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Chapter O

Introduction

0.1 Examples of PDEs and their origin

Let u = u (1, ...,x,) be a real-valued function of n independent real variables x1, ..., z,,.
Recall that, for any multiindex o = (ay, ..., ;) where «; are non-negative integers, the
expression D“u denotes the following partial derivative of u:

(0%
D%y = aoéal—lu,
xit...0x8n
where |a| = ay + ... + «, is the order of the derivative.
A partial differential equation (PDE) is an equation with an unknown function
u = u(xy,..,x,) of n > 1 independent variables, which contains partial derivatives of
u. That is, a general PDE looks as follows:

F (D*u, Du,Du,...) =0 (0.1)

where F' is a given function, u is unknown function, «, 3,7, ... are multiindices.

Of course, the purpose of studying of any equation is to develop methods of solving
it or at least ensuring that it has solutions. For example, in the theory of ordinary
differential equations (ODEs) one considers an unknown function u (z) of a single real
variable x and a general ODE

F(u,u',d",...) =0

and proves theorems about solvability of such an equation with initial conditions, under
certain assumptions about F' (Theorem of Picard-Lindelsf). One also develops methods
of solving explicitly certain types of ODEs, for example, linear ODEs.

In contrast to that, there is no theory of general PDEs of the form . The reason
for that is that the properties of PDEs depend too much of the function F' and cannot
be stated within a framework of one theory. Instead one develops theories for narrow
classes of PDEs or even for single PDEs, as we will do in this course.

Let us give some examples of PDEs that arise in applications, mostly in Physics.
These examples have been motivating development of Analysis for more than a century.
In fact, a large portion of modern Analysis has emerged in attempts of solving those
special PDEs.
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0.1.1 Laplace equation

Let Q2 be an open subset of R” and let u : {2 — R be a function that twice continuously
differentiable, that is, u € C? (Q). By Au we denote the following function

n
Au = E Oy s
k=1

that is, Awu is the sum of all unmixed partial derivatives of u of the second order. The
differential operator
A=) O,
k=1

is called the Laplace operator, so that Aw is the result of application to u of the Laplace
operator.
The Laplace equation is a PDE of the form

Au = 0.

Any function u that satisfies the Laplace equation is called a harmonic function. Of
course, any affine function

u(x) =ayry + ... + apx, +b

with real coefficients a1, ..., a,, b is harmonic because all second order partial derivatives
of u vanish. However, there are more interesting examples of harmonic functions. For
example, in R™ with n > 3 the function

u () !

BER

is harmonic away from the origin, where

lz| = /22 + ...+ 22

is the Euclidean norm of z. In R? the function
u(x) = In|z|

is harmonic away from the origin.
It is easy to see that the Laplace operator A is linear, that is,

A(u+v)=Au+ Av

and
A (cv) = cAu
for all u,v € C? and ¢ € R. It follows that linear combinations of harmonic functions

are harmonic.

A more general equation
Au=f

where f : {2 — R is a given function, is called the Poisson equation. The Laplace and
Poisson equations are most basic and most important examples of PDEs.
Let us discuss some origins of the Laplace and Poisson equations.



0.1. EXAMPLES OF PDES AND THEIR ORIGIN 3

Holomorphic function

Recall that a complex valued function f (z) of a complex variable z = x + iy is called
holomorphic (or analytic) if it is C-differentiable. Denoting u = Re f and v = Im f,
we obtain functions u (x,y) and v (z,y) of two real variables z, y.

It is known from the theory of functions of complex variables that if f is holomorphic
then u, v satisfy the Cauchy-Riemann equations

Opu = Oyv,
{ Oyu = —0,v. 0.2)

Assuming that u,v € C? (and this is necessarily the case for holomorphic functions),

we obtain from (0.2])
Opatt = 0,0,V = 0,0,v = —0yyu
whence
Au = Oppu + Oyyu = 0.

In the same way Av = 0. Hence, both u, v are harmonic functions.
This observation allows us to produce many examples of harmonic functions in R?
starting from holomorphic functions. For example, for f (z) = e* we have

e* ="t = ¢” (cosy + isiny)

which yields the harmonic functions u (z,y) = e* cosy and v (z,y) = e” siny.
For f(z) = 2z? we have
2= (v +iy)’ = (2® — y*) + 2y,

so that the functions u = 2% — y? and v = 22y are harmonic.
For the function f (z) = In z that is defined away from the negative part of the real
axis, we have, using the polar form z = re? of complex numbers that

Inz=Inr+10.
Y. YA
r
I e | |
r N T x 1
Since 7 = |z| and 6 = argz = arctan?, it follows that the both functions u =

In|z| = In /22 4 y? and u = arctan ¥ are harmonic.
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Gravitational field

By Newton’s law of gravitation of 1686, any two point masses m, M are attracted each

to other by the gravitational force F = 7%’” where r is the distance between the

points and ~ is the gravitational constant. Assume that the point mass M is located

constantly at the origin of R? and that the point mass m is moving and let its current

position be x € R3. Taking for simplicity ¥ = m = 1, we obtain that the force actin
M

at the moving mass is F' = 2P and it is directed from x to the origin. The vector F

of the force is then equal to

7 M( x)_ M x
2>\ |z| |z

Any function F deﬁned_i>n a domain of R™ and taking values in R" is called a wvector
field. The vector field F (z) = —M # in R? is called the gravitational field of the
point mass M.

A real-value function U (z) in R" is called a potential of a vector field 7 (x) in R"

if -
F(x)=-VU (z),
where VU is the gradient of U defined by

VU = (0,,U, ..., 0, U).

Not every vector field has a potential; if it does then it is called conservative. Conser-
vative fields are easier to handle as they can be described by one scalar function U (x)
ﬁ
instead of a vector function F' (x).
It can be checked that the following function
M
Ur)=——

]

is a potential of the gravitational field F = M=, Ttis called the gravitational

El
potential of the point mass M sitting at the origin.
If M is located at another point y € R?, then the potential of it is
M
Ux)=———.
|z —y|

More generally, potential of a mass distributed in a closed region D is given by

U ) = — /D Py Z?T 0.3)

|z —

where p (y) is the density of the matter at the point y € D. In particular, the gravita-

tional force of any mass is a conservative vector field.

As we have mentioned above, the function ——; is harmonic in R” away from the

||
1

origin. As a particular case, we see that Tl is harmonic in R?® away from the origin.

It follows that the potential U (z) = —% is harmonic away from the origin and the
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potential U (z) = _I:c% is harmonic away from y. One can deduce that also the
function U (x) given by is harmonic away from D.

Historically, it was discovered by Pierre-Simon Laplace in 1784-85 that a gravi-
tational field of any body is a conservative vector field and that its potential U (x)
satisfies in a free space the equation AU = 0, which is called henceforth the Laplace
equation. The latter can be used for actual computation of gravitational potentials
even without knowledge of the density p.

Electric force

By Coulomb’s law of 1784, magnitude of the electric force F' between two point electric
charges @, q is equal to k% where r is the distance between the points and k is the
Coulomb constant. Assume that the point charge @) is located at the origin and the
point charge ¢ at a variable position x € R3. Taking for simplicity that k = ¢ = 1, we
obtain F' = % and that this force is directed from the origin to x if ) > 0, and from
x to the origin if @ < 0 (indeed, if the both charges are positive then the electric force
between them is repulsive, unlike the case of gravitation when the force is attractive).

H
Hence, the vector F' of the electric force is given by

=Q

= Q =z
|| ||

x
>
This vector field is potential, and its potential is given by U (z) = <.

]
If a distributed charge is located in a closed domain D with the charge density p,

then the electric potential of this charge is given by

U<x):/p(y)dy

)
D |5’7_Z/|

which is a harmonic function outside D.

0.1.2 Wave equation
Electromagnetic fields

In the case of fast moving charges one should take into account not only their electric
fields but also the induced ma_g)netic ﬁelds._> In general, an electromagnetic field is
described by two vector fields E (z,t) and B (z,t) that depend not only on a point
z € R? but also on time t. If a point charge ¢ moves with velocity v’, then the
electromagnetic field exerts the following force on this charge:
— — - =
F=qgF +qv x B
This force is also called the Lorentz force. o
The evolution of the electromagnetic field (£, B) is described by Mazwell’s equa-
tions:
—
div &/ = 4mp
%
divB =0
ﬁ
rot £ = —%(%B
— —
rot B =< <47TJ —|—8tE)

(0.4)
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where

e ¢ is the speed of light;

p is the charge density;
= .
e J is the current density;

div F is the divergence of a vector field F = (F1, ..., Fy,) in R™ given by

3

-
div F' = O Fi ;
k=1

rot F is the rotation (curl) of a vector field F = (Fy, Fy, F3) in R? given by

i ik
rot F =det | 0y, s, Opy | = (00, Fy — 0uyFo, Oy Fi — 0y, Fy, Oy, Fy — Oy, F).
OB R

The equations (0.4)) were formulated by James Clerk Maxwell in 1873.

Assume for simplicity that p = 0 and "7 = 0. Then we have from the third equation
— 1 — 1 —=
rot(rot £') = ——0(rot B) = =0 k.
c c

On the other hand, there is a general identity for any C? vector field F in R?:
— — —
rot(rot F') =V(div F') — AF,

where AF = (AF;, AFy, AF3) . Applying it to E and using that div E = 0, we obtain
that

—
Denoting by u any component of £ we obtain that u satisfies the wave equation
Oyu = *Au,

that is,
@tu = C2 (@Elxlu + amgmzu + aiﬂ?,m?)u) .

H
Similarly, any component of B satisfies the wave equation. In particular, if the electric
H

force E is stationary, that is, does not depend on time, then we obtain the Laplace
equation Au = 0.
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Vibrating string

Vibrating strings are used in many musical instruments, such as pianos, guitars, etc.
The frequency of the sound produced by a vibrating string can be determined mathe-
matically using the string equation that we are going to derive.

Assume that initially the string rests on the x-axis and denote by u (x,t) the ver-
tical displacement of the string at the point € R at time ¢. Assume also that the
oscillations of the string from the horizontal position are small. Under this assumption
the horizontal component of the tension force in the string will have the constant value
that we denote by T

Fix time ¢t and denote by «a, the angle between the tangential direction at the point
(x,u(x,t)) and the z-axis. Denote by T, the magnitude of tension at the point x.
Note that the direction of the tension is tangential to the string. Since the shape of
the string is given by the graph of function = — u (z,t), we have

tan o, = J,u.
Since the horizontal component of tension is 7}, cos a,., we obtain
T,cosa, =1T.

The net force acting on the piece (x,x + h) of the string in the vertical direction is
equal to

sin a1 B Tsin Qy

COS Qg COS

= TOo.u(x+ h,t) — TO,u(z,t).

Teipsinagyp, —Typsina, = T

By Newton’s second law, the net force is equal to ma where m is the mass of the piece
(x,x + h) and a is the acceleration in the vertical direction. Since m = ph where p is
the linear density of the string and a = d,u, we obtain the equation

TO,u(x + h,t) — TOpu (z,t) = phdyu.
Dividing by h and letting h — 0, we obtain
TO..u = pOyu,

that is,
attu = 02851:1‘”

where ¢ = /T/p. This is the vibrating string equation that coincides with the 1-
dimensional wave equation.

Vibrating membrane

Similarly, consider a two-dimensional membrane, that initially rests on the (xy,zs)-
plane and denote by u (x,t) the vertical displacement of the membrane at the point
x € R? at time ¢t. Assuming that the oscillations of the membrane from the horizontal
position are small, one obtains the following equation

O = 2 (Opyzy U + Opyott)
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which is a two-dimensional wave equation.
In general we will consider an n-dimensional wave equation

&gt = C2AU

where u = u (z,t) and x € R", t € R. Here c is a positive constant, but we will see
that ¢ is always the speed of wave propagation described by this equation.

0.1.3 Divergence theorem

Recall the divergence theorem of Gauss. A bounded open set 2 C R™ is called a region
if there is a C! function ® defined in an open neighborhood €’ of © such that

P(x) < 0inQ
¢ (x) = 0on N
P(z) > 0inQY\Q

and V® # 0 on 99 (in words: €2 is a sublevel set of a C''-function that is non-singular
on 09). The latter condition implies that 9 is a C! hypersurface.

N

For any point x € 0f) define the vector

Vo

The function v : 92 — R" is called the outer unit normal vector field on 0f).
For example, if 2 = Bgr where

Br={z € R": |z| < R}

is the ball of radius R centered at the origin, then ® () = |z|* — R? satisfies the above
properties. Hence, the ball is a region. Since V® = 2x, we obtain that the outer unit

normal vector field on J0Bp is
x

v(z)

Divergence theorem of Gauss. Let ) be a region in R™ and v the outer unit
e
normal vector field on ). Then for any C! vector field F' : Q — R"™ we have

/Qdiv?(x)dx:/ F -vdo, (0.5)

o0

el

23.10.15
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— —
where o is the surface measure on 0N, div F' = 3, 0, F} is the divergence of F,

and ? - v 18 the scalar product of the vectors F',v.

0.1.4 Heat equation
Heat conductivity

Let u (z,t) denote the temperature in some medium at a point x € R?® at time ¢. Fix
a region 2 C R3. The amount () of the heat energy that has flown into  through its
boundary 0€) between the time moments ¢ and t + h is equal to

t+h
Q= / (/ ko, u da) dt,
t o0

where v is the outer unit normal vector field to 02 and k& = k(z) is the thermal
conductance of the material of the body.

Indeed, by the law of heat conductivity, discovered by Jean Baptiste Joseph Fourier
in 1822, the influx of the heat energy through the surface element do in unit time is
proportional to the change of the temperature across do, that is to d,u, and the
coefficient of proportionality k is determined by the physical properties of the material.

On the other hand, the amount of heat energy Q' acquired by a region Q C R3
from time ¢ to time t 4 h is equal to

O = /Q (u(x,t+h) —u(x,t))cpdr,

where p is the density of the material of the body and c is its heat capacity (both
¢ and p are functions of x). Indeed, the volume element dx has the mass pdzr, and
increase of its temperature by one degree requires cpdx of heat energy. Hence, increase
of the temperature from u (x,t) to u (z,t + h) requires (u(x,t + h) —u(x,t)) cpdx of
heat energy.

By the law of conservation of energy, in the absence of heat sources we have Q) = @',

that is,
t+h
/ (/ ko,u da) dt = / (u(z,t+h) —u(x,t))cpd.
¢ 20 Q

Dividing by h and passing to the limit as h — 0, we obtain

/ kO u do = / (Ou) cpdzx.
20 Q
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Applying the divergence theorem to the vector field F = kVu, we obtain
— —
/ ko, u da:/ F -V:/dide:c:/div(kVu)da:,
o9 o0 Q Q

/cp@tudxz/div (kVu) dz.
Q Q

Since this identity holds for any region 2, it follows that the function u satisfies the
following heat equation

which implies

cpOpu = div (kVu) .

In particular, if ¢, p and k are constants, then, using that

div (Vu) =Y 0, (V) = > 05, Onu = Au,
k=1

k=1

we obtain the simplest form of the heat equation
o = a’Au,

where a = \/k/ (cp). In particular, if the temperature function u is stationary, that is,
time independent, then u satisfies the Laplace equation Au = 0.

Stochastic diffusion

We consider here Brownian motion — an erratic movement of a microscopic particle
suspended in a liquid, that was first observed by a botanist Robert Brown in 1828 (see
a picture below). This irregular movement occurs as the result of a large number of
random collisions that the particle experience from the molecules.

Brownian motion simulation in 2D

K

05

H i i
-2 -1.5 -1 -0.5 0 0.5
<X->

Brownian path in R2 The event X; € Q)

Based on this explanation, Albert Einstein suggested in 1905 a mathematical model
of Brownian motion. Assuming that the particle starts moving at time 0 at the origin
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of R3, denote its random position at time ¢ by X,. One cannot predict the position of
the particle deterministically as in classical mechanics, but can describe its movement
stochastically, by means of transition probability P (X, € Q) for any open set 2 and
any time ¢. The transition probability has a density: a function u (z,t) such that, for
any open set ) C R3,

P(X; € Q) :/u(x,t)da:.

Einstein showed that the transition density u (x, t) satisfies the following diffusion equa-
tion

(9{& = DAU,

where D > 0 is the diffusion coefficient depending on the properties of the particle and
surrounding medium. In fact, Einstein derived an explicit formula for D and made a
prediction that the mean displacement of the particle after time ¢ is v/4Dt. The latter
prediction was verified experimentally by Jean Perrin in 1908, for which he received a
Nobel Prize for Physics in 1926. The experiment of Jean Perrin was considered as the
final confirmation of the molecular structure of the matter.

Obviously, the diffusion equation is identical to the heat equation.

0.1.5 Schrédinger equation

In 1926, Erwin Schrodinger developed a new approach for describing motion of elemen-
tary particles in Quantum Mechanics. In this approach the movement of elementary
particle is described stochastically, by means of the transition probability and its den-
sity. More precisely, the transition density of the particle is equal to [¢ (z,t)|” where
Y (z,t) is a complex valued function that is called the wave function and that satisfies
the following Schrodinger equation:

2
1thoy) = —E—Aw + U1,
2m

where m is the mass of the particle, U is the external potential field, & is the Planck
constant, and ¢« = +/—1. For his discovery, Schrodinger received a Nobel Prize for
Physics in 1933.

For U = 0 we rewrite this equation in the form

b = i Ay,
2m

which looks similarly to the heat equation but with an imaginary coefficient in front of

A

The main equations to be considered in this lecture course are the Laplace, heat and
wave equations.
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0.2 Quasi-linear PDEs of second order and change
of coordinates

In all the above examples the PDEs are of the second order, that is, the maximal order
of partial derivatives involved in the equation is equal to 2. Although there are also
important PDEs of higher order, we will restrict ourselves to those of the second order.
Consider a second order PDE in R" (or in a domain of R") of the form

Z ij () Opie;u + @ (2, u, Vu) = 0 (0.6)

1,7=1

where a;; and ® are given functions. If ® = 0 then this equation is called linear, because
the expression in the left hand side is a linear function of the second derivatives 0,
With a general function ®, the equation is called quasi-linear.

A solution u of 1@’ is always assumed to be C2. Since Ozie; U = Ogz,u, it follows
that we can assume that a;; = a;, that is, the matrix a = (a;;) is symmetric.

Let us make a linear change of the coordinates 1, ..., z,, and see how the PDE
changes. The goal of that is to try and find a change that simplifies . So, consider
a linear transformation of coordinates

ij

y=Mzx

where M = (Mij)?jzl is a non-singular matrix and x and y are regarded as columns.
Explicitly we have, for any k =1,....n

ye = My .
k=1

The function u (x) can be regarded also as a function of y because x is a function of y.
By the chain rule we have

8yk

Op,u = Z M0y, u
k
and
Opwytt = On > MuOyu=> My, (9yu) => My (Z My;0,, (ayku))
k k k ]
= Z M My 0y, g, 1,
k.l

so that

Z ;j (%) Opyaju = Z a;; (v Z My M0y, u = Z <Z a;; (@ MklMlJ) Oypy U
— =
= Z bit (y) Oy
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where

For the matrices a = (a;;) and b = (by;), we obtain the identity
b= MaM™". (0.7)

Hence, the change y = Mx brings the PDE to the form

Z bt (Y) Oy v + ¥ (y,u, Vu) = 0, (0.8)
kd=1

where b is given by (0.7). Moreover, the left hand sides of and are identical.
Now we fix a point xy and try to find M so that the matrix b at yo = Mxg is
as simple as possible. Write for simplicity a;; = a;; (o) and consider an auxiliary
quadratic form
> ai6E; = €"ag, (0.9)
1,J
where £ € R™ is a new variable (column) vector. The quadratic form (0.9)) is called the
characteristic form of at .
Consider in the change € = MTy:

> ai&g; =n"MaM "y =n"bn =Y bunn,.

%,J k,l

Hence, the change £ = MT7 in the characteristic form of the PDE results
in the characteristic form of the PDE (0.8). Shortly, the change y = M« in the PDE
is compatible with the change £ = M7*7 in the characteristic form.

As it is known from Linear Algebra, by a linear change ¢ = M”17 any quadratic
form can be reduced to a diagonal form; in other words, there a non-singular matrix

M such that the matrix b = MaM7 is a diagonal matrix with diagonal elements +1
and 0:

b=diag(1,..1,—1,...,—1,0,...,0).
—— ——
p q

One says that the matrix a (zo) has signature (p, ¢) . In this case we say that is
the canonical form of at xg.
Definition. We say that the PDE has at the point

e clliptic type if the matrix a (zo) has signature (n,0) (that is, the matrix a () is
positive definite);

e hyperbolic type if a (zg) has signature (n — 1,1) or (1,n — 1)

e parabolic type if a (zo) has signature (n — 1,0) or (0,n —1).
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This classification is full in the case of dimension n = 2: indeed, in this case the
only possibilities for signatures are (2,0), (1,1) and (1,0) and the symmetric ones,
which gives us the above three cases. For a general dimension n there are many other
signatures that are not mentioned in the above Definition.

If the coefficients a;; () do not depend on z, then the canonical form (and, hence,
the type) is the same at all points.

Example. The Laplace equation in R™ has the form

Opyzy U+ oo + Op, o, u =0,

nTn

whose characteristic form is
e+ .+

It is already diagonal and has signature (n,0). Hence, the Laplace equation has elliptic
type (at all points).

The n-dimensional wave equation
attu = Au

can be regarded as a PDE in R"*! with the coordinates (¢, 71, ..., x,,). It can be rewritten
in the form
Opth — Opy oy — . — O, b = 0,

and its characteristic form is
g-6-.-¢6
has signature (1,n). Hence, the wave equation is of hyperbolic type.
The n-dimensional heat equation

u = Au
can also be regarded as a PDE in R"™! as follows
Ot — Opyzy U — oo — O = 0,

and its characteristic form is —¢&3 — ... — ¢2. It has signature (0,n), and its type is
parabolic.

Example. Let us bring to the canonical form the PDE in R?
Opztt — 20,yu — 30y u + Oyu = 0. (0.10)

Here we use notation (x,y) for the coordinates instead of (x1,z3). Hence, the new
coordinates will be denoted by (2, 4') instead of (y1, y2).

The matrix a of (0.10)) is
1 -1
=(45)

and the characteristic form of (0.10]) is

& —2n— 37 = (E—n) — 4P = (&)’ — (n)°
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where

§ = &-n
n = 2n.
In particular, we see that the signature of a is (1,1) so that the type of (0.10) is
hyperbolic.
The inverse transformation is

1
! !

£—€+2n
1,

no=3n

whence we obtain

(1)

Therefore, the desired change of variables is

NN

N[ =
Ni= O
N——

/

7 =
"= 1x+1
Yy = 5 2y

Under this change we have
8m[;u — 28zyu — 38yyu = (%I/u — 8y/y/u

and 9 o0 )
x y
8yu = a—yaxlu + a—yay/u = §6y/u.

Hence, the canonical form of (0.10)) is

1
azll./u —_ 8ylylu + §aylu = 0

Example. Let us show how to solve the PDE
Opyt = 0

in R? (and in any open convex subset of R?). We assume that v € C?(R?). Since
0y (0yu) = 0, we see that the function d,u is a constant as a function of y, that is,

Gpu(2,y) = f(2),

for some C! function f. Integrating this identity in x, we obtain
u(z,y) = /f(x)dx—l—C’,

where C can depend on y. Renaming [ f (x)dx back into f(x) and denoting C' by
g (y), we obtain

u(x,y) = f(z)+9gy)
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for arbitrary C? functions f and g. Conversely, any function u of this form satisfies
Uz, = 0. Hence, the general solution of u,, = 0 is given by

u(r,y) = f(r)+gy).

This is a unique situation when a PDE can be explicitly solved. For other equations
this is typically not the case.

The same argument works if () is a convex open subset of R? and a function u € C? () satisfies
Ozyu = 0 in §2. Denote by I the projection of §} onto the axis x and by J the projection of {2 onto the
axis y, so that I, J are open intervals. For any x € I, the function u (x,y) is defined for y € J, where
Jy is the x-section of Q (by convexity, J, is an open interval). Since 9, (0,u) = 0 on J,, we obtain
that d,u as a function of y is constant on J,, that is,

dpu(z,y) = f (x)

for all (z,y) € Q, where f is a function on I. For any y € J, denote by I, the y-section of Q2 and
integrate the above identity in = € I,,. We obtain

u(z,y) = f(z)+9(y)
for all (z,y) € Q, for some function g defined on J. It follows that f € C2 (I) and g € C2 (J).
Example. Let us find the general C? solution of the following PDE in R:
Oyt — Oyt = 0 (0.11)
where ¢ > 0 is a constant. Let us show that it can be reduced to
Opryu = 0.

Indeed, the characteristic form is

FE == (c€+n)(c€—n) =&y

where
¢ = ck+n
n = c—n.
It follows that
£ = =+
2c
_ L /
no= 5 E=)

The matrix M is therefore

1 1
M = ( 210 21 )
2 2
and the change of coordinates is
¥ = 1$—|—1 —1(a:+c)
2" Y T Y
1 1 1
I e T _
yo= gt gy=g (@ —ay).
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In the new coordinates the PDE becomes
(%y/u =0

whose solution is
u=f(z") +9)
with arbitrary C? functions f,g. Hence, the solution of (0.11]) is

u = f(%c(ﬂcy))ﬂtg(?lc(w—cy))
= Fr+cy)+G(r—cy)

where F' (s) = f (5:s) and G (s) = g (5s) are arbitrary C? functions on R.

The equation coincides with the one-dimensional wave equation
Oy = 20y, (0.12)
if we take y = t. Hence, the latter has the general solution
u(z,t)=F(x+ct)+G(x—ct). (0.13)

Note that, for a fixed ¢ > 0, the graph of G'(x — ct) as a function of x is obtained from
the graph of G (x) by shifting to the right at distance ct, and the graph of F' (x + ct) is
obtained from the graph of F'(x) by shifting to the left at distance ct.Hence, u is the
sum of two waves running at speed c: one to the right and the other to the left.

G(X) G(x-ct)

F(x+ct) F(X) /\ /\
« Gi >

- ct

If Q is a convex open subset in R? and u € C? (Q) satisfies (0.12) in € then we obtain similarly
representation (0.13)), where F' and G are C? functions on the intervals I and .J that are the projection
of Q onto the axis 2’ and ¢/, respectively, where

¥ =xz+ct, y =x—ct

In other words, I consists of all possible values of x 4 ¢t with (z,t) € Q and J consists of all possible
values of x — ¢t with (z,t) € Q.
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Chapter 1

Laplace equation and harmonic
functions

In this Chapter we are concerned with the Laplace equation Au = 0 and Poisson
equation Au = f in a bounded domain (=open set) 2 C R", where the function u is
always assumed to be C2. We always assume that n > 2 unless otherwise specified.

As we already know, the family of harmonic functions is very large: for example,
in R? the real part of any analytic function is a harmonic function. In applications
one needs to select one harmonic function by imposing additional conditions, most
frequently — the boundary conditions.

Definition. Given a bounded domain 2 C R", a function f :  — R and a function
¢ : 00 — R, the Dirichlet problem is a problem of finding a function u € C? (Q)NC (Q)
that satisfies the following conditions:

Au=f inQ
{ u=@ on 0. (1.1)

In other words, one needs to solve the Poisson equation Au = f in Q with the
boundary condition v = ¢ on 0f2. In particular, if f = 0 then the problem
consists of finding a harmonic function in 2 with prescribed boundary condition.

We will be concerned with the questions of existence and uniqueness of solution to
as well as with various properties of solutions.

1.1 Maximum principle and uniqueness in Dirichlet
problem

Here we will prove the uniqueness in the Dirichlet problem (1.1]) using the maximum
principle. Any C? function u satisfying Au > 0 in a domain € is called subharmonic
in €.

Theorem 1.1 (Maximum principle) Let Q be a bounded domain. If u € C*() N
C (Q) s subharmonic in §2 then

max u = max u. (1.2)
Q By

19
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Since 0N and ) are compact, the function v attains its supremum on each of this
sets, so that the both sides of (1.2)) are well defined. Also, ([1.2)) can be rewritten in the

form

sup u = sup u. (1.3)
Q o0

Theorem can be formulated as follows: any subharmonic function attains its max-
imum at the boundary.

Subharmonic function f (z,y) = 22 + y?

Proof. Assume first that Au > 0 in ©. Let z be a point of maximum of u in Q. If
z € 0f) then there is nothing to prove. Assume that z € ). Since u takes a maximum
at z, we all first derivatives 0,,u of v vanish at z and the second derivatives 0,,,,u are

at z non-positive, that is,
Op,z;ut (2) < 0.

Adding up for all 7, we obtain that
Au(z) <0,

which contradicts Au > 0 in €2 and thus finishes the proof.
In the general case of Au > 0, let us choose a function v € C?(R") such that
Av > 0. For example, we can take v = |z|” since

Alz]>=A (23 + ...+ 7)) =2n,

or v = "1 gince
Czx1 __ Cxy __ 2 _Cx1
Ae" ™ = Oy pe”™ = C%e

Consider for any € > 0 the function u + cv. Since
A (u+ev) =Au+eAv >0,
we obtain by the first part of the proof that

max (u + ev) = max (u + €v) .
Q 00

Passing to the limit as & — 0, we obtain (1.2)), which finishes the proof. =

A C? function u is called superharmonic in  if Au < 0 in Q.
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Corollary 1.2 (a) (Minimum principle) Let Q be a bounded domain. If u € C*(Q2)N
C (Q) 18 superharmonic in € then

min u = min u. (1.4)
a o0

(b) (Maximum modulus principle) If u € C? () N C (Q) is harmonic in Q0 then

max |u| = max |u (1.5)
Q Q

Proof. If u is superharmonic then —u is subharmonic. Applying Theorem to —u,
we obtain

max (—u) = max (—u),

whence (1.4]) follows. If u is harmonic, then it is subharmonic and superharmonic, so
that both v and —u satisfy the maximum principle. Hence, (1.5 follows. m

We use the maximum principle to prove uniqueness statement in the Dirichlet
problem.

Corollary 1.3 The Dirichlet problem (1.1 has at most one solution u.

Proof. Let u; and uy be two solutions of ([1.1)). The function u = u; — us satisfies then

Au=0 in
u =0 on 0f).

By the maximum principle (1.5)) of Corollary (1.2 we obtain

max |u| = max |u| =0
Q o0

and, hence, u = 0 in Q. It follows that u; = us, which was to be proved. =

In the next theorem we give an amazing application of the maximum principle.
Theorem 1.4 (Fundamental theorem of Algebra) Any polynomial
P(z)=2"+az" ' +.. +a,

of degree n > 1 with complex coefficients ay, ..., a, has at least one complex zero.

Proof. We need to prove that there exists z € C such that P (z) = 0. Assume from
the contrary that P (z) # 0 for all z € C. Since P (z) is a holomorphic function on C,
we obtain that f (z) = 5= is also a holomorphic function on C. Note that

P(z)
[P (2)] = 00 as |z] — oo,
because
[P (2)| ~ [2]" as [z] — oc.

It follows that
|f(2)] = 0as |z| = oco. (1.6)
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We know that the function u = Re f is harmonic in R2. Applying the maximum
principle to u in the ball

Br={z€R*:|z| <R},
we obtain

max |u| = max |u/,
Br dBp

in particular,
<m . 1.
lu(0)] < ’dg;(|u| (1.7)

On the other hand, by (1.6)) we have

<
nax |u(z)| < max |f(2)| >0 as R — oo,

which together with (1.7)) yields

|u (0)] < lim max|u| =0
R—oo 0BR

and, hence, u (0) = 0. In other words, we have Re f (0) = 0. Similarly one obtains that
Im f (0) = 0 whence f (0) = 0, which contradicts to f (z) = ﬁ #0. m

1.2 Representation of C? functions by means of po-
tentials
Let us introduce the notation: in R” with n > 2

1

wn (n—2) |z

E(r) =

n—2"

where w,, is the area of the unit sphere S"~! in R™ (for example, ws = 47), and in R?

