Partial Differential Equations

Alexander Grigoryan
Universitat Bielefeld

SS 2023



11



Contents

0 Introduction

0.1

0.2

Examples of PDEs and their origin . . . . . ... ... ... ... ...
0.1.1 Laplace equation . . . . .. .. ... ...
0.1.2 Wave equation . . . . . . . . .. ...
0.1.3 Divergence theorem . . . . . . . .. .. ... L.

0.1.4 Heat equation . . . . . . . . ... .
0.1.5  Schrodinger equation . . . . . . .. .. ... L.
Quasi-linear PDEs of 2nd order and change of coordinates . . . . . .. ..

1 Laplace equation and harmonic functions

1.1
1.2

1.3
1.4

1.5
1.6

1.7

1.8

1.9
1.10

1.11

1.12

1.13

1.14

—Lecture 3 (13.04.23) . . . . . . . . ..
Maximum principle and uniqueness in Dirichlet problem . . . . . . . . ..
Representation of C? functions by means of potentials . . . . . . ... ...
—Lecture 4 (17.04.23) . . . . . . . . ..
Green function . . . . . . ..
Green function inaball . . . . .. ... 0 oo
—Lecture 5 (20.04.23) . . . . . . . ...
Representation of solutions of the Dirichlet problem in balls . . . . . . ..
Poisson formula . . . . . ...

Newtonian potential . . . . . . . .. ... oL
—Lecture 7 (27.04.23) . . . . . . .. ..
Solution of the Dirichlet problem inaball . . . . ... ... ... .. ...
—Lecture 8 (04.05.23) . . . . . . . ...
Properties of harmonic functions . . . . . . . ... ... ... ... ... ..
Sequences of harmonic functions . . . . . . . ... ... . L.

Discrete Laplace operator . . . . . . . . . . . . .. ... ... ... ...,
—Lecture 10 (11.05.23) . . . . . . . ..
Separation of variables in the Dirichlet problem . . . . .. ... ... ...
—Lecture 11 (15.05.23) . . . . . . . ..
Variational problem and the Dirichlet principle . . . . . . .. .. ... ...
—Lecture 12 (22.05.23) . . . . .. . ..
—Lecture 13 (25.05.23) . . . .. . . ..
*Distributions . . . . . . . . ..

il



v

CONTENTS

1.15 *Euler-Lagrange equation . . . . . . . . .. .. ... 0L 72
1.16 *Dirichlet problem in arbitrary domains (overview) . . . .. ... ... .. 73
Heat equation 79
2.1 Heat kernel . . . . . . .. 79
2.2 Solution of the Cauchy problem . . . . . ... ... ... ... . ...... 82
—Lecture 14 (01.06.23) . . . . . . . .. 83

2.3 Maximum principle and uniqueness in Cauchy problem . . . . ... .. .. 85
—Lecture 15 (05.06.23) . . . . . . . .. 88

2.4 Mixed problem and separation of variables . . . . . . ... ... ... ... 90
2.5 *Mixed problem with the source function . . . . . .. ... ... ... ... 95
2.6 *Cauchy problem with source function and Duhamel’s principle . . . . .. 97
2.7 *Brownian motion . . . . . .. ..o 101
Wave equation 105
—Lecture 16 (12.06.23) . . . . . . . .. 105

3.1 Cauchy problem in dimension 1 . . . . . ... ... ... ... ....... 105
3.2 Uniqueness in the mixed problem . . . . .. . ... ... ... ... .... 107
—Lecture 17 (15.06.23) . . . . . . . .. 108

3.3 Solution of the mixed problem . . . . . .. .. ... ... .. 108
—Lecture 18 (19.06.23) . . . . . . . .. 114

3.4  Uniqueness in the Cauchy problem . . . . . ... ... ... ... ..... 115
—Lecture 19 (22.06.23) . . . . . .. .. 118

3.5 Spherical means . . . . . . ... 119
3.6 Cauchy problem in dimension 3 . . . . . . . . .. ... ... .. ... 123
—Lecture 20 (26.06.23) . . . . . . ... 124

3.7 Cauchy problem in dimension 2 . . . . . ... ... ... ... ... ... 127
3.8 *Cauchy problem in higher dimensions . . . . . ... ... ... ... ... 130
The eigenvalue problem 131
—Lecture 21 (29.06.23) . . . . . . . .. 131

4.1 Distributions and distributional derivatives . . . . . . . .. .. ... ... 131
4.2 Sobolev spaces . . . ... 135
—Lecture 22 (03.07.23) . . . ... ... 136

4.3 Weak Dirichlet problem . . . . . ... ... oo 137
—Lecture 23 (06.07.23) . . . . . .. .. 140

4.4 The Green operator . . . . . . . . . ... 142
4.5 Compact operators . . . . . . . . . ..o 144
—Lecture 24 (10.07.23) . . . . . . . .. 144

4.6 Eigenvalues and eigenfunctions of the weak Dirichlet problem . . . . . . . . 145
—Lecture 25 (13.07.23) . . . . . .. .. 149

