−N−1∑
k=−∞

e−tλkQk(x, y)

 dµ(y) = 1. (3.17)
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To prove (3.17), for any m ≤ −N − 1, by Qk = Pk+1 − Pk, we write (see also the proof of (3.13))

−N−1∑
k=m

e−tλkQk(x, y) =

−N−1∑
k=m

e−tλk
(
Pk+1(x, y) − Pk(x, y)

)
=

−N∑
k=m+1

e−tλk−1Pk(x, y) −
−N−1∑
k=m

e−tλkPk(x, y)

= e−tλ−N−1P−N(x, y) +

−N−1∑
k=m

(
e−tλk−1 − e−tλk

)
Pk(x, y) − e−tλm−1Pm(x, y). (3.18)

Observe that the condition (A3) of Definition 2.3 implies

lim
m→−∞

e−tλm−1Pm(x, y) ≤ lim
m→−∞

|Pm(x, y)| = 0.

So, letting m→ −∞ in both sides of (3.18) leads to

−N−1∑
k=−∞

e−tλkQk(x, y) = e−tλ−N−1P−N(x, y) +

−N−1∑
k=−∞

(
e−tλk−1 − e−tλk

)
Pk(x, y). (3.19)

For all k ∈ Z, by Definition 2.4(a) and the fact that 1 − e−s ≤ s for all s ∈ (0,∞), we derive∣∣∣e−tλk−1 − e−tλk
∣∣∣ = e−tλk−1

∣∣∣1 − e−t(λk−λk−1)
∣∣∣ ≤ 1 − e−t(λk−λk−1) ≤ t(λk − λk−1),

where we remark that λk − λk−1 ≥ 0 for all k ∈ Z. Consequently, the first condition in Definition 2.4(b)
implies that when N → +∞,

−N−1∑
k=−∞

∣∣∣e−tλk−1 − e−tλk
∣∣∣ ≤ t

−N−1∑
k=−∞

(λk − λk−1) = t
(
λ−N−1 − lim

m→−∞
λm

)
→ 0.

From this and condition (A1) of Definition 2.3, it follows that

lim
N→+∞

ˆ
X

∣∣∣∣∣∣∣
−N−1∑
k=−∞

(
e−tλk−1 − e−tλk

)
Pk(x, y)

∣∣∣∣∣∣∣ dµ(y) ≤ lim
N→+∞

−N−1∑
k=−∞

∣∣∣e−tλk−1 − e−tλk
∣∣∣ˆ
X

|Pk(x, y)| dµ(y)

≤ C lim
N→+∞

−N−1∑
k=−∞

∣∣∣e−tλk−1 − e−tλk
∣∣∣

= 0.

Moreover, by condition (A2) of Definition 2.3 and the first condition in Definition 2.4(b), we also obtain

lim
N→+∞

(
e−tλ−N−1

ˆ
X

P−N(x, y) dµ(y)
)

= lim
N→+∞

e−tλ−N−1 = 1.

Invoking these last two formulae and (3.19), we derive (3.17). This proves (1.3) under the case µ(X) = ∞.
Now, we are left to validate (1.3) under µ(X) < ∞. In this case, instead of (3.16), we derive from

(2.4) and λk0−1 = 0 (see the second condition of Definition 2.4(b)) that

pt(x, y) = Pk0(x, y) +

N∑
k=k0

e−tλkQk(x, y) +

∞∑
k=N+1

e−tλkQk(x, y).
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Just like the argument for the case µ(X) = ∞, we still have

ˆ
X

 N∑
k=k0

e−tλkQk(x, y)

 dµ(y) = 0 for all N ∈ N

and ˆ
X

∣∣∣∣∣∣∣
∞∑

k=N+1

e−tλkQk(x, y)

∣∣∣∣∣∣∣ dµ(y)→ 0 as N → +∞.

These last two formulae, along with condition (A2) of Definition 2.3, again yields (1.3). �

Applying Theorem 3.8, we consider the positivity of {pt}t>0 in (2.4).

Theorem 3.10. In addition to the assumptions of Theorem 3.8, assume that the following hold:

(a) for any k ∈ Z and x, y ∈ X, Pk(x, y) ≥ 0;

(b) when µ(X) = ∞, assume further that for all x, y ∈ X, limk→−∞ Pk(x, y) = 0.

Then, the family {pt}t>0 in (2.4) is a heat kernel.

Proof. By Theorem 3.8, we already know that {pt}t>0 is a signed heat kernel. To prove that {pt}t>0 is a
heat kernel, it suffices to validate that, for any t ∈ (0,∞) and x, y ∈ X,

pt(x, y) ≥ 0. (3.20)

Indeed, when µ(X) = ∞, we have by (3.13) and the assumption (b) that

pt(x, y) = lim
N→∞

e−tλNPN+1(x, y) +

N∑
k=−N

(
e−tλk−1 − e−tλk

)
Pk(x, y)

 , (3.21)

Meanwhile, when µ(X) < ∞, we know directly from (3.14) that

pt(x, y) = lim
N→∞

e−tλNPN+1(x, y) +

N∑
k=k0

(
e−tλk−1 − e−tλk

)
Pk(x, y)

 . (3.22)

From the assumption (i) of Theorem 3.8, it follows that e−tλk−1 − e−tλk ≥ 0 for all k ∈ Z and t ∈ (0,∞).
Combining this with (a), we deduce that all the terms in the right hand sides of (3.21) and (3.22) are
nonnegative. This implies that (3.20) holds. �

3.4 Generator of the heat kernel

Under the hypothesis of Theorem 3.8, the family {pt}t>0 defined in (2.4) is a signed heat kernel. In
this subsection, we discuss the spectrum and the functional calculus of the generator of {pt}t>0.

The family {pt}t>0 defined in (2.4) gives rise to the semigroup {Pt}t≥0 in (3.7). According to [28,
p. 19, Lemma 1.3.2(ii)], any strongly continuous symmetric semigroup {Pt}t≥0 corresponds uniquely to a
nonnegative self-adjoint densely defined operator L in L2(X). Indeed, for any

f ∈ Dom(L) :=
{
f ∈ L2(X) : ‖L f ‖L2(X) < ∞

}
,
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it holds that

L f = lim
t↓0

f − Pt f
t

in L2(X). (3.23)

The operator L is called the generator of the semigroup {Pt}t>0 (or the heat kernel {pt}t>0). By (3.5),
(3.7) and (3.23), we easily deduce

L f =


∑
k∈Z

λkQk f as µ(X) = ∞;

λk0−1Pk0 f +

∞∑
k=k0

λkQk f as µ(X) < ∞.
(3.24)

Moreover, by Lemma 3.2, we argue as in the proofs of (3.9) and (3.10) to derive

‖L f ‖2L2(X) =


∑
k∈Z

λ2
k‖Qk f ‖2L2(X) as µ(X) = ∞;

λ2
k0−1‖Pk0 f ‖2

L2(X) +

∞∑
k=k0

λ2
k‖Qk f ‖2L2(X) as µ(X) < ∞.

Below we will discuss the spectrum and the functional calculus of the generator L in (3.24).

Lemma 3.11. Let L be the operator as in (3.24) and σ(L) be its spectrum. Then

σ(L) = {λk}k∈J0

with J0 = Z when µ(X) = ∞ and J0 = {k0 − 1, k0, . . . } when µ(X) < ∞.

Proof. To simplify the notation, let J = J0 when µ(X) = ∞ and J = J0 \ {k0−1} when µ(X) < ∞. Denote
by σp(L) the point spectrum of L, namely,

σp(L) := {λ ∈ C : λ is a eigenvalue of L}.

We split the proof into the following 3 steps.

Step 1: proof of {λk}k∈J0 ⊂ σp(L). Without loss of generality, we only consider the case µ(X) < ∞
in this step. Fix k ∈ J. Recall that each closed linear subspace of a separable Hilbert space has a complete
countable orthonormal basis (see [57, p. 89, Corollary]). Thus, we respectively denote by {φk0,α}α∈Ak0
and {ψk,γ}γ∈Gk the orthonormal basis of Vk0 and Wk, where Ak0 and Gk are countable index sets. By the
definitions of Pk0 and Qk, we derive from (3.24) that for any k ∈ J and γ ∈ Gk,

Lψk,γ = λkψk,α

and, for any α ∈ Ak0 ,
Lφk0,α = λk0−1φk0,α.

Thus, any λk with k ∈ J0 is an eigenvalue of L and, hence, {λk}k∈J0 ⊂ σp(L).

Step 2: proof of {λk}k∈J0 ⊃ σp(L). Suppose that λ ∈ C is an eigenvalue of L, that is, there exists a
non-zero function f ∈ Dom(L) such that

L( f ) = λ f .
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We are going to show that λ ∈ {λk}k∈J0 .
Consider the case µ(X) < ∞. Since f ∈ L2(X) and f , 0, we derive from (3.6) that either

‖Pk0 f ‖L2(X) , 0 or ‖Q j0 f ‖L2(X) , 0 for some j0 ≥ k0. Using (3.5) and (3.24), together with Lemma
3.2, we proceed as the proof of (3.10) to derive

0 = ‖λ f − L( f )‖2L2(X) =

∥∥∥∥∥∥∥∥(λ − λk0−1)Pk0 f +
∑
j∈Z

(λ − λ j)Q j f

∥∥∥∥∥∥∥∥
2

L2(X)

= |λ − λk0−1|
2‖Pk0 f ‖2L2(X) +

∑
j∈Z

|λ − λ j|
2‖Q j f ‖2L2(X).

Thus, we must have with λ = λk0−1 or λ = λ j0 , which implies λ ∈ {λk}k∈J0 .

When µ(X) = ∞, since f ∈ L2(X) is non-zero, we deduce from (3.6) that ‖Q j0 f ‖L2(X) , 0 for some
j0 ∈ Z. Applying (3.5), (3.24) and Lemma 3.2, we now follow the proof of (3.9) and obtain

0 = ‖λ f − L( f )‖2L2(X) =

∥∥∥∥∥∥∥∥
∑
j∈Z

(λ − λ j)Q j f

∥∥∥∥∥∥∥∥
2

L2(X)

=
∑
j∈Z

|λ − λ j|
2‖Q j f ‖2L2(X).

This implies that λ = λ j0 ∈ {λk}k∈J0 , as desired.

Step 3: proof of σ(L) = {λk}k∈J0 . Based on Step 1 and Step 2, we have {λk}k∈J0 = σp(L). Then, by
the fact that σp(L) ⊂ σ(L), we obtain {λk}k∈J0 ⊂ σ(L), thereby leading to

{λk}k∈J0 ⊂ σ(L),

since σ(L) is a closed subset of C. Thus, it remains to show that σ(L) ⊂ {λk}k∈J0 . For any λ ∈ C\{λk}k∈J0 ,
we have by Step 2 that the mapping

λ − L : Dom(L)→ L2(X)

is injective. So, it suffices to prove that λ − L is surjective, (λ − L)−1 exists and bounded on L2(X).
Since λ ∈ C \ {λk}k∈J0 , we see that c := mink∈J0 |λ − λk| exists and c > 0. For any f ∈ L2(X), define

g :=



∑
j∈Z

(λ − λ j)−1Q j f as µ(X) = ∞;

(λ − λk0−1)−1Pk0 f +

∞∑
j=k0

(λ − λ j)−1Q j f as µ(X) < ∞.

Applying Lemma 3.2 and proceeding as the proofs of (3.9)-(3.10), we easily deduce that

‖g‖2L2(X) =



∑
j∈Z

|λ − λ j|
−2‖Q j f ‖2L2(X) as µ(X) = ∞;

|λ − λk0−1|
−2‖Pk0 f ‖2

L2(X) +

∞∑
j=k0

|λ − λ j|
−2‖Q j f ‖2L2(X) as µ(X) < ∞,

≤ c−2



∑
k∈Z

‖Qk f ‖2L2(X) as µ(X) = ∞;‖Pk0 f ‖2
L2(X) +

∞∑
k=k0

‖Qk f ‖2L2(X)

 as µ(X) < ∞,
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= c−2‖ f ‖2L2(X),

where the last step is due to (3.6). Further, observing that the expression of g and Lemma 3.2 imply

Qkg = (λ − λk)−1Qk f for all k ∈ J

and

Pk0g = (λ − λk0)−1Pk0 f ,

we therefor deduce from (3.5) that

(λ − L)g =


∑
k∈Z

(λ − λk)Qkg as µ(X) = ∞;

(λ − λk0−1)Pk0g +

∞∑
k=k0

(λ − λk)Qkg as µ(X) < ∞.

=


∑
k∈Z

Qk f as µ(X) = ∞;

Pk0 f +

∞∑
k=k0

Qk f as µ(X) < ∞,

= f .

This proves that λ − L : Dom(L) → L2(X) is surjective and, moreover, its inverse (λ − L)−1 exists and
is bounded on L2(X). �

Next, we discuss the spectral resolution family of L.

Lemma 3.12. Let J0 = Z when µ(X) = ∞ and J0 = {k0 − 1, k0, . . . } when µ(X) < ∞. Assume that
{λk}k∈J0 ⊂ [0,∞) is strictly increasing. For any λ ∈ R, define

Eλ =



∑
{k∈Z: λk≤λ}

Qk if λ > 0 and µ(X) = ∞;

Pk0 +
∑

{k∈{k0, ... }: λk≤λ}

Qk if λ ≥ λk0−1 and µ(X) < ∞;

0 otherwise.