Definition. The function E (z) is called a fundamental solution of the Laplace operator
in R™.

We already know that the function E (z) is harmonic in R™\ {0}, but it has singu-
larity at 0.
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Functon F (x) in the case n > 2

Function E () in the case n = 2

Set also, for all z,y € R"

E(z,y) = FE(x—vy).

If Q is a region in R"™ then as before we denote by v the outer unit normal vector
field on 0N) and by o the surface measure on 0f).

Theorem 1.5 Let Q be a bounded region in R"™. Then, for any function u € C* (ﬁ)
and any y € Q)

u(y) =— /Q E (z,y) Au (z) d:IH—/ E(z,y)0u(x)do (x)— [ O,E (z,y)u(x)do (z),

o9 o0
(1.8)
where in 0,E (x,y) the derivative is taken with respect to the variable x.
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In the proof we will use the 2nd Green formula from Exercises: if {2 is a bounded
region and u,v € C* (Q2) then

/Q (vAu — uAv)dx = / (vO,u — ud,v) do. (1.9)

oN

Proof. For simplicity of notation let y = 0, so that (1.8)) becomes

u(0) = — / E (z) Au(z)dx + / E (z)0yu(x)do (x) — O F (x)u(x)do (x)
Q a0 o0
or shorter:
u(0) = —/EAudm—i—/ (E0,u — ud, E) do. (1.10)
Q a0
Choose € > 0 so that B. C Q and consider the set

Q. =Q\B.

that is a region (see Exercises). The functions u, E belong to C* (€).) so that we can
use the 2nd Green formula in €2.:

/ (EAu — uAE)dr = / (E0,u —ud, E) do. (1.11)
Qe

00

Since AE = 0 in 2., the term vAFE vanishes.
Next we let ¢ — 0 in ([1.9). In the left hand side we have

/ (EAu—uAE)dx:/ EAudxe/EAuda:. (1.12)
. . Q

Indeed, since Q \ 2. = B., we have

/EAudac—/ EAudx
Q <

/ EAudx

< supl|Au| [ FEdx.
Q B:

Since Awu is bounded, it suffices to verify that
/ Edxr —0ase— 0.

The latter can be seen by means of integration in polar coordinates: since in the case

n>2
1

wy (n—2)rn=2’

E(r) =

and
0 (0B,) = w,r" 1,

30.10.15
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/Eda: = / (/ Eda)dr
B, 0 0B,

€ 1 1
_ n—
— /0 o (=2 Wy dr

1

we obtain

The case n = 2 is handled similarly (see Exercises).
In the right hand side of ([1.11]) the boundary 952, consists of two disjoint parts: 9f2

895 0 aBg

Observe also that v is outer normal to 0€2. with respect to €., which means that on
0B, the vector field v ist inner with respect to B..
Let us first show that

/ Ed,udo — 0 as ¢ — 0. (1.13)
0B,

Indeed, the function d,u = Vu - v is bounded because u € C! (ﬁ), and

1 1
Edo = do — B.
/8B5 ’ /836 Wy (n —2) en—2 g wn (1 — 2) il (0B)

1 we™ c 0
= = —_ .
Wy (n—2)en—2"" (n—2)

Let us compute the limit

lim ud, E do.

=0 JoB,

Using again polar coordinates, observe that the direction of ¥ on JB. is opposite to
the radial direction, whence it follows that

1 1
&,E = —87~E = _ar (wn (n _ 2) T.n—Q) o (,L)nTn_l.

Consequently, we obtain

1
/ ,Edoc = ——o (0B.) = 1.
OB. Wpe™™

Observe that
/ u(z) 0, F (x) do = / u(0) 0, F do + / (u(z) —u(0)) 0, Edo
O0B. OB: 0B:

= u(O)—i—/aB (u(x) —u(0))0,Edo
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and

< sup |u(x) —u(0) 0, F do

/ (u(z) —u(0))0,Edo
0B,

x€0B: 0B:
= sup |u(x)—u(0)] -0 ase— 0,
$EBBS
which implies
/ u(z) 0, F () do — u(0) ase — 0. (1.14)
OB,

Combining (1.11)), (1.12), (1.13), (1.14), we obtain

/ EAudr = / (E0,u — ud, E) do + lim (Ed,u — ud, E) do
Q a0

e—0 OB.

= / (Ed,u — ud,E)do —u(0),
o0N

whence (1.10) follows. m

All the terms in the right hand side of (1.8)) have physical meaning in the case of
n = 3. The term

/Q B (2,y) Au (z) dz

is the electric potential of the change in € with the density Au. Its is also called
Newtonian potential, as in the case Au > 0 it is also a gravitational potential.
The term

/BQ E (z,y)0,u(x)do (x)

is the potential of a charge distributed on the surface 02 with the density 0,u. It is
also called the potential of a single layer.
The term

O E (z,y)u(x)do (x)
oN

happens to be the potential of a dipole field distributed on the surface 02 with the
density u. It is also called the potential of a double layer.

1.3 Green function

Let Q be a domain in R". Assume that, for any y € 2 there exists a function h, () €
C? (€) such that

{ Ahy =0in Q (1.15)

hy () = E (z,y) for all z € 02

Definition. Under the above assumption, the function
G(z,y) = E(z,y) — hy (2)

is called the Green function (of the Laplace operator) in €.
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Note that G (x,y) is defined for all z € Q and y € Q. By (1.15) we see that the
function
z— G (z,y)

is harmonic in Q \ {y}, and that
G (xz,y) =0 for all x € 0.

Corollary 1.6 Let G be the Green function of a bounded region § C R". Then, for
any function u € C? (Q) and any y € €2,

u(y) =— /Q G (z,y) Au (z) dx — o, 0,G (z,y)u(x)do (z) . (1.16)

Proof. By Theorem (|1.5)) we have

u(y) = —/QE(;E,w Au () daz+/(m (B (2,3) O (z) — O (2, ) u () dor ().
(1.17)
By the 2nd Green formula we have

/ (hyAu — uAhy) de = / (hyOyu — ud,hy) do.
Q o0

Using Ah, = 0, rewrite this identity as follows:

0= —/ hyAudx —i—/ (hyO,u — ud,hy) do.
Q a0

Subtracting it from (1.17)) we obtain

u(y) =— /Q G (z,y) Au(x) dz + / (G (z,y) Opu(x) — 0,G (x,y)u(x))do (x).

o9
Finally, observing that G (z,y) = 0 at 02, we obtain (1.16). m
It is possible to show that if the Green function exists then necessarily G (x,y) =

G (y,x) for all z,y €  and that G (z,y) > 0 provided € is connected (see Exercises).
Consider the Dirichlet problem

Au=f inQ
{ u=@ on Jf. (1.18)
If ueC? (ﬁ) solves this problem then by l}
w == [Cen @i [ a6@ne@ir@. (1)

The identity ((1.19) suggests the following program for solving the Dirichlet problem:
1. construct the Green function of €Q;

2. prove that ((1.19) gives indeed a solution of (1.18) under certain assumptions
about f and .

We will realize this program in the case when (2 is a ball. For general domains
Q2 there are other methods of proving solvability of (1.18) without using the Green
function.



28 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

1.4 The Green function in a ball
Consider in R" the ball of radius R > 0:
Br={x e R": |z| < R}.
To construct the Green function of B, we will search the function h, in the form
hy () = ¢, E (x,y")

where y* is a point outside Bz. Then h,, is automatically harmonic in Bp, but we need
also to match the boundary condition

hy (z) = E (z,y) for x € OBg.

This is achieved by a careful choice of y* and ¢, using specific geometric properties of
the ball.
For any y € R" \ {0} define y* as inversion of y with respect to Bg, that is,

y* — RQi
ly|?

In other words, the vector y* has the same direction as y and |y*| = %2', that is,

lyl ly*| = R*. (1.20)
Clearly, if y € By then y* € E; and if y € 0Bpg then y* = .

Theorem 1.7 The Green function G (x,y) of the ball Br exists and is given in the
case n > 2 by the formulas

Gley) = Eley) - (&) Ble.y") ify #0 (1.21)
1 1 1 .
G (z,0) = o1 =2) (mng - R”_2> , ify=0, (1.22)

and in the case n = 2 by the formulas

1. R

G(:L’,y) = E(l’,y)—E(iE,y )_%logma ny#oa (123)
1 1 1 )

G(z,0) = gy (lnm —1In E) , ify=0. (1.24)

Proof. We give the proof in the case n > 2 leaving the case n = 2 to Exercises. In

the both formulas ([1.21))-(1.22) we have
G (z,y) = E(r,y) = hy (2)

where
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We need to prove that h, (x) is harmonic in By and that G (z,y) = 0 if z € 0Q.

In the case y = 0 the function h, (z) is constant and, hence, is harmonic; for
x € OBg, that is, for |x| = R we obviously have G (z,0) = 0.

Consider the general case y € Bg \ {0}. The function

hy () = (%) Bw,y)

is harmonic away from 3*. Since y* lies outside By, we see that h, is harmonic in Bpg.
It remains to show that G (z,y) = 0 if x € dBg, which is equivalent to

I < R )"‘2 1
e —y"? ) o=y

that is, to
— R
2=y _ R (1.25)
[z =yl |yl
Indeed, we have
o=y " = o =22y + |y
R? R*
TR
R* ([ |z |y/* 2
— — 2z - R . 1.26
P ( R e
If x € OBg, that is, |z| = R, then we obtain from ((1.26)
. R
e =y = —5 (ly* =22y + |2[*)
]
2
2

which finishes the proof.

Alternatively, one can prove ([1.25) observing that the triangles Oxy and Oy*z are
similar. Indeed, they have a common angle at the vertex 0 and by ((1.20))

2]

Ea

Y
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where in the numerator we use the sides of the triangle Oy*z and in the denominator
— those of Ozy. It follows from the similarity that also

jz =y _ |zl
lz—y*| |yl

which is equivalent to (1.25)). =

Corollary 1.8 We have, for all y € Br and x € Bg, x # y, in the case n > 2

1 1 1
= (1.27)

G('xay>: n—2
wn (n=2) | |z —y|"” GO

and in the case n = 2

1 1 1

G(z,y)=— | In —1In
2\ |z =yl \/|w|;|2y\2 %y + R

(1.28)

Proof. Consider the case n > 2. If y = 0 then ((1.27)) obviously identical to (1.22). If
y # 0 then we have by (1.21)).

1 1 R\"? 1
G(z,y) = po —(—> — | -
’ wn<n—2><rx—yr 2\l o

Substituting here |z — y*| from (1.26)), we obtain (1.27). The case n = 2 is similar. =

Corollary 1.9 We have G (z,y) = G (y,z) and G (z,y) > 0 for all distinct points
x,y € Bp.

Proof. The symmetry G (z,y) = G (y,x) is obvious from (1.27) and (1.28). Let us
prove that G (z,y) > 0 for z,y € Bg. By (1.27) it suffices to prove that

jz[? |y|?
R2

This inequality is equivalent to

—2-y+ R2> |z —y|.

2 12
x
| ’R|2y| — 20y + R > o =22y + |yl
which is equivalent to

[o* |y* + R* = R* |2|* = R*|y[* > 0

or to
(R? —|a*) (R* = |y|*) >0,

and the latter is obviously the case. m

04.11.15
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1.5 Dirichlet problem in a ball and Poisson formula

Theorem 1.10 Ifu € C? (ER) solves the Dirichlet problem

Au=f 1in Bgr
u=¢ onJdBg

then, for all y € Bg,

R? — |yl

T
Br |x—y|

u(y) = — cxawfuwm+—i—é

Br wp R

¢ (x)do (z), (1.29)
where G (z,y) is the Green function of Bpg.
Proof. By Corollary [I.6, we have, for any y € Bg,

u(y) =— ; G (x,y) Au(z)dx — . 0,G (z,y)u(z)do (),
which implies
ww) == [ Gans@i-[ 06w @,

9Br

Comparison with (1.29) shows that it remains to prove the identity:

L Ry’
—0,G (z,y) = — Rz —y"

where © € 0Bg and y € Bg.
Consider the case n > 2 (the case n = 2 is similar). By Theorem [1.7, we have in
the case y # 0
G(ZL’,y) =E (ZL’,y) —cE ($,y*) )

R n—2
-
Y|

G a.0) = — (nl_ 5 (M}LQ - Rj_z) .

In the case y = 0 we have, using the polar radius r = |z|, that

where

and in the case y = 0

1

n—1
wnT r—

11 Ry

—0,G (2.0) = —0,G (2,0) = - - L
($ ) (SC ) " wan_l wnR |x—y|

In the case y # 0 we use the polar coordinates with the pole in y, so that r = |z — y|

and
1

E(z.y) = wp (n —2)rn=2
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Since Vr = ¥ (see Exercises), we obtain by the chain rule

1 1 z—y Yy—x
VE =0, Vr=— = .
(z.9) (wn (n—2) T”_2) " wprtt wy |z — 9
Since v = chc_l’ it follows that
y—1 x z-y— |z T-y— R?
O E (r,y) =VE(z,y) v=——0f — = = (1.30)

wale —y[" Jz| ~ wale—y"fa]  waRlz—y["

In the same way we have

T - y* _ RQ
OE (v,y") = —2 — 1.31
Recall that
LR
Yy =1 2Y
]
and by (L.25)
. R
[z =y =~z —yl.
]
Substituting these into ([1.31]), we obtain
L RE . p2 n—
O (2.y) = —— UF B ey =yl
’ woRlz —y[" (R/[y)"  waRlz—y[" R*2
and ) )
RA\™ z-y—lyl
cOE (x,y") = (—) oOFE (x,y") = ————.
y7) [yl @) wn R |z —y|
Combining with (1.30]), we obtain
R> — |y|°
-0,G (x,y) = —0,F (x, OB (x,y") = ———,
(2,9) (@,y) + cOE (z,y7) o Ryl
which was to be proved. m
Let us interchange in ([1.29)) = and y, and introduce the following function
1 R?— |z
K = 1.32
@)= S (1.32)

defined for y € 0B and x € Bg. This function is called the Poisson kernel.
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The graph of the two-dimensional Poisson kernel K (z,y) as a function of x.

Theorem 1.11 (Poisson formula) If ¢ € C (0Bg) then the Dirichlet problem

Au=0 in Bp
{ u=@ ondBg (1.33)
has the following solution
u(@)= [ K(zye(y)do(y), € Bx (1.34)

OBR

More precisely, there exists a function u € C? (Bg) NC (ER) that satisfies 1) and
this function is given by (1.34]) for all x € Bp.

Proof. It follows from (1.32)) that the function K (x,y) is C* as a function of = € Bp,
for any y € 0Bpg. Therefore, the function u (x) defined by (1.34)) is also C*° in Bg.
Moreover, for any partial derivative D* with respect to the variable x, we have

D% () = o DK (z,y) ¢ (y) do (y) -

Observe also that K (z,y) as a function of  is harmonic in Bg, that is, AK (z,y) = 0.
This can be checked directly, or one can see this as follows. By construction,

K(.T?,y) = _aVG (xvy)

where 0, is taken to the variable y. Therefore, A as an operator in x and 0, commute,

and we obtain
AK (z,y) = —0,AG (z,y) = 0.

It follows that
Au () = /8 AK (2,9) ¢ (y) do (y) = O,
9]

which proves the harmonicity of u.
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Now let us prove that u € C' (Bg) provided u is defined on dBp by u (z) = ¢ (z).
It suffices to show that, for any z € 0Bg,
lim u(z) = ¢ (z2).

T—2
r€BR

We start with the observations that K (z,y) > 0 for € Bpg, which is obvious from
(1.32) and that
K (z,y)do(y) =1
dBr
for all © € Bg. Indeed, the latter follows from the formula (1.29) of Theorem with
u=1.
It follows that

p(2) = - K (z,y) ¢ (2)do(y)
and, hence,
u(z) —p(z) = . K (z,y) (p(y) —¢(2))do(y),
lu(z) — ¢ (2)] < . K (z,y) e (y) — ¢ (2)|do(y). (1.35)

We will show that the right hand side of goes to 0 as x — z. The reason for
that is the following: if the variable y is close to z then the integrand function is small
because ¢ (y) is close to ¢ (z), while if y is away from z then K (x,y) will be shown to
be small.

To make this argument rigorous, let us choose some small § > 0 and split the

integral in ({1.35]) into two parts:

/ = / + / . (1.36)
OBRr 8BRQB§(Z) 8313\35(2)

The first integral is estimates as follows:

/ K@yl —e@ldo) < swp o) @) [ K@y doy)
9BRrNBs() yEOBRNBs () 9Bg

= sup o (y) — e (2)].
yedBRrNBs(2)

By the continuity of ¢, the last expression goes to 0 as 6 — 0. In particular, for any
€ > 0 there is 6 > 0 such that

sup e (y) — e (2)] <e/2,
yGaBRﬂB(j(Z)

and, hence, the first integral is bounded by £/2.
The second integral in ((1.36]) is estimates as follows:

| KDl @l () < 2wl s K () @5

y€OBR\B;(2)

R? — |z’
< C sup —'gjlb
yedBR\Bs() |T = Y|
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where C' = MiRsup|go| 0 (0BR). As © — z, we can assume that |r — z| < 0/2. Since
ly — z| > 6, it follows then that |z —y| > /2. Hence, the second integral is bounded
by the expression
o= lal
(6/2)"
that goes to 0 as x — z, because |x| — R. In particular, the second integral is bounded
by €/2 if x is close enough to z, which implies that

. K(z,y)|e(y) —¢(2)|do(y) <e

provided z is close enough to z, which finishes the proof. m

Lemma 1.12 (Properties of Newtonian potential) Let f be a bounded function in R™
that has a compact support and is integrable. Then its Newtonian potential

o) = [ By )y

18 a continuous function in R™. Moreover, if for some open set € C R"™ we have
f € C*(Q) then also v € C*(Q). Furthermore, if k > 2 then v satisfies in Q the
equation

Av = —f.

Proof. The proof is split into three steps. Let S = {x € R* : f (x) # 0} be the support
of f so that we can write

v (2) =/SE<:c,y>f<y>dy.

Stepl: Let us prove that v is well-defined and is continuos. Since the function
f is bounded and the function y — F (x,y) is integrable in any bounded domain, in
particular, in S, we see that the function y — E (x,y) f (y) is also integrable in S and,
hence v (x) is finite for any x € R". Let us show that, in fact v, is continuous in R".
Set M = sup |f|.

Fix z € R™ and show that v (z) — v (z) as * — 2. Fix some € > 0 and write

V)0 = [ B -EEo) o)
- [ @en-sCcm i [ BB o

S\Be(2)

For the first integral we have (assuming n > 3)

/E(z,y)f(y)dy'SM I (z,)] dy < C<
B:(z) B:(2)

and, assuming that © € B. (z),

/Bsu) Efz.9) f () d’y' <

| B dy' < e
Bac ()
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To estimate the integral over S\ B: (z), observe that the function F (x,y) is continuous
in (z,y) in the domain « € B,/ (2) and y € S\ B: (2). Since this domain is compact,
this function is uniformly continuous. It follows that

E(z,y) 23 E(zy) asa— z,

where the convergence is uniform in y. It follows that

/ (E(2,y) — E(2,9)) f (y) dy — 0 as & — =.
S\ Be(z)

We obtain that
limsup |v (z) — v (y)| < 2Ce2

Since € > 0 is arbitrary, it follows that
lim |v (z) —v(2)| =0,

r—z

which proved the continuity of v in R".

Step 2: Assume that f € CF (Q) where CF () is a subset of C* (Q) that consists
of functions f with a compact support in €. In this case we have also f € C¥ (R").
Let us prove by induction in k that v € C* (R"). In the case k = 0 we know already
that v € C'(R™). For induction step from k — 1 to k, let us make change z = x — y in
the integral

vie) = [ B@-n)fwdy= [ EG)I@-2)ds

and compute the partial derivative 0,,v as follows:

v(r+te) —v(r) flx+te,—2z)— f(x—2)
n = /nE(z) ; d

z

— E(2)0,f(r—2)dz ast—0 (1.37)

R

because
f(x+te;, —z)— f(x—2)
t
where convergence is uniform with respect to z, and function E (z) is integrable in
bounded domains (note that integration in can be restricted to a compact domain
supp f (z — -)). Hence, 0,,v exists and

=0, f(x—2) ast — 0,

o000 = [ E@of@-di= [ E@-9)0, 50y (139

In particular, 0,,v is the Newtonian potential of d,,f. Since 9,,f € C¥ ' (R"), we
conclude by induction hypothesis that d,,v € C*~*(R"). Since this is true for all
i=1,...,n, it follows that v € C* (R").

It follows from that, for any multiindex a with |a| < ,

D)= [ By Dt Wy

06.11.15
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Consequently, in the case k > 2, we have

Bole) = [ Eeg) A7 w)dy

Let us choose a large enough ball B containing a point z and supp f. By Theorem [1.5]
we have

f(w)z—/BE(x,y)Af(y)dy+/ E(x,y)0.f(y)do(y)— | O.E(x,y) f(y)do(y).

0B 0B

Since f and 0, f vanish on 0B, we obtain

f(rff)Z—/BE(as,y)Af(y)dyz—Av(w%

that is Av = —f.

Step 3: the general case. Assuming that f € C*(Q), we prove that v € C* (Q).
It suffices to prove that, for any point z, € €, the function v is of the class C* in
a neighborhood of xj. Besides, we will prove that if £ > 2 then Av = —f in the
neighborhood of z.

Without loss of generality, let us take xo = 0. Let B, be a small ball centered at z
such that By, C 2. Choose function ¢ € C'*° (R") such that ¢ =1 on By, and ¢ =0
outside Bs., and represent v in the form

v =u—+w,

where

w@ = [ E@y Wi we) = [ Ewpi-ef o)
Clearly, the function ¢f belong to C¥ (R"). By Step 2, we obtain that u € C* (R")
and in the case k > 2 also Au = —¢f, which implies Au = —f in B., since ¢ = 1 in

B..
Note that (1 — ¢) f = 0 in By, so that

w<x>=/S\B E(z.y) (1— ) f (v) dy.

In the domain = € B, and y € BS_ the function E (z,y) is C* in (x,y). Therefore, the
function w (z) belongs to C* (B.). Moreover, in B, we have

Aw:/ AE (z,y)h(y)dy = 0.
S\Ba:

Hence, we obtain that v = u+w € C* (B.), and in B.
Av=Au+Aw=—f+0=—f,

which finishes the proof. m
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Example. Let us compute the integral
o) = [ By (1.3
Br

that is, the Newtonian potential of the function f = 1p,. In the case n = 3 the
function —v (z) is the gravitational potential of the body Bp in with the constant mass
density 1. We assume further n > 2. By Lemma _ Wlth f = 1p,, we obtain that v
is a continuous function in R”. Besides, since f = 0 in By then v € C® (B R) and

Av =0 in Bp.
Since f =1 € C*(Bg) then v € C*° (Bg) and
Av = —1 in Bgp.

Also it is easy to see that v (z) depends only on [z|, because the integral in (1.39)
does not change under rotations around 0. This allows to conclude that outside Bpr
we have

v(z) = Cy |z + Cs

(see Exercises), for some constants C7, Cy. It is obvious from ((1.39)) that v (z) — 0 as
|z| — oo, which implies that Cy = 0, that is,

v(x) =Cylz[™ outside Bp.
By continuity, we have also
v(z) = CLR*™ for x € OBp.
Hence, inside Bpr the function v solves the following problem:
{ Av = —1 in Br
v=C{R*>" on 0Bp
It is easy to see that the following function

sl

v(z) = o + o (1.40)
satisfies Av = —1, and the constant Cjy can be chosen to satisfies the boundary condi-
tion as follows:

RZ
—2—+Co C R>™. (1.41)

By the uniqueness of solution of the Dirichlet problem, we conclude that v (x) inside
Bp is indeed given by ([1.40]), although we do not know yet explicitly the values of
C1, Cp.

To determine them observe that

U(O)—/ E(y)d —/R 1 wr"’ldr——RQ
- Br y)ay = o Wn(n—2)rn—2"" _Q(n—2)’
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which together with (1.40]) at = = 0 implies

RZ
Co= ——1.
T 2(n—-2)
Then we can determine C from (|1.41)) as follows:
R’n
C = ————.
T n(n—2)
Hence, we obtain
n 2—n
v = ZE L r o Li<r
2n 2(n—2)’ -
Note that in domain |z| > R we have
. 1
v(z) = “n g =vol (Bg) E ().

no w,(n—2) |x|n*2

In other words, outside the ball v (z) coincides with the Newtonian potential of a point
mass vol (Br) located at the center. This result was first obtained by Newton by an
explicit computation of the integral ((1.39) using clever geometric tricks.

Newtonian potential of a ball (inside the ball and outside the ball)

Theorem 1.13 Let f be a bounded function in Br such that f € C*(Bg), and let
¢ € C (0BR). Then the Dirichlet problem

Au=f 1in Bg
{ u=¢ ondBgR (1.42)
has the following solution

w(e) = — /B Gl fWdy+ [ Koy o) do(y), (1.43)

OBg
where G is the Green function of Br and K s the Poisson kernel of Bg (cf. (1.32)).
More precisely, there exists a function u € C? (Bg) NC (BR) that satisfies 11.42), and
this function is given for any x € Bg by (1.43)).
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Remark. The statement is also true if the condition f € C?(Bpg) is relaxed to f €
C* ( Br) with arbitrary a > 0, that is, if f is Holder continuous in Bg. However, the
proof in that case is more complicated.

Proof. The case f = 0 was considered in Theorem [1.11} In the general case, extending
f to R™ by setting f = 0 in Q°, consider the Newtonian potential of — f:

v == [ Beni@di==[ E@ufad. 04

By Lemma [1.12] we know that v € C? (Bg) N C (R") and Av = f. Introduce a new
unknown function
w=u—v

that has to be of the class C? (Bg) N C (ER) and to satisfy Aw = 0 in Br because
Aw=A(u—v)=f—f=0 in Bg.
At the boundary we have
w=u—v=@—1v ondBg.

Hence, the Dirichlet problem ([1.42)) for u is equivalent to the following Dirichlet problem

for w:
Aw =10 in BR
w=@—v on JdBx.

Sine v — ¢ is continuous, by Theorem [I.11] we conclude that the solution w of this
problem exists and is given by

wiz) = | K@z2)p=v)(z)do(z)

= K (z,2)¢(2)do(z) — /8]3 K (z,z)v(z)do(z2). (1.45)

OBg
The second integral here is equal to

[ K@) = K(x,z>(/BRE<z,y>f<y>dy)dz

3BR aBR

_ /( 8BRK(x,Z)E(Z,y)dZ>f(y)dy
- /BRmx,y)f(y)dy

where

h(z,y) = . K (z,2)E(z,y)dz.

Fix y € Bg. Then by Theorem [1.11} the function h (z,y) as a function of x solves the
Dirichlet problem

{ h(-,y)=0 in Bp
h(-,y)=E(-,y) on OBg.
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By uniqueness of solution of the Dirichlet problem, function A (x,y) coincides with the
function h,, (x) from the Definition of the Green function, which implies that

The function u = v 4+ w is clearly a solution of (1.42). Putting together (1.44]), (1.45))
and (/1.46]), we obtain

waw) = = [ Banfwdr [ heni@ds [ K@eEd )

OBr

— [ Gaafwirs [ KaoeEd),

dBr

which was to be proved. m

1.6 Properties of harmonic functions

Here we obtain some consequences of Theorem Let us restate it in the following
form to be used below: if u € C? (Bg) and Au = 0 in By, then, for any y € B,

! / R — |y’
u(y) = —= ———u(xr)do (x). 1.47
=55 [, e @ (1.47)
We use the notation By (z) = {x € R" : |x — y| < R} for the ball of radius R centered
at z € R™.

Theorem 1.14 If u is a harmonic function in a domain @ C R™ then u € C* ().
Moreover, if u € C*(Q) satisfies Au = f where f € C™ (Q) then also u € C* ().

Recall that by definition, a harmonic function is of the class C2. This theorem tells
that a posteriori it has to be C*. Moreover, any function v € C? is in fact of the class
C*> if Au € C*. The latter property of added smoothness is called hypoellipticity of
the Laplace operator. Typically, more general elliptic operator are also hypoelliptic.

Proof. Consider first the case when u is harmonic in 2. In order to prove that
u € C*(Q), it suffices to prove that u € C* (Bg(z)) for any ball By (z) such that
Br C Q. Without loss of generality, take z = 0. By we have an integral
representation of u (y) for any y € Bg, which implies that u € C* (Bg) because the
kernel

R — |y’

[z —y["
is C™° in y € Bg provided = € JBg.

Assume now that Au = f in Q with f € C*° (Q2), and prove again that u € C* (Bg)

where Bp is the ball as above. By Lemma the Newtonian potential

v(w)Z/B E(z,y) f(y)dy

is C'*° smooth in By and Av = —f in Bgr. Hence, the function u + v is harmonic in
Bpg, which implies that u + v € C* (Bg) and, hence, u € C* (Bg). =
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Theorem 1.15 (Mean-value theorem) Let u be a harmonic function in a domain Q C
R™. Then, for any ball Br (%) such that Bg (z) C 2, we have

u(z) :]gB u(z)do (x) (1.48)

and

u(z) :]{BR(z) u(x) du. (1.49)

Here we use the following notations for normalized integrals:

1
udo = / udo
]([99 o (89) a0

1
de = ——— dx.
]éux VOI(Q)/qu

Hence, the value of a harmonic function u at the center of the ball is equal to the
arithmetic mean of u over the ball and over the sphere.

Proof. Without loss of generality we can assume that z = 0. Applying (1.47)) with
y = 0, we obtain

1 R? —0? 1
= — _ d = do. 1.50
w0 =5 [ @) = ey [ e 0

Since w, R"! = 0 (0BR), we obtain ((1.48). To prove (1.49)) observe that in the polar

coordinates "
/ u(x)dx:/ </ uda) dr
Br 0 OB,

/ udo = w, " 1u (0),
0B,

and

Since by ({1.50)

we obtain n
/ u(x)de = / Wor™ tu (0) dr = “n R (0). (1.51)
Br 0 n
Applying (1.51]) with u = 1, we obtain
vol (Br) = “n g,
n

Hence, (1.51]) implies
u (x) dx = vol (Bg) u (0),

Br

which is equivalent to (1.49)). =

Theorem 1.16 (Harnack inequality) Let u be a non-negative harmonic function in a
ball Bg. Then, for any 0 < r < R,

R 1\"
s;?u < (R;: i_ 1) i]glf u. (1.52)
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R/r+1
R/r—1

It is important for applications, that the constant C' = (
the ratio R/r. For example, if R = 2r then C' = 3".

Proof. By the maximum and minimum principles we have

)n depends only on

supu = maxu and infwu = minu.
OB, B OB,
Br

Let ¢’ be the point of maximum of u at dB, and y” — the point of minimum of u at
0B,. Note that for any y € 0B, and for any x € 0Bp,

R—r<|zr—y| <R+
It follows from ((1.47)) that

/ 1 R2 — |y,|2

R2—T2
—wnR(R—T)n /8BRu(x)da(x)

IN

and similarly

w) = = BT () do (a)

wnR Jop, v —y""

R2 _ 7°2
_— d )
woR(R+1)" /aBRu(x) o (2)

Vv

Therefore, we obtain
(R+r)"

mu (y") )

u(y') <

whence (1.52)) follows. m

1.7 Sequences of harmonic functions

Theorem 1.17 (Harnack’s first theorem) Let {uy},-, be a sequence of harmonic func-
tions in a domain 2 C R™. Ifu, = u in Q as k — oo then the function u is also
harmonic in Q.

Let us recall for comparison, that uniform limits of continuous functions are again

continuous, but uniform limits of C* functions where k¥ > 1, do not have to be C*.
Hence, if v is a uniform limit of harmonic functions u; then a priori we can only say
that u is continuous, whereas the harmonicity of u and, in particular, the smoothness
of u, are not at all obvious.
Proof. The function u is continuous in €2 as a uniform limit of continuous functions.
To prove that u is harmonic in €2, it suffices to prove that u is harmonic in any ball
Br (z) C Q. Assume without loss of generality that z = 0.

