
ON A CLASS OF MARKOV SEMIGROUPS ON DISCRETE
ULTRA-METRIC SPACES

ALEXANDER BENDIKOV, ALEXANDER GRIGOR’YAN, AND CHRISTOPHE PITTET

Abstract. We consider a discrete ultra-metric space (X, d) with a measure m and
construct in a natural way a symmetric Markov semigroup {Pt}t≥0 in L2 (X, m) and the

corresponding Markov process {Xt}. We prove upper and lower bounds of its transition
function and its Green function, give a criterion for the transience, and estimate its
moments.
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1. Introduction

We study here certain Markov semigroups on ultra-metric measure spaces. An ultra-
metric space is a metric space (X, d) where the distance function satisfies a stronger
triangle inequality

d(x, y) ≤ max{d(x, z); d(z, y)},
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for all x, y, z ∈ X, that is called the ultra-metric (or ultra-triangle) inequality. We say
that an ultra-metric space (X, d) is discrete if X is an infinite set, all metric balls of (X, d)
are finite sets, and the distance function d takes only integer values1 (various equivalent
descriptions of such spaces are given in Section 2). In this paper we consider only discrete
ultra-metric spaces postponing general ultra-metric spaces to a sequel paper.

Various aspects of potential analysis on ultra-metric spaces have been studied before. In
the important case of non-archimedean local fields, the theory has been developed in [22],
and even in a more general setting in [20]. The Riesz potentials as defined in the above
two references are related (as usual) to Laplacians defined in the present paper. Also the
Sobolev embedding (see [20, VI.4]) is as usual related to properties of heat kernels studied
in the present paper.

A well-known example of an ultra-metric space is the field Qp of p-adic numbers with
the metric ‖x − y‖p where ‖∙‖p is the p-adic norm. This space is not discrete but its subset

Λp =

{
a

pk
: a < pk, a, k ∈ Z+,

}

is a discrete ultra-metric space. By representing p-adic fractions in the numeral base p
one easily identifies Λp with the inductive limit

Z(p)(∞) = lim−→Z (p)n ,

where the ultra-metric distance between two elements x, y ∈ Z(p)(∞) is defined as the
minimal n so that x, y belong to the same coset of Z (p)n in Z(p)(∞).

There is a huge literature devoted to random walks on finitely (or compactly) generated
groups, based on the study of the geometry of such groups (see e.g. [4], [7], [12], [18], [19],
[21], [23], [25], and references therein). The group Z (p)(∞) is not finitely generated. A
basic notion of geometry of finitely generated groups – the word metric, does not apply
here. However, the group Z (p)(∞) is a member of the class of locally finite groups, where
the notion of an ultra-metric can be used instead of the word metric.

Having defined random walks on Z (p)n for each n let us select a stochastic sequence
{cn}

∞
n=0 and define a random walk in Z(p)(∞) as follows: with probability cn we choose n

and then move according to the law in the subgroup Z (p)n . Similarly one defines random
walks on other locally finite groups. Certain properties of such random walks, including
recurrence, have been studied by a number of authors – see, for example, [3], [6], [8], [9],
[10], [13], [14], [15], [16], [17].

Let us now define a Markov chain on a discrete ultra-metric space. Fix a measure m
on a discrete ultra-metric space (X, d) such that 0 < m (x) < ∞ for any x ∈ X and
m (X) = ∞. For example, m can be a counting measure. Denote by Br (x) the closed
d-ball of radius r centered at x. Consider the following Markov operator, which is defined
for all functions f ∈ L2 (X,m):

Pf (x) =
∞∑

k=0

ck

m (Bk (x))

∫

Bk(x)
fdm,

where {ck}
∞
k=0 is a given sequence of positive numbers such that

∑∞
k=0 ck = 1. The

operator P is associated with two types of Markov chains.
1. A discrete time Markov chain {Xn} , n = 0, 1, ... with the following transition rule:

Xn+1 is uniformly distributed in Bk (Xn) with probability ck. This can be viewed as

1One can slightly relax the latter assumption by assuming that the set of values of d (x, y) is contained
in a sequence {vk}

∞
k=0 such that vk → ∞ as k → ∞. Since the composition of an ultra-metric with a

strictly monotone increasing function with a fixed point 0 is again an ultra metric, one can use such a
change of metric to reduce a general sequence {vk} to the sequence vk = k.
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follows: in each ball Bk (x) we define a Markov chain that gets uniformly distributed in
one step, and then take a convex combination of the corresponding Markov kernels with
coefficients ck.

2. A continuous time Markov process {Xt}t≥0 with transition density p (t, x, y), which is
the integral kernel of the operator P t with respect to measure m. The Markov semigroup{
P t
}

t≥0
is defined using the functional calculus of self-adjoint operators and the fact that

P is symmetric and non-negative definite (note, that a symmetric Markov operator does
not have to be non-negative definite in general).

It follows that the discrete time Markov chain coincides with the restriction of the
continuous time process {Xt} to integer values of t, which allows us to focus on the study
of {Xt} . One of the main purposes of this paper is to obtain estimates of the transition
density (=heat kernel) p (t, x, y) from the given data: the sequences {ck} and {m (Bk (x))}.

We should emphasize that, to the best of our knowledge, this is the first time that this
problem has been considered without assuming a group structure on X, which excludes
the powerful methods of harmonic analysis such as the Fourier transform. Our approach
is based on the simple observation that the building blocks of the operator P , namely, the
operators

Pkf (x) =
1

m (Bk (x))

∫

Bk(x)
fdm,

are not only Markov operators, but also orthogonal projectors in L2 (X,m) . The latter is
generally not true on an arbitrary metric measure space, but is a specific property of an
ultra-metric. Indeed, it follows easily from the ultra-metric inequality that any two balls
of the same radius are either disjoint or identical, which implies that Pkf belongs to the
subspace Vk of L2 (X,m) of all functions that are constant on all balls of radius k, and Pk

is an orthoprojector onto Vk. Moreover, the sequence {Vk} is decreasing in k, so that the
family {Pk} is a spectral resolution of the identity, up to reparametrization.

Hence, the ultra-metric property allows one to obtain immediately a spectral resolution
of P , where the spectral projectors are also Markov operators. This enables us to engage
at an early stage the methods of the spectral theory and functional calculus. Our results
are stated in terms of the spectral density function N (x, λ) that is defined in Section 3.2
using the sequences {ck} and {m (Bk (x))} . It is an increasing staircase function on [0, 1]
that changes from 0 to 1

m(x) . Its behavior as λ → 0 is intimately related to the behavior
of the heat kernel p (t, x, y) as t → ∞. By Theorem 3.5, we have the following explicit
identity

p(t, x, y) = t

1
1+dσ(x,y)∫

0

N(x, λ)(1 − λ)t−1dλ, (1.1)

where dσ is another ultra-metric on X that is defined in (3.21) using the original ultra-
metric d and the sequence {ck}.

Under certain additional assumptions about the function N (x, λ) we obtain in Section
3 various estimates for the heat kernel. For example, if the function λ 7→ N (x, λ) satisfies
the doubling property then, by Corollary 3.17, for all t ≥ 1,

p (t, x, y) '
t

t + dσ (x, y)
N

(

x,
1

t + dσ (x, y)

)

(where the sign ' means that the ratio of the left and right hand sides is bounded from
above and below by positive constants). In particular, if N (x, λ) ' λα then

p(t, x, y) '
t

(t + dσ(x, y))1+α
,
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that is, p (t, x, y) behaves like the Cauchy distribution in “α-dimensional” space.
In Section 4 we obtain estimates of the Green function and conditions for the transience

of the Markov process {Xt}. Theorem 4.1 says that the process is transient if and only if
∫

0
N(x, λ)

dλ

λ2 < ∞.

For example, for the function N (x, λ) ' λα the transience is equivalent to α > 1.
In Section 5 we give examples of applications of the above results to specific sequences

{ck} and {m (Bk (x))}.
In Section 6 we estimate the moments

Mγ(x, t) = Ex (dσ(x,Xt)
γ)

of the process {Xt}. Theorem 6.2 provides a general upper bound: if 0 < γ < 1 then, for
large enough t,

Mγ (x, t) ≤
tγ

1 − γ
.

In particular, the γ-moment is finite for all 0 < γ < 1. If N (x, λ) satisfies the reverse
doubling condition then there is a matching lower bound (Theorem 6.3). In this case the
γ-moment is finite if and only if 0 < γ < 1.

In Section 7 we describe the generator L of the semigroup
{
P t
}

and show that, for any
continuous, strictly monotone increasing function φ : [0,∞) → [0,∞) such that φ (0) = 0,
the operator φ (L) is also a generator of a similar semigroup (Corollary 7.2). In particular,
Lα is also a Markov generator for any α > 0. Recall for comparison that, for a general
symmetric non-negative definite Markov generator L, the operator Lα generates a Markov
semigroup only for 0 < α ≤ 1. We also prove the independence of p of the spectrum of L
in Lp (X,m) as well as a strong Liouville property of L.

Notation. Given two functions f and g of the same argument, the relation

f ' g

means that C1g ≤ f ≤ C2g for some positive constants C1, C2 and for a specified range of
the argument of f, g.

If f (t) and g (t) are two functions of a real variable t then the relation

f (t) � g (t)

means that there are positive constants C1, C
′
1, C2, C

′
2 such that

C1g
(
C ′

1t
)
≤ f (t) ≤ C2g

(
C ′

2t
)

for all t from a specified range.

2. Explicit description of discrete ultra-metric spaces

In this section we provide alternative descriptions of discrete ultra-metric spaces that
allow to construct many examples of such spaces. This material is not used in the main
part of the paper, though.

2.1. Downward trees. Let Γ be a countable connected graph that is constructed in the
following way. The set of vertices of Γ consists of disjoint union of subsets {Γk}

∞
k=0 with

the following properties:

• from each vertex v ∈ Γk there is exactly one edge to Γk+1;
• for each vertex v ∈ Γk the number of edges connecting v to Γk−1 is finite and

positive, provided k ≥ 1;
• if |k − l| 6= 1 then there is no edges between vertices of Γk and Γl.
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We will call such a graph Γ a downward tree (it is clear that Γ is a tree – see Fig. 1).
The set Γ0 that plays a special role and will be called the bottom of Γ.

Γ3

Γ2

Γ1

Γ0

Figure 1. Graph Γ

Let dΓ denote the graph distance between the vertices of Γ, that is, the smallest number
of edges in an edge path connecting two vertices.

Lemma 2.1. (Γ0, dΓ) is a discrete ultra-metric space.