(3.25)

Then {Eλ}λ∈R is a spectral resolution of the identity in L2(X), that is, it satisfies the following:

(i) E−∞ := limλ→−∞ Eλ = 0 in L2(X);

(ii) E+∞ := limλ→+∞ Eλ = id in L2(X);

(iii) if t ≤ s and f ∈ L2(X), then 〈Et f , f 〉 ≤ 〈Es f , f 〉 and EtEs = Et = EsEt in L2(X);

(iv) for any λ ∈ R, there is Eλ = Eλ+
:= lims↓λ Es in L2(X).

Proof. Based on Lemma 3.5, all these properties are easy except (iii). We take the case µ(X) = ∞ to
explain (iii); the proof for the case µ(X) < ∞ follows in a similar manner. Assume without loss of
generality that t > 0. Then, for any t ≤ s and f ∈ L2(X), we have by Lemma 3.2(i) that

〈Et f , f 〉 =
∑

{k∈Z: λk≤t}

〈Qk f , f 〉 =
∑

{k∈Z: λk≤t}

‖Qk f ‖2L2(X)
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≤
∑

{k∈Z: λk≤s}

‖Qk f ‖2L2(X) =
∑

{k∈Z: λk≤s}

〈Qk f , f 〉 = 〈Es f , f 〉.

Moreover, for any t ≤ s and f ∈ L2(X), by Lemma 3.2(iii), we obtain

EtEs f =
∑

{k∈Z: λk≤t}

QkEs f =
∑

{k∈Z: λk≤t}

∑
{ j∈Z: λ j≤s}

QkQ j f =
∑

{k∈Z: λk≤t}

Q jQ j f =
∑

{k∈Z: λk≤t}

Q j f = Et f .

The same argument also yields that EsEt f = Et f . This ends the proof. �

Let ϕ be a real-valued continuous function on R. For any f ∈ L2(X), since {Eλ}λ∈R in (3.25) is a
spectral resolution of the identity in L2(X), we have by the spectral theory (see [57, p. 310, Proposition 2
and Corollary]) that it makes sense to define

Tϕ f :=
ˆ
R
ϕ(λ) dEλ f = lim

α→−∞
β→+∞

ˆ
(α, β]

ϕ(λ) dEλ f (3.26)

whenever the limit exists as an L2(X)-function. Here, the integral
´ β
α ϕ(λ) dEλ f is understood as the limit

(again we mean limit in the sense of L2(X) norm) of Riemannian sum

n∑
j=1

ϕ(t j)
(
Es j+1 f − Es j f

)
, (3.27)

where α = s0 < s1 < · · · < sn = β, t j ∈ (s j−1, s j] and δ := max j |s j − s j−1| tends to 0. In this sense, the
operator Tϕ f in (3.26) with the domain

Dom(Tϕ) =

{
f ∈ L2(X) : ‖Tϕ f ‖2L2(X) =

ˆ
R
|ϕ(λ)|2 d‖Eλ f ‖2L2(X) < ∞

}
is a self-adjoint operator in L2(X) (see [57, p. 311, Theorem 2]). Of course, when f ∈ Dom(Tϕ), we can
take t j = s j in (3.27).

Theorem 3.13. Let J0 = Z when µ(X) = ∞ and J = {k0 − 1, k0, . . . } when µ(X) < ∞. Assume that
{λk}k∈J0 ⊂ [0,∞) is strictly increasing. If ϕ is a real-valued continuous function on R, then for any
f ∈ Dom(Tϕ), the equality

Tϕ f =


∑
k∈Z

ϕ(λk)Qk f as µ(X) = ∞;

ϕ(λk0−1)Pk0 f +

∞∑
k=k0

ϕ(λk)Qk f as µ(X) < ∞,
(3.28)

holds in L2(X). Moreover, for any f ∈ Dom(Tϕ), there is

‖Tϕ f ‖2L2(X) =


∑
k∈Z

ϕ(λk)2‖Qk f ‖2L2(X) as µ(X) = ∞;

ϕ(λk0−1)2‖Pk0 f ‖2
L2(X) +

∞∑
k=k0

ϕ(λk)2‖Qk f ‖2L2(X) as µ(X) < ∞.
(3.29)
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Proof. Once we have obtained (3.28), by using Lemma 3.2 and proceeding the arguments in the proofs
of (3.9)-(3.10), we then obtain (3.29). So, it remains to show (3.28).

Let α and β be as in (3.26). Consider the integral
´

(α, β] ϕ(λ) dEλ f , which is understood as the limit of
the Riemannian sum in (3.27). Our aim is to show that, for any ε > 0, there exists some δ > 0 such that
whenever max j |s j − s j−1| < δ, the Riemannian sum in (3.27) satisfies the following: when µ(X) = ∞,∥∥∥∥∥∥∥∥

n∑
j=1

ϕ(s j)
(
Es j f − Es j−1 f

)
−

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

< 3ε‖ f ‖L2(X). (3.30)

and, when µ(X) < ∞,∥∥∥∥∥∥∥∥
n∑

j=1

ϕ(s j)
(
Es j f − Es j−1 f

)
− ϕ(λk0−1)Pk0 f −

∑
{k≥k0:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

< 3ε‖ f ‖L2(X). (3.31)

Indeed, once we have proved (3.30) and (3.31), then we take the limit in the Riemannian sum in (3.27),
thereby deriving ˆ β

α
φ(λ) dEλ f =

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f as µ(X) = ∞

and
ˆ β

α
φ(λ) dEλ f = ϕ(λk0−1)Pk0 f +

∑
{k≥k0:α<λk≤β}

ϕ(λk)Qk f as µ(X) < ∞.

In both sides of these last two formulae, letting α→ −∞ and β→ +∞, we know from (3.26) that (3.28)
holds. Therefore, we are left to validate (3.30) and (3.31).

No matter µ(X) is finite or not, by the fact that {λk}k∈J0 ⊂ [0,∞) is strictly increasing, we see that

σ∗ := lim
k→+∞

λk

may exist as a real positive number or may be +∞. Meanwhile, when µ(X) = ∞, the limit

σ∗ := lim
k→−∞

λk

does exist and 0 ≤ σ∗ < σ∗ ≤ +∞. Note that ϕ is uniformly continuous on [α, β], so that for any ε > 0
there exists δ > 0 small enough such that when max j |s j − s j−1| < δ, we have

sup
1≤ j≤n

sup
s,t∈(s j−1,s j]

|ϕ(t) − ϕ(s)| < ε. (3.32)

We may take δ to be small enough so that each interval (s j−1, s j] contains at most one element of
{σ∗, σ

∗} ∪ {λk}k∈J0 . Then, we consider the following five cases:

Case 1: Let j ∈ {1, 2, . . . , n}. If (s j−1, s j] does not contain any element from {λk}k∈J0 , then by (3.25),
we have

Es j f − Es j−1 f = 0. (3.33)
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Case 2: Let j ∈ {1, 2, . . . , n}. Set J = J0 = Z when µ(X) = ∞ and J = J0 \ {k0 − 1} when µ(X) < ∞.
If (s j−1, s j] contains exactly one element from {λk}k∈J , denoted by λk j , then

λk j−1 ≤ s j−1 < λk j ≤ s j < λk j+1,

so that (3.25) implies

Es j f − Es j−1 f = Qk j f .

Case 3: Consider the case µ(X) < ∞ and for some j0 ∈ {1, 2, . . . , n} the interval (s j0−1, s j0] contains
λk0−1. For any i ≤ j0 − 1, the interval (si−1, si] does not contain any element of {λk}k∈J , so (3.33) implies
that

Esi f − Esi−1 f = 0 for all i ≤ j0 − 1.

Observe that s j0−1 < λk0−1 ≤ s j0 < λk0 . Hence, by (3.25), we have

Es j0
f − Es j0−1 f = Pk0 f .

This, combined with (3.32), further yields∥∥∥∥∥∥∥
j0∑

i=1

ϕ(si)(Esi f − Esi−1 f ) − ϕ(λk0−1)Pk0 f

∥∥∥∥∥∥∥
L2(X)

= ‖ϕ(s j0)(Es j0
f − Es j0−1 f ) − ϕ(λk0−1)Pk0 f ‖L2(X)

= |ϕ(s j0) − ϕ(λk0−1)| ‖Pk0 f ‖L2(X)

≤ ε‖Pk0 f ‖L2(X). (3.34)

Case 4: Consider the case µ(X) = ∞ and that for some j0 ∈ {1, 2, . . . , n} the interval (s j0−1, s j0]
contains σ∗. Noting that λk ≥ σ∗ > s j0−1 ≥ α for all k ∈ Z, we have by (3.25) that

Esi f − Esi−1 f = 0 for all i ≤ j0 − 1

and

Es j0
f − Es j0−1 f =

∑
{k∈Z:α<λk≤s j0 }

Qk.

Further, by (3.32) and Lemma 3.2, we proceed as the proof of (3.9), thereby leading to∥∥∥∥∥∥∥∥
j0∑

i=1

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈Z:α<λk≤s j0 }

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=

∥∥∥∥∥∥∥∥ϕ(s j0)
(
Es j0

f − Es j0−1 f
)
−

∑
{k∈Z:α<λk≤s j0 }

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=

∥∥∥∥∥∥∥∥
∑

{k∈Z:α<λk≤s j0 }

(
ϕ(s j0) − ϕ(λk)

)
Qk f

∥∥∥∥∥∥∥∥
2

L2(X)
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=
∑

{k∈Z:α<λk≤s j0 }

∣∣∣ϕ(s j0) − ϕ(λk)
∣∣∣2 ‖Qk f ‖2L2(X)

≤ ε2
∑

{k∈Z:α<λk≤s j0 }

‖Qk f ‖2L2(X)

≤ ε2‖ f ‖2L2(X). (3.35)

Case 5: Assume that σ∗ exists and σ∗ ∈ (sm0−1, sm0] for some m0 ∈ {1, 2, . . . , n}. In this case,
λk ≤ σ∗ ≤ sm0 ≤ β for all k ∈ Z. Thus, applying (3.25) and (3.5) yields

Esi f − Esi−1 f = 0 for all i ≥ m0 + 1

and

Esm0
f − Esm0−1 f =


id −

∑
{k∈Z: λk≤sm0−1}

Qk =
∑

{k∈Z: β≥λk>sm0−1}

Qk as µ(X) = ∞;

id −

Pk0 +
∑

{k≥k0: λk≤sm0−1}

Qk

 =
∑

{k≥k0: β≥λk>sm0−1}

Qk as µ(X) < ∞,

which, together with an argument similar to that of (3.35), also implies∥∥∥∥∥∥∥∥
n∑

i=m0

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈J: β≥λk>sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=

∥∥∥∥∥∥∥∥ϕ(sm0)
(
Esm0

f − Esm0−1 f
)
−

∑
{k∈J: β≥λk>sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=

∥∥∥∥∥∥∥∥
∑

{k∈J: β≥λk>sm0−1}

(
ϕ(sm0) − ϕ(λk)

)
Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=
∑

{k∈J: β≥λk>sm0−1}

∣∣∣ϕ(sm0) − ϕ(λk)
∣∣∣2 ‖Qk f ‖2L2(X)

≤ ε2
∑

{k∈J: β≥λk>sm0−1}

‖Qk f ‖2L2(X)

≤ ε2‖ f ‖2L2(X). (3.36)

Based on the above arguments in Case 1 through Case 5, let us prove (3.30) and (3.31) in the
following two steps.

Step 1: proof of (3.30) under µ(X) = ∞. If all the intervals {(s j−1, s j] : j = 1, . . . , n} do not contain
{σ∗, σ

∗}, then by Case 1 and Case 2, we obtain∥∥∥∥∥∥∥∥
n∑

j=1

ϕ(s j)
(
Es j f − Es j−1 f

)
−

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
2

L2(X)

=

∥∥∥∥∥∥∥∥
n∑

j=1

(
ϕ(s j) − ϕ(λk j)

)
Qk j f

∥∥∥∥∥∥∥∥
2

L2(X)
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Next, by (3.32) and Lemma 3.2, we proceed as the proof of (3.9), thereby obtaining∥∥∥∥∥∥∥∥
n∑

j=1

(
ϕ(s j) − ϕ(λk j)

)
Qk j f

∥∥∥∥∥∥∥∥
2

L2(X)

=

n∑
j=1

∣∣∣ϕ(s j) − ϕ(λk j)
∣∣∣2 ∥∥∥Qk j f

∥∥∥2
L2(X)

≤ ε2
n∑

j=1

∥∥∥Qk j f
∥∥∥2

L2(X)

≤ ε2‖ f ‖2L2(X).

Thus, we obtain ∥∥∥∥∥∥∥∥
n∑

j=1

ϕ(s j)
(
Es j f − Es j−1 f

)
−

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ ε‖ f ‖L2(X), (3.37)

which is just (3.30).
Since now µ(X) = ∞, it might happen that either σ∗ or σ∗ is contained in some interval (s j−1, s j].

In this case, we shall need Case 4 or Case 5. Without loss of generality, we may as well assume that
σ∗ ∈ (s j0−1, s j0] and σ∗ ∈ (sm0−1, sm0], where 1 ≤ j0 < m0 ≤ n. Then, by an argument similar to that of
(3.37), we now have∥∥∥∥∥∥∥∥

m0−1∑
i= j0+1

ϕ(si)
(
Esi f − Esi−1 f

)
−

∑
{k∈Z: s j0<λk≤sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ ε‖ f ‖L2(X). (3.38)

This, combined with (3.35)-(3.36) and the Minkowski inequality, further derives∥∥∥∥∥∥∥∥
n∑

i=1

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥∥∥∥
j0∑

i=1

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈Z:α<λk≤s j0 }

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

+

∥∥∥∥∥∥∥∥
m0−1∑

i= j0+1

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈Z: s j0<λk≤sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

+

∥∥∥∥∥∥∥∥
n∑

i=m0

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈J: β≥λk>sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ 3ε‖ f ‖L2(X), (3.39)

as desired.