Denoting ¢, = uk|op, and ¢ = u|sp, we have

v, = ¢ on 0BR as k — oc.



44 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Let v be the solution of the Dirichlet problem

Av =0 in Bp
v=¢ ondBg

that exists by Theorem [1.11| Since uj, — v is harmonic in By and is continuous in B,
by the maximum principle (L.5) of Corollary [I.2] we obtain

r%ix\uk — v| = Iglgéi |Uk - U‘ = %lBaéi ’9013 - (P’ .

Since the right hand side goes to 0 as k — oo, it follows that
up = vin Br as k — oo.

Since also up = u, we conclude that © = v and, hence, u is harmonic in Bz. =

Theorem 1.18 (Harnack’s second theorem) Let {ug},-, be a sequence of harmonic
functions in a connected domain Q0 C R™. Assume that this sequence is monotone
increasing, that is, ugi1 () > ug (z) for all k > 1,x € Q. The the function
u(z) = lim uy ()
k—o0

is either identically equal to oo in S, or it is a harmonic function in ). Moreover, in
the latter case the convergence up — u s locally uniform.

Proof. By replacing u; with up — u;, we can assume that all functions wu; are non-
negative. Consider the sets

F={zeQ:u(x) < oo}
and
I={zxeQ:u(x)=o0}

so that 2 = F' LU I. Let us prove that both F' and I are open sets.
Indeed, take a point z € F' and show that also B. (z) € F' for some £ > 0. Choose
e so that Bs. () C Q. By the Harnack inequality, we have

sup ur, < C inf uy < Cuy (),
B:(z) Be(z

where C' = 3". By passing to the limit as k¥ — 0o, we obtain

sup u < Cu (z).
B:(z)

Since u (z) < oo, we obtain that also supp_(,yu < oo and, hence, B: (z) C F. Hence,
F'is open. 13.11.15
In the same way one proves that

inf u>C tu(x),
B:(x)
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which implies that [ is open.

Since €2 is connected and 2 = F U I, it follows that either I = Q or F' = Q. In
the former case we have u = oo in €, in the latter case: u(z) < oo for all z € Q.
Let us prove that in the latter case u is harmonic. For that, we first show that the
convergence u; — u is locally uniform, that is, for any x € ) there is € > 0 such that

up =2 uin B. (x) as k — oo.

Then the harmonicity of u will follow by Harnack’s first theorem.
Choose again € > 0 so that By, (z) C €. For any two indices k > [, apply the
Harnack inequality to the non-negative harmonic function uy — u;:

su(p) (up — ) < C (ug, —wy) () .
Be(x

Since (ur —w;) (r) — 0 as k,l — oo, it follows that
up —w; = 01in Be (z) as k,l — oo.

Hence, the sequence {uy} converges uniformly in B; (z). Since {u;} convergence point-
wise to u, it follows that

up = uin B. (x) as k — oo,

which finishes the proof. m

As an example of application of Harnack’s second theorem, let us prove the following
extension of Lemma [1.12]

Corollary 1.19 Let f be a non-negative locally bounded measurable function on R™.
Consider the Newtonian potential

v(m)Z/nE(x,y)f(y)dy-

Then either v = oo in R™ or v is a continuous function in R™. In the latter case, if
f € C%(Q) for some open set Q C R™, then also v € C*(Q) and Av = —f in Q.

Proof. Consider a sequence {By},-, of balls B, = By, (0) and set

o () =/B E(z,y) f (y) dy

so that
v(z) = lim vg (). (1.53)

k—o0

Since vy, is the potential of the function f; = f1p,, by Lemma we have v, € C'(R").
Let us show that if v (zg) < oo at some point zq then v (x) is a finite continuous function
on R™. Choose [ so big that B; contains x,. We have

v(z) =v (x)+ lim (vx — v;) (2)

k—o0
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and

(05— ) () = / LBy

Applying Lemma, @l to function f15 \7,, we obtain that vy —v; is a harmonic function
in By, for all k > [. The sequence {v; — v;} is monotone increasing in k and is finite at
xo € B,;. Hence, by Harnack’s second theorem, the limit limy_., (vx — v;) is a harmonic
function in B;, which implies that v is a continuous function in B;. Since [ can be chosen
arbitrarily big, we conclude that v is continuous in R".

Assuming that v is finite and f € C? (), repeat the above argument choosing [ so
big that 2 C B;. As we have seen,

v = v; + a harmonic function in B;.

Since by Lemma v € C?(Q) and Av; = —f in Q, it follows that also v € C? (2)
and Av=—fin ). m

1.8 Discrete Laplace operator

A graph G is a couple (V| E) where V is a set of vertices, that is, an arbitrary set,
whose elements are called vertices, and E is a set of edges, that is, E' consists of some
unordered couples (x,y) where z,y € V. We write x ~ y if (z,y) € E and say that =
is connected to y, or x is adjacent to y, or x is a neighbor of y. By definition, x ~ vy is
equivalent to y ~ x.

A graph G is called locally finite if each vertex has a finite number of edges. For
each point x, define its degree

deg (z) =#{y eV :z~y},

that is, deg (z) is the number of the edges with endpoint x. A graph G is called finite
if the number of vertices is finite. Of course, a finite graph is locally finite.

Definition. Let (V) E) be a locally finite graph without isolated points (so that 0 <
deg (z) < oo for all x € V'). For any function f : V — R, define the function Af by

1
- deg (2)

S (fy) - fla).

yeViy~z

The operator A on functions on V' is called the Laplace operator of (V| E).

The equation Au = 0 is called the Laplace equation and its solutions are called
harmonic functions on the graph. For example, a constant function is harmonic.

In what follows we always assume that 0 < deg (z) < oo for all z € V| so that A is
well-defined on functions on V.

One can regards a graph (V, E) as an electrical network, where the edges are the
wires that conduct electrical current, and the vertices are junctions. Assuming that the
resistance of each edges is equal to one, we obtain by the Ohm’s law, that the potential
difference u (y) — u (y) of two neighboring vertices = and vy is equal to the current along
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the edge xy. By Kirchhoff’s law, the sum of the currents incoming and outcoming at
the same point x is equal to 0, which implies

> (u(y) —u(@) =0,

yiy~z

which is equivalent to Au = 0. Hence, in the absence of the external sources of the
current, the electrical potential of the network is a harmonic function.

Definition. A graph G = (V, E) is called connected if any two vertices z,y € V can
be connected by a finite chain {z}},_, such that

T=Tog~ T~ ... vVIp_1~Ty =Y.

Choose a subset €2 of V' and consider the following Dirichlet problem:

{ Au(x) = f(z) forall z €,

u(z)=¢(x) forall z € QF, (1.54)

where v : V' — R is an unknown function while the functions f : 2 — Rand p : Q¢ — R
are given.

Theorem 1.20 Let G = (V, E) be a connected graph, and let S be a finite subset of V
such that )¢ is non-empty. Then, for all functions f, v as above, the Dirichlet problem

(1.54) has a unique solution.

Note that, by the second condition in (1.54), the function u is already defined
outside €2, so the problem is to construct an extension of u to {2 that would satisfy the
equation Au = f in €.

Define the vertex boundary of € as follows:
00 ={y € Q°:y~ x for some z € Q}.

Observe that the Laplace equation Au (z) = f (z) for x € Q involves the values u (y) at neighboring
vertices y of z, and any neighboring point y belongs to either Q or to 0€2. Hence, the equation
Au (z) = f (z) uses the prescribed values of u only at the boundary 92, which means that the second
condition in can be restricted to 02 as follows:

u(z) = ¢ (x) forall x € O0.

This condition (as well as the second condition in (1.54) is called the boundary condition.

If Q° is empty then the statement of Theorem is not true. For example, in this
case any constant function u satisfies the same equation Au = 0 so that there is no
uniqueness. One can show that the existence also fails in this case.

The proof of Theorem [I.20]is based on the following maximum principle. A function
u:V — R is called subharmonic in Q if Au(x) > 0 for all x € Q, and superharmonic
in Qif Au(z) <0 for all z € Q.

Lemma 1.21 (A maximum/minimum principle) Let Q be a non-empty finite subset of
V' such that Q¢ is non-empty. Then, for any function v : V — R, that is subharmonic
i ), we have

maxu < sup u.
Q Qc
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For any function u : V' — R, that is superharmonic in §2, we have

min v > inf u.
Q Q¢

Proof. It suffices to prove the first claim. If supg.u = 400 then there is nothing
to prove. If supg.u < oo then, by replacing u by u + const, we can assume that
supq. v = 0. Set

M = max u

and show that M < 0, which will settle the claim. Assume from the contrary that
M > 0 and consider the set

S:={zeV:u(x)=M}. (1.55)

Clearly, S C 2 and S is non-empty.
Claim 1. Ifx € S then all neighbors of x also belong to S.

Indeed, we have Au (z) > 0 which can be rewritten in the form

1
w(@) < G @ > u(y).

y~z

Since u (y) < M for all y € V' (note that u (y) < 0 for y € Q°), we have

1
deg () ywzxu ) = deg Z M.

Since u () = M, all inequalities in the above two lines must be equalities, whence it
follows that u (y) = M for all y ~ x. This implies that all such y belong to S.

Claim 2. Let S be a non-empty set of vertices of a connected graph (V, E) such that
x € S implies that all neighbors of x belong to S. Then S =V .

Indeed, let € S and y be any other vertex. Then there is a path {z;},_, between
x and vy, that is,
T=Tog~T1 ~YTag~...YvTpn=1Y.

Since xo € S and 7 ~ xg, we obtain x; € S. Since x5 ~ x1, we obtain x5 € S. By
induction, we conclude that all x;, € S, whence y € S.

It follows from the two claims that the set S defined by must coincide with
V', which is not possible since S C €2 and €2¢ is non-empty. This contradiction shows
that M <0. m

Proof of Theorem Let us first prove the uniqueness. If we have two solutions
uy and ug of (1.54) then the difference u = u; — uy satisfies the conditions

Au(z) =0 forall z € Q,
u(x)=0 forall z € Q.

We need to prove that u = 0. Since w is both subharmonic and superharmonic in 2,

Lemma yields

0 =infu <minu < maxwu < supu = 0,
Qe Q Q N
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whence u = 0.
Let us now prove the existence of a solution to ((1.54)) for all f, . For any z € Q,
rewrite the equation Au (z) = f (x) in the form

1
deg ()

1
> ) —u@) =10 g Y el (156)

yeQ, y~x yeNe, y~x

where we have moved to the right hand side the terms with y € Q¢ and used that
u(y) = ¢ (y). Denote by F the set of all real-valued functions u on € and observe that
the left hand side of can be regarded as an operator in this space; denote it by
Lu, that is, .

~ deg ()

Lu () Y. uly) —ul@),

yeQ, y~x

for all z € Q. Rewrite the equation in the form Lu = h where h is the right hand
side of @, which is a given function on 2. Note that F is a linear space. Since the
family 1{90}}er of indicator functions form obviously a basis in F, we obtain that
dim F = #) < oco. Hence, the operator L : F — F is a linear operator in a finitely
dimensional space, and the first part of the proof shows that Lu = 0 implies u = 0
(indeed, just set f = 0 and ¢ = 0 in (1.56)), that is, the operator L is injective. By
Linear Algebra, any injective operator acting in the spaces of equal dimensions, must
be bijective (alternatively, one can say that the injectivity of L implies that det L # 0
whence it follows that L is invertible and, hence, bijective). Hence, for any h € F,
there is a solution u = L~'h € F, which finishes the proof. m

1.9 Separation of variables in the Dirichlet problem

Here is an alternative method of solving the Dirichlet problem in the two-dimensional
ball or annulus. Let (r,#) be the polar coordinates. The Laplace equation Au = 0 has
in the polar coordinates the form

1 1
Orrtt + =0pu + — Opgu = 0 (1.57)
r r

(see Exercises). Let us first try to find a solution in the form u = v (r) w (#) . Substi-

tution into ((1.57)) gives

1 1 ! 1 "
v w+—vw+—2vw =0
r T
that is )
,Ul/ _|_ ;U, wl/
1 =T

Since the left hand side here depends only on r and the right hand side only on 6, the
two functions can be equal only if they both are constants. Denoting this constant by
A, we obtain two ODEs:
w” + Aw =0 (1.58)
and
A

1
v+ ;U’ V= 0. (1.59)



50 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Since w is a function of the polar angle 6, the function w (f) must be 27-periodic.
Equation (1.58)) has periodic solutions only if A > 0. We have then

w (0) = C cos VMG + Cysin VAG.

This function is 27-periodic if and only if VA = k, where k is a non-negative integer.
Substituting A\ = k? into ((1.59)), we obtain

1 k2
(" y - —v=0.
r r

This is Euler equation that has the general solution:

v=CuF+Cur™F itk >0

1
0201+021n— if £k =0.
r

Hence, for any k£ > 0 we obtain the following harmonic function
1
ug=0oa9+ Poln—, fork=0
r

and
up = (akrk + 6kr_k) (ay cos kO + by, sin k6)

(we have seen already the harmonic functions 7% cos kf and 7% sin kf). Each of these
functions is harmonic in R? \ {0}. If the series

00
D u
k=0

converges locally uniformly in some domain then the sum is also harmonic function in
this domain by Harnack’s first theorem. By choosing coefficients one can try to match
the boundary conditions.
Let us illustrate this method for the Dirichlet problem in the disk B; = {z € R? : |z| < 1} :

Au=0 1in Bl
u=f ondB.

The function f can be considered as a 2m-periodic function of the polar angle, so we
write f(#). Since function u has to be defined also at the origin, we drop from ug and
ug the parts having singularities at 0, and search the solution in the form

a = .
u(r,0) = EO + ; ¥ (ay, cos kO + by sin k6) . (1.60)
The boundary value of u is attained for » = 1. Hence, function f should have the
following expansion in Fourier series
a = .
f(o) = EO —1—;(% cos k) + by sin k) . (1.61)
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It is known that any 2m-periodic function f that belongs to the Lebesgue class L2,
admits an expansion ([1.61]) into the Fourier series that converges to f in the sense of
L2. The coefficients are computed as follows:

1 [7 1 [7
ap = — f(0)coskbdl, by = = f(0)sin k6do. (1.62)

Moreover, if f € C' (R) then the series (1.61]) converges absolutely and uniformly.

Proposition 1.22 Assume that [ is a 2w-periodic function on R that admits an ab-
solutely convergent Fourier series (1.61)). Then the series (1.60)) converges absolutel

and uniformly for all ¥ < 1 and 60 € R, its sum u belongs to the class C (El), 18
harmonic in By, and is equal to f at 0B;.

Proof. Indeed, the absolut convergence of (1.61)) is equivalent to

(lak| + |bx]) < 0. (1.63)
k=1

If so then the series converges absolutely and uniformly for all » < 1 and 6 € R.
Hence, the function u is continuous in B;. In particular, on 0B; we obtain u = f,
just by taking r = 1 in . Since each term 7* cos k0 and 7" sin k6 is a harmonic
function, the infinite sum u is also harmonic in Bj, by Harnack’s first theorem. =

Remark. Differentiating the right hand side of (1.60) in 7, we obtain that in B;

O (r,0) = kr*™" (ay cos ko + by sin k0) (1.64)
k=1

because the series in the right hand side converges absolutely and locally uniformly in
By, that is, for all » < 1 and # € R. In the same way we have in B,

Ogu = Z kr* (—ay sin kO + by, cos k6) . (1.65)
k=1

If we know in addition that
>k (Jarl + [bel) < 00 (1.66)
k=1

then the series in (1.64) and (1.65) converge absolutely and uniformly for r < 1 and
0 € R, which implies that u € C*! (Bl) )

1.10 Variational problem and the Dirichlet princi-
ple

Let © be a bounded domain and ¢ be a continuous function on 9€). Consider the
variational problem

/ |Vu|? dz — min
Q0
u = p on 0f)

(1.67)
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where u € C* (©2). In other words, we look for a function u € C* (Q) with the given

boundary value on 92 that minimizes the Dirichlet integral [, \Vul® dz.

One of motivations for the problem comes from the following geometric prob-
lem: construct a hypersurface S in R"*! over the base €, whose boundary 95 is given
and whose surface area o (S) is minimal. Indeed, let S be the graph of a function u in
Q2. The prescribed boundary of 0S amounts to the boundary condition © = ¢ on 052,

while
US_—/ 1+ |Vul*da.
(S) 5 \V V|

Hence, we obtain the variational problem

2 .
/Q\/l—i-]Vu] dx +— min . (1.68)

u = @ on Jf2.

If we assume that |Vu| is small, then

1
1+ |Vuf’ ~ 1+§\Vu\2,

so that (1.68) becomes (1.67). Any function u that solves (1.68) is called an area

minimizer. As we will see, functions that solve ([1.67) are harmonic. Hence, harmonic
functions are approximately area minimizers.
Consider now the Dirichlet problem

(1.69)

Au=10 in Q,
u=¢@ on Jf,

where the solution u is sought in the class u € C? (Q) N C* (Q).

Theorem 1.23 (The Dirichlet principle) Let Q2 be a bounded region. Then a function
u s a solution of (1.69) if and only if u is a solution of (1.67)).

Since solution to the Dirichlet problem is always unique, we see that also the vari-

ational problem has at most one solution. On the other hand, we know that if {2 is a
ball then the Dirichlet problem does have a solution v € C? () N C (Q). Under some
additional assumption about ¢ one obtains v € C* (ﬁ) (see, for example, the previous
section), which then implies the existence of a solution of .
Idea of proof. Let us first prove a simplified version of this theorem, when solutions
of both problems q1.67[) and @.69[) are sought in the class C? (ﬁ . Assume first that
u € C? (ﬁ) is a solution of (ll_Gﬂ) and prove that u is a solution of , that is, Au =0
in Q. Fix a function w € C§° () and ¢ € R and consider the function v = u + tw.
Since v = u = ¢ on 0f), we conclude that

/|Vv|2dx2/|Vu|2dx.
Q Q

IVol* = |V (u + tw)]> = |Vu|* 4+ 2tVu - Vw + [Vw|?,

Computing
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we obtain

/|Vu|2dx+2t/Vu-dex—|—t2/|Vw|2dx2/|Vu|2dx
Q Q Q Q

and, hence,

2t/Vu-dea:+t2/|Vw|2dx20.
Q Q

Assuming that ¢ > 0, divide by ¢ and obtain
2/ Vu-dex+t/ \Vw|* dz > 0.
Q Q

Letting ¢ — 0, we obtain
/ Vu-Vwdx > 0.
Q

In the same way, considering ¢ < 0, we obtain
/ Vu-Vwdr <0,
Q

whence

/Vu-dexzo.
Q

By the Green formula we have

/wAud:v——/Vu-de:c+/ wd,udo.
Q Q a0

By (1.70) and w = 0 on 02 we obtain

/ wAudr = 0.
Q

Since w € C§° () is arbitrary, it follows that Au = 0 in .

53

(1.70)

(1.71)

Now assuming that v € C? (ﬁ) is a solution of 1} let us show that u is a

solution of 1) that is, for any v € C? (ﬁ) such that v = ¢ on 011,

/|Vv|2da:2/|Vu|2dx.
Q Q

Set w = v — u and write again

/|Vv|2dx:/|Vu+Vw[2dx:/|Vu|2dx+2/Vu-dex+/|Vw]2da:.
Q Q Q Q Q

Applying again the Green formula ((1.71]) and using that Au =0in Qand w = u—v =0

on 0f), we obtain

/Vu-dex:().
Q
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It follows that

/|Vv]2dx:/|Vu|2dx+/|Vw|2dx2/|Vu|2dx,
Q Q Q Q

which finishes the proof. m

In the first part of this argument we used that a solution u of the variational problem
is of the class C? in order just to be able to write Au. If we only know that v € C!
(and this is the minimal natural requirement for the problem (1.67))), then we cannot
immediately apply A to w. In the both parts of the proof we used that u,v € C? (ﬁ)
in order to be able to use the Green formula.

In order to prove Theorem under optimal requirements for u, as stated above,
we need to do some preparations.

Definition. A function ¢ on R" is called a mollifier, if 1) is non-negative, ) € C§° (By),
and

Y (z)dr = 1.
RTL

For example, the following function is a mollifier

w(x) = COP (—ﬁ) , |zl < 1/2
0 2| >1/2

for an appropriate value of the constant c. Here are the graphs of this function in R!
and R?%:

-05 -04 -03 -02 -01 00 01 02 03 04 )(%.5

A mollifier in R! A mollifier in R?

Each mollifier gives rise to a sequence {¢;},-, of mollifiers as follows:

U, (x) = k" (kx) . (1.72)

20.11.15
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Indeed, observe that v, € C§° (Bl /k) and

. U () de = /n k" (kx) dx = Y (y)dy = 1. (1.73)

Rn

20

15

Functions ¢ = 1), %,, 15 in R!

In the next lemma we develop a techniques of approximating continuous functions
by smooth ones.

Lemma 1.24 Let u be a locally integrable function in R™. For any k € N set

ukzu*wﬁ/nu@—y)wuymy. (1.74)

Then each uy, is a C*® function in R™. Moreover, if u € C () then uy — u locally
uniformly in €.

Proof. Indeed, we have by change z =z —y

w o) = [ u()n -2

and the first claim follows from the fact that ¢, (z — 2) is C*°-smooth in x (cf. the

proof of Lemma |1.12, Step 2).
Let us prove the second claim. For any x € €2, we have by ((1.73)

w@-ul) = [ a@ody- [ =i dy
= [ @)l i) dy

whence

ju () —up (2)] < Sup ju () —u(r—y)|.

Since u is locally uniformly continuous in €2, we obtain that

sup |u(x) —u(x—y)|—0 ask — o0
yEBy /i
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locally uniformly in €2, which implies that u; — w locally uniformly in ). =

Definition. A function v € C () is called weakly harmonic in Q if, for any w €
6 (),

/ ulAwdz = 0. (1.75)
0

Observe that if w is harmonic then u is weakly harmonic because by the Green

formula
/quda: = / Auvwdz = 0.
Q Q

Conversely, if u is weakly harmonic and if u € C? () then u is harmonic, because
(1.75)) implies then by the Green formula

/Auwd:c:/qud:czo,
Q Q

and since w € C§° (§2) is arbitrary, we obtain Au = 0 in Q. It turns out that the latter
claim can be strengthened as follows.

Lemma 1.25 (Weyl’s lemma) Let Q be any open subset of R™. If u € C'(Q) is weakly
harmonic in €2 then u is harmonic.

Proof. We reducing €2, we can assume without loss of generality that u is bounded.
Extending u to R™ by setting v = 0 in Q°. Consider again the sequence {uy} given by
and show that if u is weakly harmonic in 2 then also uy, is weakly harmonic in
Q. Indeed, for any w € C§° (§2) we have

[ @) s - /n(/Bl/kum—y)wk(y)dy)Aw<x>dm
- /Bw(/num—ymw(:v)dx)wk(y)dy

_ /Bl/k(/nwmw(wy)dz)¢k<y>dy.

Since y € By, and, hence, |y| < 1/k, the function z +— w (2 + y) is supported in {2,
provided k is large enough, which implies by the weak harmonicity of u in €2 that

/nu(z)Aw(z—i-y)dz:O.

It follows that

/Quk (x) Aw (x) dz =0,

that is, uy is weakly harmonic in Q. Since u, € C'*° (£2), we obtain that wuy, is harmonic.
Finally, since uy — u locally uniformly in €2, we obtain by Harnack’s first theorem
that « is harmonic in 2. =

The next lemma states two versions of the first Green formula.
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Lemma 1.26 Let () be a bounded region.
(a) Ifue C*(Q), we C'(Q) then

/wAudx:—/Vu-dea:+/ wo,udo. (1.76)
Q Q o0

(b) Ifue C*(YNC* (), we CH(Q)NC (Q) and w =0 on IQ then

/wAu dx = — / Vu-Vwdz. (1.77)
0 0

Recall for comparison that so far we required for the Green formula that u,w €
C? (€2) . Observe also that in the case (b) the functions wAu and Vu- Vw are in C (1)
but not necessarily in C' (ﬁ) so that the integrals in are not necessarily well-
defined or finite. The statement is that if one of the integrals is well-defined then so is
the other, and their values are the same. In fact, one can prove that the formula
remains true also in the case (b) without requirement w = 0 on 02, but the argument
is more technical than acceptable here.

Proof. (a) If u € C? () and w € C* (Q) then applying the divergence theorem with

F=wVueC (Q),

— —
/dide:c:/ F -vdo
Q a0

/ (wAu+ Vu - Vw)dr = / wo,udo,
Q

onN

we obtain
that is

which is equivalent to (|1.76)).

(b) Assume now u € C?(Q) N C'(Q) and w € C* () N C (). Recall that by
definition of a region, there exists a C' function ® in a neighborhood of € such that
d <0onQ &®=0o0n09Y & > 0 outside Q, and V& # 0 on 9. For any € > 0
consider the set

QD={z: ()< —}={2:P(x)+e<0}.

Since V® # 0 also in a neighborhood of 02, we see that for small enough ¢ we have
V® # 0 on 99., which implies that . is also a region. Since u € C? (QE) and

w € C' (9.), we obtain by 1)
/ wAudr = —/ Vu - Vwdz +/ wo,udo. (1.78)
. . 09,

Since u € C* (), we have

|0,u] < sup|Vu|=:C < 0.
Q

If ¢ — 0 then supyq_|w| — 0 because w € C (©2) and w = 0 on 0S). Hence,

/ wo,udo — 0 as € — 0.
80



58 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS
Hence, letting ¢ — 0 in (1.78)), we obtain (1.77). More precisely, if one of the limits

/ wAudr ;= lim wAu dz
Q

e—0 Q.

and
—/Vu-de:r:::—lim Vu - Vwdx
Q

e—0 Q.

exists then the other exists too, and their values are the same. m

Proof of Theorem Assume first that v € C* (ﬁ) is a solution of
and prove that u is a solution of . We need only to prove that v is a harmonic
function in 2. By Lemma it suffices to prove that u is weakly harmonic in €.
Fix a function w € C§° () and ¢ € R and consider the function v = u + tw. Since
v =u =  on Jf), we conclude that

/|Vv|2dx2/|Vu|2da:.
Q Q

Using the the same argument as in the previous version of the proof, we conclude that
/ Vu-Vwdx = 0.
Q
By the Green formula ([1.76]) (with swapped u and w) we have

/qudx:—/Vu-dex+/ ud,w do = 0.
Q Q BY)

Hence, we obtain that that u is weakly harmonic, which finishes this part of the proof.
Let u be solution of (1.69) and let us show that u solves also (1.67)), that is, for any
v € C* () such that v = ¢ on 99,

/ |Vo|? de > / V| d.
Q Q
Set w = v — u and write

/|Vv|2dx—/|Vu—|—Vw|2dx—/|Vu|2dx+2/Vu-dex+/|Vw]2dx.
Q Q Q Q Q

Since u € C2(Q)NC* (Q), w € C* (), w=u—v =0 on 99, and Au = 0 in Q, we
obtain by (1.77) that

/Vu-V'wd:c:—/wAudx:O.
Q Q

/|Vv|2dx:/|Vu|2dx—|—/|Vw|2dmZ/|Vu|2dx,
Q Q 0 Q

which finishes the proof. m

It follows that

25.11.15
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1.11 *Distributions

Denote by D the linear space C§° (R™) with certain topology that we do not describe
here. Elements of D are called test functions. A distribution is any linear continuous
functional on D. The set of all distributions is denoted by D’. Clearly, this is a linear
space (that is a dual space to D). For any f € D' and ¢ € D the value f (y) is
also denoted by (f, ). One says that a sequence { fi} of distributions converges to a
distribution f if for any test function ¢

<fk7()0>_><f790> as k — oo.

Any locally integrable function f in R™ determines a distribution, also denoted by f,
using the rule

(fro)= [ [feodz.

R'Il
On the other hand, there are distributions that are not determined by functions. For
example, denote by ¢ the distribution that is defined by

(6,0) =9 (0).

The distribution ¢ is called the Dirac-function (although it is not a function).
Let 1 be a mollifier in R", and ¢, be defined by (1.72)), that is, ¢ () = k"¢ (kx).

By Lemma we have the following: for any test function ¢
pxp(x) =@ (r) ask — oo
Applying this to function ¢ (—z) instead of ¢, we obtain
U (@ +y)e(y)dy — ¢ (—z) ask — .
RTL

In particular, for x = 0 we have

(Y, 0) = ¢ (0) = (0, 9) .

Hence, we can say that 1, — ¢ the sense of distributions. A sequence that converges
to ¢ is called approximation of identity.

One of huge advantages of the notion of distribution is that all partial derivatives
D* of all orders are well-defined on any distribution. Namely, for any f € D’ and for
any multiindex a = (ay, ..., @) define D f as distribution by the following identity:

(Df, ) = (=1)I*! (f, D) Vy € D. (1.79)

This definition is compatible with the classical definition for functions in the following
sense. If f € C* (R") then D“f is defined as function for all || < k. By integration
by parts formula, the following identity is true for any ¢ € D:

[ @0 ppds=(-0° [ Do

Rn

Hence, if we consider here f and D®f as distributions, then we obtain (|1.79)).
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Using ((1.79) we can compute the derivatives of the d-function as follows:
(D6, ) = (=1)*' D" (0).
It follows from ((1.79) that, for the Laplace operator A,

(Af,0) = (f,Ap). (1.80)

A distribution f is called harmonic if it satisfies the Laplace equation Af = 0. By
(1.80), f € D' is harmonic if and only if

(f,Ap) =0 VpeD. (1.81)

Recall that a continuous function f is called weakly harmonic if for all ¢ € D

/ fApdr =0,

which can be equivalently written as . Hence, a continuous function f is weakly
harmonic if and only if f is harmonic as a distribution. We have proved in Lemma
that any weakly harmonic function is harmonic. This lemma can be extended as
follows: any harmonic distribution is in fact a harmonic function.

1.12 *Euler-Lagrange equation

Let 2 be a bounded domain in R". Consider a more general variational problem

{ Jo £ (2,4, Vu) dz +— min (1.82)

u =@ on 0f)

where L (z,p,q,...,q,) is a given function, called Lagrangian, and u is an unknown
function. If u € C?(Q) is a solution of then we can again compare u with
v = u+ tw, where w € C§° (2) and ¢t € R. The function tw is called a variation of u.

By the way, the branch of mathematics that studies variational problems is called
variational calculus. The main idea here is the same as in the proof of Fermat’s
theorem in classical Analysis. In order to obtain points of minimum of a real valued
function F'(z) of a variable z € R”, let us compare F' (z) at the minimum point z with
F (24 tw), where w € R™ and ¢t € R (that is, tw is an increment of the argument z).
As we know from Analysis, if the function F' is differentiable, then the condition

F(z+4tw) > F(2)

leads for t — 0 to
F(z)4+tw-F'(z)+o0(t) > F(2).

Since the latter has to be true both for ¢ > 0 and ¢ < 0, we obtain that w - F” (z) = 0,
and since this has to be true for all w, we obtain

F'(z2) =0.
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This equation is a necessary condition for z to be a point of minimum and it can be
used to determine z or at least candidates for z.

Returning to the variational problem and assuming that £ is continuously differen-
tiable in p, ¢ and that ¢ is small, we obtain as t — 0

L(x,u+ tw, Vu+tVw) = L (x,u, Vu) +twd,L (z,u, Vu) +tVw-0,L (x,u, Vu)+o(t).
The condition

/Szﬁ(x,u—l—tw,Vu—i-ti)dm > /Qﬁ(x,u,Vu)dx
implies

/Qt (w0, L (x,u, Vu) + Vw - 0,L (x,u, Vu)| dz > o(t),

and the fact, that this has to be true both for ¢ > 0 and ¢ < 0, implies that

/Q (w0, L (x,u, Vu) + Vw - 0,L (x,u, Vu)| dz = 0. (1.83)
Consider a vector field

v=0,L(x,u,Vu).

