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Chapter 0

Introduction

21.10.15

0.1 Examples of PDEs and their origin

Let u = u (x1; :::; xn) be a real-valued function of n independent real variables x1; :::; xn.
Recall that, for any multiindex � = (�1; :::; �n) where �i are non-negative integers, the
expression D�u denotes the following partial derivative of u:

D�u =
@j�ju

@x�11 :::@x
�n
n

;

where j�j = �1 + :::+ �n is the order of the derivative.
A partial di¤erential equation (PDE) is an equation with an unknown function

u = u (x1; ::; xn) of n > 1 independent variables, which contains partial derivatives of
u. That is, a general PDE looks as follows:

F
�
D�u;D�u;Du; :::

�
= 0 (0.1)

where F is a given function, u is unknown function, �; �; ; ::: are multiindices.
Of course, the purpose of studying of any equation is to develop methods of solving

it or at least ensuring that it has solutions. For example, in the theory of ordinary
di¤erential equations (ODEs) one considers an unknown function u (x) of a single real
variable x and a general ODE

F (u; u0; u00; :::) = 0

and proves theorems about solvability of such an equation with initial conditions, under
certain assumptions about F (Theorem of Picard-Lindelöf). One also develops methods
of solving explicitly certain types of ODEs, for example, linear ODEs.
In contrast to that, there is no theory of general PDEs of the form (0.1). The reason

for that is that the properties of PDEs depend too much of the function F and cannot
be stated within a framework of one theory. Instead one develops theories for narrow
classes of PDEs or even for single PDEs, as we will do in this course.
Let us give some examples of PDEs that arise in applications, mostly in Physics.

These examples have been motivating development of Analysis for more than a century.
In fact, a large portion of modern Analysis has emerged in attempts of solving those
special PDEs.

1



2 CHAPTER 0. INTRODUCTION

0.1.1 Laplace equation

Let 
 be an open subset of Rn and let u : 
! R be a function that twice continuously
di¤erentiable, that is, u 2 C2 (
) : By �u we denote the following function

�u =
nX
k=1

@xkxku;

that is, �u is the sum of all unmixed partial derivatives of u of the second order. The
di¤erential operator

� =

nX
k=1

@xkxk

is called the Laplace operator, so that �u is the result of application to u of the Laplace
operator.
The Laplace equation is a PDE of the form

�u = 0:

Any function u that satis�es the Laplace equation is called a harmonic function. Of
course, any a¢ ne function

u (x) = a1x1 + :::+ anxn + b

with real coe¢ cients a1; :::; an; b is harmonic because all second order partial derivatives
of u vanish. However, there are more interesting examples of harmonic functions. For
example, in Rn with n � 3 the function

u (x) =
1

jxjn�2

is harmonic away from the origin, where

jxj =
q
x21 + :::+ x2n

is the Euclidean norm of x: In R2 the function

u (x) = ln jxj

is harmonic away from the origin.
It is easy to see that the Laplace operator � is linear, that is,

�(u+ v) = �u+�v

and
�(cv) = c�u

for all u; v 2 C2 and c 2 R: It follows that linear combinations of harmonic functions
are harmonic.
A more general equation

�u = f

where f : 
! R is a given function, is called the Poisson equation. The Laplace and
Poisson equations are most basic and most important examples of PDEs.
Let us discuss some origins of the Laplace and Poisson equations.
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Holomorphic function

Recall that a complex valued function f (z) of a complex variable z = x + iy is called
holomorphic (or analytic) if it is C-di¤erentiable. Denoting u = Re f and v = Im f ,
we obtain functions u (x; y) and v (x; y) of two real variables x; y.
It is known from the theory of functions of complex variables that if f is holomorphic

then u; v satisfy the Cauchy-Riemann equations�
@xu = @yv;
@yu = �@xv:

(0.2)

Assuming that u; v 2 C2 (and this is necessarily the case for holomorphic functions),
we obtain from (0.2)

@xxu = @x@yv = @y@xv = �@yyu
whence

�u = @xxu+ @yyu = 0:

In the same way �v = 0: Hence, both u; v are harmonic functions.
This observation allows us to produce many examples of harmonic functions in R2

starting from holomorphic functions. For example, for f (z) = ez we have

ez = ex+iy = ex (cos y + i sin y)

which yields the harmonic functions u (x; y) = ex cos y and v (x; y) = ex sin y:
For f (z) = z2 we have

z2 = (x+ iy)2 =
�
x2 � y2

�
+ 2xyi;

so that the functions u = x2 � y2 and v = 2xy are harmonic.
For the function f (z) = ln z that is de�ned away from the negative part of the real

axis, we have, using the polar form z = rei� of complex numbers that

ln z = ln r + i�:

z

x

y

r

S

Since r = jzj and � = arg z = arctan y
x
, it follows that the both functions u =

ln jzj = ln
p
x2 + y2 and u = arctan y

x
are harmonic.
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Gravitational �eld

By Newton�s law of gravitation of 1686, any two point masses m;M are attracted each
to other by the gravitational force F = Mm

r2
where r is the distance between the

points and  is the gravitational constant. Assume that the point mass M is located
constantly at the origin of R3 and that the point mass m is moving and let its current
position be x 2 R3: Taking for simplicity  = m = 1, we obtain that the force acting
at the moving mass is F = M

jxj2 and it is directed from x to the origin. The vector
�!
F

of the force is then equal to

�!
F =

M

jxj2
�
� x

jxj

�
= �M x

jxj3
:

Any function
�!
F de�ned in a domain of Rn and taking values in Rn is called a vector

�eld. The vector �eld
�!
F (x) = �M x

jxj3 in R
3 is called the gravitational �eld of the

point mass M .
A real-value function U (x) in Rn is called a potential of a vector �eld

�!
F (x) in Rn

if �!
F (x) = �rU (x) ;

where rU is the gradient of U de�ned by

rU = (@x1U; :::; @xnU) :

Not every vector �eld has a potential; if it does then it is called conservative. Conser-
vative �elds are easier to handle as they can be described by one scalar function U (x)
instead of a vector function

�!
F (x).

It can be checked that the following function

U (x) = �Mjxj

is a potential of the gravitational �eld
�!
F = �M x

jxj3 . It is called the gravitational
potential of the point mass M sitting at the origin.
If M is located at another point y 2 R3, then the potential of it is

U (x) = � M

jx� yj :

More generally, potential of a mass distributed in a closed region D is given by

U (x) = �
Z
D

� (y) dy

jx� yj ; (0.3)

where � (y) is the density of the matter at the point y 2 D. In particular, the gravita-
tional force of any mass is a conservative vector �eld.
As we have mentioned above, the function 1

jxjn�2 is harmonic in R
n away from the

origin. As a particular case, we see that 1
jxj is harmonic in R

3 away from the origin.

It follows that the potential U (x) = �M
jxj is harmonic away from the origin and the
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potential U (x) = � M
jx�yj is harmonic away from y. One can deduce that also the

function U (x) given by (0.3) is harmonic away from D.
Historically, it was discovered by Pierre-Simon Laplace in 1784-85 that a gravi-

tational �eld of any body is a conservative vector �eld and that its potential U (x)
satis�es in a free space the equation �U = 0, which is called henceforth the Laplace
equation. The latter can be used for actual computation of gravitational potentials
even without knowledge of the density �.

Electric force

By Coulomb�s law of 1784, magnitude of the electric force F between two point electric
charges Q; q is equal to kQq

r2
where r is the distance between the points and k is the

Coulomb constant. Assume that the point charge Q is located at the origin and the
point charge q at a variable position x 2 R3. Taking for simplicity that k = q = 1, we
obtain F = Q

jxj2 and that this force is directed from the origin to x if Q > 0, and from
x to the origin if Q < 0 (indeed, if the both charges are positive then the electric force
between them is repulsive, unlike the case of gravitation when the force is attractive).
Hence, the vector

�!
F of the electric force is given by

�!
F =

Q

jxj2
x

jxj = Q
x

jxj3
:

This vector �eld is potential, and its potential is given by U (x) = Q
jxj .

If a distributed charge is located in a closed domain D with the charge density �,
then the electric potential of this charge is given by

U (x) =

Z
D

� (y) dy

jx� yj ;

which is a harmonic function outside D.

0.1.2 Wave equation

Electromagnetic �elds

In the case of fast moving charges one should take into account not only their electric
�elds but also the induced magnetic �elds. In general, an electromagnetic �eld is
described by two vector �elds

�!
E (x; t) and

�!
B (x; t) that depend not only on a point

x 2 R3 but also on time t. If a point charge q moves with velocity �!v , then the
electromagnetic �eld exerts the following force on this charge:

�!
F = q

�!
E + q�!v ��!B

This force is also called the Lorentz force.
The evolution of the electromagnetic �eld (

�!
E ;
�!
B ) is described by Maxwell�s equa-

tions: 8>>>><>>>>:
div

�!
E = 4��

div
�!
B = 0

rot
�!
E = �1

c
@tB

rot
�!
B = 1

c

�
4�
�!
J + @tE

� (0.4)
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where

� c is the speed of light;

� � is the charge density;

� �!J is the current density;

� div�!F is the divergence of a vector �eld
�!
F = (F1; :::; Fn) in Rn given by

div
�!
F =

nX
k=1

@xkFk ;

� rot�!F is the rotation (curl) of a vector �eld
�!
F = (F1; F2; F3) in R3 given by

rot
�!
F = det

0@ i j k
@x1 @x2 @x3
F1 F2 F3

1A = (@x2F3 � @x3F2; @x3F1 � @x1F3; @x1F2 � @x2F1) :

The equations (0.4) were formulated by James Clerk Maxwell in 1873.

Assume for simplicity that � = 0 and
�!
J = 0: Then we have from the third equation

rot(rot
�!
E ) = �1

c
@t(rot

�!
B ) = � 1

c2
@tt
�!
E :

On the other hand, there is a general identity for any C2 vector �eld
�!
F in R3:

rot(rot
�!
F ) = r(div�!F )���!F ;

where �
�!
F = (�F1;�F2;�F3) : Applying it to

�!
E and using that div

�!
E = 0, we obtain

that

�
�!
E =

1

c2
@tt
�!
E :

Denoting by u any component of
�!
E we obtain that u satis�es the wave equation

@ttu = c2�u;

that is,

@ttu = c2 (@x1x1u+ @x2x2u+ @x3x3u) :

Similarly, any component of
�!
B satis�es the wave equation. In particular, if the electric

force
�!
E is stationary, that is, does not depend on time, then we obtain the Laplace

equation �u = 0:
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Vibrating string

Vibrating strings are used in many musical instruments, such as pianos, guitars, etc.
The frequency of the sound produced by a vibrating string can be determined mathe-
matically using the string equation that we are going to derive.
Assume that initially the string rests on the x-axis and denote by u (x; t) the ver-

tical displacement of the string at the point x 2 R at time t. Assume also that the
oscillations of the string from the horizontal position are small. Under this assumption
the horizontal component of the tension force in the string will have the constant value
that we denote by T .
Fix time t and denote by �x the angle between the tangential direction at the point

(x; u (x; t)) and the x-axis. Denote by Tx the magnitude of tension at the point x.
Note that the direction of the tension is tangential to the string. Since the shape of
the string is given by the graph of function x 7! u (x; t), we have

tan�x = @xu:

Since the horizontal component of tension is Tx cos�x, we obtain

Tx cos�x = T:

The net force acting on the piece (x; x+ h) of the string in the vertical direction is
equal to

Tx+h sin�x+h � Tx sin�x = T
sin�x+h
cos�x+h

� T
sin�x
cos�x

= T@xu (x+ h; t)� T@xu (x; t) :

By Newton�s second law, the net force is equal to ma where m is the mass of the piece
(x; x+ h) and a is the acceleration in the vertical direction. Since m = �h where � is
the linear density of the string and a = @ttu, we obtain the equation

T@xu (x+ h; t)� T@xu (x; t) = �h@ttu:

Dividing by h and letting h! 0, we obtain

T@xxu = �@ttu;

that is,
@ttu = c2@xxu

where c =
p
T=�: This is the vibrating string equation that coincides with the 1-

dimensional wave equation.

Vibrating membrane

Similarly, consider a two-dimensional membrane, that initially rests on the (x1; x2)-
plane and denote by u (x; t) the vertical displacement of the membrane at the point
x 2 R2 at time t. Assuming that the oscillations of the membrane from the horizontal
position are small, one obtains the following equation

@ttu = c2 (@x1x1u+ @x2x2u) ;
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which is a two-dimensional wave equation.
In general we will consider an n-dimensional wave equation

@tt = c2�u

where u = u (x; t) and x 2 Rn, t 2 R. Here c is a positive constant, but we will see
that c is always the speed of wave propagation described by this equation. 23.10.15

0.1.3 Divergence theorem

Recall the divergence theorem of Gauss. A bounded open set 
 � Rn is called a region
if there is a C1 function � de�ned in an open neighborhood 
0 of 
 such that

� (x) < 0 in 


� (x) = 0 on @


� (x) > 0 in 
0 n 


and r� 6= 0 on @
 (in words: 
 is a sublevel set of a C1-function that is non-singular
on @
). The latter condition implies that @
 is a C1 hypersurface.

I
Φ<0 Φ>0

Φ=0

ν

ν

xBR

I'

For any point x 2 @
 de�ne the vector

� (x) =
r�
jr�j :

The function � : @
! Rn is called the outer unit normal vector �eld on @
:
For example, if 
 = BR where

BR = fx 2 Rn : jxj < Rg

is the ball of radius R centered at the origin, then � (x) = jxj2�R2 satis�es the above
properties. Hence, the ball is a region. Since r� = 2x, we obtain that the outer unit
normal vector �eld on @BR is

� (x) =
x

jxj :

Divergence theorem of Gauss. Let 
 be a region in Rn and � the outer unit
normal vector �eld on @
. Then for any C1 vector �eld

�!
F : 
! Rn we haveZ




div
�!
F (x) dx =

Z
@


�!
F � � d�; (0.5)
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where � is the surface measure on @
, div
�!
F =

Pn
k=1 @xkFk is the divergence of

�!
F ,

and
�!
F � � is the scalar product of the vectors �!F ; �:

0.1.4 Heat equation

Heat conductivity

Let u (x; t) denote the temperature in some medium at a point x 2 R3 at time t. Fix
a region 
 � R3. The amount Q of the heat energy that has �own into 
 through its
boundary @
 between the time moments t and t+ h is equal to

Q =

Z t+h

t

�Z
@


k@�u d�

�
dt;

where � is the outer unit normal vector �eld to @
 and k = k (x) is the thermal
conductance of the material of the body.

I

ν
dσ

dx

Indeed, by the law of heat conductivity, discovered by Jean Baptiste Joseph Fourier
in 1822, the in�ux of the heat energy through the surface element d� in unit time is
proportional to the change of the temperature across d�, that is to @�u, and the
coe¢ cient of proportionality k is determined by the physical properties of the material.
On the other hand, the amount of heat energy Q0 acquired by a region 
 � R3

from time t to time t+ h is equal to

Q0 =

Z



(u (x; t+ h)� u (x; t)) c�dx;

where � is the density of the material of the body and c is its heat capacity (both
c and � are functions of x). Indeed, the volume element dx has the mass �dx, and
increase of its temperature by one degree requires c�dx of heat energy. Hence, increase
of the temperature from u (x; t) to u (x; t+ h) requires (u (x; t+ h)� u (x; t)) c�dx of
heat energy.
By the law of conservation of energy, in the absence of heat sources we have Q = Q0;

that is, Z t+h

t

�Z
@


k@�u d�

�
dt =

Z



(u (x; t+ h)� u (x; t)) c�dx:

Dividing by h and passing to the limit as h! 0, we obtainZ
@


k@�u d� =

Z



(@tu) c�dx:
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Applying the divergence theorem to the vector �eld
�!
F = kru, we obtainZ

@


k@�u d� =

Z
@


�!
F � � =

Z



div
�!
F dx =

Z



div (kru) dx;

which implies Z



c� @tu dx =

Z



div (kru) dx:

Since this identity holds for any region 
, it follows that the function u satis�es the
following heat equation

c� @tu = div (kru) :
In particular, if c; � and k are constants, then, using that

div (ru) =
nX
k=1

@xk (ru)k =
nX
k=1

@xk@xku = �u;

we obtain the simplest form of the heat equation

@tu = a2�u;

where a =
p
k= (c�). In particular, if the temperature function u is stationary, that is,

time independent, then u satis�es the Laplace equation �u = 0:

Stochastic di¤usion

We consider here Brownian motion �an erratic movement of a microscopic particle
suspended in a liquid, that was �rst observed by a botanist Robert Brown in 1828 (see
a picture below). This irregular movement occurs as the result of a large number of
random collisions that the particle experience from the molecules.

Xt

0

I

Brownian path in R2 The event Xt 2 


Based on this explanation, Albert Einstein suggested in 1905 a mathematical model
of Brownian motion. Assuming that the particle starts moving at time 0 at the origin
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of R3, denote its random position at time t by Xt. One cannot predict the position of
the particle deterministically as in classical mechanics, but can describe its movement
stochastically, by means of transition probability P (Xt 2 
) for any open set 
 and
any time t. The transition probability has a density: a function u (x; t) such that, for
any open set 
 � R3,

P (Xt 2 
) =
Z



u (x; t) dx:

Einstein showed that the transition density u (x; t) satis�es the following di¤usion equa-
tion

@tu = D�u;

where D > 0 is the di¤usion coe¢ cient depending on the properties of the particle and
surrounding medium. In fact, Einstein derived an explicit formula for D and made a
prediction that the mean displacement of the particle after time t is

p
4Dt. The latter

prediction was veri�ed experimentally by Jean Perrin in 1908, for which he received a
Nobel Prize for Physics in 1926. The experiment of Jean Perrin was considered as the
�nal con�rmation of the molecular structure of the matter.
Obviously, the di¤usion equation is identical to the heat equation.

0.1.5 Schrödinger equation

In 1926, Erwin Schrödinger developed a new approach for describing motion of elemen-
tary particles in Quantum Mechanics. In this approach the movement of elementary
particle is described stochastically, by means of the transition probability and its den-
sity. More precisely, the transition density of the particle is equal to j (x; t)j2 where
 (x; t) is a complex valued function that is called the wave function and that satis�es
the following Schrödinger equation:

i~@t = �
~2

2m
� + U ;

where m is the mass of the particle, U is the external potential �eld, ~ is the Planck
constant, and i =

p
�1. For his discovery, Schrödinger received a Nobel Prize for

Physics in 1933.
For U = 0 we rewrite this equation in the form

@t = i
~
2m
� ;

which looks similarly to the heat equation but with an imaginary coe¢ cient in front of
� .

The main equations to be considered in this lecture course are the Laplace, heat and
wave equations.
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0.2 Quasi-linear PDEs of second order and change
of coordinates

In all the above examples the PDEs are of the second order, that is, the maximal order
of partial derivatives involved in the equation is equal to 2. Although there are also
important PDEs of higher order, we will restrict ourselves to those of the second order.
Consider a second order PDE in Rn (or in a domain of Rn) of the form

nX
i;j=1

aij (x) @xixju+ �(x; u;ru) = 0 (0.6)

where aij and � are given functions. If � = 0 then this equation is called linear, because
the expression in the left hand side is a linear function of the second derivatives @xixju:
With a general function �, the equation is called quasi-linear.
A solution u of (0.6) is always assumed to be C2. Since @xixju = @xjxiu, it follows

that we can assume that aij = aji; that is, the matrix a = (aij) is symmetric.
Let us make a linear change of the coordinates x1; :::; xn and see how the PDE (0.6)

changes. The goal of that is to try and �nd a change that simpli�es (0.6). So, consider
a linear transformation of coordinates

y =Mx

where M = (Mij)
n
i;j=1 is a non-singular matrix and x and y are regarded as columns.

Explicitly we have, for any k = 1; :::; n,

yk =
nX
k=1

Mkixi :

The function u (x) can be regarded also as a function of y because x is a function of y.
By the chain rule we have

@xiu =
X
k

@yk
@xi

@yku =
X
k

Mki@yku

and

@xixju = @xj
X
k

Mki@yku =
X
k

Mki@xj (@yku) =
X
k

Mki

 X
l

Mlj@yl (@yku)

!
=

X
k;l

MkiMlj@ykylu;

so that

X
i;j

aij (x) @xixju =
X
i;j

aij (x)
X
k;l

MkiMlj@ykylu =
X
k;l

 X
i;j

aij (x)MkiMlj

!
@ykylu

=
X
k;l

bkl (y) @ykylu
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where
bkl (y) =

X
i;j

Mkiaij (x)Mlj:

For the matrices a = (aij) and b = (bkl), we obtain the identity

b =MaMT : (0.7)

Hence, the change y =Mx brings the PDE (0.6) to the form

nX
k;l=1

bkl (y) @ykylu+	(y; u;ru) = 0; (0.8)

where b is given by (0.7). Moreover, the left hand sides of (0.6) and (0.8) are identical.
Now we �x a point x0 and try to �nd M so that the matrix b at y0 = Mx0 is

as simple as possible. Write for simplicity aij = aij (x0) and consider an auxiliary
quadratic form X

i;j

aij�i�j = �Ta�; (0.9)

where � 2 Rn is a new variable (column) vector. The quadratic form (0.9) is called the
characteristic form of (0.6) at x0.
Consider in (0.9) the change � =MT�:X

i;j

aij�i�j = �TMaMT� = �T b� =
X
k;l

bkl�k�l:

Hence, the change � = MT� in the characteristic form (0.9) of the PDE (0.6) results
in the characteristic form of the PDE (0.8). Shortly, the change y = Mx in the PDE
is compatible with the change � =MT� in the characteristic form.
As it is known from Linear Algebra, by a linear change � = MT� any quadratic

form can be reduced to a diagonal form; in other words, there a non-singular matrix
M such that the matrix b = MaMT is a diagonal matrix with diagonal elements �1
and 0:

b = diag(1; :::1| {z }
p

;�1; :::;�1| {z }
q

; 0; :::; 0):

One says that the matrix a (x0) has signature (p; q) : In this case we say that (0.8) is
the canonical form of (0.6) at x0:

De�nition. We say that the PDE (0.6) has at the point x0

� elliptic type if the matrix a (x0) has signature (n; 0) (that is, the matrix a (x0) is
positive de�nite);

� hyperbolic type if a (x0) has signature (n� 1; 1) or (1; n� 1)

� parabolic type if a (x0) has signature (n� 1; 0) or (0; n� 1) :
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This classi�cation is full in the case of dimension n = 2: indeed, in this case the
only possibilities for signatures are (2; 0) ; (1; 1) and (1; 0) and the symmetric ones,
which gives us the above three cases. For a general dimension n there are many other
signatures that are not mentioned in the above De�nition.
If the coe¢ cients aij (x) do not depend on x, then the canonical form (and, hence,

the type) is the same at all points.

Example. The Laplace equation in Rn has the form

@x1x1u+ :::+ @xnxnu = 0;

whose characteristic form is
�21 + :::+ �2n:

It is already diagonal and has signature (n; 0). Hence, the Laplace equation has elliptic
type (at all points).

The n-dimensional wave equation

@ttu = �u

can be regarded as a PDE inRn+1 with the coordinates (t; x1; :::; xn). It can be rewritten
in the form

@ttu� @x1x1u� :::� @xnxnu = 0;

and its characteristic form is
�20 � �21 � :::� �2n

has signature (1; n). Hence, the wave equation is of hyperbolic type.
The n-dimensional heat equation

@tu = �u

can also be regarded as a PDE in Rn+1 as follows

@tu� @x1x1u� :::� @xnxnu = 0;

and its characteristic form is ��21 � ::: � �2n: It has signature (0; n), and its type is
parabolic.

Example. Let us bring to the canonical form the PDE in R2

@xxu� 2@xyu� 3@yyu+ @yu = 0: (0.10)

Here we use notation (x; y) for the coordinates instead of (x1; x2). Hence, the new
coordinates will be denoted by (x0; y0) instead of (y1; y2).
The matrix a of (0.10) is

a =

�
1 �1
�1 �3

�
and the characteristic form of (0.10) is

�2 � 2�� � 3�2 = (� � �)2 � 4�2 = (�0)2 � (�0)2
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where

�0 = � � �

�0 = 2�:

In particular, we see that the signature of a is (1; 1) so that the type of (0.10) is
hyperbolic.
The inverse transformation is

� = �0 +
1

2
�0

� =
1

2
�0

whence we obtain

MT =

�
1 1

2

0 1
2

�
and M =

�
1 0
1
2

1
2

�
:

Therefore, the desired change of variables is

x0 = x

y0 =
1

2
x+

1

2
y

Under this change we have

@xxu� 2@xyu� 3@yyu = @x0x0u� @y0y0u

and

@yu =
@x0

@y
@x0u+

@y0

@y
@y0u =

1

2
@y0u:

Hence, the canonical form of (0.10) is

@x0x0u� @y0y0u+
1

2
@y0u = 0:

Example. Let us show how to solve the PDE

@xyu = 0

in R2 (and in any open convex subset of R2). We assume that u 2 C2 (R2). Since
@y (@xu) = 0, we see that the function @xu is a constant as a function of y, that is,

@xu (x; y) = f (x) ;

for some C1 function f . Integrating this identity in x, we obtain

u (x; y) =

Z
f (x) dx+ C;

where C can depend on y. Renaming
R
f (x) dx back into f (x) and denoting C by

g (y), we obtain
u (x; y) = f (x) + g (y)
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for arbitrary C2 functions f and g. Conversely, any function u of this form satis�es
uxy = 0. Hence, the general solution of uxy = 0 is given by

u (x; y) = f (x) + g (y) :

This is a unique situation when a PDE can be explicitly solved. For other equations
this is typically not the case.

The same argument works if 
 is a convex open subset of R2 and a function u 2 C2 (
) satis�es
@xyu = 0 in 
. Denote by I the projection of 
 onto the axis x and by J the projection of 
 onto the
axis y, so that I; J are open intervals. For any x 2 I, the function u (x; y) is de�ned for y 2 Jx where
Jx is the x-section of 
 (by convexity, Jx is an open interval). Since @y (@xu) = 0 on Jx, we obtain
that @xu as a function of y is constant on Jx, that is,

@xu (x; y) = ef (x)
for all (x; y) 2 
, where ef is a function on I. For any y 2 J , denote by Iy the y-section of 
 and
integrate the above identity in x 2 Iy. We obtain

u (x; y) = f (x) + g (y)

for all (x; y) 2 
, for some function g de�ned on J . It follows that f 2 C2 (I) and g 2 C2 (J).

Example. Let us �nd the general C2 solution of the following PDE in R2:

c2@xxu� @yyu = 0 (0.11)

where c > 0 is a constant. Let us show that it can be reduced to

@x0y0u = 0:

Indeed, the characteristic form is

c2�2 � �2 = (c� + �) (c� � �) = �0�0

where

�0 = c� + �

�0 = c� � �:

It follows that

� =
1

2c
(�0 + �0)

� =
1

2
(�0 � �0)

The matrix M is therefore

M =

�
1
2c

1
2

1
2c

�1
2

�
and the change of coordinates is

x0 =
1

2c
x+

1

2
y =

1

2c
(x+ cy)

y0 =
1

2c
x� 1

2
y =

1

2c
(x� cy) :
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In the new coordinates the PDE becomes

@x0y0u = 0

whose solution is
u = f (x0) + g (y0)

with arbitrary C2 functions f; g. Hence, the solution of (0.11) is

u = f

�
1

2c
(x+ cy)

�
+ g

�
1

2c
(x� cy)

�
= F (x+ cy) +G (x� cy)

where F (s) = f
�
1
2c
s
�
and G (s) = g

�
1
2c
s
�
are arbitrary C2 functions on R.

The equation (0.11) coincides with the one-dimensional wave equation

@ttu = c2@xxu; (0.12)

if we take y = t: Hence, the latter has the general solution

u (x; t) = F (x+ ct) +G (x� ct) : (0.13)

Note that, for a �xed t > 0, the graph of G (x� ct) as a function of x is obtained from
the graph of G (x) by shifting to the right at distance ct, and the graph of F (x+ ct) is
obtained from the graph of F (x) by shifting to the left at distance ct:Hence, u is the
sum of two waves running at speed c: one to the right and the other to the left.

G(x) G(xct)
F(x+ct) F(x)

ctct

If 
 is a convex open subset in R2 and u 2 C2 (
) satis�es (0.12) in 
 then we obtain similarly
representation (0.13), where F and G are C2 functions on the intervals I and J that are the projection
of 
 onto the axis x0 and y0, respectively, where

x0 = x+ ct; y0 = x� ct:

In other words, I consists of all possible values of x+ ct with (x; t) 2 
 and J consists of all possible
values of x� ct with (x; t) 2 
.
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Chapter 1

Laplace equation and harmonic
functions

28.10.15

In this Chapter we are concerned with the Laplace equation �u = 0 and Poisson
equation �u = f in a bounded domain (=open set) 
 � Rn; where the function u is
always assumed to be C2. We always assume that n � 2 unless otherwise speci�ed.
As we already know, the family of harmonic functions is very large: for example,

in R2 the real part of any analytic function is a harmonic function. In applications
one needs to select one harmonic function by imposing additional conditions, most
frequently �the boundary conditions.
De�nition. Given a bounded domain 
 � Rn, a function f : 
 ! R and a function
' : @
! R, the Dirichlet problem is a problem of �nding a function u 2 C2 (
)\C

�


�

that satis�es the following conditions:�
�u = f in 

u = ' on @
:

(1.1)

In other words, one needs to solve the Poisson equation �u = f in 
 with the
boundary condition u = ' on @
. In particular, if f = 0 then the problem (1.1)
consists of �nding a harmonic function in 
 with prescribed boundary condition.
We will be concerned with the questions of existence and uniqueness of solution to

(1.1) as well as with various properties of solutions.

1.1 Maximum principle and uniqueness in Dirichlet
problem

Here we will prove the uniqueness in the Dirichlet problem (1.1) using the maximum
principle. Any C2 function u satisfying �u � 0 in a domain 
 is called subharmonic
in 
.

Theorem 1.1 (Maximum principle) Let 
 be a bounded domain. If u 2 C2 (
) \
C
�


�
is subharmonic in 
 then

max



u = max
@


u: (1.2)

19
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Since @
 and 
 are compact, the function u attains its supremum on each of this
sets, so that the both sides of (1.2) are well de�ned. Also, (1.2) can be rewritten in the
form

sup


u = sup

@

u: (1.3)

Theorem 1.1 can be formulated as follows: any subharmonic function attains its max-
imum at the boundary.

2
1

0
1

0
1 0

1
2 2

2

1

2

3

4

5

Subharmonic function f (x; y) = x2 + y2

Proof. Assume �rst that �u > 0 in 
. Let z be a point of maximum of u in 
: If
z 2 @
 then there is nothing to prove. Assume that z 2 
: Since u takes a maximum
at z, we all �rst derivatives @xiu of u vanish at z and the second derivatives @xixiu are
at z non-positive, that is,

@xixiu (z) � 0:
Adding up for all i, we obtain that

�u (z) � 0;

which contradicts �u > 0 in 
 and thus �nishes the proof.
In the general case of �u � 0, let us choose a function v 2 C2 (Rn) such that

�v > 0. For example, we can take v = jxj2 since

� jxj2 = �
�
x21 + :::+ x2n

�
= 2n;

or v = eCx1 since
�eCx1 = @x1x1e

Cx1 = C2eCx1

Consider for any " > 0 the function u+ "v. Since

�(u+ "v) = �u+ "�v > 0;

we obtain by the �rst part of the proof that

max


(u+ "v) = max

@

(u+ "v) :

Passing to the limit as "! 0, we obtain (1.2), which �nishes the proof.

A C2 function u is called superharmonic in 
 if �u � 0 in 
.
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Corollary 1.2 (a) (Minimum principle) Let 
 be a bounded domain. If u 2 C2 (
)\
C
�


�
is superharmonic in 
 then

min


u = min

@

u: (1.4)

(b) (Maximum modulus principle) If u 2 C2 (
) \ C
�


�
is harmonic in 
 then

max


juj = max



juj (1.5)

Proof. If u is superharmonic then �u is subharmonic. Applying Theorem 1.1 to �u,
we obtain

max


(�u) = max

@

(�u) ;

whence (1.4) follows. If u is harmonic, then it is subharmonic and superharmonic, so
that both u and �u satisfy the maximum principle. Hence, (1.5) follows.

We use the maximum principle to prove uniqueness statement in the Dirichlet
problem.

Corollary 1.3 The Dirichlet problem (1.1) has at most one solution u.

Proof. Let u1 and u2 be two solutions of (1.1). The function u = u1�u2 satis�es then�
�u = 0 in 

u = 0 on @
:

By the maximum principle (1.5) of Corollary 1.2 we obtain

max


juj = max

@

juj = 0

and, hence, u � 0 in 
. It follows that u1 � u2, which was to be proved.

In the next theorem we give an amazing application of the maximum principle.

Theorem 1.4 (Fundamental theorem of Algebra) Any polynomial

P (z) = zn + a1z
n�1 + :::+ an

of degree n � 1 with complex coe¢ cients a1; :::; an has at least one complex zero.