Proof. Observe that the shortest path between vertices x, y ∈ Γ0 goes through the nearest
common ancestor: a vertex a ∈ Γk with the minimal value of k, that is connected to x
and y by downward paths. It follows that dΓ (x, y) = 2k. Let z be another vertex on
Γ0 and b ∈ Γl be the nearest common ancestor of y and z, so that dΓ (y, z) = 2l. Then
y is connected to both a and b by upward paths. Since there is only one upward path
emanating from y, the vertices a and b lie on the same upward path. Without loss of
generality, assume that k ≤ l. Then we obtain a path from b to x that goes through a
and the number of edges in this path is l. Since dΓ (b, z) = l, we obtain that

dΓ (x, z) ≤ dΓ (x, b) + dΓ (b, z) ≤ 2l = max(dΓ (x, y) , dΓ (y, z)),

which proves the ultra-metric inequality.
As it is clear from the proof, dΓ on Γ0 takes only even values, so it would be more

natural to consider the distance 1
2dΓ whose range is Z+.

Let us now show that any discrete ultra-metric space (X, d) admits a representation as
the bottom of a downward tree Γ. Define the vertices of Γ to be all distinct balls {Bk (x)}
where x ∈ X and k ∈ Z+. Two balls Bk (x) and Bl (y) are connected by an edge in Γ if
|k − l| = 1 and one of them is a subset of the other. The graph Γ is naturally split into
levels Γk, k ∈ Z+, where Γk is the set of all vertices that correspond to the balls of radii
k. That is, Γ0 coincides with the set X, Γ1 consists of balls of radii 1, etc. Clearly, edges
exist only between the vertices of Γk and Γk+1.

Lemma 2.2. The graph Γ is a downward tree. Furthermore, for all x, y ∈ X, dΓ (x, y) =
2d (x, y) .

Proof. Any vertex of Γk has exactly one edge to Γk+1, because any ball of radius k is
contained exactly in one ball of radius k + 1 (indeed, any two intersecting (k + 1)-balls
coincide due to the property of an ultra-metric). If k ≥ 1 then any ball of radius k
contains at least one ball of radius k − 1, and the number of such balls is finite. Hence, Γ
is a downward tree.
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To prove the second claim, set n = d (x, y) and observe that Bn (x) = Bn (y). Then the
following path between x and y consists of 2n edges:

x ∼ B1 (x) ∼ ... ∼ Bn (x) ∼ Bn−1 (y) ∼ ... ∼ B1 (y) ∼ y,

which implies that dΓ (x, y) ≤ 2n. To prove the opposite inequality set k = 1
2dΓ (x, y) and

observe that the nearest common ancestor of x an y in Γ is at the level k. Let it be a ball
Bk (z). Then x, y ∈ Bk (z), and the ultra-metric inequality implies

d (x, y) ≤ max (d (x, z) , d (y, z)) ≤ k =
1
2
dΓ (x, y) ,

whence the identity dΓ (x, y) = 2d (x, y) follows.

2.2. Partitions. The graph Γ that is associated with a discrete ultra-metric space can be
also described as follows. All balls of a given radius k provide a partition of X, so that Γk

consists of the elements of this partition. Each of the balls of radius k is partitioned into
finitely many smaller balls of radius k − 1, and is contained in exactly one ball of radius
k + 1 (see Fig. 2).

 

Figure 2. Ultra-metric balls matching the tree on Fig. 1

Conversely, assume that X is a countable set that admits for any k ∈ Z+ a partition
Γk into finite disjoint sets with the following properties:

• elements of Γ0 are single points of X;
• partition Γk is a refinement of Γk+1;
• for each x ∈ X and k ∈ Z+ denote by Bk (x) the unique element of Γk that contains

x; then
∞⋃

k=0

Bk (x) = X. (2.1)

Given that much, define

d (x, y) = min {k : y ∈ Bk (x)} . (2.2)

Lemma 2.3. Under the above hypotheses, (X, d) is a discrete ultra-metric space and
Bk (x) are its ultra-metric balls.

Proof. The family Γ of all elements of all partitions Γk has an obvious structure of a
downward tree: if u ∈ Γk and v ∈ Γl then u and v are connected by an edge in Γ if
|k − l| = 1 and one of the sets u, v is contained in the other. The hypothesis (2.1) implies
the connectedness of Γ. The definition (2.2) of d (x, y) means that d (x, y) is equal to
the level of the nearest common ancestor of x, y. By the proof of Lemma 2.1 we obtain
d (x, y) = 1

2dΓ (x, y). Hence, (X, d) coincides with
(
Γ0,

1
2dΓ (x, y)

)
and, hence, is a discrete

ultra-metric space by Lemma 2.1.
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2.3. {nk}-adic sequences. Fix a sequence {nk}
∞
k=1 of positive integers. We say that a

sequence {ak}
∞
k=1 is {nk}-adic, if it satisfies the following conditions:

• ak ∈ {0, 1, ..., nk − 1} for any k ∈ N
• ak = 0 for all large enough k.

Denote by A = A ({nk}) the class of all {nk}-adic sequences. For any two sequences
{ak} , {bk} ∈ A, define N ({ak} , {bk}) as the non-negative integer N such that ak = bk for
all k > N but aN 6= bN . Such N is unique by definition and exists because ak = bk = 0
for large enough k. If {ak} , {bk} are not identical then one obtains

N ({ak} , {bk}) = max {k ≥ 1 : ak 6= bk} ≥ 1. (2.3)

If {ak} ≡ {bk} then N = 0.

Lemma 2.4. (A, N) is a discrete ultra-metric space.

Proof. Let us prove the ultra-metric inequality. Set n = N ({ak} , {bk}) and m =
N ({bk} , {ck}). Then for k > max (n,m) we have ak = bk and bk = ck whence it fol-
lows that ak = ck and, hence,

N ({ak} , {ck}) ≤ max (n,m) .

The set A is countable due to the hypothesis that ak = 0 for all large k. Finally, any ball
Br ({ak}) with respect to the ultra-metric N is finite because if {xk} is a point in this ball
then xk = ak for all k > r so that only x1, ..., xr are variable.

Obviously one can interpret the component ak as an element of Z (nk) := Z/ (nkZ).
Then the set A is identified with the additive group

G ({nk}) = Z (n1) ⊕ Z (n2) ⊕ ... =
∞⊕

k=1

Z (nk) ,

where the infinite direct sum is defined as an inductive limit of finite sums, that is, as the
union of

⊕m

k=1
Z (nk), m ∈ N.

2.4. Radially homogeneous ultra-metric spaces. We say that a discrete ultra-metric
space (X, d) is radially homogeneous if, for any k ∈ N, there is a positive integer nk such
that every ball Bk (x) of radius k contains exactly nk distinct balls of radii k − 1. Fix
a reference point o ∈ X. Let us enumerate all balls of radius k − 1 that are contained
in Bk (x) by integers 0, 1, ..., nk − 1. If one of these balls is Bk−1 (o) then it receives the
ordinal number 0. Then any point x ∈ X can be associated with a sequence {xk}

∞
k=1

where xk is the ordinal number of the ball Bk−1 (x) in Bk (x); in particular, xk takes
values 0, 1, ..., nk − 1 (see Fig. 3). Furthermore, if n = d (x, o) then Bk (x) = Bk (o) for all
k ≥ n, which means that xk = 0 for all k > n.

 

0 1 2 0 1 2 

0 1 
0 

0 1 2 0 1 2 

0 1 
1 

0 

0 1 2 0 1 2 

0 1 
0 

0 1 2 0 1 2 

0 1 
1 

1 

2010….. 

Figure 3. Associating a sequence {xk} to a point x, using the sequence
{nk}

∞
k=1 = {3, 2, 2, ...}



8 BENDIKOV, GRIGOR’YAN, AND PITTET

Lemma 2.5. The mapping x 7→ {xk} is a bijection between X and the set A ({nk}) of all
{nk}-adic sequences. Furthermore, for any two points x, y ∈ X,

d (x, y) = N ({xk} , {yk}) . (2.4)

Hence, (X, d) and (A, N) are isometric.

Proof. Let {ak} be a {nk}-adic sequence and let l be so big that ak = 0 for all k ≥ l.
Consider a sequence of balls

Bl (o) ⊃ Bl−1 ⊃ Bl−2 ⊃ ... ⊃ B1 ⊃ B0

that is constructed inductively as follows: Bk−1 is the ball of radius k − 1 that has the
ordinal number ak in Bk. The ball B0 consists of a single point x, and for this point we
have xk = ak for all k. The uniqueness follows from the same construction.

Given two points x, y ∈ X and their sequences {xk} , {yk}, let n = d (x, y). Then
Bk−1 (x) = Bk−1 (y) for any k > n which implies xk = yk. On the contrary, Bn−1 (x) 6=
Bn−1 (y), which implies that the balls Bn−1 (x) and Bn−1 (y) have different ordinal num-
bers in the ball Bn (x) = Bn (y), whence xn 6= yn. Hence, n = N ({xk} , {yk}), which
proves (2.4).

2.5. p-adic net. Let all nk in the sequence {nk} be equal to the same value p. We refer
to {nk}-adic sequences as p-adic and set Ap ≡ A ({nk}). By the above results, Ap can be
identified with a downward p-regular tree as well as with Z (p)(∞). On the other hand, if
p is a prime then one can identify Ap with a subset of p-adic numbers as follows.

Recall that, for a given prime p, the p-adic norm ‖∙‖p of any rational x ∈ Q is defined
by ‖x‖p = pn provided x can be written in the form x = p−n a

b , where a, b, n are integers
such that neither a nor b is divisible by p; also set ‖0‖p= 0. Then ‖∙‖p is an ultra-norm,
that is, it satisfies the ultra-metric inequality

‖x + y‖p ≤ max
(
‖x‖p , ‖y‖p

)
.

Consequently, ‖x − y‖p is an ultra-metric on Q. Consider now the set

Λp =

{
a

pn
: n, a ∈ Z+, a < pn

}

,

which is an 1-net in Qp. Define log+ r as the positive part of log r; that is, log+ r = log r
if r ≥ 1 and log+ r = 0 if r < 1.

Lemma 2.6.
(
Λp, log+

p ‖∙‖p

)
is a discrete ultra-metric space that is isometric to (Ap, N) .

Proof. Any integer a ∈ [0, pn) can be expanded in a base p as a =
∑n−1

k=0 akp
k where

ak ∈ {0, 1, .., p − 1} , whence, for x = a
pn , we obtain an expansion

x =
x1

p
+

x2

p2
+ ... +

xn

pn
,

where xk = ak−1 ∈ {0, 1, ...., p − 1}. Defining xk = 0 for all k > n, we obtain a p-adic
sequence {xk}

∞
k=1. Hence, we have constructed a bijection x 7→ {xk} from Λp onto Ap.

Fix x ∈ Λp \ {0} and set
n = max {k : xk 6= 0} .