Since
div (wv) = Vw - v+ wdivo

(see Exercises) and by the divergence theorem

/div(wv) dx :/ wvdo =0,
Q o9

we obtain that

Substituting this into ((1.83]), we obtain
/ w [0,L (z,u, Vu) — div 0,L (z,u, Vu)| dz = 0,
Q

where div is taken with respect to x. Since w is arbitrary, we obtain the u satisfies the
following PDE in Q:
0L (x,u, Vu) = div 9,L (z,u, Vu) ,

or more explicitly

0L (v, u, Vu) = Z 0r; 04, L (x,u, Vu). (1.84)
i=1
This PDE is called the Euler-Lagrange equation of the problem (|1.82)).
For example, the problem ((1.67)) corresponds to the Lagrangian

L(z,p.q)=¢+..+q.



62 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Then 0,L =0, 0,,L = 2¢;, and (|1.84) becomes
0="> 0y (20,,u)

which is equivalent to Au = 0.
The variational problem (|1.68)) has the Lagrangian

L(x,p,q) = \/1+Q%+-~-+Q%-

Since
qi

B \/1+q%+...+q27

we obtain the following Euler-Lagrange equation

0, L

n

that is called the minimal surface equation.

1.13 *Dirichlet problem in arbitrary domains (overview)

We discuss various methods of proof of the solvability of the Dirichlet problem in an
arbitrary bounded open set {2 C R™. In the case of a ball we have solved the Dirichlet
problem by constructing the Green function. However, this method does not work
for general domains because construction of the Green function in general domains
requires a solution of a certain Dirichlet problem. We state below only the ideas of the
methods, without rigorous statements.

Perron’s method.
Let u be a solution to the Dirichlet problem

{Au:O in €2

u=¢ on Jf2 (1.85)

Observe that if v is a superharmonic function in €2 such that v > ¢ on 02, then by the
minimum principle we obtain v > u. It follows that

u(x) = inf {v (z) : v is superharmonic in © and v > ¢ on 00} . (1.86)

This formula can be used to define a function w (x). Indeed, there are always super-
harmonic functions v with v > ¢ on 0f2, for example, large enough constants, so that
the right hand side of always makes sense.

The main idea of Perron’s method is a non-trivial fact that the function u defined
by is always harmonic in €. The next step is to show that u satisfies the
boundary condition, which can be done using certain assumptions about the boundary
09, provided ¢ € C (09). For example, this method works if 02 satisfies a so-called
the cone condition, that is, if any point z € 02 can be touched from outside ) by a
solid cone. In particular, this is the case when (2 is a region.
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Brownian motion and Kakutani’s formula.

Let {X;} be Brownian motion in R" (see Section for more details). Then solution
of (1.85) can be determined by Kakutani’s formula:

u () =B (0 (X7))

where x € ) and 7 is the first time when X; hits 0f) starting at = at time 0. For
example, if €2 is a ball centered at x, then X, is uniformly distributed on 02 and we
obtain the mean value property: u (x) is the arithmetic mean of ¢. In general, u (x)
is a weighted mean of ¢ where the weight is given by the exit measure of Brownian
motion, that is, by the distribution of X, on 0€2. Similarly to the Perron method, one
proves that u is always a harmonic function in €2, and that u = ¢ on 02 provided 02
satisfies the cone condition.

Fredholm’s method and integral equations.

Assume that €2 is a region and let us look for the solution of ([1.85)) in the form

u(r)=— [ OE(v,y)v(y)do(y), (1.87)
onN

where v is a new unknown function on 9€2. This formula is motivated by the Poisson
kernel of the ball that is equal to J,G (z,y) where G is the Green function of the
ball. Since we do not know the Green function of €2, we use in the fundamental
solution instead, but replace the boundary function ¢ by a new unknown function.

It is easy to show that u is a harmonic function in €2, assuming that v is a reasonably
good function. The main problem is to find v so that u satisfies the boundary condition
u = ¢ on 0f). The key observation is the following fact: for any x € 02

lim w(z)= %v () + u(x)

z2€Q,z—x
(consequently, u is in general discontinuous at 9€2). Then the boundary condition

lim wu(z)=¢(x)

2€Q,z—x

gives the integral equation for v

%U (@)= | OE(x,y)v(y)do(y) = ()
o0

at 0€). The Fredholm theory develops methods for solving such integral equations. In
particular, the celebrated Fredholm alternative asserts that the existence of solution of
the integral equation for any right hand side ¢ is equivalent to the uniqueness of solution
of a certain dual integral equation. This is similar to the proof of existence of solution
of the discrete Dirichlet problem when we first proved the uniqueness. However, the
proof of the Fredholm alternative is much more complicated as it requires tools of
functional analysis, that is, the theory of infinite dimensional linear spaces.
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The Dirichlet method and weak topology.

We have learned in Theorem that instead of solving (1.85) it suffices to solve the
variational problem

2 .
{ Jo IVu|” dz — min (1.88)

u = @ on 0f).

If ue C'(Q) and w € CF° (Q) then, applying the divergence theorem to the vector
field V (wu), we obtain the identity

/quda::—/quda:.
Q Q

This identity is used to define the notion of a weak gradient. Namely, a vector field F’
in Q is called a weak gradient of u in 2 if, for any w € C§° (Q2),

/dem——/qudm.
Q Q

The weak gradient (if it exists) will also be denoted by Vu. The advantage of the
notion of weak gradient is that it can be defined for functions that are not necessarily
pointwise differentiable.

Recall that the Lebesgue space L? (€2) consists of measurable functions u in 2 that

are square integrable, that is,
/ udr < oo.
Q

It is known that L? (2) is a Hilbert space with the inner product

(U, )2 :/uvda:.
0

Define the Sobolev space W12 () as the subspace of L? () that consists of functions
u possessing the weak gradient Vu such that |Vu| € L?(Q). The Sobolev space is a
Hilbert space with respect to the inner product

(U, V)12 = /Q (uv + Vu - Vv) dx. (1.89)
Hence, the norm in W2 (Q) is given by
w2 = /Q (v + ]Vu]2) dz.
We write shortly W2 = W2 (Q). Consider also the subspace W,> of W2 that is

the closure of C$° () in W12, Tt is possible to prove that if € is bounded then W,
admits also an equivalent norm

lullyo = [ [V e

which corresponds to the following inner product in I/VO1 2,

(U, V)12 = / Vu-Vudz.
0 Q
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Assume that the boundary function ¢ extends to a function in 2 and that the
extended function belongs to W2, Then we understand the boundary condition of

(1.88) in the generalized sense:
u— W2 (1.90)

Indeed, we consider the functions in I/VO1  as vanishing on 9 in some generalized sense
as they are obtained as limits of functions from C§° (£2) vanishing on 0f2 in the strong
sense. Setting v = u — ¢, we see that the variational problem amounts to the
following: find a function v € Wy where the functional

@@y:LJV@+¢Wdr

attains its minimal value. It is easy to show that if Hv||W01,2 — 00 then ® (v) — oo so
that we can restrict the problem of finding the minimum of ® to a ball

BR:{vemﬁﬂwwmwzgR}

in VVO1 2 of large enough radius R. It is also easy to see that ® is a continuous functional
in W,?. If this problem were in a finite dimensional Euclidean space then we could
have concluded that ¢ attains its minimum in the ball by the extreme value theorem,
because the ball is compact. However, in the infinite dimensional space I/VO1 2 balls are
not compact!

To overcome this difficulty, one introduces a so-called weak topology in VVO1 2 In
contrast to the norm topology, the ball By happens to be compact in the weak topology,
and function @ is continuous in the weak topology (both statements are non-trivial).
Hence, one obtains the existence of the minimum point of ®.

The function u that one obtains in this way is an element of W12, The one uses
additional methods to show that this function is smooth enough in 2 and continuous
up to 0f2, in particular, that it solves . These methods belong to the regqularity
theory.

The Riesz representation theorem and geometry of Hilbert spaces.

Consider now the Dirichlet problem

Au=f in
u=0 on 0f).

We will understand this problem also in a generalized sense as in the previous method.
The boundary condition we understand in the sense

u € Wy

The equation Au = f is equivalent to the integral identity

/wAuda:—/wfda: for any w € C5° (Q) ,
Q Q

/Vu-dex:—/wfdx.
Q Q

which is equivalent to
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Since u € VVO1 2 and the class of test functions w can also be extended from Cs () to
its closure VVO1 2 we restate the latter identity in the form

(v, W)y =¥ (w) for any w € Wy, (1.91)

where

U (w) = —/wadx.

Clearly, W is a linear functional on W,*. One can show that it is continuous. Then
one can apply the Riesz representation theorem: any continuous linear functional ¥ on
a Hilbert space has the form ¥ (w) = (w, u) for some element u of the Hilbert space.
Hence, this element wu is our solution.

The proof of the Riesz representation theorem is based on the following geometric
observation. The set null set of W, that is, the set

N = {w: ¥ (w) =0}

is a closed linear subspace of the given Hilbert space. The equation ¥ (w) = (w,u)
implies that u must be orthogonal to N. In the theory of Hilbert spaces one proves the
existence of a non-zero vector that is orthogonal to N. Then one finds u as a multiple
of this vector.

Finally one uses the regularity theory to show that u is a smooth enough function.



Chapter 2

Heat equation

Our main subject here will be the heat equation

oyu = Au,

where u = u(z,t), * € R" and t € R. Here n > 1 is any natural number. In fact, the
domain of the heat equation is R"*! or a subset of R"*1.

We have seen that in the study of the Laplace equation an important role was
played by the fundamental solution. The heat equation possesses a similarly important
solution.

2.1 Heat kernel

Definition. The following function

p(z) =p(t,z) = (47;)”/2 exp (—%) , (2.1)

where ¢t > 0 and x € R", is called the fundamental solution of the heat equation or the
heat kernel. 1t is also called the Gauss- Weierstrass function.

67
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The graphs of the function z — p, (z) n R fort =1,t =3, t = and t =
025 T
020}
0154
0107
005 |
%00 0?5: 1=.o: 1?5: 2500'000::1:;:;:4:1 t5
The graph of the function The graph of the function
L) = o (1) = o exp (—3)

The graph of the function (z,t) — p; (x)
The main properties of the heat kernel are stated in the following lemma.

Lemma 2.1 The function p; (z) is C*® smooth in Rt .= R x (0, +00), positive,
satisfies the heat equation
Oipe = Apy, (2-2)

the identity
[ ntaria=1, (23)
and, for any r >0,
/ pe(z)dxr — 0 ast — 0. (2.4)
B

Proof. The smoothness and positivity of p; (x) are obvious. It is easier to verify the
equation ([2.2)) using the function

u(z,t):=Inp,(r) = —=Int— —+1n
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Differentiating the identity p, = e*, we obtain
Opr = €“Opu and Oy, 0, Pt = (&Ekmku + (@Eku)?) e".

which implies
O — Apy = " (Qyu — Au — |Vu|2) .

Hence, the heat equation (2.2)) is equivalent to

du = Au+ |Vul?. (2.5)
Computing the derivatives of u,
9 n ol
U= —— -
! 2t 42
and )
n 1 2 |7
Au:—2—t, VU:—2—t($1,...,$n), |V'LL‘ :4—t2,

we obtain (2.5)).
To prove ([2.3)), let us use the identity

/_ T e ds = Nz (2.6)

o)

that implies by a change in the integral that

/ e/ g — \/4rt.

Reducing the integration in R" to repeated integrals, we obtain

1 24 ... 2
pe(x)dr = ———= eXp S ] dry---dz,
n (47Tt)”/2 4t

e oo ()

(47;) ( 47Tt> :
= 1.

Finally, to verify (2.4)), let us make the change y = ¢t~'/2z in the integral (2.4). Since
dy = t~"/2dx, the factor t~"/2 cancels out and we obtain

1 2
pe(r)dr = —— / e WA dy, (2.7)
Ax:|$|>r} t (47‘(’) /2 {y:‘y|>t_1/2r}

Since the integral in the right hand side is convergent and ¢~'/2r — oo as t — 0, we

obtain that the integral tends to 0 as t — 0, which was to be proved. m
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2.2 Solution of the Cauchy problem

One of the most interesting and frequently used problems associated with the heat
equation is the Cauchy problem (also known as the initial value problem): given a
function f(x) on R", find u(x,t) such that

{(Zu =Au in ]RCLFH, (2.8)

ul—o = f.
where R’™' = R" x (0,00). The function u is sought in the class C%(R’t™) so that

the both derivatives d;u and Au make sense. The initial condition u|,—g = f can be
understood in equivalent two ways:

(i) ue C(@Tl) where Eiﬂ =R" x [0,+00) and u (x,0) = f (z) for all x € R™.

(i) We have
u(z,t) — f(x) ast — 0+ (2.9)

locally uniformly in x € R"™.

Indeed, if (i) is satisfied then w is locally uniformly continuous in Eiﬂ whence
u(x,t) — u(x,0) = f(x) as t — 0+ locally uniformly in x. If (i) is satisfied then

extending u to Rzljl by setting u (x,0) = f(x), we obtain a continuous function in
—=n+1

Ry

Theorem 2.2 If f is a bounded continuous function in R™ then the following function

w(at) = (po* f) (2) = / P (=) f (y) dy (2.10)

n

is C™ smooth in R and solves the Cauchy problem 1} Moreover, the function u
s bounded and, for allt >0 and z € R,

inf f <w(x,t) <supf. (2.11)

Remark. Set

and observe that

1 x
pe (@) = —=7p (—) : (2.12)
t CORNG
In particular, if we denote k = \/%, then
pe () = k"p (kx) ,

which is the same rule that was used in Lemma to create a sequence {1} of
mollifiers from a mollifier ¢). The function p (x) is not a mollifier because its support
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is unbounded, but it has many properties of mollifiers. In particular, the fact that the
function u (z,t) satisfies the initial condition (2.9) can be reformulated as follows:

pexf— fast—0
that is similar to the statement of Lemma [1.24]

Y x f— [ as k — oo.

Proof. Changing z = x — y in (2.10)) we can write

w (o) = /npt (2) f (x — 2) dz. (2.13)

Since f is bounded and p; is integrable, the integral here is convergent. The positivity
of the heat kernel and ({2.3]) imply that

u(z) <supf | pi(z)dz =sup f

and in the same way u > inf f, which proves .

The function u (x,t) from is obviously continuous in (z,t) € R because it
is obtained by integrating of a continuous function p, (z) f (z — 2).

Observe that for any partial derivative D in (¢, ) the following integral

Dy (v —y) f (y) dy

Rn”

converges, because D%p, (z — y) decays for large |y| as exp <—%> and f (y) is bounded.
Therefore, D*u also exists and is given by

Du(z,t)= [ D (x—y)[f(y)dy.
R
In particular, u € C* (R™'). It follows also that

(00— A)u (1) :/ (O — A)pr (z — ) f (y) dy =0,

n

because p; solves the heat equation (cf. (2.2))).

Let us verify (2.9). The proof is very similar to that of Lemma [1.24] By (2.3)), we
have

fa@ = [ wf @
which together with (2.13]) yields

u(et) = fa) = [ pla) (o= 2) = ] @) e

n
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Since f is continuous at z, for any € > 0 there exists 6 > 0 such that
z| <6 = |flx —2) — f(2)] <e.

Furthermore, since f is locally uniformly continuous, § can be chosen the same for all
x varying in a bounded set. Then we have

u(z,t) = f ()] <

/B () (o — 2) — f(2))dz

+

/B () (f(x — 2) — f(2))dz

c
8

< 5/ P (2) dz + 2sup | f| pe(2)dz.

B

By 1) we have [p, p; (2) dz = 1 and by 1D fBg pi(2)dz — 0 ast — 0. In particular,

if ¢ 1s sufficiently small then

2sup|f| [ pi(z)dz <e,
B;

which implies
u(2,) — f (2)] < 2.

Hence, (2.9)) follows. The convergence is locally uniform in x because § can be chosen
locally uniformly. m

Remark. It is clear from the proof that if f (x) is uniformly continuous in R" then
u(t,z) — f(x) uniformly in z € R".

2.3 Maximum principle and uniqueness in Cauchy
problem

The Cauchy problem ({2.8) is called bounded if the initial function f is bounded and
the solution u must also be bounded. Theorem 2.2] claims the existence of solution of
the bounded Cauchy problem for a continuous initial function f.

The uniqueness in the bounded Cauchy problem will follow from the mazimum
principle, which is of its own interest. Let U C R"™ be a bounded open set. Fix some
positive real T' and consider the cylinder Q = U x (0,T) as a subset in R""'. The
boundary 0f) is the union of three parts: the top U x {T'}, the bottom U x {0} and
the lateral boundary OU x [0,T] (where OU is the boundary of U in R™). Define the
parabolic boundary 9,2 of the cylinder {2 as the union of its bottom and the lateral
boundary, that is

0,2 := (U x {0}) U (U x [0,T7)
(see Fig. . Note that 9,2 is a closed subset of R™*1.

27.11.15
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t A GQ\apQ

TN A
Q \ 60|

Figure 2.1: The parabolic boundary 0,2

Lemma 2.3 (Parabolic maximum principle)Let Q be a cylinder as above. If u €

C2(Q)NC () and

Oru — Au < 0in §2 (2.14)
then
Sup u = sup u. (2.15)
Q 3pQ

In particular, if u < 0 on 0,82 then u < 0 in €.
By changing u to —u, we obtain the minimum principle: if
Ou— Au > 01in Q (2.16)

then

inf v = inf u.

Q 9pQ
In particular, if u solves the heat equation in ) then the maximum and minimum of u
in €2 are attained also in 0,(2.

Remark. Solutions to the heat equation are sometimes called caloric functions (analo-
gously to harmonic functions). Any function that satisfies is called a subsolution
of the heat equation or subcaloric function, any function that satisfies is called
a supersolution of the heat equation or supercaloric function (analogously to sub- and
superharmonic functions). Hence, subcaloric functions satisfy the maximum principle,
and supercaloric functions satisfy the minimum principle.

Proof. By hypotheses, u € C? (U x (0,T)). Let us assume first a bit more, that
u € C?*(U x (0,T)), that is, u is C? up to the top of the cylinder (in the end we will
get rid of this assumption). The u satisfies dyu — Au < 0 in U x (0,7T]. Note that we
still assume u € C ().
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Consider first a particular case when wu satisfies a strict inequality in U x (0, 7T:
Oru — Au < 0. (2.17)

Let (79,%9) be a point of maximum of function u in Q. Let us show that (7¢,%5) € 9,1,
which will imply (2.15)). If (0, t0) ¢ 9,92 then (zo,t,) lies either inside © or at the top
of Q. In the both cases, o € Q and 0 < ¢, < T. Since the function z + u (ty, z) in U
attains the maximum at x = xq, we have

Op,z,u (2o, 1) < Oforall j=1,...n

whence Au (xg,t) < 0.

Figure 2.2: The restriction of u(t, ) to the lines in the direction z; and in the direction
of t (downwards) attains the maximum at (to, zo).

On the other hand, the function t — u (¢, z¢) in (0, o] attains its maximum at t = ¢,
whence
atu (.To, to) Z 0

(if to < T then, in fact, dyu (xo,ty) = 0). Hence, we conclude that
(Opu — Au) (9, t0) > 0,

which contradicts (2.17)).

Consider now the general case, when u satisfies dyu — Au < 0 in U x (0,7]. Set
u. = u — €t where ¢ is a positive parameter. Clearly, we have

Opue — Au. = (Opu — Au) — e < 0.
Hence, the previous case applies to the function u., and we conclude that

sup (u — et) = sup (u — €t).
Q 3,0

Letting ¢ — 0 we obtain (2.15).
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Finally, let us prove (2.15) under the assumption that v € C?(2) (and, of course,
u € C(Q)). Choose some T” < T and consider the cylinder ' = U x (0,7”). Then
u € C%*(U x (0,7"]) and we obtain by the above proof that

Sup % = sup u.
o 0!

Letting 7" — T, we obtain (2.15). m

Remark. As we see from the proof, the requirement that v € C? () is superfluous:
it suffices for u to have in ) the first time derivative d,u and all second unmixed
derivatives Oy, ,,u.

Remark. The maximum principle remains true for a more general parabolic equation

n

Ou = Z aij () Op,z;u + Z bi ()0, u,
k=1

i,j=1
where the right hand side is an elliptic operator.

Now we can prove the uniqueness result.

Theorem 2.4 For any continuous function f(z), the Cauchy problem (2.8)) has at
most one bounded solution u (t,x).

Proof. Fix some T > 0 and consider the restricted Cauchy problem

{ Ou=Au inR"x (0,T),

2.18
u|t:0 = O ( )

It suffices to prove that if u is a bounded solution of then v = 0. Since T" > 0 is
arbitrary, the uniqueness in (2.8) will follows.
Consider the function
v(x,t) = |x|* + 2nt,

that is non-negative and obviously satisfies the heat equation
o = Av.

Fix ¢ > 0 and compare u and ev in a cylinder 2 = By x (0, T'), where R is to be chosen.
At the bottom of the cylinder (that is, at t = 0) we have u = 0 < gv. At the lateral
boundary of the cylinder (that is, when |z| = R) we have u < C' where C' := sup |u|,
and v > R?, hence, ev > eR?. Choosing R so big that e R? > C, we obtain that u < ev
on the lateral boundary of (2.

Hence, the function u — v satisfies the heat equation in €2 and v — cv < 0 on the
parabolic boundary 0,{). By Lemma we conclude that © — ev < 0 in 2. Letting
R — 0o we obtain u —ev < 0 in R™ x (0,7). Letting ¢ — 0, we obtain u < 0. In the
same way u > 0, whence u =0. m

Remark. We have proved a bit stronger property that was claimed in Theorem
the uniqueness of a bounded solution of the heat equation in a strip R™ x (0,7).
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u<C<eR’<ev

Rn

Figure 2.3: Comparison of functions v and ev on g,I'

Unbounded Cauchy problem. In fact, the uniqueness class for solutions to the Cauchy problem
is much wider than the set of bounded functions. For example, the Tikhonov theorem says that if
u (¢, x) solves the Cauchy problem with the initial

lu(t, )] < Cexp (c |x|2) (2.19)
for some constant C and all ¢t > 0, x € R", then v = 0. On the other hand, one cannot replace here
lz|® by |z|°* for € > 0.

There is an example, also by Tikhonov, of a solution u (¢,z) to (2.18) that is not identical zero
for t > 0. In fact, for any ¢ > 0, the function = — wu (¢,z) takes large positive and negative values

and, of course, does not satisfy (2.19). This solution of the heat equation is non-physical as it cannot

represent an actual physical temperature field.

Theorems and imply that, for any bounded continuous function f, the
Cauchy problem has a unique bounded solution, given by . Let us show an
amusing example of application of this result to the heat kernel. We use the notion of
convolution f % g of two functions in R":

frg(@)= | flz—y)g(y)dy.
RTL
Proposition 2.5 The following identity is true for all ¢, s > 0
Pt * Dg = Dit+s- (220)

Proof. Let f be a bounded non-negative continuous function in R”. By Theorem
the function u; = p; * f solves the bounded Cauchy problem with the initial function f.
Consider now the Cauchy problem with the initial function us. Obviously, the function
Usss gives the bounded solution to this problem at time ¢. On the other hand, the
solution at time t is given by p; * us. Hence, we obtain the identity

Ut4s = Pt * Usg,

that is
pt-i—s*f:pt*(ps*f)'
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By the associative law of convolution (which is a consequence of Fubini’s theorem), we
have

pex (s * f) = (pr % ps) * f,
whence
Prrs ¥ f = (ptx ps) * f.
Since this is true for all functions f as above, we conclude that p; s = p; xps. ®
The identity can also be proved by a direct computation, but this is not very
simple.
It follows from that the one-parameter function family {p;},., forms a con-

volution semigroup, that is a semigroup with respect to the operation of convolution;
moreover, this semigroup is isomorphic to the additive semigroup of R, .

2.4 Mixed problem and separation of variables

Let Q = U x (0,T) be a cylinder in R™™ based on a bounded domain U C R". Consider
the following initial-boundary problem (that is also called mixed problem) in Q:

{ Ou = Au in €,

U= on 0,2, (221)

where ¢ is a given continuous func_tion on the parabolic boundary 9,2. Function u
should be in the class C* () N C (92).

Proposition 2.6 If u is a solution of (2.21]) then in Q
infp <u <supe. (2.22)
Consequently, the problem (2.21)) has at most one solution.

Proof. By the parabolic maximum principle, we have

SUp % = SUp U = Sup ¢
Q 9pQ
and similarly

inf u = inf u = inf ¢,
Q GX)

whence (2.22)) follows.

If uy, ug are two solutions of (2.21]) then u = u; — us solves the problem

O = Au in )
uw=0 on 0,2

It follows from ([2.22)) that v = 0 in §2, whence also u; = uy. =

For existence of solution of (2.21]), we restrict ourself to the most important partic-
ular case, when ¢ = 0 on the lateral boundary 0U x [0,7T]. We rewrite (2.21]) in the

form:

Oru = Au inU x (0,7)
u(x,t) =0 on OU x [0,7] (boundary condition) (2.23)
u(x,0) = ¢ (z) inU (initial condition)
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where ¢ is now a given function on U such that ¢|s; = 0. The latter makes consistent
the boundary condition and initial condition.

We use the method of separation of variables as follows. Let us first look for a
solution to the heat equation in the form w(z,t) = v (z)w (t). Then the equation
Oyu = Au becomes

vw' = (Av)w

that is equivalent to
/

w' Av
wo v
Since the left hand side is a function of ¢ and the right hand side is a function of x, the

identity can hold only if they both are constant. Denote this constant by —\, so that
Av+ A =0 and w' + \w = 0.

In fact, we require that v = 0 on OU because then also u (z,t) = 0 on U x [0,T].
Hence, we obtain for v the following eigenvalue problem:
{ Av+ =0 inU

v=20 on OU. (224)

Of course, we require that v € C? (U) N C (U) and v # 0 (clearly, the solution v = 0
has no value for us). The question is to find non-trivial solutions v to (2.24) as well as
those values of A for which non-trivial solution exists.

Definition. If for some A (2.24) admits a non-trivial solution v, then this A is called
an eigenvalue of (2.24) and the solution v is called the eigenfunction.

This problem is similar to the eigenvalue problem in linear algebra: if A is a linear
operator in a linear space V' over R or C then ) is an eigenvalue of A if the equation
Av = Av has a non-zero solution v € V, that is called eigenvector. It is known that
any operator in an n-dimensional space V' has at most n eigenvalues (and at least 1
eigenvalue if V' is over C). As we shall see later, the problem has a countable set
of eigenvalues that are positive real numbers. Moreover, they can be enumerated as an
increasing sequence {Ak}zozl such that A\, — oo as k — 00. Let v, be an eigenfunction
that corresponds to .

Solving w’ + A\pw = 0 we obtain w = Ce !, Hence, for any k € N, we obtain the
following solution to the heat equation:

wy (2,1) = el ()

that satisfies also the boundary condition u; = 0 on 0U x [0, 00). Let us look for u (z,t)
in the form of a linear combination of all uy:

u (1’,75) = Z CrUp (l‘,t) )
k=1

for appropriate constants ¢;. Note that uy (x,0) = vy (z). Hence, for ¢ = 0 we obtain
the identity

() =) cxvg (x), (2.25)
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which can be used to determine ¢,. However, the question arises why such an expansion
is possible for a rather arbitrary function ¢.

Recall again an analogy with linear algebra. Let V be an n-dimensional linear
space with an inner product (-,-) (for example, R™ with the canonical inner product).
A linear operator A in V is called symmetric if

(Az,y) = (z,Ay) for all z,y € V.

For example, if A is an operator in R™ that is represented by a matrix (aij)ijl then the
symmetry of A means that the matrix (a;;) is symmetric, that is, a;; = aj;. It is known
that if A is a symmetric operator in V' then there is an orthonormal basis {v;};_, in V'
that consists of the eigenvectors of A (diagonalization of A). In particular, any vector

x € V has in this basis an expansion

n

Tr = E CLUE.

k=1

A similar theory can be developed for eigenfunctions of the problem (2.24). The role
of the space V is played by the Lebesgue space L? (U). By definition, L? (U) consists
of Lebesgue measurable functions f : U — R such that

/ fdx < .
U

Then L?(U) is a linear space over R with the inner product

(f.9)p = /U fgd.

Moreover, the space L? (U) is complete with respect to the norm || f||;. = \/(f, f), so
that L? (U) is a Hilbert space.

Let us emphasize that oo-dimensional spaces do not have to be complete (while
finite dimensional spaces are always complete), and for the completeness of L? (U) it
is important that the integrals in the definition of L? (U) are understood in the sense
of Lebesgue.

The Laplace operator A cannot be regarded as an operator on the whole space
L* (U) because L? (U) contains plenty of discontinuous functions. However, A acts on
the dense subspace C§° (U) of L? (U), and on this subspace A is symmetric! Indeed,
for all f,g € C§° (U) we have by the Green formula

/UAfgdx:/Ungdx,

(Af7 g)L2 = <f7 Ag)L2 .

Using the symmetry of A, one proves that L? (U) has an orthonormal basis {v;,} that
consists of the eigenfunctions of the problem ([2.24)).

which is equivalent to
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The fact that {v;} is an orthonormal basis in L?(U) means that any function
¢ € L? (U) admits an expansion (2.25) with ¢; = (¢, vx);2, and the series converges in
the norm of L? (U) . Then we obtain the following candidate for solution of (2.23)):

u(z,t) = Z cpe My (1) .
k=1

Of course, in order to prove that it is indeed a solution one needs to investigate the
convergence of the series as well as that of its derivatives. So far we do not have tools
to do so, and we postpone this task to one of the next chapters.

However, in the case when n = 1 and U is an interval, this can be done now. Hence,
let us assume that n = 1 and U = (0,7). The mixed problem becomes (with
T = c0)

Oyu = Oppl in (0,7) x (0, 00)
u(0,t) =u(mt) =0 forte[0,00) (2.26)
u(x,0) = ¢ (x) for = € [0, 7],

where ¢ () is a given continuous function on [0, 7] that vanishes at = 0 and = = 7.

The eigenvalue problem (2.24]) becomes

{ v"+Av =0 in (0,7)
v(0)=v(m)=0.

If A < 0 then setting A\ = —a? we obtain the general solution of v” — a?v = 0 in the
form v (z) = C1e* 4+ Cye**, that cannot vanish at two points unless it is identical
zero. In the case A = 0 the general solution is v (x) = C + Cyz that also cannot vanish
at two points. Assume A > 0. Then the general solution is

v (z) = Cy sin VAz + Cy cos VAz.

At x = 0 we obtain v (0) = Cy, whence Cy = 0. Take without loss of generality that
Cy = 1 and, hence, v (z) = sinv/Az. At & = 7 we obtain v (1) = sinv/Ar so that we
obtain the equation for A:

sin VA = 0.

Solutions are VA = k € N, that is, \;, = k2. Hence, we have determined the sequence

of the eigenvalues A\, = k?, k = 1,2,.... The corresponding to ), eigenfunction is
v, = sin kz. Hence, the solution of (2.26)) will be sought in the form
u(z,t) = Z cpe Ftsin ka, (2.27)
k=1

where ¢, are determined from
p(r) = Z k. sin k. (2.28)
k=1

Any function ¢ € L?(0,7) allows such an expansion. Indeed, extend ¢ to (—m,)
oddly, by setting ¢ (z) = —¢(—x) for x < 0, and then extend ¢ to the whole R
2m-periodically. Then ¢ allows an expansion into a Fourier series

Qg S .
o(x) = 5 + ; (ay cos kz + by sinkx)
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where

1 ™
ar = —/ ¢ (x) coskx dr =0,

T™J-m

because ¢ is odd. Therefore, only the terms by sin kz remain in the Fourier series.