Proof. We need to prove that there exists z 2 C such that P (z) = 0: Assume from
the contrary that P (z) 6= 0 for all z 2 C. Since P (z) is a holomorphic function on C,
we obtain that f (z) = 1

P (z)
is also a holomorphic function on C. Note that

jP (z)j ! 1 as jzj ! 1;

because
jP (z)j � jzjn as jzj ! 1:

It follows that
jf (z)j ! 0 as jzj ! 1: (1.6)
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We know that the function u = Re f is harmonic in R2. Applying the maximum
principle to u in the ball

BR =
�
z 2 R2 : jzj < R

	
;

we obtain

max
BR

juj = max
@BR

juj ;

in particular,

ju (0)j � max
@BR

juj : (1.7)

On the other hand, by (1.6) we have

max
z2@BR

ju (z)j � max
z2@BR

jf (z)j ! 0 as R!1;

which together with (1.7) yields

ju (0)j � lim
R!1

max
@BR

juj = 0

and, hence, u (0) = 0. In other words, we have Re f (0) = 0. Similarly one obtains that
Im f (0) = 0 whence f (0) = 0, which contradicts to f (z) = 1

P (z)
6= 0:

1.2 Representation of C2 functions by means of po-
tentials

Let us introduce the notation: in Rn with n > 2

E (x) =
1

!n (n� 2) jxjn�2
;

where !n is the area of the unit sphere Sn�1 in Rn (for example, !3 = 4�), and in R2

E (x) =
1

2�
ln
1

jxj :

De�nition. The function E (x) is called a fundamental solution of the Laplace operator
in Rn:

We already know that the function E (x) is harmonic in Rn n f0g, but it has singu-
larity at 0.
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Function E (x) in the case n = 2

Set also, for all x; y 2 Rn

E (x; y) := E (x� y) :

If 
 is a region in Rn then as before we denote by � the outer unit normal vector
�eld on @
 and by � the surface measure on @
:

Theorem 1.5 Let 
 be a bounded region in Rn: Then, for any function u 2 C2
�


�

and any y 2 


u (y) = �
Z



E (x; y)�u (x) dx+

Z
@


E (x; y) @�u (x) d� (x)�
Z
@


@�E (x; y)u (x) d� (x) ;

(1.8)
where in @�E (x; y) the derivative is taken with respect to the variable x.
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In the proof we will use the 2nd Green formula from Exercises: if 
 is a bounded
region and u; v 2 C2

�


�
thenZ




(v�u� u�v) dx =

Z
@


(v@�u� u@�v) d�: (1.9)

Proof. For simplicity of notation let y = 0; so that (1.8) becomes

u (0) = �
Z



E (x)�u (x) dx+

Z
@


E (x) @�u (x) d� (x)�
Z
@


@�E (x)u (x) d� (x)

or shorter:

u (0) = �
Z



E�u dx+

Z
@


(E@�u� u@�E) d�: (1.10)

Choose " > 0 so that B" � 
 and consider the set


" = 
 nB"

that is a region (see Exercises). The functions u;E belong to C2
�

"
�
so that we can

use the 2nd Green formula in 
":Z

"

(E�u� u�E) dx =

Z
@
"

(E@�u� u@�E) d�: (1.11)

Since �E = 0 in 
"; the term u�E vanishes. 30.10.15

Next we let "! 0 in (1.9). In the left hand side we haveZ

"

(E�u� u�E) dx =

Z

"

E�u dx!
Z



E�u dx: (1.12)

Indeed, since 
 n 
" = B", we have����Z



E�u dx�
Z

"

E�u dx

���� =

����Z
B"

E�u dx

����
� sup




j�uj
Z
B"

Edx:

Since �u is bounded, it su¢ ces to verify thatZ
B"

Edx! 0 as "! 0:

The latter can be seen by means of integration in polar coordinates: since in the case
n > 2

E (x) =
1

!n (n� 2) rn�2
;

and
� (@Br) = !nr

n�1;
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we obtain Z
B"

Edx =

Z "

0

�Z
@Br

Ed�

�
dr

=

Z "

0

1

!n (n� 2) rn�2
!nr

n�1dr

=
1

n� 2

Z "

0

rdr =
"2

2 (n� 2) ! 0 as "! 0:

The case n = 2 is handled similarly (see Exercises).
In the right hand side of (1.11) the boundary @
" consists of two disjoint parts: @


and and @B", so that Z
@
"

=

Z
@


+

Z
@B"

:

Observe also that � is outer normal to @
" with respect to 
", which means that on
@B" the vector �eld � ist inner with respect to B":
Let us �rst show that Z

@B"

E@�ud� ! 0 as "! 0: (1.13)

Indeed, the function @�u = ru � � is bounded because u 2 C1
�


�
, andZ

@B"

Ed� =

Z
@B"

1

!n (n� 2) "n�2
d� =

1

!n (n� 2) "n�2
� (@B")

=
1

!n (n� 2) "n�2
!n"

n�1 =
"

(n� 2) ! 0:

Let us compute the limit

lim
"!0

Z
@B"

u@�E d�:

Using again polar coordinates, observe that the direction of � on @B" is opposite to
the radial direction, whence it follows that

@�E = �@rE = �@r
�

1

!n (n� 2) rn�2

�
=

1

!nrn�1
:

Consequently, we obtain Z
@B"

@�E d� =
1

!n"n�1
� (@B") = 1:

Observe thatZ
@B"

u (x) @�E (x) d� =

Z
@B"

u (0) @�E d� +

Z
@B"

(u (x)� u (0)) @�E d�

= u (0) +

Z
@B"

(u (x)� u (0)) @�E d�
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and ����Z
@B"

(u (x)� u (0)) @�E d�

���� � sup
x2@B"

ju (x)� u (0)j
Z
@B"

@�E d�

= sup
x2@B"

ju (x)� u (0)j ! 0 as "! 0;

which implies Z
@B"

u (x) @�E (x) d� ! u (0) as "! 0: (1.14)

Combining (1.11), (1.12), (1.13), (1.14), we obtainZ



E�u dx =

Z
@


(E@�u� u@�E) d� + lim
"!0

Z
@B"

(E@�u� u@�E) d�

=

Z
@


(E@�u� u@�E) d� � u (0) ;

whence (1.10) follows.

All the terms in the right hand side of (1.8) have physical meaning in the case of
n = 3: The term Z




E (x; y)�u (x) dx

is the electric potential of the change in 
 with the density �u. Its is also called
Newtonian potential, as in the case �u � 0 it is also a gravitational potential.
The term Z

@


E (x; y) @�u (x) d� (x)

is the potential of a charge distributed on the surface @
 with the density @�u. It is
also called the potential of a single layer.
The term Z

@


@�E (x; y)u (x) d� (x)

happens to be the potential of a dipole �eld distributed on the surface @
 with the
density u. It is also called the potential of a double layer.

1.3 Green function

Let 
 be a domain in Rn. Assume that, for any y 2 
 there exists a function hy (x) 2
C2
�


�
such that �

�hy = 0 in 

hy (x) = E (x; y) for all x 2 @
 (1.15)

De�nition. Under the above assumption, the function

G (x; y) := E (x; y)� hy (x)

is called the Green function (of the Laplace operator) in 
.
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Note that G (x; y) is de�ned for all x 2 
 and y 2 
. By (1.15) we see that the
function

x 7! G (x; y)

is harmonic in 
 n fyg, and that

G (x; y) = 0 for all x 2 @
:

Corollary 1.6 Let G be the Green function of a bounded region 
 � Rn: Then, for
any function u 2 C2

�


�
and any y 2 
,

u (y) = �
Z



G (x; y)�u (x) dx�
Z
@


@�G (x; y)u (x) d� (x) : (1.16)

Proof. By Theorem (1.5) we have

u (y) = �
Z



E (x; y)�u (x) dx+

Z
@


(E (x; y) @�u (x)� @�E (x; y)u (x)) d� (x) :

(1.17)
By the 2nd Green formula (1.9) we haveZ




(hy�u� u�hy) dx =

Z
@


(hy@�u� u@�hy) d�:

Using �hy = 0, rewrite this identity as follows:

0 = �
Z



hy�u dx+

Z
@


(hy@�u� u@�hy) d�:

Subtracting it from (1.17) we obtain

u (y) = �
Z



G (x; y)�u (x) dx+

Z
@


(G (x; y) @�u (x)� @�G (x; y)u (x)) d� (x) :

Finally, observing that G (x; y) = 0 at @
, we obtain (1.16).

It is possible to show that if the Green function exists then necessarily G (x; y) =
G (y; x) for all x; y 2 
 and that G (x; y) > 0 provided 
 is connected (see Exercises).
Consider the Dirichlet problem�

�u = f in 

u = ' on @
:

(1.18)

If u 2 C2
�


�
solves this problem then by (1.16)

u (y) = �
Z



G (x; y) f (x) dx�
Z
@


@�G (x; y)' (x) d� (x) : (1.19)

The identity (1.19) suggests the following program for solving the Dirichlet problem:

1. construct the Green function of 
;

2. prove that (1.19) gives indeed a solution of (1.18) under certain assumptions
about f and '.

We will realize this program in the case when 
 is a ball. For general domains

 there are other methods of proving solvability of (1.18) without using the Green
function.



28 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

1.4 The Green function in a ball

Consider in Rn the ball of radius R > 0:

BR = fx 2 Rn : jxj < Rg :

To construct the Green function of BR, we will search the function hy in the form

hy (x) = cyE (x; y
�)

where y� is a point outside BR. Then hy is automatically harmonic in BR, but we need
also to match the boundary condition

hy (x) = E (x; y) for x 2 @BR:

This is achieved by a careful choice of y� and cy using speci�c geometric properties of
the ball.
For any y 2 Rn n f0g de�ne y� as inversion of y with respect to BR, that is,

y� = R2
y

jyj2
:

In other words, the vector y� has the same direction as y and jy�j = R2

jyj , that is,

jyj jy�j = R2: (1.20)

Clearly, if y 2 BR then y� 2 B
c

R and if y 2 @BR then y� = y:

Theorem 1.7 The Green function G (x; y) of the ball BR exists and is given in the
case n > 2 by the formulas

G(x; y) = E(x; y)�
�
R

jyj

�n�2
E(x; y�) if y 6= 0 (1.21)

G (x; 0) =
1

!n (n� 2)

�
1

jxjn�2
� 1

Rn�2

�
; if y = 0; (1.22)

and in the case n = 2 by the formulas

G(x; y) = E(x; y)� E(x; y�)� 1

2�
log

R

jyj ; if y 6= 0; (1.23)

G(x; 0) =
1

2�

�
ln
1

jxj � ln
1

R

�
; if y = 0: (1.24)

Proof. We give the proof in the case n > 2 leaving the case n = 2 to Exercises. In
the both formulas (1.21)-(1.22) we have

G (x; y) = E (x; y)� hy (x)

where

hy (x) =

( �
R
jyj

�n�2
E(x; y�) y 6= 0;

1
!n(n�2)Rn�2 ; y = 0:
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We need to prove that hy (x) is harmonic in BR and that G (x; y) = 0 if x 2 @
.
In the case y = 0 the function hy (x) is constant and, hence, is harmonic; for

x 2 @BR, that is, for jxj = R we obviously have G (x; 0) = 0:
Consider the general case y 2 BR n f0g. The function

hy (x) =

�
R

jyj

�n�2
E(x; y�)

is harmonic away from y�. Since y� lies outside BR, we see that hy is harmonic in BR.
It remains to show that G (x; y) = 0 if x 2 @BR, which is equivalent to

1

jx� yjn�2
=

�
R

jyj

�n�2
1

jx� y�jn�2

that is, to
jx� y�j
jx� yj =

R

jyj : (1.25)

Indeed, we have

jx� y�j2 = jxj2 � 2x � y� + jy�j2

= jxj2 � 2 R
2

jyj2
x � y + R4

jyj2

=
R2

jyj2

 
jxj2 jyj2

R2
� 2x � y +R2

!
: (1.26)

If x 2 @BR, that is, jxj = R, then we obtain from (1.26)

jx� y�j2 =
R2

jyj2
�
jyj2 � 2x � y + jxj2

�
=

R2

jyj2
jx� yj2 ;

which �nishes the proof.

BR
y

y*

x

0

Alternatively, one can prove (1.25) observing that the triangles 0xy and 0y�x are
similar. Indeed, they have a common angle at the vertex 0 and by (1.20)

jy�j
jxj =

jxj
jyj ;
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where in the numerator we use the sides of the triangle 0y�x and in the denominator
�those of 0xy. It follows from the similarity that also

jx� y�j
jx� y�j =

jxj
jyj ;

which is equivalent to (1.25).

Corollary 1.8 We have, for all y 2 BR and x 2 BR, x 6= y; in the case n > 2

G (x; y) =
1

!n (n� 2)

0B@ 1

jx� yjn�2
� 1�

jxj2jyj2
R2

� 2x � y +R2
�n�2

2

1CA (1.27)

and in the case n = 2

G (x; y) =
1

2�

0@ln 1

jx� yj � ln
1q

jxj2jyj2
R2

� 2x � y +R2

1A (1.28)

Proof. Consider the case n > 2: If y = 0 then (1.27) obviously identical to (1.22). If
y 6= 0 then we have by (1.21).

G(x; y) =
1

!n (n� 2)

 
1

jx� yjn�2
�
�
R

jyj

�n�2
1

jx� y�jn�2

!
:

Substituting here jx� y�j from (1.26), we obtain (1.27). The case n = 2 is similar.
04.11.15

Corollary 1.9 We have G (x; y) = G (y; x) and G (x; y) > 0 for all distinct points
x; y 2 BR:

Proof. The symmetry G (x; y) = G (y; x) is obvious from (1.27) and (1.28). Let us
prove that G (x; y) > 0 for x; y 2 BR. By (1.27) it su¢ ces to prove that

jxj2 jyj2

R2
� 2x � y +R2 > jx� yj2 :

This inequality is equivalent to

jxj2 jyj2

R2
� 2x � y +R2 > jxj2 � 2x � y + jyj2 ;

which is equivalent to

jxj2 jyj2 +R4 �R2 jxj2 �R2 jyj2 > 0

or to �
R2 � jxj2

� �
R2 � jyj2

�
> 0;

and the latter is obviously the case.
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1.5 Dirichlet problem in a ball and Poisson formula

Theorem 1.10 If u 2 C2
�
BR

�
solves the Dirichlet problem�
�u = f in BR
u = ' on @BR

then, for all y 2 BR,

u (y) = �
Z
BR

G (x; y) f (x) dx+
1

!nR

Z
@BR

R2 � jyj2

jx� yjn ' (x) d� (x) ; (1.29)

where G (x; y) is the Green function of BR:

Proof. By Corollary 1.6, we have, for any y 2 BR,

u (y) = �
Z
BR

G (x; y)�u (x) dx�
Z
@BR

@�G (x; y)u (x) d� (x) ;

which implies

u (y) = �
Z
BR

G (x; y) f (x) dx�
Z
@BR

@�G (x; y)' (x) d� (x) :

Comparison with (1.29) shows that it remains to prove the identity:

�@�G (x; y) =
1

!nR

R2 � jyj2

jx� yjn ;

where x 2 @BR and y 2 BR.
Consider the case n > 2 (the case n = 2 is similar). By Theorem 1.7, we have in

the case y 6= 0
G (x; y) = E (x; y)� cE (x; y�) ;

where

c =

�
R

jyj

�n�2
;

and in the case y = 0

G (x; 0) =
1

!n (n� 2)

�
1

jxjn�2
� 1

Rn�2

�
:

In the case y = 0 we have, using the polar radius r = jxj, that

�@�G (x; 0) = �@rG (x; 0) =
1

!nrn�1

����
r=R

=
1

!nRn�1
=

1

!nR

R2 � jyj2

jx� yjn :

In the case y 6= 0 we use the polar coordinates with the pole in y, so that r = jx� yj
and

E (x; y) =
1

!n (n� 2) rn�2
:
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ν

BR
y

y*

x
4E(x,y*)

4E(x,y)0

4r

Since rr = x�y
r
(see Exercises), we obtain by the chain rule

rE (x; y) = @r

�
1

!n (n� 2) rn�2

�
rr = � 1

!nrn�1
x� y

r
=

y � x

!n jx� yjn :

Since � = x
jxj , it follows that

@�E (x; y) = rE (x; y) � � =
y � x

!n jx� yjn �
x

jxj =
x � y � jxj2

!n jx� yjn jxj =
x � y �R2

!nR jx� yjn : (1.30)

In the same way we have

@�E (x; y
�) =

x � y� �R2

!nR jx� y�jn : (1.31)

Recall that

y� =
R2

jyj2
y

and by (1.25)

jx� y�j = R

jyj jx� yj :

Substituting these into (1.31), we obtain

@�E (x; y
�) =

x � y R2jyj2 �R2

!nR jx� yjn (R= jyj)n =
x � y � jyj2

!nR jx� yjn
jyjn�2

Rn�2

and

c@�E (x; y
�) =

�
R

jyj

�n�2
@�E (x; y

�) =
x � y � jyj2

!nR jx� yjn :

Combining with (1.30), we obtain

�@�G (x; y) = �@�E (x; y) + c@�E (x; y
�) =

R2 � jyj2

!nR jx� yjn ;

which was to be proved.

Let us interchange in (1.29) x and y, and introduce the following function

K (x; y) =
1

!nR

R2 � jxj2

jx� yjn ; (1.32)

de�ned for y 2 @BR and x 2 BR. This function is called the Poisson kernel.
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The graph of the two-dimensional Poisson kernel K (x; y) as a function of x.

Theorem 1.11 (Poisson formula) If ' 2 C (@BR) then the Dirichlet problem�
�u = 0 in BR
u = ' on @BR

(1.33)

has the following solution

u (x) =

Z
@BR

K (x; y)' (y) d� (y) ; x 2 BR: (1.34)

More precisely, there exists a function u 2 C2 (BR)\C
�
BR

�
that satis�es (1.33), and

this function is given by (1.34) for all x 2 BR.

Proof. It follows from (1.32) that the function K (x; y) is C1 as a function of x 2 BR,
for any y 2 @BR: Therefore, the function u (x) de�ned by (1.34) is also C1 in BR.
Moreover, for any partial derivative D� with respect to the variable x, we have

D�u (x) =

Z
@


D�K (x; y)' (y) d� (y) :

Observe also that K (x; y) as a function of x is harmonic in BR, that is, �K (x; y) = 0:
This can be checked directly, or one can see this as follows. By construction,

K (x; y) = �@�G (x; y)

where @� is taken to the variable y. Therefore, � as an operator in x and @� commute,
and we obtain

�K (x; y) = �@��G (x; y) = 0:
It follows that

�u (x) =

Z
@


�K (x; y)' (y) d� (y) = 0;

which proves the harmonicity of u.
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Now let us prove that u 2 C
�
BR

�
provided u is de�ned on @BR by u (x) = ' (x).

It su¢ ces to show that, for any z 2 @BR,

lim
x!z
x2BR

u (x) = ' (z) :

We start with the observations that K (x; y) > 0 for x 2 BR, which is obvious from
(1.32) and that Z

@BR

K (x; y) d� (y) = 1

for all x 2 BR. Indeed, the latter follows from the formula (1.29) of Theorem 1.10 with
u � 1.
It follows that

' (z) =

Z
@BR

K (x; y)' (z) d� (y)

and, hence,

u (x)� ' (z) =

Z
@BR

K (x; y) (' (y)� ' (z)) d� (y) ;

ju (x)� ' (z)j �
Z
@BR

K (x; y) j' (y)� ' (z)j d� (y) : (1.35)

We will show that the right hand side of (1.35) goes to 0 as x ! z. The reason for
that is the following: if the variable y is close to z then the integrand function is small
because ' (y) is close to ' (z), while if y is away from z then K (x; y) will be shown to
be small.
To make this argument rigorous, let us choose some small � > 0 and split the

integral in (1.35) into two parts:Z
@BR

=

Z
@BR\B�(z)

+

Z
@BRnB�(z)

: (1.36)

The �rst integral is estimates as follows:Z
@BR\B�(z)

K (x; y) j' (y)� ' (z)j d� (y) � sup
y2@BR\B�(z)

j' (y)� ' (z)j
Z
@BR

K (x; y) d� (y)

= sup
y2@BR\B�(z)

j' (y)� ' (z)j :

By the continuity of ', the last expression goes to 0 as � ! 0. In particular, for any
" > 0 there is � > 0 such that

sup
y2@BR\B�(z)

j' (y)� ' (z)j < "=2;

and, hence, the �rst integral is bounded by "=2.
The second integral in (1.36) is estimates as follows:Z
@BRnB�(z)

K (x; y) j' (y)� ' (z)j d� (y) � 2 sup j'j sup
y2@BRnB�(z)

K (x; y)� (@BR)

� C sup
y2@BRnB�(z)

R2 � jxj2

jx� yjn
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where C = 2
!nR

sup j'j� (@BR) : As x ! z, we can assume that jx� zj < �=2. Since
jy � zj � �, it follows then that jx� yj � �=2. Hence, the second integral is bounded
by the expression

C
R2 � jxj2

(�=2)n

that goes to 0 as x! z, because jxj ! R. In particular, the second integral is bounded
by "=2 if x is close enough to z, which implies thatZ

@BR

K (x; y) j' (y)� ' (z)j d� (y) < "

provided x is close enough to z, which �nishes the proof.

Lemma 1.12 (Properties of Newtonian potential) Let f be a bounded function in Rn
that has a compact support and is integrable. Then its Newtonian potential

v (x) =

Z
Rn
E (x; y) f (y) dy

is a continuous function in Rn. Moreover, if for some open set 
 � Rn we have
f 2 Ck (
) then also v 2 Ck (
). Furthermore, if k � 2 then v satis�es in 
 the
equation

�v = �f:

Proof. The proof is split into three steps. Let S = fx 2 Rn : f (x) 6= 0g be the support
of f so that we can write

v (x) =

Z
S

E (x; y) f (y) dy:

Step1: Let us prove that v is well-de�ned and is continuos. Since the function
f is bounded and the function y 7! E (x; y) is integrable in any bounded domain, in
particular, in S, we see that the function y 7! E (x; y) f (y) is also integrable in S and,
hence v (x) is �nite for any x 2 Rn. Let us show that, in fact v, is continuous in Rn.
Set M = sup jf j.
Fix z 2 Rn and show that v (x)! v (z) as x! z. Fix some " > 0 and write

v (x)� v (z) =

Z
Rn
(E (x; y)� E (z; y)) f (y) dy

=

Z
B"(z)

(E (x; y)� E (z; y)) f (y) dy +

Z
SnB"(z)

(E (x; y)� E (z; y)) f (y) dy:

For the �rst integral we have (assuming n � 3)����Z
B"(z)

E (z; y) f (y) dy

���� �M

Z
B"(z)

jE (z; y)j dy � C"2

and, assuming that x 2 B" (z),����Z
B"(z)

E (x; y) f (y) dy

���� � ����Z
B2"(x)

E (x; y) f (y) dy

���� � C"2:
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To estimate the integral over S nB" (z), observe that the function E (x; y) is continuous
in (x; y) in the domain x 2 B"=2 (z) and y 2 S nB" (z). Since this domain is compact,
this function is uniformly continuous. It follows that

E (x; y)� E (z; y) as x! z;

where the convergence is uniform in y. It follows thatZ
SnB"(z)

(E (x; y)� E (z; y)) f (y) dy ! 0 as x! z:

We obtain that
lim sup
x!z

jv (x)� v (y)j � 2C"2:

Since " > 0 is arbitrary, it follows that

lim
x!z

jv (x)� v (z)j = 0;

which proved the continuity of v in Rn.
Step 2: Assume that f 2 Ck0 (
) where Ck0 (
) is a subset of Ck (
) that consists

of functions f with a compact support in 
. In this case we have also f 2 Ck0 (Rn) :
Let us prove by induction in k that v 2 Ck (Rn). In the case k = 0 we know already
that v 2 C (Rn). For induction step from k � 1 to k, let us make change z = x� y in
the integral

v (x) =

Z
Rn
E (x� y) f (y) dy =

Z
Rn
E (z) f (x� z) dz

and compute the partial derivative @xiv as follows: 06.11.15

v (x+ tei)� v (x)

t
=

Z
Rn
E (z)

f (x+ tei � z)� f (x� z)

t
dz

!
Z
Rn
E (z) @xif (x� z) dz as t! 0 (1.37)

because
f (x+ tei � z)� f (x� z)

t
� @xif (x� z) as t! 0;

where convergence is uniform with respect to z, and function E (z) is integrable in
bounded domains (note that integration in (1.37) can be restricted to a compact domain
supp f (x� �)). Hence, @xiv exists and

@xiv (x) =

Z
Rn
E (z) @xif (x� z) dz =

Z
Rn
E (x� y) @yif (y) dy: (1.38)

In particular, @xiv is the Newtonian potential of @xif . Since @xif 2 Ck�10 (Rn), we
conclude by induction hypothesis that @xiv 2 Ck�1 (Rn). Since this is true for all
i = 1; :::; n, it follows that v 2 Ck (Rn) :
It follows from (1.38) that, for any multiindex � with j�j � k,

D�v (x) =

Z
Rn
E (x; y)D�f (y) dy:
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Consequently, in the case k � 2, we have

�v (x) =

Z
Rn
E (x; y)�f (y) dy:

Let us choose a large enough ball B containing a point x and supp f . By Theorem 1.5,
we have

f (x) = �
Z
B

E (x; y)�f (y) dy+

Z
@B

E (x; y) @�f (y) d� (y)�
Z
@B

@�E (x; y) f (y) d� (y) :

Since f and @�f vanish on @B, we obtain

f (x) = �
Z
B

E (x; y)�f (y) dy = ��v (x) ;

that is �v = �f .
Step 3: the general case. Assuming that f 2 Ck (
), we prove that v 2 Ck (
).

It su¢ ces to prove that, for any point x0 2 
, the function v is of the class Ck in
a neighborhood of x0. Besides, we will prove that if k � 2 then �v = �f in the
neighborhood of x.
Without loss of generality, let us take x0 = 0. Let B" be a small ball centered at x0

such that B4" � 
. Choose function ' 2 C1 (Rn) such that ' = 1 on B2" and ' = 0
outside B3", and represent v in the form

v = u+ w;

where

u (x) =

Z
Rn
E (x; y) ('f) (y) dy; w (x) =

Z
Rn
E (x; y) (1� ') f (y) dy:

Clearly, the function 'f belong to Ck0 (Rn). By Step 2, we obtain that u 2 Ck (Rn)
and in the case k � 2 also �u = �'f; which implies �u = �f in B", since ' = 1 in
B":
Note that (1� ') f = 0 in B2" so that

w (x) =

Z
SnB2"

E (x; y) (1� ') f (y) dy:

In the domain x 2 B" and y 2 Bc
2" the function E (x; y) is C

1 in (x; y). Therefore, the
function w (x) belongs to C1 (B") : Moreover, in B" we have

�w =

Z
SnB2"

�E (x; y)h (y) dy = 0:

Hence, we obtain that v = u+ w 2 Ck (B"), and in B"

�v = �u+�w = �f + 0 = �f;

which �nishes the proof.
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Example. Let us compute the integral

v (x) =

Z
BR

E (x; y) dy; (1.39)

that is, the Newtonian potential of the function f = 1BR . In the case n = 3 the
function �v (x) is the gravitational potential of the body BR in with the constant mass
density 1. We assume further n > 2. By Lemma 1.12 with f = 1BR we obtain that v
is a continuous function in Rn. Besides, since f � 0 in Bc

R then v 2 C1
�
B
c

R

�
and

�v = 0 in B
c

R:

Since f = 1 2 C1 (BR) then v 2 C1 (BR) and

�v = �1 in BR:

Also it is easy to see that v (x) depends only on jxj, because the integral in (1.39)
does not change under rotations around 0. This allows to conclude that outside BR

we have
v (x) = C1 jxj2�n + C2

(see Exercises), for some constants C1; C2. It is obvious from (1.39) that v (x)! 0 as
jxj ! 1, which implies that C2 = 0, that is,

v (x) = C1 jxj2�n outside BR:

By continuity, we have also

v (x) = C1R
2�n for x 2 @BR:

Hence, inside BR the function v solves the following problem:�
�v = �1 in BR
v = C1R

2�n on @BR

It is easy to see that the following function

v (x) = �jxj
2

2n
+ C0 (1.40)

satis�es �v = �1, and the constant C0 can be chosen to satis�es the boundary condi-
tion as follows:

� R2

2n
+ C0 = C1R

2�n: (1.41)

By the uniqueness of solution of the Dirichlet problem, we conclude that v (x) inside
BR is indeed given by (1.40), although we do not know yet explicitly the values of
C1; C0:
To determine them observe that

v (0) =

Z
BR

E (y) dy =

Z R

0

1

!n (n� 2) rn�2
!nr

n�1dr =
R2

2 (n� 2) ;
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which together with (1.40) at x = 0 implies

C0 =
R2

2 (n� 2) :

Then we can determine C1 from (1.41) as follows:

C1 =
Rn

n (n� 2) :

Hence, we obtain

v (x) =

(
Rn

n(n�2) jxj
2�n ; jxj � R

� jxj2
2n
+ R2

2(n�2) ; jxj � R:

Note that in domain jxj � R we have

v (x) =
!n
n
Rn

1

!n (n� 2) jxjn�2
= vol (BR)E (x) :

In other words, outside the ball v (x) coincides with the Newtonian potential of a point
mass vol (BR) located at the center. This result was �rst obtained by Newton by an
explicit computation of the integral (1.39) using clever geometric tricks.

1

3
2

1

3210 0

y

3

x
1 0.03 2

0.1

0.2
z

0.3

0.4

0.5

Newtonian potential of a ball (inside the ball and outside the ball)

Theorem 1.13 Let f be a bounded function in BR such that f 2 C2 (BR), and let
' 2 C (@BR). Then the Dirichlet problem�

�u = f in BR
u = ' on @BR

(1.42)

has the following solution

u (x) = �
Z
BR

G (x; y) f (y) dy +

Z
@BR

K (x; y)' (y) d� (y) ; (1.43)

where G is the Green function of BR and K is the Poisson kernel of BR (cf. (1.32)).
More precisely, there exists a function u 2 C2 (BR)\C

�
BR

�
that satis�es (1.42), and

this function is given for any x 2 BR by (1.43).



40 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Remark. The statement is also true if the condition f 2 C2 (BR) is relaxed to f 2
C� ( BR) with arbitrary � > 0, that is, if f is Hölder continuous in BR. However, the
proof in that case is more complicated.

11.11.15

Proof. The case f = 0 was considered in Theorem 1.11. In the general case, extending
f to Rn by setting f = 0 in 
c, consider the Newtonian potential of �f :

v (x) = �
Z
BR

E (x; y) f (y) dy = �
Z
Rn
E (x; y) f (y) dy: (1.44)

By Lemma 1.12, we know that v 2 C2 (BR) \ C (Rn) and �v = f: Introduce a new
unknown function

w = u� v

that has to be of the class C2 (BR) \ C
�
BR

�
and to satisfy �w = 0 in BR because

�w = �(u� v) = f � f = 0 in BR:

At the boundary we have

w = u� v = '� v on @BR:

Hence, the Dirichlet problem (1.42) for u is equivalent to the following Dirichlet problem
for w: �

�w = 0 in BR
w = '� v on @BR:

Sine v � ' is continuous, by Theorem 1.11 we conclude that the solution w of this
problem exists and is given by

w (x) =

Z
@BR

K (x; z) ('� v) (z) d� (z)

=

Z
@BR

K (x; z)' (z) d� (z)�
Z
@BR

K (x; z) v (z) d� (z) : (1.45)

The second integral here is equal to

�
Z
@BR

K (x; z) v (z) d� (z) =

Z
@BR

K (x; z)

�Z
BR

E (z; y) f (y) dy

�
dz

=

Z
BR

�Z
@BR

K (x; z)E (z; y) dz

�
f (y) dy

=

Z
BR

h (x; y) f (y) dy

where

h (x; y) =

Z
@BR

K (x; z)E (z; y) dz:

Fix y 2 BR. Then by Theorem 1.11, the function h (x; y) as a function of x solves the
Dirichlet problem �

�h (�; y) = 0 in BR
h (�; y) = E (�; y) on @BR:
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By uniqueness of solution of the Dirichlet problem, function h (x; y) coincides with the
function hy (x) from the De�nition of the Green function, which implies that

G (x; y) = E (x; y)� h (x; y) : (1.46)

The function u = v + w is clearly a solution of (1.42). Putting together (1.44), (1.45)
and (1.46), we obtain

u (x) = �
Z
Rn
E (x; y) f (y) dy +

Z
BR

h (x; y) f (y) dy +

Z
@BR

K (x; z)' (z) d� (z)

= �
Z
BR

G (x; y) f (y) dy +

Z
@BR

K (x; z)' (z) d� (z) ;

which was to be proved.

1.6 Properties of harmonic functions

Here we obtain some consequences of Theorem 1.10. Let us restate it in the following
form to be used below: if u 2 C2

�
BR

�
and �u = 0 in BR then, for any y 2 BR,

u (y) =
1

!nR

Z
@BR

R2 � jyj2

jx� yjn u (x) d� (x) : (1.47)

We use the notation BR (z) = fx 2 Rn : jx� yj < Rg for the ball of radius R centered
at z 2 Rn.

Theorem 1.14 If u is a harmonic function in a domain 
 � Rn then u 2 C1 (
) :
Moreover, if u 2 C2 (
) satis�es �u = f where f 2 C1 (
) then also u 2 C1 (
).

Recall that by de�nition, a harmonic function is of the class C2. This theorem tells
that a posteriori it has to be C1: Moreover, any function u 2 C2 is in fact of the class
C1 if �u 2 C1. The latter property of added smoothness is called hypoellipticity of
the Laplace operator. Typically, more general elliptic operator are also hypoelliptic.
Proof. Consider �rst the case when u is harmonic in 
. In order to prove that
u 2 C1 (
), it su¢ ces to prove that u 2 C1 (BR (z)) for any ball BR (z) such that
BR � 
. Without loss of generality, take z = 0. By (1.47) we have an integral
representation of u (y) for any y 2 BR, which implies that u 2 C1 (BR) because the
kernel

R2 � jyj2

jx� yjn

is C1 in y 2 BR provided x 2 @BR.
Assume now that�u = f in 
 with f 2 C1 (
), and prove again that u 2 C1 (BR)

where BR is the ball as above. By Lemma 1.12, the Newtonian potential

v (x) =

Z
BR

E (x; y) f (y) dy

is C1 smooth in BR and �v = �f in BR. Hence, the function u + v is harmonic in
BR, which implies that u+ v 2 C1 (BR) and, hence, u 2 C1 (BR).
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Theorem 1.15 (Mean-value theorem) Let u be a harmonic function in a domain 
 �
Rn. Then, for any ball BR (z) such that BR (z) � 
, we have

u (z) = �
Z
@BR

u (x) d� (x) (1.48)

and

u (z) = �
Z
BR(z)

u (x) dx: (1.49)

Here we use the following notations for normalized integrals:

�
Z
@


ud� :=
1

� (@
)

Z
@


ud�

and

�
Z



udx =
1

vol (
)

Z



udx:

Hence, the value of a harmonic function u at the center of the ball is equal to the
arithmetic mean of u over the ball and over the sphere.
Proof. Without loss of generality we can assume that z = 0. Applying (1.47) with
y = 0; we obtain

u (0) =
1

!nR

Z
@BR

R2 � 02
jx� 0jnu (x) d� (x) =

1

!nRn�1

Z
@BR

ud�: (1.50)

Since !nRn�1 = � (@BR), we obtain (1.48). To prove (1.49) observe that in the polar
coordinates Z

BR

u (x) dx =

Z R

0

�Z
@Br

ud�

�
dr

Since by (1.50) Z
@Br

ud� = !nr
n�1u (0) ;

we obtain Z
BR

u (x) dx =

Z R

0

!nr
n�1u (0) dr =

!n
n
Rnu (0) : (1.51)

Applying (1.51) with u � 1, we obtain

vol (BR) =
!n
n
Rn:

Hence, (1.51) implies Z
BR

u (x) dx = vol (BR)u (0) ;

which is equivalent to (1.49).

Theorem 1.16 (Harnack inequality) Let u be a non-negative harmonic function in a
ball BR. Then, for any 0 < r < R,

sup
Br

u �
�
R=r + 1

R=r � 1

�n
inf
Br
u: (1.52)
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It is important for applications, that the constant C =
�
R=r+1
R=r�1

�n
depends only on

the ratio R=r. For example, if R = 2r then C = 3n.

Proof. By the maximum and minimum principles we have

sup
Br

u = max
@Br

u and inf
Br
u = min

@Br
u:

Let y0 be the point of maximum of u at @Br and y00 �the point of minimum of u at
@Br. Note that for any y 2 @Br and for any x 2 @BR,

R� r � jx� yj � R + r:

It follows from (1.47) that

u (y0) =
1

!nR

Z
@BR

R2 � jy0j2

jx� y0jn u (x) d� (x)

� R2 � r2

!nR (R� r)n

Z
@BR

u (x) d� (x)

and similarly

u (y00) =
1

!nR

Z
@BR

R2 � jy00j2

jx� y00jn u (x) d� (x)

� R2 � r2

!nR (R + r)n

Z
@BR

u (x) d� (x) :

Therefore, we obtain

u (y0) � (R + r)n

(R� r)n
u (y00) ;

whence (1.52) follows.

1.7 Sequences of harmonic functions

Theorem 1.17 (Harnack�s �rst theorem) Let fukg1k=1 be a sequence of harmonic func-
tions in a domain 
 � Rn. If uk � u in 
 as k ! 1 then the function u is also
harmonic in 
.

Let us recall for comparison, that uniform limits of continuous functions are again
continuous, but uniform limits of Ck functions where k � 1, do not have to be Ck.
Hence, if u is a uniform limit of harmonic functions uk then a priori we can only say
that u is continuous, whereas the harmonicity of u and, in particular, the smoothness
of u, are not at all obvious.