Then we have by (2.3) N (x, 0) = n, while ‖x‖p = pn, whence it follows that

logp ‖x‖p = N (x, 0) .

If x = 0 then
log+

p ‖x‖p = 0 = N (x, 0) .
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It follows that, for all x, y ∈ Λp,

log+
p ‖x − y‖p = N (x, y) ,

which finishes the proof.
This example can be slightly generalized by considering the additive group Fq [T ] of all

polynomials over the field Fq, where q = ps. Indeed, any non-zero polynomial f ∈ Fq [T ]
has the form

f =
n∑

k=0

akT
k,

where n ∈ Z+, ak ∈ Fq, an 6= 0, and its norm in Fq [T ] is defined by ‖f‖T := qn (see
[24]). Then the associated metric ‖f − g‖T makes Fq [T ] into a discrete ultra-metric space.
Moreover,

(
Fq [T ] , log+

q (q ‖∙‖T )
)

is isometric to (Aq, N) .

3. Heat semigroup and heat kernel

3.1. Markov chains on ultra-metric spaces. A distance function d on a set X is called
an ultra-metric if d satisfies the ultra-metric inequality

d(x, y) ≤ max{d(x, z); d(z, y)}, ∀x, y, z ∈ X.

A metric space (X, d) with an ultra-metric d is called an ultra-metric space. The ultra-
metric balls

Br(x) = {y ∈ X : d(x, y) ≤ r}

have the property that any two balls of the same radius are either identical or disjoint. In
other words, any point inside a ball B is its center.

An ultra-metric space (X, d) is called discrete if the set X is countable, all balls Br (x)
are finite, and the distance function d takes only integer values. In this paper we treat
only discrete ultra-metric spaces postponing more general cases to a follow-up paper.

From now on (X, d) is a discrete ultra-metric space. Let us fix any measure m on 2X

such that 0 < m (x) < ∞ for any x ∈ X and m (X) = ∞. For example, m can be a
counting measure. For any non-negative integer k, define the operator Pk acting on all
functions f on X as follows:

Pkf (x) =
1

m (Bk (x))

∫

Bk(x)
fdm. (3.1)

By the property of ultra-metric balls, Pkf is constant on any ball of radius k. Clearly, Pk

can be written in the form

Pkf (x) =
∫

Kk (x, y) f (y) dm (y)

where Kk (x, y) is the integral kernel of Pk given by

Kk (x, y) =
1

m (Bk (x))
1Bk(x) (y) . (3.2)

By the ultra-metric property, if y ∈ Bk (x) then Bk (x) = Bk (y), which implies that Kk is
symmetric in x, y, that is,

Kk (x, y) = Kk (y, x) .

Since Pk preserves positivity and Pk1 = 1, it follows that Pk is a symmetric Markov
operator with stationary measure m. By a standard argument, Pk is a bounded self-
adjoint operator in L2 = L2 (X,m) with ‖Pk‖L2→L2 ≤ 1.
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Choose now a sequence {ck}
∞
k=0 of strictly positive reals such that

∞∑

k=0

ck = 1.

Then we define the following operator

P =
∞∑

k=0

ckPk. (3.3)

Clearly, the series converges in the operator norm of L2. Then P is also a symmetric
Markov operator in L2 and, hence, it determines a reversible Markov chain {Xn} on X
whose transition operator at time n ∈ Z+ is Pn. If Xn = x then Xn+1 is uniformly
distributed in Bk (x) with probability ck, for any k ∈ Z+. One of our main purposes is to
obtain explicit estimates for transitions probabilities of this Markov chain.

Denote by Vk the subspace of L2 that consists of functions that are constants on all
balls of radii k. It is clear that Vk is a closed subspace and

L2 = V0 ⊃ ... ⊃ Vk ⊃ Vk+1 ⊃ ... .

By the hypothesis m (X) = ∞, constants are not in L2 and, hence, the intersection of all
subspaces {Vk} is a trivial subspace {0}.

A major observation that takes full advantage of an ultra-metric structure is as follows.

Lemma 3.1. Pk is the orthoprojector of L2 onto Vk.

Proof. It is obvious from (3.1) that P2
k = Pk and that the image of Pk is Vk. Since Pk

is a bounded self-adjoint operator in L2, we obtain that Pk is an orthoprojector onto its
image, that is, onto Vk.

Consequently, {Pk} is a decreasing sequence of orthoprojectors such that P0 = id and
Pk → 0 as k → ∞ in the strong operator topology.

Therefore, {Pk − Pk+1}
∞
k=0 is a sequence of orthoprojectors with mutually orthogonal

images, and the identity (3.3) implies by the Abel transformation2 that

P =
∞∑

k=0

sk (Pk − Pk+1) , (3.4)

where
sk = c0 + ... + ck.

Set also s−1 = 0. Note that 0 < sk < 1 for k = 0, 1, ... and sk ↑ 1 as k → ∞. The
series (3.4) converges in the strong operator topology, due to the Bessel inequality and the
boundedness of {sk} .

Hence, the identity (3.4) is the spectral resolution in L2 of the operator P . By functional
calculus of self-adjoint operators, we have, for any t ≥ 0,

P t =
∞∑

k=0

st
k (Pk − Pk+1) =

∞∑

k=0

(
st
k − st

k−1

)
Pk, (3.5)

where we use in the second identity the Abel transformation. Note that the first series
in (3.5) converges in the strong operator topology while the second one converges in the
operator norm.

2We use the Abel transformation in the form
∞∑

k=0

ak (bk − bk+1) = a−1b0 +

∞∑

k=0

(ak − ak−1) bk

provided one of the above series converges and anbn+1 → 0 as n → ∞.
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Lemma 3.2. The family
{
P t
}

t≥0
is a strongly continuous Markov semigroup in L2 (X,m).

Proof. Since
{
st
k − st

k−1

}∞
k=0

is a stochastic sequence, the operator P t is Markov. The
semigroup identity P t+s = P tP s follows from the functional calculus. The strong continu-
ity of P t, that is, s-limt→0 P t = id, follows from the first identity of (3.5) by the bounded
convergence theorem (cf. [11, Lemma 4.8]), because st

k → 1 as t → 0 and the sequence{
st
k

}
is uniformly bounded by 1.

Hence, the semigroup
{
P t
}

t≥0
determines a continuous time Markov chain {Xt}t≥0 that

extends the above mentioned discrete time Markov chain {Xn} to the real-valued time.
That the Markov chain {Xn} can be embedded into a continuous time Markov chain is
a very specific property of {Xn} that is a consequence of the ultra-metric structure (for
example, a simple random walk on Z cannot be embedded into a continuous time Markov
chain).

Theorem 3.3. The operator P t has the integral kernel p (t, x, y), that is

P tf (x) =
∫

X
p (t, x, y) f (y) dm (y) ,

where p (t, x, y) is given explicitly by the identity

p (t, x, y) =
∞∑

k=d(x,y)

(
st
k − st

k−1

) 1
m (Bk (x))

. (3.6)

Proof. Using (3.5) and the integral kernel Kk of Pk that is given by (3.2), we obtain that
the integral kernel of P t is

p (t, x, y) =
∞∑

k=0

(
st
k − st

k−1

)
Kk (x, y)

=
∞∑

k=0

(
st
k − st

k−1

) 1Bk(x) (y)

m (Bk (x))

=
∞∑

k=d(x,y)

(
st
k − st

k−1

) 1
m (Bk (x))

.

Corollary 3.4. For all x ∈ X and t > 0, the function y 7→ p (t, x, y) depends only
on d (x, y). If in addition the sequence {m (Bk (x))} is independent of x then function
x, y 7→ p (t, x, y) depends only on d (x, y).

Proof. This is clear from (3.6).

3.2. The spectral density. Using (3.6) we obtain another convenient expression for
p (t, x, y). Set

σk = 1 − sk =
∑

l>k

cl

for any non-negative integer k. In what follows we use the sequence {σk} as the main
input data instead of {ck}. Clearly, {σk}

∞
k=0 can be any sequence of positive reals that

satisfies the following conditions:

σk+1 < σk < 1, k = 0, 1, ... and σk → 0 as k → ∞.

Put for convenience σ−1 = 1.
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Our main tool is the function N (x, λ) defined for all x ∈ X and λ ∈ [0, +∞) as follows:

N (x, λ) =






0, if λ = 0,
1

m (Bk (x))
, if λ ∈ [σk, σk−1) k = 0, 1, 2, ...,

1
m (x)

, if λ ≥ 1,

(3.7)

see Fig. 4. The function N (x, λ) is nothing other than the spectral density of the asso-
ciated discrete Laplace operator id −P . This function encodes all necessary information
about the Markov kernel P : the sequence {σk} and the measures m (Bk (x)) of balls.
Observe that the function λ 7→ N (x, λ) is monotone increasing and right continuous on
[0, +∞).

 

0 1=σ-1 λ σ0 σ1 σk-1 σk 

N(x,  ) 

m(Bk(x)) 
1  

m(x) 
1  

c0 c1 ck 

λ 

Figure 4. Function λ 7→ N (x, λ)

The significance of the spectral density is determined by the following identities.

Theorem 3.5. The following identity holds for all x, y ∈ X and t > 0

p (t, x, y) = t

∫ σn−1

0
N(x, λ)(1 − λ)t−1dλ, (3.8)

where n = d (x, y), and

p (t, x, x) =
∫

[0,1]
(1 − λ)t dN (x, λ) . (3.9)
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Proof. Using (3.6) and (3.7), we obtain

p (t, x, y) =
∞∑

k=n

(
st
k − st

k−1

) 1
m (Bk (x))

=
∞∑

k=n

∫ sk

sk−1

tξt−1dξ
1

m (Bk (x))

=
∞∑

k=n

∫ σk−1

σk

t (1 − λ)t−1 dλ
1

m (Bk (x))

=
∞∑

k=n

∫ σk−1

σk

t (1 − λ)t−1 N (x, λ) dλ

=
∫ σn−1

0
t (1 − λ)t−1 N (x, λ) dλ.

For the case n = 0 it follows from (3.5) and (3.7) that

p (t, x, x) =
∞∑

k=0

st
k

(
1

m (Bk (x))
−

1
m (Bk+1 (x))

)

=
∞∑

k=0

(1 − σk)
t (N (x, σk) − N (x, σk+1))

=
∞∑

k=0

∫

{σk}
(1 − λ)t dN (x, λ)

=
∫

[0,1]
(1 − λ)t dN (x, λ) .

Corollary 3.6. The heat kernel satisfies the following properties.

(a) For any fixed x ∈ X and t > 0, the function y 7→ p (t, x, y) is strictly monotone
decreasing in d (x, y) (recall that by Corollary 3.4 the function y 7→ p (t, x, y)
depends on d (x, y) only).