Step 2: proof of (3.31) under µ(X) < ∞. Since α→ −∞, we may assume that α < λk0−1. Suppose
that λk0−1 ∈ (s j0−1, s j0] for some j0 ∈ {1, 2, . . . , n}. Thus, the estimate (3.34) in Case 3 is true.

If for any j > j0 the interval (s j−1, s j] does not contain σ∗, then by Case 1 and Case 2, we argue as
the proof of (3.37) and then obtain∥∥∥∥∥∥∥∥

n∑
i= j0+1

ϕ(si)
(
Esi f − Esi−1 f

)
−

∑
{k≥k0:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ ε‖ f ‖L2(X),
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which, together with (3.34) and the Minkowski inequality, yields∥∥∥∥∥∥∥∥
n∑

j=1

ϕ(si)
(
Esi f − Esi−1 f

)
− ϕ(λk0−1)Pk0 f −

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥∥∥
j0∑

i=1

ϕ(si)(Esi f − Esi−1 f ) − ϕ(λk0−1)Pk0 f

∥∥∥∥∥∥∥
L2(X)

+

∥∥∥∥∥∥∥∥
n∑

i= j0+1

ϕ(si)
(
Esi f − Esi−1 f

)
−

∑
{k≥k0:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ 2ε‖ f ‖L2(X),

which proves (3.31).
Consider now the case when σ∗ exists and σ∗ ∈ (sm0−1, sm0] for some m0 ∈ { j0 + 1, . . . , n}. Then we

have the estimate (3.36) in Case 5. Again, by Case 1 and Case 2, we now still have (3.38). Like the
estimate of (3.39), but now we apply (3.34), (3.38) and (3.36), then we have∥∥∥∥∥∥∥∥

n∑
i=1

ϕ(si)
(
Esi f − Esi−1 f

)
− ϕ(λk0−1)Pk0 f −

∑
{k∈Z:α<λk≤β}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤

∥∥∥∥∥∥∥
j0∑

i=1

ϕ(si)(Esi f − Esi−1 f ) − ϕ(λk0−1)Pk0 f

∥∥∥∥∥∥∥
L2(X)

+

∥∥∥∥∥∥∥∥
m0−1∑
j= j0+1

ϕ(s j)
(
Es j f − Es j−1 f

)
−

∑
{k≥k0:α<λk≤sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

+

∥∥∥∥∥∥∥∥
n∑

i=m0

ϕ(si)(Esi f − Esi−1 f ) −
∑

{k∈J: β≥λk>sm0−1}

ϕ(λk)Qk f

∥∥∥∥∥∥∥∥
L2(X)

≤ 3ε‖ f ‖L2(X).

This also proves (3.31).
Summarizing all, we complete the proof of the theorem. �

Corollary 3.14. Under the hypothesis of Theorem 3.13, let {Eλ}λ∈R be a spectral resolution of the identity
in L2(X) as defined in (3.25). Then, the operator L in (3.24) satisfies

L =

ˆ
[0,∞)

λ dEλ. (3.40)

Moreover, for any t ∈ (0,∞), the operator Pt defined in (3.7) satisfies

Pt =

ˆ
[0,∞)

e−tλ dEλ. (3.41)

Proof. In (3.28), taking ϕ(λ) = λ or ϕ(λ) = e−tλ yields (3.40) and (3.41), respectively. �
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4 Construction of heat kernels via non-smooth MRA

Let (X, d, µ) be a metric measure space satisfying (VD). The main aim of this section is to show
Theorem 2.8; see Subsections 4.2 and 4.3. Moreover, in Subsection 4.4, we provide examples of heat
kernels that are based on Haar wavelets in three different underlying spaces.

4.1 Dyadic cubes

It is known that on the Euclidean space Rn there is a standard dyadic system

D :=
{
2−k (

[0, 1)n + m
)

: k ∈ Z, m ∈ Zn
}
,

which enjoys many basic properties. For instance, any two different cubes are either disjoint or one
is contained in another, all cubes of the same generation form a partition of Rn, and etc. The first
systematic work of constructing a dyadic structure on a doubling metric measure space was due to Christ
[17]. Recent constructions of dyadic systems that have been developed in [2, 37, 38, 39] turn out to be
very delicate, with the underlying space (X, d, µ) satisfying only the geometrical doubling property (1.2)
and the metric d being weaken to be a quasi-metric.

Assuming (VD), we review the construction of dyadic cubes from [37, 39]. Fix δ ∈ (0, 1). Since d is
a metric, it follows from [39, Theorem 2.4] that there is a set of reference dyadic points{

zk
α : k ∈ Z, α ∈ Ak

}
enjoying the following properties:

inf
α,γ

d(zk
α, z

k
γ) ≥ δk, min

α∈Ak
d(x, zk

α) < δk (4.1)

and {
zk
α : α ∈ Ak

}
⊂

{
zk+1
α : α ∈ Ak+1

}
for any k ∈ Z, (4.2)

where Ak is an index set of countable cardinality. Let G be the family of parameter pairs from the
reference dyadic points

G := {(k, α) : k ∈ Z, α ∈ Ak} . (4.3)

For any k ∈ Z, let
rk ∈ [δk/4, δk/2].

According to [39, Lemma 2.8], there is a partial order ≤ in G enjoying the following property: each
(k + 1, γ) satisfies (k + 1, γ) ≤ (k, α) for exactly one (k, α) in such a way that

d(zk+1
γ , zk

α) < rk ⇒ (k + 1, γ) ≤ (k, α) ⇒ d(zk+1
γ , zk

α) < 4rk. (4.4)

With the partial order ≤, it is constructed in [39, Theorem 2.9] a system of dyadic cubes on (X, d, µ), by
terms of the procedure of the construction in [37, Theorem 2.2, Proposition 2.11]. Indeed, for any k ∈ Z
and α ∈ Ak, define the preliminary dyadic cubes

Q̂k
α :=

{
zl
γ : (l, γ) ≤ (k, α)

}
,
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and then set

Q
k
α := Q̂k

α and Q̃k
α := interior Q

k
α =

⋃
γ,α

Q̂k
γ

{ ,
which are called the closed and open dyadic cubes, respectively. The forthcoming theorem collects some
basic properties of the dyadic cubes on (X, d, µ).

Theorem 4.1 ([39, 37]). Let (X, d, µ) be a metric measure space satisfying (VD). Let δ ∈ (0, 1/60) and
M be as in (1.2). Suppose that the reference dyadic points {zk

α : k ∈ Z, α ∈ Ak} satisfy (4.1) and (4.2).
Then there exists a family of Borel sets (called dyadic cubes)

D :=
{
Qk
α : k ∈ Z, α ∈ Ak

}
such that the following assertions hold:

(i) for any k ∈ Z and α ∈ Ak, the interior of Qk
α is Q̃k

α, and the closure of Qk
α is Q

k
α;

(ii) for any k ∈ Z and α ∈ Ak, Q̃k
α and Q

k
α are one another’s interior and closure;

(iii) for any k ∈ Z, {Qk
α}α∈Ak are disjoint and X =

⋃
α∈Ak Qk

α;

(iv) if j ≥ k, α ∈ Ak and γ ∈ A j, then either Q j
γ ⊂ Qk

α or Q j
γ ∩ Qk

α = ∅;

(v) for any k ∈ Z, α ∈ Ak and j < k, there exists a unique γ ∈ A j such that Qk
α ⊂ Q j

γ;

(vi) for any k ∈ Z and α ∈ Ak, B(zk
α, 5
−1δk) ⊂ Qk

α ⊂ B(zk
α, 3δ

k).

For any k ∈ Z, denote byDk := {Qk
α : α ∈ Ak} the set of all dyadic cubes of k-th generation.

Next, we recall the notion of quadrants. Being more precisely, for any Q ∈ D, the set

C(Q) :=
⋃
Q′∈D
Q′⊇Q

Q′ (4.5)

is called a quadrant ofX containing Q. In other words, C(Q) is the union of all ancestors of Q. According
to [1, Lemma 2.2], the quadrants have the following properties.

Lemma 4.2 ([1]). Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that D is a dyadic
system as in Theorem 4.1. Then the family of quadrants defined in (4.5) satisfies the following properties:

(i) for each quadrant C, the triple (C, d, µ) satisfies (VD);

(ii) any two intersecting quadrants coincide;

(iii) X is a disjoint union of finitely many quadrants;

(iv) if µ(X) < ∞ then X coincides with one quadrant C, where C coincides with some dyadic cube
Q ∈ D;

(v) if µ(X) = ∞ then for every quadrant C we have µ(C) = ∞.
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Remark 4.3. If two points x, y belong to the same dyadic cube then, clearly, they belong to one quadrant.
Conversely, if x, y belong to the same quadrant C then there is a dyadic cube containing both x, y.

According to [13, Section 5.2], each dyadic system D that is stated in Theorem 4.1 gives rise to an
ultra-metric dD on X. A metric d on X is called an ultra-metric if for any x, y, z ∈ X,

d(x, y) ≤ max {d(x, z), d(z, y)} .

Of course, any ultra-metric is a metric. Usually a metric must take non-negative real values, but we will
allow an ultra-metric to take also the value +∞.

Definition 4.4. For any two distinct points x, y ∈ X that belong to the same quadrant, denote by Qx,y the
smallest dyadic cube from D containing both x and y; then denote by kx,y the unique integer k such that
Qx,y ∈ Dk. If x, y do not belong to the same quadrant then we set kx,y = −∞. Finally, if x = y then we set
kx,y = +∞. For any x, y ∈ X, set

dD(x, y) := δkx,y .

In particular, if x = y then dD(x, x) = 0, and if x, y do not belong to one quadrant then dD(x, y) = ∞.

The following results are from [13, Section 5.2].

Proposition 4.5. Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that dD is defined as
in Definition 4.4. Then, the following hold:

(i) dD is an ultra-metric on X.

(ii) There exists a positive constant C such that d(x, y) ≤ CdD(x, y) for all x, y ∈ X.

(iii) For any x ∈ X and r ∈ (0,∞), let

BD(x, r) := {y ∈ X : dD(y, x) ≤ r} .

Choose k ∈ Z to satisfy δk ≤ r < δk−1 and let Qx,r ∈ Dk be the unique dyadic cube of k-th
generation that contains x. Then

BD(x, r) = Qx,r and µ(BD(x, r)) ' V(x, r).

4.2 A stochastic complete heat kernel via non-smooth MRA

Let (X, d, µ) be a metric measure space satisfying (VD). With all the notation as in Theorem 4.1, we
define for any k ∈ Z that

Vk := span
{
µ(Q)−

1
2 1Q : Q ∈ Dk

}‖ · ‖L2(X)
. (4.6)

Clearly,

Vk =
{
f ∈ L2(X) : f is µ-a.e. constant on each Q ∈ Dk

}
.

In particular, if µ(X) < ∞, then there exists the largest integer, denoted by mX, such that

when k ≤ mX, the space X itself is the unique dyadic cube inDk, (4.7)
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thereby leading to that

Vk =
{
f ∈ L2(X) : f is µ-a.e. constant on X

}
when k ≤ mX. (4.8)

It was proved in [1] that the sequence {Vk}k∈Z in (4.6) forms a standard MRA in L2(X) in the sense of
Definition 2.1, where the Riesz basis of each Vk is given by{

µ(Q)−
1
2 1Q : Q ∈ Dk

}
.

For any k ∈ Z, we denote by Wk the orthogonal complement of Vk in Vk+1. Following Definition 2.2, for
any k ∈ Z, denote by Ek and Dk the orthogonal projectors from L2(X) onto Vk and Wk, respectively. As a
consequence of Lemma (3.2), for any k ∈ Z and f ∈ L2(X), we can easily deduce that

Ek f =
∑

Q∈Dk

(
1

µ(Q)

ˆ
Q

f dµ
)

1Q,

which is also known as the conditional expectation operator. Note that for any k ∈ Z and x, y ∈ X,

Ek(x, y) =
∑

Q∈Dk

1Q(x)1Q(y)
µ(Q)

≥ 0. (4.9)

Meanwhile, the projector Dk, which is usually called the martingale difference operator, satisfies

Dk = Ek+1 − Ek and Dk(x, y) = Ek+1(x, y) − Ek(x, y). (4.10)

To begin with, we give the following properties of Ek and Dk in (4.9) and (4.10).

Lemma 4.6. Let (X, d, µ) be a metric measure space satisfying (VD). Define Ek and Dk as in (4.9) and
(4.10).

(i) If x and y are in different quadrants of X, then Ek(x, y) = Dk(x, y) = 0 for all k ∈ Z.

(ii) If x and y are in the same quadrants of X, then Ek(x, y) = Dk(x, y) = 0 for all k > kx,y, where
kx,y ∈ Z is determined by dD(x, y) as in Definition 4.4.

(iii) If µ(X) = ∞, then for all x, y ∈ X,
lim

k→−∞
Ek(x, y) = 0.

(iv) The MRA determined by {Vk}k∈Z in (4.6) is admissible in the sense of Definition 2.3.