Proof. The function u is continuous in 
 as a uniform limit of continuous functions.
To prove that u is harmonic in 
, it su¢ ces to prove that u is harmonic in any ball
BR (z) � 
. Assume without loss of generality that z = 0.
Denoting 'k = ukj@BR and ' = uj@BR we have

'k � ' on @BR as k !1:
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Let v be the solution of the Dirichlet problem�
�v = 0 in BR
v = ' on @BR

that exists by Theorem 1.11. Since uk � v is harmonic in BR and is continuous in BR,
by the maximum principle (1.5) of Corollary 1.2, we obtain

max
BR

juk � vj = max
@BR

juk � vj = max
@BR

j'k � 'j :

Since the right hand side goes to 0 as k !1, it follows that

uk � v in BR as k !1:

Since also uk � u, we conclude that u = v and, hence, u is harmonic in BR:

Theorem 1.18 (Harnack�s second theorem) Let fukg1k=1 be a sequence of harmonic
functions in a connected domain 
 � Rn. Assume that this sequence is monotone
increasing, that is, uk+1 (x) � uk (x) for all k � 1 ; x 2 
. The the function

u (x) = lim
k!1

uk (x)

is either identically equal to 1 in 
, or it is a harmonic function in 
. Moreover, in
the latter case the convergence uk ! u is locally uniform.

Proof. By replacing uk with uk � u1, we can assume that all functions uk are non-
negative. Consider the sets

F = fx 2 
 : u (x) <1g

and
I = fx 2 
 : u (x) =1g

so that 
 = F t I: Let us prove that both F and I are open sets.
Indeed, take a point x 2 F and show that also B" (x) 2 F for some " > 0. Choose

" so that B2" (x) � 
: By the Harnack inequality, we have

sup
B"(x)

uk � C inf
B"(x)

uk � Cuk (x) ;

where C = 3n. By passing to the limit as k !1, we obtain

sup
B"(x)

u � Cu (x) :

Since u (x) < 1, we obtain that also supB"(x) u < 1 and, hence, B" (x) � F . Hence,
F is open. 13.11.15

In the same way one proves that

inf
B"(x)

u � C�1u (x) ;
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which implies that I is open.
Since 
 is connected and 
 = F t I, it follows that either I = 
 or F = 
. In

the former case we have u � 1 in 
, in the latter case: u (x) < 1 for all x 2 
.
Let us prove that in the latter case u is harmonic. For that, we �rst show that the
convergence uk ! u is locally uniform, that is, for any x 2 
 there is " > 0 such that

uk � u in B" (x) as k !1:

Then the harmonicity of u will follow by Harnack�s �rst theorem.
Choose again " > 0 so that B2" (x) � 
. For any two indices k > l, apply the

Harnack inequality to the non-negative harmonic function uk � ul:

sup
B"(x)

(uk � ul) � C (uk � ul) (x) :

Since (uk � ul) (x)! 0 as k; l!1, it follows that

uk � ul � 0 in B" (x) as k; l!1:

Hence, the sequence fukg converges uniformly in B" (x). Since fukg convergence point-
wise to u, it follows that

uk � u in B" (x) as k !1;

which �nishes the proof.

As an example of application of Harnack�s second theorem, let us prove the following
extension of Lemma 1.12.

Corollary 1.19 Let f be a non-negative locally bounded measurable function on Rn.
Consider the Newtonian potential

v (x) =

Z
Rn
E (x; y) f (y) dy:

Then either v � 1 in Rn or v is a continuous function in Rn: In the latter case, if
f 2 C2 (
) for some open set 
 � Rn, then also v 2 C2 (
) and �v = �f in 
:

Proof. Consider a sequence fBkg1k=1 of balls Bk = Bk (0) and set

vk (x) =

Z
Bk

E (x; y) f (y) dy

so that
v (x) = lim

k!1
vk (x) : (1.53)

Since vk is the potential of the function fk = f1Bk , by Lemma 1.12 we have vk 2 C (Rn) :
Let us show that if v (x0) <1 at some point x0 then v (x) is a �nite continuous function
on Rn. Choose l so big that Bl contains x0. We have

v (x) = vl (x) + lim
k!1

(vk � vl) (x)
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and

(vk � vl) (x) =

Z
BknBl

E (x; y) f (y) dy:

Applying Lemma 1.12 to function f1BknBl, we obtain that vk�vl is a harmonic function
in Bl, for all k > l. The sequence fvk � vlg is monotone increasing in k and is �nite at
x0 2 Bl. Hence, by Harnack�s second theorem, the limit limk!1 (vk � vl) is a harmonic
function in Bl, which implies that v is a continuous function in Bl. Since l can be chosen
arbitrarily big, we conclude that v is continuous in Rn:
Assuming that v is �nite and f 2 C2 (
), repeat the above argument choosing l so

big that 
 � Bl. As we have seen,

v = vl + a harmonic function in Bl:

Since by Lemma 1.12 vl 2 C2 (
) and �vl = �f in 
, it follows that also v 2 C2 (
)
and �v = �f in 
.

1.8 Discrete Laplace operator

A graph G is a couple (V;E) where V is a set of vertices, that is, an arbitrary set,
whose elements are called vertices, and E is a set of edges, that is, E consists of some
unordered couples (x; y) where x; y 2 V . We write x � y if (x; y) 2 E and say that x
is connected to y, or x is adjacent to y, or x is a neighbor of y. By de�nition, x � y is
equivalent to y � x.
A graph G is called locally �nite if each vertex has a �nite number of edges. For

each point x, de�ne its degree

deg (x) = # fy 2 V : x � yg ;

that is, deg (x) is the number of the edges with endpoint x. A graph G is called �nite
if the number of vertices is �nite. Of course, a �nite graph is locally �nite.

De�nition. Let (V;E) be a locally �nite graph without isolated points (so that 0 <
deg (x) <1 for all x 2 V ). For any function f : V ! R, de�ne the function �f by

�f (x) :=
1

deg (x)

X
y2V :y�x

f (y)� f (x) =
1

deg (x)

X
y2V :y�x

(f (y)� f (x)) :

The operator � on functions on V is called the Laplace operator of (V;E).

The equation �u = 0 is called the Laplace equation and its solutions are called
harmonic functions on the graph. For example, a constant function is harmonic.
In what follows we always assume that 0 < deg (x) <1 for all x 2 V , so that � is

well-de�ned on functions on V .
One can regards a graph (V;E) as an electrical network, where the edges are the

wires that conduct electrical current, and the vertices are junctions. Assuming that the
resistance of each edges is equal to one, we obtain by the Ohm�s law, that the potential
di¤erence u (y)�u (y) of two neighboring vertices x and y is equal to the current along
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the edge xy. By Kirchho¤�s law, the sum of the currents incoming and outcoming at
the same point x is equal to 0, which impliesX

y:y�x
(u (y)� u (x)) = 0;

which is equivalent to �u = 0. Hence, in the absence of the external sources of the
current, the electrical potential of the network is a harmonic function.
De�nition. A graph G = (V;E) is called connected if any two vertices x; y 2 V can
be connected by a �nite chain fxkgnk=0 such that

x = x0 � x1 � ::: � xn�1 � xn = y:

Choose a subset 
 of V and consider the following Dirichlet problem:�
�u (x) = f (x) for all x 2 
;
u (x) = ' (x) for all x 2 
c; (1.54)

where u : V ! R is an unknown function while the functions f : 
! R and ' : 
c ! R
are given.

Theorem 1.20 Let G = (V;E) be a connected graph, and let 
 be a �nite subset of V
such that 
c is non-empty. Then, for all functions f; ' as above, the Dirichlet problem
(1.54) has a unique solution.

Note that, by the second condition in (1.54), the function u is already de�ned
outside 
, so the problem is to construct an extension of u to 
 that would satisfy the
equation �u = f in 
.

De�ne the vertex boundary of 
 as follows:

@
 = fy 2 
c : y � x for some x 2 
g :

Observe that the Laplace equation �u (x) = f (x) for x 2 
 involves the values u (y) at neighboring
vertices y of x, and any neighboring point y belongs to either 
 or to @
. Hence, the equation
�u (x) = f (x) uses the prescribed values of u only at the boundary @
; which means that the second
condition in (1.54) can be restricted to @
 as follows:

u (x) = ' (x) for all x 2 @
:

This condition (as well as the second condition in (1.54) is called the boundary condition.

If 
c is empty then the statement of Theorem 1.20 is not true. For example, in this
case any constant function u satis�es the same equation �u = 0 so that there is no
uniqueness. One can show that the existence also fails in this case.
The proof of Theorem 1.20 is based on the following maximum principle. A function

u : V ! R is called subharmonic in 
 if �u (x) � 0 for all x 2 
, and superharmonic
in 
 if �u (x) � 0 for all x 2 
.

Lemma 1.21 (A maximum/minimum principle) Let 
 be a non-empty �nite subset of
V such that 
c is non-empty. Then, for any function u : V ! R, that is subharmonic
in 
; we have

max



u � sup

c

u:
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For any function u : V ! R, that is superharmonic in 
; we have

min


u � inf


c
u:

Proof. It su¢ ces to prove the �rst claim. If sup
c u = +1 then there is nothing
to prove. If sup
c u < 1 then, by replacing u by u + const, we can assume that
sup
c u = 0. Set

M = max



u

and show that M � 0, which will settle the claim. Assume from the contrary that
M > 0 and consider the set

S := fx 2 V : u (x) =Mg : (1.55)

Clearly, S � 
 and S is non-empty.
Claim 1. If x 2 S then all neighbors of x also belong to S.
Indeed, we have �u (x) � 0 which can be rewritten in the form

u (x) � 1

deg (x)

X
y�x

u (y) :

Since u (y) �M for all y 2 V (note that u (y) � 0 for y 2 
c), we have

1

deg (x)

X
y�x

u (y) �M
1

deg (x)

X
y�x

=M:

Since u (x) = M , all inequalities in the above two lines must be equalities, whence it
follows that u (y) =M for all y � x. This implies that all such y belong to S.

Claim 2. Let S be a non-empty set of vertices of a connected graph (V;E) such that
x 2 S implies that all neighbors of x belong to S. Then S = V .

Indeed, let x 2 S and y be any other vertex. Then there is a path fxkgnk=0 between
x and y, that is,

x = x0 � x1 � x2 � ::: � xn = y:

Since x0 2 S and x1 � x0, we obtain x1 2 S. Since x2 � x1, we obtain x2 2 S. By
induction, we conclude that all xk 2 S, whence y 2 S.
It follows from the two claims that the set S de�ned by (1.55) must coincide with

V , which is not possible since S � 
 and 
c is non-empty. This contradiction shows
that M � 0.

Proof of Theorem 1.20. Let us �rst prove the uniqueness. If we have two solutions
u1 and u2 of (1.54) then the di¤erence u = u1 � u2 satis�es the conditions�

�u (x) = 0 for all x 2 
;
u (x) = 0 for all x 2 
c:

We need to prove that u � 0: Since u is both subharmonic and superharmonic in 
,
Lemma 1.21 yields

0 = inf

c
u � min



u � max



u � sup


c
u = 0;
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whence u � 0:
Let us now prove the existence of a solution to (1.54) for all f; '. For any x 2 
,

rewrite the equation �u (x) = f (x) in the form

1

deg (x)

X
y2
; y�x

u (y)� u (x) = f (x)� 1

deg (x)

X
y2
c; y�x

' (y) ; (1.56)

where we have moved to the right hand side the terms with y 2 
c and used that
u (y) = ' (y). Denote by F the set of all real-valued functions u on 
 and observe that
the left hand side of (1.56) can be regarded as an operator in this space; denote it by
Lu, that is,

Lu (x) =
1

deg (x)

X
y2
; y�x

u (y)� u (x) ;

for all x 2 
. Rewrite the equation (1.56) in the form Lu = h where h is the right hand
side of (1.56), which is a given function on 
. Note that F is a linear space. Since the
family

�
1fxg

	
x2
 of indicator functions form obviously a basis in F ; we obtain that

dimF = #
 < 1. Hence, the operator L : F ! F is a linear operator in a �nitely
dimensional space, and the �rst part of the proof shows that Lu = 0 implies u = 0
(indeed, just set f = 0 and ' = 0 in (1.56)), that is, the operator L is injective. By
Linear Algebra, any injective operator acting in the spaces of equal dimensions, must
be bijective (alternatively, one can say that the injectivity of L implies that detL 6= 0
whence it follows that L is invertible and, hence, bijective). Hence, for any h 2 F ,
there is a solution u = L�1h 2 F , which �nishes the proof.

18.11.15

1.9 Separation of variables in the Dirichlet problem

Here is an alternative method of solving the Dirichlet problem in the two-dimensional
ball or annulus. Let (r; �) be the polar coordinates. The Laplace equation �u = 0 has
in the polar coordinates the form

@rru+
1

r
@ru+

1

r2
@��u = 0 (1.57)

(see Exercises). Let us �rst try to �nd a solution in the form u = v (r)w (�) : Substi-
tution into (1.57) gives

v00w +
1

r
v0w +

1

r2
vw00 = 0

that is
v00 + 1

r
v0

1
r2
v

= �w
00

w
:

Since the left hand side here depends only on r and the right hand side only on �, the
two functions can be equal only if they both are constants. Denoting this constant by
�, we obtain two ODEs:

w00 + �w = 0 (1.58)

and

v00 +
1

r
v0 � �

r2
v = 0: (1.59)
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Since w is a function of the polar angle �, the function w (�) must be 2�-periodic.
Equation (1.58) has periodic solutions only if � � 0. We have then

w (�) = C1 cos
p
�� + C2 sin

p
��:

This function is 2�-periodic if and only if
p
� = k, where k is a non-negative integer.

Substituting � = k2 into (1.59), we obtain

v00 +
1

r
v0 � k2

r2
v = 0:

This is Euler equation that has the general solution:

v = C1r
k + C2r

�k if k > 0

v = C1 + C2 ln
1

r
if k = 0:

Hence, for any k � 0 we obtain the following harmonic function

u0 = �0 + �0 ln
1

r
; for k = 0

and
uk =

�
�kr

k + �kr
�k� (ak cos k� + bk sin k�)

(we have seen already the harmonic functions rk cos k� and rk sin k�). Each of these
functions is harmonic in R2 n f0g. If the series

1X
k=0

uk

converges locally uniformly in some domain then the sum is also harmonic function in
this domain by Harnack�s �rst theorem. By choosing coe¢ cients one can try to match
the boundary conditions.
Let us illustrate this method for the Dirichlet problem in the diskB1 = fx 2 R2 : jxj < 1g :�

�u = 0 in B1
u = f on @B1:

The function f can be considered as a 2�-periodic function of the polar angle, so we
write f(�). Since function u has to be de�ned also at the origin, we drop from u0 and
uk the parts having singularities at 0, and search the solution in the form

u (r; �) =
a0
2
+

1X
k=1

rk (ak cos k� + bk sin k�) : (1.60)

The boundary value of u is attained for r = 1. Hence, function f should have the
following expansion in Fourier series

f(�) =
a0
2
+

1X
k=1

(ak cos k� + bk sin k�) : (1.61)
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It is known that any 2�-periodic function f that belongs to the Lebesgue class L2,
admits an expansion (1.61) into the Fourier series that converges to f in the sense of
L2. The coe¢ cients are computed as follows:

ak =
1

�

Z �

��
f (�) cos k�d�; bk =

1

�

Z �

��
f (�) sin k�d�: (1.62)

Moreover, if f 2 C1 (R) then the series (1.61) converges absolutely and uniformly.

Proposition 1.22 Assume that f is a 2�-periodic function on R that admits an ab-
solutely convergent Fourier series (1.61). Then the series (1.60) converges absolutely
and uniformly for all r � 1 and � 2 R, its sum u belongs to the class C

�
B1

�
, is

harmonic in B1, and is equal to f at @B1.

Proof. Indeed, the absolut convergence of (1.61) is equivalent to
1X
k=1

(jakj+ jbkj) <1: (1.63)

If so then the series (1.60) converges absolutely and uniformly for all r � 1 and � 2 R.
Hence, the function u is continuous in B1. In particular, on @B1 we obtain u = f ,
just by taking r = 1 in (1.60). Since each term rk cos k� and rk sin k� is a harmonic
function, the in�nite sum u is also harmonic in B1, by Harnack�s �rst theorem.

Remark. Di¤erentiating the right hand side of (1.60) in r, we obtain that in B1

@ru (r; �) =
1X
k=1

krk�1 (ak cos k� + bk sin k�) ; (1.64)

because the series in the right hand side converges absolutely and locally uniformly in
B1, that is, for all r < 1 and � 2 R. In the same way we have in B1

@�u =
1X
k=1

krk (�ak sin k� + bk cos k�) : (1.65)

If we know in addition that
1X
k=1

k (jakj+ jbkj) <1 (1.66)

then the series in (1.64) and (1.65) converge absolutely and uniformly for r � 1 and
� 2 R, which implies that u 2 C1

�
B1

�
:

1.10 Variational problem and the Dirichlet princi-
ple

Let 
 be a bounded domain and ' be a continuous function on @
. Consider the
variational problem 8<:

Z



jruj2 dx 7! min

u = ' on @

(1.67)
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where u 2 C1
�


�
. In other words, we look for a function u 2 C1

�


�
with the given

boundary value on @
 that minimizes the Dirichlet integral
R


jruj2 dx.

One of motivations for the problem (1.67) comes from the following geometric prob-
lem: construct a hypersurface S in Rn+1 over the base 
, whose boundary @S is given
and whose surface area � (S) is minimal. Indeed, let S be the graph of a function u in

. The prescribed boundary of @S amounts to the boundary condition u = ' on @
,
while

� (S) =

Z



q
1 + jruj2dx:

Hence, we obtain the variational problem8<:
Z



q
1 + jruj2dx 7! min :

u = ' on @
:
(1.68)

If we assume that jruj is small, thenq
1 + jruj2 � 1 + 1

2
jruj2 ;

so that (1.68) becomes (1.67). Any function u that solves (1.68) is called an area
minimizer. As we will see, functions that solve (1.67) are harmonic. Hence, harmonic
functions are approximately area minimizers.
Consider now the Dirichlet problem�

�u = 0 in 
;
u = ' on @
;

(1.69)

where the solution u is sought in the class u 2 C2 (
) \ C1
�


�
.

Theorem 1.23 (The Dirichlet principle) Let 
 be a bounded region. Then a function
u is a solution of (1.69) if and only if u is a solution of (1.67).

Since solution to the Dirichlet problem is always unique, we see that also the vari-
ational problem has at most one solution. On the other hand, we know that if 
 is a
ball then the Dirichlet problem does have a solution u 2 C2 (
) \ C

�


�
. Under some

additional assumption about ' one obtains u 2 C1
�


�
(see, for example, the previous

section), which then implies the existence of a solution of (1.67).

Idea of proof. Let us �rst prove a simpli�ed version of this theorem, when solutions
of both problems (1.67) and (1.69) are sought in the class C2

�


�
. Assume �rst that

u 2 C2
�


�
is a solution of (1.67) and prove that u is a solution of (1.69), that is,�u = 0

in 
. Fix a function w 2 C10 (
) and t 2 R and consider the function v = u + tw:
Since v = u = ' on @
, we conclude thatZ




jrvj2 dx �
Z



jruj2 dx:

Computing
jrvj2 = jr (u+ tw)j2 = jruj2 + 2tru � rw + jrwj2 ;
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we obtain Z



jruj2 dx+ 2t
Z



ru � rw dx+ t2
Z



jrwj2 dx �
Z



jruj2 dx

and, hence,

2t

Z



ru � rw dx+ t2
Z



jrwj2 dx � 0:

Assuming that t > 0; divide by t and obtain

2

Z



ru � rw dx+ t

Z



jrwj2 dx � 0:

Letting t! 0, we obtain Z



ru � rw dx � 0:

In the same way, considering t < 0, we obtainZ



ru � rw dx � 0;

whence Z



ru � rw dx = 0: (1.70)

By the Green formula we haveZ



w�u dx = �
Z



ru � rw dx+
Z
@


w@�u d�: (1.71)

By (1.70) and w = 0 on @
 we obtainZ



w�u dx = 0:

Since w 2 C10 (
) is arbitrary, it follows that �u = 0 in 
.
Now assuming that u 2 C2

�


�
is a solution of (1.69), let us show that u is a

solution of (1.67), that is, for any v 2 C2
�


�
such that v = ' on @
,Z




jrvj2 dx �
Z



jruj2 dx:

Set w = v � u and write againZ



jrvj2 dx =
Z



jru+rwj2 dx =
Z



jruj2 dx+ 2
Z



ru � rw dx+
Z



jrwj2 dx:

Applying again the Green formula (1.71) and using that�u = 0 in 
 and w = u�v = 0
on @
, we obtain Z




ru � rw dx = 0:



54 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

It follows that Z



jrvj2 dx =
Z



jruj2 dx+
Z



jrwj2 dx �
Z



jruj2 dx;

which �nishes the proof.

In the �rst part of this argument we used that a solution u of the variational problem
is of the class C2 in order just to be able to write �u. If we only know that u 2 C1

(and this is the minimal natural requirement for the problem (1.67)), then we cannot
immediately apply � to u. In the both parts of the proof we used that u; v 2 C2

�


�

in order to be able to use the Green formula. 20.11.15

In order to prove Theorem 1.23 under optimal requirements for u, as stated above,
we need to do some preparations.

De�nition. A function  on Rn is called a molli�er, if  is non-negative,  2 C10 (B1),
and Z

Rn
 (x) dx = 1:

For example, the following function is a molli�er

 (x) =

8<: c exp

�
� 1

( 14�jxj
2)
2

�
; jxj < 1=2

0; jxj � 1=2

for an appropriate value of the constant c. Here are the graphs of this function in R1
and R2:
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Each molli�er gives rise to a sequence f kg
1
k=1 of molli�ers as follows:

 k (x) = kn (kx) : (1.72)
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Indeed, observe that  k 2 C10
�
B1=k

�
andZ

Rn
 k (x) dx =

Z
Rn
kn (kx) dx =

Z
Rn
 (y) dy = 1: (1.73)
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Functions  =  1;  2;  3 in R1

In the next lemma we develop a techniques of approximating continuous functions
by smooth ones.

Lemma 1.24 Let u be a locally integrable function in Rn: For any k 2 N set

uk = u �  k =
Z
Rn
u (x� y) k (y) dy: (1.74)

Then each uk is a C1 function in Rn. Moreover, if u 2 C (
) then uk ! u locally
uniformly in 
.

Proof. Indeed, we have by change z = x� y

uk (x) =

Z
Rn
u (z) k (x� z) dz;

and the �rst claim follows from the fact that  k (x� z) is C1-smooth in x (cf. the
proof of Lemma 1.12, Step 2).
Let us prove the second claim. For any x 2 
, we have by (1.73)

u (x)� uk (x) =

Z
Rn
u (x) k (y) dy �

Z
Rn
u (x� y) k (y) dy

=

Z
B1=k

(u (x)� u (x� y)) k (y) dy

whence
ju (x)� uk (x)j � sup

y2B1=k
ju (x)� u (x� y)j :

Since u is locally uniformly continuous in 
, we obtain that

sup
y2B1=k

ju (x)� u (x� y)j ! 0 as k !1



56 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

locally uniformly in 
, which implies that uk ! u locally uniformly in 
:

De�nition. A function u 2 C (
) is called weakly harmonic in 
 if, for any w 2
C10 (
), Z




u�w dx = 0: (1.75)

Observe that if u is harmonic then u is weakly harmonic because by the Green
formula Z




u�w dx =

Z



�uw dx = 0:

Conversely, if u is weakly harmonic and if u 2 C2 (
) then u is harmonic, because
(1.75) implies then by the Green formulaZ




�uw dx =

Z



u�w dx = 0;

and since w 2 C10 (
) is arbitrary, we obtain �u = 0 in 
: It turns out that the latter
claim can be strengthened as follows.

Lemma 1.25 (Weyl�s lemma) Let 
 be any open subset of Rn. If u 2 C (
) is weakly
harmonic in 
 then u is harmonic.

Proof. We reducing 
, we can assume without loss of generality that u is bounded.
Extending u to Rn by setting u = 0 in 
c: Consider again the sequence fukg given by
(1.74) and show that if u is weakly harmonic in 
 then also uk is weakly harmonic in

. Indeed, for any w 2 C10 (
) we haveZ




uk (x)�w (x) dx =

Z
Rn

 Z
B1=k

u (x� y) k (y) dy

!
�w (x) dx

=

Z
B1=k

�Z
Rn
u (x� y)�w (x) dx

�
 k (y) dy

=

Z
B1=k

�Z
Rn
u (z)�w (z + y) dz

�
 k (y) dy:

Since y 2 B1=k and, hence, jyj < 1=k, the function z 7! w (z + y) is supported in 
,
provided k is large enough, which implies by the weak harmonicity of u in 
 thatZ

Rn
u (z)�w (z + y) dz = 0:

It follows that Z



uk (x)�w (x) dx = 0;

that is, uk is weakly harmonic in 
. Since uk 2 C1 (
), we obtain that uk is harmonic.
Finally, since uk ! u locally uniformly in 
, we obtain by Harnack�s �rst theorem

that u is harmonic in 
.

The next lemma states two versions of the �rst Green formula.
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Lemma 1.26 Let 
 be a bounded region.
(a) If u 2 C2

�


�
, w 2 C1

�


�
thenZ




w�u dx = �
Z



ru � rw dx+
Z
@


w@�u d�: (1.76)

(b) If u 2 C2 (
) \ C1
�


�
, w 2 C1 (
) \ C

�


�
and w = 0 on @
 thenZ




w�u dx = �
Z



ru � rw dx: (1.77)

Recall for comparison that so far we required for the Green formula that u;w 2
C2
�


�
: Observe also that in the case (b) the functions w�u and ru �rw are in C (
)

but not necessarily in C
�


�
so that the integrals in (1.77) are not necessarily well-

de�ned or �nite. The statement is that if one of the integrals is well-de�ned then so is
the other, and their values are the same. In fact, one can prove that the formula (1.76)
remains true also in the case (b) without requirement w = 0 on @
, but the argument
is more technical than acceptable here.

Proof. (a) If u 2 C2
�


�
and w 2 C1

�


�
then applying the divergence theorem with

�!
F = wru 2 C1

�


�
;

we obtain Z



div
�!
F dx =

Z
@


�!
F � � d�

that is Z



(w�u+ru � rw) dx =
Z
@


w@�u d�;

which is equivalent to (1.76).
(b) Assume now u 2 C2 (
) \ C1

�


�
and w 2 C1 (
) \ C

�


�
. Recall that by

de�nition of a region, there exists a C1 function � in a neighborhood of 
 such that
� < 0 on 
, � = 0 on @
, � > 0 outside 
, and r� 6= 0 on @
. For any " > 0
consider the set


" = fx : � (x) < �"g = fx : � (x) + " < 0g :
Since r� 6= 0 also in a neighborhood of @
, we see that for small enough " we have
r� 6= 0 on @
", which implies that 
" is also a region. Since u 2 C2

�

"
�
and

w 2 C1
�

"
�
, we obtain by (1.76)Z


"

w�u dx = �
Z

"

ru � rw dx+
Z
@
"

w@�u d�: (1.78)

Since u 2 C1
�


�
, we have

j@�uj � sup



jruj =: C <1:

If "! 0 then sup@
" jwj ! 0 because w 2 C
�


�
and w = 0 on @
. Hence,Z

@
"

w@�u d� ! 0 as "! 0:
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Hence, letting "! 0 in (1.78), we obtain (1.77). More precisely, if one of the limitsZ



w�u dx := lim
"!0

Z

"

w�u dx

and

�
Z



ru � rw dx := � lim
"!0

Z

"

ru � rw dx

exists then the other exists too, and their values are the same.

Proof of Theorem 1.23. Assume �rst that u 2 C1
�


�
is a solution of (1.67)

and prove that u is a solution of (1.69). We need only to prove that u is a harmonic
function in 
. By Lemma 1.25 it su¢ ces to prove that u is weakly harmonic in 
.
Fix a function w 2 C10 (
) and t 2 R and consider the function v = u + tw: Since
v = u = ' on @
, we conclude thatZ




jrvj2 dx �
Z



jruj2 dx:

Using the the same argument as in the previous version of the proof, we conclude thatZ



ru � rw dx = 0:

By the Green formula (1.76) (with swapped u and w) we haveZ



u�w dx = �
Z



ru � rw dx+
Z
@


u@�w d� = 0:

Hence, we obtain that that u is weakly harmonic, which �nishes this part of the proof. 25.11.15

Let u be solution of (1.69) and let us show that u solves also (1.67), that is, for any
v 2 C1

�


�
such that v = ' on @
,Z




jrvj2 dx �
Z



jruj2 dx:

Set w = v � u and writeZ



jrvj2 dx =
Z



jru+rwj2 dx =
Z



jruj2 dx+ 2
Z



ru � rw dx+
Z



jrwj2 dx:

Since u 2 C2 (
) \ C1
�


�
, w 2 C1

�


�
, w = u � v = 0 on @
, and �u = 0 in 
, we

obtain by (1.77) that Z



ru � rw dx = �
Z



w�u dx = 0:

It follows that Z



jrvj2 dx =
Z



jruj2 dx+
Z



jrwj2 dx �
Z



jruj2 dx;

which �nishes the proof.
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1.11 �Distributions

Denote by D the linear space C10 (Rn) with certain topology that we do not describe
here. Elements of D are called test functions. A distribution is any linear continuous
functional on D. The set of all distributions is denoted by D0: Clearly, this is a linear
space (that is a dual space to D). For any f 2 D0 and ' 2 D the value f (') is
also denoted by hf; 'i : One says that a sequence ffkg of distributions converges to a
distribution f if for any test function '

hfk; 'i ! hf; 'i as k !1:

Any locally integrable function f in Rn determines a distribution, also denoted by f ,
using the rule

hf; 'i =
Z
Rn
f'dx:

On the other hand, there are distributions that are not determined by functions. For
example, denote by � the distribution that is de�ned by

h�; 'i = ' (0) :

The distribution � is called the Dirac-function (although it is not a function).
Let  be a molli�er in Rn, and  k be de�ned by (1.72), that is,  k (x) = kn (kx).

By Lemma 1.24 we have the following: for any test function '

 k � ' (x)! ' (x) as k !1:

Applying this to function ' (�x) instead of ', we obtainZ
Rn
 k (x+ y)' (y) dy ! ' (�x) as k !1:

In particular, for x = 0 we have

h k; 'i ! ' (0) = h�; 'i :

Hence, we can say that  k ! � the sense of distributions. A sequence that converges
to � is called approximation of identity.
One of huge advantages of the notion of distribution is that all partial derivatives

D� of all orders are well-de�ned on any distribution. Namely, for any f 2 D0 and for
any multiindex � = (�1; :::; �n) de�ne D�f as distribution by the following identity:

hD�f; 'i = (�1)j�j hf;D�'i 8' 2 D. (1.79)

This de�nition is compatible with the classical de�nition for functions in the following
sense. If f 2 Ck (Rn) then D�f is de�ned as function for all j�j � k. By integration
by parts formula, the following identity is true for any ' 2 D:Z

Rn
(D�f)'dx = (�1)j�j

Z
Rn
fD�'dx:

Hence, if we consider here f and D�f as distributions, then we obtain (1.79).
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Using (1.79) we can compute the derivatives of the �-function as follows:

hD��; 'i = (�1)j�jD�' (0) :

It follows from (1.79) that, for the Laplace operator �,

h�f; 'i = hf;�'i : (1.80)

A distribution f is called harmonic if it satis�es the Laplace equation �f = 0: By
(1.80), f 2 D0 is harmonic if and only if

hf;�'i = 0 8' 2 D: (1.81)

Recall that a continuous function f is called weakly harmonic if for all ' 2 DZ
Rn
f�'dx = 0;

which can be equivalently written as (1.81). Hence, a continuous function f is weakly
harmonic if and only if f is harmonic as a distribution. We have proved in Lemma
1.25 that any weakly harmonic function is harmonic. This lemma can be extended as
follows: any harmonic distribution is in fact a harmonic function.

1.12 �Euler-Lagrange equation

Let 
 be a bounded domain in Rn. Consider a more general variational problem� R


L (x; u;ru) dx 7! min

u = ' on @

(1.82)

where L (x; p; q1; :::; qn) is a given function, called Lagrangian, and u is an unknown
function. If u 2 C2 (
) is a solution of (1.82) then we can again compare u with
v = u+ tw, where w 2 C10 (
) and t 2 R. The function tw is called a variation of u.
By the way, the branch of mathematics that studies variational problems is called

variational calculus. The main idea here is the same as in the proof of Fermat�s
theorem in classical Analysis. In order to obtain points of minimum of a real valued
function F (z) of a variable z 2 Rn, let us compare F (z) at the minimum point z with
F (z + tw), where w 2 Rn and t 2 R (that is, tw is an increment of the argument z).
As we know from Analysis, if the function F is di¤erentiable, then the condition

F (z + tw) � F (z)

leads for t! 0 to
F (z) + tw � F 0 (z) + o (t) � F (z) :

Since the latter has to be true both for t > 0 and t < 0, we obtain that w � F 0 (z) = 0,
and since this has to be true for all w, we obtain

F 0 (z) = 0:
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This equation is a necessary condition for z to be a point of minimum and it can be
used to determine z or at least candidates for z.
Returning to the variational problem and assuming that L is continuously di¤eren-

tiable in p; q and that t is small, we obtain as t! 0

L (x; u+ tw;ru+ trw) = L (x; u;ru)+tw@pL (x; u;ru)+trw �@qL (x; u;ru)+o (t) :

The condition Z



L (x; u+ tw;ru+ trw) dx �
Z



L (x; u;ru) dx

implies Z



t [w@pL (x; u;ru) +rw � @qL (x; u;ru)] dx � o (t) ;

and the fact, that this has to be true both for t > 0 and t < 0, implies thatZ



[w@pL (x; u;ru) +rw � @qL (x; u;ru)] dx = 0: (1.83)

Consider a vector �eld
v = @qL (x; u;ru) :

Since
div (wv) = rw � v + w div v

(see Exercises) and by the divergence theoremZ



div (wv) dx =

Z
@


wv d� = 0;

we obtain that Z



rw � v dx = �
Z



w div v dx:

Substituting this into (1.83), we obtainZ



w [@pL (x; u;ru)� div @qL (x; u;ru)] dx = 0;

where div is taken with respect to x. Since w is arbitrary, we obtain the u satis�es the
following PDE in 
:

@pL (x; u;ru) = div @qL (x; u;ru) ;

or more explicitly

@pL (x; u;ru) =
nX
i=1

@xi@qiL (x; u;ru) : (1.84)

This PDE is called the Euler-Lagrange equation of the problem (1.82).
For example, the problem (1.67) corresponds to the Lagrangian

L (x; p; q) = q21 + :::+ q2n:
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Then @pL = 0, @qiL = 2qi, and (1.84) becomes

0 =
X

@xi (2@xiu) ;

which is equivalent to �u = 0.
The variational problem (1.68) has the Lagrangian

L (x; p; q) =
q
1 + q21 + :::+ q2n:

Since
@qiL =

qip
1 + q21 + :::+ q2n

;

we obtain the following Euler-Lagrange equation

nX
i=1

@xi

0@ @xiuq
1 + jruj2

1A = 0

that is called the minimal surface equation.

1.13 �Dirichlet problem in arbitrary domains (overview)

We discuss various methods of proof of the solvability of the Dirichlet problem in an
arbitrary bounded open set 
 � Rn. In the case of a ball we have solved the Dirichlet
problem by constructing the Green function. However, this method does not work
for general domains because construction of the Green function in general domains
requires a solution of a certain Dirichlet problem. We state below only the ideas of the
methods, without rigorous statements.

Perron�s method.

Let u be a solution to the Dirichlet problem�
�u = 0 in 

u = ' on @


(1.85)

Observe that if v is a superharmonic function in 
 such that v � ' on @
, then by the
minimum principle we obtain v � u. It follows that

u (x) = inf fv (x) : v is superharmonic in 
 and v � ' on @
g : (1.86)

This formula can be used to de�ne a function u (x). Indeed, there are always super-
harmonic functions v with v � ' on @
, for example, large enough constants, so that
the right hand side of (1.86) always makes sense.
The main idea of Perron�s method is a non-trivial fact that the function u de�ned

by (1.86) is always harmonic in 
. The next step is to show that u satis�es the
boundary condition, which can be done using certain assumptions about the boundary
@
, provided ' 2 C (@
). For example, this method works if @
 satis�es a so-called
the cone condition, that is, if any point x 2 @
 can be touched from outside 
 by a
solid cone. In particular, this is the case when 
 is a region.
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Brownian motion and Kakutani�s formula.