Renaming by into ¢, we obtain ([2.28)). It follows that

1 [7 2 [T
k= —/ ¢ (x)sinkx dr = —/ ¢ (x) sin kx du. (2.29)
0

T ) x s

If p € C* ([0, 7]) and ¢ (0) = ¢ (7) = 0 then the extended function ¢ belongs to C* (R)
and, hence, the Fourier series (2.28) converges absolutely and uniformly.

Proposition 2.7 Assume that the series (2.28)) converges absolutely, that is, Y p- | |cx| <
oo. Then the series (2.27) determines a solution of (2.26)).

Proof. Since }cke*kt sin k’x| < ek, the series 1) converges absolutely and uniformly
for all x € [0, 7] and ¢t > 0. Hence, u € C ([0, 7] x [0,00)) . Let us show that d,u exists.
The term-by-term differentiation in ¢ of the series (2.27)) gives the series

Owu (z,t) = — Z cokeFsin ka, (2.30)

k=1

where for justification we have to prove that the series in (2.30)) converges in (0,7) X
(0, +00) locally uniformly. Fix € > 0 and observe that, for ¢t > ¢,

‘ckkje’k% sin kx‘ < len| K2 < M. |cy

where
12
M, = sup k?e "¢ < .
k>1

Hence, the series converges absolutely and uniformly in z € [0,7] and t > e.
It follows that the sum of this series is a continuous function in this domain and it is
equal to dyu. Since € > 0 is arbitrary, we obtain that holds in [0, 7] x (0, 00). In
the same way, we prove that for z € [0, 7] and ¢ > 0

Oyu(x,t) = Z ckke_k2t cos kx
k=1

and

Ot (z,1) = — Z ckae’k% sin kx. (2.31)
k=1

Similar identities hold for all other partial derivatives of u with respect to x and t.
It follows that u € C'* ([0, 7] x (0,00)). Comparison of (2.30) and (2.31]) shows that

Oyu = 0Ozzu. The boundary and initial conditions are obvious, so u is a solution of

2. =
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Example. Consider the function ¢ (z) = z (7 — ) on [0, 7]. Computing by (2.29)) its
Fourier coefficients yields

9 [T 0, k even
ck:;/o x(m—x)sinkxrdr = 17 k odd (2.32)
k3

Therefore, we obtain the solution u of (2.26)) as follows:

8 1 8 1 1
u(z,t) = p k%d ﬁe_k% sin kx = — <e_t sin x + 2—7@_% sin 3z + Ee_%t sin 5 + > .

(2.33)
Note that by Proposition we have u > 0 although this is not obvious from (2.33]).
It follows from ([2.33)) that, for any ¢ > 0,

T 8 1 T 16 1
/ u(x,t)de = — Z ﬁe_k%/ sin kx dxr = — Z ﬁe_k%,
0 T odd L0 o T hoad
=2/k

which implies

T 16
/ u(z,t)dr ~ —e " ast — oo.
0 m

The physical meaning of this integral is the heat energy of the interval [0, 7| at time ¢.
Due to the “cooling” condition at the boundary, the heat energy decays to 0 exponen-
tially in £ — oo.

It follows also from that, for any = € (0,7),

8 _; .
u(z,t) ~ —e'sinz ast — oo.
77

Hence, for large ¢, the function x — wu (z,t) takes the shape of sin x.

25T

u | t=0
20T
15
10T
1 =1
05T
0.0 I } .
0 1 2 3

Solution u (z,t) at t =0,t=1,¢t =2
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2.5 *Mixed problem with the source function

Consider now the Dirichlet problem in (0,7) x Ry with the source function f (x,t) at
the right hand side:

Oy — e = f (z,t) in (0,7) x (0,00)
u(0,t) =u(m,t) =0 fort € [0,+00) (2.34)
u(z,0)=0 for x € [0, 7] .

Alongside with the method of separation of variables, we use also the method of vari-
ation of constants. Namely, we search for solution u in the form (2.27) but now ¢, will
be unknown functions of ¢:

u(x,t) = Z e (t) e " sin k. (2.35)
k=1

Assuming that we can differentiate the series term-by-term, we obtain

Oyu = Z (cf (t) — ¢ (t) k) e Ft sin ka
k=1
and .
Opall = — Z cr (1) k2e % gin kx
k=1
whence -
Oyt — Oyt = Z i (t) et sin k. (2.36)
k=1

On the other hand, expanding the function f (x,t) in a series in sin kx yields

flzt) =) fu(t)sinke (2.37)

k=1
where 5
fr(t) = —/ f(x,t)sinkz dx.
T Jo
Comparing (2.36) and (2.37) we obtain the following equations for functions c:
() e ™™ = fi (). (2.38)

The initial condition u|,—o will be satisfied if we require that

Hence, solving ([2.38) with this initial condition, we obtain

o () = /Ot i (5) € ds. (2.39)
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Of course, in order to be rigorous, one needs to investigate the convergence of the series
as we did in Proposition , and verify that the series can be differentiated term-
by-term. We skip this part but observe that if the series in (2.37) is finite then the
series is also finite, and no further justification is needed. Consider an example
of this type.

Example. Let
f(z,t) =e 'sinz + tsin2z.

We obtain from ([2.39)
t
c (t) = / e ‘e’ds =1t
0

! 1,1 1
oo (1) = / se*ds = (—t — —) et + —,
; 4716 16

while ¢, = 0 for all £k > 3. Hence, the solution w is

and

u(x,t) = ci(t)e 'sing + ¢y (t) e *sin 2z
1 1 1
= te 'sinx + <Zt 16 + 1—664t) sin 2.

In particular, for ¢ — oo we obtain the following asymptotic as ¢ — oo for any = €
(0, m):
te !, r=7=

u(x,t) ~ . 2
(z,1) {itsm?x, x £ w2

Solution u (x,t)

2.6 *Cauchy problem with source function and Duhamel’s
principle
Let ¢ (z) be a function in some domain D C R". Recall that the notation ¢ € C* (D)

means that ¢ has in D all partial derivatives of the order at most k and all these
derivatives are continuous in D. We write ¢ € CF (D) if in addition all these derivatives
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are bounded in D. In particular, C, (D) is the set of all bounded continuous functions
in D.

Let f (x,t) be a function in some domain D C R™""!. We write f € C*! (D) if f has
all partial derivatives in = of the order at most k£ and in ¢ of the order at most [, and
all these derivatives are continuous in D. We write f € C&' (D) if in addition all these
derivatives are bounded in D. We use the convention that the derivative of the order
zero is the function itself.

Given a function f (z,t) in R and a function ¢ (z) in R, consider the following
Cauchy problem

U|t:0 =@

where the solution u is sought in the class C*! (RT™) N C (Riﬂ).

Lemma 2.8 There is at most one solution u of (2.40) that is bounded in any strip
R™ x (0,T) with T < 0.

Proof. Indeed, if u;, uy are two solutions, then u = u; — us is a bounded in R" x (0, T")
solution of
U|t:0 = 0
By Theorem [2.4) we obtain v = 0 and, hence, u; = uy. ®
Let us use the following notations: u; (x) := u (z,t) and f; (z) = f (z,1).

{@u—Au:O

Theorem 2.9 (Duhamel’s principle) Assume that ¢ € C, (R") and f € C’f’o(ﬁfl).

Then the problem (2.40) has the following solution

t
Up = Py x @ + / Di_s * fsds. (2.41)
0
Moreover, the following estimate holds:
sup Ju| < sup|| + tsup ] (2.42)
Since by ([2.42)) the solution wu is bounded in any strip R" x (0,7"), we see by Lemma

that it is the unique solution of this class.

Example. Assume that ¢ = 0. If f = 1 then p;_s * 1 = 1 and we obtain by ([2.41))
u (z) = t.
Consider one more example when f; (z) = ps (z) . Then

Pt—s * fs = Pt—s *Ps = Pt
and we obtain from (2.41)) that u, (z) = tp, (x).

For the proof of Theorem 2.9 we need some lemmas. We use the following notation

xf, t>0,
Ptf:{?ct f t=0.

If f € C,(R") then, for t > 0, the function P, f is also in Cj, (R™) so that P, can be

considered as an operator in C, (R"). We consider P, f (z) as a function of x and t.
Note that, by Theorem , the function P, f (x) belongs to C*> (R} N C’b(@iﬂ). In

the next statement we investigate the smoothness of P, f (z) in @Tffl.
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Lemma 2.10 For any integer k > 0, if f € CF(R™) then Pf (z) € Cf’o(mﬂ).
Moreover, for any partial derivative D* in x of the order |o| < k, and any t > 0,

—n+1

Furthermore, if f € C2 (R") then Pf (v) € Ci'(R).

Proof. The case k = 0 follows from Theorem as it was already mentioned. Let
k = 1. For any t > 0 we have

0P = 0 [ pw)F -y
— [ @S-y

because the latter integral converges absolutely and uniformly in x, due to the bound-
edness of d,, f. Hence,

For ¢t = 0 this identity is trivial. Since d,,f € C, (R™), it follows that P, (0,,f) €
C’b(ﬂﬂ) and, hence, P.f € C’bl’o(]RTiH).
For a general k the result follows by induction.

If f € CZ(R"™) then we obtain by Theorem [2.2 and (2.43)) that, for ¢ > 0,
OP.f = ARf = P, (Af).
Since Af € Cy (R™), we have P, (Af) € Cb(@iﬂ), which implies that also 0, f €
C’b(ﬂﬂ). Hence, P, f € C’f’l(@iﬂ). u

It follows from the estimate (2.11]) of Theorem that if {fx} is a sequence of
functions from Cj, (R™) sucht that f;, = f in R™ then

—n+1

Pifi(x) = Pf (z) in R, .

In the next lemma we prove a similar property with respect to the local uniform con-
vergence.

Lemma 2.11 Let {fy} be a sequence of uniformly bounded continuous functions in
R™. If fi. (x) — f(x) as k — oo locally uniformly in x € R™ then

Pifi () — Pf ()

locally uniformly in (x,t) € EZH.

Proof. Fix some x € R" and choose R large enough, in particular R > 2|z|. For any
e > 0 and for all large enough %k we have

Sup \f — fl <e. (2.44)
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Set

g, = fleR and hk:fle}%
g = flp, andh= flp

so that gi + hy = fr and g + h = f. Then we have

\Pifs — Pof| < [Pigr — Prgl + |Pihi — Pih|
< |Pugr — Pg| + |Pihi| + |Pih| .

By ([2.44) we have

sup g — 9| < e
Rn

whence it follows that

sup sup |Pigr — Pig| < e.
t>0 zeR™

Next, we have
Phy (x) —/ pe(x—y) fr(y)dy ift >0
By
and

By R > 2|z| we have

BR/2 ($) C Bp
and, hence,

B% - BR/2 (l‘)c

Since | fx| < C where C' is the same constant for all k, we obtain

Phy (z)] < O/B P (z — y) dy

163/2(1)

~of e

R/2

= C'// e 1P /Ay
{w:|w|>t*1/2R/2}

— 0 as R — oo,

where the convergence is uniform in any bounded domain in (z,t) € R’ In the same
way Pih(z) — 0 as R — 0, whence the claim follows. =

Now we consider a function fs () = f (z,s) of (z,s) € Eﬂ

function of the triple

. Then P, f,(z) is a

n—+2

(z,t,8) e RL == {(z,t,8) 12 € R",t,s € [0,400)}.

Lemma 2.12 (a) If f € Cb(@iﬂ) then P, fs (z) € C’b(RT2).

(b) If f € C2O R then P.f, (x) € CPYORT).
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2,1,0 : . e
Here the class C}""" means the existence of bounded continuous derivatives in = of

the order at most 2, in ¢ of the order at most 1 and in s of the order 0.

Proof. (a) For any s > 0, the function P, f; is continuous in (z,t) € @Tl, and

sup | Pifs (z)] < sup |fs (z)| < sup  [f(z,s)| < oo
(z,t)eﬁfrl z€R™ (x,s)eﬁfrl

It remains to prove that P, fs (z) is jointly continuous in (z,t,s). Since this function
is continuous in (z,t) for any s > 0, it suffices to show that it is also continuous in s,
locally uniformly in (z,t). Indeed, since the function f(z,s) is bounded and locally
uniformly continuous, the family {f;},., of functions on R" is uniformly bounded and
fs = fs as s — o locally uniformly in z. Hence, by Lemma[2.11] P, f, — P, fs, locally
uniformly in (z,t), which finishes the proof.

(b) By Lemma [2.10} for any partial derivative D in z of the order |o| < 2 we have

Daptfs = -Pt (Dafs) .

Since D* f, € Cb(ﬁrrl), we have by (a) that also D*P, f, € Cb(ETQ).
For the time derivative 0, we have
WP fs = A(Pfs) = P (Afs).

Since Af, € Cb(@frl), we obtain O, P, f, € Cb(ﬁfﬂ). Hence, B, f, € C’f’l’o(RTQ). ]

Proof of Theorem [2.9 In the view of Theorem [2.2] it suffices to prove that the
function

t t
v (z) =v(t,x) = / Pis* [s (x) ds = / P,_sfs (x)ds (2.45)
0 0

is a solution of the Cauchy problem

o —Av=f inR}!

Vo =0 in R™.
By Lemma , the function P,_;fs(z) belongs to 0571,0 in the domain z € R",
t > s > 0. It follows from (2.45)) that v € C (Eﬂ) and v|;—g = 0. It follows also from

(2-49) that

t t
ol < [ sup|Pcfilds < [ suplflds = tsup ]
0 Rn 0
which implies ([2.42]).
Let us show that v € C*! (R}™") and that v satisfies v — Av = f. Let us first
compute d;v. We have by ([2.45))

t t
O =Pisflct [ 0(Peuf)ds=fit [ A(Ref)ds,  (240)
0 0
which is justified because J; (P,_sfs) belongs to Cy. It follows that d,v € C (mﬂ)
Let D be any partial derivative in z of the order < 2. By Lemma [2.10] we have

D (Pt—sfs) S Cb? whence by "

D% = /t D (P,_sfs) ds. (2.47)
0
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It follows that D% € C’(Riﬂ) and, hence, v € 02’1(RT1).

Finally, we have by ([2.47))

t
Av = / A (P _sfs)ds,
0
which together with (2.46|) implies
8t’U — Av = ft;

which was to be proved. m

2.7 *Brownian motion

Brownian motion in R” is a diffusion process that is described by random continuous
paths {X;},., in R" and by the family {P,}, . of probability measures, so that PP,
is the probability measure on the set 2, of all continuous paths w : [0, 00) — R™ such
that is w (0) = =.

05

Brownian path in R?

It suffices to define PP, first on subsets of €2, of the following type:
{weQ 1w(t) € Ay, ...,w(ty) € A}, (2.48)

where 0 < t; < ty < ... < t;, is any finite sequence of reals and Ay, ..., A is any sequence
of Borel subsets of R™. Under certain consistency condition, P, can be then extended
to a o-algebra F, in 2, thus giving a probability space (€2, F,, P, ), for any x € R™.

There are various ways of defining PP, on the sets , the most convenient of
them being by means of the heat kernel p, (z). Let us write p; (z,y) = p; (x — y) and
set

- (w (tl) & Al, Y] (tk) € Ak) (249)

= / Py (T, 21) Dry—ty (T1,T2) o Dtp—t,_, (Tho1, Tg) dxq...dxy,.
Ay A
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The consistency condition that has to be verified is the following: if A; = R"™ for some
i, then the condition w (¢;) € A; can be dropped without affecting the probability, that
is,

P, (w(th) € Ary ooy () € R, ooy (1) € A) = Polw (1) € Ar, oo ¥ s s (£2) € Ap),
(2.50)

where in the right hand side the i-th condition is omitted. Indeed, if ¢ = k then
integrating in (2.49) first in dx and using that

/ Pty (Tho1, 7p) dg = 1,
we obtain (2.50). If i < k then integrating in (2.49) first in dx; and using
/ pti—ti,1 (xi—la x’l) pti+1—ti (I’i, xi—l—l) dl’z = pti+1—ti,1 (l‘i—lv 'I’i-‘rl) y

we again obtain (2.50)) (in the case i = 1 use the convention ¢ty = 0 and =y = z).
The random path X; is a random variable on €, that is defined by X; (w) = w (t).
It follows from ([2.49)) with £ = 1 that

1 |.%' —y|2
P, (X; €A ——/ x,y)d ——/ exp | ————— | dy, 2.51

which gives the distribution function of Xj.

Event X; € A

The formula (2.51]) can be extended as follows: for any bounded Borel function f
on R”,

B, (f (X)) = / pr () f () dy. (2.52)

n

Note that (2.51)) is a particular case of (2.52) for f = 14. Comparison with Theorem
[2.52] yields Dynkin’s formula: the function

u(w,t) =By (f (X))

is the solution of the Cauchy problem for the heat equation with the initial function f.
As it was already mentioned above, the Dirichlet problem

Au=0 in
u=¢@ on Jf)
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in a bounded domain €2 C R" can be solved by means of Kakutani’s formula

u(z) =By (¢ (X7)), (2.53)

where 7 :=inf {t > 0: X, ¢ Q} is the first exit time of X; from €.
Consider a more general boundary value problem

{ Au+Vu=0 in ), (2.54)

U= on 012,

where V (z) is a given continuous function in 2. The operator A + V' is called a
stationary Schrodinger operator. Under certain natural assumptions about V' and
¢, one can prove that the solution of (2.54) is given by the following Feynman-Kac

formula:
u(z) = E, (exp (/ V(Xt)dt) @(XT)) : (2.55)
0
Clearly, (2.53)) is a particular case of (2.55|) for V' = 0.
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Chapter 3

Wave equation

Here we will be concerned with the wave equation
Qttu == Au (31)

where u = wu (x,t) is a function of x € R" and ¢ € R. Recall that the physical wave
equation contains a parameter ¢ > 0:

Ouu = 2 Au. (3.2)

The parameter ¢ plays an important physical role as the speed of wave. However, the
change s = ct reduces the latter PDE to dssu = Awu, which is equivalent to (3.1)).
Hence, all results for can be reformulated for using the change of time.
Note also that the change s = —t brings to the same form J;su = Awu, which
means that the properties of the wave equation for ¢ > 0 and for ¢ < 0 are the same,
unlike the heat equation.
One of the main problems associated with the wave equation is the Cauchy problem:

Opu = Au in Riﬂ
uli=o=g¢g inR" (3.3)
atU|t:0 =h inR"”

where g (z) and h (x) are given function. Solution u is sought in the class u € C? (ﬁiﬂ).

The method of solving (3.3) depends on the dimension n, so we consider separately
the casesn =1, 2, 3.

3.1 Cauchy problem in dimension 1

Consider the Cauchy problem in the case n = 1:
0ttu = amu in R?‘r
ulmo=9g R (3.4)
(9tu|t:0 =h inR

We have seen in Section [0.2] that the general C? solution of the wave equation

8ttu = (f“)mu

93
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in R? (or in R?%) is given by (0.13)), that is,
u(z,t)=F(x+1t)+G(x—1), (3.5)

where F' and G are arbitrary C? functions on R. Let us find F' and G to satisfy the
initial conditions

u(z,0) =g (x), Ju(x,0)=h(x).
Indeed, substituting into t = 0 we obtain equation
g(z)=F(z)+ G (). (3.6)
It follows from that
Ou=F(x+1t)—G (x—1),
and setting £ = 0 we obtain one more equation
h(z)=F'(z)— G (z). (3.7)

It follows from (3.6]) that ¢ has to be C?, and from ([3.7) that h has to be C*.
Assuming g € C? and h € C*, we solve the system (3.6)-(3.7) as follows. Differen-

tiating (3.6)) we obtain
g () =F(2) + G (x),

which together with (3.7)) gives

F(2)= ¢ (¢ (2) +h(2)
and .
G (2) = 5 (¢' (x) = h(2))
Therefore, we obtain
F)=1 (g @+ [ 1w dy) e (3.8)
and i
6w =3 (s~ [hwa)-c. (39)

so that F' and G satisfy (3.6) and (3.7). Therefore, we obtain the following statement.

Theorem 3.1 (D’Alembert’s formula) If g € C? (R) and h € C* (R) then the following
function is a unique solution of (3.4):

u(x,t) == (g (:c+t)+g(x—t))+%/jth(y) dy. (3.10)

N | —
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Proof. The uniqueness follows from the fact that functions F' and G are determined
uniquely, up to a constant C, that cancels out in (3.5). The function u from ([3.10))

satisfies (3.5)), that is,
u(z,t)=F(x+1t)+G(xz—1),

where the functions F' and G are given by (3.8)) and (3.9). It follows that u € C? (R?),
u satisfies in R? the wave equation, and u satisfies the initial conditions by the choice
of FG. m

This argument shows in addition the following.

1. We have obtained a solution u of the Cauchy problem (3.4) not only in R? but
in the whole R2.

2. As we see from (3.6) and (3.7), the conditions ¢ € C? and h € C' are not
only sufficient but also necessary for F' and G to be in C?; hence, they are also
necessary for the existence of a C? solution.

Example. Consider the initial functions
g(z) =sinz and h(z) = x.

Then ([3.10)) gives
u(z,t) = l(sin(z+t)+sin($_t))+l((l'-l-t) _(:E—t))

2 2 2 2

= sinxcost + xt.

Before we construct solutions in higher dimension, let us discuss the uniqueness in
arbitrary dimension.

3.2 Energy and uniqueness

We first prove the uniqueness in the setting of a mixed problem. Given a bounded
region U in R™ and T" > 0, consider the mixed problem for the wave equation in the
cylinder Q@ = U x (0,7):

Oyu = Au in

u=g on 0,2 (3.11)

8tU|t:0 =h inU

where g and h are given functions. Solution u is sought in the class C* (Q) N C* (ﬁ)
Theorem 3.2 The problem 1) has at most one solution in C* () N C* ().

Proof. It suffices to prove that if g = 0 and h = 0 then v = 0. Consider the energy of
the solution v at time t:

1

E(t) = §/U ((8ru)? + |Vul*) da. (3.12)
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Obviously, E (t) is a continuous function in t € [0, 7. Differentiating £ in ¢t € (0,7,

we obtain
1

E'(t) = 5/[] (0, (D) + 8, (Vu - Vu)) dx

_ / (B By + Viu - Vo) da.
U

Now we use the the second term the Green formula (1.77) of Lemma [1.26 We have
ue C*(U)NC(U) and w := yu € C*(U)NC (U). Since u = 0 on the lateral
boundary oU x [0, 7], we obtain w = d;u = 0 on OU x [0,T]. Hence, by (L.77)

/ Vu-Voudr = —/ Audyudr.
U U
It follows that
E'(t) = / (Opu Oyu — Au dyu) dx = / (Opu — Au) dyudz = 0.
U U

Therefore, E (t) = const on [0,7]. Since E (0) = 0 by the initial condition v = 0 and
Ou =0 at t = 0, we conclude that £ (¢) = 0. This implies that the functions d,u and
|Vu| are identically equal to zero in 2, whence u = const in 2. The initial condition
u = 0 implies © = 0 in €2, which was to be proved. =

The physical meaning of the energy (3.12)) is as follows. If u (z, ) is the displacement
of a vibrating membrane over U, then 1 (8yu)” is (the density of) the kinetic energy at

the point z at time ¢, while ; |Vu|? is (the density of) the potential energy of tension,
because the latter is proportional to the increase of the area

1
V14| Vuf -1~ §|Vu|2.

Now let us discuss uniqueness in the Cauchy problem:
('3ttu = Au in R™ x (0, T) ,
ulg=o=¢  inR" (3.13)
3tu|t:0 =h in Rn,
where T € (0, 00] and v € C? (R™ x [0,7)).

Theorem 3.3 (Uniqueness for the Cauchy problem the wave equation) The problem
(3.13) has at most one solution u € C* (R™ x [0,T)).

Note that, in contrast to the case of heat equation, there are no restrictions like
boundedness of solution.

If u(z,t) is a solution of (3.13), then for any open set U C R™ and any ¢ € [0,T)
define the energy of v in U at time t by

1

Ey(t) = 3 /U ((8yu)? + |Vul*) da.

For any xq € R™ and ¢y, > 0 define the cone of dependence by

Co (0) = {(z,t) e R"™: 0 <t < to, |z —wo| < to—t}.
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to (XO;tO / Cto (XO)

Cone Ct, (x¢)

Clearly, at each level t € [0, ], the cone Cy, (7¢) consists of the closed ball By, _; (zo) -
In particular, the base of the cone at t = 0 is the ball By, (7o), the top of the cone at
t =ty is the point xg.

The following theorem plays the main role in the proof of Theorem

Theorem 3.4 (Domain of dependence) If u € C? (Cy, (x9)) is a solution of the wave
equation in Cy, (xg) and if ul;—g = 0 and Oyuli—o = 0 then u =0 in Cy, (o) .

Proof of Theorem (3.3l It suffices to prove that if ¢ = 0 and h = 0 then u = 0.
Choose any point zo € R™ and tg € (0,7"). Since g = h = 0 in By, (z9), we obtain by
Theorem that u = 0 in the cone C}, (x¢), in particular at (zg,%). Since (zg, ) is
arbitrary, we obtain u = 0, which was to be proved. m

Proof of Theorem For simplicity of notation take zy = 0 and skip z, from all
notation. Consider the energy of u in the ball B,,_; at time ¢:

1

F(t) = Bn, () = 5 /B (0)? + |Vul?) da.

Obviously, F (t) is a continuous function in [0, t]. By hypotheses, we have F' (0) = 0.
Let us show that F'(t) < 0 for ¢ € [0,to] which will then implies that F (¢) = 0 in
[0,%0]. In turn, this will yield that Oyu = 0 and Vu = 0 in Cy,, that is, u = const in
Ct,, whence also u = 0 in Cy, will follow.

In order to differentiate F'(t), consider first a simpler function

B (r 1) = Ep, (1) = % / (00)? + [Vul?) de,

r
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that is defined whenever B, x {t} lies in the domain of u. As in the proof of Theorem
.2 we have

r

_ / (Owudu + Vu - Vo) de

T

= / (Opu — Au) Oyu dx + 0,u Oyu do

T 0B

= dyududo.
9B,

Since
1 2 2
Oyudwu < |Vu| 0| < 5 ((Opu)* + [Vul?),
we obtain the estimate

<t / (B)* + [Vul?) do.
2 Jos,

Next, representing integration over the ball B, as the repeated integral in radius and
over the spheres, we obtain

8, = 1@/ (/ ((Gtu)2+|Vu|2)da> ds
2 0 0Bs

_ 1/ ((0u)? + |Vul?) do
2 JoB,

0,. (3.14)

v

Now we can differentiate the function
F (t> = EBtO—t (t) = (to - t7t>

by the chain rule:
F' = —8,.® (tg — t, 1) + 0,® (tg — t,1).

Using (3.14)), we obtain F’ < 0, which was to be proved. =

Corollary 3.5 (Finite propagation speed) Let u € C? (R" x [0,T)) be a solution to
the wave equation in R" x (0,T"). If, for some R > 0,

suppu (z,0) C Bg and suppdu(z,0) C Bg (3.15)

then, for any 0 <t < T, o
supp u (z,t) C Briy. (3.16)

Proof. Fix some t; € (0,7p) and a point 29 ¢ Bpriy. It suffices to show that
u(z0,t9) = 0. Indeed, the cone Ci, (o) is based on the ball By, () and, due to
condition o ¢ Bpry,, we see that the balls By, (z9) and By are disjoint. Therefore,

11.12.15
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u and dyu vanish at t = 0 in By, (79). By Theorem we conclude that v = 0 in
C, (x0), in particular, u (zg,ty) = 0, which was to be proved. m

This statement shows clearly that the wave travels in time ¢ the distance at most
t, that is, the speed of propagation of the wave is bounded by 1.
Example. Let us show in example, that the speed of wave can be exactly 1, that is,
the value R + t in (3.16|) is sharp and cannot be reduced. Consider in the case n = 1
the solution u (z,t) = F (z + t)+ F (x — t) where F is a non-negative C? function with
supp F' = [-R, R]. Then u(x,0) = 2F (z) and dyu(x,0) = 0 so that the condition
(3.15)) is satisfied. At any time ¢t > 0 we obtain

suppu (z,t) =[-R—t,—R+tJU[-R+t,R+ 1],

that is, supp u (z,t) is the union of two intervals, and the external boundary points of
them are —R — t, R 4 t, that is, the endpoints of the interval [—R — t, R + t] . Hence,
the latter interval cannot be reduced.

Remark. Compare the result of Corollary 3.5 with the properties of the heat equation.
If now u (2, t) is a bounded solution of the Cauchy problem with the initial function f
with supp f C Bg and f > 0, f # 0, then by

u(w,t) Z/]anexp (_Iw;tyl )f(y)dy

we see that u(z,t) > 0 for all z € R™ and ¢ > 0. Hence, for any ¢ > 0 we have
supp u (z,t) = R™. This, of course, contradicts the physical meaning of u: the temper-
ature cannot propagate instantaneously at infinite distance. This phenomenon reflects
the fact that the heat equation describes the heat propagation only approximately. To
overcome this difficulty, fix some € > 0 to be considered as the error of measurement,
and consider the notion of e-support:

supp, f:={z € R": |f (z)| > ¢} .

Then one can prove the following: if supp, f C Br then supp,, u(-,t) C Ep(t) where

r
p@_{ R+,/CtmT, 0<t<T,

0 t>T,

where T' > 0 depends on the function f and C' = C'(n) > 0 (see Exercises). We see
that the heat travels in time ¢ the distance roughly v/#, which matches experimental
results.

3.3 Mixed problem for the wave equation

Let U be a bounded domain in R™ and 2 = U x (0, 00). Consider the following mixed
problem for the wave equation in €2:

Oyu = Au in
u=0 on U x [0, 00)
ulio=9 nU
Ouli—o = h inU

(3.17)
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where g and h are given initial functions on U. The solution is sought in the class
ueC?(Q).

Note that g and h have to be compatible with the boundary condition © = 0 on
OU x [0,00). The condition u € C? (Q) implies that

g€ C?>(U) and he C'(U). (3.18)

Moreover, u = 0 on U x [0, 00) implies g = 0 on U, but also d;u = 0 and dyu = 0 on
OU x [0,00). Hence, also h = 0 on OU. Since dyu = Au in Q, we obtain that Au = 0
on OU x [0,00), which at ¢ = 0 amounts to Ag = 0 on OU. Hence, here are additional
compatibility conditions for g and h:

g=h=Ag=0ondU. (3.19)

Since (3.18) and (3.19) are necessary conditions for the existence of a solution u €
C? (Q), we can further assume that g and h satisfy 1} and 1)

Using the method of separation of variables, search first for solutions of the wave
equation in the form u (z,t) = v (x) w (t). We obtain

vw” = (Av)w

and A Y
voow
_— = — = —A
v w
where )\ is a constant. Imposing also the boundary condition v = 0 on OU, we obtain

the following eigenvalue problem

{ Av+dv=0 inU (3.20)

'U’(?U =0

where we search for a non-zero solution v. This problem is the same as the one we
obtained considering the wave equation. As before, denote by {vy},-; an orthonormal
basis in L? (U) that consists of eigenfunctions, and by {\;},—, the sequence of the
corresponding eigenvalues in an increasing order. Recall also that all A, > 0.

For w we obtain the equation

w” 4+ Aw = 0,
which gives us for any A = Ay solution
w (t) = ag cos v/ Akt + by sin v/ At.

Hence, we can search the solution u of (3.17)) in the form

u(x,t) = Z (ak cos \/ At + by sin \/)\_kt> vy () . (3.21)

If v, € C? (ﬁ) and the series 1D and all the series of its first and second derivatives

converge uniformly in €2, then we obtain u € C? (ﬁ) and that u satisfies the wave
equation in  as well as the boundary condition u = 0 on U x [0, c0).
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The coefficients a;, and b, should be determined from the initial conditions. Assume
that g and h have the following expansions

g(z) = i grvx, (7) (3.22)
k=1
and -
hiz) = hyoy (). (3.23)
Setting in t = 0 we obtain -
g(x) = u(z,0) = i axv ()
k=1

whence we see that ay = hy. Differentiating (3.21]) in ¢ and setting ¢ = 0 we obtain
( ) 8tu JI 0 Z \/ bkvk

whence b, = hy/+/ ;. Hence, the solution u becomes

u(z,t) = Z(gkcos\/_wr sm\/_t>vk

In order to make the above argument rigorous, we have to justify all the steps, especially
the convergence of the series locally uniformly. In general, this is quite a difficult task,
as a priori we can only say that the series and converge in the norm of
L?, which is by far not enough.