(v) There exist positive constants C and C0, independent of k ∈ Z and x, y ∈ X, such that

Ek(x, y) + |Dk(x, y)| ≤ C
1{d(x,y)≤C0dD(x,y)≤C0δk}

V(x, δk)
.

Proof. For all x, y ∈ X, we recall that

Ek(x, y) =
∑

Q∈Dk

1Q(x) 1Q(y)
µ(Q)

.
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If x and y are in two different quadrants of X, there does not exist a dyadic cube Q contains both x and y
simultaneously, which induces

Ek(x, y) = Dk(x, y) = 0

and, hence, both (i) and (iii) hold.
Now, suppose that x and y are in the same quadrant. By the definition of kx,y, we see that if k > kx,y

then any dyadic cube Q ∈ Dk can not contain x and y simultaneously, which implies that Ek(x, y) = 0
and Dk(x, y) = Ek+1(x, y) − Ek(x, y) = 0. This proves (ii).

Still assume that x and y are in the same quadrant. If k ≤ kx,y, then there exists a unique dyadic cube
Qk ∈ Dk containing both x and y simultaneously. Then

Qk ⊇ Qx,y ⊇ {x, y},

where we recall that Qx,y ∈ Dkx,y and it is the smallest dyadic cube from D containing both x and y.
Invoking the definition of quadrant in (4.5), we find that

C(Qx,y) =
⋃

{k∈Z: k≤kx,y}

Qk,

whose µ-measure is∞ by terms of Lemma 4.2(v). This further induces that

lim
k→−∞

Ek(x, y) = lim
k→−∞

1
µ(Qk)

=
1

µ(C(Qx,y))
= 0.

Thus, we obtain (iii). As a consequence of (iii) and Definition 2.3, we easily obtain (iv).
It remains to show (v). By (ii), if x and y are in the same quadrant such that Ek(x, y) , 0, then we

have not only kx,y ≥ k and dD(x, y) ≤ δk, but also (see Theorem 4.1)

d(x, y) ≤ diamQx,y < 6δkx,y = 6dD(x, y).

Moreover, the condition (VD) implies

µ(Q) ≈ µ
(
B(x, δk)

)
≈ µ

(
B(y, δk)

)
.

Therefore,

Ek(x, y) .
1{d(x,y)≤6dD(x,y)≤6δk}

V(x, δk)
.

Obviously, the above estimate holds for |Dk(x, y)| by terms of Dk = Ek+1 − Ek and (VD). �

Theorem 4.7. Let (X, d, µ) be a metric measure space satisfying (VD). Assume that {Vk}k∈Z is the MRA
defined in (4.6). For any k ∈ Z, let Wk = Vk+1	Vk and denote by Dk the orthogonal projector from L2(X)
to Wk as in (4.10). Fix β ∈ (0,∞). For any t ∈ (0,∞) and x, y ∈ X, define

pt(x, y) :=


∑
k∈Z

e−tδ−βk
Dk(x, y) as µ(X) = ∞;

1
µ(X)

+

∞∑
k=mX

e−tδ−βk
Dk(x, y) as µ(X) < ∞,

(4.11)

where mX is as in (4.7). Then {pt}t>0 is a stochastic complete heat kernel.
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Proof. By Lemma 4.6(iv), we know that {Vk}k∈Z in (4.6) is an admissible MRA. Let δ ∈ (0, 1) be as in
Theorem 4.1. Let {λk}k∈Z be as given in Example 2.5, which is a family of admissible spectrum. Assume
for the moment that under the situation µ(X) < ∞ it holds that

EmX(x, y) =
1

µ(X)
for all x, y ∈ X. (4.12)

Once we have obtained (4.12), then the two expressions of pt in (2.4) and (4.11) coincide with each
other, which enables us to apply Theorems 3.9 and 3.10 (with k0 therein taken to be mX now) to deduce
that {pt}t>0 in (4.11) is a stochastic complete heat kernel.

It remains to verify (4.12) under µ(X) < ∞. Indeed, for any k ≤ mX, we have by (4.7) and (4.8) that
the orthogonal projector Ek : L2(X)→ Vk fulfills that

Ek f = ck, f for all f ∈ L2(X),

where ck, f is a constant. To determine ck, f , observing that f − Ek f⊥Vk for all f ∈ L2(X) (see the
discussion before Definition 2.2), we then derive that for any constant c ∈ C,

0 = 〈c, f − Ek f 〉 =

ˆ
X

c( f − ck, f ) dµ = c
(ˆ
X

f dµ − ck, fµ(X)
)
,

which in turn gives

Ek f = ck, f =
1

µ(X)

ˆ
X

f dµ for all f ∈ L2(X).

In particular, taking k = mX implies (4.12). This ends the proof. �

The following lemma gives a representation of {pt}t>0 in (4.11) by using Ek(x, y) and dD.

Lemma 4.8. Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that β ∈ (0,∞) and {pt}t>0
is the heat kernel defined in (4.11). Then, for any t ∈ (0,∞) and x, y ∈ X,

pt(x, y) =
∑
k∈Z

(
e−tδ−(k−1)β

− e−tδ−kβ)
Ek(x, y) (4.13)

and

pt(x, y) =

ˆ ∞
dD(x,y)

de−tr−β

µ(BD(x, r))
= pDt (x, y), (4.14)

where pDt is defined in (1.7), and we take it for granted that the right hand side integral in (4.14) is 0
when dD(x, y) = ∞.

Proof. Let us first show (4.13) under the case µ(X) = ∞. For any t ∈ (0,∞) and x, y ∈ X, observing each
Ek(x, y) ≥ 0 and

´
X
Ek(x, y) dµ(y) = 1, we take λk = δ−kβ and Pk = Ek in (3.13) and then obtain

pt(x, y) = lim
N→∞

e−tδ−Nβ
EN+1(x, y) +

N∑
k=−N

(
e−tδ−(k−1)β

− e−tδ−kβ)
Ek(x, y) − e−tδ(N+1)β

E−N(x, y)

 . (4.15)
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If x and y are in different quadrants of X, then we have by Lemma 4.6(i) that Ek(x, y) = 0 for all k ∈ Z.
If x and y are in the same quadrant of X, then we have by Lemma 4.6(ii) that Ek(x, y) = 0 for all k > kx,y.
Whatever the cases, for the first term in the right hand side of (4.15), we always have

lim
N→∞

(
e−tδ−Nβ

EN+1(x, y)
)
≤ lim

N→∞
EN+1(x, y) = 0. (4.16)

For the third term in the right hand side of (4.15), applying Lemma 4.6(iii) and µ(X) = ∞ yields

lim
N→∞

(
e−tδ(N+1)β

E−N(x, y)
)

= lim
N→∞

E−N(x, y) = 0. (4.17)

Inserting (4.16) and (4.17) into (4.15) yields the desired equality in (4.13) when µ(X) = ∞.
The proof of (4.13) under µ(X) < ∞ is similar. In this case, applying (3.14) with k0 = mX, λk = δ−kβ

and Pk = Ek therein, we write

pt(x, y) = lim
N→∞

(
e−tδ−Nβ

EN+1(x, y) +

N∑
k=mX

(
e−tδ−(k−1)β

− e−tδ−kβ)
Ek(x, y)

)
. (4.18)

Observe that (4.16) remains true when µ(X) < ∞. From this and (4.18), it follows that (4.13) remains
true when µ(X) < ∞.

Finally, let us verify (4.14). Consider first the case when x and y are in the same quadrant but x , y.
With all the notation as in Definition 4.4, we write for some kx,y ∈ Z that

dD(x, y) = δkx,y .

If k > kx,y, then by Definition 4.4, any dyadic cube Q inDk can not contain x and y simultaneous, which
implies

Ek(x, y) = 0.

If k ≤ kx,y and δk ≤ r < δk−1, then we use Proposition 4.5(iii) to deduce that

Qx,r = BD(x, r),

where Qx,r denotes the unique dyadic cube inDk that contains x. Since k ≤ kx,y, it follows that Qx,r must
contain y, thereby leading to that

Ek(x, y) =
∑

Q∈Dk

1Q(x) 1Q(y)
µ(Q)

=
1

µ(Qx,r)
=

1

µ(BD(x, r))
.

Thus, applying (4.13) yields

pt(x, y) =
∑

k≤kx,y

(
e−tδ−(k−1)β

− e−tδ−kβ)
Ek(x, y)

=
∑

k≤kx,y

(ˆ
[δk , δk−1)

de−tr−β
)
Ek(x, y)

=
∑

k≤kx,y

ˆ
[δk , δk−1)

de−tr−β

µ(BD(x, r))
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=

ˆ ∞
dD(x,y)

de−tr−β

µ(BD(x, r))
= pDt (x, y),

as desired.
If x = y, then kx,y = +∞ and dD(x, y) = 0. In this case, the above arguments remain valid with the

summation
∑

k≤kx,y therein replaced by
∑

k∈Z.
If x and y are in different quadrants, then by Lemma 4.6(i) we know that each Ek(x, y) = 0 so that

pDt (x, y) = 0 by terms of (4.13), which implies that (4.14) holds with both sides being zero.
Summarizing all, we obtain (4.14). �

Remark 4.9. Let MQ denote the number of children of a dyadic cube Q ∈ D, which depends on Q but
is uniformly bounded (cf. [2, 37]). Let us use the family of Haar functions{

hQ
u : Q ∈ D, u ∈ {1, 2, . . . ,MQ − 1}

}
,

that forms an orthogonal basis in L2(X), which was constructed in [41]. Note that if Q has itself as its
only child, then there is no Haar functions associated to Q. For any f ∈ L2(X), we have by [41, (4.6)]
that each Dk f has the following decomposition:

Dk f =
∑

Q∈Dk

MQ−1∑
u=1

〈 f , hQ
u 〉h

Q
u in L2(X).

In other words, for any k ∈ Z, the MRA {Vk}k∈Z in (4.6) fulfills that

Wk = Vk+1 	 Vk = span
{
hQ

u : Q ∈ Dk, u = {1, 2, . . . ,MQ − 1}
}‖ · ‖L2(X)

.

Clearly, the integral kernel Dk(x, y) of Dk satisfies

Dk(x, y) =
∑

Q∈Dk

MQ−1∑
u=1

hQ
u (x)hQ

u (y).

Thus, the heat kernel {pDt }t>0 in (4.11) can be expressed via Haar functions as follows:

pDt (x, y) =
1

µ(X)
+

∑
k∈Z

∑
Q∈Dk

MQ−1∑
u=1

e−tδ−βk
hQ

u (x)hQ
u (y). (4.19)

Moreover, invoking (2.2) and (2.3), we deduce from (3.24) that the generator of {pDt }t>0, denoted by LD,
has the following expression:

LD f =
∑
k∈Z

δ−kβDk f =
∑
k∈Z

∑
Q∈Dk

MQ−1∑
u=1

δ−kβ〈 f , hQ
u 〉h

Q
u

with domain

Dom(LD) =

 f ∈ L2(X) : ‖LD f ‖L2(X) =
∑
k∈Z

∑
Q∈Dk

MQ−1∑
u=1

δ−2kβ|〈 f , hQ
u 〉|

2 < ∞

 .
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4.3 Stable-like estimates

Due to (4.14), we can apply (1.8)-(1.9) (see [13]) and obtain the following two-sided estimate of the
heat kernel {pDt }t>0.

Theorem 4.10. Let β ∈ (0,∞) and (X, d, µ) be a metric measure space satisfying (VD). Suppose that
the two heat kernels {pt}t>0 and {pDt }t>0 are defined, respectively, as in (4.11) and (1.7). Then, for any
t ∈ (0,∞) and x, y ∈ X,

0 ≤ pt(x, y) = pDt (x, y) '
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
. (4.20)

In particular, there exists a positive constant C such that for any t ∈ (0,∞) and x, y ∈ X,

0 ≤ pt(x, y) = pDt (x, y) ≤
C

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
. (4.21)

For the completeness of the paper, instead of using (1.8)-(1.9), we will use Lemma 4.6(v) and (4.13)
to give a direct proof of the two-sided estimate (4.20) of {pt}t>0.

Proof of Theorem 4.10. Note that (4.21) follows directly from (4.20) and the fact d . dD (see Proposi-
tion 4.5). Thus, we only need to prove (4.20).

By (4.13), the heat kernel pt(x, y) in (4.11) is nonnegative. If x and y are in different quadrants of X,
then dD(x, y) = ∞ and we have by Lemma 4.6 that Ek(x, y) = 0 for all k ∈ Z, thereby leading to

pt(x, y) = 0

and, hence, (4.20) holds. So, it suffices to show (4.20) in the case when x and y are in the same quadrant
of X.

Part 1: verifying the upper estimate in (4.20) under the case µ(X) = ∞. Since x, y are in the same
quadrant of X, we let kx,y ∈ Z such that dD(x, y) = δkx,y . By Lemma 4.6(ii), if Ek(x, y) , 0 or Dk(x, y) , 0,
then

k ≤ kx,y. (4.22)

Moreover, by Lemma 4.6(v), for any k ∈ Z and x, y ∈ X, there is

0 ≤ Ek(x, y) .
1{d(x,y)≤2C0dD(x,y)≤2C0δk}

V(x, δk)
. (4.23)

Let kt be the unique integer such that

δktβ ≤ t < δ(kt−1)β. (4.24)

Since µ(X) = ∞, we have by (4.11) that

pt(x, y) =
∑
k≥kt

e−tδ−βk
Dk(x, y) +

∑
k≤kt−1

e−tδ−βk(
Ek+1(x, y) − Ek(x, y)

)
=

∑
k≥kt

e−tδ−βk
Dk(x, y) + e−tδ−β(kt−1)

Ekt (x, y) +
∑

k≤kt−1

(
e−tδ−β(k−1)

− e−tδ−βk)
Ek(x, y)
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=: Z1 + Z2 + Z3. (4.25)

It suffices to consider each Zi, where i ∈ {1, 2, 3}.
First, we estimate Z1. If k ≥ kt, then by (4.22), we have dD(x, y) = δkx,y ≤ δk ≤ δkt ≤ t1/β. By this and

(4.23), we obtain

|Z1| ≤
∑
δkβ≤t

e−tδ−βk
|Dk(x, y)| .