Let fXtg be Brownian motion in Rn (see Section 2.7 for more details). Then solution
of (1.85) can be determined by Kakutani�s formula:

u (x) = Ex (' (X� ))

where x 2 
 and � is the �rst time when Xt hits @
 starting at x at time 0. For
example, if 
 is a ball centered at x, then X� is uniformly distributed on @
 and we
obtain the mean value property: u (x) is the arithmetic mean of '. In general, u (x)
is a weighted mean of ' where the weight is given by the exit measure of Brownian
motion, that is, by the distribution of X� on @
. Similarly to the Perron method, one
proves that u is always a harmonic function in 
, and that u = ' on @
 provided @

satis�es the cone condition.

Fredholm�s method and integral equations.

Assume that 
 is a region and let us look for the solution of (1.85) in the form

u (x) = �
Z
@


@�E (x; y) v (y) d� (y) ; (1.87)

where v is a new unknown function on @
. This formula is motivated by the Poisson
kernel of the ball that is equal to @�G (x; y) where G is the Green function of the
ball. Since we do not know the Green function of 
, we use in (1.87) the fundamental
solution instead, but replace the boundary function ' by a new unknown function.
It is easy to show that u is a harmonic function in 
, assuming that v is a reasonably

good function. The main problem is to �nd v so that u satis�es the boundary condition
u = ' on @
. The key observation is the following fact: for any x 2 @


lim
z2
;z!x

u (z) =
1

2
v (x) + u (x)

(consequently, u is in general discontinuous at @
). Then the boundary condition

lim
z2
;z!x

u (z) = ' (x)

gives the integral equation for v

1

2
v (x)�

Z
@


@�E (x; y) v (y) d� (y) = ' (x)

at @
. The Fredholm theory develops methods for solving such integral equations. In
particular, the celebrated Fredholm alternative asserts that the existence of solution of
the integral equation for any right hand side ' is equivalent to the uniqueness of solution
of a certain dual integral equation. This is similar to the proof of existence of solution
of the discrete Dirichlet problem when we �rst proved the uniqueness. However, the
proof of the Fredholm alternative is much more complicated as it requires tools of
functional analysis, that is, the theory of in�nite dimensional linear spaces.
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The Dirichlet method and weak topology.

We have learned in Theorem 1.23 that instead of solving (1.85) it su¢ ces to solve the
variational problem � R



jruj2 dx 7! min

u = ' on @
:
(1.88)

If u 2 C1 (
) and w 2 C10 (
) then, applying the divergence theorem to the vector
�eld r (wu), we obtain the identityZ




wru dx = �
Z



urw dx:

This identity is used to de�ne the notion of a weak gradient. Namely, a vector �eld F
in 
 is called a weak gradient of u in 
 if, for any w 2 C10 (
),Z




wF dx = �
Z



urw dx:

The weak gradient (if it exists) will also be denoted by ru. The advantage of the
notion of weak gradient is that it can be de�ned for functions that are not necessarily
pointwise di¤erentiable.
Recall that the Lebesgue space L2 (
) consists of measurable functions u in 
 that

are square integrable, that is, Z



u2dx <1:

It is known that L2 (
) is a Hilbert space with the inner product

(u; v)L2 =

Z



uv dx:

De�ne the Sobolev space W 1;2 (
) as the subspace of L2 (
) that consists of functions
u possessing the weak gradient ru such that jruj 2 L2 (
) : The Sobolev space is a
Hilbert space with respect to the inner product

(u; v)W 1;2 =

Z



(uv +ru � rv) dx: (1.89)

Hence, the norm in W 1;2 (
) is given by

kuk2W 1;2 =

Z



�
u2 + jruj2

�
dx:

We write shortly W 1;2 = W 1;2 (
). Consider also the subspace W 1;2
0 of W 1;2 that is

the closure of C10 (
) in W
1;2. It is possible to prove that if 
 is bounded then W 1;2

0

admits also an equivalent norm

kuk2W 1;2
0
=

Z



jruj2 dx;

which corresponds to the following inner product in W 1;2
0 :

(u; v)W 1;2
0
=

Z



ru � rv dx:
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Assume that the boundary function ' extends to a function in 
 and that the
extended function belongs to W 1;2: Then we understand the boundary condition of
(1.88) in the generalized sense:

u� ' 2 W 1;2
0 : (1.90)

Indeed, we consider the functions inW 1;2
0 as vanishing on @
 in some generalized sense

as they are obtained as limits of functions from C10 (
) vanishing on @
 in the strong
sense. Setting v = u � ', we see that the variational problem (1.88) amounts to the
following: �nd a function v 2 W 1;2

0 where the functional

� (v) :=

Z



jr (v + ')j2 dx

attains its minimal value. It is easy to show that if kvkW 1;2
0
! 1 then � (v) ! 1 so

that we can restrict the problem of �nding the minimum of � to a ball

BR =
n
v 2 W 1;2

0 : kvkW 1;2
0
� R

o
inW 1;2

0 of large enough radius R. It is also easy to see that � is a continuous functional
in W 1;2

0 : If this problem were in a �nite dimensional Euclidean space then we could
have concluded that � attains its minimum in the ball by the extreme value theorem,
because the ball is compact. However, in the in�nite dimensional space W 1;2

0 balls are
not compact!
To overcome this di¢ culty, one introduces a so-called weak topology in W 1;2

0 . In
contrast to the norm topology, the ball BR happens to be compact in the weak topology,
and function � is continuous in the weak topology (both statements are non-trivial).
Hence, one obtains the existence of the minimum point of �.
The function u that one obtains in this way is an element of W 1;2: The one uses

additional methods to show that this function is smooth enough in 
 and continuous
up to @
, in particular, that it solves (1.85). These methods belong to the regularity
theory.

The Riesz representation theorem and geometry of Hilbert spaces.

Consider now the Dirichlet problem�
�u = f in 

u = 0 on @
:

We will understand this problem also in a generalized sense as in the previous method.
The boundary condition we understand in the sense

u 2 W 1;2
0 :

The equation �u = f is equivalent to the integral identityZ



w�u dx =

Z



wf dx for any w 2 C10 (
) ;

which is equivalent to Z



ru � rw dx = �
Z



wf dx:



66 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Since u 2 W 1;2
0 and the class of test functions w can also be extended from C10 (
) to

its closure W 1;2
0 , we restate the latter identity in the form

(u;w)W 1:2
0
= 	(w) for any w 2 W 1;2

0 ; (1.91)

where

	(w) := �
Z



wf dx:

Clearly, 	 is a linear functional on W 1;2
0 . One can show that it is continuous. Then

one can apply the Riesz representation theorem: any continuous linear functional 	 on
a Hilbert space has the form 	(w) = (w; u) for some element u of the Hilbert space.
Hence, this element u is our solution.
The proof of the Riesz representation theorem is based on the following geometric

observation. The set null set of 	, that is, the set

N = fw : 	 (w) = 0g

is a closed linear subspace of the given Hilbert space. The equation 	(w) = (w; u)
implies that u must be orthogonal to N . In the theory of Hilbert spaces one proves the
existence of a non-zero vector that is orthogonal to N . Then one �nds u as a multiple
of this vector.
Finally one uses the regularity theory to show that u is a smooth enough function.



Chapter 2

Heat equation

Our main subject here will be the heat equation

@tu = �u;

where u = u(x; t), x 2 Rn and t 2 R. Here n � 1 is any natural number. In fact, the
domain of the heat equation is Rn+1 or a subset of Rn+1:
We have seen that in the study of the Laplace equation an important role was

played by the fundamental solution. The heat equation possesses a similarly important
solution.

2.1 Heat kernel

De�nition. The following function

pt(x) = p (t; x) :=
1

(4�t)n=2
exp

�
�jxj

2

4t

�
; (2.1)

where t > 0 and x 2 Rn, is called the fundamental solution of the heat equation or the
heat kernel. It is also called the Gauss-Weierstrass function.
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The graphs of the function x 7! pt (x) in R for t = 1, t = 1
2
, t = 1

4
and t = 1
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The main properties of the heat kernel are stated in the following lemma.

Lemma 2.1 The function pt (x) is C1 smooth in Rn+1+ := Rn � (0;+1), positive,
satis�es the heat equation

@tpt = �pt; (2.2)

the identity Z
Rn
pt(x)dx � 1; (2.3)

and, for any r > 0, Z
Bcr

pt(x)dx! 0 as t! 0: (2.4)

Proof. The smoothness and positivity of pt (x) are obvious. It is easier to verify the
equation (2.2) using the function

u (x; t) := ln pt (x) = �
n

2
ln t� jxj

2

4t
+ ln

1

(4�)n=2
:
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Di¤erentiating the identity pt = eu, we obtain

@tpt = eu@tu and @xkxkpt =
�
@xkxku+ (@xku)

2� eu:
which implies

@tpt ��pt = eu
�
@tu��u� jruj2

�
:

Hence, the heat equation (2.2) is equivalent to

@tu = �u+ jruj2 : (2.5)

Computing the derivatives of u,

@tu = �
n

2t
+
jxj2

4t2

and

�u = � n

2t
; ru = � 1

2t
(x1; :::; xn) ; jruj2 = jxj2

4t2
;

we obtain (2.5).
To prove (2.3), let us use the identityZ 1

�1
e�s

2

ds =
p
� (2.6)

that implies by a change in the integral thatZ 1

�1
e�s

2=4tds =
p
4�t:

Reducing the integration in Rn to repeated integrals, we obtainZ
Rn
pt(x)dx =

1

(4�t)n=2

Z
Rn
exp

�
�x

2
1 + � � �+ x2n

4t

�
dx1 � � � dxn

=
1

(4�t)n=2

nY
k=1

Z
R
exp

�
�x

2
k

4t

�
dxk

=
1

(4�t)n=2

�p
4�t
�n

= 1:

Finally, to verify (2.4), let us make the change y = t�1=2x in the integral (2.4). Since
dy = t�n=2dx, the factor t�n=2 cancels out and we obtainZ

fx:jxj>rg
pt(x)dx =

1

(4�)n=2

Z
fy:jyj>t�1=2rg

e�jyj
2=4dy: (2.7)

Since the integral in the right hand side is convergent and t�1=2r ! 1 as t ! 0, we
obtain that the integral tends to 0 as t! 0, which was to be proved.
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2.2 Solution of the Cauchy problem

One of the most interesting and frequently used problems associated with the heat
equation is the Cauchy problem (also known as the initial value problem): given a
function f(x) on Rn, �nd u(x; t) such that(

@tu = �u in Rn+1+ ;

ujt=0 = f:
(2.8)

where Rn+1+ = Rn � (0;1). The function u is sought in the class C2(Rn+1+ ) so that
the both derivatives @tu and �u make sense. The initial condition ujt=0 = f can be
understood in equivalent two ways:

(i) u 2 C(Rn+1+ ) where Rn+1+ = Rn � [0;+1) and u (x; 0) = f (x) for all x 2 Rn.

(ii) We have
u (x; t)! f (x) as t! 0+ (2.9)

locally uniformly in x 2 Rn:

Indeed, if (i) is satis�ed then u is locally uniformly continuous in Rn+1+ whence
u (x; t) ! u (x; 0) = f (x) as t ! 0+ locally uniformly in x. If (ii) is satis�ed then
extending u to Rn+1+ by setting u (x; 0) = f (x), we obtain a continuous function in

Rn+1+ .

Theorem 2.2 If f is a bounded continuous function in Rn then the following function

u (x; t) = (pt � f) (x) =
Z
Rn
pt (x� y) f (y) dy (2.10)

is C1 smooth in Rn+1+ and solves the Cauchy problem (2.8). Moreover, the function u
is bounded and, for all t > 0 and x 2 Rn,

inf f � u (x; t) � sup f: (2.11)

Remark. Set

p (x) = p1 (x) =
1

(4�)n=2
exp

 
�jxj

2

4

!
and observe that

pt (x) =
1�p
t
�np� xp

t

�
: (2.12)

In particular, if we denote k = 1p
t
, then

pt (x) = knp (kx) ;

which is the same rule that was used in Lemma 1.24 to create a sequence f kg of
molli�ers from a molli�er  : The function p (x) is not a molli�er because its support
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is unbounded, but it has many properties of molli�ers. In particular, the fact that the
function u (x; t) satis�es the initial condition (2.9) can be reformulated as follows:

pt � f ! f as t! 0

that is similar to the statement of Lemma 1.24

 k � f ! f as k !1:

Proof. Changing z = x� y in (2.10) we can write

u (x; t) =

Z
Rn
pt (z) f (x� z) dz: (2.13)

Since f is bounded and pt is integrable, the integral here is convergent. The positivity
of the heat kernel and (2.3) imply that

u (x) � sup f
Z
Rn
pt(z)dz = sup f

and in the same way u � inf f , which proves (2.11).
The function u (x; t) from (2.13) is obviously continuous in (x; t) 2 Rn+1+ because it

is obtained by integrating of a continuous function pt (z) f (x� z).
Observe that for any partial derivative D� in (t; x) the following integralZ

Rn
D�pt (x� y) f (y) dy

converges, becauseD�pt (x� y) decays for large jyj as exp
�
� jyj2

4t

�
and f (y) is bounded.

Therefore, D�u also exists and is given by

D�u (x; t) =

Z
Rn
D�pt (x� y) f (y) dy:

In particular, u 2 C1
�
Rn+1+

�
. It follows also that

(@t ��)u (x; t) =
Z
Rn
(@t ��) pt (x� y) f (y) dy = 0;

because pt solves the heat equation (cf. (2.2)).
Let us verify (2.9). The proof is very similar to that of Lemma 1.24. By (2.3), we

have

f (x) =

Z
Rn
pt (z) f (x) dz;

which together with (2.13) yields

u(x; t)� f(x) =

Z
Rn
pt(z) (f(x� z)� f (x)) dz:
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Since f is continuous at x, for any " > 0 there exists � > 0 such that

jzj < � ) jf(x� z)� f(x)j < ":

Furthermore, since f is locally uniformly continuous, � can be chosen the same for all
x varying in a bounded set. Then we have

ju (x; t)� f (x)j �
����Z
B�

pt(z)(f(x� z)� f(x))dz

����
+

�����
Z
Bc�

pt(z)(f(x� z)� f(x))dz

�����
� "

Z
Rn
pt (z) dz + 2 sup jf j

Z
Bc�

pt(z)dz:

By (2.3) we have
R
Rn pt (z) dz = 1 and by (2.4)

R
Bc�
pt(z)dz ! 0 as t! 0. In particular,

if t is su¢ ciently small then

2 sup jf j
Z
Bc�

pt(z)dz � ";

which implies
ju (x; t)� f (x)j � 2":

Hence, (2.9) follows. The convergence is locally uniform in x because � can be chosen
locally uniformly.

Remark. It is clear from the proof that if f (x) is uniformly continuous in Rn then
u (t; x)! f (x) uniformly in x 2 Rn.

27.11.15

2.3 Maximum principle and uniqueness in Cauchy
problem

The Cauchy problem (2.8) is called bounded if the initial function f is bounded and
the solution u must also be bounded. Theorem 2.2 claims the existence of solution of
the bounded Cauchy problem for a continuous initial function f .
The uniqueness in the bounded Cauchy problem will follow from the maximum

principle, which is of its own interest. Let U � Rn be a bounded open set. Fix some
positive real T and consider the cylinder 
 = U � (0; T ) as a subset in Rn+1: The
boundary @
 is the union of three parts: the top U � fTg, the bottom U � f0g and
the lateral boundary @U � [0; T ] (where @U is the boundary of U in Rn). De�ne the
parabolic boundary @p
 of the cylinder 
 as the union of its bottom and the lateral
boundary, that is

@p
 := (U � f0g) [ (@U � [0; T ])

(see Fig. 2.1). Note that @p
 is a closed subset of Rn+1.
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t

T
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0 U

I

Figure 2.1: The parabolic boundary @p


Lemma 2.3 (Parabolic maximum principle)Let 
 be a cylinder as above. If u 2
C2 (
) \ C

�


�
and

@tu��u � 0 in 
 (2.14)

then
sup


u = sup

@p

u: (2.15)

In particular, if u � 0 on @p
 then u � 0 in 
:

By changing u to �u, we obtain the minimum principle: if

@tu��u � 0 in 
 (2.16)

then
inf


u = inf

@p

u:

In particular, if u solves the heat equation in 
 then the maximum and minimum of u
in 
 are attained also in @p
.

Remark. Solutions to the heat equation are sometimes called caloric functions (analo-
gously to harmonic functions). Any function that satis�es (2.14) is called a subsolution
of the heat equation or subcaloric function, any function that satis�es (2.16) is called
a supersolution of the heat equation or supercaloric function (analogously to sub- and
superharmonic functions). Hence, subcaloric functions satisfy the maximum principle,
and supercaloric functions satisfy the minimum principle.

Proof. By hypotheses, u 2 C2 (U � (0; T )). Let us assume �rst a bit more, that
u 2 C2 (U � (0; T ]), that is, u is C2 up to the top of the cylinder (in the end we will
get rid of this assumption). The u satis�es @tu ��u � 0 in U � (0; T ]: Note that we
still assume u 2 C

�


�
.
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Consider �rst a particular case when u satis�es a strict inequality in U � (0; T ]:

@tu��u < 0: (2.17)

Let (x0; t0) be a point of maximum of function u in 
. Let us show that (x0; t0) 2 @p
,
which will imply (2.15). If (x0; t0) =2 @p
 then (x0; t0) lies either inside 
 or at the top
of 
. In the both cases, x0 2 
 and 0 < t0 � T . Since the function x 7! u (t0; x) in U
attains the maximum at x = x0, we have

@xjxju (x0; t0) � 0 for all j = 1; :::; n

whence �u (x0; t0) � 0:

U

(t0 , x0)

xj

t

Figure 2.2: The restriction of u(t; x) to the lines in the direction xj and in the direction
of t (downwards) attains the maximum at (t0; x0).

On the other hand, the function t 7! u (t; x0) in (0; t0] attains its maximum at t = t0
whence

@tu (x0; t0) � 0

(if t0 < T then, in fact, @tu (x0; t0) = 0). Hence, we conclude that

(@tu��u) (x0; t0) � 0;

which contradicts (2.17).
Consider now the general case, when u satis�es @tu � �u � 0 in U � (0; T ]. Set

u" = u� "t where " is a positive parameter. Clearly, we have

@tu" ��u" = (@tu��u)� " < 0:

Hence, the previous case applies to the function u", and we conclude that

sup


(u� "t) = sup

@p

(u� "t) :

Letting "! 0 we obtain (2.15).
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Finally, let us prove (2.15) under the assumption that u 2 C2 (
) (and, of course,
u 2 C

�


�
). Choose some T 0 < T and consider the cylinder 
0 = U � (0; T 0) : Then

u 2 C2 (U � (0; T 0]) and we obtain by the above proof that

sup

0
u = sup

@p
0
u:

Letting T 0 ! T , we obtain (2.15).

Remark. As we see from the proof, the requirement that u 2 C2 (
) is super�uous:
it su¢ ces for u to have in 
 the �rst time derivative @tu and all second unmixed
derivatives @xixiu.

Remark. The maximum principle remains true for a more general parabolic equation

@tu =
nX

i;j=1

aij (x) @xixju+
nX
k=1

bk(x)@xku;

where the right hand side is an elliptic operator.

Now we can prove the uniqueness result.

Theorem 2.4 For any continuous function f (x), the Cauchy problem (2.8) has at
most one bounded solution u (t; x).

Proof. Fix some T > 0 and consider the restricted Cauchy problem�
@tu = �u in Rn � (0; T ) ;
ujt=0 = 0:

(2.18)

It su¢ ces to prove that if u is a bounded solution of (2.18) then u � 0. Since T > 0 is
arbitrary, the uniqueness in (2.8) will follows.
Consider the function

v(x; t) = jxj2 + 2nt;

that is non-negative and obviously satis�es the heat equation

@tv = �v:

Fix " > 0 and compare u and "v in a cylinder 
 = BR�(0; T ), where R is to be chosen.
At the bottom of the cylinder (that is, at t = 0) we have u = 0 � "v. At the lateral
boundary of the cylinder (that is, when jxj = R) we have u � C where C := sup juj,
and v � R2, hence, "v � "R2: Choosing R so big that "R2 � C, we obtain that u � "v
on the lateral boundary of 
.
Hence, the function u � "v satis�es the heat equation in 
 and u � "v � 0 on the

parabolic boundary @p
. By Lemma 2.3, we conclude that u � "v � 0 in 
. Letting
R !1 we obtain u� "v � 0 in Rn � (0; T ). Letting "! 0, we obtain u � 0. In the
same way u � 0, whence u � 0.

Remark. We have proved a bit stronger property that was claimed in Theorem 2.4:
the uniqueness of a bounded solution of the heat equation in a strip Rn � (0; T ) :
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Figure 2.3: Comparison of functions u and "v on @p�

Unbounded Cauchy problem. In fact, the uniqueness class for solutions to the Cauchy problem
is much wider than the set of bounded functions. For example, the Tikhonov theorem says that if
u (t; x) solves the Cauchy problem with the initial

ju (t; x)j � C exp
�
C jxj2

�
(2.19)

for some constant C and all t > 0, x 2 Rn, then u � 0. On the other hand, one cannot replace here
jxj2 by jxj2+" for " > 0.

There is an example, also by Tikhonov, of a solution u (t; x) to (2.18) that is not identical zero

for t > 0. In fact, for any t > 0, the function x 7! u (t; x) takes large positive and negative values

and, of course, does not satisfy (2.19). This solution of the heat equation is non-physical as it cannot

represent an actual physical temperature �eld.

Theorems 2.2 and 2.4 imply that, for any bounded continuous function f , the
Cauchy problem has a unique bounded solution, given by (2.10). Let us show an
amusing example of application of this result to the heat kernel. We use the notion of
convolution f � g of two functions in Rn:

f � g (x) =
Z
Rn
f (x� y) g (y) dy:

Proposition 2.5 The following identity is true for all t; s > 0

pt � ps = pt+s: (2.20)

Proof. Let f be a bounded non-negative continuous function in Rn. By Theorem 2.2,
the function ut = pt �f solves the bounded Cauchy problem with the initial function f .
Consider now the Cauchy problem with the initial function us. Obviously, the function
ut+s gives the bounded solution to this problem at time t. On the other hand, the
solution at time t is given by pt � us. Hence, we obtain the identity

ut+s = pt � us;

that is
pt+s � f = pt � (ps � f) :
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By the associative law of convolution (which is a consequence of Fubini�s theorem), we
have

pt � (ps � f) = (pt � ps) � f;
whence

pt+s � f = (pt � ps) � f:
Since this is true for all functions f as above, we conclude that pt+s = pt � ps.
The identity (2.20) can also be proved by a direct computation, but this is not very

simple.
It follows from (2.20) that the one-parameter function family fptgt>0 forms a con-

volution semigroup, that is a semigroup with respect to the operation of convolution;
moreover, this semigroup is isomorphic to the additive semigroup of R+.

2.4 Mixed problem and separation of variables

Let 
 = U�(0; T ) be a cylinder in Rn+1 based on a bounded domain U � Rn: Consider
the following initial-boundary problem (that is also called mixed problem) in 
:�

@tu = �u in 
;
u = ' on @p
;

(2.21)

where ' is a given continuous function on the parabolic boundary @p
. Function u
should be in the class C2 (
) \ C

�


�
.

Proposition 2.6 If u is a solution of (2.21) then in 


inf ' � u � sup': (2.22)

Consequently, the problem (2.21) has at most one solution.

Proof. By the parabolic maximum principle, we have

sup


u = sup

@p

u = sup'

and similarly
inf


u = inf

@p

u = inf ';

whence (2.22) follows.
If u1; u2 are two solutions of (2.21) then u = u1 � u2 solves the problem�

@tu = �u in 

u = 0 on @p


It follows from (2.22) that u � 0 in 
, whence also u1 � u2.

For existence of solution of (2.21), we restrict ourself to the most important partic-
ular case, when ' = 0 on the lateral boundary @U � [0; T ] : We rewrite (2.21) in the
form: 8<:

@tu = �u in U � (0; T )
u (x; t) = 0 on @U � [0; T ] (boundary condition)
u (x; 0) = ' (x) in U (initial condition)

(2.23)
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where ' is now a given function on U such that 'j@U = 0. The latter makes consistent
the boundary condition and initial condition.02.12.15

We use the method of separation of variables as follows. Let us �rst look for a
solution to the heat equation in the form u (x; t) = v (x)w (t). Then the equation
@tu = �u becomes

vw0 = (�v)w

that is equivalent to
w0

w
=
�v

v
:

Since the left hand side is a function of t and the right hand side is a function of x, the
identity can hold only if they both are constant. Denote this constant by ��, so that

�v + �v = 0 and w0 + �w = 0:

In fact, we require that v = 0 on @U because then also u (x; t) = 0 on @U � [0; T ].
Hence, we obtain for v the following eigenvalue problem:�

�v + �v = 0 in U
v = 0 on @U:

(2.24)

Of course, we require that v 2 C2 (U) \ C
�
U
�
and v 6� 0 (clearly, the solution v � 0

has no value for us). The question is to �nd non-trivial solutions v to (2.24) as well as
those values of � for which non-trivial solution exists.

De�nition. If for some � (2.24) admits a non-trivial solution v, then this � is called
an eigenvalue of (2.24) and the solution v is called the eigenfunction.

This problem is similar to the eigenvalue problem in linear algebra: if A is a linear
operator in a linear space V over R or C then � is an eigenvalue of A if the equation
Av = �v has a non-zero solution v 2 V , that is called eigenvector. It is known that
any operator in an n-dimensional space V has at most n eigenvalues (and at least 1
eigenvalue if V is over C). As we shall see later, the problem (2.24) has a countable set
of eigenvalues that are positive real numbers. Moreover, they can be enumerated as an
increasing sequence f�kg1k=1 such that �k !1 as k !1: Let vk be an eigenfunction
that corresponds to �k.
Solving w0 + �kw = 0 we obtain w = Ce��kt: Hence, for any k 2 N, we obtain the

following solution to the heat equation:

uk (x; t) = e��ktvk (x)

that satis�es also the boundary condition uk = 0 on @U� [0;1): Let us look for u (x; t)
in the form of a linear combination of all uk:

u (x; t) =

1X
k=1

ckuk (x; t) ;

for appropriate constants ck. Note that uk (x; 0) = vk (x). Hence, for t = 0 we obtain
the identity

' (x) =

1X
k=1

ckvk (x) ; (2.25)
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which can be used to determine ck. However, the question arises why such an expansion
is possible for a rather arbitrary function '.
Recall again an analogy with linear algebra. Let V be an n-dimensional linear

space with an inner product (�; �) (for example, Rn with the canonical inner product).
A linear operator A in V is called symmetric if

(Ax; y) = (x;Ay) for all x; y 2 V:

For example, if A is an operator in Rn that is represented by a matrix (aij)ni;j=1 then the
symmetry of A means that the matrix (aij) is symmetric, that is, aij = aji. It is known
that if A is a symmetric operator in V then there is an orthonormal basis fvkgnk=1 in V
that consists of the eigenvectors of A (diagonalization of A). In particular, any vector
x 2 V has in this basis an expansion

x =

nX
k=1

ckvk:

A similar theory can be developed for eigenfunctions of the problem (2.24). The role
of the space V is played by the Lebesgue space L2 (U). By de�nition, L2 (U) consists
of Lebesgue measurable functions f : U ! R such thatZ

U

f 2dx <1:

Then L2 (U) is a linear space over R with the inner product

(f; g)L2 =

Z
U

fgdx:

Moreover, the space L2 (U) is complete with respect to the norm kfkL2 =
p
(f; f), so

that L2 (U) is a Hilbert space.
Let us emphasize that 1-dimensional spaces do not have to be complete (while

�nite dimensional spaces are always complete), and for the completeness of L2 (U) it
is important that the integrals in the de�nition of L2 (U) are understood in the sense
of Lebesgue.
The Laplace operator � cannot be regarded as an operator on the whole space

L2 (U) because L2 (U) contains plenty of discontinuous functions. However, � acts on
the dense subspace C10 (U) of L

2 (U), and on this subspace � is symmetric! Indeed,
for all f; g 2 C10 (U) we have by the Green formulaZ

U

�f g dx =

Z
U

f�g dx;

which is equivalent to
(�f; g)L2 = (f;�g)L2 :

Using the symmetry of �, one proves that L2 (U) has an orthonormal basis fvkg that
consists of the eigenfunctions of the problem (2.24).
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The fact that fvkg is an orthonormal basis in L2 (U) means that any function
' 2 L2 (U) admits an expansion (2.25) with ck = ('; vk)L2, and the series converges in
the norm of L2 (U) : Then we obtain the following candidate for solution of (2.23):

u (x; t) =
1X
k=1

cke
��ktvk (x) :

Of course, in order to prove that it is indeed a solution one needs to investigate the
convergence of the series as well as that of its derivatives. So far we do not have tools
to do so, and we postpone this task to one of the next chapters.
However, in the case when n = 1 and U is an interval, this can be done now. Hence,

let us assume that n = 1 and U = (0; �). The mixed problem (2.23) becomes (with
T =1) 8<:

@tu = @xxu in (0; �)� (0;1)
u (0; t) = u (�; t) = 0 for t 2 [0;1)
u (x; 0) = ' (x) for x 2 [0; �] ;

(2.26)

where ' (x) is a given continuous function on [0; �] that vanishes at x = 0 and x = �.
The eigenvalue problem (2.24) becomes�

v00 + �v = 0 in (0; �)
v (0) = v (�) = 0:

If � < 0 then setting � = ��2 we obtain the general solution of v00 � �2v = 0 in the
form v (x) = C1e

�x + C2e
��x, that cannot vanish at two points unless it is identical

zero. In the case � = 0 the general solution is v (x) = C1+C2x that also cannot vanish
at two points. Assume � > 0. Then the general solution is

v (x) = C1 sin
p
�x+ C2 cos

p
�x:

At x = 0 we obtain v (0) = C2, whence C2 = 0: Take without loss of generality that
C1 = 1 and, hence, v (x) = sin

p
�x. At x = � we obtain v (�) = sin

p
�� so that we

obtain the equation for �:
sin
p
�� = 0:

Solutions are
p
� = k 2 N, that is, �k = k2. Hence, we have determined the sequence

of the eigenvalues �k = k2, k = 1; 2; :::. The corresponding to �k eigenfunction is
vk = sin kx: Hence, the solution of (2.26) will be sought in the form

u (x; t) =

1X
k=1

cke
�k2t sin kx; (2.27)

where ck are determined from

' (x) =
1X
k=1

ck sin kx: (2.28)

Any function ' 2 L2 (0; �) allows such an expansion. Indeed, extend ' to (��; �)
oddly, by setting ' (x) = �' (�x) for x < 0, and then extend ' to the whole R
2�-periodically. Then ' allows an expansion into a Fourier series

'(x) =
a0
2
+

1X
k=1

(ak cos kx+ bk sin kx) ;
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where

ak =
1

�

Z �

��
' (x) cos kx dx = 0;

because ' is odd. Therefore, only the terms bk sin kx remain in the Fourier series.
Renaming bk into ck, we obtain (2.28). It follows that

ck =
1

�

Z �

��
' (x) sin kx dx =

2

�

Z �

0

' (x) sin kx dx: (2.29)

If ' 2 C1 ([0; �]) and ' (0) = ' (�) = 0 then the extended function ' belongs to C1 (R)
and, hence, the Fourier series (2.28) converges absolutely and uniformly.

Proposition 2.7 Assume that the series (2.28) converges absolutely, that is,
P1

k=1 jckj <
1. Then the series (2.27) determines a solution of (2.26).

Proof. Since
��cke�kt sin kx�� � jckj, the series (2.27) converges absolutely and uniformly

for all x 2 [0; �] and t � 0. Hence, u 2 C ([0; �]� [0;1)) : Let us show that @tu exists.
The term-by-term di¤erentiation in t of the series (2.27) gives the series

@tu (x; t) = �
1X
k=1

ckk
2e�k

2t sin kx; (2.30)

where for justi�cation we have to prove that the series in (2.30) converges in (0; �) �
(0;+1) locally uniformly. Fix " > 0 and observe that, for t > ",���ckk2e�k2t sin kx��� � jckj k2e�k2" �M" jckj

where
M" = sup

k�1
k2e�k

2" <1:

Hence, the series (2.30) converges absolutely and uniformly in x 2 [0; �] and t > ".
It follows that the sum of this series is a continuous function in this domain and it is
equal to @tu. Since " > 0 is arbitrary, we obtain that (2.30) holds in [0; �]� (0;1). In
the same way, we prove that for x 2 [0; �] and t > 0

@xu (x; t) =
1X
k=1

ckke
�k2t cos kx

and

@xxu (x; t) = �
1X
k=1

ckk
2e�k

2t sin kx: (2.31)

Similar identities hold for all other partial derivatives of u with respect to x and t.
It follows that u 2 C1 ([0; �]� (0;1)) : Comparison of (2.30) and (2.31) shows that
@tu = @xxu: The boundary and initial conditions are obvious, so u is a solution of
(2.26).
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Example. Consider the function ' (x) = x (� � x) on [0; �]. Computing by (2.29) its
Fourier coe¢ cients yields

ck =
2

�

Z �

0

x (� � x) sin kx dx =

(
0; k even
8

�k3
; k odd

(2.32)

Therefore, we obtain the solution u of (2.26) as follows:

u (x; t) =
8

�

X
k odd

1

k3
e�k

2t sin kx =
8

�

�
e�t sin x+

1

27
e�9t sin 3x+

1

125
e�25t sin 5x+ :::

�
:

(2.33)
Note that by Proposition 2.6 we have u � 0 although this is not obvious from (2.33).
It follows from (2.33) that, for any t � 0,Z �

0

u (x; t) dx =
8

�

X
k odd

1

k3
e�k

2t

Z �

0

sin kx dx| {z }
=2=k

=
16

�

X
k odd

1

k4
e�k

2t;

which implies Z �

0

u (x; t) dx � 16

�
e�t as t!1:

The physical meaning of this integral is the heat energy of the interval [0; �] at time t.
Due to the �cooling�condition at the boundary, the heat energy decays to 0 exponen-
tially in t!1.
It follows also from (2.33) that, for any x 2 (0; �) ;

u (x; t) � 8

�
e�t sin x as t!1:

Hence, for large t, the function x 7! u (x; t) takes the shape of sin x.

0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

x

u t=0

t=1

t=2

Solution u (x; t) at t = 0; t = 1; t = 2
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2.5 �Mixed problem with the source function

Consider now the Dirichlet problem in (0; �)�R+ with the source function f (x; t) at
the right hand side: 8<:

@tu� @xxu = f (x; t) in (0; �)� (0;1)
u (0; t) = u (�; t) = 0 for t 2 [0;+1)
u (x; 0) = 0 for x 2 [0; �] :

(2.34)

Alongside with the method of separation of variables, we use also the method of vari-
ation of constants. Namely, we search for solution u in the form (2.27) but now ck will
be unknown functions of t:

u (x; t) =

1X
k=1

ck (t) e
�k2t sin kx: (2.35)

Assuming that we can di¤erentiate the series term-by-term, we obtain

@tu =
1X
k=1

�
c0k (t)� ck (t) k

2
�
e�k

2t sin kx

and

@xxu = �
1X
k=1

ck (t) k
2e�k

2t sin kx

whence

@tu� @xxu =
1X
k=1

c0k (t) e
�k2t sin kx: (2.36)

On the other hand, expanding the function f (x; t) in a series in sin kx yields

f (x; t) =
1X
k=1

fk (t) sin kx (2.37)

where

fk (t) =
2

�

Z �

0

f (x; t) sin kx dx:

Comparing (2.36) and (2.37) we obtain the following equations for functions ck:

c0k (t) e
�k2t = fk (t) : (2.38)

The initial condition ujt=0 will be satis�ed if we require that

ck (0) = 0:

Hence, solving (2.38) with this initial condition, we obtain

ck (t) =

Z t

0

fk (s) e
k2sds: (2.39)
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Of course, in order to be rigorous, one needs to investigate the convergence of the series
(2.35) as we did in Proposition 2.7, and verify that the series can be di¤erentiated term-
by-term. We skip this part but observe that if the series in (2.37) is �nite then the
series (2.35) is also �nite, and no further justi�cation is needed. Consider an example
of this type.