However, we can justify this approach in the case n = 1. Let U = (0, 7), so that
the mixed problem is

Ontt = Oyl in (0,7) x (0, 00)

uw(0,t) =u(mt)=0 fort e |0,00)

u(z,0) =g(x) for x € [0, ] (3.24)
Owu (x,0) = h (z) for x € [0, 7]

We know that the sequence of eigenvalues is A, = k% and the sequence of eigenfunctions
is vy = sin kz. Assuming that

= Z gr sin kx (3.25)
k=1
and .
= hysinkz, (3.26)
we obtain the solution in the form
- h
u(z,t) = (gk cos kt + f sin k:t) sin kz. (3.27)

k=1
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Before we justify the formula , let us discuss its physical meaning. Let u (x,t)
describe the vibration of the string initially located at the interval [0,7]. The value
u(z,t) is the vertical displacement of the string at point = at time ¢. The boundary
condition u (0,t) = u (7, t) means that the endpoints of the string are fixed. The initial
condition u (z,0) = g (z) describes the initial vertical displacement of the string, and
Oyu (x,0) = h describes the initial speed of the string in the vertical direction.

While vibrating, the string produces a sound whose pitch is determined by the
frequency of vibration. The term

(ay, cos kt + by sin kt) sin kx = Ay cos (kt + ;) sin kx,

that corresponds to the sound of frequency k, is called the k-th harmonic. The ampli-
tude of the k-th harmonic is Ay = /a2 + b2. If

u(x,t) = Z (ag cos kt + by sin kt) sin kz,
k=1

then the sound produced by the string w (z,t) ist superposition of the sounds of all
integer frequencies k. The dominant frequency will be the one with the maximal
amplitude. Typically this is the first harmonic, that is also called fundamental tone.
The higher harmonics are called overtones. The timbre of the sound depends on the
ratio of the amplitudes of the overtones to that of the fundamental tone.

Proposition 3.6 Assume that

NE

(K |gu] + K |hi|) < oc. (3.28)

B
Il

1

Then the function u from (3.27) belongs to C* ([0, 7] X R) and solves the mixed problem
B3.24).

Proof. The condition implies that the series converges absolutely and
uniformly for all z € R and ¢ € R, as well as the series of its partial derivatives of the
order < 2, which is enough to conclude that u solves .

Indeed, each differentiation in ¢ or in z results in an additional factor k£ in the k-th
term of , so that, for any derivative of at most second order, the additional factor
is at most k2. Hence, the convergence of the series of derivatives will follow from

= h
SR (|gk| i %) <o
k=1

which is equivalent to (3.28). =

The condition (3.28) is too restrictive. Recall that g € C! ensures only the conver-
gence of > |gx|, and to obtain the convergence of Y k? |g| we have to assume g € C3.
Next theorem uses a different method to obtain (3.27) under optimal assumptions.

16.12.15
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Theorem 3.7 Assume that
geC*([0,x]), heC (0,7 (3.29)

and
9(0)=g(m)=9¢"(0)=g"(m) = h(0) = h(r)=0. (3.30)

Then the series (3.27) converges absolutely and uniformly in [0,7] x R, its sums u
belongs to C? ([0, 7] x R) and solves (3.24)).

Remark. The conditions (3.29) and (3.30) coincide with (3.18) and (3.19), respectively.
Hence, these conditions are necessary for the existence of a C? solution.

Proof. Let us first prove the existence of solution of (3.24). First observe the following:
if f is a continuous function on the interval [0, 7] then the even extension by f (—x) =
f (z) defines a continuous function on [—7, 7]. For the odd extension f (—z) = —f (z)
to be continuous on [—m, 7], it is necessary and sufficient that f (0) = 0.

Extend ¢ from [0, 7] oddly to [—7, 7]. Due to the assumption ¢ (0) = 0, the extended
function ¢ is continuous on [—m,7|. With the odd extension of g, the derivative ¢’
extends evenly, so that ¢’ is also continuous on [—m, 7]. Finally, the second derivative
g" extends oddly and, due to the hypothesis ¢” (0) = 0, the extended function ¢” is
continuous on [—m, 7|. Hence, g € C? [, 7.

If f is a continuous function on [—, 7] then extend it 2w-periodically by f (x + 27k) =
f(x) for any z € (—m, 7] and k € Z. Observe that f € C(R) if and only if
f(=m) = [f(m).

Now, extend g 2m-periodically from [—7, 7] to R. Since g (—7) = —g(7) = 0 and,
hence, g (—m) = g (7), the extended function g is continuous on R. For the derivative
g we have ¢’ (—m) = ¢’ (7) since ¢’ is even, which implies that ¢’ is continuous on R.
For the second derivative ¢’ we have by g" (=) = —¢" (7) = 0, so that ¢” is
also continuous on R. Hence, g € C? (R).

In the same way, extending h oddly to [—m, 7| and then 27-periodically to R, we
obtain that h € C* (R).

Now let us solve the Cauchy problem

3ttu = amu in RE_
U|t:0 =g
(9tu|t:0 =h

By Theorem [3.1] this problem has a solution u € C? (R?). Let us show this the same
function u solves the mixed problem . Indeed, the wave equation and the initial
conditions are true by definition of u. We need only to verify the boundary condition
u(0,t) =u(m,t) =0.

By Theorem the solution is given by

u(z,t)=F(x+1t)+G(z—1) (3.31)
where

F(w)zég(DC)Jr%/omh(y)dy
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and

Glo)=50(a) =5 [ n)dn

Since g and h are odd functions, the function fox h (y) dy is even, and we obtain

G(=0) =000~ [ hwdy=—30@) ;[ hwdy=-F @),
that is,
G(—x)=—F(x).
Hence,

uw(0,t) = F (t) + G (—t) =0.
Since g and h are 2w-periodic and f:r h(y)dy = 0, it follows that the function F' is
2m-periodic. Hence, we obtain

u(mt)=F(rn+t)+G(n—t)=F(r+t—27)— F(—m+1t)=0.
Hence, u is a C? solution of (3.24)).

Since F' is 2m-periodic and C?, it can be represented by an absolutely and uniformly
convergent Fourier series:

F(z) = % + Z (a cos kx + (B sin kx) .
k=1
It follows that
« = :
G(r)=—-F(—x) = —70 - ; (v cos kx — [ sinkx) .
Hence, we obtain from (3.31]
u(x,t) = (agcosk (z+t) + [ sink (x + 1))

o
ey

—Z(Ozkcosk(x—t)—5ksink‘(a§—t))

= — Z 20y sin kx sin kt + Z 23, sin kx cos kt

k=1 k=1

= Z (ay cos kt + by sin kt) sin kx,
k=1
where a, = 203, by = —2a;, and the series converges absolutely and uniformly.
Since F’ € C1, the Fourier series for F’ converges absolutely and uniformly; more-
over, it is obtained by means of term by term differentiating of the Fourier series of
F. Tt follows that the same is true for u: the Fourier series for d;u can be obtained by

means of term by term differentiating of the series of u, that is,

o0

ou = Z O (ay, cos kt + by sin kt) sin kz = Z (—agk sin kt + bk cos kt) sin k.

k=1 k=1
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Since the both functions g, h are 27-periodic and odd, their Fourier series are sin-
Fourier series as and ([3.26)). Since g, h € C, the series (3.25) and (3.26)) converge
absolutely and uniformly. Hence, the coefficients a; and b, of the above expansion of
u can be determined from the initial conditions as follows:

whence a, = g, and

h(z) = Ow (x,0) = Z bik sin kx,
k=1

whence bik = hi. Hence, we obtain (3.27). =

Remark. We have obtained in the proof that the series for v can be differentiated in
t or in x term by term. However, we cannot prove the same for the second derivatives
unless we require g € C® and h € C?. Note that we did not use the second derivatives
of the series of u because we employed a different method to prove that u satisfies the
wave equation.

Remark. It is worth mentioning that the solution (3.27)) is not only 27-periodic in z
but also 27-periodic in .

Example. Consider the mixed problem (3.24) with ¢ = 0 and h(z) = = (7 — x) on
[0,7]. These functions clearly satisfy (3.29) and (3.30). The coefficients hj of the
sin-Fourier of h were computed in ([2.32)):

{ 0, k even,
hy = 8
%7 k odd.

Hence, we obtain the solution u by (3.27):

8 1
u(x,t) = — Z ﬁsinktsinlm
k odd

8 1 1
= = (Sintsinx + sl sin 3t sin 3 + 6oF sin 5t sin 5z + ) . (3.32)

2T t=4

Function x +— u (z,t) at different moments of time.
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In fact, already the first term in the series (3.32)) provides a reasonable approximation to u, that
is
’ 8 .
u(x,t) &~ —sintsin . (3.33)
™

The error of approximation can be roughly estimated as follows. Using the inequality |sin kx| < k |sin z|
that can be proved by induction in k£ € N, we obtain that, in the region 0 < z < w and 0 < t < 7,

|sin kt sin kx| < k? sin 2 sin ¢

whence

1. .
g — sin ktsin kx
k odd, k>3

1 1
< ( Z 162) sintsinx = (87r2 - 1> sintsinz < 0.24sintsinz

k odd, k>3

and

8 8
u(z,t) — —sintsinz| < 0.24 ( sintsinx) .
™ ™

Hence, the error of approximation in (3.33)) is at most 24%, but in practice it is much less than that.

Example. Consider the initial conditions g (z) = z (7 — ) and h = 0 on [0, w]. The
function ¢ belongs to C* (|0, 7]) and ¢ (0) = g (7) = 0 but ¢” (0) and ¢” (7) do not

vanish because ¢” (r) = —2. Since the coefficients of the sin-Fourier series for this
function are
{ 0, k even,
ge=193 8
%, k Odd,
the series (3.27)) becomes
) = 25 L cosktsink (3.34)
u(z,t) =— — cos ktsin kx. :
’ T k3
k odd

This series converges absolutely and uniformly, and the same is true for its first deriv-
atives. However, the series of the second derivative 0, is

8 1 . 8 1 .
= Z Orx (E cos ktsmkx) = Z Ecosktsmkaz,

k odd k odd

which does not converge uniformly and its sum is not a continuous function, although
this is not quite obvious.

In fact, the function u is not C* because g does not satisfy the necessary condition
. Let us see this directly from the representation:

w(e,t) =5 (g +0)+ gz 1),

where the function ¢ is extended oddly and 27-periodically. The extended function g
is no longer C? because its second derivative is

" -2, z € (0,m)
g (x):{ 2, x€(-m0)
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-2

3+
Oddly extended function g (z) = = (7 — ) (black) and its second derivative ¢” (red)

Hence, ¢"” does not exists at any point 7k, k € Z. It follows that function u (z,t)
does not have the second derivatives at the following sets:

r+t=7nk and v —t=7k, keLZL.

Hence, we see that the singularities z = 0 and x = 7 of ¢” propagate and become the
singularities of the second derivatives of w.

2N ’

H—
X

Singularities of the second derivatives of u (x,t)

Overall, the function u from is of the class C' ([0, 7] x R) and of the class
C? outside singularities. It satisfies the initial and boundary conditions, and satisfies
the wave equation outside singularities. One can say that u is a weak solution of the
wave equation and of the mixed problem. In fact, there is a more general definition
of a weak solution for the wave equation, which deals with functions that are only
continuous (see Exercises).

In fact, the mixed problem (3.24) with the initial function ¢ (z) = z (7 — z) has a
perfect physical sense: this is the problem of vibration of a string having initially the
shape of ¢ (z). In the absence of a C? solution, one accepts the function u (z,t) from

(3-34) as the solution of (3.24)).

3.4 Spherical means

For solving the Cauchy problem in higher dimension, we use the method of spherical
means. Given a continuous function f in R", fix x € R™ and define for any r > 0 the
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function
1

wnrn—l

F(sc,r>:]£3()f<y>da<y>: /BB()f<y>da<y>. (3.35)

The function F'(x,r) is called the spherical mean of f. We use also the simpler notation
F (r) instead of F'(x,r) in the case when the point z is fixed.

Lemma 3.8 Fiz x € R". If f € C™(R™) where m > 0 then F' € C™([0,00)).
Furthermore, if f € C? (R™) then, for all v > 0,

, r
Fo)=f  afwdw="f arwad (3.30)
OB, (x) nJ B.(z)
where v is the outer normal unit vector field on 0B, (x), and
, n—1
P = Af)det) - AF (5)dy (3.7
OB (x) N JB.(z)
For r =0 we have
/ I ]'
FO)=7(@), FO)=0, F'(0)= Af(x). (3.38)

Proof. Making in (3.35)) change y = = + rz, observing that y € 0B, () < z € 0B,
and do (y) = r""!do (2), we obtain

F(r)= ! / f(y)do = S f(x+rz)do(z). (3.39)
OBr(x)

o n—1
WpT wn Jop,

From this formula we see that F' is well-defined for all » > 0 (in fact, for all » € R).
Moreover, if f € C™ (R™) then F' € C™ ([0, 0)).
Let f € C2. Differentiating (3.39) in r > 0, we obtain

Fo— L 0 () do2)

Wn 0B1

— win y (V) (x+rz) zdo(2)

_o 1 Y-
- = ) W

Since ¥* = v is the outer normal unit vector field on 9B, (r), we obtain that

T

do (y) .

(V) () - == =V]-v=a.],

whence

Fe— | agdo=f ofw)dow).

18.12.15
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which proves the first identity in (3.36)). Next, the Green formula yields

F' = ! / o, f do

—1
WnT" ™" JaB,(x)

- Af (y)dy

-1
wnrn Br(z)
r 1

)
-1 / Af (y)dyz—][ Af dy.
nwyr /n Br(x) ) B, (x)

which proves the second identity in (3.36|). Rewrite the latter identity in the form

1
F' = » TnilG’(r)

where

G- [ Ay [(f A W) ds

We see that G is differentiable in r and
¢ = / Af (y) do (y).
OrB(x)

It follows that

d 1
F// — .
dr (wnran(r)>
1 , n—1
N wnrn—lG (r) = wnr"G<T)
1 / n—1
= Af(y)do(y) — / Af (y)dy
wnT™ 1 Jo, B(a) W) do ) WnT™ J B, (2) )
n—1
- | A wdrw) - Af (y)dy.
orB(x) n JB.(z)

that proves (3.37)).
Taking limits in (3.35)), (3.36)), (3.37) as » — 0 and using the continuity of f and

Af, we obtain (3.38)). =

Now let us consider F'(x,r) as a function of x and r.

Lemma 3.9 If f € C™ (R") then F as a function of (z,r) belongs to C™ (R™ x [0, 00)).
If f € C*(R™) then, for any r > 0,

AF (z,7) :]([93 ( )Af (y)dy. (3.40)

Proof. This follows immediately from (3.39)) and from

A(f(zr+rz)=(Af)(x+rz).
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Let us consider the Cauchy problem in dimension n:

{ attu = Au in Ri—i_l (3 41)

uli—o = g, Opuf=o =h in R”

where g, h are given functions in R". We will assume that v € C? (ETFI) and, conse-
quently, that
ge C*(R"), heC'(RY).

Assuming that the solution u exists, we will deduce the formula for u. Define the
spherical means

G (z,7) :]{mr(z) 9(y)do(y),

H(as,m:]éB()h(y)da(y),

and

U(z,mt) :]éB ( )u(y,t) do (y), (3.42)

where x € R™ and r > 0. All these functions are also defined at » = 0 by continuity.
We use the shorter notations G (1), H (r), U (r,t) if « is fixed.
Set
Q =Ry x (0,00)

and denote the points of @ by (r,t) where r,t > 0.

Proposition 3.10 (Euler-Poisson-Darboux equation) If u solves (3.41)) then, for any
fired x € R™, the function U (r,t) belongs to C*? (Q) and solves the following mized

problem
att(] = arrU + nT_larU imn Q7

U(0,t) =u(x,t) forallt >0, (3.43)
U(r,0) =G(r) forallr >0, '
oU (r,0) = H (r) for allr > 0.
Proof. We have by (3.39)
1
U(rt) = —/ u(x +rz,t)do(z), (3.44)
wn 0B1

which implies that U € C? (Q). By Lemma [3.8 we have

0, U = 1][ Au (y,t)dy
n By ()
and
n—1
aTTU = Au (y7 t) do ( ) o Au <y7 t) dya
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which implies

n—1

oU+ " Lou = ][ A (y,t) do ()
OBy ()

_ ][ Oy (y, 1) do (y)
8B, (z)
- @tU.

The boundary condition U (0,t) = u (z,t) from (3.38) or (3.44)). The initial conditions
follow from u (x,0) = g (z) and dyu (x,0) = h(z). m

3.5 Cauchy problem in dimension 3

Consider the Cauchy problem with n = 3:

— : 4
{ 0ttu = Au m RJF <345)

uly—o = g, Owuls—o =h in R3
As before, solution is sought in the class u € CQ(@i), while g € C2 (R3), h € C* (R3).

Theorem 3.11 (Case n = 3, Kirchhoff’s formula) If u is a solution of (3.45|) then,
for allx € R® and t > 0,

u(a.t) = ][ (9(5) + t0g (y) + th (y)) do (y) (3.46)
8By (z)

Recall that the ball B, (z) is the bottom of the cone of dependence C;(x). As
we know from Theorem , the value u (z,t) is completely determined by the initial
conditions in the ball B, (z). The formula shows that in the case of dimension 3
a stronger statement is true: wu (z,t) is completely determined by the initial conditions
on the sphere 0B, (x) (more precisely, in a little neighborhood of the sphere because
one needs 0,9 as well). This is a specific property of wave propagation in the three
dimensional space.

For comparison, recall D’Alembert’s formula in dimension 1:

wwt) =3t rg-0+y [ hwa

DO | —

In this case B; (z) = (x — t,x + t) and 0B, (x) consists of two points x — ¢, x + ¢ so that
we can rewrite this formula in the form

u(z,t) :][ gdo + t][ h (y) dy.
OB¢(z) Bi(x)

In particular, we see that the value u (x,t) depends on the values of A in the full “ball”
Bt (l‘)
Proof. We use the spherical means U, G, H as above. Consider also the functions

U:=rU, G:=rG, H:=rH.
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Using (3.43) and n = 3, we obtain

~ -1 ~
0,,U = 8, (r&,U + U) = 10, U +20,U =7 ( U+ 2 —0, ) = 10, U = 0,U.

Therefore, U € C2(Q) where Q = R, x (0,00), and U solves the following mixed
problem:

0uU = 0,,U in Q

U(O t)=0 for allt >0
U (r,0) = G (r) forallr >0
8,U (r,0) = H (r) forall 7 >0

Since U is a solution of the wave equation in @), it has to be of the form
U t)=d(r+1)+ U (r—t),

for some C? functions ® on R, and ¥ on R. Let us use the boundary and initial values
in order to determine ® and ¥. Setting » = 0 and using U (0,¢) = 0, we obtain

®(t) = -V (—t) forallt>0.

Setting ¢t = 0 we obtain _
O(r)+V(r)==G(r).

Differentiating U in ¢ and setting t = 0 we obtain
& (r) — W' (r)=H(r).

Solving these two equations as in the proof of Theorem we obtain

@(r)-%(é(r)—k/on[(s)ds), xIJ(r)_%(é(r)—/Orﬁ(s)ds).

In the range 0 < r <t we have

U(rt) = q)(r+t)+\lf(—(t—r))
= <I>(7“—|—t)

O (t—r)
— <7~+t / H (s ) 1<é(t—r)+/0t_rf[(s)ds)

= %(é(zﬁ—l—r) t—r / H (s

Since _
U t
u(z,t) =lmU (z,r,t) = lim M,
r—0 r—0 r
it follows that
G(t G(t— 1 [t~
v = S H(S>ds>
= t)
= (tQ) + tH (3.47)

= G+tG' +tH.
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By Lemma |3.8] we have

G (1) :]éB( )&,g (y) do (y),

whence (3.46)) follows. m
Finally, we can prove the existence of solution of (3.45)).

Theorem 3.12 (Kirchhoff’s formula) If g € C? (R?) and h € C? (R?) then the function
we=f 60+ 10+ @) do ) (3.48)
Bt xr
is a solution of (3.45)).

Proof. The formula (3.48) is equivalent to (3.47)), that is,
u=0;(tG) +tH = G+ t0,G + tH.

By Lemma 3.9, we have G € C% and H € C?, whence u € C? (R? x [0,00)). At t =0

we obtain by (3.38])
u(z,0) =G (2,0) =g (x).

Since
@u = 2875G + t(?ttG -+ t@tH + H,

it follows by (3.38)) that
Oyu (x,0) = H (z,0) = h(z).

Let us verify that u satisfies the wave equation. It suffices to show that each of the
functions tH and 0; (tG) satisfies the wave equation. Consider first the function

v(x,t) =tH (z,t).
It follows by Lemmas [3.§ and [3.9] that, for ¢ > 0,

@tv = 20tH—i—t8ttH

2 2
_ 2 Ahdy—l—t][ Ahda——t][ Ah dy
3 JBi(x) 9By (x) 3 JB,(2)
= t][ Ahdo
OB¢(x)
= tAH = Av

that is, v satisfies the wave equation.

Since the function w = tG satisfies the wave equation dyw = Aw, differentiating
this equation in ¢ and noticing that J; commutes with d;; and A, we obtain that d,w
also satisfies the wave equation, which finishes the proof. m
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3.6 Cauchy problem in dimension 2

Consider now the Cauchy problem with n = 2:

Opu=Au inR3
Ulmo =g (3.49)
8tU|t:0 = h

Solution is sought in the class u € C? (Ri)

Theorem 3.13 (Poisson formula) Let g € C? (R?) and h € C? (R?). Then (3.49)) has
the following solution:

1][ tg(y) +tVg- (y —x) +t2h(y)dy
Bi(z)

u(x,t):§
2 — |z —y|*

Proof. Let us extend (3.49) to a Cauchy problem in dimension 3. Indeed, any function
f (z1,25) defined in R? extends trivially to a function in R?® by setting

[ (@1, @2, 23) = [ (21, 32) -
So, extend u, g and h to R®. In particular, we have u (z1, T, x3,t) = u (1, 72, t) and
Oy, U+ Oy + Opgug = Onypy U+ Oryun U
Hence, is equivalent to the Cauchy problem in dimension 3

attu = A’LL n Ri
uli=0 = g (3.50)
at’u’t:() =h

Additional condition is that u should not depend on x3.

Denote points in R?* by X = (x1, 25, 73) and denote by z the point (z,75) in R?
that is, the projection of X onto the plane x1, x5. The same convention we use for Y
and y. By Theorem the problem has solution

w(X, 1) :]éB . (g + t0,g + th) do (Y), (3.51)

where B, (X) is a ball in R® and v is outer normal unit vector field on B; (X). Using
the fact that g and h do not depend on x3, let us transform to contain integration
only in R?, and at the same time we check that u does not depend on z3. The sphere
0B, (X) is given by the equation

(1 — 21)° 4 (g2 — 22)° + (y3 — a3)* = 12,

and it consists of two hemispheres that can be represented as the graphs of the following
functions

Y3 = T3 £ \/752 — (1 —21)" = (42 — w2)”
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over the disk D; (z) in R? of radius ¢ centered at x (to distinguish the balls in R3 and
R?, we refer to those on R? as disks and denote them by D rather than B).
If a surface S in R? is given by the graph of a function

ys=f(y), yeQ,

in domain Q C R?, then, for any continuous function ® on 9,

/S & (V)do (V) = / & (y, £ )1+ [V Pdy.

In our case S is one of the two hemispheres of 9B; (X), Q = D; (z),
fly)=as £~y —af

d = g+td,q + th.

and

Observe that d,,9 = 0 and, at any point Y € 0B; (X), the normal vector v is given by

Y;X . Hence, we obtain

UV =

Y - X
tal/g = tv.g ' = (89619789629789639) ’ (Y - X)

= (amgaamg)(y_‘r)
= Vg-(y—=),

where from now on V denotes the gradient in R?. Since g and h depend only on y, we
obtain

(Y)=g(y)+Vg-(y—x)+th(y).

In particular, ® does not depend on y3, and in the expression ® (V) = ® (y, f (y)) we
do not have to substitute the value of f (y).
We have for i = 1,2

whence

(?Jl - $1)2 (?J2 - $2)2
2 —ly—a®  #2—ly—a
t2
2 — |y —a|*

L+ |V = 1+

Hence, we obtain

/SQ(Y)da(Y) _ /Dt(x)cb(Y) - iy

/ tg(y)+th-(y—x)+t2h(y)dy
Dy(z)
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Since the integral in (3.51]) is crosses, we have to divide by the surface area of 0B; (X)
that is equal to 47t?. Since we integrate over two hemispheres, we multiply by 2.
Hence, we obtain

dy

w(X,f) = 2/ tg(y) +1Vyg- (y — x) + t*h (y)
Dy(z)

2
47Tt t2 . |.',U - y|2
_ 1][ tg(y) +tVg- (y —x) +th(y)
2 Dy(z) |2

dy,
=l —y

where we have used that the area of D, (z) is equal to 7t2. Since the last integral does
not depend on 3, we can write u (X,t) = u (x,t), which finishes the proof. m

3.7 *Cauchy problem in higher dimensions

Similar formulas for solution of the Cauchy problem for the wave equation can be found
in arbitrary dimension n, which we state without proof. Consider the Cauchy problem
(3.41)) in arbitrary dimension n > 2. As above, consider the spherical means

G (x,t) :][ gdo and H (z,t) :][ gdo.
aBt(x) aBt(I)

As we know, in the case n = 3 the solution can be written in the form
uw=0,(tG)+tH = G+ t0,G + H. (3.52)

n+1

Theorem 3.14 Let n > 3 be odd. If g € C"= (R") and h € C"s (R™) then the
following function is a solution of (3.41):

u = ﬁ [t <%at)n21 (t"%G) + Gat> N (t”‘zH)] : (3.53)

Here k' =1-3-5... -k for the case of odd k and k!l =2-4....-k in the case of even

k.
Clearly, in the case n = 3 (3.53)) coincides with (3.52). In the case n = 5 we have
1] /1. 1
u=g [t <¥8t) (£°G) + (;@) (t?’H)] :
Since . .
1 \2
and

(%&J (t°H) = 3tH + t*0,H,
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we obtain in the case n = 5 that
1
u:§pa+w@G+ﬁ%G+&H+#@H]

For the case of even n, we introduce the following notation:

Bi@) (/12 — |z — y|”
H (1) —][ h () dy.
Bi@) 12 — |z — y|?

Theorem 3.15 Let n > 2 be even. If g € C212(R") and h € C>T1(R") then the
following function is a solution of (3.41)):

oo (30) T (e + (o) 7 (e 550

and
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Chapter 4

The eigenvalue problem

4.1 Distributions and distributional derivatives

Let Q be an open subset of R”. Denote by D (Q2) the linear topological space that as
a set coincides with C§° (§2), the linear structure in D (2) is defined with respect to
addition of functions and multiplication by scalars from R, and the topology in D (2)
is defined by means of the following convergence: a sequence {,} of functions from
D (22) converges to ¢ € D () in the space D () if the following two conditions are
satisfied:

1. o =2 ¢ in Q and D%p, = D%p for any multiindex « of any order;

2. there is a compact set K C 2 such that supp ¢, C K for all k.

It is possible to show that this convergence is indeed topological, that is, given by
a certain topology.

Any linear topological space V has a dual space V' that consists of continuous linear
functionals on V.

Definition. Any linear continuos functional f : D (£2) — R is called a distribution in
Q (or generalized functions). The set of all distributions in 2 is denoted by D’ (Q2). If
f € D' (Q) then the value of f on a test function p € D () is denoted by (f, ¥).

Any locally integrable function f : €2 — R can be regarded as a distribution as
follows: it acts on any test function ¢ € D (2) by the rule

(f.p) = / fode. (4.1)

Note that two locally integrable functions f, g correspond to the same distribution if
and only if f = g almost everywhere, that is, if the set

{reQ: f(z)#g()}

has measure zero. We write shortly in this case

f=gae. (4.2)

Clearly, the relation (4.2)) is an equivalence relation, that gives rise to equivalence classes
of locally integrable functions. The set of all equivalence classes of locally integrable

119
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functions is denotecﬂ by L}, (Q). The identity establishes the injective mapping
Li.(Q) — D' () so that L}, () can be regarded as a subspace of D’ ().

There are distributions that do not correspond to any function, that is, the difference
D' (Q)\ L}, () is not empty. For example, define the delta-function 6., for any zy €

as follows:

(63&‘07 <P) = (1‘0) .
Although historically 4., is called delta-function, it is a distribution that does not
correspond to any function.

Definition. Let f € D' (Q). A distributional partial derivative O, is a distribution
that acts on test functions ¢ € D () as follows:

where 0,,¢ is the classical (usual) derivative of ¢.

Note that the right hand side of makes sense because 0,,¢ € D (2). Moreover,
the right hand side of is obviously a linear continuous functions in ¢ € D (),
which means that 0,, f exists always as a distribution.

In particular, the above definition applies to f € L} _(2). Hence, any function
[ € Li,.(Q) has always all partial derivatives d,, f as distributions.

Let us show that if f € C* (Q) then its classical derivative 9., f coincides with the
distributional derivative. For that, it suffices to check that the classical derivative 0,, f

satisfies the identity (4.3]). Indeed, have, for any ¢ € D (Q),
Outp) = [ Oufpds
Q

where we have used integration by parts and ¢ € Cg§° (Q).
Let again f € L}, (Q). If there is a function g € L}, () such that

loc loc

(9,9) = = (f,0n,0) Yo €D(Q), (4.4)

then we see that g satisfies the definition of the distributional derivative 0,, f. In this
case, the distribution 0., f is given by a function g. The distributional derivative that
corresponds to a L}, function is called a weak derivative. In other words, a function
g € L}, (Q) is called a weak derivative of f in x; if g satisfies (4.4)).

Let f € D' (). Applying successively the definition of distributional partial deriv-
atives, we obtain higher order distributional partial derivatives D® f for any multiindex

a=(a1,...,ap). It follows from (4.3) by induction in |«| that

(D°f,0) = (=)' (f, D"¢) Vp €D (9). (4.5)
Example. Consider the function f(x) = |z| in R. This functions has the following
classical derivative:
oy )L, x>0

'Sometimes L} . (£2) is loosely used to denote the set of all locally integrable functions in €. How-

ever, in a strict sense, the elements of Lj,, (€2) are not functions but equivalence classes of functions.
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and is not differentiable at x = 0. Let us show that the function (4.6)) is the distribu-
tional (and, hence, weak) derivative of |z|. Note that the value of f’ (z) at = 0 does
not matter because the set {0} has measure 0. For any ¢ € D (§2) we have

re) = [ Zfso’d:c

0
= / axp’dx—/ ¢ dx
0 —0o0
o] 0
= / xdcp—/ xdyp
0 —00
0

= [w(x)]?—/ooo pdz — [zy (I)](looJr/ pd

R :
—(f9),

where we have used that zy (z) vanishes at = = 0, 0o, —o0.

Example. Let f (z) be a continuous function on R. Assume that f is continuously
differentiable in R \ M where M = {z1,..zy} is a finite set, and that f’(z) has
right and left limits as x — x; for any ¢ = 1,..., N. Then we claim that the classical
derivative f’(x), defined in R\ M, is also a weak derivative of f (again, the values
of f' at the points of M do not matter since M has measure 0). Indeed, assuming
that 1 < x5 < ... < xy and setting o = —o0 and xn,; = +00, we obtain, for any
¢ € D(R),

N 3 JEr
. 2 ),

N Nz o
= me“—Ej/ ﬂmxz—/ Flodr = —(f,¢),
k=0 k=0 7 Tk —©

where we have used that

N

el = fo (@) +(fe (w2) = fo (@) ++(fe (on) — fo (ena) = fe (zy) = 0.