(b) For any x ∈ X, the function t 7→ p (t, x, x) is strictly monotone decreasing in t and

lim
t→0

p (t, x, x) =
1

m (x)
.

(c) For all distinct x, y ∈ X and t > 0,

p (t, x, y) < p (t, x, x) <
1

m (x)
. (3.10)

Proof. (a) The right hand side of (3.8) is strictly monotone increasing in σn−1 ∈ (0, 1]
while σn−1 is strictly monotone decreasing in n = d (x, y), whence it follows that p (t, x, y)
is strictly monotone decreasing in n.

(b) That p (t, x, x) is strictly monotone decreasing in t follows obviously from (3.9). By
the monotone convergence theorem we obtain from (3.9)

lim
t→0

p (t, x, x) =
∫

[0,1]
dN (x, λ) =

1
m (x)

.

(c) This follows from (a) and (b).

Corollary 3.7. If x 6= y then p (t, x, y) → 0 as t → 0.
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Proof. Let n = d (x, y) ≥ 1. Then σ := σn−1 < 1 and we obtain by (3.8)

p (t, x, y) ≤ N (x, σ)
∫ σ

0
t(1 − λ)t−1dλ

= N (x, σ)
∫ σ

0
−d(1 − λ)t

= N (x, σ)
(
1 − (1 − σ)t) →

t→0
0.

Corollary 3.8. For all x, y ∈ X, we have

p(t, x, y) ∼ p (t, x, x) as t → ∞.

Proof. Denoting σ = σn−1 where n = d (x, y), we obtain by Theorem 3.5,

p (t, x, x) − p(t, x, y) = t

∫ 1

σ
N(x, λ)(1 − λ)t−1dλ

≤ N (x, 1)
∫ 1

σ
−d (1 − λ)t

= N(x, 1) (1 − σ)t .

On the other hand, by (3.9)

p (t, x, x) ≥
∫

[0,σ/2]
(1 − λ)tdN (x, λ) ≥ (1 − σ/2)t N (x, σ/2) .

Using (3.10), σ > 0 and N (x, σ/2) > 0, we obtain

|p (t, x, x) − p (t, x, y)|
p (t, x, x)

≤

(
1 − σ

1 − σ/2

)t N (x, 1)
N (x, σ/2)

→ 0 as t → ∞,

whence the claim follows.

Corollary 3.9. There is δ = δ (σ0) > 0 such that the following inequalities are true for
any x ∈ X and t > 0:

∫ ∞

0
e−λδtdN(x, λ) ≤ p (t, x, x) ≤

∫ ∞

0
e−λtdN(x, λ) (3.11)

Proof. By (3.9) we have

p (t, x, x) =
∫

[0,σ0]

(1 − λ)tdN(x, λ), (3.12)

because the measure dN (x, λ) vanishes in (σ0, +∞). Define δ by

δ = −
log (1 − σ0)

σ0
,

which is equivalent to
e−σ0δ = 1 − σ0.

Then the following inequality is true for all λ ∈ [0, σ0]:

e−δλ ≤ 1 − λ ≤ e−λ. (3.13)

Substituting into (3.12) and noticing that the integration can be extended to [0,∞), we
obtain (3.11).
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3.3. Basic estimates of the heat kernel. The purpose of this and the next section is
to provide the heat kernel estimates for large values of t.

Theorem 3.10. Put n = d (x, y) and τ = 1
σn−1

.

(a) For all 1 ≤ t ≤ τ ,

1
2e

t

τ
N

(

x,
1
2τ

)

≤ p (t, x, y) ≤
t

τ
N

(

x,
1
τ

)

. (3.14)

(b) For all t ≥ τ ,

p (t, x, y) ≥
1
2e

N

(

x,
1
2t

)

. (3.15)

In particular, for all t ≥ 1,

p (t, x, x) ≥
1
2e

N

(

x,
1
2t

)

. (3.16)

Proof. (a) We have by (3.8)

p (t, x, y) = t

∫ 1/τ

0
N(x, λ)(1 − λ)t−1dλ. (3.17)

Since (1 − λ)t−1 ≤ 1 and N (x, λ) is monotone increasing in λ, we obtain

p (t, x, y) ≤ t

∫ 1/τ

0
N(x,

1
τ
)dλ =

t

τ
N

(

x,
1
τ

)

.

To prove the lower bound in (3.14), consider the two cases. If τ = 1 then necessarily
t = 1. Using the monotonicity of N (x, λ) in λ, we obtain from (3.17)

p (t, x, y) ≥
∫ 1

1/2
N (x, λ) dλ ≥

1
2
N

(

x,
1
2

)

.

If τ > 1 then we have by (3.17)

p (t, x, y) ≥ t

∫ 1/τ

1/(2τ)
N(x, λ)(1 − λ)t−1dλ

≥
t

2τ
N

(

x,
1
2τ

)

(1 −
1
τ
)t−1

≥
t

2τ
N

(

x,
1
2τ

)(

1 −
1
τ

)τ−1

,

where we have used that t ≤ τ . We are left to notice that

inf
τ>1

(

1 −
1
τ

)τ−1

= e−1.

(b) It follows from (3.17) and 1/τ ≥ 1/t that

p (t, x, y) ≥ t

∫ 1/t

1/(2t)
N(x, λ)(1 − λ)t−1dλ

≥ N(x,
1
2t

)t
∫ 1/t

1/(2t)
(1 −

1
t
)t−1dλ

≥
1
2
N

(

x,
1
2t

)(

1 −
1
t

)t−1

≥
1
2e

N

(

x,
1
2t

)

,
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which proves (3.15). Then (3.16) follows from (3.15) because in the case x = y we have
n = 0 and τ = 1

σ−1
= 1.

A non-decreasing function F : R+ → R+ is said to be doubling if there exists a constant
D > 0 such that

F (2s) ≤ DF (s) for all s > 0.

If F is doubling then, for all 0 < s1 < s2,

F (s2) ≤ D

(
s2

s1

)δ

F (s1) , (3.18)

where δ = log2 D.

Theorem 3.11. If the function λ 7→ N (x, λ) is doubling then, for all t ≥ 1,

cN

(

x,
1
t

)

≤ p (t, x, x) ≤ CN

(

x,
1
t

)

(3.19)

where C, c > 0 depend on the doubling constant.

Proof. The lower bound in (3.19) follows from (3.16) and

N

(

x,
1
2t

)

≥ D−1N

(

x,
1
t

)

.

To prove the upper bound in (3.19), consider two cases. If t < 2 then by (3.10) and the
doubling property

p (t, x, x) ≤
1

m (x)
= N (x, 1) ≤ CN

(

x,
1
t

)

.

Let now t ≥ 2. Making change u = λt in the integral (3.8), we obtain

p (t, x, x) = t

∫ 1

0
N(x, λ)(1 − λ)t−1dλ

=
∫ t

0
N
(
x,

u

t

)(
1 −

u

t

)t−1
du

≤
∫ t

0
D max (1, u)δ N

(

x,
1
t

)(
1 −

u

t

)t−1
du

≤ DN

(

x,
1
t

)∫ ∞

0
max (1, u)δ e−

1
2
udu

= CN

(

x,
1
t

)

,

where we have used the doubling property (3.18) and the inequality
(
1 −

u

t

)t−1
≤ e−

u
t
(t−1) ≤ e−

1
2
u,

that is true for all t ≥ 2 and u ≥ 0.
Let us introduce the following two conditions:

Condition 3.12. There exists a constant 0 < κ+ < 1 such that for all k ≥ 0,

σk+1 ≤ κ+σk.

Condition 3.13. There exists a constant ν+ > 1 such that for all k ≥ 0,

m(Bk+1 (x)) ≤ ν+m(Bk (x)).

The point x is fixed here.
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Proposition 3.14. Assume that the conditions 3.12 and 3.13 are satisfied for some x.
Then the function λ → N(x, λ) is doubling. Consequently, the heat kernel satisfies the
estimate

p (t, x, x) ' N

(

x,
1
t

)

(3.20)

for all t ≥ 1.

Proof. Assume first that 0 < 2λ < 1. Then there is a non-negative integer k such that
σk ≤ 2λ < σk−1. Hence, for any l ≥ 1, we have

N(x, 2λ) =
1

m(Bk (x))
≤

νl
+

m(Bk+l (x))

= νl
+N(x, σk+l)

≤ νl
+N

(
x, κl

+σk

)
.

Choose l big enough so that κl
+ < 1/2. Then letting C = νl

+ we obtain

N(x, 2λ) ≤ CN(x,
1
2
σk) ≤ CN(x, λ).

If 2λ ≥ 1 then

N (x, 2λ) = N (x, σ0) ≤ CN

(

x,
1
2
σ0

)

≤ CN (x, λ) .

Finally, the estimate (3.20) follows from (3.19).

3.4. Change of metric and off-diagonal estimates. For all x, y ∈ X set

dσ (x, y) =
1

σn−1
− 1, (3.21)

where n = d (x, y). Note that the right hand side of (3.21) is monotone increasing in n
because σn−1 is decreasing, and vanishes at n = 0 since σ−1 = 1. It follows that dσ (x, y)
satisfies the ultra-metric inequality. It is clear that dσ (x, y) = dσ (y, x). Also, dσ (x, y) = 0
if and only if σn−1 = 1 which is equivalent to n = 0, that is, to x = y. Hence, dσ (x, y) is
an ultra-metric.

The heat kernel estimates can be conveniently stated in terms of the metric dσ. In the
next statements, we write dσ for dσ (x, y).

Theorem 3.15. The following estimates hold for all x, y ∈ X and t ≥ 1:

p(t, x, y) ≥
1
2e

t

t + dσ
N

(

x,
1

2 (t + dσ)

)

. (3.22)

and

p(t, x, y) ≤ 4e
t

t + dσ
p

(
t + dσ

4
, x, x

)

. (3.23)

Proof. Let us use the notation from Theorem 3.10: τ = 1
σn−1

where n = d (x, y) , so that
dσ = τ − 1. Consider two cases.

If t ≤ τ then we use the lower bound in (3.14) and

τ = dσ + 1 ≤ dσ + t

to obtain

p(t, x, y) ≥
1
2e

t

τ
N

(

x,
1
2τ

)

≥
1
2e

t

t + dσ
N

(

x,
1

2(t + dσ)

)

,
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which proves (3.22) in this case. To prove (3.23), we use t+dσ ≤ 2τ , (3.16), and the upper
bound in (3.14):

t

t + dσ
p

(
t + dσ

4
, x, x

)

≥
t

2τ
p
(τ

2
, x, x

)
≥

t

4eτ
N

(

x,
1
τ

)

≥
1
4e

p (t, x, y) .