∑
δkβ≤t

e−tδ−βk 1{d(x,y)≤2C0dD(x,y)≤2C0δk}

V(x, δk)
.

Further, since δk ≤ t1/β and dD(x, y) ≤ δk, we deduce from (VD) that

V(x, t1/β + dD(x, y))
V(x, δk)

≈
V(x, t1/β)
V(x, δk)

.

(
t1/β

δk

)n

,

thereby leading to

|Z1| .
1{dD(x,y)≤t1/β}

V(x, t1/β + dD(x, y))

∑
δkβ≤t

e−tδ−βk
(
t1/β

δk

)n

.
1{dD(x,y)≤t1/β}

V(x, t1/β + dD(x, y))

.
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
,

as desired.
To estimate Z2, it follows from (4.22) that if Ekt (x, y) , 0 then dD(x, y) = δkx,y ≤ δkt ≤ t1/β. This,

combined with (VD) and (4.23), further derives

|Z2| . e−tδ−βkt 1{dD(x,y)≤t1/β}

V(x, δkt )
≈

1{dD(x,y)≤t1/β}

V(x, t1/β)
.

1
V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
.

Finally, we deal with Z3. For k ≤ kt − 1, we have δkβ ≥ δ(kt−1)β > t, which implies that∣∣∣∣e−tδ−β(k−1)
− e−tδ−βk

∣∣∣∣ = e−tδ−βk
∣∣∣∣etδ−βk(1−δβ) − 1

∣∣∣∣ ≈ e−tδ−βk
tδ−βk(1 − δβ) ≈

t
δkβ .

This, combined with (4.23), yields

|Z3| ≤
∑

k≤kt−1

∣∣∣∣e−tδ−β(k−1)
− e−tδ−βk

∣∣∣∣Ek(x, y) .
∑

k≤kt−1

t
δkβ

1{d(x,y)≤2C0dD(x,y)≤2C0δk}

V(x, δk)
.

Since now we are summing over those k’s satisfying both δk > t1/β and δk ≥ dD(x, y), we then derive
from (VD) that

V(x, t1/β + dD(x, y)) . V(x, δk)

and, hence,

|Z3| .
1

V(x, t1/β + dD(x, y))

∑
{k∈Z: δk≥max{t1/β, dD(x,y)}}

t
δkβ
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.
1

V(x, t1/β + dD(x, y))
t

max{t1/β, dD(x, y)}

≈
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
.

Inserting the estimates of Z1, Z2 and Z3 into (4.25), we obtain the desired upper bound for pt(x, y).

Part 2: verifying the upper estimate in (4.20) under the case µ(X) < ∞. Let kt ∈ Z be as in (4.24).
In the case kt ≥ mX + 1, instead of (4.25), we have

pt(x, y) =
∑
k≥kt

e−tδ−βk
Dk(x, y) + e−tδ−β(kt−1)

Ekt (x, y) +

kt−1∑
k=mX

(
e−tδ−β(k−1)

− e−tδ−βk)
Dk(x, y)

=: Z1 + Z2 + Z′3.

Note that the estimate of |Z3| remains true for |Z′3|. By this and the estimates of Z1 and Z2, we again
deduce that pt satisfies the upper estimate in (4.20) under µ(X) < ∞ and kt ≥ mX + 1.

If kt ≤ mX, then the formula (4.11) directly gives

pt(x, y) =
1

µ(X)
+

∑
k≥mX

e−tδ−βk
Dk(x, y) =:

1
µ(X)

+ Z′1. (4.26)

Observing that if k ≥ mX then k ≥ kt and δkβ ≤ t, we obtain that the estimate of Z1 also gives

|Z′1| .
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

By (4.7) and the fact t1/β ≥ δkt ≥ δmX , we have

1
µ(X)

.
1

V(x, δmX + d(x, y))

(
1 +

d(x, y)
δmX

)−β
.

1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

Inserting the last two estimates into (4.26), we deduce that pt satisfies the upper estimate in (4.20) under
the situation µ(X) < ∞ and kt ≤ mX.

Part 3: verifying the lower estimate in (4.20). Suppose that x and y are both contained in the same
quadrant of X. Let Qx,y ∈ D be the smallest dyadic cube containing both x and y. In other words, any
child of Qx,y does not contain x, y simultaneously. Let kx,y ∈ Z be the unique integer such that Qx,y ∈ Dkx,y

and, hence,
dD(x, y) = δkx,y .

For simplicity, set k0 = kx,y. Assume without loss of generality that Qx,y = Qk0
αk0

for some αk0 ∈ Ak0 .
For any k ≤ k0, applying Theorem 4.1 implies that there exists a unique dyadic cube Qk

αk
∈ Dk such that

x, y ∈ Qk
αk

and
Qk0
αk0
⊆ · · · ⊆ Qk+1

αk+1
⊆ Qk

αk
⊆ · · · .

This in turn gives

Ek(x, y) =

0 as k > k0;
1

µ(Qk
αk )

as k ≤ k0.
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No matter µ(X) is finite or nor, by (4.13) in Lemma 4.8, we obtain

pt(x, y) =
∑
k≤k0

(
e−tδ−(k−1)β

− e−tδ−kβ)
Ek(x, y)

=
∑
k≤k0

e−tδ−βk (
etδ−βk(1−δβ) − 1

) 1
µ(Qk

αk )

≥
∑

{k∈Z: δk≥max{δk0 , t1/β}}

e−tδ−βk (
etδ−βk(1−δβ) − 1

) 1
µ(Qk

αk )

≈
∑

{k∈Z: δk≥max{δk0 , t1/β}}

tδ−βk 1
µ(Qk

αk )
, (4.27)

where the last step is due to

e−tδ−βk (
etδ−βk(1−δβ) − 1

)
≈ tδ−βk as δk ≥ t1/β.

Under δk ≥ max{δk0 , t1/β}, from {x, y} ⊆ Qx,y = Qk0
αk0
⊆ Qk

αk
∈ Dk and Theorem 4.1, it follows that

d(x, y) ≤ diam(Qx,y) ≤ diam(Qk
α) ≤ 2C0δ

k,

which, along with (VD), yields

µ(Qk
αk

) ≤ µ(B(x, 2C0δ
k)) = V(x, 2C0δ

k) .
(
δk

t1/β

)n+

V(x, t1/β).

With these facts, we continue the estimates of (4.27) by considering the cases dD(x, y) = δk0 ≥ t1/β and
dD(x, y) = δk0 < t1/β, respectively.

• If dD(x, y) = δk0 ≥ t1/β, then we consider only the term k = k0 in (4.27) and obtain

pt(x, y) & tδ−βk0
1

µ(Qk0
αk0

)
& tδ−βk0

1
V(x, 2C0δk0)

≈
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β

• If dD(x, y) = δk0 < t1/β, then it follows form (4.27) and (VD) that

pt(x, y) &
1

V(x, t1/β))

∑
{k∈Z: δk≥t1/β}

tδ−βk
(
t1/β

δk

)n+

≈
1

V(x, t1/β))

≈
1

V(x, t1/β + dD(x, y))

≈
1

V(x, t1/β + dD(x, y))

(
t1/β

t1/β + dD(x, y)

)β
.

Combining the arguments in the above two cases we obtain the lower estimate of pt in (4.20). �
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4.4 Examples of heat kernels

4.4.1 A heat kernel on Rn based on Haar wavelets

Suppose that X is the n-dimensional Euclidean space Rn, endowed with the classical Euclidean dis-
tance and the Lebesgue measure. On Rn there is a natural dyadic system

DRn :=
{
2−k (

[0, 1)n + m
)

: k ∈ Z, m ∈ Zn
}
.

Note that each dyadic cube Q ∈ DRn has exactly 2n children of equal sizes. Let

hF := 1[0,1) and hM := 1[0,1/2) − 1[1/2,1).

Set

Gn∗ := {F,M}n \ {F}n.

For any k ∈ Z, m = (m1, · · · ,mn) ∈ Zn, G = (G1, · · · ,Gn) ∈ Gn∗ and x ∈ Rn, define

HG
m(x) :=

n∏
r=1

hGr (xr − mr)

and

Hk,G
m (x) := 2kn/2HG

m(2kx).

Then {Hk,G
m : k ∈ Z,m ∈ Zn,G ∈ Gn∗} form the family of Haar functions on Rn (see, e.g. [55, Proposition

1.53] for the inhomogeneous case). Based on the previous discussions, there is a heat kernel {pDRn
t }t≥0

such that for all t ∈ (0,∞) and almost all x, y ∈ X,

pDRn
t (x, y) =

∑
k∈Z

∑
m∈Zn

∑
G∈Gn∗

e−tδ−βk
Hk,G

m (x)Hk,G
m (y)

and

pDRn
t (x, y) ≈

t
(t1/β + dDRn (x, y))n+β

,

where dDRn is the ultra-metric induced by the dyadic systemDRn . In this case, the generatorLDRn is give
by

LDRn ( f ) :=
∑
k∈Z

∑
m∈Zn

∑
G∈Gn∗

2kβ〈 f , Hk,G
m 〉H

k,G
m ,

whose domain is

Dom
(
LDRn

)
:=

{
f ∈ L2(Rn) : LDRn ( f ) ∈ L2(Rn)

}
.
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4.4.2 A heat kernel on Z

Let X = Z be the one-dimensional integer lattice endowing with a graph distance d and counting
measure µ, namely, for any m, l ∈ Z and any set A ⊂ Z,

d(m, l) := |m − l| and µ(A) := #(A).

Recall that on the Euclidean space R there is a standard system of dyadic intervals

DR :=
{
[2−km, 2−k(m + 1)) : k ∈ Z, m ∈ Z

}
. (4.28)

It is natural to define the dyadic cubes on Z via

D := Z ∩DR =
{
Ik,m := Z ∩ [2−km, 2−k(m + 1)) : k ∈ Z, m ∈ Z

}
. (4.29)

For any k ∈ Z, the family of dyadic cubes of the k-th generation is defined by

Dk :=
{
Ik,m : m ∈ Z

}
.

If k = 0, then Ik,m is a isolated point m. If k > 0, then every dyadic cube Ik,m is either empty or contains
at most one point 2−km. If k < 0, then for any m ∈ Z we have

Ik,m =
{
2−km + l : l = 0, 1, . . . , 2−k − 1

}
.

For any k ∈ Z and any function f : Z→ R, we follow (4.9) and set

Ek( f ) :=
∑
I∈Dk

(
1
µ(I)

ˆ
I

f dµ
)

1I

and
Dk( f ) := Ek+1 f − Ek( f ).

For any k ≥ 0 and i ∈ Z, we find that Ik,m 3 i if and only if i = 2−km, which implies that

Ek( f )(i) = f (i)

and, hence,

Dk( f ) = Ek+1( f ) − Ek( f ) = 0 as k ≥ 0.

Note that if I ∈ Dk then µ(I) = 2−k. So, the integral kernels of Ek and Dk are represented as follows: for
all i, j ∈ Z,

Ek(i, j) = 2k
∑
I∈Dk

1I(i)1I( j)

and
Dk(i, j) = Ek+1(i, j) − Ek(i, j).

Then, applying (4.19) yields that the heat kernel associated toD satisfies that, for any t > 0 and i, j ∈ Z,

pt(i, j) =

−1∑
k=−∞

e−t2βk
Dk(i, j)
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= lim
N→+∞

−1∑
k=−N

e−t2βk
Dk(i, j)

= lim
N→+∞

−1∑
k=−N

e−t2βk
(Ek+1(i, j) − Ek(i, j))

= lim
N→+∞

 0∑
k=−N+1

e−t2β(k−1)
Ek(i, j) −

−1∑
k=−N

e−t2βk
Ek(i, j)


= e−t2−βE0(i, j) +

−1∑
k=−∞

(
e−2(k−1)βt − e−2kβt

)
Ek(i, j) − lim

N→+∞
e−t2−Nβ

E−N(i, j).

By the expression of Ek(i, j), we easily see that

lim
N→+∞

e−t2−Nβ
E−N(i, j) = 0 and E0(i, j) = δi, j,

where

δi, j :=

1 as i = j;
0 as i , j.

Therefore,

pt(i, j) = e−t2−βδi, j +

−1∑
k=−∞

2k
(
e−2(k−1)βt − e−2kβt

) ∑
I∈Dk

1I(i)1I( j)

 . (4.30)

From (4.30), it can be seen that the associated Markov chain jumps only between points i, j ∈ Z lying
in the same dyadic cubes of D. Moreover, this jump has larger transition probability if there are more
generations of dyadic cubes that contain both i, j. For instance, i is more likely to jump to j if they are
close to each other. However, i = 1 is impossible to jump to j = −1, since they can not lie in the same
dyadic cube ofD.

Now, we can construct an adjacent family of dyadic interval systems on R. For any τ ∈ {0, 1, 2}, let

Dτ
R :=

⋃
k∈Z

{
2−k

(
[0, 1) + m + (−1)kτ/3

)
: m ∈ Z

}
.