Example. Let
f (x; t) = e�t sin x+ t sin 2x:

We obtain from (2.39)

c1 (t) =

Z t

0

e�sesds = t

and

c2 (t) =

Z t

0

se4sds =

�
1

4
t� 1

16

�
e4t +

1

16
;

while ck � 0 for all k � 3. Hence, the solution u is

u (x; t) = c1 (t) e
�t sin x+ c2 (t) e

�4t sin 2x

= te�t sin x+

�
1

4
t� 1

16
+
1

16
e�4t

�
sin 2x:

In particular, for t ! 1 we obtain the following asymptotic as t ! 1 for any x 2
(0; �):

u (x; t) �
�
te�t; x = �

2
1
4
t sin 2x; x 6= �=2

2

1
0

0.5

1
0

2

1.0

3

3

4

5

0.0

t

x
1.0

0.5

Solution u (x; t)

2.6 �Cauchy problemwith source function and Duhamel�s
principle

Let ' (x) be a function in some domain D � Rn. Recall that the notation ' 2 Ck (D)
means that ' has in D all partial derivatives of the order at most k and all these
derivatives are continuous inD. We write ' 2 Ckb (D) if in addition all these derivatives
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are bounded in D. In particular, Cb (D) is the set of all bounded continuous functions
in D.
Let f (x; t) be a function in some domain D � Rn+1:We write f 2 Ck;l (D) if f has

all partial derivatives in x of the order at most k and in t of the order at most l, and
all these derivatives are continuous in D. We write f 2 Ck;lb (D) if in addition all these
derivatives are bounded in D. We use the convention that the derivative of the order
zero is the function itself.
Given a function f (x; t) in Rn+1+ and a function ' (x) in Rn, consider the following

Cauchy problem �
@tu��u = f in Rn+1+

ujt=0 = '
(2.40)

where the solution u is sought in the class C2;1
�
Rn+1+

�
\ C(Rn+1+ ):

Lemma 2.8 There is at most one solution u of (2.40) that is bounded in any strip
Rn � (0; T ) with T <1:

Proof. Indeed, if u1; u2 are two solutions, then u = u1�u2 is a bounded in Rn� (0; T )
solution of �

@tu��u = 0
ujt=0 = 0:

By Theorem 2.4 we obtain u � 0 and, hence, u1 � u2:

Let us use the following notations: ut (x) := u (x; t) and ft (x) = f (x; t) :

Theorem 2.9 (Duhamel�s principle) Assume that ' 2 Cb (Rn) and f 2 C2;0b (R
n+1

+ ).
Then the problem (2.40) has the following solution

ut = pt � '+
Z t

0

pt�s � fs ds: (2.41)

Moreover, the following estimate holds:

sup jutj � sup j'j+ t sup jf j : (2.42)

Since by (2.42) the solution u is bounded in any strip Rn� (0; T ), we see by Lemma
2.8 that it is the unique solution of this class.
Example. Assume that ' � 0. If f � 1 then pt�s � 1 = 1 and we obtain by (2.41)
ut (x) = t:
Consider one more example when fs (x) = ps (x) :Then

pt�s � fs = pt�s � ps = pt

and we obtain from (2.41) that ut (x) = tpt (x) :

For the proof of Theorem 2.9 we need some lemmas. We use the following notation

Ptf =

�
pt � f; t > 0;
f; t = 0:

If f 2 Cb (Rn) then, for t � 0, the function Ptf is also in Cb (Rn) so that Pt can be
considered as an operator in Cb (Rn). We consider Ptf (x) as a function of x and t.
Note that, by Theorem 2.2, the function Ptf (x) belongs to C1

�
Rn+1+

�
\Cb(R

n+1

+ ). In

the next statement we investigate the smoothness of Ptf (x) in R
n+1

+ :
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Lemma 2.10 For any integer k � 0, if f 2 Ckb (Rn) then Ptf (x) 2 Ck;0b (R
n+1

+ ).
Moreover, for any partial derivative D� in x of the order j�j � k, and any t � 0,

D�Ptf = Pt (D
�f) : (2.43)

Furthermore, if f 2 C2b (Rn) then Ptf (x) 2 C
2;1
b (R

n+1

+ ):

Proof. The case k = 0 follows from Theorem 2.2 as it was already mentioned. Let
k = 1: For any t > 0 we have

@xiPtf = @xi

Z
Rn
pt (y) f (x� y) dy

=

Z
Rn
pt (y) @xif (x� y) dy

because the latter integral converges absolutely and uniformly in x, due to the bound-
edness of @xif . Hence,

@xiPtf = Pt (@xif) :

For t = 0 this identity is trivial. Since @xif 2 Cb (Rn), it follows that Pt (@xif) 2
Cb(R

n+1

+ ) and, hence, Ptf 2 C1;0b (R
n+1

+ ):
For a general k the result follows by induction.
If f 2 C2b (Rn) then we obtain by Theorem 2.2 and (2.43) that, for t > 0,

@tPtf = �Ptf = Pt (�f) :

Since �f 2 Cb (Rn), we have Pt (�f) 2 Cb(R
n+1

+ ), which implies that also @tPtf 2
Cb(R

n+1

+ ): Hence, Ptf 2 C2;1b (R
n+1

+ ):

It follows from the estimate (2.11) of Theorem 2.2, that if ffkg is a sequence of
functions from Cb (Rn) sucht that fk � f in Rn then

Ptfk (x)� Ptf (x) in R
n+1

+ :

In the next lemma we prove a similar property with respect to the local uniform con-
vergence.

Lemma 2.11 Let ffkg be a sequence of uniformly bounded continuous functions in
Rn. If fk (x)! f (x) as k !1 locally uniformly in x 2 Rn then

Ptfk (x)! Ptf (x)

locally uniformly in (x; t) 2 Rn+1+ :

Proof. Fix some x 2 Rn and choose R large enough, in particular R > 2 jxj. For any
" > 0 and for all large enough k we have

sup
BR

jfk � f j < ": (2.44)
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Set

gk = fk1BR and hk = fk1BcR
g = f1BR and h = f1BcR

so that gk + hk = fk and g + h = f . Then we have

jPtfk � Ptf j � jPtgk � Ptgj+ jPthk � Pthj
� jPtgk � Ptgj+ jPthkj+ jPthj :

By (2.44) we have
sup
Rn
jgk � gj < "

whence it follows that
sup
t�0

sup
x2Rn

jPtgk � Ptgj < ":

Next, we have

Pthk (x) =

Z
BcR

pt (x� y) fk (y) dy if t > 0

and
P0hk (x) = hk (x) = 0:

By R > 2 jxj we have
BR=2 (x) � BR

and, hence,
Bc
R � BR=2 (x)

c :

Since jfkj � C where C is the same constant for all k, we obtain

jPthk (x)j � C

Z
Bc
R=2

(x)

pt (x� y) dy

= C

Z
Bc
R=2

pt (z) dz

= C 0
Z
fw:jwj>t�1=2R=2g

e�jwj
2=4dw

! 0 as R!1;

where the convergence is uniform in any bounded domain in (x; t) 2 Rn+1+ . In the same
way Pth (x)! 0 as R! 0, whence the claim follows.

Now we consider a function fs (x) = f (x; s) of (x; s) 2 Rn+1+ . Then Ptfs (x) is a
function of the triple

(x; t; s) 2 Rn+2+ := f(x; t; s) : x 2 Rn; t; s 2 [0;+1)g :

Lemma 2.12 (a) If f 2 Cb(R
n+1

+ ) then Ptfs (x) 2 Cb(R
n+2

+ ).

(b) If f 2 C2;0b (R
n+1

+ ) then Ptfs (x) 2 C2;1;0b (Rn+2+ ).



88 CHAPTER 2. HEAT EQUATION

Here the class C2;1;0b means the existence of bounded continuous derivatives in x of
the order at most 2, in t of the order at most 1 and in s of the order 0.

Proof. (a) For any s � 0, the function Ptfs is continuous in (x; t) 2 R
n+1

+ ; and

sup
(x;t)2Rn+1+

jPtfs (x)j � sup
x2Rn

jfs (x)j � sup
(x;s)2Rn+1+

jf (x; s)j <1:

It remains to prove that Ptfs (x) is jointly continuous in (x; t; s). Since this function
is continuous in (x; t) for any s � 0, it su¢ ces to show that it is also continuous in s,
locally uniformly in (x; t). Indeed, since the function f (x; s) is bounded and locally
uniformly continuous, the family ffsgs�0 of functions on Rn is uniformly bounded and
fs ! fs0 as s! s0 locally uniformly in x. Hence, by Lemma 2.11, Ptfs ! Ptfs0 locally
uniformly in (x; t), which �nishes the proof.
(b) By Lemma 2.10, for any partial derivative D� in x of the order j�j � 2 we have

D�Ptfs = Pt (D
�fs) :

Since D�fs 2 Cb(R
n+1

+ ), we have by (a) that also D�Ptfs 2 Cb(R
n+2

+ ):
For the time derivative @t we have

@tPtfs = �(Ptfs) = Pt (�fs) :

Since �fs 2 Cb(R
n+1

+ ), we obtain @tPtfs 2 Cb(R
n+2

+ ): Hence, Ptfs 2 C2;1;0b (Rn+2+ ):

Proof of Theorem 2.9. In the view of Theorem 2.2, it su¢ ces to prove that the
function

vt (x) = v (t; x) :=

Z t

0

pt�s � fs (x) ds =
Z t

0

Pt�sfs (x) ds (2.45)

is a solution of the Cauchy problem�
@tv ��v = f in Rn+1+

vjt=0 = 0 in Rn:

By Lemma 2.12, the function Pt�sfs (x) belongs to C
2;1;0
b in the domain x 2 Rn,

t � s � 0. It follows from (2.45) that v 2 C(Rn+1+ ) and vjt=0 = 0: It follows also from
(2.45) that

jvtj �
Z t

0

sup
Rn
jPt�sfsj ds �

Z t

0

sup jf j ds = t sup jf j ;

which implies (2.42).
Let us show that v 2 C2;1

�
Rn+1+

�
and that v satis�es @tv � �v = f . Let us �rst

compute @tv. We have by (2.45)

@tv = Pt�sfsjs=t +
Z t

0

@t (Pt�sfs) ds = ft +

Z t

0

�(Pt�sfs) ds; (2.46)

which is justi�ed because @t (Pt�sfs) belongs to Cb. It follows that @tv 2 C(R
n+1

+ )
Let D� be any partial derivative in x of the order � 2. By Lemma 2.10 we have

D� (Pt�sfs ) 2 Cb, whence by (2.45)

D�v =

Z t

0

D� (Pt�sfs ) ds: (2.47)
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It follows that D�v 2 C(Rn+1+ ) and, hence, v 2 C2;1(Rn+1+ ):
Finally, we have by (2.47)

�v =

Z t

0

�(Pt�sfs ) ds;

which together with (2.46) implies

@tv ��v = ft;

which was to be proved.

2.7 �Brownian motion

Brownian motion in Rn is a di¤usion process that is described by random continuous
paths fXtgt�0 in Rn and by the family fPxgx2Rn of probability measures, so that Px
is the probability measure on the set 
x of all continuous paths ! : [0;1)! Rn such
that is ! (0) = x.

Brownian path in R2

It su¢ ces to de�ne Px �rst on subsets of 
x of the following type:

f! 2 
x : ! (t1) 2 A1; :::; ! (tk) 2 Akg ; (2.48)

where 0 < t1 < t2 < ::: < tk is any �nite sequence of reals and A1; :::; Ak is any sequence
of Borel subsets of Rn. Under certain consistency condition, Px can be then extended
to a �-algebra Fx in 
x thus giving a probability space (
x;Fx;Px), for any x 2 Rn.
There are various ways of de�ning Px on the sets (2.48), the most convenient of

them being by means of the heat kernel pt (x) : Let us write pt (x; y) = pt (x� y) and
set

Px (! (t1) 2 A1; :::; ! (tk) 2 Ak) (2.49)

=

Z
Ak

:::

Z
A1

pt1 (x; x1) pt2�t1 (x1; x2) :::ptk�tk�1 (xk�1; xk) dx1:::dxk:
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The consistency condition that has to be veri�ed is the following: if Ai = Rn for some
i, then the condition ! (ti) 2 Ai can be dropped without a¤ecting the probability, that
is,

Px (! (t1) 2 A1; :::; ! (ti) 2 Rn; :::; ! (tk) 2 Ak) = Px(! (t1) 2 A1; :::;
i

X; :::; ! (tk) 2 Ak);
(2.50)

where in the right hand side the i-th condition is omitted. Indeed, if i = k then
integrating in (2.49) �rst in dxk and using thatZ

Rn
ptk�tk�1 (xk�1; xk) dxk = 1;

we obtain (2.50). If i < k then integrating in (2.49) �rst in dxi and usingZ
Rn
pti�ti�1 (xi�1; xi) pti+1�ti (xi; xi+1) dxi = pti+1�ti�1 (xi�1; xi+1) ;

we again obtain (2.50) (in the case i = 1 use the convention t0 = 0 and x0 = x).
The random path Xt is a random variable on 
x that is de�ned by Xt (!) = ! (t).

It follows from (2.49) with k = 1 that

Px (Xt 2 A) =
Z
A

pt (x; y) dy =

Z
A

1

(4�t)n=2
exp

 
�jx� yj2

4t

!
dy; (2.51)

which gives the distribution function of Xt.

Xt

x

A

Event Xt 2 A

The formula (2.51) can be extended as follows: for any bounded Borel function f
on Rn,

Ex (f (Xt)) =

Z
Rn
pt (x; y) f (y) dy: (2.52)

Note that (2.51) is a particular case of (2.52) for f = 1A. Comparison with Theorem
2.52 yields Dynkin�s formula: the function

u (x; t) := Ex (f (Xt))

is the solution of the Cauchy problem for the heat equation with the initial function f .
As it was already mentioned above, the Dirichlet problem�

�u = 0 in 

u = ' on @
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in a bounded domain 
 � Rn can be solved by means of Kakutani�s formula

u (x) = Ex (' (X� )) ; (2.53)

where � := inf ft > 0 : Xt =2 
g is the �rst exit time of Xt from 
.
Consider a more general boundary value problem�

�u+ V u = 0 in 
;
u = ' on @
;

(2.54)

where V (x) is a given continuous function in 
. The operator � + V is called a
stationary Schrödinger operator. Under certain natural assumptions about V and
', one can prove that the solution of (2.54) is given by the following Feynman-Kac
formula:

u(x) = Ex
�
exp

�Z �

0

V (Xt)dt

�
'(X� )

�
: (2.55)

Clearly, (2.53) is a particular case of (2.55) for V = 0.
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Chapter 3

Wave equation

09.12.15
Here we will be concerned with the wave equation

@ttu = �u (3.1)

where u = u (x; t) is a function of x 2 Rn and t 2 R. Recall that the physical wave
equation contains a parameter c > 0:

@ttu = c2�u: (3.2)

The parameter c plays an important physical role as the speed of wave. However, the
change s = ct reduces the latter PDE to @ssu = �u, which is equivalent to (3.1).
Hence, all results for (3.1) can be reformulated for (3.1) using the change of time.
Note also that the change s = �t brings (3.1) to the same form @ssu = �u, which

means that the properties of the wave equation for t > 0 and for t < 0 are the same,
unlike the heat equation.
One of the main problems associated with the wave equation is the Cauchy problem:8<:

@ttu = �u in Rn+1+

ujt=0 = g in Rn
@tujt=0 = h in Rn

(3.3)

where g (x) and h (x) are given function. Solution u is sought in the class u 2 C2(Rn+1+ ).
The method of solving (3.3) depends on the dimension n, so we consider separately

the cases n = 1; 2; 3:

3.1 Cauchy problem in dimension 1

Consider the Cauchy problem in the case n = 1:8<:
@ttu = @xxu in R2+
ujt=0 = g in R
@tujt=0 = h in R

(3.4)

We have seen in Section 0.2 that the general C2 solution of the wave equation

@ttu = @xxu

93
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in R2 (or in R2+) is given by (0.13), that is,

u (x; t) = F (x+ t) +G (x� t) ; (3.5)

where F and G are arbitrary C2 functions on R. Let us �nd F and G to satisfy the
initial conditions

u (x; 0) = g (x) ; @tu (x; 0) = h (x) :

Indeed, substituting into (3.5) t = 0 we obtain equation

g (x) = F (x) +G (x) : (3.6)

It follows from (3.5) that

@tu = F 0 (x+ t)�G0 (x� t) ;

and setting t = 0 we obtain one more equation

h (x) = F 0 (x)�G0 (x) : (3.7)

It follows from (3.6) that g has to be C2, and from (3.7) that h has to be C1.
Assuming g 2 C2 and h 2 C1, we solve the system (3.6)-(3.7) as follows. Di¤eren-

tiating (3.6) we obtain
g0 (x) = F 0 (x) +G0 (x) ;

which together with (3.7) gives

F 0 (x) =
1

2
(g0 (x) + h (x))

and

G0 (x) =
1

2
(g0 (x)� h (x)) :

Therefore, we obtain

F (x) =
1

2

�
g (x) +

Z x

0

h (y) dy

�
+ C (3.8)

and

G (x) =
1

2

�
g (x)�

Z x

0

h (y) dy

�
� C; (3.9)

so that F and G satisfy (3.6) and (3.7). Therefore, we obtain the following statement.

Theorem 3.1 (D�Alembert�s formula) If g 2 C2 (R) and h 2 C1 (R) then the following
function is a unique solution of (3.4):

u (x; t) =
1

2
(g (x+ t) + g (x� t)) +

1

2

Z x+t

x�t
h (y) dy: (3.10)
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Proof. The uniqueness follows from the fact that functions F and G are determined
uniquely, up to a constant C, that cancels out in (3.5). The function u from (3.10)
satis�es (3.5), that is,

u (x; t) = F (x+ t) +G (x� t) ;

where the functions F and G are given by (3.8) and (3.9). It follows that u 2 C2 (R2),
u satis�es in R2 the wave equation, and u satis�es the initial conditions by the choice
of F;G.

This argument shows in addition the following.

1. We have obtained a solution u of the Cauchy problem (3.4) not only in R2+ but
in the whole R2.

2. As we see from (3.6) and (3.7), the conditions g 2 C2 and h 2 C1 are not
only su¢ cient but also necessary for F and G to be in C2; hence, they are also
necessary for the existence of a C2 solution.

Example. Consider the initial functions

g (x) = sinx and h (x) = x:

Then (3.10) gives

u (x; t) =
1

2
(sin (x+ t) + sin (x� t)) +

1

2

 
(x+ t)2

2
� (x� t)2

2

!
= sinx cos t+ xt:

Before we construct solutions in higher dimension, let us discuss the uniqueness in
arbitrary dimension.

3.2 Energy and uniqueness

We �rst prove the uniqueness in the setting of a mixed problem. Given a bounded
region U in Rn and T > 0, consider the mixed problem for the wave equation in the
cylinder 
 = U � (0; T ): 8<:

@ttu = �u in 

u = g on @p

@tujt=0 = h in U

(3.11)

where g and h are given functions. Solution u is sought in the class C2 (
) \ C1
�


�
.

Theorem 3.2 The problem (3.11) has at most one solution in C2 (
) \ C1
�


�
.

Proof. It su¢ ces to prove that if g = 0 and h = 0 then u = 0: Consider the energy of
the solution u at time t:

E (t) =
1

2

Z
U

�
(@tu)

2 + jruj2
�
dx: (3.12)
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Obviously, E (t) is a continuous function in t 2 [0; T ]. Di¤erentiating E in t 2 (0; T ),
we obtain

E 0 (t) =
1

2

Z
U

�
@t (@tu)

2 + @t (ru � ru)
�
dx

=

Z
U

(@ttu @tu+ru � r@tu) dx:

Now we use the the second term the Green formula (1.77) of Lemma 1.26. We have
u 2 C2 (U) \ C1

�
U
�
and w := @tu 2 C1 (U) \ C

�
U
�
. Since u = 0 on the lateral

boundary @U � [0; T ], we obtain w = @tu = 0 on @U � [0; T ]. Hence, by (1.77)Z
U

ru � r@tu dx = �
Z
U

�u @tu dx:

It follows that

E 0 (t) =

Z
U

(@ttu @tu��u @tu) dx =
Z
U

(@ttu ��u) @tu dx = 0:

Therefore, E (t) = const on [0; T ]. Since E (0) = 0 by the initial condition u = 0 and
@tu = 0 at t = 0, we conclude that E (t) � 0. This implies that the functions @tu and
jruj are identically equal to zero in 
, whence u � const in 
. The initial condition
u = 0 implies u � 0 in 
, which was to be proved.
The physical meaning of the energy (3.12) is as follows. If u (x; t) is the displacement

of a vibrating membrane over U , then 1
2
(@tu)

2 is (the density of) the kinetic energy at
the point x at time t, while 1

2
jruj2 is (the density of) the potential energy of tension,

because the latter is proportional to the increase of the areaq
1 + jruj2 � 1 � 1

2
jruj2 :

Now let us discuss uniqueness in the Cauchy problem:8<:
@ttu = �u in Rn � (0; T ) ;
ujt=0 = g in Rn;
@tujt=0 = h in Rn;

(3.13)

where T 2 (0;1] and u 2 C2 (Rn � [0; T )) :

Theorem 3.3 (Uniqueness for the Cauchy problem the wave equation) The problem
(3.13) has at most one solution u 2 C2 (Rn � [0; T )) :

Note that, in contrast to the case of heat equation, there are no restrictions like
boundedness of solution.
If u (x; t) is a solution of (3.13), then for any open set U � Rn and any t 2 [0; T )

de�ne the energy of u in U at time t by

EU (t) =
1

2

Z
U

�
(@tu)

2 + jruj2
�
dx:

For any x0 2 Rn and t0 > 0 de�ne the cone of dependence by

Ct0 (x0) =
�
(x; t) 2 Rn+1 : 0 � t � t0; jx� x0j � t0 � t

	
:
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(x0,t0)

t

0

t0

B (x0)t0x0

B (x0)t0t

C (x0)t0

Cone Ct0 (x0)

Clearly, at each level t 2 [0; t0], the coneCt0 (x0) consists of the closed ballBt0�t (x0) :
In particular, the base of the cone at t = 0 is the ball Bt0 (x0) ; the top of the cone at
t = t0 is the point x0.
The following theorem plays the main role in the proof of Theorem

Theorem 3.4 (Domain of dependence) If u 2 C2 (Ct0 (x0)) is a solution of the wave
equation in Ct0 (x0) and if ujt=0 = 0 and @tujt=0 = 0 then u � 0 in Ct0 (x0) :

Proof of Theorem 3.3. It su¢ ces to prove that if g = 0 and h = 0 then u = 0.
Choose any point x0 2 Rn and t0 2 (0; T ). Since g = h = 0 in Bt0 (x0), we obtain by
Theorem 3.4 that u = 0 in the cone Ct0 (x0), in particular at (x0; t0). Since (x0; t0) is
arbitrary, we obtain u � 0, which was to be proved.

Proof of Theorem 3.4. For simplicity of notation take x0 = 0 and skip x0 from all
notation. Consider the energy of u in the ball Bt0�t at time t:

F (t) := EBt0�t (t) =
1

2

Z
Bt0�t

�
(@tu)

2 + jruj2
�
dx:

Obviously, F (t) is a continuous function in [0; t0]. By hypotheses, we have F (0) = 0:
Let us show that F 0 (t) � 0 for t 2 [0; t0] which will then implies that F (t) � 0 in
[0; t0]. In turn, this will yield that @tu = 0 and ru = 0 in Ct0, that is, u � const in
Ct0, whence also u � 0 in Ct0 will follow.
In order to di¤erentiate F (t), consider �rst a simpler function

� (r; t) = EBr (t) =
1

2

Z
Br

�
(@tu)

2 + jruj2
�
dx;
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that is de�ned whenever Br � ftg lies in the domain of u. As in the proof of Theorem
3.2 we have

@t� =
1

2

Z
Br

@t
�
(@tu)

2 +ru � ru
�
dx

=

Z
Br

(@ttu @tu +ru � r@tu) dx

=

Z
Br

(@ttu��u) @tu dx+
Z
@Br

@�u @tu d�

=

Z
@Br

@�u @tu d�:

Since
@�u @tu � jruj j@tuj �

1

2

�
(@tu)

2 + jruj2
�
;

we obtain the estimate

@t� �
1

2

Z
@Br

�
(@tu)

2 + jruj2
�
d�:

Next, representing integration over the ball Br as the repeated integral in radius and
over the spheres, we obtain

@r� =
1

2
@r

Z r

0

�Z
@Bs

�
(@tu)

2 + jruj2
�
d�

�
ds

=
1

2

Z
@Br

�
(@tu)

2 + jruj2
�
d�

� @t�: (3.14)

Now we can di¤erentiate the function

F (t) = EBt0�t (t) = � (t0 � t; t)

by the chain rule:
F 0 = �@r� (t0 � t; t) + @t� (t0 � t; t) :

Using (3.14), we obtain F 0 � 0, which was to be proved.
11.12.15

Corollary 3.5 (Finite propagation speed) Let u 2 C2 (Rn � [0; T )) be a solution to
the wave equation in Rn � (0; T ). If, for some R > 0,

suppu (x; 0) � BR and supp @tu (x; 0) � BR (3.15)

then, for any 0 < t < T ,
suppu (x; t) � BR+t: (3.16)

Proof. Fix some t0 2 (0; T0) and a point x0 =2 BR+t0. It su¢ ces to show that
u (x0; t0) = 0: Indeed, the cone Ct0 (x0) is based on the ball Bt0 (x0) and, due to
condition x0 =2 BR+t0 we see that the balls Bt0 (x0) and BR are disjoint. Therefore,
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u and @tu vanish at t = 0 in Bt0 (x0). By Theorem 3.4 we conclude that u � 0 in
Ct0 (x0), in particular, u (x0; t0) = 0, which was to be proved.

This statement shows clearly that the wave travels in time t the distance at most
t, that is, the speed of propagation of the wave is bounded by 1.
Example. Let us show in example, that the speed of wave can be exactly 1, that is,
the value R + t in (3.16) is sharp and cannot be reduced. Consider in the case n = 1
the solution u (x; t) = F (x+ t)+F (x� t) where F is a non-negative C2 function with
suppF = [�R;R]. Then u (x; 0) = 2F (x) and @tu (x; 0) = 0 so that the condition
(3.15) is satis�ed. At any time t > 0 we obtain

suppu (x; t) = [�R� t;�R + t] [ [�R + t; R + t] ;

that is, suppu (x; t) is the union of two intervals, and the external boundary points of
them are �R � t, R + t, that is, the endpoints of the interval [�R� t; R + t] : Hence,
the latter interval cannot be reduced.

Remark. Compare the result of Corollary 3.5 with the properties of the heat equation.
If now u (x; t) is a bounded solution of the Cauchy problem with the initial function f
with supp f � BR and f � 0; f 6� 0, then by

u (x; t) =

Z
Rn

1

(4�t)n=2
exp

 
�jx� yj2

4t

!
f (y) dy

we see that u (x; t) > 0 for all x 2 Rn and t > 0. Hence, for any t > 0 we have
suppu (x; t) = Rn. This, of course, contradicts the physical meaning of u: the temper-
ature cannot propagate instantaneously at in�nite distance. This phenomenon re�ects
the fact that the heat equation describes the heat propagation only approximately. To
overcome this di¢ culty, �x some " > 0 to be considered as the error of measurement,
and consider the notion of "-support:

supp" f := fx 2 Rn : jf (x)j � "g :

Then one can prove the following: if supp" f � BR then supp2" u(�; t) � B�(t) where

� (t) =

(
R +

q
Ct ln T

t
; 0 < t < T;

0 t � T;

where T > 0 depends on the function f and C = C (n) > 0 (see Exercises). We see
that the heat travels in time t the distance roughly

p
t, which matches experimental

results.

3.3 Mixed problem for the wave equation

Let U be a bounded domain in Rn and 
 = U � (0;1). Consider the following mixed
problem for the wave equation in 
:8>><>>:

@ttu = �u in 

u = 0 on @U � [0;1)
ujt=0 = g in U
@tujt=0 = h in U

(3.17)
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where g and h are given initial functions on U: The solution is sought in the class
u 2 C2

�


�
.

Note that g and h have to be compatible with the boundary condition u = 0 on
@U � [0;1). The condition u 2 C2

�


�
implies that

g 2 C2
�
U
�
and h 2 C1

�
U
�
. (3.18)

Moreover, u = 0 on @U � [0;1) implies g = 0 on @U , but also @tu = 0 and @ttu = 0 on
@U � [0;1). Hence, also h = 0 on @U . Since @ttu = �u in 
, we obtain that �u = 0
on @U � [0;1), which at t = 0 amounts to �g = 0 on @U . Hence, here are additional
compatibility conditions for g and h:

g = h = �g = 0 on @U: (3.19)

Since (3.18) and (3.19) are necessary conditions for the existence of a solution u 2
C2
�


�
, we can further assume that g and h satisfy (3.18) and (3.19).

Using the method of separation of variables, search �rst for solutions of the wave
equation in the form u (x; t) = v (x)w (t). We obtain

vw00 = (�v)w

and
�v

v
=
w00

w
= ��

where � is a constant. Imposing also the boundary condition v = 0 on @U , we obtain
the following eigenvalue problem�

�v + �v = 0 in U
vj@U = 0

(3.20)

where we search for a non-zero solution v. This problem is the same as the one we
obtained considering the wave equation. As before, denote by fvkg1k=1 an orthonormal
basis in L2 (U) that consists of eigenfunctions, and by f�kg1k=1 the sequence of the
corresponding eigenvalues in an increasing order. Recall also that all �k > 0:
For w we obtain the equation

w00 + �w = 0;

which gives us for any � = �k solution

w (t) = ak cos
p
�kt+ bk sin

p
�kt:

Hence, we can search the solution u of (3.17) in the form

u (x; t) =
1X
k=1

�
ak cos

p
�kt+ bk sin

p
�kt
�
vk (x) : (3.21)

If vk 2 C2
�


�
and the series (3.21) and all the series of its �rst and second derivatives

converge uniformly in 
, then we obtain u 2 C2
�


�
and that u satis�es the wave

equation in 
 as well as the boundary condition u = 0 on @U � [0;1).
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The coe¢ cients ak and bk should be determined from the initial conditions. Assume
that g and h have the following expansions

g (x) =

1X
k=1

gkvk (x) (3.22)

and

h (x) =

1X
k=1

hkvk (x) : (3.23)

Setting in (3.21) t = 0 we obtain

g (x) = u (x; 0) =

1X
k=1

akvk (x)

whence we see that ak = hk. Di¤erentiating (3.21) in t and setting t = 0 we obtain

h (x) = @tu (x; 0) =

1X
k=1

p
�kbkvk (x) ;

whence bk = hk=
p
�k. Hence, the solution u becomes

u (x; t) =
1X
k=1

�
gk cos

p
�kt+

hkp
�k
sin
p
�kt

�
vk (x) :

In order to make the above argument rigorous, we have to justify all the steps, especially
the convergence of the series locally uniformly. In general, this is quite a di¢ cult task,
as a priori we can only say that the series (3.22) and (3.23) converge in the norm of
L2, which is by far not enough.
However, we can justify this approach in the case n = 1. Let U = (0; �), so that

the mixed problem is8>><>>:
@ttu = @xxu in (0; �)� (0;1)
u (0; t) = u (�; t) = 0 for t 2 [0;1)
u (x; 0) = g (x) for x 2 [0; �]
@tu (x; 0) = h (x) for x 2 [0; �]

(3.24)

We know that the sequence of eigenvalues is �k = k2 and the sequence of eigenfunctions
is vk = sin kx. Assuming that

g (x) =
1X
k=1

gk sin kx (3.25)

and

h (x) =
1X
k=1

hk sin kx; (3.26)

we obtain the solution in the form

u (x; t) =

1X
k=1

�
gk cos kt+

hk
k
sin kt

�
sin kx: (3.27)
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Before we justify the formula (3.27), let us discuss its physical meaning. Let u (x; t)
describe the vibration of the string initially located at the interval [0; �]. The value
u (x; t) is the vertical displacement of the string at point x at time t. The boundary
condition u (0; t) = u (�; t) means that the endpoints of the string are �xed. The initial
condition u (x; 0) = g (x) describes the initial vertical displacement of the string, and
@tu (x; 0) = h describes the initial speed of the string in the vertical direction.
While vibrating, the string produces a sound whose pitch is determined by the

frequency of vibration. The term

(ak cos kt+ bk sin kt) sin kx = Ak cos (kt+ 'k) sin kx;

that corresponds to the sound of frequency k, is called the k-th harmonic. The ampli-
tude of the k-th harmonic is Ak =

p
a2k + b2k. If

u (x; t) =
1X
k=1

(ak cos kt+ bk sin kt) sin kx;

then the sound produced by the string u (x; t) ist superposition of the sounds of all
integer frequencies k. The dominant frequency will be the one with the maximal
amplitude. Typically this is the �rst harmonic, that is also called fundamental tone.
The higher harmonics are called overtones. The timbre of the sound depends on the
ratio of the amplitudes of the overtones to that of the fundamental tone.

Proposition 3.6 Assume that

1X
k=1

�
k2 jgkj+ k jhkj

�
<1: (3.28)

Then the function u from (3.27) belongs to C2 ([0; �]� R) and solves the mixed problem
(3.24).

Proof. The condition (3.28) implies that the series (3.27) converges absolutely and
uniformly for all x 2 R and t 2 R, as well as the series of its partial derivatives of the
order � 2, which is enough to conclude that u solves (3.24).
Indeed, each di¤erentiation in t or in x results in an additional factor k in the k-th

term of (3.27), so that, for any derivative of at most second order, the additional factor
is at most k2. Hence, the convergence of the series of derivatives will follow from

1X
k=1

k2
�
jgkj+

jhkj
k

�
<1

which is equivalent to (3.28).
16.12.15

The condition (3.28) is too restrictive. Recall that g 2 C1 ensures only the conver-
gence of

P
jgkj, and to obtain the convergence of

P
k2 jgkj we have to assume g 2 C3.

Next theorem uses a di¤erent method to obtain (3.27) under optimal assumptions.
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Theorem 3.7 Assume that

g 2 C2 ([0; �]) ; h 2 C1 ([0; �]) (3.29)

and
g (0) = g (�) = g00 (0) = g00 (�) = h (0) = h (�) = 0: (3.30)

Then the series (3.27) converges absolutely and uniformly in [0; �] � R, its sums u
belongs to C2 ([0; �]� R) and solves (3.24).

Remark. The conditions (3.29) and (3.30) coincide with (3.18) and (3.19), respectively.
Hence, these conditions are necessary for the existence of a C2 solution.