If t > τ, then by (3.15)

p(t, x, y) ≥
1
2e

N

(

x,
1
2t

)

≥
t

2e (t + dσ)
N

(

x,
1

2 (t + dσ)

)

,

which proves (3.22). To prove (3.23) observe that

t + dσ ≤ 2t

whence
t

t + dσ
p

(
t + dσ

4
, x, x

)

≥
1
2
p (t, x, x) ≥

1
2
p(t, x, y),

which finishes the proof.

Corollary 3.16. Assume that,

p (t, x, x) ≤ C1N

(

x,
C2

t

)

(3.24)

for some x ∈ X and all t ≥ 1. Then, for all y ∈ X and t ≥ 1,

1
2e

t

t + dσ
N

(

x,
1

2 (t + dσ)

)

≤ p(t, x, y) ≤
C ′

1t

t + dσ
N

(

x,
C ′

2

t + dσ

)

(3.25)

where C ′
1 = 4eC1 and C ′

2 = 4C2.

Proof. The lower bound in (3.25) coincides with (3.22). The upper bound follows from
(3.23) and (3.24) as follows:

p(t, x, y) ≤ 4e
t

t + dσ
p

(
t + dσ

4
, x, x

)

≤ 4eC1
t

t + dσ
N

(

x,
4C2

t + dσ

)

Corollary 3.17. If the function λ 7→ N (x, λ) is doubling for some x ∈ X then, for all
y ∈ X and t ≥ 1,

p (t, x, y) '
t

t + dσ
N

(

x,
1

t + dσ

)

(3.26)

where the constants that bound the ratio of the two sides in (3.26) depend only on the
doubling constant.

Proof. Indeed, this is a combination of Corollary 3.16 with Theorem 3.11.

4. Green function and transience

The potential operator R associated with the semigroup
{
P t
}

t≥0
is defined as follows

Rf =
∫ ∞

0
P tf dt,

for any non-negative function f on X. The semigroup
{
P t
}

t≥0
is called transient if

Rf < ∞ for any non-negative function f with finite support, and recurrent otherwise.
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Define the Green function r (x, y) by

r (x, y) =
∫ ∞

0
p (t, x, y) dt.

Theorem 4.1. The following conditions are equivalent.

(i) The semigroup
{
P t
}

t≥0
is transient.

(ii) r (x, y) < ∞ for all x, y ∈ X
(iii) For all/some x ∈ X, ∫

0
N(x, λ)

dλ

λ2 < ∞. (4.1)

In this case the Green function is the integral kernel of R and it is given by

r (x, y) =
∫ σn−1

0

N(x, λ)dλ

(1 − λ)
(
log 1

1−λ

)2 , (4.2)

where n = d (x, y).

Proof. Using the definitions of R and r (x, y), we obtain

Rf (x) =
∫ ∞

0

∫

X
p (t, x, y) f (y) dm (y) dt =

∫

X
r (x, y) f (y) dm (y) ,

so that Rf < ∞ if and only if r (x, y) < ∞ for all x, y, and in the latter case r (x, y) is
indeed the integral kernel of R. Integrating the identity (3.8) in t, we obtain

r(x, y) =
∫ ∞

0
t

∫ σn−1

0
N(x, λ)(1 − λ)t−1dλdt

=
∫ σn−1

0
N (x, λ)

(∫ ∞

0
t (1 − λ)t−1 dt

)

dλ

=
∫ σn−1

0

N(x, λ)dλ

(1 − λ)
(
log 1

1−λ

)2 ,

which proves (4.2). The finiteness of r (x, y) for all x, y is equivalent to
∫ 1

0

N(x, λ)dλ

(1 − λ)
(
log 1

1−λ

)2 < ∞,

for all x ∈ X. Clearly, this integral converges always at 1 while the convergence at 0 is
equivalent to (4.1).

Finally, let us show that the convergence of the integral (4.1) for some x implies that
for all x. It suffices to show that, for all x, y ∈ X,

N (x, λ) = N (y, λ)

for small enough λ. Indeed, by (3.7), we have

N (x, λ) =
1

m (Bk (x))
if λ ∈ [σk, σk−1).

If λ is small enough then k > d (x, y) and Bk (x) = Bk (y) whence the claim follows.

Corollary 4.2. If the Green function is finite then it satisfies the following properties.

(a) For all distinct x, y ∈ X,

0 < r (x, y) < r (x, x) .

(b) The function x, y 7→ 1
r(x,y) satisfies the ultra-metric inequality.
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(c) The following asymptotic holds

r(x, y) ∼

1
1+dσ(x,y)∫

0

N(x, λ)
dλ

λ2 (4.3)

as dσ(x, y) → ∞.

Proof. (a) This follows from (4.2) and 0 < σn−1 < 1 where n = d (x, y) ≥ 1.
(b) By 4.2, r (x, y) is an increasing function of σn−1 and, hence, is a decreasing function

of n = d (x, y). Therefore, 1
r(x,y) is an increasing function of d (x, y) and, hence, satisfies

the ultra-metric inequality.
(c) This is a consequence of (4.2) since σn−1 = 1

1+dσ(x,y) → 0.

Corollary 4.3. Assume that there exist constants 0 < ε′′ < ε′ < ε < 1 such that

ε′′ ≤
N (x, ελ)
N (x, λ)

≤ ε′ (4.4)

for some x ∈ X and all λ ∈ (0, 1). Then the semigroup
{
P t
}

t≥0
is transient and

r(x, y) ' dσ(x, y)N

(

x,
1

dσ(x, y)

)

(4.5)

for all y ∈ X with large enough dσ (x, y).

Proof. For any Λ ∈ (0, 1] we have

∫ Λ

0
N(x, λ)

dλ

λ2 =
∞∑

k=0

∫ εkΛ

εk+1Λ
N(x, λ)

dλ

λ2 [change u = ε−kλ]

=
∞∑

k=0

∫ Λ

εΛ
N(x, εku)ε−k du

u2

≤
∞∑

k=0

∫ Λ

εΛ
N(x, u)

(
ε′
)k

ε−k du

u2

≤
1

1 − ε′/ε
(1 − ε) ΛN(x, Λ)

1

(εΛ)2

=
1 − ε

ε2 (1 − ε′/ε)
N (x, Λ)

Λ

and
∫ Λ

0
N(x, λ)

dλ

λ2 ≥
∫ Λ

εΛ
N(x, λ)

dλ

λ2 ≥ (1 − ε) ΛN (x, εΛ)
1
Λ2

≥ ε′′ (1 − ε)
N (x, Λ)

Λ
,

whence
∫ Λ

0
N(x, λ)

dλ

λ2 '
N (x, Λ)

Λ
.

Setting here Λ = 1
1+dσ(x,y) , using (4.3) and noticing that Λ ∼ 1

dσ(x,y) for large enough
dσ (x, y) we obtain (4.5).
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5. Examples

Here we present some examples of sequences {σk} and {m (Bk (x))} where the above
results yield explicit estimates of the heat kernel and the Green function.

Example 5.1. Assume that, for some x ∈ X and all k ∈ Z+

m (Bk (x)) ' pk, (5.1)

where p > 1. For example, this is the case when X = Z (p)
(∞)

or X = Λp (the p-adic net)
with counting measure m. Clearly, (5.1) implies that Condition 3.13 is satisfied. Assume
also that the sequence {σk}

∞
k=0 is satisfied the estimate

σk ' σ (k)

where σ (k) is a continuous, strictly monotone decreasing function of k ∈ [0, +∞) such
that σ (k) → 0 as k → ∞. It follows from (3.7) that

N (x, λ) � p−σ−1(λ), (5.2)

for all 0 < λ ≤ σ0. Note that if the function λ 7→ N (x, λ) is doubling then the sign � in
(5.2) can be replaced by '. Consider some specific examples of σ (k).

1. Let σ (k) = a−k , for some a > 1. Condition 3.12 holds so that the function λ →
N(x, λ) is doubling. Then by (5.2)

N(x, λ) ' λα

for small λ, where α = log p
log a . It follows from (3.20) that

p (t, x, x) ' N

(

x,
1
t

)

' t−α,

for large enough t. Then Corollary 3.16 yields, for all y ∈ X and large enough t,

p (t, x, y) '
t

(t + dσ (x, y))α+1 .

In connection with this example recall that if hβ(t, x, y) is the transition function of the
symmetric stable process in Rd of index 0 < β < 2, then according to [5] (see also [2]),

hβ(t, x, y) '
t

(t1/β + |x − y|)d+β
.

Our result shows that p(t, x, y) has a shape similar to that of the 1-stable law of “dimension
α”.

The transience test (4.1) is satisfied if and only if α > 1 (that is, p > a). In this case
we obtain from (4.3) or (4.5) the following estimate of the Green function

r (x, y) ' dσ (x, y)1−α

for large dσ (x, y).
2. Let

σ (k) = exp(−ak),

for some constant a > 1. Condition 3.12 holds and, hence, the function λ → N(x, λ) is
doubling. It follows from (5.2) that, for small enough λ,

N(x, λ) '

(

log
1
λ

)−α

,
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where α = log p
log a , which implies by (3.20)

p (t, x, x) ' N

(

x,
1
t

)

' (log t)−α,

for large enough t. By Corollary 3.16 we obtain

p (t, x, y) '
t

(t + dσ (x, y)) logα (t + dσ (x, y))

for all y ∈ X and large enough t.
The transience test (4.1) fails so that in this case the semigroup

{
P t
}

t≥0
is recurrent.

3. Let σ (k) = k−a, k ≥ 1, for some a > 0. In this case Condition 3.12 fails. By (5.2)
we obtain

N (x, λ) � exp

{

−

(
1
λ

) 1
a

}

for small λ. A direct estimate of the integrals in (3.11) yields

p (t, x, x) � exp
(
−t

1
a+1

)
,

for large t. Then Theorem 3.15 gives the following results

p (t, x, y) ≥
C1t

t + dσ(x, y)
exp{−C ′

1(t + dσ(x, y))
1
a }

and

p(t, x, y) ≤
C2t

t + dσ(x, y)
exp{−C ′

2(t + dσ(x, y))
1

a+1 },

that are not as precise as in the previous two cases.
The transience test (4.1) is clearly satisfied, and we obtain from (4.3)

r (x, y) � exp
(
−dσ (x, y)

1
a

)

for large dσ (x, y).
4. Let σ(k) = (log(n) k)−a for large enough k,where a > 0 and

log(n) = log . . . log
︸ ︷︷ ︸

n times

Condition 3.12 does not hold. By (5.2) we obtain

N(x, λ) � exp

{

− exp(n)

(
1
λ

) 1
a

}

,

where

exp(n) = exp exp ... exp
︸ ︷︷ ︸

n times

.