4.7 Proof of the compact embedding theorem . . . . . . . . .. ... ... ... 149
4.8 “*Higher order weak derivatives . . . . . . . . ... ... oL L. 155
4.8.1 Higher order derivatives inacube . . . . . ... ... ... ... .. 155
4.8.2 Higher order derivatives in arbitrary domain . . . . . . . .. . . .. 161

4.9 *Sobolev embedding theorem . . . . . . .. ... oL 164

4.10 * Sobolev spaces of fractional orders . . . . . . . .. .. ... ... 171



Chapter 0O

Introduction

03.04.23 Lecture 1

0.1 Examples of PDEs and their origin

Let u = u(xy,...,x,) be a real-valued function of n independent real variables xi, ..., z,.
Recall that, for any multiindex o = (aq, ..., a;,) where «; are non-negative integers, the
expression D“u denotes the following partial derivative of u:

dlely,

D% = ——
Oz{t...0xen’

where |a] = ay + ... + «a,, is the order of the derivative.

A partial differential equation (PDE) is an equation with an unknown function u =
w(z1,..,x,) of n > 1 independent variables, which contains partial derivatives of u. That
is, a general PDE looks as follows:

F (D%u, D’u, Du,...) =0 (0.1)

where F'is a given function, u is unknown function, a, 3,7, ... are multiindices.

Of course, the purpose of studying of any equation is to develop methods of solving it or
at least ensuring that it has solutions. For example, in the theory of ordinary differential
equations (ODEs) one considers an unknown function u(z) of a single real variable = and
a general ODE

F(u,u',u",...) =0

and proves theorems about solvability of such an equation with initial conditions, under
certain assumptions about F' (Theorem of Picard-Lindel6f). One also develops methods
of solving explicitly certain types of ODEs, for example, linear ODEs.

In contrast to that, there is no theory of general PDEs of the form (0.1). The reason
for that is that the properties of PDEs depend too much of the function F' and cannot be
stated within a framework of one theory. Instead one develops theories for narrow classes
of PDEs or even for single PDEs, as we will do in this course.

Let us give some examples of PDEs that arise in applications, mostly in Physics. These
examples have been motivating development of Analysis for more than a century. In fact,
a large portion of modern Analysis has emerged in attempts of solving those special PDEs.

1



2 CHAPTER 0. INTRODUCTION

0.1.1 Laplace equation

Let €2 be an open subset of R” and let v : {2 — R be a function that twice continuously
differentiable, that is, u € C? (Q). By Au we denote the following function

n
Au = E Oy Us
k=1

that is, Aw is the sum of all unmixed partial derivatives of u of the second order. The
differential operator
n
A=) O
k=1

is called the Laplace operator, so that Awu is the result of application to u of the Laplace
operator.
The Laplace equation is a PDE of the form

Au = 0.

Any function v that satisfies the Laplace equation is called a harmonic function. Of
course, any affine function

u(z) = a1z + ... + apTy, + 0

with real coefficients aq, ..., a,, b is harmonic because all second order partial derivatives
of u vanish. However, there are more interesting examples of harmonic functions. For
example, in R™ with n > 3 the function

1

u(r) = W

is harmonic away from the origin, where

2| = /2t + ...+ a2

is the Euclidean norm of z. In R2 the function
u(z) = In|z|

is harmonic away from the origin.
It is easy to see that the Laplace operator A is linear, that is,

A(u+v)=Au+ Av

and
A (ev) = cAu
for all u,v € C? and ¢ € R. It follows that linear combinations of harmonic functions are
harmonic.
A more general equation

Au=f

where f : {0 — R is a given function, is called the Poisson equation. The Laplace and
Poisson equations are most basic and most important examples of PDEs.
Let us discuss some origins of the Laplace and Poisson equations.
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Holomorphic function

Recall that a complex valued function f(z) of a complex variable z = z + iy is called
holomorphic (or analytic) if it is C-differentiable. Denoting u = Re f and v = Im f, we
obtain functions u(z,y) and v(x,y) of two real variables x,y.

It is known from the theory of functions of complex variables that if f is holomorphic
then u, v satisfy the Cauchy-Riemann equations

Oxu = Oyv,
{ Oyu = —0,v. (0-2)

Assuming that u,v € C? (and this is necessarily the case for holomorphic functions), we
obtain from (0.2)
Opatt = 0,0,V = 0,0, = —Oyyu

whence
Au = Oyt + Oyyu = 0.

In the same way Av = 0. Hence, both u,v are harmonic functions.
This observation allows us to produce many examples of harmonic functions in R?
starting from holomorphic functions. For example, for f(z) = e* we have

e” = "™ = e (cosy + isiny)

which yields the harmonic functions u(x,y) = e* cosy and v(z,y) = €” siny.
For f(z) = 2% we have

2= (x+iy)’ = (x2 — yz) + 2y,

so that the functions v = 2% — y? and v = 22y are harmonic.
For the function f(z) = Inz that is defined away from the negative part of the real
axis, we have, using the polar form z = re? of complex numbers that

Inz=1Inr+ 0.