Proof. Let us �rst prove the existence of solution of (3.24). First observe the following:
if f is a continuous function on the interval [0; �] then the even extension by f (�x) =
f (x) de�nes a continuous function on [��; �]. For the odd extension f (�x) = �f (x)
to be continuous on [��; �], it is necessary and su¢ cient that f (0) = 0.
Extend g from [0; �] oddly to [��; �]. Due to the assumption g (0) = 0, the extended

function g is continuous on [��; �]. With the odd extension of g, the derivative g0
extends evenly, so that g0 is also continuous on [��; �]. Finally, the second derivative
g00 extends oddly and, due to the hypothesis g00 (0) = 0, the extended function g00 is
continuous on [��; �]. Hence, g 2 C2 [��; �].
If f is a continuous function on [��; �] then extend it 2�-periodically by f (x+ 2�k) =

f (x) for any x 2 (��; �] and k 2 Z. Observe that f 2 C (R) if and only if
f (��) = f (�) :
Now, extend g 2�-periodically from [��; �] to R. Since g (��) = �g (�) = 0 and,

hence, g (��) = g (�), the extended function g is continuous on R. For the derivative
g0 we have g0 (��) = g0 (�) since g0 is even, which implies that g0 is continuous on R.
For the second derivative g00 we have by (3.30) g00 (��) = �g00 (�) = 0, so that g00 is
also continuous on R. Hence, g 2 C2 (R).
In the same way, extending h oddly to [��; �] and then 2�-periodically to R, we

obtain that h 2 C1 (R).
Now let us solve the Cauchy problem8<:

@ttu = @xxu in R2+
ujt=0 = g
@tujt=0 = h

By Theorem 3.1 this problem has a solution u 2 C2 (R2). Let us show this the same
function u solves the mixed problem (3.24). Indeed, the wave equation and the initial
conditions are true by de�nition of u. We need only to verify the boundary condition
u (0; t) = u (�; t) = 0:
By Theorem 3.1, the solution is given by

u (x; t) = F (x+ t) +G (x� t) (3.31)

where

F (x) =
1

2
g (x) +

1

2

Z x

0

h (y) dy
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and

G (x) =
1

2
g (x)� 1

2

Z x

0

h (y) dy:

Since g and h are odd functions, the function
R x
0
h (y) dy is even, and we obtain

G (�x) = 1

2
g (�x)� 1

2

Z �x

0

h (y) dy = �1
2
g (x)� 1

2

Z x

0

h (y) dy = �F (x) ;

that is,
G (�x) = �F (x) :

Hence,
u (0; t) = F (t) +G (�t) = 0:

Since g and h are 2�-periodic and
R �
�� h (y) dy = 0, it follows that the function F is

2�-periodic. Hence, we obtain

u (�; t) = F (� + t) +G (� � t) = F (� + t� 2�)� F (�� + t) = 0:

Hence, u is a C2 solution of (3.24).
Since F is 2�-periodic and C2, it can be represented by an absolutely and uniformly

convergent Fourier series:

F (x) =
�0
2
+

1X
k=1

(�k cos kx+ �k sin kx) :

It follows that

G (x) = �F (�x) = ��0
2
�

1X
k=1

(�k cos kx� �k sin kx) :

Hence, we obtain from (3.31)

u (x; t) =
1X
k=1

(�k cos k (x+ t) + �k sin k (x+ t))

�
1X
k=1

(�k cos k (x� t)� �k sin k (x� t))

= �
1X
k=1

2�k sin kx sin kt+
1X
k=1

2�k sin kx cos kt

=
1X
k=1

(ak cos kt+ bk sin kt) sin kx;

where ak = 2�k, bk = �2�k and the series converges absolutely and uniformly.
Since F 0 2 C1, the Fourier series for F 0 converges absolutely and uniformly; more-

over, it is obtained by means of term by term di¤erentiating of the Fourier series of
F . It follows that the same is true for u: the Fourier series for @tu can be obtained by
means of term by term di¤erentiating of the series of u, that is,

@tu =
1X
k=1

@t (ak cos kt+ bk sin kt) sin kx =
1X
k=1

(�akk sin kt+ bkk cos kt) sin kx:
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Since the both functions g; h are 2�-periodic and odd, their Fourier series are sin-
Fourier series as (3.25) and (3.26). Since g; h 2 C1, the series (3.25) and (3.26) converge
absolutely and uniformly. Hence, the coe¢ cients ak and bk of the above expansion of
u can be determined from the initial conditions as follows:

g (x) = u (x; 0) =
1X
k=1

ak sin kx

whence ak = gk, and

h (x) = @tu (x; 0) =

1X
k=1

bkk sin kx;

whence bkk = hk. Hence, we obtain (3.27).

Remark. We have obtained in the proof that the series for u can be di¤erentiated in
t or in x term by term. However, we cannot prove the same for the second derivatives
unless we require g 2 C3 and h 2 C2. Note that we did not use the second derivatives
of the series of u because we employed a di¤erent method to prove that u satis�es the
wave equation.

Remark. It is worth mentioning that the solution (3.27) is not only 2�-periodic in x
but also 2�-periodic in t.

Example. Consider the mixed problem (3.24) with g � 0 and h (x) = x (� � x) on
[0; �]. These functions clearly satisfy (3.29) and (3.30). The coe¢ cients hk of the
sin-Fourier of h were computed in (2.32):

hk =

(
0; k even,
8

�k3
; k odd.

Hence, we obtain the solution u by (3.27):

u (x; t) =
8

�

X
k odd

1

k4
sin kt sin kx

=
8

�

�
sin t sin x+

1

81
sin 3t sin 3x+

1

625
sin 5t sin 5x+ :::

�
: (3.32)

1 2 3

2

1

0

1

2

x

u

t=0.25

t=4

t=2

t=2.5

t=3.5

Function x 7! u (x; t) at di¤erent moments of time.
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In fact, already the �rst term in the series (3.32) provides a reasonable approximation to u, that
is,

u (x; t) � 8

�
sin t sinx: (3.33)

The error of approximation can be roughly estimated as follows. Using the inequality jsin kxj � k jsinxj
that can be proved by induction in k 2 N, we obtain that, in the region 0 < x < � and 0 < t < �,

jsin kt sin kxj � k2 sinx sin t

whence������
X

k odd, k�3

1

k4
sin kt sin kx

������ �
0@ X
k odd, k�3

1

k2

1A sin t sinx = �1
8
�2 � 1

�
sin t sinx < 0:24 sin t sinx

and ����u (x; t)� 8

�
sin t sinx

���� � 0:24� 8� sin t sinx
�
:

Hence, the error of approximation in (3.33) is at most 24%; but in practice it is much less than that.

Example. Consider the initial conditions g (x) = x (� � x) and h � 0 on [0; �]. The
function g belongs to C1 ([0; �]) and g (0) = g (�) = 0 but g00 (0) and g00 (�) do not
vanish because g00 (x) � �2. Since the coe¢ cients of the sin-Fourier series for this
function are

gk =

(
0; k even,
8

�k3
; k odd,

the series (3.27) becomes

u (x; t) =
8

�

X
k odd

1

k3
cos kt sin kx: (3.34)

This series converges absolutely and uniformly, and the same is true for its �rst deriv-
atives. However, the series of the second derivative @xx is

8

�

X
k odd

@xx

�
1

k3
cos kt sin kx

�
= � 8

�

X
k odd

1

k
cos kt sin kx;

which does not converge uniformly and its sum is not a continuous function, although
this is not quite obvious.
In fact, the function u is not C2 because g does not satisfy the necessary condition

(3.30). Let us see this directly from the representation:

u (x; t) =
1

2
(g (x+ t) + g (x� t)) ;

where the function g is extended oddly and 2�-periodically. The extended function g
is no longer C2 because its second derivative is

g00 (x) =

�
�2; x 2 (0; �)
2; x 2 (��; 0)
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3 2 1 1 2 3

3

2

1

1

2

3

x

Oddly extended function g (x) = x (� � x) (black) and its second derivative g00 (red)

Hence, g00 does not exists at any point �k, k 2 Z. It follows that function u (x; t)
does not have the second derivatives at the following sets:

x+ t = �k and x� t = �k; k 2 Z:

Hence, we see that the singularities x = 0 and x = � of g00 propagate and become the
singularities of the second derivatives of u.

x

t

π

π

π2

Singularities of the second derivatives of u (x; t)

Overall, the function u from (3.34) is of the class C1 ([0; �]� R) and of the class
C2 outside singularities. It satis�es the initial and boundary conditions, and satis�es
the wave equation outside singularities. One can say that u is a weak solution of the
wave equation and of the mixed problem. In fact, there is a more general de�nition
of a weak solution for the wave equation, which deals with functions that are only
continuous (see Exercises).
In fact, the mixed problem (3.24) with the initial function g (x) = x (� � x) has a

perfect physical sense: this is the problem of vibration of a string having initially the
shape of g (x). In the absence of a C2 solution, one accepts the function u (x; t) from
(3.34) as the solution of (3.24).

3.4 Spherical means

For solving the Cauchy problem in higher dimension, we use the method of spherical
means. Given a continuous function f in Rn, �x x 2 Rn and de�ne for any r > 0 the
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function

F (x; r) = �
Z
@Br(x)

f (y) d� (y) =
1

!nrn�1

Z
@Br(x)

f (y) d� (y) : (3.35)

The function F (x; r) is called the spherical mean of f . We use also the simpler notation
F (r) instead of F (x; r) in the case when the point x is �xed.

Lemma 3.8 Fix x 2 Rn. If f 2 Cm (Rn) where m � 0 then F 2 Cm ([0;1)).
Furthermore, if f 2 C2 (Rn) then, for all r > 0;

F 0 (r) = �
Z
@Br(x)

@�f (y) d� (y) =
r

n
�
Z
Br(x)

�f (y) dy; (3.36)

where � is the outer normal unit vector �eld on @Br (x), and

F 00 (r) = �
Z
@Br(x)

�f (y) d� (y)� n� 1
n

�
Z
Br(x)

�f (y) dy: (3.37)

For r = 0 we have

F (0) = f (x) ; F 0 (0) = 0; F 00 (0) =
1

n
�f (x) : (3.38)

Proof. Making in (3.35) change y = x + rz, observing that y 2 @Br (x) , z 2 @B1
and d� (y) = rn�1d� (z) ; we obtain

F (r) =
1

!nrn�1

Z
@Br(x)

f (y) d� =
1

!n

Z
@B1

f (x+ rz) d� (z) : (3.39)

From this formula we see that F is well-de�ned for all r � 0 (in fact, for all r 2 R).
Moreover, if f 2 Cm (Rn) then F 2 Cm ([0;1)). 18.12.15

Let f 2 C2. Di¤erentiating (3.39) in r > 0, we obtain

F 0 =
1

!n

Z
@B1

@r (f (x+ rz)) d� (z)

=
1

!n

Z
@B1

(rf) (x+ rz) � z d� (z)

=
1

!nrn�1

Z
@Br(x)

(rf) (y) � y � x

r
d� (y) :

Since y�x
r
= � is the outer normal unit vector �eld on @Br (x), we obtain that

(rf) (y) � y � x

r
= rf � � = @�f;

whence

F 0 =
1

!nrn�1

Z
@Br(x)

@�f d� = �
Z
@Br(x)

@�f (y) d� (y) ;
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which proves the �rst identity in (3.36). Next, the Green formula yields

F 0 =
1

!nrn�1

Z
@Br(x)

@�f d�

=
1

!nrn�1

Z
Br(x)

�f (y) dy

=
r

n

1

!nrn=n

Z
Br(x)

�f (y) dy =
r

n
�
Z
Br(x)

�f dy;

which proves the second identity in (3.36). Rewrite the latter identity in the form

F 0 =
1

!nrn�1
G (r)

where

G (r) =

Z
Br(x)

�f (y) dy =

Z r

0

�Z
@sB(x)

�f (y) d� (y)

�
ds:

We see that G is di¤erentiable in r and

G0 =

Z
@rB(x)

�f (y) d� (y) :

It follows that

F 00 =
d

dr

�
1

!nrn�1
G (r)

�
=

1

!nrn�1
G0 (r)� n� 1

!nrn
G (r)

=
1

!nrn�1

Z
@rB(x)

�f (y) d� (y)� n� 1
!nrn

Z
Br(x)

�f (y) dy

= �
Z
@rB(x)

�f (y) d� (y)� n� 1
n

�
Z
Br(x)

�f (y) dy;

that proves (3.37).
Taking limits in (3.35), (3.36), (3.37) as r ! 0 and using the continuity of f and

�f , we obtain (3.38).

Now let us consider F (x; r) as a function of x and r.

Lemma 3.9 If f 2 Cm (Rn) then F as a function of (x; r) belongs to Cm (Rn � [0;1)).
If f 2 C2 (Rn) then, for any r � 0,

�F (x; r) = �
Z
@Br(x)

�f (y) dy: (3.40)

Proof. This follows immediately from (3.39) and from

�(f (x+ rz)) = (�f) (x+ rz) :
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Let us consider the Cauchy problem in dimension n:�
@ttu = �u in Rn+1+

ujt=0 = g; @tujt=0 = h in Rn (3.41)

where g; h are given functions in Rn. We will assume that u 2 C2(Rn+1+ ) and, conse-
quently, that

g 2 C2 (Rn) ; h 2 C1 (Rn) :

Assuming that the solution u exists, we will deduce the formula for u. De�ne the
spherical means

G (x; r) = �
Z
@Br(x)

g (y) d� (y) ;

H (x; r) = �
Z
@Br(x)

h (y) d� (y) ;

and

U (x; r; t) = �
Z
@Br(x)

u (y; t) d� (y) ; (3.42)

where x 2 Rn and r > 0. All these functions are also de�ned at r = 0 by continuity.
We use the shorter notations G (r) ; H (r) ; U (r; t) if x is �xed.
Set

Q = R+ � (0;1)

and denote the points of Q by (r; t) where r; t > 0.

Proposition 3.10 (Euler-Poisson-Darboux equation) If u solves (3.41) then, for any
�xed x 2 Rn, the function U (r; t) belongs to C2

�
Q
�
and solves the following mixed

problem 8>><>>:
@ttU = @rrU +

n�1
r
@rU in Q;

U (0; t) = u (x; t) for all t � 0;
U (r; 0) = G (r) for all r � 0;
@tU (r; 0) = H (r) for all r � 0:

(3.43)

Proof. We have by (3.39)

U (r; t) =
1

!n

Z
@B1

u (x+ rz; t) d� (z) ; (3.44)

which implies that U 2 C2
�
Q
�
. By Lemma 3.8 we have

@rU =
r

n
�
Z
Br(x)

�u (y; t) dy

and

@rrU = �
Z
@Br(x)

�u (y; t) d� (y)� n� 1
n

�
Z
Br(x)

�u (y; t) dy;
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which implies

@rrU +
n� 1
r

@rU = �
Z
@Br(x)

�u (y; t) d� (y)

= �
Z
@Br(x)

@ttu (y; t) d� (y)

= @ttU:

The boundary condition U (0; t) = u (x; t) from (3.38) or (3.44). The initial conditions
follow from u (x; 0) = g (x) and @tu (x; 0) = h (x).

3.5 Cauchy problem in dimension 3

Consider the Cauchy problem with n = 3:�
@ttu = �u in R4+
ujt=0 = g; @tujt=0 = h in R3 (3.45)

As before, solution is sought in the class u 2 C2(R4+); while g 2 C2 (R3), h 2 C1 (R3).

Theorem 3.11 (Case n = 3, Kirchho¤�s formula) If u is a solution of (3.45) then,
for all x 2 R3 and t > 0,

u (x; t) = �
Z
@Bt(x)

(g (y) + t@�g (y) + th (y)) d� (y) : (3.46)

Recall that the ball Bt (x) is the bottom of the cone of dependence Ct (x). As
we know from Theorem 3.4, the value u (x; t) is completely determined by the initial
conditions in the ball Bt (x). The formula (3.46) shows that in the case of dimension 3
a stronger statement is true: u (x; t) is completely determined by the initial conditions
on the sphere @Bt (x) (more precisely, in a little neighborhood of the sphere because
one needs @�g as well). This is a speci�c property of wave propagation in the three
dimensional space.
For comparison, recall D�Alembert�s formula in dimension 1:

u (x; t) =
1

2
(g (x+ t) + g (x� t)) +

1

2

Z x+t

x�t
h (y) dy:

In this case Bt (x) = (x� t; x+ t) and @Bt (x) consists of two points x� t; x+ t so that
we can rewrite this formula in the form

u (x; t) = �
Z
@Bt(x)

gd� + t�
Z
Bt(x)

h (y) dy:

In particular, we see that the value u (x; t) depends on the values of h in the full �ball�
Bt (x).

Proof. We use the spherical means U;G; H as above. Consider also the functionseU := rU; eG := rG; eH := rH:
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Using (3.43) and n = 3, we obtain

@rr eU = @r (r@rU + U) = r@rrU + 2@rU = r

�
@rrU +

n� 1
r

@rU

�
= r@ttU = @tt eU:

Therefore, eU 2 C2 (Q) where Q = R+ � (0;1), and eU solves the following mixed
problem: 8>>><>>>:

@tt eU = @rr eU in QeU (0; t) = 0 for all t � 0eU (r; 0) = eG (r) for all r � 0
@t eU (r; 0) = eH (r) for all r � 0

Since eU is a solution of the wave equation in Q, it has to be of the formeU (r; t) = � (r + t) + 	 (r � t) ;

for some C2 functions � on R+ and 	 on R. Let us use the boundary and initial values
in order to determine � and 	. Setting r = 0 and using eU (0; t) = 0, we obtain

� (t) = �	(�t) for all t � 0:

Setting t = 0 we obtain
� (r) + 	 (r) = eG (r) :

Di¤erentiating eU in t and setting t = 0 we obtain
�0 (r)�	0 (r) = eH (r) :

Solving these two equations as in the proof of Theorem 3.1, we obtain

� (r) =
1

2

�eG (r) + Z r

0

eH (s) ds� ; 	(r) =
1

2

�eG (r)� Z r

0

eH (s) ds� :
In the range 0 � r � t we haveeU (r; t) = � (r + t) + 	 (� (t� r))

= � (r + t)� � (t� r)

=
1

2

�eG (r + t) +

Z r+t

0

eH (s) ds�� 1
2

�eG (t� r) +

Z t�r

0

eH (s) ds�
=

1

2

� eG (t+ r)� eG (t� r)
�
+
1

2

Z t+r

t�r
eH (s) ds:

Since

u (x; t) = lim
r!0

U (x; r; t) = lim
r!0

eU (x; r; t)
r

;

it follows that

u (x; t) = lim
r!0

 eG (t+ r)� eG (t� r)

2r
+
1

2r

Z t+r

t�r
eH (s) ds!

= eG0 (t) + eH (t)
= (tG)0 + tH (3.47)

= G+ tG0 + tH:
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By Lemma 3.8 we have

G0 (t) = �
Z
@Bt(x)

@�g (y) d� (y) ;

whence (3.46) follows.

Finally, we can prove the existence of solution of (3.45).

Theorem 3.12 (Kirchho¤�s formula) If g 2 C3 (R3) and h 2 C2 (R3) then the function

u (x; t) = �
Z
@Bt(x)

(g (y) + t@�g (y) + th (y)) d� (y) (3.48)

is a solution of (3.45).

Proof. The formula (3.48) is equivalent to (3.47), that is,

u = @t (tG) + tH = G+ t@tG+ tH:

By Lemma 3.9, we have G 2 C3 and H 2 C2, whence u 2 C2 (R3 � [0;1)). At t = 0
we obtain by (3.38)

u (x; 0) = G (x; 0) = g (x) :

Since
@tu = 2@tG+ t@ttG+ t@tH +H;

it follows by (3.38) that
@tu (x; 0) = H (x; 0) = h (x) :

Let us verify that u satis�es the wave equation. It su¢ ces to show that each of the
functions tH and @t (tG) satis�es the wave equation. Consider �rst the function

v (x; t) = tH (x; t) :

It follows by Lemmas 3.8 and 3.9 that, for t > 0,

@ttv = 2@tH + t@ttH

=
2t

3
�
Z
Bt(x)

�h dy + t�
Z
@Bt(x)

�h d� � 2
3
t�
Z
Bt(x)

�h dy

= t�
Z
@Bt(x)

�h d�

= t�H = �v

that is, v satis�es the wave equation.
Since the function w = tG satis�es the wave equation @ttw = �w, di¤erentiating

this equation in t and noticing that @t commutes with @tt and �, we obtain that @tw
also satis�es the wave equation, which �nishes the proof.
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3.6 Cauchy problem in dimension 2
06.01.16

Consider now the Cauchy problem with n = 2:8<:
@ttu = �u in R3+
ujt=0 = g
@tujt=0 = h

(3.49)

Solution is sought in the class u 2 C2(R3+):

Theorem 3.13 (Poisson formula) Let g 2 C3 (R2) and h 2 C2 (R2). Then (3.49) has
the following solution:

u (x; t) =
1

2
�
Z
Bt(x)

tg (y) + trg � (y � x) + t2h (y)q
t2 � jx� yj2

dy:

Proof. Let us extend (3.49) to a Cauchy problem in dimension 3. Indeed, any function
f (x1; x2) de�ned in R2 extends trivially to a function in R3 by setting

f (x1; x2; x3) = f (x1; x2) :

So, extend u; g and h to R3. In particular, we have u (x1; x2; x3; t) = u (x1; x2; t) and

@x1x1u+ @x2x2u+ @x3x3u = @x1x1u+ @x2x2u:

Hence, (3.49) is equivalent to the Cauchy problem in dimension 38<:
@ttu = �u in R4+
ujt=0 = g
@tujt=0 = h

(3.50)

Additional condition is that u should not depend on x3.
Denote points in R3 by X = (x1; x2; x3) and denote by x the point (x1; x2) in R2,

that is, the projection of X onto the plane x1; x2. The same convention we use for Y
and y. By Theorem 3.45 the problem (3.50) has solution

u (X; t) = �
Z
@Bt(X)

(g + t@�g + th) d� (Y ) ; (3.51)

where Bt (X) is a ball in R3 and � is outer normal unit vector �eld on @Bt (X). Using
the fact that g and h do not depend on x3, let us transform (3.51) to contain integration
only in R2, and at the same time we check that u does not depend on x3. The sphere
@Bt (X) is given by the equation

(y1 � x1)
2 + (y2 � x2)

2 + (y3 � x3)
2 = t2;

and it consists of two hemispheres that can be represented as the graphs of the following
functions

y3 = x3 �
q
t2 � (y1 � x1)

2 � (y2 � x2)
2
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over the disk Dt (x) in R2 of radius t centered at x (to distinguish the balls in R3 and
R2, we refer to those on R2 as disks and denote them by D rather than B).
If a surface S in R3 is given by the graph of a function

y3 = f (y) ; y 2 
;

in domain 
 � R2, then, for any continuous function � on S,Z
S

� (Y ) d� (Y ) =

Z



� (y; f (y))

q
1 + jrf j2dy:

In our case S is one of the two hemispheres of @Bt (X), 
 = Dt (x),

f (y) = x3 �
q
t2 � jy � xj2

and
� = g + t@�g + th:

Observe that @x3g = 0 and, at any point Y 2 @Bt (X), the normal vector � is given by
� = Y�X

t
. Hence, we obtain

t@�g = trg � Y �X

t
= (@x1g; @x2g; @x3g) � (Y �X)

= (@x1g; @x2g) � (y � x)

= rg � (y � x) ;

where from now on r denotes the gradient in R2. Since g and h depend only on y, we
obtain

� (Y ) = g (y) +rg � (y � x) + th (y) :

In particular, � does not depend on y3, and in the expression � (Y ) = � (y; f (y)) we
do not have to substitute the value of f (y).
We have for i = 1; 2

@yif = �
yi � xiq

t2 � jy � xj2

whence

1 + jrf j2 = 1 +
(y1 � x1)

2

t2 � jy � xj2
+

(y2 � x2)
2

t2 � jy � xj2

=
t2

t2 � jy � xj2
:

Hence, we obtainZ
S

� (Y ) d� (Y ) =

Z
Dt(x)

� (Y )
tq

t2 � jx� yj2
dy

=

Z
Dt(x)

tg (y) + trg � (y � x) + t2h (y)q
t2 � jx� yj2

dy:
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Since the integral in (3.51) is crosses, we have to divide by the surface area of @Bt (X)
that is equal to 4�t2. Since we integrate over two hemispheres, we multiply by 2.
Hence, we obtain

u (X; t) =
2

4�t2

Z
Dt(x)

tg (y) + trg � (y � x) + t2h (y)q
t2 � jx� yj2

dy

=
1

2
�
Z
Dt(x)

tg (y) + trg � (y � x) + t2h (y)q
t2 � jx� yj2

dy;

where we have used that the area of Dt (x) is equal to �t2. Since the last integral does
not depend on x3, we can write u (X; t) = u (x; t), which �nishes the proof.

3.7 �Cauchy problem in higher dimensions

Similar formulas for solution of the Cauchy problem for the wave equation can be found
in arbitrary dimension n, which we state without proof. Consider the Cauchy problem
(3.41) in arbitrary dimension n � 2. As above, consider the spherical means

G (x; t) = �
Z
@Bt(x)

gd� and H (x; t) = �
Z
@Bt(x)

gd�:

As we know, in the case n = 3 the solution can be written in the form

u = @t (tG) + tH = G+ t@tG+H: (3.52)

Theorem 3.14 Let n � 3 be odd. If g 2 C
n+3
2 (Rn) and h 2 C

n+1
2 (Rn) then the

following function is a solution of (3.41):

u =
1

(n� 2)!!

"
t

�
1

t
@t

�n�1
2 �

tn�2G
�
+

�
1

t
@t

�n�3
2 �

tn�2H
�#
: (3.53)

Here k!! = 1 � 3 � 5::: � k for the case of odd k and k!! = 2 � 4 � ::: � k in the case of even
k.
Clearly, in the case n = 3 (3.53) coincides with (3.52). In the case n = 5 we have

u =
1

3

"
t

�
1

t
@t

�2 �
t3G
�
+

�
1

t
@t

��
t3H

�#
:

Since �
1

t
@t

��
t3G
�
=
1

t

�
3t2G+ t3@tG

�
= 3tG+ t2@tG

t

�
1

t
@t

�2 �
t3G
�
= @t

�
3tG+ t2@tG

�
= 3G+ 5t@tG+ t2@ttG

and �
1

t
@t

��
t3H

�
= 3tH + t2@tH;
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we obtain in the case n = 5 that

u =
1

3

�
3G+ 5t@tG+ t2@ttG+ 3tH + t2@tH

�
:

For the case of even n, we introduce the following notation:

eG (x; t) = �Z
Bt(x)

g (y)q
t2 � jx� yj2

dy

and eH (x; t) = �Z
Bt(x)

h (y)q
t2 � jx� yj2

dy:

Theorem 3.15 Let n � 2 be even. If g 2 C
n
2
+2 (Rn) and h 2 C

n
2
+1 (Rn) then the

following function is a solution of (3.41):

u =
1

n!!

"
@t

�
1

t
@t

�n�2
2 �

tn eG�+ �1
t
@t

�n�2
2 �

tn eH�# : (3.54)
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Chapter 4

The eigenvalue problem

08.01.16
13.01.16 4.1 Distributions and distributional derivatives

Let 
 be an open subset of Rn. Denote by D (
) the linear topological space that as
a set coincides with C10 (
), the linear structure in D (
) is de�ned with respect to
addition of functions and multiplication by scalars from R, and the topology in D (
)
is de�ned by means of the following convergence: a sequence f'kg of functions from
D (
) converges to ' 2 D (
) in the space D (
) if the following two conditions are
satis�ed:
1. 'k � ' in 
 and D�'k � D�' for any multiindex � of any order;
2. there is a compact set K � 
 such that supp'k � K for all k.
It is possible to show that this convergence is indeed topological, that is, given by

a certain topology.
Any linear topological space V has a dual space V 0 that consists of continuous linear

functionals on V.
De�nition. Any linear continuos functional f : D (
) ! R is called a distribution in

 (or generalized functions). The set of all distributions in 
 is denoted by D0 (
). If
f 2 D0 (
) then the value of f on a test function ' 2 D (
) is denoted by (f; ').

Any locally integrable function f : 
 ! R can be regarded as a distribution as
follows: it acts on any test function ' 2 D (
) by the rule

(f; ') :=

Z



f' dx: (4.1)

Note that two locally integrable functions f; g correspond to the same distribution if
and only if f = g almost everywhere, that is, if the set

fx 2 
 : f (x) 6= g (x)g

has measure zero. We write shortly in this case

f = g a:e: (4.2)

Clearly, the relation (4.2) is an equivalence relation, that gives rise to equivalence classes
of locally integrable functions. The set of all equivalence classes of locally integrable

119
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functions is denoted1 by L1loc (
). The identity (4.1) establishes the injective mapping
L1loc (
)! D0 (
) so that L1loc (
) can be regarded as a subspace of D0 (
).
There are distributions that do not correspond to any function, that is, the di¤erence

D0 (
)nL1loc (
) is not empty. For example, de�ne the delta-function �x0 for any x0 2 

as follows:

(�x0 ; ') = ' (x0) :

Although historically �x0 is called delta-function, it is a distribution that does not
correspond to any function.
De�nition. Let f 2 D0 (
). A distributional partial derivative @xif is a distribution
that acts on test functions ' 2 D (
) as follows:

(@xif; ') = � (f; @xi') ; (4.3)

where @xi' is the classical (usual) derivative of '.

Note that the right hand side of (4.3) makes sense because @xi' 2 D (
). Moreover,
the right hand side of (4.3) is obviously a linear continuous functions in ' 2 D (
),
which means that @xif exists always as a distribution.
In particular, the above de�nition applies to f 2 L1loc (
). Hence, any function

f 2 L1loc (
) has always all partial derivatives @xif as distributions.
Let us show that if f 2 C1 (
) then its classical derivative @xif coincides with the

distributional derivative. For that, it su¢ ces to check that the classical derivative @xif
satis�es the identity (4.3). Indeed, have, for any ' 2 D (
),

(@xif; ') =

Z



@xif ' dx

= �
Z



f@xi'dx = � (f; @xi')

where we have used integration by parts and ' 2 C10 (
).
Let again f 2 L1loc (
). If there is a function g 2 L1loc (
) such that

(g; ') = � (f; @xi') 8' 2 D (
) ; (4.4)

then we see that g satis�es the de�nition of the distributional derivative @xif . In this
case, the distribution @xif is given by a function g. The distributional derivative that
corresponds to a L1loc function is called a weak derivative. In other words, a function
g 2 L1loc (
) is called a weak derivative of f in xi if g satis�es (4.4).
Let f 2 D0 (
). Applying successively the de�nition of distributional partial deriv-

atives, we obtain higher order distributional partial derivatives D�f for any multiindex
� = (�1; :::; �n). It follows from (4.3) by induction in j�j that

(D�f; ') = (�1)j�j (f;D�') 8' 2 D (
) : (4.5)

Example. Consider the function f (x) = jxj in R. This functions has the following
classical derivative:

f 0 (x) =

�
1; x > 0
�1; x < 0

(4.6)

1Sometimes L1loc (
) is loosely used to denote the set of all locally integrable functions in 
. How-
ever, in a strict sense, the elements of L1loc (
) are not functions but equivalence classes of functions.
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and is not di¤erentiable at x = 0. Let us show that the function (4.6) is the distribu-
tional (and, hence, weak) derivative of jxj. Note that the value of f 0 (x) at x = 0 does
not matter because the set f0g has measure 0. For any ' 2 D (
) we have

(f; '0) =

Z 1

�1
f'0dx

=

Z 1

0

x'0dx�
Z 0

�1
x'0dx

=

Z 1

0

xd'�
Z 0

�1
xd'

= [x' (x)]10 �
Z 1

0

'dx� [x' (x)]0�1 +
Z 0

�1
'dx

= �
Z 1

�1
f 0'dx

= � (f 0; ') ;

where we have used that x' (x) vanishes at x = 0;1;�1.

Example. Let f (x) be a continuous function on R. Assume that f is continuously
di¤erentiable in R n M where M = fx1; :::xNg is a �nite set, and that f 0 (x) has
right and left limits as x ! xi for any i = 1; :::; N . Then we claim that the classical
derivative f 0 (x) ; de�ned in R nM , is also a weak derivative of f (again, the values
of f 0 at the points of M do not matter since M has measure 0). Indeed, assuming
that x1 < x2 < ::: < xN and setting x0 = �1 and xN+1 = +1, we obtain, for any
' 2 D (R),

(f; '0) =

Z 1

�1
f'0dx =

NX
k=0

Z xk+1

xk

f'0dx

=

NX
k=0

[f']xi+1xi
�

NX
k=0

Z xk+1

xk

f 0'dx = �
Z 1

�1
f 0'dx = � (f 0; ') ;

where we have used that

NX
k=0

[f']xi+1xi
= f' (x1)+(f' (x2)� f' (x1))+:::+(f' (xN)� f' (xN�1))�f' (xN) = 0:

Example. Consider the function

f (x) =

�
1; x > 0
0; x < 0

as element of L1loc (R). Let us compute its distributional derivative. For any ' 2 D (R)
we have

(f 0; ') = � (f; '0) = �
Z 1

�1
f'0dx = �

Z 1

0

'0dx = ' (0) :

It follows that f 0 = �, where � is the delta-function at 0, that is, (�; ') = ' (0).
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Example. Consider the delta-function �x0 at an arbitrary point x0 2 
. We have by
(4.5)

(D��x0 ; ') = (�1)
j�j (�x0 ; D

a') = (�1)j�jD�' (x0) :

Hence, the distribution D��x0 acts on test functions using evaluation of D
�' at x0:

Example. For the Laplace operator � =
Pn

i=1 @xixi we obtain from (4.5) the identity

(�f; ') = (f;�') :

Consequently, a distribution f 2 D0 (
) is harmonic, if �f = 0 that is, if for any
' 2 D (
)

(f;�') = 0:

If f 2 C (
) then this was the de�nition of a weakly harmonic function.
Example. Consider a function f (x) = jxj� in Rn. Observe thatZ

B1

f (x) dx = !n

Z 1

0

r�rn�1dr = !n

Z 1

0

r�+n�1dr = !n

�
r�+n

�+ n

�1
0

<1

provided �+ n > 0, and similarly Z
B1

f (x) dx =1

if �+ n � 0. So, assuming � > �n, we obtain that f 2 L1loc (Rn). In Rn n f0g we have

@xif = � jxj
��1

@xi jxj = � jxj
��1 xi

jxj :

Since j@xif j � j�j jxj
��1, we see that if � > �n+ 1, then also @xif 2 L1loc (Rn). Let us show that in

this case the classical derivative @xif is a weak derivative, that is, for any ' 2 D (Rn)

(@xif; ') = � (f; @xi') :

Since in Rn n f0g
@xif '+ f@xi' = @xi (f') ;

it su¢ ces to prove that Z
Rn
@xi (f') dx = 0:

Let supp' 2 BR. For any 0 < r < R we have by the divergence theoremZ
BRnBr

@xi (f') dx =

Z
@(BRnBr)

f'�id� =

Z
@Br

f'�id�;

where � is the outer normal unit vector �eld on the boundary of BR nBr. Observe that ' and �i are
uniformly bounded, whereasZ

@Br

fd� = r�!nr
n�1 = !nr

�+n�1 ! 0 as r ! 0.

Hence, also Z
@Br

f'�id� ! 0 as r ! 0,

which implies that Z
Rn
@xi (f') dx = lim

r!0

Z
BRnBr

@xi (f') dx = 0:
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4.2 Sobolev spaces

As before, let 
 be an open subset of Rn. Fix p 2 [1;1). A Lebesgue measurable
function f : 
! R is called p-integrable ifZ




jf jp dx <1:

Two measurable functions in 
 (in particular, p-integrable functions) are called equiv-
alent if

f = g a:s:

This is an equivalence relation, and the set of all equivalence classes of p-integrable
functions in 
 is denoted by Lp (
). It follows from the Hölder inequality, that Lp (
) �
L1loc (
). In particular, all the elements of L

p (
) can be regarded as distributions.
The set Lp (
) is a linear space over R. Moreover, it is a Banach space (=complete

normed space) with respect to the norm

kfkLp :=
�Z




jf jp dx
�1=p

:

The Banach spaces Lp (
) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L2 (
) has inner product

(f; g) =

Z



fg dx;

whose norm coincides with kfk2 as

kfkL2 =
�Z




f 2dx

�1=2
=
p
(f; f):

Hence, L2 (
) is a Hilbert space.