Example. Consider the function

1, >0

f@:{o, <0

as element of L} _ (R). Let us compute its distributional derivative. For any ¢ € D (R)

we have e - -
Lo)=—(f¢)=— 'dr = — 'de = ¢ (0).
(f', o) (f,¢) /Oofso x /0 @'dr = ¢ (0)

It follows that f’ = §, where ¢ is the delta-function at 0, that is, (9, ¢) = ¢ (0).
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Example. Consider the delta-function J,, at an arbitrary point zy € 2. We have by

(4.5)
(Da(sarov 90) = (_1)‘04 (5w0> Dagp) = (_1)|a‘ Da@ ({L‘()) :

Hence, the distribution D“d,, acts on test functions using evaluation of D%p at z,.

Example. For the Laplace operator A =" | 0,,,,, we obtain from (4.5)) the identity

(Af,0) = (f,Ap).

Consequently, a distribution f € D’ () is harmonic, if Af = 0 that is, if for any
peD(Q)

(f,Ap) =0.
If f € C(Q2) then this was the definition of a weakly harmonic function.

Example. Consider a function f (z) = |2|” in R”. Observe that

,rO(+’I’L

1 1 1
f(z)dx = wn/ rornTldr = wn/ rotn=ldr = w, {} < o0
By 0 0 a+mnl,

provided ao +n > 0, and similarly

f(z)dx = o0
By

if « +n <0. So, assuming a > —n, we obtain that f € L} (R"). In R" \ {0} we have

Do f = ale]* ™ Oy, |2 = afa]* "

]

Since |0y, f| < | |z|*7", we see that if @ > —n 4 1, then also d,, f € L1 _(R™). Let us show that in

loc
this case the classical derivative 0, f is a weak derivative, that is, for any ¢ € D (R™)

Since in R™ \ {0}

it suffices to prove that

Oz, (f) dz = 0.
Rn

Let suppp € Br. For any 0 < r < R we have by the divergence theorem

[ anede= [ fovido = [ fovdo
Br\B, a(BR\E) 8B,

where v is the outer normal unit vector field on the boundary of Br \ B,.. Observe that ¢ and v; are
uniformly bounded, whereas

fdo = r®w,r"t = w,retrt

9B,

—0asr—0.

Hence, also

fovido — 0 asr — 0,
9B,

which implies that
/ Ox; (f)dx = lim 0s; (fp)dx = 0.

=0 /B \B,
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4.2 Sobolev spaces

As before, let Q be an open subset of R". Fix p € [1,00). A Lebesgue measurable
function f : 2 — R is called p-integrable if

/|f|pdx<oo.
Q

Two measurable functions in € (in particular, p-integrable functions) are called equiv-
alent if

f=gas.

This is an equivalence relation, and the set of all equivalence classes of p-integrable
functions in 2 is denoted by L? (Q2). It follows from the Holder inequality, that L? (2) C
L. (Q). In particular, all the elements of L? (2) can be regarded as distributions.

loc
The set LP () is a linear space over R. Moreover, it is a Banach space (=complete

normed space) with respect to the norm

1/p
1l = ( L1 da:) .

The Banach spaces L (Q2) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L? (2) has inner product

umzémm

whose norm coincides with || f||, as

11 = ([ ra) R )

Hence, L? (2) is a Hilbert space.
Definition. The Sobolev space W12 (2) is a subspace of L? (Q) defined by

Wwh( Q) ={feL*):0,feL*(Q) foralli=1,..,n}

where ,, f denotes distributional derivative. Similarly define the Sobolev space W2
for arbitrary k € N:

Wh2(Q) = {f e L*(Q): D*f € L*(Q) for all o with |a] <k},

where D“f is distributional derivative.

If D®f € L*(Q) then D*f is called a weak derivative. In words, W*?2(Q) is a
subspace of L? () that consists of functions having all weak partial derivatives of the
order < kin L? (Q) . In the notation W"? the letter “W” stands for “weak”, the number
2 refers to L? and the number k means the order of derivatives.

If one uses the space L? instead of L? then one obtains more general Sobolev spaces
Wk,
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It is easy to see that Cg° (Q) C WP (Q) for any k and p. Since we need only the
spaces W*?2 we are going to use a short notation W* := W2,

For convenience we will use a vector-valued space L2 (Q) that consists of sequences
of n functions f = (fi, ..., ) such that each f; € L2 (). The inner product in this
space is defined by

n

(]?, §> = Z (fir9i) .

=1

and the corresponding norm is

|7

If f € W' then the weak gradient
Vf=(0uf 0uf, .. 0sf)

belongs to L2 (92). Define in W' the following inner product

n
2
L=
=1

(f,9)un :/ﬂ <fg +Y O f %g) dz = (f,9) +(V/[,Vg),
=1

where (-, ) is the inner product in L?. Clearly, (f, g), satisfies all the axioms of an
inner product. The associated norm is given by

11 = | <f2 + Z(a@f)?) do = |fI13 + 1951

Proposition 4.1 The space W () with the above inner product is a Hilbert space.

Proof. We need to prove that W is complete, that is, any Cauchy sequence {f;.} in
W1 converges to an element of W?'. The fact that the sequence {f;} is Cauchy means
that

| fr = fmllyr — 0 as k,m — o0

Since for any f € W1

1£lle = [ fllw and 102 fll 2 < 1 Fllw

we obtain that all sequences {fi.}, {0, f.} are Cauchy in L?. Since L? is complete, it
follows that {fi} converges in L? to a function f € L? and {0,, fi} converges in L? to
a function g; € L?. Hence, we have

”fk_fHL2—>0 as k — 0
and, for any 1 =1, ..., n,
|10z, fe —9il| = 0 as k — 0.

Let us show that, in fact, g; = 0., f. Indeed, by definition of the weak derivative, we
have, for any ¢ € D ()
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Here the brackets are values of the distributions 0, f; and f; on the test functions, but
they coincide with the inner product in L?. Hence, passing to the limit as k — oo we
obtain

(gia 90) == (fa axz(p)

which means that g; = 9, f. Consequently, f € W ().
Finally, we obtain

I = Flin = fe = FZ2 + D 10u S5 — O fl172
k=1
= |lfe = fll72 + D 1102 fi = gill 72 — 0
k=1

as k — 0o, which implies that f, — f in W' m

4.3 Weak Dirichlet problem

Let €2 be a bounded domain in R™. We consider a weak version of the following Dirichlet
problem:

Au=f in
u=>0 on 0f)

We will understand the Laplace operator Aw in distributional sense so that solution u
can be sought in the class L} . (). However, within such a general class it is impossible
to understand the boundary condition u = 0 pointwise as typically the boundary 0f2
has Lebesgue measure zero. We are going to reduce the class of functions u that allows
to make sense out of boundary condition.

Definition. Define the subspace W () of W () as the closure of D () in W! ().

Note that C5° (2) is dense in L? (Q), but in general not in W (Q), so that Wy (2)
is a proper subspace of W1 (). So, the weak Dirichlet problem is stated as follows:

Au=f in Q
{uewwm (47)

where the condition v € Wy () replaces the boundary condition u = 0 on 952, and
the equation Au = f is understood in distributional sense. Since u € W1, we have, for
any ¢ € D (Q),

n

(Au, p) (Z O, 0,1, cp) Z (O, uy Oz, 0) = — (Vu, Vo).

=1

Hence, we can rewrite the problem (4.7)) in the following form:

{ (Vu, Vo)

=—(f,9) VoeD(Q)
we Wl Q) o (4.8)
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We claim that (4.8)) is equivalent to

that is, the class of test functions ¢ € D () can be extended to W, (2). To prove
this, observe that the functional ¢ — (f, ) is a linear bounded functional in W ()
because

[(Fs )l < M llge llepll 2 < 11 a Ml

and also the functional ¢ — (Vu, V) is a linear bounded functional in W? () because
|(Vu, Vo)l < [[Vull 2 [[Vell 2 < IVull g2 [l -

Hence, in the both sides of the identity (Vu, Vo) = — (f, ¢) we can pass to the limit
along any sequence of functions ¢ convergent in W!'. Since W () is the closure
of D () in W (Q), the validity of this identity for all ¢ € D () implies that for
v e W (D).

Theorem 4.2 If ) is a bounded domain and f € L* () then the weak Dirichlet prob-
lem (4.9) has a unique solution.

Before the proof we need the following lemma.

Lemma 4.3 (Friedrichs-Poincaré inequality) Let 2 be a bounded open set in R™. Then,
for any v € D (Q) and for any indexi=1,....,n,

/Q<p2dx < (diamQ)Q/Q(amigo) dx. (4.10)

Proof. Consider first the case n = 1. Consider the interval I = (inf Q, sup 2) that has
the same diameter as 2, and observe that any ¢ € D (Q2) belongs also to D (I). Hence,
for the sake of inequality

/Q ©*dr < (diam )’ /Q (¢')? dx (4.11)

we can replace 2 with I. Hence, assume in the sequel that 2 is an open bounded
interval. By shifting we can assume that 2 is an interval (0,[), where | = diam .
For any x € (0,1), we have using ¢ (0) = 0, the fundamental theorem of calculus, and
Cauchy-Schwarz inequality inequality, that

& (x) = (/Urcp'(s)d8>2 < </Ul|g0’(s)|ds>2 < z/ol ()2 (s) ds.

Since the right hand side does not depend on z, integrating this inequality in z, we
obtain

! !
[ F@ar<e [ s
0 0
which is exactly (4.11)).
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In the case n > 1, denote by y the (n — 1)-dimensional vector that is obtained
from x by removing the component ;. Denote by €, the 1-dimentional section of 2
at the level y. Since the function ¢ as a function of z; alone belongs to D (£2,), the
1-dimensional Friedrichs inequality in the direction z; yields

/ ©?dr; < (diam Qy)z/ (8, 0)? da; < (diam Q)Z/ (8, 0)° d;.
Qy Qy Qy

Integrating in y and using Fubini’s theorem, we obtain (4.10)). m
Proof of Theorem It follows from Lemma 4.3 that, for any v € W (2)

/v2dx§0/ Vol dx
Q Q

where C' = (diam Q)*. In particular,
2 2 2 2
[l = llvllze + [Vl < (C+ 1) [ Vol

Since also
2 2
vl = [IVollze

it follows that the expression |[Vu||,. is an equivalent norm in the space Wj. This
norm comes from bilinear form (Vu, Vv) that is hence an inner product, and W with
this inner product is a Hilbert space.

Let us use the Riesz representation theorem: in any Hilbert space H, for any linear
bounded functional [ : H — R, there exists exactly one element v € H such that, for
all p € H,

Using this theorem for H = Wy with the inner product (u,v), = (Vu, Vv),, and for
the functional [ () = — (f, ¢), we obtain the existence and uniqueness of solution u of

@ =

4.4 The Green operator

Let Q be a bounded domain in R™. Define an operator G : L? () — L? (Q2) as follows:
for any f € L?(Q), the function u = G f is the solution of the weak Dirichlet problem

Au=—f inQ
{ u e Wy ()
that is,
_ 1

The operator G is called the Green operator. Of course, we know that u € W} (Q)
and, hence, Gf € W (Q) so that G could be considered as an operator from L? (Q) to
W4 (), but it will be more convenient for us to regard G as an operator in L.

Theorem 4.4 The operator G is bounded, self-adjoint and positive definite.
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Proof. The boundedness means that

1Gflle < ClISl

for some constant C' and all f € L?(Q). Set u = Gf so that u satisfies (4.12).
Substituting into (4.12)) ¢ = u, we obtain

/Q|VU|2dl’= /qudx < (/Q fzd:c)l/2 (/ﬂ u2daz> 1/2.

Since u € Wy (€2), we have by the Friedrichs inequality

/u2da:§C'/ \Vu|? de,
Q Q

where C' depends on €2 only. Combining the above two inequalities, we obtain

1 1/2 1/2
—/qux < </ f2dx) (/ u2dx> ,
C Q 9] Q
/u2d$ < 6’2/ f2de,
0 0

which is equivalent to the boundedness of G.
The fact that G is self-adjoint means that

(Gf.g)=(f.Gg) VfgeL*(Q).
To prove this, set © = Gf and v = Gg. Setting in (4.12)) ¢ = v, we obtain

whence

(Vu, Vo) = (f,v).

Similarly, using the weak Dirichlet problem for v, we obtain
(Vo,Vu) = (g,u).

Since the left hand sides of these identities coincide, we obtain that

(9,u) = (f,0),

which is equivalent to the self-adjointness of G.
The positive definiteness of G means that (Gf, f) > 0 for all non-zero f € L? ().
Indeed, setting u = G'f we obtain from (4.12) with ¢ = u

(Vu, Vu) = (f,u),
whence

(Gf, )= (f,u) = (Vu,Vu) >0

Let us show that, in fact, (Vu, Vu) > 0. Indeed, if (Vu, Vu) = 0 then Vu = 0 a.e..
Hence, for any ¢ € W (Q), we obtain (Vu, V) = 0 whence by (4.12) (f,¢) = 0. It

follows that f = 0, which contradicts the assumption that f is non-zero. m
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We are going to consider the eigenfunctions of the operator GG, that is, non-zero
functions v € L? () that satisfy Gv = uv for some p € R. Since the operator G is
positive definite, we obtain that all its eigenvalues y are positive.

Consider also the weak eigenvalue problem

Av+X v =0 in
ve Wy (Q)

that is equivalent to

(Vo, V) = A (v,¢) Vo € D(Q)
{ o W&SO(Q) vy (4.13)

As we already know, the class D (f2) of test functions ¢ can be replaced by Wy ().

Lemma 4.5 A function v € L*(Q) is an eigenfunction of G with the eigenvalue i if
and only if v is an eigenfunction of lb with A = %L

Proof. Let v be an eigenfunction of G. Since Gv € Wy () and Gv = pw, it follows
that also v € Wy () . Setting u = Gv, we obtain from (4.12)) that u satisfies

(Vu, Vo) = (v,0) Yo eD(Q).

Since u = pwv, we obtain
p(Vo, Vo) = (v, )

whence 1D follows with A = L.

Let v be an eigenvalue of (4.13]). Setting ¢ = v we obtain

/|Vv|2dx:/\/v2dx.
Q Q
/U2da:§C'/ Vol d,
Q Q

we obtain that A\ > %, in particular, A > 0. By ‘D function v solves the weak
Dirichlet problem (4.12)) with the right hand side f = Av, which implies that G (Av) =
v, whence it follows that Gv = pv with = +. =

Since by Friedrichs inequality

4.5 Compact embedding theorem

Given two Banach spaces X,Y, an operator A : X — Y is called compact if, for any
bounded sequence {z;} C X, the sequence { Az} hat a convergence subsequence in
Y.

Assume that the operator A is bounded, that is, ||A|| < oco. Then the sequence
{Az;} is bounded in Y. If dimY < oo then every bounded sequence in Y has a
convergent subsequence, which follows from theorem of Bolzano-Weierstrass. However,
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for infinite dimensional spaces this is not the case. For example, let Y be an oo-
dimensional Hilbert space and let {v;},-, be an orthonormal sequence in Y. Then
{vx} is bounded, but no subsequence is Cauchy because, for all distinct &k, m, we have

lox = vanll” = (v = Vi, O = V) = J0Rll* = 2 (v, V) + [|vl|” = 2.

Hence, no subsequence of {v;} converges in Y. An explicit example is as follows:
Y = L*(—7,7) and v, = \/%? sin k.

Hence, the point of a compact operator is that it maps a bounded sequence into
one that has a convergent subsequence.

The following are simple properties of compact operators that we mention without
proof.

1. A compact operator is bounded.
2. Composition of a compact operator with a bounded operator is compact.

Out goal will be to prove that the Green operator in compact, which will allow then
to invoke the Hilbert-Schmidt theorem about diagonalization of self-adjoint compact
operators. A crucial step for that is the following theorem.

Theorem 4.6 (Compact embedding theorem) Let §2 be a bounded domain in R™. Then
the natural embedding Wi (Q) — L* () is a compact operator.

Before the proof, let us revise some fact the theory of multidimensional Fourier
series. For the further proof we need some knowledge of multidimensional Fourier
series. Recall that any f € L? (—m, ) allows expansion into the Fourier series

f(x)= % + Z (a cos kx + by sin kx)

k=1

that converges in L? (—, 7). Setting ¢; =  (ax — iby) allows to rewrite the series as
follows:

f@)=co+ ) 2Re(ce™) =co+ Y (cxe™ + e ™) = cre™,

k=1 k=1 kEZ

where ¢, is extended to all £ € Z in an obvious way.

Consider now n-dimensional cube @) = (—m,7)" and the space L?(Q) over C. For
any & € Z" consider the function z +— €% (where ¢ - 7 = > i1 §;2;) that is clearly
in L?(Q). It is possible to prove that the sequence the sequence {eig'””} cezn is an
orthogonal basis in L? (Q). The fact that this sequence is orthogonal is easy to verify:

if £ and 7 are distinct elements of Z" then the inner product of €%* and e in L2 (Q)

is
(eif'x,ei”'x) :/eié'dox:/eig'ze_i”'xdxz/ei(f_")'xdx:O, (4.14)
Q Q Q

because the integral splits by Fubini’s theorem into the product of the integrals

W i(&=m) g b Tlgen)e] =0
/“e Vi) [6 ]—W ’
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where the last computation is valid whenever §; # ;. Note also that

Heiﬁ-:vHiQ _ / PTG T ]y — / dr = (QW)", (4.15)
Q Q

The fact that the sequence {e*”
be verified by induction in n.

Hence, any function f € L?(Q) admits an expansion in this basis, and the coeffi-
cients of this expansion will be denoted by f (£), that is,

f@) =Y f(&ee. (4.16)

gezr

} cezn 18 indeed a basis in L?(Q) is non-trivial and can

The series (4.16)) is called n-dimensional Fourier series, and it converges in the norm
of L?(Q) for any f € L?(Q). Taking an inner product of the series (4.16) with e*®

for some fixed £ € Z" and using (4.14)) and (4.15)) we obtain that
(f, eig.x) _ f(f) (eig.x, eig.x) 7
which implies the following explicit expression for f (€):

fley = 1 z) e 8%y
£ = gy | F e (1.17)

Similarly, compute the norm || f ”i2 by taking the inner product of the series 1)
with itself term by term. Then (4.14) and (4.15]) imply that

(5.9 = (Zf ©e . > f ) = 3 [ F@eie

cezn nezn £ nezn

= e Y i@

gezn

and we obtain Parseval’s identity:

”inQ(Q) = (2m)" Z

cezn

G

‘ 2

Consider the following space of sequences on Z":

P =17z = {g:Z"—WC) ZI9(§)|2<<>O}-

gezn

Then [? is a Hilbert space over C with the Hermitian inner product

(9. h)p = g(&)nh(E)

cezn

and the corresponding norm

ez

gl =D g (©)F.
13
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Hence, Parseval’s identity can be restated as follows: for any f € L?(Q) we have
f el?(Z") and

A

f (4.18)

2 n
||f||L2(Q) = (2r)

2
The mapping f — f is called discrete Fourier transform. Let us denote it by F, that
is,
Foo L*(Q) — 1P (Z")
Ff = T

By (4.18) this mapping is isometry (up to the constant factor (27)"), in particular,
injective. In fact, it is also surjective since for any g € [? (Z") the series

> g©)e

Eezn

converges in L? (Q)) and, hence, gives F~'g. Hence, F is an isomorphism of the Hilbert
spaces L? (Q) and (2 (Z").

If f € D(Q) then, for any multiindex «, the partial derivative D* f is also in D (Q),
and the Fourier series of D“f is given by

Df (x) =Y (i)" f(§) €, (4.19)

cezn

where
(i6)" == (i&,)™ ... (1,)™" -
Indeed, the Fourier coefficients of D f are given by

[ Dr@ean = () [ f@pre
Q Q
= 0 [ @) (i) e = )7 ©),
Q

where we have used integration by parts. As we see from ({4.5)), the differential operator
D* becomes in Fourier transform a multiplication operator by (i€)®, which can be
written as follows:

FoD*= (i) o F.
The function (i€)” is called the symbol of the differential operator D®.
It follows from Parseval’s identity that
L2
1D f1l5: = 2m)" D7 16 | £ (6| (4:20)
£€Zn

In particular, we have, for any j =1,....,n

O, f = (i) [ (&) 4.
3

ez
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By Parseval’s identity, we obtain
" . 2
1911220 = 10w, £15 = C2m)" S 162 |7 0)]

j=1

¢ezn

Proof of Theorem Recall that W3 () C L?*(Q2). By a natural embedding
from Wy () to L? (2) we mean the following trivial mapping: for each f € Wy (), its
image is the same function f but considered as an element of L? (€2). The fact that the
embedding W{ (Q) — L? (Q) is compact means the following: for any sequence { f;,} of
functions from Wy () that is bounded in the norm of W', there is a subsequence that
converges in L? (2). Note that if a sequence {f} is bounded in L?(Q) then it does
not have to contain a subsequence convergent in L? () as it was mentioned above.
Hence, the point of this theorem is that the boundedness of {fi.} in the norm of W!
is a stronger hypothesis, that does imply the existence of a convergent subsequence in
L2

Now let { i} be a bounded sequence in W (). Since D () is dense in Wy (), we
can choose for any k a function g, € D () such that || fx — grlly2 < 1. Then {gi} is
bounded in Wy (€2), and if {gx} contains a subsequence {gx, } that converges in L? (),
then {f, } also converges in L?(Q) to the same limit because ||fx — gil[;» — 0 as
k — oo. Renaming g back to fi, we can assume without loss of generality that all
functions f; belong to D ().

Since € is bounded, © is contained in a cube @ = (—a,a)" for large enough a.
Since D (2) C D(Q), we can forget about © and work with the domain ) instead.
Finally, without loss of generality, we can assume @ = (—m,7)". Hence, we assume in
the sequel that all functions f; belong to D (Q) and the sequence { fi} is bounded in
W (Q), that is, there is a constant C' such that, for all k£ > 1,

1fill32igy < € and ||V fill2q < C.

By Parseval’s identity, it follows that, for all £ > 1,

S| < ad Sk |ie] <c (1.21)

geLn £€zn

We need to show that there exists a subsequence { fkj} that converges in L? (Q), that
is, this subsequence is a Cauchy sequence in L? (Q)). In the view of Parseval’s identity,

the latter is equivalent to the fact that subsequence { fk]} is Cauchy in 2 (Z").

It follows from (4.21)) that, for each £ € Z", the sequence { i (5)}00 of complex

numbers is bounded. By theorem of Bolzano-Weierstrass, this C-valued sequence has
a convergence subsequence { fk]. (5)} Using the diagonal process, we will select a

subsequence { fk]} that converges pointwise at all £ € Z", not just at one £. Since the
set Z" is countable, we can enumerate all the elements of Z" by £,,&,, .... Choose first
a subsequence of indices

oo

k11, kia, ks, ... such that {fklj (61)} _ converges. (4.22)

j=
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Then from the sequence (4.22)) choose a subsequence

k’gl, k’gg, k‘gg, ... such that {fk2j (52)} converges. (423)
Jj=1
From the sequence (4.23]) choose a subsequence

k31, ksa, kss,... such that {kaj (53)}4 converges, (4.24)

Jj=1

and so on, for all {;. We obtain a double sequence {k;;} of the indices with the above
properties. We claim that the diagonal sequence

kllv k22a k33;

has the property that { f (€ )} ~converges at all £ € Z". Indeed, the sequence {k;;}

Jj=
is a subsequence of any sequence (|4 22)), (4.23), (4.24), etc., provided we neglect the first
1 — 1 terms. Since the convergence of a sequence does not depend on a finite number

of terms, we obtain that { fkjj (fl)} ~converges for any &;. Since all §; exhaust Z",

we obtain that { fk } ~ converges pointwise on Z".
To simplify notation and without loss of generality, we can assume that the whole

sequence { fk} converges pointwise at all & € Z". Hence, for any &, the sequence

{ fi (€ )} of complex numbers is Cauchy. Let us prove that { fk} is Cauchy in [? (Z").
Indeed, for all positive integers k, m,r we have

A GRS ACT
cezm
= Y@ dn @+ SR © - )]
|€|<r |€|>r

Since the first sum is finite and each summands goes to 0 as k,m — oo, the first sum
goes to 0 as k,m — oo. The second sum we estimate as follows:

Y@ - fu@ <23 |f@f +2 3 | ©

§1=r g1=r lgl=r

and by (121)

NIAG =
§1=r g1=r
Hence, "
2
fm Z ‘fk T

which implies as k, m — oo that

2 _dc

fm

r?’

k,m—o0
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Since r can be chosen arbitrarily large, it follows that

k,m—o0

2
=0
12 ’

which finishes the proof. m

4.6 Eigenvalues and eigenfunctions of the weak Dirich-
let problem

Now we can prove the main theorem in this chapter. Consider again the weak eigenvalue
problem in a bounded domain 2 C R"™:

Av+A =0 in
v e Wy (Q)

that is,

(Vo, V) = A(v,9) Vo € WE(Q)
{ e W&“D(Q) w1 e (4.25)

Theorem 4.7 Let Q) be a bounded domain in R™. There is an orthonormal basis
{vitre, in L? (Q) that consists of eigenfunctions of . The corresponding eigen-
values A\ are positive reals, and the sequence {\;} is monotone increasing and diverges
to +00 as k — oo.

Proof. We use the Green operator G acting in L? (2), that was constructed in Section
.4 Recall that if f € L?(2) then the function u = Gf solves the weak Dirichlet

problem
Au=—f inQ
{ Sy (4.26)

By Theorem [4.4] the operator G is bounded, selfadjoint and positive definite, and by
Lemma [4.5] function v is an eigenfunction of with eigenvalue \ if and only if v
is an eigenfunction of the operator G with the eigenvalue y = %

Hence, it suffices to prove that there is an orthonormal basis {v;},;~, in L? (Q) that
consists of eigenfunctions of GG, and the corresponding sequence of eigenvalues {1, } is
monotone decreasing and converges to 0.

The crucial observation is that the operator GG is compact. Indeed, let us represent
G as composition of two operators:

where I is the natural embedding and G is defined as follows: for any f € L2(Q),
the function v = G f € W} (Q) is the solution of the weak Dirichlet problem
Of course, the function G f was also defined as solution of the same problem, so that
Gf = Gf, but Gf is regarded as an element of L? () whereas G'f is regarded as an
element of W, (Q2).
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We claim that the operator G is bounded, that is, the solution u = G f satisfies the
estimate

[l < CIIF L (4.27)

for some constant C'. Recall that by Theorem [4.4] the operator G is bounded in L? (),
which means that
[ull e < CHIA e - (4.28)

Clearly, the required inequality (4.27) is stronger than (4.28)). The inequality (4.27) is

stated in Exercise 69 and can be proved using the same argument as (4.28]).

The embedding operator I is compact by Theorem [4.6, Hence, the composition
G=IoGisa compact operator.

Now we now that G is a compact self-adjoint operator in L? (2). We are left to
apply the Hilbert-Schmidt theorem that claims the following: if H is a separable oo-
dimensional Hilbert space and A is a compact self-adjoint operator in H, then there
exists an orthonormal basis {vg},;, in H that consists of the eigenvectors of A, the
corresponding eigenvalues i, are real, and the sequence {y;} goes to 0 as k — oo.
Applying this for A = G, we obtain these statements for G. In addition, we know
that the eigenvalues 1, of G are positive. Since the sequence {yu,} converges to 0, it is
possible to rearrange it to become monotone decreasing, which finishes the proof. m

Remark. The fact that the sequence {v;} in Theorem is orthogonal is a con-
sequence of the following simple fact: if v',v" are two eigenfunctions of (4.25) with

distinct eigenvalues A\, \” then ¢’ and v” are orthogonal, that is (v',v”),, = 0 (cf.
Exercise 64).

Remark. If we have a sequence {v;} of eigenfunctions of that forms an orthog-
onal basis in L? (Q), then the corresponding sequence {)\;} of eigenvalues exhausts all
the eigenvalues of (4.2F)). Indeed, if X is one more eigenvalue with the eigenfunction v
then the condition A # )\, implies that v is orthogonal to v,. Hence, v is orthogonal
to all elements of the basis {v;}, which implies that v = 0. This contradictions proves
the claim.

Remark. Note that the sequence {\;} can have repeated terms, as we will see in
examples below. If a number A appears in {\;} exactly m times then m is called the
multiplicity of A (in particular, if A is not eigenvalue then m = 0). Since A\, — oo as
k — oo, we see that the multiplicity is always finite.

The sequence {\; },-, is called the spectrum of the Dirichlet problem in § or simply
the spectrum of 2.

Remark. Consider the set €2 of the form 2 = U x W where U is an open subset of R™
and W is an open subset of R"~™. The points of € are the couples (z,y) where x € U
and y € W. Let us find eigenfunctions in () using the method of separation of variables.
Namely, search for the eigenfunction v of €2 in the form v (z,y) = u (z) w (y) , where u
and w are functions in U and W. Since

Av = Av+ Ayw = (Au) w + uAw,
the equation Av + Av = 0 becomes

(Au) w + uAw + duw = 0

27.01.16
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that is,
Au Aw
— —(y) ==\
)+ 2 ()
It follows that the both functions % and % must be constants, say
A A
2o 4 and 22 = -0,
u w

where a + 3 = A. The boundary 0f) consists of the union of OU x W and U x oW.
Therefore, to ensure the boundary condition v = 0 on 0f2, let us assume that

ulgy =0 and wlow = 0.
Hence, u is solution of the eigenvalue problem

Au+au=0 inU
’LL‘@U:O

and w is solution of the eigenvalue problem

{ Aw+pw=0 in W
U}‘aW:O

Assuming that the first problem has the eigenvalues {ay},-, and the eigenfunctions
{ug}re, that form an orthonormal basis in L? (U), and the second problem has the
eigenvalues {f3,},°, and the eigenfunctions {w;};°, that form an orthonormal basis in
L? (W), we obtain the following eigenfunctions of

Ok (2,y) = wi, (2) wy (y)

and the eigenvalues
Aeg = ag + ;.

It is possible to prove that the double sequence {uzw;} is indeed a basis in L? (Q) so
that we have found all eigenvalues of €.

Example. Let us compute the eigenvalues of the Laplace operator in the interval
2 = (0,a). The eigenvalue problem is

{ v+ X =0in (0,a)
v(0) =v(a)=0.

The ODE v” + Av = 0 has for positive A the general solution
v () = Cy cos VAz + Cysin VA,
At z = 0 we obtain that C7 = 0, and at * = a we obtain that

sin VAa = 0,

2
A:(lk> . keN.
a

which gives all solutions
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Hence, we obtain the sequence of eigenvalues A\, = (%’“)2 and the corresponding eigen-

functions vy, (z) = sin £, The sequence {sin £} is known to be an orthogonal basis
in L? (0,a) (which follows from theory of Fourier series), which implies that we have
found all the eigenvalues.

Example. Compute now the eigenvalues of the rectangle Q2 = (0,a) x (0,b). Using the
notation of the previous Remark with U = (0,a) and W = (0, b), have the following
eigenfunctions in U and W
k [
uy () = sin T and wy (y) = sin Y

a b

2 2
OékZ(%k) ) 512(%1) )

where k,[ are arbitrary natural numbers. Hence, we obtain that () has the following
eigenfunctions and eigenvalues:

and eigenvalues

. kx| wly
Vg (z,y) = sin——sin —=

o ()

For example, in the case a = b = 7, the eigenvalues are
ey = K>+ 12,
that is, all sums of squares of two natural numbers. Setting k,1 = 1,2, 3, ... we obtain
M1=2, Ma=X1=05, X2=38, A3g=2A31 =10, Ag3=»~A32=13, A\33 =18, ...