Using (3.11) it is possible to show that

p (t, x, x) � exp

(

−
t

(log(n) t)a

)

,

for large enough t (see [3] for the details of the computation).
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Example 5.2. Let m0 be a counting measure on a discrete ultra-metric space (X, d) that
satisfies

m0 (Bk (x)) = pk

for all x ∈ X and k ∈ Z+, where p > 1 is a constant. Fix a reference point o ∈ X and
introduce the notation

|x| = d (x, o) .

Let m be another measure on X that satisfy the relation

m (x) ' q|x|, (5.3)

where q > 1 is a constant. For example, in the case of the p-adic net Λp we have

|x| = log+
p ‖x‖p

and (5.3) means that
m (x) ' ‖x‖γ

p

where γ = log q
log p .

We claim that

m (Bk (x)) ' pkqmax(|x|,k) =

{
(pq)k , |x| ≤ k,

pkq|x|, |x| > k.
(5.4)

Indeed, if the balls Bk (x) and Bk (o) are disjoint then, for any y ∈ Bk (x), we have |y| > k.
It follows that

|x| ≤ max (|y| , d (x, y)) = |y|

and in the same way |y| ≤ |x| so that |y| = |x| . Therefore, m (y) ' q|x| and

m (Bk (x)) ' q|x|m0 (Bk (x)) = pkq|x|.

If the balls Bk (x) and Bk (o) intersect then they coincide and we obtain

m (Bk (x)) = m (Bk (o))

' 1 +
k∑

i=1

(
pi − pi−1

)
qi

= 1 + q (p − 1)
(pq)k − 1
pq − 1

' pkqk,

which finishes the proof of (5.4).
Note that, for any fixed x the function (5.4) satisfies Condition 3.13 with a constant ν+

that is the same for all x ∈ X. Now let us consider two examples of the sequence {σk} as
in Example 5.1, that satisfy Condition 3.12. Hence, the function λ 7→ N (x, λ) is doubling
and we can obtain the heat kernel bounds by Theorem 3.11 and Corollary 3.17.

1. Let
σk = a−(k+1)

where a > 1. Then by (3.7)

N (x, λ) ' p−kq−max(|x|,k) if a−(k+1) ≤ λ < a−k,

where the latter condition implies
λ ' a−k.

It follows that, for small enough λ,

N (x, λ) ' λαq−max(|x|,loga
1
λ) =

{
λα+β , λ ≤ a−|x|,

λαq−|x|, λ > a−|x|,
(5.5)
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where

α =
log p

log a
and β =

log q

log a
. (5.6)

By (3.20) we obtain, for large enough t,

p (t, x, x) ' t−αq−max(|x|,loga t) =

{
t−(α+β), t ≥ a|x|,

t−αq−|x|, t < a|x|.

In terms of the metric dσ, we have

dσ (x, o) =
1

σ|x|−1
− 1 = a|x| − 1

whence
|x| = loga (1 + dσ (x, o)) .

By Corollary 3.17 we obtain
p (t, x, y) ' tλN (x, λ) (5.7)

where

λ =
1

t + dσ (x, y)
.

Substituting this value of λ into (5.5) and (5.7) and noticing that

max

(

|x| , loga

1
λ

)

= loga max (1 + dσ (x, o) , t + dσ (x, y))

' loga (t + dσ (x, y) + dσ (x, o))

we obtain

p (t, x, y) '
t

(t + dσ (x, y))1+α (t + dσ (x, y) + dσ (x, o))β
.

In particular, for x = o we have

p (t, x, y) '
t

(t + dσ (x, y))1+α+β
.

The transience test (4.1) is satisfied if and only if α + β > 1, that is, if pq > a. In this
case we obtain by (4.3) and (5.5) that

r (x, y) ' dσ (x, y)1−(α+β)

for large enough dσ (x, y).
2. Put now

σk = exp
(
1 − ak+1

)
,

where a > 1. Then by (3.7)

N (x, λ) ' p−kq−max(|x|,k) if e1−ak+1
≤ λ < e1−ak

,

where the latter condition implies

log
1
λ
' ak.

It follows that, for small enough λ,

N (x, λ) '

(

log
1
λ

)−α

q−max(|x|,loga log 1
λ) (5.8)

=

{ (
log 1

λ

)−(α+β)
, λ ≤ exp

(
−a|x|

)
,

(
log 1

λ

)−α
q−|x|, λ > exp

(
−a|x|

)
.

(5.9)
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where α and β are given by (5.6). By (3.20) we obtain, for large enough t,

p (t, x, x) ' (log t)−α q−max(|x|,loga log t)

=

{
(log t)−(α+β) , t ≥ exp

(
a|x|
)
,

(log t)−α q−|x|, t < exp
(
a|x|
)
.

In terms of the metric dσ, we obtain

dσ (x, o) =
1

σ|x|−1
− 1 = exp

(
a|x| − 1

)
− 1

whence
|x| = loga (1 + log (1 + dσ (x, o)))

For

λ =
1

t + dσ (x, y)
,

we obtain from (5.8) and (5.7)

p (t, x, y) '
t

(t + dσ (x, y)) logα (t + dσ (x, y)) logβ (t + dσ (x, y) + dσ (x, o))
.

In particular, for x = o, we have

p (t, x, y) '
t

(t + dσ (x, y)) logα+β (t + dσ (x, y))
.

The transience test (4.1) fails so that the semigroup
{
P t
}

t≥0
is recurrent.

6. The moments of the Markov process

Let X = ({Xt}t≥0 , {Px}x∈X) be the Markov process associated with the semigroup{
P t
}

t≥0
. For any γ > 0, the γ-moment of X is defined by

Mγ(x, t) := Ex (dσ(x,Xt)
γ) , (6.1)

where Ex is expectation associated with the probability measure Px. In terms of the heat
kernel, we have

Mγ (x, t) =
∫

X
dσ (x, y)γ p (t, x, y) dm (y) (6.2)

The aim of this section is to estimate the moment Mγ(x, t) as a function of t. We
precede the main result by a lemma. Consider open balls with respect to the metric dσ:

Bσ
r (x) = {y ∈ X : dσ (x, y) < r} .

Lemma 6.1. For all x ∈ X and r > 0,

m (Bσ
r (x)) =

1

N
(
x, 1

1+r

) . (6.3)

Proof. Set rn = 1
σn

− 1. By (3.21), the equation d (x, y) = n + 1 is equivalent to
dσ (x, y) = rn, whence it follows that

dσ (x, y) < rn ⇔ d (x, y) ≤ n.

For any r > 0 there is n ≥ 0 such that

rn−1 < r ≤ rn.

Then we have
dσ (x, y) < r ⇔ dσ (x, y) < rn
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whence it follows that
Bσ

r (x) = Bσ
rn

(x) = Bn (x) . (6.4)

On the other hand, we have

σn =
1

1 + rn
≤

1
1 + r

<
1

1 + rn−1
= σn−1

whence by (3.7)

N

(

x,
1

1 + r

)

=
1

m (Bn (x))
.

Comparing with (6.4) we obtain (6.3).

Theorem 6.2. For any γ ∈ (0, 1) and all x ∈ X, t > 0, the following estimate is true:

Mγ (x, t) ≤
1

1 − γ
min

(

tγ ,
t

γ

)

. (6.5)

Proof. Set V (r) = m (Bσ
r (x)) so that by Lemma 6.1

V (r) =
1

N
(
x, 1

1+r

) .

By (3.8) we have

p (t, x, y) = t

∫ 1
1+dσ(x,y)

0
N(x, λ)(1 − λ)t−1dλ,

so that p (t, x, y) is a function of t and r = dσ (x, y) . Therefore, we obtain from (6.2)

Mγ (x, t) =
∫ ∞

0
rγp (t, x, y) dV (r)

= t

∫ ∞

0
rγ

(∫ 1
1+r

0
N(x, λ)(1 − λ)t−1dλ

)

dV (r)

= t

∫ ∫

{0<λ< 1
1+r

,r>0}
rγN(x, λ)(1 − λ)t−1dλdV (r)

= t

∫ ∫

{0<r< 1
λ
−1,0<λ<1}

rγN(x, λ)(1 − λ)t−1dλdV (r)

= t

∫ 1

0

(∫

(0, 1
λ
−1)

rγdV (r)

)

N(x, λ)(1 − λ)t−1dλ (6.6)

≤ t

∫ 1

0

(
1
λ
− 1

)γ

V

(
1
λ
− 1

)

N(x, λ)(1 − λ)t−1dλ

= t

∫ 1

0
λ−γ (1 − λ)γ+t−1 1

N (x, λ)
N(x, λ)dλ

= tB (1 − γ, γ + t)

= t
Γ (1 − γ) Γ (t + γ)

Γ (t + 1)
,

where B (∙, ∙) is the beta function and Γ (∙) is the gamma function.
Let us use the following properties of the gamma function:

(1) For all t > 0 and γ ∈ (0, 1)

Γ (t + γ)
Γ (t)

≤ tγ
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(cf. Lemma 8.1 in Appendix).
(2) Γ (z) ≤ 1

z for all z ∈ (0, 1). Indeed, zΓ (z) = Γ (z + 1), while the gamma function
is bounded by 1 on the interval [1, 2].

Using these properties, we obtain, for all t > 0 and γ ∈ (0, 1),

Mγ (x, t) ≤ tΓ (1 − γ)
Γ (t + γ)
Γ (t + 1)

= Γ (1 − γ) t
Γ (t + γ)

tΓ (t)
≤

1
1 − γ

tγ .

The function

t 7→
Γ (t + γ)
Γ (t + 1)

is monotone decreasing in t ≥ 0 (cf. Lemma 8.1), which implies that

Γ (1 − γ) Γ (t + γ)
Γ (t + 1)

≤
Γ (1 − γ) Γ (γ)

Γ (1)
=

π

sin πγ
≤

1
γ (1 − γ)

,

whence
Mγ (x, t) ≤

t

γ (1 − γ)
.

Combining the above two upper bounds of Mγ (x, t), we obtain (6.5).

Theorem 6.3. Assume that, for some x ∈ X, the function λ 7→ N (x, λ) satisfies the
reverse doubling property:

N (x, λ) ≥ (1 + η) N (x, δλ) (6.7)
for all λ ∈ (0, 1) and some δ, η ∈ (0, 1). Then, for all t > 0 and γ ∈ (0, 1),

Mγ (x, t) ≥
c

1 − γ
min (tγ , t)

where c = c (δ, η) > 0.

Proof. For any R > 0 and ε = δ/2, we have
∫

(0,R)
rγdV (r) ≥

∫

[εR,R)
rγdV (r) ≥ (εR)γ (V (R) − V (εR))

= (εR)γ



 1

N
(
x, 1

1+R

) −
1

N
(
x, 1

1+εR

)



 .