De�nition. The Sobolev space W 1;2 (
) is a subspace of L2 (
) de�ned by

W 1;2 (
) =
�
f 2 L2 (
) : @xif 2 L2 (
) for all i = 1; :::; n

	
where @xif denotes distributional derivative. Similarly de�ne the Sobolev space W

k;2

for arbitrary k 2 N:

W k;2 (
) =
�
f 2 L2 (
) : D�f 2 L2 (
) for all � with j�j � k

	
;

where D�f is distributional derivative.

If D�f 2 L2 (
) then D�f is called a weak derivative. In words, W k;2 (
) is a
subspace of L2 (
) that consists of functions having all weak partial derivatives of the
order� k in L2 (
) : In the notationW k;2 the letter �W�stands for �weak�, the number
2 refers to L2 and the number k means the order of derivatives.
If one uses the space Lp instead of L2 then one obtains more general Sobolev spaces

W k;p.
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It is easy to see that C10 (
) � W k;p (
) for any k and p. Since we need only the
spaces W k;2, we are going to use a short notation W k := W k;2:15.01.16

For convenience we will use a vector-valued space ~L2 (
) that consists of sequences
of n functions ~f = (f1; :::; fn) such that each fi 2 L2 (
). The inner product in this
space is de�ned by �

~f;~g
�
:=

nX
i=1

(fi; gi) ;

and the corresponding norm is ~f
L2
=

nX
i=1

kfik2L2 :

If f 2 W 1 then the weak gradient

rf = (@x1f; @x2f; :::; @xnf)

belongs to ~L2 (
). De�ne in W 1 the following inner product

(f; g)W 1 =

Z



 
fg +

nX
i=1

@xif @xig

!
dx = (f; g) + (rf;rg) ;

where (�; �) is the inner product in L2. Clearly, (f; g)W 1 satis�es all the axioms of an
inner product. The associated norm is given by

kfk2W 1 =

Z



 
f 2 +

nX
i=1

(@xif)
2

!
dx = kfk2L2 + krfk

2
L2 :

Proposition 4.1 The space W 1 (
) with the above inner product is a Hilbert space.

Proof. We need to prove that W 1 is complete, that is, any Cauchy sequence ffkg in
W 1 converges to an element of W 1. The fact that the sequence ffkg is Cauchy means
that

kfk � fmkW 1 ! 0 as k;m!1
Since for any f 2 W 1

kfkL2 � kfkW 1 and k@xifkL2 � kfkW 1 ,

we obtain that all sequences ffkg, f@xifkg are Cauchy in L2. Since L2 is complete, it
follows that ffkg converges in L2 to a function f 2 L2 and f@xifkg converges in L2 to
a function gi 2 L2. Hence, we have

kfk � fkL2 ! 0 as k ! 0

and, for any i = 1; :::; n,
k@xifk � gik ! 0 as k ! 0:

Let us show that, in fact, gi = @xif: Indeed, by de�nition of the weak derivative, we
have, for any ' 2 D (
)

(@xifk; ') = � (fk; @xi') :
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Here the brackets are values of the distributions @xifk and fk on the test functions, but
they coincide with the inner product in L2. Hence, passing to the limit as k !1 we
obtain

(gi; ') = � (f; @xi')

which means that gi = @xif: Consequently, f 2 W 1 (
).
Finally, we obtain

kfk � fk2W 1 = kfk � fk2L2 +
nX
k=1

k@xifk � @xifk
2
L2

= kfk � fk2L2 +
nX
k=1

k@xifk � gik2L2 ! 0

as k !1, which implies that fk ! f in W 1.

4.3 Weak Dirichlet problem

Let 
 be a bounded domain in Rn:We consider a weak version of the following Dirichlet
problem: �

�u = f in 

u = 0 on @


We will understand the Laplace operator �u in distributional sense so that solution u
can be sought in the class L1loc (
). However, within such a general class it is impossible
to understand the boundary condition u = 0 pointwise as typically the boundary @

has Lebesgue measure zero. We are going to reduce the class of functions u that allows
to make sense out of boundary condition.

De�nition. De�ne the subspace W 1
0 (
) of W

1 (
) as the closure of D (
) in W 1 (
).

Note that C10 (
) is dense in L
2 (
), but in general not in W 1 (
), so that W 1

0 (
)
is a proper subspace of W 1 (
). So, the weak Dirichlet problem is stated as follows:�

�u = f in 

u 2 W 1

0 (
)
(4.7)

where the condition u 2 W 1
0 (
) replaces the boundary condition u = 0 on @
, and

the equation �u = f is understood in distributional sense. Since u 2 W 1, we have, for
any ' 2 D (
),

(�u; ') =

 
nX
i=1

@xi@xiu; '

!
= �

nX
i=1

(@xiu; @xi') = � (ru;r') :

Hence, we can rewrite the problem (4.7) in the following form:�
(ru;r') = � (f; ') 8' 2 D (
)
u 2 W 1

0 (
)
(4.8)
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We claim that (4.8) is equivalent to�
(ru;r') = � (f; ') 8' 2 W 1

0 (
) ;
u 2 W 1

0 (
)
(4.9)

that is, the class of test functions ' 2 D (
) can be extended to W 1
0 (
). To prove

this, observe that the functional ' 7! (f; ') is a linear bounded functional in W 1 (
)
because

j(f; ')j � kfkL2 k'kL2 � kfkL2 k'kW 1

and also the functional ' 7! (ru;r') is a linear bounded functional inW 1 (
) because

j(ru;r')j � krukL2 kr'kL2 � krukL2 k'kW 1 :

Hence, in the both sides of the identity (ru;r') = � (f; ') we can pass to the limit
along any sequence of functions ' convergent in W 1. Since W 1

0 (
) is the closure
of D (
) in W 1 (
), the validity of this identity for all ' 2 D (
) implies that for
' 2 W 1

0 (
).

Theorem 4.2 If 
 is a bounded domain and f 2 L2 (
) then the weak Dirichlet prob-
lem (4.9) has a unique solution.

Before the proof we need the following lemma.

Lemma 4.3 (Friedrichs-Poincaré inequality) Let 
 be a bounded open set in Rn. Then,
for any ' 2 D (
) and for any index i = 1; :::; n,Z




'2dx � (diam
)2
Z



(@xi') dx: (4.10)

Proof. Consider �rst the case n = 1. Consider the interval I = (inf 
; sup
) that has
the same diameter as 
, and observe that any ' 2 D (
) belongs also to D (I). Hence,
for the sake of inequality Z




'2dx � (diam
)2
Z



('0)
2
dx (4.11)

we can replace 
 with I. Hence, assume in the sequel that 
 is an open bounded
interval. By shifting we can assume that 
 is an interval (0; l), where l = diam
:
For any x 2 (0; l), we have using ' (0) = 0, the fundamental theorem of calculus, and
Cauchy-Schwarz inequality inequality, that

'2 (x) =

�Z x

0

'0 (s) ds

�2
�
�Z l

0

j'0 (s)j ds
�2
� l

Z l

0

('0)
2
(s) ds:

Since the right hand side does not depend on x, integrating this inequality in x, we
obtain Z l

0

'2 (x) dx � l2
Z l

0

('0)
2
(s) ds;

which is exactly (4.11).
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In the case n > 1, denote by y the (n� 1)-dimensional vector that is obtained
from x by removing the component xi. Denote by 
y the 1-dimentional section of 

at the level y. Since the function ' as a function of xi alone belongs to D (
y), the
1-dimensional Friedrichs inequality in the direction xi yieldsZ


y

'2dxi � (diam
y)2
Z

y

(@xi')
2 dxi � (diam
)2

Z

y

(@xi')
2 dxi:

Integrating in y and using Fubini�s theorem, we obtain (4.10).

Proof of Theorem 4.2. It follows from Lemma 4.3 that, for any v 2 W 1
0 (
)Z




v2dx � C

Z



jrvj2 dx

where C = (diam
)2 : In particular,

kvk2W 1 = kvk2L2 + krvk
2
L2 � (C + 1) krvk

2
L2

Since also
kvk2W 1 � krvk2L2 ;

it follows that the expression krvkL2 is an equivalent norm in the space W 1
0 . This

norm comes from bilinear form (ru;rv) that is hence an inner product, and W 1
0 with

this inner product is a Hilbert space.
Let us use the Riesz representation theorem: in any Hilbert space H, for any linear

bounded functional l : H ! R, there exists exactly one element u 2 H such that, for
all ' 2 H,

(u; ')H = l (') :

Using this theorem for H = W 1
0 with the inner product (u; v)H = (ru;rv)L2 and for

the functional l (') = � (f; '), we obtain the existence and uniqueness of solution u of
(4.9).

20.01.16

4.4 The Green operator

Let 
 be a bounded domain in Rn. De�ne an operator G : L2 (
)! L2 (
) as follows:
for any f 2 L2 (
), the function u = Gf is the solution of the weak Dirichlet problem�

�u = �f in 

u 2 W 1

0 (
)

that is, �
(ru;r') = (f; ') 8' 2 W 1

0 (
)
u 2 W 1

0 (
)
(4.12)

The operator G is called the Green operator. Of course, we know that u 2 W 1
0 (
)

and, hence, Gf 2 W 1
0 (
) so that G could be considered as an operator from L2 (
) to

W 1
0 (
), but it will be more convenient for us to regard G as an operator in L2.

Theorem 4.4 The operator G is bounded, self-adjoint and positive de�nite.
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Proof. The boundedness means that

kGfkL2 � C kfkL2

for some constant C and all f 2 L2 (
). Set u = Gf so that u satis�es (4.12).
Substituting into (4.12) ' = u, we obtainZ




jruj2 dx =
Z



fu dx �
�Z




f 2dx

�1=2�Z



u2dx

�1=2
:

Since u 2 W 1
0 (
), we have by the Friedrichs inequalityZ




u2dx � C

Z



jruj2 dx;

where C depends on 
 only. Combining the above two inequalities, we obtain

1

C

Z



u2dx �
�Z




f 2dx

�1=2�Z



u2dx

�1=2
;

whence Z



u2dx � C2
Z



f 2dx;

which is equivalent to the boundedness of G.
The fact that G is self-adjoint means that

(Gf; g) = (f;Gg) 8f; g 2 L2 (
) :

To prove this, set u = Gf and v = Gg. Setting in (4.12) ' = v, we obtain

(ru;rv) = (f; v) :

Similarly, using the weak Dirichlet problem for v, we obtain

(rv;ru) = (g; u) :

Since the left hand sides of these identities coincide, we obtain that

(g; u) = (f; v) ;

which is equivalent to the self-adjointness of G.
The positive de�niteness of G means that (Gf; f) > 0 for all non-zero f 2 L2 (
).

Indeed, setting u = Gf we obtain from (4.12) with ' = u

(ru;ru) = (f; u) ;

whence
(Gf; f) = (f; u) = (ru;ru) � 0:

Let us show that, in fact, (ru;ru) > 0. Indeed, if (ru;ru) = 0 then ru = 0 a:e::
Hence, for any ' 2 W 1

0 (
), we obtain (ru;r') = 0 whence by (4.12) (f; ') = 0: It
follows that f = 0, which contradicts the assumption that f is non-zero.
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We are going to consider the eigenfunctions of the operator G, that is, non-zero
functions v 2 L2 (
) that satisfy Gv = �v for some � 2 R. Since the operator G is
positive de�nite, we obtain that all its eigenvalues � are positive.
Consider also the weak eigenvalue problem�

�v + �v = 0 in 

v 2 W 1

0 (
)

that is equivalent to �
(rv;r') = � (v; ') 8' 2 D (
)
v 2 W 1

0 (
)
(4.13)

As we already know, the class D (
) of test functions ' can be replaced by W 1
0 (
).

Lemma 4.5 A function v 2 L2 (
) is an eigenfunction of G with the eigenvalue � if
and only if v is an eigenfunction of (4.13) with � = 1

�
:

Proof. Let v be an eigenfunction of G. Since Gv 2 W 1
0 (
) and Gv = �v, it follows

that also v 2 W 1
0 (
) : Setting u = Gv, we obtain from (4.12) that u satis�es

(ru;r') = (v; ') 8' 2 D (
) :

Since u = �v, we obtain
� (rv;r') = (v; ')

whence (4.13) follows with � = 1
�
:

Let v be an eigenvalue of (4.13). Setting ' = v we obtainZ



jrvj2 dx = �

Z



v2dx:

Since by Friedrichs inequality Z



v2dx � C

Z



jrvj2 dx;

we obtain that � � 1
C
, in particular, � > 0. By (4.13), function v solves the weak

Dirichlet problem (4.12) with the right hand side f = �v, which implies that G (�v) =
v, whence it follows that Gv = �v with � = 1

�
.

4.5 Compact embedding theorem

Given two Banach spaces X; Y , an operator A : X ! Y is called compact if, for any
bounded sequence fxkg � X, the sequence fAxkg hat a convergence subsequence in
Y .
Assume that the operator A is bounded, that is, kAk < 1. Then the sequence

fAxkg is bounded in Y . If dimY < 1 then every bounded sequence in Y has a
convergent subsequence, which follows from theorem of Bolzano-Weierstrass. However,
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for in�nite dimensional spaces this is not the case. For example, let Y be an 1-
dimensional Hilbert space and let fvkg1k=1 be an orthonormal sequence in Y . Then
fvkg is bounded, but no subsequence is Cauchy because, for all distinct k;m, we have

kvk � vmk2 = (vk � vm; vk � vm) = kvkk2 � 2 (vk; vm) + kvmk2 = 2:

Hence, no subsequence of fvkg converges in Y . An explicit example is as follows:
Y = L2 (��; �) and vk = 1p

�
sin kx.

Hence, the point of a compact operator is that it maps a bounded sequence into
one that has a convergent subsequence.
The following are simple properties of compact operators that we mention without

proof.

1. A compact operator is bounded.

2. Composition of a compact operator with a bounded operator is compact.

Out goal will be to prove that the Green operator in compact, which will allow then
to invoke the Hilbert-Schmidt theorem about diagonalization of self-adjoint compact
operators. A crucial step for that is the following theorem.

Theorem 4.6 (Compact embedding theorem) Let 
 be a bounded domain in Rn. Then
the natural embedding W 1

0 (
) ,! L2 (
) is a compact operator.

Before the proof, let us revise some fact the theory of multidimensional Fourier
series. For the further proof we need some knowledge of multidimensional Fourier
series. Recall that any f 2 L2 (��; �) allows expansion into the Fourier series

f (x) =
a0
2
+

1X
k=1

(ak cos kx+ bk sin kx)

that converges in L2 (��; �). Setting ck = 1
2
(ak � ibk) allows to rewrite the series as

follows:

f (x) = c0 +

1X
k=1

2Re
�
cke

ikx
�
= c0 +

1X
k=1

�
cke

ikx + cke
�ikx� =X

k2Z

cke
ikx;

where ck is extended to all k 2 Z in an obvious way.
Consider now n-dimensional cube Q = (��; �)n and the space L2 (Q) over C. For

any � 2 Zn consider the function x 7! ei��x (where � � x =
Pn

j=1 �jxj) that is clearly
in L2 (Q). It is possible to prove that the sequence the sequence

�
ei��x

	
�2Zn is an

orthogonal basis in L2 (Q). The fact that this sequence is orthogonal is easy to verify:
if � and � are distinct elements of Zn then the inner product of ei��x and ei��x in L2 (Q)
is �

ei��x; ei��x
�
=

Z
Q

ei��xei��xdx =

Z
Q

ei��xe�i��xdx =

Z
Q

ei(���)�xdx = 0; (4.14)

because the integral splits by Fubini�s theorem into the product of the integralsZ �

��
ei(�j��j)xjdxj =

1

i
�
�j � �j

� hei(�j��j)xji�
��
= 0;
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where the last computation is valid whenever �j 6= �j. Note also thatei��x2
L2
=

Z
Q

ei��xei��xdx =

Z
Q

dx = (2�)n : (4.15)

The fact that the sequence
�
ei��x

	
�2Zn is indeed a basis in L

2 (Q) is non-trivial and can
be veri�ed by induction in n.
Hence, any function f 2 L2 (Q) admits an expansion in this basis, and the coe¢ -

cients of this expansion will be denoted by f̂ (�), that is,

f (x) =
X
�2Zn

f̂ (�) ei��x: (4.16)

The series (4.16) is called n-dimensional Fourier series, and it converges in the norm
of L2 (Q) for any f 2 L2 (Q). Taking an inner product of the series (4.16) with ei��x

for some �xed � 2 Zn and using (4.14) and (4.15) we obtain that�
f; ei��x

�
= f̂ (�)

�
ei��x; ei��x

�
;

which implies the following explicit expression for f̂ (�):

f̂ (�) =
1

(2�)n

Z
Q

f (x) e�i��xdx: (4.17)

Similarly, compute the norm kfk2L2 by taking the inner product of the series (4.16)
with itself term by term. Then (4.14) and (4.15) imply that

(f; f) =

 X
�2Zn

f̂ (�) ei��x;
X
�2Zn

f̂ (�) ei��x

!
=
X
�;�2Zn

Z
Q

f̂ (�) ei��xf̂ (�)e�i��xdx

= (2�)n
X
�2Zn

���f̂ (�)���2 ;
and we obtain Parseval�s identity:

kfk2L2(Q) = (2�)
n
X
�2Zn

���f̂ (�)���2 :
Consider the following space of sequences on Zn:

l2 = l2 (Zn) =

(
g : Zn ! C

��� X
�2Zn

jg (�)j2 <1
)
:

Then l2 is a Hilbert space over C with the Hermitian inner product

(g; h)l2 =
X
�2Zn

g (�)h (�)

and the corresponding norm
kgk2l2 =

X
�2Zn

jg (�)j2 :
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Hence, Parseval�s identity can be restated as follows: for any f 2 L2 (Q) we have
f̂ 2 l2 (Zn) and

kfk2L2(Q) = (2�)
n
f̂2

l2
: (4.18)

The mapping f 7! f̂ is called discrete Fourier transform. Let us denote it by F , that
is,

F : L2 (Q)! l2 (Zn)
Ff = f̂ :

By (4.18) this mapping is isometry (up to the constant factor (2�)n), in particular,
injective. In fact, it is also surjective since for any g 2 l2 (Zn) the seriesX

�2Zn
g (�) ei��x

converges in L2 (Q) and, hence, gives F�1g. Hence, F is an isomorphism of the Hilbert
spaces L2 (Q) and l2 (Zn).
If f 2 D (
) then, for any multiindex �, the partial derivative D�f is also in D (Q),

and the Fourier series of D�f is given by

D�f (x) =
X
�2Zn

(i�)� f̂ (�) ei�x; (4.19)

where
(i�)� := (i�1)

�1 ::: (i�n)
�n :

Indeed, the Fourier coe¢ cients of D�f are given byZ
Q

D�f (x) e�i��xdx = (�1)j�j
Z
Q

f (x)D�e�i��xdx

= (�1)j�j
Z
Q

f (x) (�i�)� e�i��xdx = (i�)� f̂ (�) ;

where we have used integration by parts. As we see from (4.5), the di¤erential operator
D� becomes in Fourier transform a multiplication operator by (i�)�, which can be
written as follows:

F �D� = (i�)� � F :

The function (i�)� is called the symbol of the di¤erential operator D�.
It follows from Parseval�s identity that

kD�fk2L2 = (2�)
n
X
�2Zn

j��j2
���f̂ (�)���2 : (4.20)

In particular, we have, for any j = 1; :::; n

@xjf =
X
�2Zn

�
i�j
�
f̂ (�) ei��x:
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By Parseval�s identity, we obtain

krfk2L2(
) =
nX
j=1

@xjf2L2 = (2�)n X
�2Zn

j�j2
���f̂ (�)���2 :

Proof of Theorem 4.6. Recall that W 1
0 (
) � L2 (
). By a natural embedding

fromW 1
0 (
) to L

2 (
) we mean the following trivial mapping: for each f 2 W 1
0 (
), its

image is the same function f but considered as an element of L2 (
). The fact that the
embedding W 1

0 (
) ,! L2 (
) is compact means the following: for any sequence ffkg of
functions fromW 1

0 (
) that is bounded in the norm of W
1, there is a subsequence that

converges in L2 (
). Note that if a sequence ffkg is bounded in L2 (
) then it does
not have to contain a subsequence convergent in L2 (
) as it was mentioned above.
Hence, the point of this theorem is that the boundedness of ffkg in the norm of W 1

is a stronger hypothesis, that does imply the existence of a convergent subsequence in
L2:22.01.16

Now let ffkg be a bounded sequence inW 1
0 (
). Since D (
) is dense in W 1

0 (
), we
can choose for any k a function gk 2 D (
) such that kfk � gkkW 1 < 1

k
. Then fgkg is

bounded inW 1
0 (
), and if fgkg contains a subsequence

�
gkj
	
that converges in L2 (
),

then
�
fkj
	
also converges in L2 (
) to the same limit because kfk � gkkL2 ! 0 as

k ! 1. Renaming gk back to fk, we can assume without loss of generality that all
functions fk belong to D (
).
Since 
 is bounded, 
 is contained in a cube Q = (�a; a)n for large enough a.

Since D (
) � D (Q), we can forget about 
 and work with the domain Q instead.
Finally, without loss of generality, we can assume Q = (��; �)n. Hence, we assume in
the sequel that all functions fk belong to D (Q) and the sequence ffkg is bounded in
W 1 (Q), that is, there is a constant C such that, for all k � 1,

kfkk2L2(Q) < C and krfkk2L2(Q) < C:

By Parseval�s identity, it follows that, for all k � 1,X
�2Zn

���f̂k (�)���2 < C and
X
�2Zn

j�j2
���f̂k (�)���2 < C: (4.21)

We need to show that there exists a subsequence
�
fkj
	
that converges in L2 (Q), that

is, this subsequence is a Cauchy sequence in L2 (Q). In the view of Parseval�s identity,

the latter is equivalent to the fact that subsequence
n
f̂kj

o
is Cauchy in l2 (Zn).

It follows from (4.21) that, for each � 2 Zn, the sequence
n
f̂k (�)

o1
k=1

of complex

numbers is bounded. By theorem of Bolzano-Weierstrass, this C-valued sequence has
a convergence subsequence

n
f̂kj (�)

o
. Using the diagonal process, we will select a

subsequence
n
f̂kj

o
that converges pointwise at all � 2 Zn, not just at one �. Since the

set Zn is countable, we can enumerate all the elements of Zn by �1; �2; :::. Choose �rst
a subsequence of indices

k11; k12; k13; ::: such that
n
f̂k1j (�1)

o1
j=1

converges. (4.22)
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Then from the sequence (4.22) choose a subsequence

k21; k22; k23; ::: such that
n
f̂k2j (�2)

o1
j=1

converges. (4.23)

From the sequence (4.23) choose a subsequence

k31; k32; k33; ::: such that
n
f̂k3j (�3)

o1
j=1

converges, (4.24)

and so on, for all �i. We obtain a double sequence fkijg of the indices with the above
properties. We claim that the diagonal sequence

k11; k22; k33; :::

has the property that
n
f̂kjj (�)

o1
j=1

converges at all � 2 Zn. Indeed, the sequence fkjjg
is a subsequence of any sequence (4.22), (4.23), (4.24), etc., provided we neglect the �rst
i � 1 terms. Since the convergence of a sequence does not depend on a �nite number
of terms, we obtain that

n
f̂kjj (�i)

o1
j=1

converges for any �i. Since all �i exhaust Zn,

we obtain that
n
f̂kjj

o1
j=1

converges pointwise on Zn.
To simplify notation and without loss of generality, we can assume that the whole

sequence
n
f̂k

o
converges pointwise at all � 2 Zn. Hence, for any �, the sequencen

f̂k (�)
o
of complex numbers is Cauchy. Let us prove that

n
f̂k

o
is Cauchy in l2 (Zn).

Indeed, for all positive integers k;m; r we havef̂k � f̂m

2
l2
=

X
�2Zm

���f̂k (�)� f̂m (�)
���2

=
X
j�j<r

���f̂k (�)� f̂m (�)
���2 +X

j�j�r

���f̂k (�)� f̂m (�)
���2 :

Since the �rst sum is �nite and each summands goes to 0 as k;m!1, the �rst sum
goes to 0 as k;m!1: The second sum we estimate as follows:X

j�j�r

���f̂k (�)� f̂m (�)
���2 � 2X

j�j�r

���f̂k (�)���2 + 2X
j�j�r

���f̂m (�)���2
and by (4.21) X

j�j�r

���f̂k (�)���2 � 1

r2

X
j�j�r

j�j2
���f̂k (�)���2 � C

r2
:

Hence, f̂k � f̂m

2
l2
�
X
j�j<r

���f̂k (�)� f̂m (�)
���2 + 4C

r2
;

which implies as k;m!1 that

lim sup
k;m!1

f̂k � f̂m

2
l2
� 4C

r2
:
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Since r can be chosen arbitrarily large, it follows that

lim
k;m!1

f̂k � f̂m

2
l2
= 0;

which �nishes the proof.

4.6 Eigenvalues and eigenfunctions of the weak Dirich-
let problem

Nowwe can prove the main theorem in this chapter. Consider again the weak eigenvalue
problem in a bounded domain 
 � Rn:�

�v + �v = 0 in 

v 2 W 1

0 (
)

that is, �
(rv;r') = � (v; ') 8' 2 W 1

0 (
)
v 2 W 1

0 (
)
(4.25)

Theorem 4.7 Let 
 be a bounded domain in Rn. There is an orthonormal basis
fvkg1k=1 in L2 (
) that consists of eigenfunctions of (4.25). The corresponding eigen-
values �k are positive reals, and the sequence f�kg is monotone increasing and diverges
to +1 as k !1.

Proof. We use the Green operator G acting in L2 (
), that was constructed in Section
4.4. Recall that if f 2 L2 (
) then the function u = Gf solves the weak Dirichlet
problem �

�u = �f in 

u 2 W 1

0 (
)
(4.26)

By Theorem 4.4, the operator G is bounded, selfadjoint and positive de�nite, and by
Lemma 4.5, function v is an eigenfunction of (4.25) with eigenvalue � if and only if v
is an eigenfunction of the operator G with the eigenvalue � = 1

�
.

Hence, it su¢ ces to prove that there is an orthonormal basis fvkg1k=1 in L2 (
) that
consists of eigenfunctions of G, and the corresponding sequence of eigenvalues f�kg is
monotone decreasing and converges to 0.
The crucial observation is that the operator G is compact. Indeed, let us represent

G as composition of two operators:

L2 (
)
~G! W 1

0 (
)
I! L2 (
) ;

where I is the natural embedding and ~G is de�ned as follows: for any f 2 L2 (
),
the function u = ~Gf 2 W 1

0 (
) is the solution of the weak Dirichlet problem (4.26).
Of course, the function Gf was also de�ned as solution of the same problem, so that
Gf = ~Gf , but Gf is regarded as an element of L2 (
) whereas ~Gf is regarded as an
element of W 1

0 (
).
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We claim that the operator ~G is bounded, that is, the solution u = ~Gf satis�es the
estimate

kukW 1 � C kfkL2 (4.27)

for some constant C. Recall that by Theorem 4.4 the operator G is bounded in L2 (
),
which means that

kukL2 � C kfkL2 : (4.28)

Clearly, the required inequality (4.27) is stronger than (4.28). The inequality (4.27) is
stated in Exercise 69 and can be proved using the same argument as (4.28).
The embedding operator I is compact by Theorem 4.6. Hence, the composition

G = I � ~G is a compact operator.
Now we now that G is a compact self-adjoint operator in L2 (
). We are left to

apply the Hilbert-Schmidt theorem that claims the following: if H is a separable 1-
dimensional Hilbert space and A is a compact self-adjoint operator in H, then there
exists an orthonormal basis fvkg1k=1 in H that consists of the eigenvectors of A, the
corresponding eigenvalues �k are real, and the sequence f�kg goes to 0 as k ! 1.
Applying this for A = G, we obtain these statements for G. In addition, we know
that the eigenvalues �k of G are positive. Since the sequence f�kg converges to 0, it is
possible to rearrange it to become monotone decreasing, which �nishes the proof.

27.01.16

Remark. The fact that the sequence fvkg in Theorem 4.7 is orthogonal is a con-
sequence of the following simple fact: if v0; v00 are two eigenfunctions of (4.25) with
distinct eigenvalues �0; �00 then v0 and v00 are orthogonal, that is (v0; v00)L2 = 0 (cf.
Exercise 64).

Remark. If we have a sequence fvkg of eigenfunctions of (4.25) that forms an orthog-
onal basis in L2 (
), then the corresponding sequence f�kg of eigenvalues exhausts all
the eigenvalues of (4.25). Indeed, if � is one more eigenvalue with the eigenfunction v
then the condition � 6= �k implies that v is orthogonal to vk. Hence, v is orthogonal
to all elements of the basis fvkg, which implies that v = 0. This contradictions proves
the claim.

Remark. Note that the sequence f�kg can have repeated terms, as we will see in
examples below. If a number � appears in f�kg exactly m times then m is called the
multiplicity of � (in particular, if � is not eigenvalue then m = 0). Since �k ! 1 as
k !1, we see that the multiplicity is always �nite.
The sequence f�kg1k=1 is called the spectrum of the Dirichlet problem in 
 or simply

the spectrum of 
.

Remark. Consider the set 
 of the form 
 = U �W where U is an open subset of Rm
and W is an open subset of Rn�m. The points of 
 are the couples (x; y) where x 2 U
and y 2 W . Let us �nd eigenfunctions in 
 using the method of separation of variables.
Namely, search for the eigenfunction v of 
 in the form v (x; y) = u (x)w (y) ; where u
and w are functions in U and W . Since

�v = �xv +�yw = (�u)w + u�w;

the equation �v + �v = 0 becomes

(�u)w + u�w + �uw = 0
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that is,
�u

u
(x) +

�w

w
(y) = ��:

It follows that the both functions �u
u
and �w

w
must be constants, say

�u

u
= �� and

�w

w
= ��;

where � + � = �. The boundary @
 consists of the union of @U �W and U � @W .
Therefore, to ensure the boundary condition v = 0 on @
, let us assume that

uj@U = 0 and wj@W = 0:

Hence, u is solution of the eigenvalue problem�
�u+ �u = 0 in U
uj@U = 0

and w is solution of the eigenvalue problem�
�w + �w = 0 in W
wj@W = 0

Assuming that the �rst problem has the eigenvalues f�kg1k=1 and the eigenfunctions
fukg1k=1 that form an orthonormal basis in L2 (U), and the second problem has the
eigenvalues f�lg

1
l=1 and the eigenfunctions fwlg

1
l=1 that form an orthonormal basis in

L2 (W ), we obtain the following eigenfunctions of 


vk;l (x; y) = uk (x)wl (y)

and the eigenvalues
�k;l = �k + �l:

It is possible to prove that the double sequence fukwlg is indeed a basis in L2 (
) so
that we have found all eigenvalues of 
.

Example. Let us compute the eigenvalues of the Laplace operator in the interval

 = (0; a). The eigenvalue problem is�

v00 + �v = 0 in (0; a)
v (0) = v (a) = 0:

The ODE v00 + �v = 0 has for positive � the general solution

v (x) = C1 cos
p
�x+ C2 sin

p
�x:

At x = 0 we obtain that C1 = 0, and at x = a we obtain that

sin
p
�a = 0;

which gives all solutions

� =

�
�k

a

�2
; k 2 N:
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Hence, we obtain the sequence of eigenvalues �k =
�
�k
a

�2
and the corresponding eigen-

functions vk (x) = sin �kxa . The sequence
�
sin �kx

a

	
is known to be an orthogonal basis

in L2 (0; a) (which follows from theory of Fourier series), which implies that we have
found all the eigenvalues.

Example. Compute now the eigenvalues of the rectangle 
 = (0; a)� (0; b). Using the
notation of the previous Remark with U = (0; a) and W = (0; b), have the following
eigenfunctions in U and W

uk (x) = sin
�kx

a
and wl (y) = sin

�ly

b

and eigenvalues

�k =

�
�k

a

�2
; �l =

�
�l

b

�2
;

where k; l are arbitrary natural numbers. Hence, we obtain that 
 has the following
eigenfunctions and eigenvalues:

vk;l (x; y) = sin
�kx

a
sin

�ly

b

�k;l = �2

 �
k

a

�2
+

�
l

b

�2!
:

For example, in the case a = b = �, the eigenvalues are

�k;l = k2 + l2;

that is, all sums of squares of two natural numbers. Setting k; l = 1; 2; 3; ::: we obtain

�1;1 = 2; �1;2 = �2;1 = 5; �2;2 = 8; �1;3 = �3;1 = 10; �2;3 = �3;2 = 13; �3;3 = 18; :::

The sequence of the eigenvalues in the increasing order is f2; 5; 5; 8; 10; 10; 13; 13; 18; :::g.
In particular, the eigenvalues 5; 10; 13 have multiplicity 2.
One can ask what is the multiplicitym (�) for an arbitrary number � in the sequence

f�k;lg. Clearly, m (�) is equal to the number of ways � can be represented as a sum of
squares of two positive integers. For example, m (50) = 3 because

50 = 52 + 52 = 12 + 72 = 72 + 12:

An explicit formula for m (�) is obtained in Number Theory, using decomposition
of � into product of primes. In particular, m (5q) = q + 1 if q is an odd number.
Consequently, m (�) can be arbitrarily large. For example, we have m (125) = 4; and
the corresponding representations of 125 in the form k2 + l2 are

125 = 22 + 112 = 112 + 22 = 52 + 102 = 102 + 52:

Example. For a general n, consider the box


 = (0; a1)� (0; a2)� :::� (0; an) ;
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where a1; :::; an are positive reals. Applying the method of separation of variables, we
obtain the following eigenvalues and eigenfunctions of 
, parametrized by n natural
numbers k1; :::; kn:

v (x) = sin
�k1x1
a1

::: sin
�knxn
an

�k1;:::;kn = �2

 �
k1
a1

�2
+ :::+

�
kn
an

�2!
:

4.7 Higher order weak derivatives

Our purpose is to investigate higher order di¤erentiability of solutions of the weak
Dirichlet problem. In particular, we will be able to prove that the eigenfunctions of
the Dirichlet problem constructed in Theorem 4.7 as functions fromW 1

0 (
), are in fact
C1 functions.
Recall that the Sobolev space W k (
) is de�ned by

W k (
) =
�
f 2 L2 (
) : D�f 2 L2 (
) for all � with j�j � k

	
:

The space W k has an inner product

(f; g)Wk =
X
j�j�k

(D�f;D�f)

and the associated norm
kfk2Wk :=

X
kD�fk2L2 :

Similarly to Proposition 4.1 it is possible to prove that W k (
) is a Hilbert space.
Similarly, de�ne the space

W k
loc (
) =

�
f 2 L2loc (
) : D�f 2 L2loc (
) for all � with j�j � k

	
:

4.7.1 Higher order derivatives in a cube

Let Q = (��; �)n as above. The �rst main result is the following theorem.

Theorem 4.8 Let u 2 W 1 (Q) and U be an open subset of Q such that U � Q.
(a) If �u 2 L2 (Q) then u 2 W 2 (U) and

kukW 2(U) � C
�
kukW 1(Q) + k�ukL2(Q)

�
;

where constant C depends on U and n. Consequently, u 2 W 2
loc (Q) :

(b) If �u 2 W k (Q) then u 2 W k+2 (U) and

kukWk+2(U) � C
�
kukW 1(Q) + k�ukWk(Q)

�
;

where the constant C depends on U ,n,k. Consequently, u 2 W k+2
loc (Q) :
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In particular, if u solves the weak Dirichlet problem�
�u = f in Q
u 2 W 1

0 (Q)

with f 2 L2 (Q) then, in fact, u 2 W 2
loc (Q). Moreover, if f 2 W k (Q) then u 2

W k+2
loc (Q).
The statement of Theorem 4.8 remains true if the cubeQ is replaced by any bounded

domain 
, which will be stated and proved below as a Corollary. For the proof of
Theorem 4.8 we will need two lemmas. We use the Fourier series in L2 (Q) as above.