The sequence of the eigenvalues in the increasing order is {2, 5,5, 8, 10, 10, 13,13, 18, ... }.
In particular, the eigenvalues 5, 10, 13 have multiplicity 2.

One can ask what is the multiplicity m () for an arbitrary number ) in the sequence
{Mi}. Clearly, m ()) is equal to the number of ways A can be represented as a sum of
squares of two positive integers. For example, m (50) = 3 because

50=52+52=124+72=72+12

An explicit formula for m (\) is obtained in Number Theory, using decomposition
of A into product of primes. In particular, m (59) = ¢ + 1 if ¢ is an odd number.
Consequently, m (\) can be arbitrarily large. For example, we have m (125) = 4, and
the corresponding representations of 125 in the form k? + 2 are

125 =22 4112 =112+ 22 =52+ 10> = 10% + 5%

Example. For a general n, consider the box

Q=1(0,a1) x (0,a3) x ... x (0,a,),
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where a4, ..., a, are positive reals. Applying the method of separation of variables, we
obtain the following eigenvalues and eigenfunctions of (), parametrized by n natural
numbers ky, ..., ky:

v(z) = sin ...sin

4.7 Higher order weak derivatives

Our purpose is to investigate higher order differentiability of solutions of the weak
Dirichlet problem. In particular, we will be able to prove that the eigenfunctions of
the Dirichlet problem constructed in Theorem [4.7] as functions from Wy (Q2), are in fact
C* functions.

Recall that the Sobolev space W* (Q) is defined by
WH(Q)={feL*Q):D*feL*() forall awith |af <k}.
The space W* has an inner product

(f, 9w = Y (D°f,Df)

lal<k

and the associated norm
2 2
LA =Y 1D 72 -

Similarly to Proposition it is possible to prove that W* (Q) is a Hilbert space.
Similarly, define the space

loc

WE(Q) ={f el (Q):DfeLi () forall awith |of <k}.

4.7.1 Higher order derivatives in a cube

Let Q = (—m,m)" as above. The first main result is the following theorem.

Theorem 4.8 Let u € W' (Q) and U be an open subset of Q such that U C Q.
(a) If Au € L*(Q) then u € W2 (U) and

el < € (el gy + 180l 2(q))

where constant C'" depends on U and n. Consequently, u € W2, (Q) .
(b) If Au € Wk (Q) then u € W2 (U) and

lullyssaqey < C (Nullysgy + 1 8ullyeggy )

where the constant C' depends on U,n,k. Consequently, u € WFT2(Q).

loc
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In particular, if u solves the weak Dirichlet problem

Au = f in Q
u € Wy (Q)

with f € L?(Q) then, in fact, u € W2_(Q). Moreover, if f € W*(Q) then u €
Wi (Q).

The statement of Theorem [4.8 remains true if the cube @ is replaced by any bounded
domain €2, which will be stated and proved below as a Corollary. For the proof of

Theorem [4.8 we will need two lemmas. We use the Fourier series in L? (Q) as above.

Lemma 4.9 Let u € L?(Q) and assume that, for some multiindex «,

Yol la@F < o (4.29)

gezn

Then D*u € L?(Q) and, moreover,

Dou =Y (i&)" 0 (¢) e (4.30)
Eezn
and
IDul72 = 2m)" > | [a(©))". (4.31)
cean

The function (i€)” in (4.30)) is called the symbol of the operator D®. Recall that
we have already proved the identities (4.30)) and (4.31) in the case u € C§° (Q) — see

(4.19) and (4.20)), respectively.

Example. Assume that

P la () < oo

gezn
Then, for any j = 1,...,n, we have

ST g P la@©F < oo,

cezn

that is, the condition (4.29) holds for a = (0, ...1,...0) where the 1 is at position j. By
Lemma (4.9 we conclude that d, u € L* (Q),

aa:ju = Z ijﬁ (5) eiE-x’

and

10:,ull7. = 2m)" Y &P 1 (€)2.

gezn

It follows that u € W' (Q) and

ez

IVulle =3 ||0s,ull, = @o)" S (el a ().
j=1 3
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Example. Assume now that

Lt la () < oo

gezn

Then, for all j =1,...,n we have

ST lg M a P < o,

gezn

that is, the condition (4.29) holds for a = (0, ...2,...0) where the 2 is at position j. By
Lemma 4.9 we conclude that 9,,,,u € L* (Q) and

O jzjUl = — Z f?ﬁ (€) e,

gezr
In particular, it follows that Au € L?(Q) and
Au=Y 0y u=—> [(fa()e,
J=1 gezr

whence by Parseval’s identity

1Aul7. = @m)" Y 1€l @ @)

£€Zn

The function — |€]* on Z" is called the symbol of A.

Proof of Lemma By the hypothesis (4.29)), the following function

v(z) =) (&) a(e)es (4.32)

cezn

belongs to L?(Q). Let us show that D®u = v. By definition, D% is a distribution
that is defined by

(Du, ) = (—1)* (u, D*p) Y € D(Q).

Hence, in order to prove that D*u = v, we need to verify that, for any ¢ € D (Q),

/prda::(—l)la/uDo‘godx. (4.33)

Q
Since the Fourier series (4.32) and
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converge in L? (Q), we can compute both integrals in (4.33)) by substituting the Fourier
series of u and v and interchanging integration in x with summation in £&. We obtain

/Q uD%dz = > (S / e D% () du

cezn Q

= Y a0 | pretre

¢ezn
where we have used integration by parts because ¢ € C§° (Q). Since
Daeiﬁ-x — (Zé;)a eiﬁ-:p7
we obtain

uD%odr = U —1)lel i&) €Ty (1) da
/Q o S ae) (-1) /Qm o ()

cezn

— (-pe /Q (Z(z’&)“a@)ei&'w)@(x)das

fezn

= ()" [ v,
Q
which proves (4.33)). Then identities (4.30) and (4.31]) follow from (4.32)). m

Definition. For any u € L}, (f2), define the support suppu as the complement in 2

of the maximal open subset of €2 where u =0 a.e..

Observe that the maximal open subset of €2 with this property exists since it is the
union of all open subsets of {2 where u =0 a.e..

By construction, supp u is a closed subset of © (by the way, the same construction
can be used to define the support of any distribution). If u is continuous then supp u
coincides with the closure in €2 of the set where u # 0.

The following lemma is a partial converse of Lemma [£.9]

Lemma 4.10 Let u € L? (Q) and assume that suppu is a compact subseﬂ of Q.

(a) 1f D € L2(Q) then (£29), (£30) and (£31) hold
(b) If Au € L?(Q) then

Au= =" [efa (&) e, (4.34)
gezn
where the series (4.34) converges in L* (Q), and
[Aulf7. = (2m)" > L&l* |a () (4.35)
ﬁEZ"

2Recall that the notion of compactness of a set does not depend on the choice of an ambient
topological space. In the statement of Lemma[4.10] there are two natural choices of the ambient space:
R™ or ). Since a subset of R™ is compact if and only if it is bounded and closed, the phrase “supp u
is a compact subset of ” means that “suppwu is a closed subset of R” and suppu C Q" (then suppu
is automatically bounded and, hence, compact). However, this phrase does not mean that “suppu
is a closed subset of the topological space @” as there are closed (and obviously bounded) subsets of
the topological space @) that are not compact.

29.01.16
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Proof. (a) Let U be an open neighborhood of supp u such that U C Q. Let 1 be a
function from D (@) such that ¢» = 1 in U. Any function ¢ with this property is called
a cutoff function of U in (). Denote by h () the discrete Fourier transform of D%u.
Observe that supp D*u C U because if u = 0 a.e. in an open set then also D% = 0
a.e. in the same set. Since ¢V = 1 on U, we have the identity

YD = D% in @,

which implies
1 A 1 .
h — Doc —z§~xd _ Da —ié-x d ‘
O = Gy |, e e = oo [ DS ) o

Since ¢ (1) := e %) (z) € D (Q), we have by the definition of distributional Laplacian
D%y that

(Du, ) = (1) (u, D) ,
whence

—1)le ,
h(§) = ((2%))” /Q uD* (e7 %4 (2)) d. (4.36)

Observe that e=%¢%1) = ¢~ in U. Therefore, in U
DY (7€) = D% = (—ig)® e7 T = (1) (i) e,
Since the integration in (4.36]) can be restricted to U, we obtain

b
(2m)"

which proves (4.30). Then (4.29) and (4.35) follow by Parseval’s identity.

(b) The proof is the same as that of (a), we just replace everywhere D by A. Let
¥ be the same cutoff function of U in @, and let h (§) the discrete Fourier transform
of Au. Since supp Au C U and 1) = 1 on U, we have the identity

hie) = /Q w (i€)" e dr = (i€) 4. (€)

YAu = Au in Q,
which implies
1 : 1 .
- = —i-x - = —ix
h(€) on)" /QAue dx o) /QAue V() de.

Since ¢ (1) := e %% (z) € D (Q), we have by the definition of distributional Laplacian
Awu that

(Au, ) = (u,Ap),

whence
1

h(§) == / u e‘if'x@b x)) dx. 4.37
Since eﬂg'x@b = %7 on U, it follows that in U

A (e_’f'”@b) = Ae %7 = _ |§|2 e T,
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Since the integration in (4.37)) can be restricted to U, we obtain
1 / 2 g 2 .
oo | uléf e dr = — € a(E),
(2m)" Jq

which proves (4.34)). Then (4.35) follows by Parseval’s identity. m

Proof of Theorem (a) Let ¢ be a cutoff function of U in Q). Set v = ut). By
the product rule for the Laplacian, we have

h(§) = -

Av = A (Yu) = pAu+ 2V - Vu + Ay u.

Note that Au, Vu and u are all in L?, whereas 1, Vi) and At are in D (Q). It follows
that Av € L? (Q) and, moreover,

80]12g) < € (Nl ) + B0z )

where C' depends on sup |V| and sup |Av)| and, hence, on U.
Since supp v is a subset of supp ¢/ and, hence, is a compact subset of ), we obtain
by Lemma that

1Av[f7, = (2m)" > 1€t 8 (&)

gezr
Since for all indices j,Il = 1,...,n we have
gal < 516 + 3 Il < Ie
we obtain )
dolgal o @©r < le' e @ < oo
gezn gezn

Note that the function —¢;¢; is the symbol of the operator 0, ,,,. Hence, we conclude
by Lemma that the distributional derivative d,,,,v belongs to L* (Q) and

102,2:01[32g) = (27)" D €& 1 (O < l|Avllaq

éEZ"

Similarly, since |§ j‘ < |€]?, we obtain
S lel e ©r <> 18t ©)F < oo
cezn gezn

Hence, 9,,v € L* (Q) and

100,072y = @m)" D [& 7 [0 < 1AvI[(q,

cezn

We conclude that v € W2 (Q) and

0]z = vllz2 + Z 10,0172 + Z 19,000][32 < 0172y + C 1 A0]72q)

7,l=1
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Since v = u in U, we obtain that v € W?2 (U) and

2 2 2
lullfvey < Iola) +CllAv]ag
< O (llullys gy + 180l 2(qy )

which was to be proved.
(b) Induction in k. The induction basis for £k = 0 was proved in (a). For the

inductive step from k to k+ 1, choose a cube Q' = (7 — ¢, — )" for some £ > 0, such

that U C @'. Assume that v € W' (Q) and Au € W*1(Q). Since Au € L?(Q), by
part (a) we have u € W2 (Q') and

lulyaan < € (Iullyr gy + 1Aula)) - (4.39)

Set v = 9,,u and observe that v € W' (Q') and Av = §,,Au € W*(Q'). By the
inductive hypotheses applied to cube @’ instead of @, we obtain v € W**2 (U) and

[l < C (Il + 1800wagn)
< O (Il + 180y g ) -

Substituting here the estimate of [|ul]y2 g from (4.38), we obtain

[lwssay < € (Il + 180l

Finally, since this estimate holds for any partial derivative v = 0,,u of u, it follows
that u € Wk+3 (U) and

lullyassy < € (Iullwa) + 18uling)

which proves the inductive step.
Finally, let us show that u € W2 (Q) (both in the cases (a) and (b)). Indeed,
since for any multiindex « of order < k + 2 we have D*u € L? (U) for any open set U

such that U C Q, we see that Du € L? . (Q) and, hence, u € Wr2(Q). =

loc

4.7.2 Higher order derivatives in arbitrary domain

Our next task is to generalize Theorem [4.§ to general domains. For that we prove first
two lemmas.
Let f, g be distributions in 2. If U is an open subset of €2 then we say that f =g
in U if
(f, ) =(g.¢) VoeD({).

Lemma 4.11 Let Q = U UV where U,V are open domains in R™. If f,g € D' (Q)
and f =g inU and in'V then f = g in ().
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Proof. We have to prove that

(fi9) =(g.9) Yo eD(Q). (4.39)

Fix ¢ € D (22) and denote K = supp . If K C U then ¢ € D (U) and holds by
assumption that f = g in U. In the same way holds if K C V. However, if K
is not contained in U or V, then additional argument is needed. In fact, it suffices to
show that ¢ can be represented in the form

© = Q1+ Py, (4.40)

where ¢, € D (U) and ¢, € D (V). Then, adding up the identities with ¢, and
9, we obtain that for ¢. The representation is called partition of ¢ subordinated
to U, V.

Since K C U UV, for any point x € K there is a ball B, of small enough radius
centered at x such that B, is contained in U or in V. The family {B.},cx is an open
cover of K, so there exists a finite subcover, say B, ...B;. Denote by U’ the union of
all balls B; with B; C U, and by V' — the union of all balls B; with B; C V (some
balls B; may be used in both U’ and V).

C YA S S
Siolim @ 7 @ aien
KA =

Covering of the set K (grey shaded) with U’ (the union of blue balls) and V' (the
union of red balls)

By construction we have
KcUuV', UcU V' cV.

Therefore, there is a cutoff function ¢, of U’ in U, and a cutoff function ¢, of V' in V.
Set then

pr =11 and @, = (1 =1y) Py
Clearly, ¢, € D (U) and ¢, € D (V). Besides,

01+ pe = (Y1 + g —P1by) @
= (1= (1= (1 =),

which implies that

® ¢, + py =0 = @ outside K;

® v, +py, = on V'UU' because on this set either 1, =1 or ¢, = 1.
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Since K is covered by V' U U’, we conclude that ¢, + ¢, = ¢ everywhere, which
finishes the proof. m

Lemma 4.12 Let Q2 = U UV where U,V are open domains in R™. Let u be a mea-
surable function in Q. If u € W*(U) and u € W* (V) then u € W* (Q). Besides, we
have

2 2 2
[l ) < llulliery + llulliren - (4.41)

Proof. Obviously, if u € L? (U) and u € L* (V) then

/uzdxg/u2d$+/u2da:<oo
Q U 1%

2 2 2
[ullz20) < llullzz@y + lullz2q) -

so that u € L? () and

Assume that, for some multiindex o, we know that D € L* (U) and D*u € L* (V).
Let us prove that D € L? (). Denote by v; the function D in U and by v, the
function D*u in V. Observe then that D*u in U NV is equal simultaneously to v; and
V9 80 that v; = vy in U N'V. Let us define function v in U UV by

U(aj):{ o (@), zel,

ve (x), eV

Clearly, v is well-defined and v € L* (). Then D% = v in U and in V. Therefore, by
Lemma (.17l we conclude that D*u = v in Q. It follows that

a, 12 a, 12 a, (12
1D U||L2(Q) <D UHL?(U) + D U||L2(V)'

Summing up such identities over all multiindices |o| < k, we obtain (4.41). m

Theorem 4.13 Let Q be any bounded domain in R". Ifu € W' (Q) and Au € W (Q)
then, for any open subset U of Q, such that U C Q, we have u € W 2 (U) and

lellyesa < € (Nl ) + 180l

where the constant C' depends on Q, U, n, k. Consequently, u € W}+? (Q).

loc
Proof. For any point x € Q) there exists € = ¢ (x) > 0 such that the cube
Qr = (1 —e,214+¢€) X ... X (¥, —&,2, + )

is contained in €. Denote by U, a similar cube where ¢ is replaced by €/2. Clearly, the
family {U,},. is an open covering of U. By the compactness of U, there is a finite
subcover, denote its element by Uy, ..., U;. Applying Theorem in the corresponding
cubes Q1, ..., Q; (instead of @), we obtain that u € W++2 (Uj) and

lllyeezyy < Cs (el + 180w,

< C (Iullwsa + 1Aullyeey)
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where C' = max C;. Since U C Ué‘:l Uj, using Lemma [4.12, we obtain by induction in
[ that uw € W**2(U) and

. 1/2
2
ullyrszery < (Z||U||Wk+2(Uj)>
j=1

!
< Z [ullyrrz,
j=1

< € (s + 180l )

where C’" = [C', which finishes the proof. =

Corollary 4.14 Let Q be a bounded domain and v € W} () be an eigenfunction of
the weak Dirichlet problem in Q with the eigenvalue \. Then v € W22 (§2).

Proof. It suffices to prove that v € W*(U) for k € N and for any open set U such
that U C (. Given k and U, let us construct a sequence of open sets U, ..., Uy such
that Uy = Q, Uj > Uj+1, and U, = U. Set

f = _)‘Ua

so that
Av = f.

Since v € W' (Uy) then also f € W' (Uy). Therefore,
ve W (Uy) and Av e W (Uy),

which implies by Theorem [4.13] that v € W* (Uy) . Hence, also f € W? (Uy). Therefore,
ve W (Uy) and Av e W3 (1),

which implies by Theorem that v € W? (Us). Continuing further by induction, we
obtain that u € W+ (Uy), which finishes the proof. =

4.8 Sobolev embedding theorem

Recall that C™ () denotes the space of all m times continuously differentiable functions

in . Set
[ullgmiqy = sup sup|D% ()|

{a:]a|<m} z€Q

Note that |ullom g, can be equal to co. Define also the space Cy" (2) as a subspace
of C"™ () with [[u/|gm gy < 0o. Then Cj" (£2) is a normed linear space with the norm
[/l ¢m (). Moreover, it is a Banach space.

The following implications are trivial:

ue C™(Q)=>ue Wi (Q)
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and, if €2 is bounded, then
ue Gy (Q)=ueWm(Q).

Notational remark. A better notion for C™ (Q2) would have been CJ7. () and for C}" () —
simply C™ (). In this case the notation for C™-spaces would have matched those for W*-spaces.
However, we use the notations that are commonly accepted in mathematics, even if they are not best

possible.

The next theorem states a kind of converse to the above implications. It is one of
the most amazing results of Analysis.

Theorem 4.15 (Sobolev embedding theorem) Let 2 be an open subset of R™ and let
m, k be non-negative integers such that

k>m+ g (4.42)
If u e WE_(Q) then u € C™(9). B
Moreover, if u € W* (Q) then, for any open set U such that U is a compact subset
of 2, we have u € CJ* (U) and

||u||C’m(U) <C ||U||Wk(9) ) (4.43)

where the constant C' depends on Q,U, k, m,n.

Note that u is a priori an element of L?  (€) and, hence, is the class of measurable

functions defined almost everywhere. When we claim that u € C™ () and, in partic-
ular, u € C' (), we understand u as a function defined pointwise. A precise meaning
of that is as follows: if u € WF_(Q) then u as a class of functions has a representative,
also denoted by u, such that this representative belongs to C™ ().

The identification of u € W[, (Q) with its C™-representative allows to define an
embedding (=injective linear mapping) of linear spaces

Wi () = C™ ().
The estimate (4.43)) implies that there is an embedding
Wk (Q) — o7 (U)

of normed linear spaces, and this embedding is a bounded operator.

Example. Let n = 1. Then the condition becomes k > m —I—% that is equivalent
to k > m + 1. Hence, if u € W[, then u € C*1, provided k¥ > 1. In particular,
any function from W}, has to be continuous. We have seen above that the continuous
function u (z) = |z| in R has the weak derivative ' = sgn z and, hence, belongs to W. ..
On the other hand, the function u (x) = 1j9,«) that has only one point of discontinuity
at = 0 has the distributional derivative v’ = § and, hence, is not in W}.,.

Example. For a general n and for m = 0, the condition (4.42)) becomes k& > %. That
is, if

s D

3 (4.44)
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then v € W[, implies that u is continuous. Let us show that the condition (4.44) is
sharp. For that, consider in R™ the function u (x) = |z|* where « is a real number.
This function is clearly C* smooth outside the origin, but it is continuous in R if and
only if o > 0. We use without proof the fact that v € L? , if and only if
LD
a —_——
2
(cf. Example at the end of Section [4.1)). It is also possible to prove that any classical
derivatives of u of the order & (which is defined outside 0) belongs to L , if and only if

loc

n
k> ——
a > =3
which is equivalent to
a>k—% (4.45)

Under this condition the classical derivative coincides with the weak derivative, which
therefore belongs to L2 .

Hence, under the condition M[) we obtain v € W[, If k < 2 then there exists
o < 0 that satisfies (4.45). Then the function u(z) = |z|* belongs to W}, but is
not continuous at 0. This example shows that the condition , under which all

functions from W}, are continuous, is sharp.

Before the proof of Theorem let us state some consequences.

Corollary 4.16 Let €2 be a bounded domain in R™. Let u be solution of the weak
Dirichlet problem
Au=f n
{ ue W) (Q)

where f € L*(Q). If in addition f € WE_(Q) where
k+2>m+g, (4.46)

then u € C™ (2). Here k,m are non-negative integers.

In particular, the statement of Corollary holds if f € C* ().

Proof. Fix an open subset U of §2 such that U C Q. Then we have f € W* (U). Since
u € WH(U) and Au € W* (U), we obtain by Theorem that u € WEF (U). By

Theorem and and (4.46]), we conclude that v € C™ (U). Since U is arbitrary, it
follows that v € C™ (§2). =

Example. Let n = 2. Then the condition £ 4+ 2 > m + 1 is equivalent to £ > m. In
the case n = 3 the condition

3
k—|—2>m+§

is also equivalent to k > m. Hence, in the both cases n = 2,3 we obtain if f € W} _(Q)
then u € C* ().

If n = 4 then the condition k£ + 2 > m + 2 is equivalent to & > m + 1.Hence,
f € WE.(Q) implies u € C*1 (Q) provided k > 1.
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Corollary 4.17 In any bounded domain €@ C R™, all eigenfunctions of the weak
Dirichlet problem belong to C* ().

Proof. Let v be an eigenfunction of the weak Dirichlet problem in 2. By Corollary
m, we have v € W[} (Q) for any k. Hence, by Theorem we conclude that
v e C™(Q) for any m, that is, v € C*° (). =

Remark. The question remains if the boundary condition v € W () is the statement of the
weak eigenvalue problem can be turned into the classical boundary condition v = 0 on 92, which in
particular requires the continuity of v in Q. This question is more difficult than the continuity of v
inside €2, because the answer depends on the properties of the boundary 92.

In short, if the boundary is good enough, for example, if 2 is a region, then indeed v € C (ﬁ) and
v = 0 on 0 pointwise. A similar statement holds for weak solutions of the Dirichlet problem.

However, the study of the boundary behavior is outside the range of this course.

Proof of Theorem [4.15] The proof will be split in a few parts.

Part 1. Let Q = (—m,7)" be the cube as above. Assume first that u € L? (Q) and
that supp u is a compact subset of Q. We prove in this part that if u € W* (Q) with
k > n/2 then u € C'(Q) and, moreover,

Hu”c(Q) <cC ||U||Wk(Q) (4.47)

for some constant C' = C' (n, k) (which corresponds to the case m = 0).
By Lemma [4.10[(a), we have, for any multiindex a with |a| < k the identity ([4.31),
that is,

YR la €)= (2m) " | Dulfs < oo.

cezn

Applying this with o« = (0, ..., 0, k,0,...,0) , where k stands at position i, we obtain
. - 2

Sl a ) = o) ok uly. < oo

cezn
Adding up in all i = 1, ..., n, we obtain

> (I + o+ leaP*) @ ©F < ullfs

cezn

Observing that

n k n
P = (z w) <oy,
=1 =1

where C' = n*, we obtain
L @) < C llullfye < oo (4.48)
gezr

On the other hand, we have by the Cauchy-Schwarz inequality,

2 2
Sl = [ 3 etietlae)
cezn\{0} ¢eZm\ {0}
<DL KTyt a©r. (4.49)

cezm\{0} Eern
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Itk > 5 then 2k > n. We claim that if 2k > n then

d T <o (4.50)

¢ezn\{0}
(see Lemma below). Combining this with (4.48) and (4.49)), we obtain
3 1a(€)] < C Jully < 0.

£ezm\{0}

In particular, this implies that the Fourier series

> a(§)e

gen

converges absolutely and uniformly in x € (). Therefore, its sum is a continuous
function in ). On the other hand, we know that this series converges in L? to u ().
Hence, L? function u (z) has a continuous version that is the pointwise sum of the
Fourier series. Besides, we have for the continuous function u (z)

sup[u(z)] < Y |a(© e <la @)+ > la©)

ve@ geun cezm\{0}

1
< - /
< (QW)R/QW(J;)MQC—’_C HuHWk

lull 12 + € lully

<
< C"ullyye

which proves (4.47)).

Part 2. Let us extend the result of Part 1 to the case m > 1. Namely, in the
setting of Part 1, assume that u € W* (Q) with & > m + 2 and prove that u € C™ (Q)
and, moreover,

HUHCm(Q) <C HUHWk(Q)- (4.51)
We still have (4.48)), but instead of (4.49) we write
2 2
m| .~ —k+m k|~
Yoo lEma@r] = X ke e
£z \{0} £ez"\{0}
< D Y e .
ez \{0} gezn

Since 2 (k —m) > n, we obtain that
S <
£ezm\{0}

Combining this with (4.48)) and noticing that |£|™ = 0 for £ = 0, we obtain

ST a(€)] < C lully < oo

cezn
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We claim that, for any « with |a| < m, the classical derivative D“u exists and is given
by the series

Do) = 3 (€)" i (€) ¢, (452)

cezn

where the convergence is absolut and uniform. Indeed, since this series is obtained a
term by term application of D* to the series

u(z) = i(g)es,
§€Z”

it suffices to prove that the series (4.52) converges absolutely and uniformly in = € @
for all || < m. Observe that

€] = 161" & < (€] + o+ 1D
CE7 + o+ 16D = C el (4.53)

IN

Therefore, for any o # 0 with |a| < m,

STjae a) | < o g ale)

£ezn I3V
< C) lema)l
cezn
< Ol < 00, (4.54)

which proves (4.52). Besides, we obtain from (4.52)) and (4.54) that

[ D% ()] < C" flully
whence (4.51)) follows.

Part 3. Assume that u € W" (Q) and prove that v € C™ (Q) provided k > m + 2.
Besides, we prove that, for any open set U such that U C @,
HuHCm(U) <C ||U||Wk(Q) : (4.55)

Let v be a cutoff function of U in (). Then the function v = u has a compact support
in Q and v € W* (Q). Indeed, to see the latter, let us use the Leibniz formula

D= 3 (5)oten

{B:8<a} P

where 8 < o means that §; < o forall j = 1,...,n, and (g) is a polynomial coefficient

defined by
« o!
(5) BEACET

where a! = ay!...a,,!. If |a] < k then also |3] < k and DPu € L}, (Q). Since D*F1)
is supported in supp® and is bounded, we obtain that the product D* %y Dy is
supported in supp ¢ and, hence, belongs to L? (Q). Hence, D* (¢v) € L*(Q), whence
v € W*(Q) follows.
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By Part 2 we conclude that v € C™ (Q)) and

HUHCm(Q) <C Hunk(Q)-

Since u = v on U, we obtain ([4.55)).

Part 4. Let Q be an arbitrary open set and u € W[ (Q). Let @ be any cube (of
any size) such that @ C . Then u € W* (Q) and, hence, by Part 3, u € C™(Q).
Since such cubes @) cover all the set 2, we conclude that v € C™ ().

Assume now that v € W¥(Q). Let U be an open set such that U is a compact
subset of €. As in the proof of Theorem [4.13], choose for any point = € ) some £ > 0
such that the cube

Qx = ($1—57ZE1+€) X ... X (xn_gaxn_’_g)

is contained in 2. Denote by U, a similar cube where ¢ is replaced by ¢ /2. Clearly, the
family {U,},.p is an open covering of U. By the compactness of U, there is a finite
subcover, denote its element by Uy, ..., U;. By (4.51)), we have for any j

||u|‘cm(Uj) < Cj ||u||wk(Qj) : (4.56)

Since the union Ué.:l U; covers U, taking (4.56]) supremum in j, we obtain

Hu”Cm(U) <C ||U||Wk(sz) )

which finishes the proof. m
To complete the proof of Theorem [4.15] it remains to prove the following lemma.

Lemma 4.18 For any v > n we have

Y KT <. (4.57)

£ezm\{0}
Proof. Let us first estimate the following number:
N(R) = #{¢ e Z": |{| < R},

where R > 0. In other words, N (R) is the number of integer points inside the ball Bg
of R™. With any & € Z", let us associate a unit cube

Qe:={zeR":{ <z <&+1, Vi=1,..,n}.

In other words, ¢ is the bottom left corner of the cube Q¢. For any z € ()¢, we have

n 1/2
|z —¢| = <Z‘Ij_£j}2) < +/n.

Hence, if £ € By then
2| < €] + [z — &l < R+ V/n,
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which implies

Qe C Briyn-
Since all the cubes @), are disjoint and the volume of each cube Q)¢ is equal to 1, we
obtain

N (R) = Z vol (Q¢) < vol Bry sz = ¢ (R+ /)",

£€EBR
where ¢, is the volume of the unit ball in R™. Assuming that R is a positive integer
and, in particular, R > 1, we obtain

N (R) < CR",
for some constant C' = C' (n). Therefore, we obtain

S =Y Y

&ezm\{0} k=0 {EGZnZQkS|§‘<2k+1}

OIS SR

k=0 {eennak<|e|<2ht1}

= D 2T (V) - N (2Y)
k=0

Z 27k’yN (2k+1)

k=0

C Z 27k72(k+1)n
k=0

A

A

[N

= C2") 20k <o,
k=0

where we have used that v >n. =

4.9 * Sobolev spaces of fractional orders

Let u € L?(Q) and assume that suppu is a compact subset of . Combination of
Lemmas [4.9) and gives the following: D% € L? (Q) if and only if

> P la@f < oo (4.58)
gezn
By (4.53) we have |¢%] < C'|¢[*. Hence, (4.58) holds for all multiindices a with |a| < k
provided
> e a(©F < oo (4.59)
gezn

Hence, if (4.59)) holds then u € W* (Q) and
lullwrgy < C D E* ().

cezn
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On the other hand, by (4.48) we have the converse: is u € W* (Q) then

DI < Cllullyrg

gezn

and, in particular, (4.58) holds.
Hence, u € W* (Q) is equivalent to (4.59)), and

lullfrigy = D 1€ 1@ (€7, (4.60)
¢

ez

where the sign ~ means the equivalence of the two expressions in the sense that their
ratio is bounded from above and below by positive constants.
Using (4.60) as motivation, we can introduce the norm |[ully. o) for all positive real
Y

values of s by setting
2 2 |~ /o2
lallfyey = X € 1@ @)%,
cezn

and define the space W* (Q) as the set containing all u € L? (Q) with compacﬂ supp u
and with [[ul|y. ) < oc.

As in the proof of Theorem , one can show that if u € W*(Q) and s > m + %
then u € C™ (Q).

Note that one can define also spaces C* (Q) for positive real values of parameter ¢.
For simplicity, let us restrict ourselves to the case 0 < ¢ < 1. Then C* (Q) is the space
of functions u in () that are Holder continuous with the Holder exponent ¢, that is,

u(z) —u(y)| < Cla -yl
for some constant C'. The norm in C* (Q) is defined by

ju(z) —u(y)]
lullergy = llulleg) + sup B

Then the following is true: if u € W*(Q) and s > ¢t + 2

5, Where s, are non-negative
reals, then u € C* (Q) and

30mne can extend this definition to allow in W*(Q) functions whose support is not necessarily
compact. However, we skip this direction.
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