Note that for τ = 0, D0
R reduces to the dyadic cube system DR as in (4.28). In view of this and (4.29),

we may define the adjacent family {Dτ}2τ=0 of dyadic cube systems on Z by setting for any τ ∈ {0, 1, 2},

Dτ := Z ∩Dτ
R.

Thus, we can define the heat kernel pD
τ

t (i, j) in the way similar to (4.30). For simplicity, when t = 1, we
write

pD
τ

(i, j) := pD
τ

1 (i, j), (4.31)

which represents the transition probability from i to j in a unit time. For any two points i, j ∈ Z, observe
that there exists τ ∈ {0, 1, 2} such that both i and j lie in the same dyadic cube ofDτ.

The existence of adjacent family of dyadic cube systems enable us to define a new kind of random
walk on Z, which may be described in the following way that in each step the jumper has a chance to
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choose a dyadic structure randomly from the adjacent family and then jump by the law of the chosen
dyadic structure. To be precise, let Ω := {0, 1, 2} be a sample space equipped with the natural probability
P that for any τ ∈ Ω,

P(ω = τ) =
1
3
. (4.32)

Now, for any i, j ∈ Z, define

p(i, j) :=
2∑
τ=0

P(ω = τ) pD
τ

(i, j) =
1
3

2∑
τ=0

pD
τ

(i, j), (4.33)

where pD
τ
(i, j) is as in (4.31). By (4.32) and the stochastically completeness of each pD

τ
, we know that

the function p(·, ·) in (4.33) is a Markov kernel, namely, for any i ∈ Z,∑
j∈Z

p(i, j) = 1.

Recall that each Markov kernel defines a random walk {Xn}n∈Z+
on Z (see, e.g. [33]) such that for any

n ∈ N and i, j ∈ Z, the n-step transition probability from i to j equals to pt(i, j) in (4.30) with t = n. This
is essentially what we have done in [13] by summing up all adjacent heat kernels and Dirichlet forms.

4.4.3 A heat kernel via p-adic MRA

Let p ∈ N be a prime number and Qp the p-adic field defined as the set of all numbers x that can be
represented as the series such that

x =

∞∑
i=γ

xi pi, (4.34)

where γ ∈ Z and xi ∈ {0, . . . , p − 1} (see, e.g. [56]). By (4.34), it is easy to see each x ∈ Qp has a
decomposition

x = [x] + {x},

where [x] :=
∑∞

i=0 xi pi and {x} :=
∑−1

i=γ xi pi are respectively the integer and fractional parts of x. For any
x as in (4.34), its p-adic norm is defined by

|x|p := p−γ.

Thus, for any x ∈ Qp and y ∈ Qp, they have the distance

dp(x, y) := |x − y|p.

Such dp is an ultra metric. Moreover, there exists a Haar measure µ on Qp so that (Qp, dp, µ) is an
ultra-metric measure space (see, e.g. [10, Section 2.5] for more details).

Recall in [45] that a function φ ∈ L2(Qp) is called a scaling function if it satisfies the following
refinement equation

φ(·) =
∑
n∈Ip

αnφ(p−1 · −n) (4.35)
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for some αn ∈ C and Ip := {x ∈ Qp : {x} = x}. In particular, if we let Bp(0, 1) := {x ∈ Qp : |x|p ≤ 1} be
the unit closed ball in Qp, then a possible solution of (4.35) is the following function

φ := 1Bp(0,1).

For any k ∈ Z, let

Vk := span {φ(p−k · −n) : n ∈ Ip}. (4.36)

It is proved in [52] that such {Vk}k∈Z forms an MRA as in Definition 2.1. The sequence {Vk}k∈Z defined
in (4.36) is called p-adic Haar MRA.

Based on [45], the corresponding Haar wavelets are of the form that for any j ∈ {1, . . . , p − 1}, k ∈ Z
and n ∈ Ip,

ψ j;k,n(x) := p−k/2 exp
(
2πi

{
p−1 jx

})
φ(pkx − n),

which forms an orthogonal basis of L2(Qp). For any k ∈ Z, if Qk denotes the projector from L2(Qp) to
Wk := Vk+1 	 Vk, then its integral kernel takes the form of

Qk(x, y) =
∑

j∈{1,...,p−1}

∑
n∈Ip

ψ j;k,n(x)ψ j;k,n(y).

Let β ∈ (0,∞). By using (4.11), one can construct a stochastic complete nonnegative heat kernel
{pt}t>0 such that

pt(x, y) =
∑
k∈Z

∑
j∈{1,...,p−1}

∑
n∈Ip

e−tpkβ
ψ j;k,n(x)ψ j;k,n(y) for all t ∈ (0,∞) and x, y ∈ X.

In this case, the generator L of {pt}t>0 coincides to the following Vladimirov operator (or, equivalently,
Taibleson operator) of p-adic fractional differential Dβ defined by for any β > 0,

Dβ f (x) :=
1 − p−1−β

pβ − 1

ˆ
Qp

f (x) − f (y)

|x − y|1+β
p

dµ(y),

which is viewed as the corresponding Laplacian in Qp (see, e.g. [10, 45]).

5 Construction of heat kernels via smooth MRA

The whole section is devoted to the proof of Theorem 2.9 under (VD). To this end, we will apply
Theorem 2.6 to a specific smooth MRA generated by smooth splines from [2].

5.1 Random dyadic cubes

Let us follow [39] and randomize the construction of dyadic cubes in Theorem 4.1 of Section 4.1.
We still fix δ ∈ (0, 1), which is a sufficiently small number (for example, δ ≤ 1/60). Then there exists a
set of reference dyadic points {

zk
α : k ∈ Z, α ∈ Ak

}
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satisfying (4.1) and (4.2). Let G be as in (4.3) and ≤ the partial order of G as in (4.4). Denote by

Ω := {0, 1, 2, . . . , b1/δc}Z

the sample space. Elements of Ω are called the parameterized points. A parameterized point ω ∈ Ω is
denoted by ω := (ωk)k∈Z, where

ωk ∈ {0, 1, 2, . . . , b1/δc} .

Equip Ω with the natural probability measure Pω, which makes all coordinates ωk independent of each
other and uniformly distributed over the finite set {0, 1, . . . , b1/δc}. In other words, if ak : Ω →

{0, 1, 2, . . . , b1/δc} is a random variable, with

ak({ωi}i∈Z) = ωk,

then for every k ∈ Z and T ∈ {0, 1, . . . , b1/δc},

Pω(ak = T ) =
1

1 + b1/δc
.

For any k ∈ Z, we denote

rk = rak :=
1
4

(
δk + akδ

k+1
)
.

For any ω := (ωk)k∈Z ∈ Ω, instead of (4.4), now there is a new partial order ≤ω which is defined as
follows:

d(zk+1
γ (ω), zk

α(ω)) < rk ⇒ (k + 1, γ) ≤ω (k, α) ⇒ d(zk+1
γ (ω), zk

α(ω)) < 4rk.

Define the preliminary, the closed, and the open random dyadic cubes as below:

Q̂k
α(ω) :=

{
z`γ : (`, γ) ≤ω (k, α)

}
, Q

k
α(ω) := Q̂k

α(ω), Q̃k
α(ω) := interior of Q

k
α(ω).

Next, we collect a series of facts on the random dyadic cubes from [39, Theorem 5.2].

Theorem 5.1 ([39]). Let (X, d, µ) be a metric measure space satisfying (VD) and δ ∈ (0, 1/(84M8)),
where M is as in (1.2). For any fixed parameter

ω ∈ Ω := {0, 1, 2, . . . , b1/δc}Z ,

there exist Borel sets (called random dyadic cubes)

D(ω) :=
{
Qk
α(ω) : k ∈ Z, α ∈ Ak

}
satisfying the following properties:

(i) for any k ∈ Z and α ∈ Ak, the interior of Qk
α(ω) is Q̃k

α(ω), and the closure of Qk
α(ω) is Q

k
α(ω);

(ii) for any k ∈ Z and α ∈ Ak, Q̃k
α(ω) and Q

k
α(ω) are one another’s interior and closure;

(iii) for any k ∈ Z, {Qk
α(ω)}α∈Ak are disjoint and X =

⋃
α∈Ak Qk

α(ω);

(iv) if j ≥ k, α ∈ Ak and γ ∈ A j, then either Q j
γ(ω) ⊂ Qk

α(ω) or Q j
γ(ω) ∩ Qk

α(ω) = ∅;
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(v) for any k ∈ Z, α ∈ Ak and j < k, there exists a unique γ ∈ A j such that Qk
α(ω) ⊂ Q j

γ(ω);

(vi) for any k ∈ Z and α ∈ Ak, B(zk
α(ω), 5−1δk) ⊂ Qk

α(ω) ⊂ B(zk
α(ω), 3δk);

(vii) for any x ∈ X, k ∈ Z and ε ∈ (0,∞),

Pω

x ∈
⋃
α∈Ak

∂εQk
α(ω)

 ≤ 1
δ
εηδ ,

where ηδ := 1 − log(84M8)
log(1/δ) and ∂εQk

α(ω) := {y ∈ Q
k
α(ω) : d(y, Q̃k

α(ω){) < εδk}.

5.2 An admissible smooth MRA

Let us adopt all the notation in the previous subsection. For any k ∈ Z and α ∈ Ak, define the spline
function

sk
α(x) := Pω

(
x ∈ Q

k
α(ω)

)
for all x ∈ X.

Each spline function sk
α locates near the dyadic cube Qk

α(ω). According to [2, Theorem 3.1] and [39,
Corollary 6.13], we have

1B(zk
α, 8−1δk) ≤ sk

α ≤ 1B(zk
α, 85δk) and

∑
α∈Ak

sk
α ≡ 1,

and that sk
α enjoys the following Hölder continuity:

|sk
α(x) − sk

α(y)| ≤ Cδ

(
d(x, y)
δ

)ηδ
for all x, y ∈ X,

where ηδ ∈ (0, 1) is the same constant as in Theorem 5.1(vii). Under µ(X) < ∞, we let mX be as in (4.7),
which implies that sk

α ≡ 1 whenever k ≤ mX and α ∈ Ak. According to [2, Theorem 5.1], the spline
functions produce an MRA in the sense of Definition 2.1.

Lemma 5.2 ([2]). Let (X, d, µ) be a metric measure space satisfying (VD). For any k ∈ Z, let Vk be the
closed linear span of {sk

α}α∈Ak in L2(X). Then the following hold:

(i) for each k ∈ Z, Vk ⊂ Vk+1;

(ii)
⋃

k∈Z Vk = L2(X);

(iii) when µ(X) = ∞,
⋂

k∈Z Vk = {0};

(iii)′ when µ(X) < ∞,
⋂

k∈Z Vk = VmX = {constant functions}, where mX is as in (4.7); 2

(iv) for each k ∈ Z, with the notation µk
α := µ(B(zk

α, δ
k)), the functions {sk

α/

√
µk
α}α∈Ak form a Riesz

basis of Vk, namely, for any scalar sequence {λα}α∈Ak ,∥∥∥∥∥∥∥∥
∑
α∈Ak

λαsk
α

∥∥∥∥∥∥∥∥
L2(X)

'

 ∑
α∈Ak

|λα|
2µk

α

1/2

,

where the implicit positive constants are independent of k and {λα}α∈Ak .
2Note that in Lemma 5.2 we have Vk = VmX whenever k ≤ mX. The value mX plays the same role as the integer k0 in

Definition 2.1(iii).
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Consequently, the sequence {Vk}k∈Z forms an MRA in L2(X).

In this and the forthcoming subsections, we will always assume that {Vk}k∈Z is the MRA constructed
in Lemma 5.2. For any k ∈ Z, we still denote by Wk the orthogonal complement of Vk in Vk+1. For
any k ∈ Z, denote by Pk and Qk the orthogonal projectors from L2(X) onto Vk and Wk, respectively. Of
course, for any k ∈ Z, one still has (see (3.2))

Qk = Pk+1 − Pk.

By using a very delicate construction of orthogonal basis3 of Vk and Wk, Auscher and Hytönen (see [2,
Lemma 10.1]) derives the following properties of the integral kernels of Pk and Qk.

Lemma 5.3 ([2]). Let (X, d, µ) be a metric measure space satisfying (VD) and {Vk}k∈Z be the MRA
constructed in Lemma 5.2. Then, for any k ∈ Z, the orthogonal projectors

Pk : L2(X)→ Vk and Qk : L2(X)→ Wk

have integral kernels Pk(x, y) and Qk(x, y), which satisfy the following properties:

(i) (symmetric) for any k ∈ Z, both Pk(x, y) and Qk(x, y) are symmetric in x and y.

(ii) (exponential decay) for any k ∈ Z and x, y ∈ X,

|Pk(x, y)| + |Qk(x, y)| ≤
C√

V(x, δk)V(y, δk)
exp

(
−c∗

d(x, y)
δk

)
,

(iii) (Hölder regularity) for any k ∈ Z and x, y, y′ ∈ X such that d(y, y′) ≤ δk,

|Pk(x, y) − Pk(x, y′)| + |Qk(x, y) − Qk(x, y′)| ≤
C√

V(x, δk)V(y, δk)

(
d(y, y′)
δk

)ηδ
exp

(
−c∗

d(x, y)
δk

)
;

(iv) (stochastic completeness of Pk and vanishing property of Qk) for any k ∈ Z and x ∈ X,
ˆ
X

Pk(x, y) dµ(y) = 1 and
ˆ
X

Qk(x, y) dµ(y) = 0,

where δ, ηδ are as in Theorem 5.1 and C, c∗ are positive constants independent of k, x, y and y′.