Lemma 4.9 Let u 2 L2 (Q) and assume that, for some multiindex �,X
�2Zn

j��j2 jû (�)j2 <1: (4.29)

Then D�u 2 L2 (Q) and, moreover,

D�u =
X
�2Zn

(i�)� û (�) ei��x (4.30)

and
kD�uk2L2 = (2�)

n
X
�2Zn

j��j2 jû (�)j2 : (4.31)

The function (i�)� in (4.30) is called the symbol of the operator D�. Recall that
we have already proved the identities (4.30) and (4.31) in the case u 2 C10 (Q) �see
(4.19) and (4.20), respectively.

Example. Assume that X
�2Zn

j�j2 jû (�)j2 <1:

Then, for any j = 1; :::; n, we haveX
�2Zn

���j��2 jû (�)j2 <1;

that is, the condition (4.29) holds for � = (0; :::1; :::0) where the 1 is at position j. By
Lemma 4.9 we conclude that @xju 2 L2 (Q),

@xju =
X

i�jû (�) e
i��x;

and @xju2L2 = (2�)n X
�2Zn

���j��2 jû (�)j2 :
It follows that u 2 W 1 (Q) and

kruk2L2 =
nX
j=1

@xju2L2 = (2�)n X
�2Zn

j�j2 jû (�)j2 :
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Example. Assume now that X
�2Zn

j�j4 jû (�)j2 <1:

Then, for all j = 1; :::; n we haveX
�2Zn

���j��4 jû (�)j2 <1;

that is, the condition (4.29) holds for � = (0; :::2; :::0) where the 2 is at position j. By
Lemma 4.9 we conclude that @xjxju 2 L2 (Q) and

@xjxju = �
X
�2Zn

�2j û (�) e
i��x:

In particular, it follows that �u 2 L2 (Q) and

�u =
nX
j=1

@xjxju = �
X
�2Zn

j�j2 û (�) ei��x;

whence by Parseval�s identity

k�uk2L2 = (2�)
n
X
�2Zn

j�j4 jû (�)j2 :

The function � j�j2 on Zn is called the symbol of �.

Proof of Lemma 4.9. By the hypothesis (4.29), the following function

v (x) =
X
�2Zn

(i�)� û (�) ei��x (4.32)

belongs to L2 (Q). Let us show that D�u = v. By de�nition, D�u is a distribution
that is de�ned by

(D�u; ') = (�1)j�j (u;D�') 8' 2 D (Q) :

Hence, in order to prove that D�u = v, we need to verify that, for any ' 2 D (Q),Z
Q

v'dx = (�1)j�j
Z
Q

uD�'dx: (4.33)

Since the Fourier series (4.32) and

u (x) =
X
�2Zn

û (�) ei��x
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converge in L2 (Q), we can compute both integrals in (4.33) by substituting the Fourier
series of u and v and interchanging integration in x with summation in �. We obtainZ

Q

uD�'dx =
X
�2Zn

û (�)

Z
Q

ei��xD�' (x) dx

=
X
�2Zn

û (�) (�1)j�j
Z
Q

D�ei��x' (x) dx;

where we have used integration by parts because ' 2 C10 (Q). Since

D�ei��x = (i�)� ei��x;

we obtain Z
Q

uD�'dx =
X
�2Zn

û (�) (�1)j�j
Z
Q

(i�)� ei��x' (x) dx

= (�1)j�j
Z
Q

 X
�2Zn

(i�)� û (�) ei��x

!
' (x) dx

= (�1)j�j
Z
Q

v'dx;

which proves (4.33). Then identities (4.30) and (4.31) follow from (4.32).
29.01.16

De�nition. For any u 2 L1loc (
), de�ne the support suppu as the complement in 

of the maximal open subset of 
 where u = 0 a:e::

Observe that the maximal open subset of 
 with this property exists since it is the
union of all open subsets of 
 where u = 0 a:e:.
By construction, suppu is a closed subset of 
 (by the way, the same construction

can be used to de�ne the support of any distribution). If u is continuous then suppu
coincides with the closure in 
 of the set where u 6= 0.
The following lemma is a partial converse of Lemma 4.9.

Lemma 4.10 Let u 2 L2 (Q) and assume that suppu is a compact subset2 of Q.
(a) If D�u 2 L2 (Q) then (4.29), (4.30) and (4.31) hold.
(b) If �u 2 L2 (Q) then

�u = �
X
�2Zn

j�j2 û (�) ei��x; (4.34)

where the series (4.34) converges in L2 (Q), and

k�uk2L2 = (2�)
n
X
�2Zn

j�j4 jû (�)j2 : (4.35)

2Recall that the notion of compactness of a set does not depend on the choice of an ambient
topological space. In the statement of Lemma 4.10 there are two natural choices of the ambient space:
Rn or Q. Since a subset of Rn is compact if and only if it is bounded and closed, the phrase �suppu
is a compact subset of Q�means that �suppu is a closed subset of Rn and suppu � Q�(then suppu
is automatically bounded and, hence, compact). However, this phrase does not mean that �suppu
is a closed subset of the topological space Q�as there are closed (and obviously bounded) subsets of
the topological space Q that are not compact.
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Proof. (a) Let U be an open neighborhood of suppu such that U � Q. Let  be a
function from D (Q) such that  = 1 in U . Any function  with this property is called
a cuto¤ function of U in Q. Denote by h (�) the discrete Fourier transform of D�u.
Observe that suppD�u � U because if u = 0 a:e: in an open set then also D�u = 0
a:e: in the same set. Since  = 1 on U , we have the identity

 D�u = D�u in Q;

which implies

h (�) =
1

(2�)n

Z
Q

D�u e�i��x dx =
1

(2�)n

Z
Q

D�u e�i��x (x) dx:

Since ' (x) := e�i��x (x) 2 D (Q), we have by the de�nition of distributional Laplacian
D�u that

(D�u; ') = (�1)j�j (u;D�') ;

whence

h (�) =
(�1)j�j

(2�)n

Z
Q

uD�
�
e�i��x (x)

�
dx: (4.36)

Observe that e����x = e����x in U . Therefore, in U

D�
�
e�i��x 

�
= D�e�i��x = (�i�)� e�i��x = (�1)j�j (i�)� e�i��x.

Since the integration in (4.36) can be restricted to U , we obtain

h (�) =
1

(2�)n

Z
Q

u (i�)� e�i��xdx = (i�)� û (�) ;

which proves (4.30). Then (4.29) and (4.35) follow by Parseval�s identity.
(b) The proof is the same as that of (a), we just replace everywhere D� by �. Let

 be the same cuto¤ function of U in Q, and let h (�) the discrete Fourier transform
of �u. Since supp�u � U and  = 1 on U , we have the identity

 �u = �u in Q;

which implies

h (�) =
1

(2�)n

Z
Q

�u e�i��x dx =
1

(2�)n

Z
Q

�u e�i��x (x) dx:

Since ' (x) := e�i��x (x) 2 D (Q), we have by the de�nition of distributional Laplacian
�u that

(�u; ') = (u;�') ;

whence

h (�) =
1

(2�)n

Z
Q

u�
�
e�i��x (x)

�
dx: (4.37)

Since e����x = e����x on U , it follows that in U

�
�
e�i��x 

�
= �e�i��x = � j�j2 e�i��x.
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Since the integration in (4.37) can be restricted to U , we obtain

h (�) = � 1

(2�)n

Z
Q

u j�j2 e�i��xdx = � j�j2 û (�) ;

which proves (4.34). Then (4.35) follows by Parseval�s identity.

Proof of Theorem 4.8. (a) Let  be a cuto¤ function of U in Q. Set v = u . By
the product rule for the Laplacian, we have

�v = �( u) =  �u+ 2r � ru+� u:

Note that �u, ru and u are all in L2, whereas  ;r and � are in D (Q). It follows
that �v 2 L2 (Q) and, moreover,

k�vkL2(Q) � C
�
kukW 1(Q) + k�ukL2(Q)

�
;

where C depends on sup jr j and sup j� j and, hence, on U .
Since supp v is a subset of supp and, hence, is a compact subset of Q, we obtain

by Lemma 4.10 that
k�vk2L2 = (2�)

n
X
�2Zn

j�j4 jv̂ (�)j2 :

Since for all indices j; l = 1; :::; n we have���j�l�� � 1

2

���j��2 + 12 j�lj2 � j�j2 ;
we obtain X

�2Zn

���j�l��2 jv̂ (�)j2 � X
�2Zn

j�j4 jv̂ (�)j2 <1:

Note that the function ��j�l is the symbol of the operator @xjxl. Hence, we conclude
by Lemma 4.9 that the distributional derivative @xjxlv belongs to L

2 (Q) and@xjxlv2L2(Q) = (2�)n X
�2Zn

���j�l��2 jû (�)j2 � k�vk2L2(Q) :
Similarly, since

���j�� � j�j2, we obtainX
�2Zn

���j��2 jv̂ (�)j2 � X
�2Zn

j�j4 jv̂ (�)j2 <1:

Hence, @xjv 2 L2 (Q) and@xjv2L2(Q) = (2�)n X
�2Zn

���j��2 jû (�)j2 � k�vk2L2(Q) :
We conclude that v 2 W 2 (Q) and

kvk2W 2(Q) = kvk
2
L2 +

nX
j=1

@xjv2L2 + nX
j;l=1

@xjxlv2L2 � kvk2L2(Q) + C k�vk2L2(Q) :
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Since v = u in U , we obtain that u 2 W 2 (U) and

kuk2W 2(U) � kvk2L2(Q) + C k�vk2L2(Q)
� C 0

�
kukW 1(Q) + k�ukL2(Q)

�
;

which was to be proved.
(b) Induction in k. The induction basis for k = 0 was proved in (a). For the

inductive step from k to k+1, choose a cube Q0 = (� � "; � � ")n for some " > 0, such
that U � Q0. Assume that u 2 W 1 (Q) and �u 2 W k+1 (Q). Since �u 2 L2 (Q), by
part (a) we have u 2 W 2 (Q0) and

kuk2W 2(Q0) � C
�
kukW 1(Q) + k�ukL2(Q)

�
: (4.38)

Set v = @xju and observe that v 2 W 1 (Q0) and �v = @xj�u 2 W k (Q0). By the
inductive hypotheses applied to cube Q0 instead of Q, we obtain v 2 W k+2 (U) and

kvkWk+2(U) � C
�
kvkW 1(Q0) + k�vkWk(Q0)

�
� C

�
kukW 2(Q0) + k�ukWk+1(Q0)

�
:

Substituting here the estimate of kukW 2(Q0) from (4.38), we obtain

kvkWk+2(U) � C
�
kukW 1(Q) + k�ukWk+1(Q)

�
:

Finally, since this estimate holds for any partial derivative v = @xju of u, it follows
that u 2 W k+3 (U) and

kukWk+3(U) � C
�
kukW 1(Q) + k�ukWk+1(Q)

�
;

which proves the inductive step.
Finally, let us show that u 2 W k+2

loc (Q) (both in the cases (a) and (b)). Indeed,
since for any multiindex � of order � k + 2 we have D�u 2 L2 (U) for any open set U
such that U � Q, we see that D�u 2 L2loc (Q) and, hence, u 2 W k+2

loc (Q) :
03.02.16

4.7.2 Higher order derivatives in arbitrary domain

Our next task is to generalize Theorem 4.8 to general domains. For that we prove �rst
two lemmas.
Let f; g be distributions in 
. If U is an open subset of 
 then we say that f = g

in U if
(f; ') = (g; ') 8' 2 D (U) :

Lemma 4.11 Let 
 = U [ V where U; V are open domains in Rn. If f; g 2 D0 (
)
and f = g in U and in V then f = g in 
.
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Proof. We have to prove that

(f; ') = (g; ') 8' 2 D (
) : (4.39)

Fix ' 2 D (
) and denote K = supp'. If K � U then ' 2 D (U) and (4.39) holds by
assumption that f = g in U . In the same way (4.39) holds if K � V . However, if K
is not contained in U or V , then additional argument is needed. In fact, it su¢ ces to
show that ' can be represented in the form

' = '1 + '2; (4.40)

where '1 2 D (U) and '2 2 D (V ). Then, adding up the identities (4.39) with '1 and
'2, we obtain that for '. The representation (4.40) is called partition of ' subordinated
to U; V .
Since K � U [ V , for any point x 2 K there is a ball Bx of small enough radius

centered at x such that Bx is contained in U or in V . The family fBxgx2K is an open
cover of K, so there exists a �nite subcover, say B1; :::Bl. Denote by U 0 the union of
all balls Bj with Bj � U , and by V 0 �the union of all balls Bj with Bj � V (some
balls Bj may be used in both U 0 and V 0).

U V

V'U'

K

Covering of the set K (grey shaded) with U 0 (the union of blue balls) and V 0 (the
union of red balls)

By construction we have

K � U 0 [ V 0; U 0 � U; V 0 � V:

Therefore, there is a cuto¤ function  1 of U
0 in U , and a cuto¤ function  2 of V

0 in V .
Set then

'1 =  1' and '2 = (1�  1) 2':

Clearly, '1 2 D (U) and '2 2 D (V ). Besides,

'1 + '2 = ( 1 +  2 �  1 2)'

= (1� (1�  1) (1�  2))';

which implies that

� '1 + '2 = 0 = ' outside K;

� '1 + '2 = ' on V 0 [ U 0 because on this set either  1 = 1 or  2 = 1:



4.7. HIGHER ORDER WEAK DERIVATIVES 147

Since K is covered by V 0 [ U 0, we conclude that '1 + '2 = ' everywhere, which
�nishes the proof.

Lemma 4.12 Let 
 = U [ V where U; V are open domains in Rn. Let u be a mea-
surable function in 
. If u 2 W k (U) and u 2 W k (V ) then u 2 W k (
). Besides, we
have

kuk2Wk(
) � kuk
2
Wk(U) + kuk

2
Wk(V ) : (4.41)

Proof. Obviously, if u 2 L2 (U) and u 2 L2 (V ) thenZ



u2dx �
Z
U

u2dx+

Z
V

u2dx <1

so that u 2 L2 (
) and

kuk2L2(
) � kuk
2
L2(U) + kuk

2
L2(V ) :

Assume that, for some multiindex �, we know that D�u 2 L2 (U) and D�u 2 L2 (V ).
Let us prove that D�u 2 L2 (
). Denote by v1 the function D�u in U and by v2 the
function D�u in V . Observe then that D�u in U \V is equal simultaneously to v1 and
v2 so that v1 = v2 in U \ V . Let us de�ne function v in U [ V by

v (x) =

�
v1 (x) ; x 2 U;
v2 (x) ; x 2 V:

Clearly, v is well-de�ned and v 2 L2 (
). Then D�u = v in U and in V . Therefore, by
Lemma 4.11 we conclude that D�u = v in 
. It follows that

kD�uk2L2(
) � kD�uk2L2(U) + kD�uk2L2(V ) :

Summing up such identities over all multiindices j�j � k, we obtain (4.41).

Theorem 4.13 Let 
 be any bounded domain in Rn. If u 2 W 1 (
) and �u 2 W k (
)
then, for any open subset U of 
, such that U � 
, we have u 2 W k+2 (U) and

kukWk+2(U) � C
�
kukW 1(
) + k�ukWk(
)

�
;

where the constant C depends on 
; U; n; k. Consequently, u 2 W k+2
loc (
).

Proof. For any point x 2 
 there exists " = " (x) > 0 such that the cube

Qx := (x1 � "; x1 + ")� :::� (xn � "; xn + ")

is contained in 
. Denote by Ux a similar cube where " is replaced by "=2. Clearly, the
family fUxgx2U is an open covering of U . By the compactness of U , there is a �nite
subcover, denote its element by U1; :::; Ul. Applying Theorem 4.8 in the corresponding
cubes Q1; :::; Ql (instead of Q), we obtain that u 2 W k+2

�
U
j

�
and

kukWk+2(Uj)
� Cj

�
kukW 1(Qj)

+ k�ukWk(Qj)

�
� C

�
kukW 1(
) + k�ukWk(
)

�
;
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where C = maxCj. Since U �
Sl
j=1 Uj, using Lemma 4.12, we obtain by induction in

l that u 2 W k+2 (U) and

kukWk+2(U) �
 

lX
j=1

kuk2Wk+2(Uj)

!1=2

�
lX

j=1

kukWk+2(Uj)

� C 0
�
kukW 1(
) + k�ukWk(
)

�
;

where C 0 = lC, which �nishes the proof.

Corollary 4.14 Let 
 be a bounded domain and v 2 W 1
0 (
) be an eigenfunction of

the weak Dirichlet problem in 
 with the eigenvalue �. Then v 2 W1
loc (
).

Proof. It su¢ ces to prove that v 2 W k (U) for k 2 N and for any open set U such
that U � Q. Given k and U , let us construct a sequence of open sets U0; :::; Uk such
that U0 = 
, Uj � U j+1, and Uk = U . Set

f = ��v;

so that
�v = f:

Since v 2 W 1 (U0) then also f 2 W 1 (U0). Therefore,

v 2 W 1 (U0) and �v 2 W 1 (U0) ;

which implies by Theorem 4.13 that v 2 W 3 (U1) : Hence, also f 2 W 3 (U1). Therefore,

v 2 W 1 (U1) and �v 2 W 3 (U1) ;

which implies by Theorem 4.13 that v 2 W 5 (U2). Continuing further by induction, we
obtain that u 2 W 2k+1 (Uk), which �nishes the proof.

4.8 Sobolev embedding theorem

Recall that Cm (
) denotes the space of allm times continuously di¤erentiable functions
in 
. Set

kukCm(
) = sup
f�:j�j�mg

sup
x2


jD�u (x)j :

Note that kukCm(
) can be equal to 1. De�ne also the space Cmb (
) as a subspace
of Cm (
) with kukCm(
) < 1. Then Cmb (
) is a normed linear space with the norm
k�kCm(
). Moreover, it is a Banach space.
The following implications are trivial:

u 2 Cm (
)) u 2 Wm
loc (
)
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and, if 
 is bounded, then

u 2 Cmb (
)) u 2 Wm (
) :

Notational remark. A better notion for Cm (
) would have been Cmloc (
) and for C
m
b (
) �

simply Cm (
). In this case the notation for Cm-spaces would have matched those for W k-spaces.

However, we use the notations that are commonly accepted in mathematics, even if they are not best

possible.

The next theorem states a kind of converse to the above implications. It is one of
the most amazing results of Analysis.

Theorem 4.15 (Sobolev embedding theorem) Let 
 be an open subset of Rn and let
m; k be non-negative integers such that

k > m+
n

2
: (4.42)

If u 2 W k
loc (
) then u 2 Cm (
).

Moreover, if u 2 W k (
) then, for any open set U such that U is a compact subset
of 
; we have u 2 Cmb (U) and

kukCm(U) � C kukWk(
) ; (4.43)

where the constant C depends on 
; U; k;m; n.

Note that u is a priori an element of L2loc (
) and, hence, is the class of measurable
functions de�ned almost everywhere. When we claim that u 2 Cm (
) and, in partic-
ular, u 2 C (
), we understand u as a function de�ned pointwise. A precise meaning
of that is as follows: if u 2 W k

loc (
) then u as a class of functions has a representative,
also denoted by u, such that this representative belongs to Cm (
).
The identi�cation of u 2 W k

loc (
) with its C
m-representative allows to de�ne an

embedding (=injective linear mapping) of linear spaces

W k
loc (
) ,! Cm (
) :

The estimate (4.43) implies that there is an embedding

W k (
) ,! Cmb (U)

of normed linear spaces, and this embedding is a bounded operator.05.02.16

Example. Let n = 1. Then the condition (4.42) becomes k > m+ 1
2
that is equivalent

to k � m + 1. Hence, if u 2 W k
loc then u 2 Ck�1, provided k � 1. In particular,

any function from W 1
loc has to be continuous. We have seen above that the continuous

function u (x) = jxj in R has the weak derivative u0 = sgnx and, hence, belongs toW 1
loc.

On the other hand, the function u (x) = 1[0;1) that has only one point of discontinuity
at x = 0 has the distributional derivative u0 = � and, hence, is not in W 1

loc.

Example. For a general n and for m = 0, the condition (4.42) becomes k > n
2
. That

is, if
k >

n

2
(4.44)
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then u 2 W k
loc implies that u is continuous. Let us show that the condition (4.44) is

sharp. For that, consider in Rn the function u (x) = jxj� where � is a real number.
This function is clearly C1 smooth outside the origin, but it is continuous in R if and
only if � � 0. We use without proof the fact that u 2 L2loc if and only if

� > �n
2

(cf. Example at the end of Section 4.1). It is also possible to prove that any classical
derivatives of u of the order k (which is de�ned outside 0) belongs to L2loc if and only if

�� k > �n
2
;

which is equivalent to
� > k � n

2
: (4.45)

Under this condition the classical derivative coincides with the weak derivative, which
therefore belongs to L2loc.
Hence, under the condition (4.45) we obtain u 2 W k

loc. If k <
n
2
then there exists

� < 0 that satis�es (4.45). Then the function u (x) = jxj� belongs to W k
loc but is

not continuous at 0. This example shows that the condition (4.44), under which all
functions from W k

loc are continuous, is sharp.

Before the proof of Theorem 4.15, let us state some consequences.

Corollary 4.16 Let 
 be a bounded domain in Rn. Let u be solution of the weak
Dirichlet problem �

�u = f in 

u 2 W 1

0 (
)

where f 2 L2 (
). If in addition f 2 W k
loc (
) where

k + 2 > m+
n

2
; (4.46)

then u 2 Cm (
) : Here k;m are non-negative integers.

In particular, the statement of Corollary 4.16 holds if f 2 Ck (
).
Proof. Fix an open subset U of 
 such that U � 
. Then we have f 2 W k (U). Since
u 2 W 1 (U) and �u 2 W k (U), we obtain by Theorem 4.13 that u 2 W k+2

loc (U). By
Theorem 4.15 and and (4.46), we conclude that u 2 Cm (U). Since U is arbitrary, it
follows that u 2 Cm (
).

Example. Let n = 2. Then the condition k + 2 > m + 1 is equivalent to k � m. In
the case n = 3 the condition

k + 2 > m+
3

2

is also equivalent to k � m. Hence, in the both cases n = 2; 3 we obtain if f 2 W k
loc (
)

then u 2 Ck (
).
If n = 4 then the condition k + 2 > m + 2 is equivalent to k � m + 1:Hence,

f 2 W k
loc (
) implies u 2 Ck�1 (
) provided k � 1.
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Corollary 4.17 In any bounded domain 
 � Rn, all eigenfunctions of the weak
Dirichlet problem belong to C1 (
).

Proof. Let v be an eigenfunction of the weak Dirichlet problem in 
. By Corollary
4.14, we have v 2 W k

loc (
) for any k. Hence, by Theorem 4.15 we conclude that
v 2 Cm (
) for any m, that is, v 2 C1 (
).

Remark. The question remains if the boundary condition v 2 W 1
0 (
) is the statement of the

weak eigenvalue problem can be turned into the classical boundary condition v = 0 on @
, which in
particular requires the continuity of v in 
. This question is more di¢ cult than the continuity of v
inside 
, because the answer depends on the properties of the boundary @
.

In short, if the boundary is good enough, for example, if 
 is a region, then indeed v 2 C
�


�
and

v = 0 on @
 pointwise. A similar statement holds for weak solutions of the Dirichlet problem.

However, the study of the boundary behavior is outside the range of this course.

Proof of Theorem 4.15. The proof will be split in a few parts.
Part 1. Let Q = (��; �)n be the cube as above. Assume �rst that u 2 L2 (Q) and

that suppu is a compact subset of Q. We prove in this part that if u 2 W k (Q) with
k > n=2 then u 2 C (Q) and, moreover,

kukC(Q) � C kukWk(Q) (4.47)

for some constant C = C (n; k) (which corresponds to the case m = 0).
By Lemma 4.10(a), we have, for any multiindex � with j�j � k the identity (4.31),

that is, X
�2Zn

j��j2 jû (�)j2 = (2�)�n kD�uk2L2 <1:

Applying this with � = (0; :::; 0; k; 0; :::; 0) ; where k stands at position i, we obtainX
�2Zn

j�ij
2k jû (�)j2 = (2�)�n

@kxiu2L2 <1:

Adding up in all i = 1; :::; n, we obtainX
�2Zn

�
j�1j

2k + :::+ j�nj
2k
�
jû (�)j2 � kuk2Wk :

Observing that

j�j2k =
 

nX
i=1

j�ij
2

!k
� C

nX
i=1

j�ij
2k ;

where C = nk, we obtain X
�2Zn

j�j2k jû (�)j2 � C kuk2Wk <1: (4.48)

On the other hand, we have by the Cauchy-Schwarz inequality,0@ X
�2Znnf0g

jû (�)j

1A2

=

0@ X
�2Znnf0g

j�j�k j�jk jû (�)j

1A2

�
X

�2Znnf0g

j�j�2k
X
�2Zn

j�j2k jû (�)j2 : (4.49)
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If k > n
2
then 2k > n: We claim that if 2k > n thenX

�2Znnf0g

j�j�2k <1 (4.50)

(see Lemma 4.18 below). Combining this with (4.48) and (4.49), we obtainX
�2Znnf0g

jû (�)j � C 0 kukWk <1:

In particular, this implies that the Fourier seriesX
�2Zn

û (�) ei��x

converges absolutely and uniformly in x 2 Q. Therefore, its sum is a continuous
function in Q. On the other hand, we know that this series converges in L2 to u (x).
Hence, L2 function u (x) has a continuous version that is the pointwise sum of the
Fourier series. Besides, we have for the continuous function u (x)

sup
x2Q

ju (x)j �
X
�2Zn

��û (�) ei��x�� � jû (0)j+ X
�2Znnf0g

jû (�)j

� 1

(2�)n

Z
Q

ju (x)j dx+ C 0 kukWk

� kukL2 + C 0 kukWk

� C 00 kukWk ;

which proves (4.47).
Part 2. Let us extend the result of Part 1 to the case m � 1. Namely, in the

setting of Part 1, assume that u 2 W k (Q) with k > m+ n
2
and prove that u 2 Cm (Q)

and, moreover,
kukCm(Q) � C kukWk(Q) : (4.51)

We still have (4.48), but instead of (4.49) we write0@ X
�2Znnf0g

j�jm jû (�)j

1A2

=

0@ X
�2Znnf0g

j�j�k+m j�jk jû (�)j

1A2

�
X

�2Znnf0g

j�j�2(k�m)
X
�2Zn

j�j2k jû (�)j2 :

Since 2 (k �m) > n, we obtain thatX
�2Znnf0g

j�j�2(k�m) <1:

Combining this with (4.48) and noticing that j�jm = 0 for � = 0, we obtainX
�2Zn

j�jm jû (�)j � C kukWk <1:
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We claim that, for any � with j�j � m, the classical derivative D�u exists and is given
by the series

D�u (x) =
X
�2Zn

(i�)� û (�) ei��x; (4.52)

where the convergence is absolut and uniform. Indeed, since this series is obtained a
term by term application of D� to the series

u (x) =
X
�2Zn

û (�) ei��x;

it su¢ ces to prove that the series (4.52) converges absolutely and uniformly in x 2 Q
for all j�j � m. Observe that

j��j = j�1j
�1 ::: j�nj

�n � (j�1j+ :::+ j�nj)
j�j

� C
�
j�1j

2 + :::+ j�nj
2�j�j=2 = C j�jj�j : (4.53)

Therefore, for any � 6= 0 with j�j � m,X
�2Zn

��(i�)� û (�) ei��x�� � C
X
�2Zn

j�jj�j jû (�)j

� C
X
�2Zn

j�jm jû (�)j

� C 0 kukWk <1; (4.54)

which proves (4.52). Besides, we obtain from (4.52) and (4.54) that

jD�u (x)j � C 0 kukWk ;

whence (4.51) follows.
Part 3. Assume that u 2 W k (Q) and prove that u 2 Cm (Q) provided k > m+ n

2
.

Besides, we prove that, for any open set U such that U � Q,

kukCm(U) � C kukWk(Q) : (4.55)

Let  be a cuto¤ function of U in Q. Then the function v =  u has a compact support
in Q and v 2 W k (Q). Indeed, to see the latter, let us use the Leibniz formula

D� ( u) =
X

f�:���g

�
�

�

�
D��� D�u;

where � � � means that �j � �j for all j = 1; :::; n, and
�
�
�

�
is a polynomial coe¢ cient

de�ned by �
�

�

�
=

�!

�! (�� �)!
;

where �! = �1!:::�n!. If j�j � k then also j�j � k and D�u 2 L2loc (Q). Since D
��� 

is supported in supp and is bounded, we obtain that the product D��� D�u is
supported in supp and, hence, belongs to L2 (Q). Hence, D� ( v) 2 L2 (Q), whence
v 2 W k (Q) follows.
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By Part 2 we conclude that v 2 Cm (Q) and

kvkCm(Q) � C kukWk(Q) :

Since u = v on U , we obtain (4.55).
Part 4. Let 
 be an arbitrary open set and u 2 W k

loc (
). Let Q be any cube (of
any size) such that Q � 
. Then u 2 W k (Q) and, hence, by Part 3, u 2 Cm (Q).
Since such cubes Q cover all the set 
, we conclude that u 2 Cm (
).
Assume now that u 2 W k (
). Let U be an open set such that U is a compact

subset of 
. As in the proof of Theorem 4.13, choose for any point x 2 
 some " > 0
such that the cube

Qx := (x1 � "; x1 + ")� :::� (xn � "; xn + ")

is contained in 
. Denote by Ux a similar cube where " is replaced by "=2. Clearly, the
family fUxgx2U is an open covering of U . By the compactness of U , there is a �nite
subcover, denote its element by U1; :::; Ul. By (4.51), we have for any j

kukCm(Uj) � Cj kukWk(Qj)
: (4.56)

Since the union
Sl
j=1 Uj covers U , taking (4.56) supremum in j, we obtain

kukCm(U) � C kukWk(
) ;

which �nishes the proof.

To complete the proof of Theorem 4.15, it remains to prove the following lemma.

Lemma 4.18 For any  > n we haveX
�2Znnf0g

j�j� <1: (4.57)

Proof. Let us �rst estimate the following number:

N (R) = # f� 2 Zn : j�j < Rg ;

where R > 0. In other words, N (R) is the number of integer points inside the ball BR
of Rn. With any � 2 Zn, let us associate a unit cube

Q� :=
�
x 2 Rn : �j < xj < �j + 1; 8j = 1; :::; n

	
:

In other words, � is the bottom left corner of the cube Q�: For any x 2 Q�, we have

jx� �j =
 

nX
j=1

��xj � �j
��2!1=2 � pn:

Hence, if � 2 BR then
jxj � j�j+ jx� �j < R +

p
n;
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which implies
Q� � BR+pn:

Since all the cubes Q� are disjoint and the volume of each cube Q� is equal to 1, we
obtain

N (R) =
X
�2BR

vol (Q�) � volBR+pn = cn
�
R +

p
n
�n
;

where cn is the volume of the unit ball in Rn. Assuming that R is a positive integer
and, in particular, R � 1, we obtain

N (R) � CRn;

for some constant C = C (n). Therefore, we obtainX
�2Znnf0g

j�j� =
1X
k=0

X
f�2Zn:2k�j�j<2k+1g

j�j�

�
1X
k=0

X
f�2Zn:2k�j�j<2k+1g

2�k

=
1X
k=0

2�k
�
N
�
2k+1

�
�N

�
2k
��

�
1X
k=0

2�kN
�
2k+1

�
� C

1X
k=0

2�k2(k+1)n

= C2n
1X
k=0

2�(�n)k <1;

where we have used that  > n.

4.9 � Sobolev spaces of fractional orders

Let u 2 L2 (Q) and assume that suppu is a compact subset of Q. Combination of
Lemmas 4.9 and 4.10 gives the following: D�u 2 L2 (Q) if and only ifX

�2Zn
j��j2 jû (�)j2 <1: (4.58)

By (4.53) we have j��j � C j�jj�j. Hence, (4.58) holds for all multiindices � with j�j � k
provided X

�2Zn
j�j2k jû (�)j2 <1: (4.59)

Hence, if (4.59) holds then u 2 W k (Q) and

kukWk(Q) � C
X
�2Zn

j�j2k jû (�)j2 :
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On the other hand, by (4.48) we have the converse: is u 2 W k (Q) thenX
�2Zn

j�j2k jû (�)j2 � C kukWk(Q)

and, in particular, (4.58) holds.
Hence, u 2 W k (Q) is equivalent to (4.59), and

kuk2Wk(Q) '
X
�2Zn

j�j2k jû (�)j2 ; (4.60)

where the sign ' means the equivalence of the two expressions in the sense that their
ratio is bounded from above and below by positive constants.
Using (4.60) as motivation, we can introduce the norm kukW s(Q) for all positive real

values of s by setting
kuk2W s(Q) =

X
�2Zn

j�j2s jû (�)j2 ;

and de�ne the space W s (Q) as the set containing all u 2 L2 (Q) with compact3 suppu
and with kukW s(Q) <1.
As in the proof of Theorem 4.15, one can show that if u 2 W s (Q) and s > m + n

2

then u 2 Cm (Q).
Note that one can de�ne also spaces Ct (Q) for positive real values of parameter t.

For simplicity, let us restrict ourselves to the case 0 < t < 1. Then Ct (Q) is the space
of functions u in Q that are Hölder continuous with the Hölder exponent t, that is,

ju (x)� u (y)j � C jx� yjt

for some constant C. The norm in Ct (Q) is de�ned by

kukCt(Q) = kukC(Q) + sup
ju (x)� u (y)j
jx� yjt

:

Then the following is true: if u 2 W s (Q) and s > t + n
2
, where s; t are non-negative

reals, then u 2 Ct (Q) and

kukCt (u) � C kukW s(Q) .

3One can extend this de�nition to allow in W s (Q) functions whose support is not necessarily
compact. However, we skip this direction.


	Introduction
	Examples of PDEs and their origin
	Laplace equation
	Wave equation
	Divergence theorem
	Heat equation
	Schrödinger equation

	Quasi-linear PDEs of second order and change of coordinates

	Laplace equation and harmonic functions
	Maximum principle and uniqueness in Dirichlet problem
	Representation of C2 functions by means of potentials
	Green function
	The Green function in a ball
	Dirichlet problem in a ball and Poisson formula
	Properties of harmonic functions
	Sequences of harmonic functions
	Discrete Laplace operator
	Separation of variables in the Dirichlet problem
	Variational problem and the Dirichlet principle
	Distributions
	Euler-Lagrange equation
	Dirichlet problem in arbitrary domains (overview)

	Heat equation
	Heat kernel
	Solution of the Cauchy problem
	Maximum principle and uniqueness in Cauchy problem
	Mixed problem and separation of variables
	Mixed problem with the source function
	Cauchy problem with source function and Duhamel's principle
	Brownian motion

	Wave equation
	Cauchy problem in dimension 1
	Energy and uniqueness
	Mixed problem for the wave equation
	 Spherical means
	Cauchy problem in dimension 3
	Cauchy problem in dimension 2
	Cauchy problem in higher dimensions

	The eigenvalue problem
	Distributions and distributional derivatives
	Sobolev spaces
	Weak Dirichlet problem
	The Green operator
	Compact embedding theorem
	Eigenvalues and eigenfunctions of the weak Dirichlet problem
	Higher order weak derivatives
	Higher order derivatives in a cube
	Higher order derivatives in arbitrary domain

	Sobolev embedding theorem
	 Sobolev spaces of fractional orders