Note that
1

1+R
1

1+εR

=
1 + εR

1 + R
≤ δ

provided

R ≥
1 − δ

δ − ε
.

In this case, we obtain by (6.7)

1

N
(
x, 1

1+R

) −
1

N
(
x, 1

1+εR

) ≥
1

N
(
x, 1

1+R

)
(

1 −
1

1 + η

)

whence ∫

(0,R)
rγdV (r) ≥

εγη

1 + η

Rγ

N
(
x, 1

1+R

)

Setting R = 1
λ − 1 we obtain that, if

λ ≤ λ0 :=
δ − ε

1 − ε
,
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then
∫

(0, 1
λ
−1)

rγdV (r) ≥
εγη

1 + η

(1 − λ)γ λ−γ

N (x, λ)

≥

(
ε1−δ

1−ε

)γ
η

1 + η

λ−γ

N (x, λ)

≥ c
λ−γ

N (x, λ)
,

where c =
ε 1−δ

1−ε
η

1+η (we use that γ < 1). Substituting into (6.6) and assuming that t ≥ 1
λ0

we obtain

Mγ (x, t) ≥ ct

∫ λ0

0
λ−γ(1 − λ)t−1dλ

≥ ct

∫ 1/t

0
λ−γ(1 − λ)t−1dλ

≥ ct

(

1 −
1
t

)t−1 ∫ 1/t

0
λ−γdλ

≥
c

e
t

tγ−1

1 − γ

=
c

e

tγ

1 − γ
.

If t < 1
λ0

then similarly

Mγ (x, t) ≥ ct

∫ λ0

0
λ−γ(1 − λ)t−1dλ

≥ ct

∫ λ0

0
λ−γ(1 − λ0)

1
λ0

−1
dλ

≥
c

e
t
λ1−γ

0

1 − γ

≥
c

e

λ0

1 − γ
t.

Let us introduce the following two conditions (cf. Conditions 3.12 and 3.13).

Condition 6.4. There exists a constant 0 < κ− < 1 such that for all k ≥ 0,

σk+1 ≥ κ−σk.

Condition 6.5. For a fixed x ∈ X, there exists a constant ν− > 1 such that for all k ≥ 0,

m(Bk+1 (x)) ≥ ν−m(Bk (x)).

Proposition 6.6. If Conditions 6.4 and 6.5 are satisfied then the function N (x, λ) satis-
fies the reverse doubling condition (6.7). Consequently, the conclusion of Theorem 6.3 is
satisfied.

Proof. If σk ≤ λ < σk−1 then by Condition 6.4

κ−λ < κ−σk−1 ≤ σk.
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Therefore, by (3.7) and Condition 6.5,

N (x, λ) =
1

m (Bk (x))
≥

ν−

m(Bk+1 (x))
≥ ν−N (x, κ−λ) ,

so that (6.7) is satisfied with δ = κ− and 1 + η = ν−.
The case γ ≥ 1 is treated in the following theorem.

Theorem 6.7. If γ ≥ 1 and Condition 6.5 holds, then Mγ (x, t) = ∞ for all x ∈ X and
t > 0.

Proof. Since ∫

X
p (t, x, y) dm (y) = P t1 (x) = 1,

the divergence of the integral (6.2) can occur only for large dσ (x, y). Therefore, the
divergence of (6.2) for γ = 1 implies that for γ > 1. Hence, we can assume in the sequel
that γ = 1. We use notation

p (t, x,A) :=
∫

A
p (t, x, y) dm (y)

where A is a subset of A. Set

rk =
1
σk

− 1, k ≥ −1, (6.8)

so that dσ (x, y) = rk if d (x, y) = k + 1. It follows from (6.2) that

M1(x, t) =
∑

k≥0

∫

Bk+1(x)\Bk(x)

dσ(x, y)p(t, x, y)dm (y)

=
∑

k≥0

rkp(t, x,Bk+1(x) \ Bk(x))

=
∑

k≥0

rk(p(t, x,Bk(x)c) − p(t, x,Bk+1(x)c)). (6.9)

Next, by (3.5) and (3.1) we have

p(t, x,Bk(x)c) =
∑

l≥0

(
st
l − st

l−1

)
Pl1Bk(x)c(x) =

∑

l>k

(
st
l − st

l−1

)
(

1 −
m(Bk(x))
m(Bl(x))

)

. (6.10)

It follows from (6.10) and Condition 6.5 that

p(t, x,Bk(x)c) − p(t, x,Bk+1(x)c) =
(
st
k+1 − st

k

)
(

1 −
m(Bk(x))

m(Bk+1(x))

)

≥ c
(
st
k+1 − st

k

)
, (6.11)

where c = 1 − 1
ν−

. Therefore, we obtain by (6.9)

M1(x, t) ≥ c
∑

k≥0

rk(s
t
k+1 − st

k).

Next, we use the inequality

at − bt ≥ t (a − b)min
(
at−1, bt−1

)

that is true for all 0 < b < a and t > 0, which follows from the identity of the mean-value
theorem

at − bt = tξt−1 (a − b) ,
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where ξ ∈ [a, b]. It follows that

M1 (x, t) ≥ ct
∑

k≥0

rk (sk+1 − sk)min
(
st−1
k , st−1

k+1

)
.

Since st−1
k → 1 as k → ∞, it suffices to prove that

∑

k≥N

rk (sk+1 − sk) = ∞

for some N . Choose N so large that rN ≥ 1. By (6.8) we have

sk = 1 − σk =
rk

rk + 1
,

whence it follows that
∑

k≥N

rk (sk+1 − sk) =
∑

k≥N

rk
rk+1 − rk

(rk+1 + 1) (rk + 1)

≥
1
4

∑

k≥N

rk
rk+1 − rk

rk+1rk

=
1
4

∑

k≥N

(

1 −
rk

rk+1

)

.

Set αk = 1 − rk
rk+1

. Since
∏

k≥N

(1 − αk) =
∏

k≥N

rk

rk+1
= 0,

it follows that
∑

k≥N αk = ∞, whence M1 (x, t) = ∞.

Example 6.8. As in example 5.1, assume that, for some x ∈ X and for all k = 0, 1, ...

m (Bk (x)) ' pk.

for some p > 1. Clearly, Condition 6.5 is satisfied. Therefore, by Theorems 6.2 and 6.7,
Mγ (x, t) is finite if and only if γ < 1; for such γ and for large enough t, we have

Mγ (x, t) ≤
tγ

1 − γ
.

Furthermore, if Condition 6.4 is also satisfied then we have by Theorem 6.3 a matching
lower bound, so that

Mγ (t, x) '
tγ

1 − γ
. (6.12)

Let us show that without Condition 6.4 the lower bound of Theorem 6.3 fails. Assume
that

σk ' exp
(
−ak

)
,

where a > 1, and show that in this case Mγ admits the following upper bound

Mγ (t, x) ≤ Ctγ + o (tγ) as t → ∞, (6.13)

where α = log p
log a and the constant C does not depend on γ (but may depend on α).

The difference between the estimates (6.12) and (6.13) is that in the latter the leading
coefficient in front of tγ remains uniformly bounded for all γ ∈ (0, 1).

As was shown in Example 5.1, we have

N (x, λ) '

(

log

(

1 +
1
λ

))−α

(6.14)
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for all λ ∈ (0, 1), where α = log p
log a . By Lemma 6.1, we have

V (r) := m (Bσ
r (x)) =

1

N
(
x, 1

1+r

) ' logα (2 + r)

for all r > 0. By Corollary 3.17, we have

p (t, x, y) '
t

t + dσ (x, y)
N

(

x,
1

t + dσ (x, y)

)

for all y ∈ X and t ≥ 1. Therefore, we obtain by (6.2), for t ≥ 1,

Mγ (x, t) '
∫ ∞

0
rγ t

t + r
N

(

x,
1

t + r

)

dV (r) .

Making change u = r/t and using the monotonicity of N (x, ∙), we obtain

Mγ (x, t) '
∫ ∞

0
(ut)γ 1

1 + u
N

(

x,
1

t + ut

)

dV (ut)

≤ tγ
∫ ∞

0

uγ

1 + u
N

(

x,
1
t

)

dV (ut) .

Let us define the function

F (u) =
uγ

1 + u
.

Using the estimate (6.14), we can write, for large t,

Mγ (x, t) ≤ C
tγ

logα t

∫ ∞

0
F (u) dV (ut) (6.15)

= C
tγ

logα t

∫ ∞

0
V (ut)

(
−F ′ (u)

)
du,

where we have integrated by parts and used the fact that the function

V (ut) F (u) ' logα (2 + ut)
uγ

1 + u

vanishes at u = 0 and u → ∞. Noticing that

−F ′ (u) =
uγ−1

(1 + u)2
((1 − γ) u − γ)

and that −F ′ (u) ≥ 0 for u ≥ u0 := γ
1−γ we obtain

∫ ∞

0
V (ut)

(
−F ′ (u)

)
du ≤

∫ ∞

u0

V (ut)
(
−F ′ (u)

)
du

≤ C

∫ ∞

u0

(logα t + logα (2 + u)) (−dF (u))

Clearly, we have
∫ ∞

u0

logα t (−dF (u)) = (logα t) F (u0) = (logα t) γγ (1 − γ)1−γ ≤ logα t.

Using the estimate

−F ′ (u) ≤
uγ−1u

(1 + u)2
≤ uγ−2,
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we obtain
∫ ∞

u0

logα (2 + u) (−dF (u)) ≤
∫ ∞

u0

logα (2 + u) uγ−2du

≤ Cγ

∫ ∞

u0

u
1−γ

2
+(γ−2)du

≤ Cγu
− 1−γ

2
0 .

Since u0 depends only on γ, we can write
∫ ∞

0
V (ut)

(
−F ′ (u)

)
du ≤ C logα t + Cγ

where the constant C does not depend on γ (but can depend on α). Substituting this
estimate into (6.15), we obtain

Mγ (x, t) ≤ C
tγ

logα t
(C logα t + Cγ) = Ctγ + Cγ

tγ

logα t
,

whence (6.13) follows.

7. The Laplace operator

It is known that any strongly continuous contraction semigroup {Pt}t≥0 in a Hilbert
space H has the generator

L = s- lim
t→0

id−Pt

t
,

that is a densely defined operator in H. Moreover, if the operators Pt are symmetric then
L is a self-adjoint operator and Pt = exp (−tL) . The purpose of the next theorem is to
evaluate the generator L of the semigroup

{
P t
}

t≥0
in L2 (X,m) defined by (3.5). We will

refer to L as the Laplace operator of
{
P t
}

t≥0
.