Remark 5.4. Let {Vk}k∈Z be as in Lemma 5.2. We present a three-fold comment of the corresponding
projectors {Pk}k∈Z and {Qk}k∈Z in m Lemma 5.3.

(i) According to [2, Section 6], for any k ∈ Z and x, y ∈ X, the integral kernel Pk(x, y) has the
following representation

Pk(x, y) =
∑
α∈Ak

∑
γ∈Ak

M−1
k (α, γ)

sk
α(x)sk

γ(y)√
V(zk

α, δk)V(B(zk
γ, δk)

,

3The orthonormal basis of Vk and Wk constructed in [2] have exponential decay at infinity and Hölder regularity property,
which are called smooth wavelets.
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where {M−1
k (α, γ)}α,γ is the inverse of the infinite matrix {Mk(α, γ)}α,γ with

Mk(α, γ) :=
sk
α(x)sk

γ(y)√
V(zk

α, δk)V(zk
γ, δk)

.

By the support conditions of the spline functions, we see that he matrix {Mk(α, γ)}α,γ is banded,
that is, Mk(α, γ) = 0 when d(zk

α, z
k
γ) ≥ cδk, where c is some positive constant independent of α, γ

and k. For a banded matrix, its inverse matrix {M−1
k (α, γ)}α,γ may have negative elements off the

diagonal (see, e.g. [44]). Thus, Pk(x, y) may have many negative-valued points when x is far away
from y.

(ii) Consider only the case µ(X) = ∞. For any k ∈ Z, Auscher and Hytönen [2] constructed an
orthonormal basis {ψk

γ : γ ∈ Gk} of Wk, where Gk = Ak+1 \ Ak, such that the following properties
hold:

– (exponential decay) for any k ∈ Z, γ ∈ Gk and x ∈ X,

∣∣∣ψk
γ(x)

∣∣∣ ≤ C√
V(zk+1

γ , δk+1)
exp

−c∗
d(zk+1

γ , x)

δk

 ;

– (Hölder regularity) for any k ∈ Z, γ ∈ Gk and x, y ∈ X satisfying d(x, y) ≤ δk,

∣∣∣ψk
γ(x) − ψk

γ(y)
∣∣∣ ≤ C

(
d(x, y)
δk

)ηδ 1√
V(zk+1

γ , δk+1)
exp

−c∗
d(zk+1

γ , x)

δk

 ;

– (vanishing mean) for any k ∈ Z and γ ∈ Gk,
ˆ
X

ψk
γ(x) dµ(x) = 0,

where δ, ηδ are as in Theorem 5.1 and C, c∗ are positive constants independent of k, γ, x and y. In
this way, the family {ψk

γ : k ∈ Z, γ ∈ Gk} forms an orthonormal basis of L2(X), whose elements
are called smooth wavelets. For any f ∈ L2(X), there is the wavelet decomposition formula (see
[2]):

f =
∑
k∈Z

Qk f =
∑
k∈Z

∑
γ∈Gk

〈 f , ψk
γ〉ψ

k
γ in L2(X).

Note that each ψk
γ is associated to a reference dyadic point zk+1

γ . Moreover, ψk
γ is located near a

random dyadic cube Qk+1
γ (ω) and has exponential decay at infinity. The wavelets {ψk

γ : k ∈ Z, γ ∈
Gk} can be understood as a smooth version of the Haar wavelets (see [41]).

(iii) In view of (ii) and the Hölder regularity of Pk(x, y) in Lemma 5.3(iii), the multiresolution analysis
{Vk}k∈Z in Lemma 5.2 is referred to as a smooth MRA.

As a consequences of Lemmas 5.2 and 5.3, we arrive at the following conclusion.
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Theorem 5.5. Let (X, d, µ) be a metric measure space satisfying (VD) and {Vk}k∈Z be the MRA con-
structed in Lemma 5.2. Then, {Vk}k∈Z is an admissible MRA.

Proof. Let {Pk}k∈Z be as in Lemma 5.3. We are about to validate that the three conditions in Definition
2.3 are all satisfied.

Note that (A2) in Definition 2.3 follows directly from Lemma 5.3. Now, assuming µ(X) = ∞, we
validate (A3) in Definition 2.3. For any x, y ∈ X, note that Lemma 5.3(ii) yields

|Pk(x, y)| .
1√

V(x, δk)V(y, δk)
.

If k → −∞, then B(x, δk)→ X and, hence, V(x, δk)→ µ(X) = ∞. In a similar way, we have V(y, δk)→
µ(X) = ∞ as k → −∞. This leads to

lim
k→−∞

Pk(x, y) = 0,

as desired.
It remains to show (A1) of Definition 2.3. To this end, for any k ∈ Z and x, y ∈ X, we have by (1.1)

that
V(x, δk + d(x, y))√

V(x, δk)V(y, δk)
≤ C′D

(
δk + 2d(x, y)

δk

)n

'

(
1 +

d(x, y)
δk

)n

,

which, along with Lemma 5.3(ii), induces that

|Pk(x, y)| .
1

V(x, δk + d(x, y))

(
1 +

d(x, y)
δk

)n

exp
(
−c∗

d(x, y)
δk

)
.

1
V(x, δk + d(x, y))

exp
(
−c

d(x, y)
δk

)
holds for some constant c ∈ (0, c∗). Consequently, we obtain
ˆ
X

|Pk(x, y)| dµ(y) .
ˆ
X

1
V(x, δk + d(x, y))

exp
(
−c

d(x, y)
δk

)
dµ(y)

'


ˆ

d(x,y)<δk
+

∞∑
j=0

ˆ
δk− j≤d(x,y)<δk− j−1

 1
V(x, δk + d(x, y))

exp
(
−c

d(x, y)
δk

)
dµ(y)

.

ˆ
d(x,y)<δk

1
V(x, δk)

dµ(y) +

∞∑
j=0

ˆ
δk− j≤d(x,y)<δk− j−1

1
V(x, δk− j)

exp
(
−cδ− j

)
dµ(y)

. 1 +

∞∑
j=0

exp
(
−cδ− j

)
. 1.

Thus, the condition (A1) in Definition 2.3 is satisfied. �

5.3 Construction of a stochastic complete signed heat kernel

Since we have already the smooth MRA (see Lemma 5.2), by using the smooth projectors {Pk}k∈Z and
{Qk}k∈Z from Lemma 5.3, we follow (2.4) and construct a family of functions {pt}t>0 (see (5.1) below).
Such {pt}t>0 will be exactly the one required in Theorem 2.9.
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Theorem 5.6. Let (X, d, µ) be a metric measure space satisfying (VD). Assume that {Vk}k∈Z is the
MRA in Lemma 5.2. For any k ∈ Z, denote by Qk the orthogonal projector from L2(X) to Wk, where
Wk = Vk+1 	 Vk. Fix β ∈ (0,∞). For any t ∈ (0,∞) and x, y ∈ X, define

pt(x, y) :=


∑
k∈Z

e−tδ−βk
Qk(x, y) as µ(X) = ∞;

1
µ(X)

+

∞∑
k=mX

e−tδ−βk
Qk(x, y) as µ(X) < ∞,

(5.1)

where mX is as in (4.7). Then {pt}t>0 is a stochastic complete signed heat kernel.

Proof. As was proved in Theorem 5.5, we know that {Vk}k∈Z in Lemma 5.2 is an admissible MRA. Let
δ ∈ (0, 1) be as in Theorem 5.1 and {λk}k∈Z be the admissible spectrum given in Example 2.5. The
remaining argument runs the same lines as that in the proof of Theorem 4.7. �

5.4 Stable-like upper estimate

In this subsection, we show that {pt}t>0 in (5.1) satisfies the stable-like upper estimate as stated in
Theorem 2.9.

Theorem 5.7. Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that β ∈ (0,∞) and
{pt}t>0 is the signed heat kernel defined in (5.1). Then, there exists a positive constant C such that for all
t ∈ (0,∞) and x, y ∈ X,

|pt(x, y)| ≤
C

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
. (5.2)

Proof. By symmetry, we may as well assume that V(x, t1/β) ≥ V(y, t1/β). Let kt be the unique integer
such that

δkt−1 > t1/β ≥ δkt . (5.3)

Consider first the case µ(X) = ∞. Then by (5.1) and (3.19) (taking λk = δ−βk and N = −kt therein), we
write

pt(x, y) =
∑
k≥kt

e−tδ−βk
Qk(x, y) +

∑
k≤kt−1

e−tδ−βk
Qk(x, y)

=
∑
k≥kt

e−tδ−βk
Qk(x, y) + e−tδ−β(kt−1)

Pkt (x, y) +
∑

k≤kt−1

(
e−tδ−β(k−1)

− e−tδ−βk)
Pk(x, y)

=: Y1 + Y2 + Y3. (5.4)

To estimate Y1, observe that any k ≥ kt satisfies δkβ ≤ t. By this and (1.1), we deduce

V(x, t1/β + d(x, y))
V(x, δk)

≤ C′D

(
t1/β + d(x, y)

δk

)n

,

and

V(x, t1/β + d(x, y))
V(y, δk)

≤ C′D

(
t1/β + 2d(x, y)

δk

)n

,
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where the constants C′D and n are as in (1.1). Further, it follows from Lemma 5.3(ii) that

|Y1| ≤
∑
k≥kt

e−tδ−βk
|Qk(x, y)|

.
∑
k≥kt

e−tδ−βk 1√
V(x, δk) V(y, δk)

exp
(
−c∗

d(x, y)
δk

)

.
1

V(x, t1/β + d(x, y))

∑
k≥kt

e−tδ−βk
(
t1/β + d(x, y)

δk

)n

exp
(
−c∗

d(x, y)
δk

)
.

Observing that

exp
(
−c∗

d(x, y)
δk

)
≤ exp

(
−c∗

d(x, y)
t1/β

)
as δk ≤ t1/β.

and (
t1/β + d(x, y)

t1/β

)n+β

exp
(
−c∗

d(x, y)
t1/β

)
≤ sup

τ>0
(1 + τ)n+βe−c∗τ < ∞,

we then obtain(
t1/β + d(x, y)

δk

)n

exp
(
−c∗

d(x, y)
δk

)
≤

(
t1/β

δk

)n (
t1/β + d(x, y)

t1/β

)n

exp
(
−c∗

d(x, y)
t1/β

)
.

(
t1/β

δk

)n (
t1/β

t1/β + d(x, y)

)β
Consequently,

|Y1| .
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β ∑
k≥kt

e−tδ−βk
(
t1/β

δk

)n

.
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

Now, we consider Y2. Indeed, by Lemma 5.3 and δktβ ' t, together with (1.1) and the fact

sup
τ>0

(1 + τ)n+βe−c∗τ < ∞,

we also derive

|Y2| . e−tδ−βkt 1√
V(x, δkt ) V(y, δkt )

exp
(
−c∗

d(x, y)
δkt

)
.

1
V(x, δkt + d(x, y))

(
1 +

d(x, y)
δkt

)n

exp
(
−c∗

d(x, y)
δkt+1

)
.

1
V(x, δkt + d(x, y))

(
1 +

d(x, y)
δkt

)−β
'

1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.
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as desired.
It remains to estimate Y3. If k ≤ kt − 1, then δkβ > t and, hence,∣∣∣∣e−tδ−β(k−1)

− e−tδ−βk
∣∣∣∣ = e−tδ−βk

∣∣∣∣etδ−βk(1−δβ) − 1
∣∣∣∣ ' t

δkβ .

This, combined with Lemma 5.3(ii), further yields

|Y3| ≤
∑

k≤kt−1

∣∣∣∣e−tδ−β(k−1)
− e−tδ−βk

∣∣∣∣ |Pk(x, y)|

.
∑

k≤kt−1

t
δkβ

1√
V(x, δk) V(y, δk)

exp
(
−c∗

d(x, y)
δk

)
.

By using (1.1) (when t1/β + d(x, y) ≥ δk), we see that

V(x, t1/β + d(x, y))
V(x, δk)

.

(
t1/β + d(x, y)

δk

)σ
holds uniformly in {x, y, t, k}, where

σ =

n as t1/β + d(x, y) ≥ δk;
0 as t1/β + d(x, y) < δk,

where n is as in (1.1). In a similar manner, if we change V(x, δk) to V(y, δk), then we still have

V(x, t1/β + d(x, y))
V(y, δk)

'
V(y, t1/β + d(x, y))

V(y, δk)
.

(
t1/β + d(x, y)

δk

)σ
.

With these, we continue with the estimate of |Y3|. If d(x, y) ≤ t1/β, then we have by δkt ' t1/β that

|Y3| .
1

V(x, t1/β + d(x, y))

∑
k≤kt−1

( t
δk

)β ( t1/β + d(x, y)
δk

)σ
exp

(
−c∗

d(x, y)
δk

)
.

1
V(x, t1/β + d(x, y))

∑
k≤kt−1

( t
δk

)β+σ

'
1

V(x, t1/β + d(x, y))

'
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

If d(x, y) > t1/β, then

|Y3| .
1

V(x, t1/β + d(x, y))
t

d(x, y)β
∑

k≤kt−1

(
d(x, y)
δk

)β+σ

exp
(
−c∗

d(x, y)
δk

)

'
1

V(x, t1/β + d(x, y))
t

d(x, y)β
∑

k≤kt−1

ˆ δk−1

δk

(
d(x, y)
δk

)β+σ

exp
(
−c∗

d(x, y)
δk

)
ds
s
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.
1

V(x, t1/β + d(x, y))
t

d(x, y)β

ˆ ∞
δkt−1

(
d(x, y)

s

)β+σ

exp
(
−c∗

d(x, y)
s

)
ds
s

.
1

V(x, t1/β + d(x, y))
t

d(x, y)β

ˆ ∞
0

τβ+σ exp (−c∗τ)
dτ
τ

'
1

V(x, t1/β + d(x, y))
t

d(x, y)β

'
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

Substituting the estimates of Y1 through Y3 into (5.4), we derive the desired estimate of pt(x, y) in
(5.2) under µ(X) = ∞.

Now, we consider the case µ(X) < ∞. Let kt ∈ Z be as in (5.3). If kt ≤ mX, then the formula (5.1)
directly gives

pt(x, y) =
∑

k≥mX

e−tδ−βk
Qk(x, y) + PmX(x, y) =: Y′1 + Y′2. (5.5)

Since any k ≥ mX also satisfies δkβ ≤ t, we find that the same estimate of Y1 also implies

|Y′1| .
1

V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

By (4.7), the fact t1/β ≥ δkt ≥ δmX and that

PmX(x, y) =
1

µ(X)
for all x, y ∈ X,

we have

|Y′2| =
1

µ(X)
.

1
V(x, δmX + d(x, y))

(
1 +

d(x, y)
δmX

)−β
.

1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

So, inserting the estimates of Y′1 and Y′2 into (5.5), we derive that (5.2) also holds under the situation
µ(X) < ∞ and kt ≤ mX.

If kt ≥ mX + 1, then by (5.1) and (3.18) (taking λk = δ−βk, m = mX and N = −kt therein), we write

pt(x, y) =
∑
k≥kt

e−tδ−βk
Qk(x, y) +

kt−1∑
k=mX

e−tδ−βk
Qk(x, y) + PmX(x, y)

=
∑
k≥kt

e−tδ−βk
Qk(x, y) + e−tδ−β(kt−1)

Pkt (x, y) +

kt−1∑
k=mX

(
e−tδ−β(k−1)

− e−tδ−βk)
Pk(x, y)

=: Y1 + Y2 + Y′3. (5.6)

Note that the estimate of |Y3| remains true for |Y3|. By this and the estimates of Y1 and Y2, we derive
from (5.6) the desired upper estimate of pt(x, y) in (5.2) under µ(X) < ∞ and kt ≥ mX + 1.

Altogether, we conclude the proof of Theorem 5.7. �
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5.5 Almost Lipschitz regularity and near-diagonal lower estimate

The maim aim of this subsection is to show that {pt}t>0 in (5.1) satisfies the almost Lipschitz regu-
larity (see Theorem 5.8 below) and near-diagonal lower estimate (see Theorem 5.9 below) as stated in
Theorem 2.9.

Theorem 5.8. Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that β ∈ (0,∞) and
{pt}t>0 is the signed heat kernel defined in (5.1). Then, there exists a positive constant C such that for
any t ∈ (0,∞) and x, y, y′ ∈ X satisfying d(y, y′) ≤ t1/β,

|pt(x, y) − pt(x, y′)| ≤ C
(
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
, (5.7)

where ηδ ∈ (0, 1) is the constant from Theorem 5.1(vii).

Proof. Let kt ∈ Z be the unique integer satisfy (5.3), that is, δ(kt−1)β > t ≥ δktβ. If µ(X) = ∞, then by
using (5.4), we have

|pt(x, y) − pt(x, y′)| ≤
∑
k≥kt

e−tδ−βk
∣∣∣∣Qk(x, y) − Qk(x, y′)

∣∣∣∣
+ e−tδ−β(kt−1)

∣∣∣∣Pkt (x, y) − Pkt (x, y′)
∣∣∣∣

+
∑

k≤kt−1

(
e−tδ−β(k−1)

− e−tδ−βk) ∣∣∣∣Pk(x, y) − Pk(x, y′)
∣∣∣∣

=: Z1 + Z2 + Z3. (5.8)

The estimates of Z1,Z2 and Z3 are similar to that of Y1,Y2,Y3 in Theorem 5.7.
First we estimate Z1. When d(y, y′) < δk, applying Lemma 5.3(iii) and using (VD), we derive

|Qk(x, y) − Qk(x, y′)| .
(
d(y, y′)
δk

)ηδ 1√
V(x, δk) V(y, δk)

exp
(
−c∗

d(x, y)
δk

)
. (5.9)

If d(y, y′) ≥ δk, then applying (VD) and the size condition of Qk in Lemma 5.3(i), we derive that

|Qk(x, y) − Qk(x, y′)| ≤ |Qk(x, y)| + |Qk(x, y′)| (5.10)

.

(
d(y, y′)
δk

)ηδ 1√
V(x, δk) V(y, δk)

exp
(
−c∗

d(x, y)
δk

)
+

(
d(y, y′)
δk

)ηδ 1√
V(x, δk) V(y′, δk)

exp
(
−c∗

d(x, y′)
δk

)
.

When k ≥ kt, we observe that δk ≤ δkt ≤ t1/β, which implies

exp
(
−c∗

d(x, y)
δk

)
≤ exp

(
−c∗

d(x, y)
t1/β

)
and exp

(
−c∗

d(x, y′)
δk

)
≤ exp

(
−c∗

d(x, y′)
t1/β

)
.

Regarding the second inequality in the last formula, since d(y, y′) ≤ t1/β, it follows that

d(x, y) ≤ d(x, y′) + d(y′, y) ≤ d(x, y′) + t1/β,
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thereby leading to

exp
(
−c

d(x, y′)
t1/β

)
≤ exp

(
−c∗

d(x, y) − t1/β

t1/β

)
= ec∗ exp

(
−c∗

d(x, y)
t1/β

)
.

Moreover, by δk ≤ t1/β, (1.1) and the fact d(x, y′) ≤ d(x, y) + d(y, y′) ≤ d(x, y) + t1/β, we have

V(x, t1/β + d(x, y))
V(y′, δk)

.

(
t1/β + d(x, y) + d(x, y′)

δk

)n

.

(
t1/β + d(x, y)

δk

)n

.

Similarly, we also have

V(x, t1/β + d(x, y))
V(x, δk)

.

(
t1/β + d(x, y)

δk

)n

and
V(x, t1/β + d(x, y))

V(y, δk)
.

(
t1/β + d(x, y)

δk

)n

.

Invoking these facts, we derive from (5.9) and (5.10) that when d(y, y′) ≤ t1/β it always holds

|Qk(x, y) − Qk(x, y′)|

.

(
d(y, y′)
δk

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β + d(x, y)

δk

)n

exp
(
−c∗

d(x, y)
t1/β

)
'

(
d(y, y′)
δk

)ηδ ( t1/β

δk

)n 1
V(x, t1/β + d(x, y))

(
1 +

d(x, y)
t1/β

)n

exp
(
−c∗

d(x, y)
t1/β

)
.

(
d(y, y′)
δk

)ηδ ( t1/β

δk

)n 1
V(x, t1/β + d(x, y))

(
1 +

d(x, y)
t1/β

)−β
'

(
t1/β

δk

)ηδ+n (
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
, (5.11)

where the penultimate step is due to the fact that supτ>0(1 + τ)n+βe−c∗τ < ∞. As a consequence of (5.11),
we arrive at the conclusion

Z1 .

(
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β ∑
k≥kt

e−tδ−βk
(
t1/β

δk

)ηδ+n

.

(
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
,

as desired.
The estimate of Z2 is similar to that of Z1, but using the size and Hölder regularity conditions of Pk

that was given in Lemma 5.3; we thus omit the details.
To estimate Z3, we observe that for k ≤ kt − 1 there is d(y, y′) ≤ t1/β < δkt−1 ≤ δk, which, combined

with Lemma 5.3(ii), leads to

|Pk(x, y) − Pk(x, y′)| .
(
d(y, y′)
δk

)ηδ 1√
V(x, δk)V(y, δk)

exp
(
−c∗

d(x, y)
δk

)
.

With this, we proceed as the estimate of Y3 in Theorem 5.7, thereby obtaining

|Z3| .
∑

k≤kt−1

∣∣∣∣e−tδ−β(k−1)
− e−tδ−βk

∣∣∣∣ (d(y, y′)
δk

)ηδ 1√
V(x, δk)V(y, δk)

exp
(
−c∗

d(x, y)
δk

)
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'

(
d(y, y′)

t1/β

)ηδ ∑
k≤kt−1

t
δβk

1√
V(x, δk)V(y, δk)

exp
(
−c∗

d(x, y)
δk

)

.

(
d(y, y′)

t1/β

)ηδ 1
V(x, t1/β + d(x, y))

(
t1/β

t1/β + d(x, y)

)β
.

Combining the estimates of Z1,Z2 and Z3, we derive from (5.8) that (5.7) holds when µ(X) = ∞.
Under the case µ(X) < ∞, we consider the cases kt ≤ mX and kt ≥ mX + 1, respectively. Instead of

(5.8), we apply (5.5) and (5.6), thereby writing

|pt(x, y) − pt(x, y′)| ≤
∑

k≥mX

e−tδ−βk
∣∣∣∣Qk(x, y) − Qk(x, y′)

∣∣∣∣ +
∣∣∣∣PmX(x, y) − PmX(x, y′)

∣∣∣∣
and

|pt(x, y) − pt(x, y′)| ≤
∑
k≥kt

e−tδ−βk
∣∣∣∣Qk(x, y) − Qk(x, y′)

∣∣∣∣ + e−tδ−β(kt−1)
∣∣∣∣Pkt (x, y) − Pkt (x, y′)

∣∣∣∣
+

kt−1∑
k=mX

(
e−tδ−β(k−1)

− e−tδ−βk) ∣∣∣∣Pk(x, y) − Pk(x, y′)
∣∣∣∣.

Running with almost the same lines as that of Z1 through Z3, we can estimate the terms in the right hands
of the above two formulae, thereby leading to (5.7); the details are omitted. This finishes the proof of
Theorem 5.8. �

Based on the Hölder regularity estimate in Theorem 5.8 and the stochastic completeness property in
Theorem 5.6, we now give the near-diagonal lower estimate of {pt}t>0.

Theorem 5.9. Let (X, d, µ) be a metric measure space satisfying (VD). Suppose that β ∈ (0,∞) and
{pt}t>0 is the signed heat kernel defined in (5.1). Then, for any t ∈ (0,∞) and x ∈ X,

pt(x, x) ≥
C

V(x, t1/β)
. (5.12)

Consequently, there exists a small constant ε ∈ (0, 1) such that for any t ∈ (0,∞) and x, y ∈ X satisfying
d(x, y) ≤ εt1/β,

pt(x, y) ≥
C

V(x, t1/β)
. (5.13)

Here, the constants C and ε in (5.12) and (5.13) are positive and independent of t and x, y.

Proof. Once we have proved (5.12), then (5.13) follows from (5.12) and Theorem 5.8, by writing

pt(x, y) ≥ pt(x, x) − |pt(x, x) − pt(x, y)|

and letting d(x, y) ≤ εt1/β with ε being a sufficiently small positive number.
It remains to show (5.12). Let λ ∈ (1,∞), which will be determined later. For any t ∈ (0,∞) and

x ∈ X, by the semigroup property, the Hölder inequality and
´
X

pt(x, z) dµ(z) = 1, we have

p2t(x, x) =

ˆ
X

pt(x, z)pt(z, x) dµ(z)
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=

ˆ
X

pt(x, z)2 dµ(z)

≥

ˆ
B(x, λt1/β)

pt(x, z)2 dµ(z)

≥
1

V(x, λt1/β)

(ˆ
B(x, λt1/β)

pt(x, z) dµ(z)
)2

=
1

V(x, λt1/β)

(
1 −
ˆ

d(z, x)≥λt1/β
pt(x, z) dµ(z)

)2

=
1

V(x, λt1/β)

(
1 −
ˆ

d(z, x)≥λt1/β
|pt(x, z)| dµ(z)

)2

.

Moreover, note that Theorem 5.7 implies

ˆ
d(z, x)≥λt1/β

|pt(x, z)| dµ(z) .
ˆ

d(z, x)≥λt1/β

1
V(x, t1/β + d(x, z))

(
t1/β

t1/β + d(x, z)

)β
dµ(z)

.
∞∑
j=1

ˆ
2 j−1λt1/β≤d(z, x)<2 jλt1/β

1
V(x, t1/β + d(z, x))

(
t1/β

t1/β + d(z, x)

)β
dµ(z)

.
∞∑
j=1

(
2 jλ

)−β V(x, 2 jλt1/β)
V(x, t1/β + 2 j−1λt1/β)

.
∞∑
j=1

(
2 jλ

)−β
. λ−β.

In other words, there exists a positive constant C0 (independent of t, x and λ) such that
ˆ

d(z, x)≥λt1/β
|pt(x, z)| dµ(z) ≤ C0λ

−β.

Since β > 0, we choose λ > 1 large enough so that C0λ
−β < 1/2, thereby giving

p2t(x, x) ≥
1

4V(x, λt1/β)
& λ−n 1

V(x, t1/β)

in terms of (VD). This ends the proof of (5.12). �

Remark 5.10. Theorem 2.9 is an immediate consequence of Theorems 5.6, 5.7, 5.8 and 5.9.
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Fields 79 (1988), no. 4, 543–623.

[9] R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer.
Math. Soc. 354 (2002), no. 7, 2933–2953.
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