Theorem 7.1. Let L be the generator of
{
P t
}

t≥0
. Then the following identity holds

L =
∞∑

k=0

(

log
1
sk

)

(Pk − Pk+1) , (7.1)

where the series converges in the strong operator topology of L2 (X,m). Consequently, L
is a bounded, non-negative definite, self-adjoint operator in L2 (X,m), and the spectrum
of L is given by

specL2 L =

{

log
1
sk

}∞

k=0

⋃
{0} . (7.2)

Each value log 1
sk

is an eigenvalue of L with infinite multiplicity.

Proof. The defining identity P t = e−tL is equivalent to P = e−L whence L = log 1
P .

Using the spectral resolution (3.4) of P , we obtain (7.1). It follows from (7.1) that L
has the spectrum (7.2), where 0 is added as the only accumulation point of the sequence{

log 1
sk

}
. Since this sequence is non-negative and bounded, the operator L is non-negative

definite and bounded.
It follows from (7.1) that log 1

sk
is an eigenvalue of L with the eigenspace (Pk − Pk+1) L2.

Let us show that this space is infinite dimensional. For any a ∈ X and k ∈ Z+ define a
function

fk,a = (Pk − Pk+1)1{a}
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so that fk,a is an eigenfunction of L with the eigenvalue log 1
sk

. Since

Pl1{a}(x) =
1

m (Bl (x))

∫

Bl(x)
1{a}dm =

m({a})1Bl(a)(x)

m(Bl(x))
,

we see that suppPl1{a} ⊂ Bl (a). It follows that supp fk,a ⊂ Bk+1(a). In particular, if
the balls Bk+1(a) and Bk+1(b) are disjoint then the functions fk,a and fk,b have disjoint
supports and therefore are orthogonal in L2. Since there are infinitely many disjoint balls
of radius k + 1, we obtain that the eigenspace of L with the eigenvalue log 1

sk
is infinitely

dimensional.

Corollary 7.2. Let L be the Laplace operator of the semigroup
{
P t
}

t≥0
. Let φ : [0,∞) →

[0,∞) be a continuous, strictly monotone increasing function such that φ (0) = 0. Then

the operator φ(L) is the Laplace operator of the semigroup
{

P t
φ

}

t≥0
that is defined by

Pφ =
∞∑

k=0

cφ
kPk,

where
{

cφ
k

}∞

k=0
is a stochastic sequence given by

cφ
k = exp

(

−φ

(

log
1
sk

))

− exp

(

−φ

(

log
1

sk−1

))

, k ≥ 1, (7.3)

cφ
0 = exp

(

−φ

(

log
1
s0

))

. (7.4)

Proof. Note that the sequence
{

exp
(
−φ
(
log 1

sk

))}∞

k=0
is strictly monotone increasing

in k, which implies cφ
k > 0. It follows from (7.3)-(7.4) that

sφ
k := cφ

0 + ... + cφ
k = exp

(

−φ

(

log
1
sk

))

.

Hence,
∞∑

k=0

cφ
k = lim

k→∞
sφ
k = exp (−φ (0)) = 1

so that the sequence
{

cφ
k

}∞

k=0
is stochastic. By Lemma 3.2,

{
P t

φ

}

t≥0
is a strongly con-

tinuous Markov semigroup in L2 (X,m), and by Theorem 7.1, the generator Lφ of this
semigroup is given by

Lϕ =
∞∑

k=0

(

log
1

sφ
k

)

(Pk − Pk+1) .

On the other hand, we obtain from (7.1) by the functional calculus that

φ (L) =
∞∑

k=0

φ

(

log
1
sk

)

(Pk − Pk+1) .

Then the identity Lφ = φ (L) follows from

log
1

sφ
k

= φ

(

log
1
sk

)

.

If A is a (non-negative definite) symmetric operator such that the semigroup
{
e−tA

}
t≥0

is Markov then we refer to A as a Laplace operator. By a theorem of Bochner, for
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any Laplace operator A, the operator φ (A) is again a Laplace operator, provided φ is a
Bernstein function. For example, φ (λ) = λα is a Bernstein function if 0 < α ≤ 1 and
is not if α > 1. In general, it is not true that Aα with α > 1 is a Laplace operator.
However, in the specific case of the semigroup

{
P t
}

t≥0
given by (3.5), the operator Lα is

by Corollary 7.2 a Laplace operator for any α > 0.

Theorem 7.3. For any p ∈ [1, +∞], the operator L can be extended as a bounded operator
acting on Lp = Lp(X,F ,m). Moreover, we have

specLp L = specL2 L, for any p ∈ [1, +∞] . (7.5)

Proof. Denoting lk = log 1
sk

we have by (7.1)

Lf =
∞∑

k=0

lk(Pkf − Pk+1f), (7.6)

for any f ∈ L2. Applying the Abel transformation to (7.6), we obtain

Lf = l0f −
∞∑

k=1

(lk−1 − lk)Pkf. (7.7)

We use (7.7) to define Lf for f ∈ Lp for any p ∈ [1, +∞]. Indeed, since ‖Pk‖Lp→Lp ≤ 1
and lk ↓ 0 as k → ∞, we have

∞∑

k=1

‖(lk−1 − lk)Pk‖Lp→Lp ≤
∞∑

k=1

(lk−1 − lk) = l0 < ∞

so that the series in (7.7) converges in Lp. Hence, (7.7) defines L as a bounded operator
in Lp, which proves the first claim.

For any f ∈ L2 and for any λ /∈ specL2 L, we have from (7.6)

(L − λ id)−1f =
∞∑

k=0

1
lk − λ

(Pkf − Pk+1f).

Applying again the Abel transformation with l−1 := 0 we obtain

(L − λ id)−1f = −
1
λ

f +
∞∑

k=0

(
1

lk − λ
−

1
lk−1 − λ

)

Pkf

= −
1
λ

f +
∞∑

k=0

(
lk−1 − lk

(lk − λ) (lk−1 − λ)

)

Pkf. (7.8)

Since by (7.2)
inf
k≥0

|(lk − λ) (lk−1 − λ)| > 0,

we have
∞∑

k=0

∣
∣
∣
∣

lk−1 − lk
(lk − λ) (lk−1 − λ)

∣
∣
∣
∣ < ∞,

whence it follows that the series (7.8) converges in all Lp. Clearly, (7.8) defines (L−λ id)−1

as a bounded operator in Lp, which proves that λ /∈ specLp L, that is,

specLp L ⊂ specL2 L.

To prove the opposite inclusion, observe that, for any k ∈ Z+ and a ∈ X, the function
fk,a = (Pk − Pk+1)δa belongs to all spaces Lp and, by (7.1), is an eigenfunction of the
operator L with the eigenvalue lk. Therefore, specLp L contains all lk and, hence, also 0 as
an accumulation point of {lk}, which together with (7.2) finishes the proof of (7.5).
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To state the next theorem observe that, for any non-negative function f on X, Pkf is
also a non-negative function on X (cf. (3.1)). Hence, the identity (7.7) defines Lf as a
function on X with values in [−∞, +∞). For example, L const ≡ 0.

Theorem 7.4. (A strong Liouville property) If f is a non-negative function on X such
that Lf ≡ 0 then f = const . In particular, the point 0 of specL∞ L is an eigenvalue of
multiplicity 1.

Proof. Since PkPm = PmPk = Pmax(k,m), we obtain from (7.7) that, for any m ∈ Z+,

L (Pmf) = Pm (Lf) = 0, (7.9)

and

L (Pmf) = l0Pmf −
∑

k≤m

(lk−1 − lk)Pmf −
∑

k≥m+1

(lk−1 − lk)Pkf

= lmPmf −
∞∑

k=m+1

(lk−1 − lk)Pkf. (7.10)

Applying (7.10) to m + 1 instead of m and subtracting the result from (7.10) we obtain

L (Pmf) − L (Pm+1f) = lm (Pmf − Pm+1f) .

Since lm 6= 0, it follows from (7.9) that

Pmf − Pm+1f = 0.

It follows by induction that f = Pmf for all m ∈ Z+, which implies that f must be
constant on all balls and, hence, f = const.

Corollary 7.5. Let φ be a function as in Corollary 7.2. If f is a non-negative function
on X such that φ (L) f ≡ 0 then f = const .

Proof. Indeed, by Corollary 7.2 the operator φ (L) is a Laplace operator. Applying to
this operator Theorem 7.4, we finish the proof.

Example 7.6. Taking φ (t) = tα where α > 0, we obtain that Lαf = 0 implies f = const
(assuming a priori that f ≥ 0). Take now φ (t) = 1 − e−αt and observe that by (7.1) and
(3.5)

φ (L) =
∞∑

k=0

(1 − sα
k ) (Pk − Pk+1) = id−Pα.

Hence, Pαf = f for some α > 0 implies f = const .

8. Appendix: some properties of the gamma function

Lemma 8.1. Fix γ ∈ (0, 1) .

(a) The function t 7→ Γ(t+γ)
Γ(t+1) is monotone decreasing in t ≥ 0.

(b) For all t > 0, we have
Γ (t + γ) ≤ tγΓ (t) . (8.1)

Proof. It is known that, for all t > 0,

ϕ (t) :=
d

dt
ln Γ (t) = −C +

∞∑

n=0

(
1

n + 1
−

1
n + t

)

, (8.2)

where C is the Euler constant (see [1, eq. 6.3.16]).
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(a) It is clear from (8.2) that ϕ (t) is monotone increasing in t. Therefore, we have

d

dt
(ln Γ (t + γ) − ln Γ (t + 1)) = ϕ (t + γ) − ϕ (t + 1) ≤ 0,

whence the claim follows.
(b) It follows from (8.2) that

ϕ (t + γ) − ϕ (t) =
∞∑

n=0

(
1

n + t
−

1
n + t + γ

)

=
∞∑

n=0

γ

(n + t) (n + t + γ)

≥ γ
∞∑

n=0

1
(n + t) (n + 1 + t)

=
γ

t
.

Therefore, setting
F (t) := lnΓ (t + γ) − ln Γ (t) − γ ln t,

we obtain that
d

dt
F (t) = ϕ (t + γ) − ϕ (t) −

γ

t
≥ 0,

that is, the function F (t) is monotone increasing. Using Stirling’s formula in the form

lnΓ (t) =

(

t −
1
2

)

ln t − t + ln
√

2π + o (1) as t → ∞,

we obtain

F (t) =

(

t + γ −
1
2

)

ln (t + γ) − (t + γ) −

(

t −
1
2

)

ln t + t − γ ln t + o (1)

=

(

t + γ −
1
2

)

ln

(
t + γ

t

)

− γ + o (1)

= t
γ

t
− γ + o (1)

= o (1) .

Hence, limt→∞ F (t) = 0. Since the function F (t) is monotone increasing, it follows that
F (t) ≤ 0 for all t > 0, which is equivalent to (8.1).
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