Since 7 = |z| and 6 = arg z = arctan ¥, it follows that the both functions

u=Inl|z| =In/22 + y?

and u = arctan% are harmonic.
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Gravitational field

By Newton’s law of gravitation of 1686, any two point masses m, M are attracted each
to other by the gravitational force F' = vﬂf;m where r is the distance between the points
and -y is the gravitational constant. Assume that the point mass M is located constantly
at the origin of R3 and that the point mass m is moving and let its current position be

x € R3. Taking for simplicity v = m = 1, we obtain that the force acting at the moving

H
mass is ' = % and it is directed from x to the origin. The vector F' of the force is then

7 M (_ ZB>__M T
j* \ [l o

Any function F cle)ﬁned in a domain of R and taking values in R" is called a vector field.
The vector field F'(z) = —M ﬁ in R3 is called the gravitational field of the point mass
M.

A real-value function U(z) in R™ is called a potential of a vector field ?(m) in R™ if

equal to

Fl(z) = =VU(2),
where VU is the gradient of U defined by
VU = (0,,U,...,0,,U).

Not every vector field has a potential; if it does then it is called conservative. Conservative
fields are easier to handle as they can be described by one scalar function U(z) instead of

a vector function ?(x)
It can be checked that the following function

U(z) = -2

]

—)
is a potential of the gravitational field F' = —M # It is called the gravitational potential
of the point mass M sitting at the origin.

If M is located at another point y € R?, then the potential of it is
M

V=g

More generally, potential of a mass distributed in a region D is given by

[ ply)dy
) = - [ 20 0.3)

where p(y) is the density of the matter at the point y € D. In particular, the gravitational
force of any mass is a conservative vector field.
1

As we have mentioned above, the function w2 is harmonic in R"™ away from the
1

origin. As a particular case, we see that Tl is harmonic in R? away from the origin. It

follows that the potential U(z) = _\?MI is harmonic away from the origin and the potential
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Ulr) =
given by (0.3) is harmonic away from D.

Historically, it was discovered by Pierre-Simon Laplace in 1784-85 that a gravitational
field of any body is a conservative vector field and that its potential U(x) satisfies in a free
space the equation AU = 0, which is called henceforth the Laplace equation. The latter
can be used for actual computation of gravitational potentials even without knowledge of
the density p.

_‘JT_A—JM is harmonic away from y. One can deduce that also the function U(x)

Electric force

By Coulomb’s law of 1784, magnitude of the electric force F' between two point electric
charges @, q is equal to k% where r is the distance between the points and k is the
Coulomb constant. Assume that the point charge @) is located at the origin and the point
charge ¢ at a variable position z € R3. Taking for simplicity that k& = ¢ = 1, we obtain
F = % and that this force is directed from the origin to x if @) > 0, and from z to the
origin if () < 0 (indeed, if the both charges are positive then the electric force between
them is repulsive, unlike the case of gravitation when the force is attractive). Hence, the

H
vector F' of the electric force is given by

— Q =x x

P lel T
This vector field is potential, and its potential is given by U(x) = %

Q
=]
If a distributed charge is located in a closed domain D with the cﬁarge density p, then
the electrostatic potential of this charge is given by

[ ply)dy
Ute) = /D |z —y|’

which is a harmonic function outside D.

0.1.2 Wave equation
Electromagnetic fields

In the case of fast moving charges one should take into account not only their electric fields
but also the induced magnetic fields. In general, an electromagnetic field is described by
— —

two vector fields F (z,t) and B (x,t) that depend not only on a point z € R3 but also on
time t. If a point charge ¢ moves with velocity @', then the electromagnetic field exerts
the following force on this charge:
? = qE> + q? X §
This force is also called the Lorentz force. N

The evolution of the electromagnetic field ( £/, B) is described by Mazwell’s equations:

H

div £ = 47p
ﬁ

divB =0 04
ﬁ

rot £ = — (0-4)

0,B
H
ArJ + 8tE>

7 N0 =

= _1
I'OtB:E
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where

e ¢ is the speed of light;

p is the charge density;

ﬁ . .
J is the current density;

o div F is the divergence of a vector field F = (Fy, ..., Fy,) in R™ given by

3

ﬁ
div F = Ou Fr: ;
k=1

rot F is the rotation (curl) of a vector field F = (Fy, Fy, F3) in R? given by

ik
rot F =det | 0y, sy Ou | = (00, F — 0uyFo, Oy Fi — 0y, Fy, 0u, Fy — 00, F) .
F, F, F,

The equations (0.4) were formulated by James Clerk Maxwell in 1873.
Assume for simplicity that p = 0 and 7 = 0. Then we have from the third equation

1 1
I‘Ot(I‘Ot ﬁ) = ——at(I‘Ot §) = ——Qattﬁ.
& &

On the other hand, there is a general identity for any C? vector field F in R%:
— — —
rot(rot F') = V(div F') — AF,

where AF = (AFy, AF,, AF3). Applying it to E and using that div E = 0, we obtain
that
1

— —
AE - _28ttE'
C

é
Denoting by u any component of E we obtain that u satisfies the wave equation
Oyu = A,

that is,
(9ttu = 62 (afﬂlfﬂlu + amg:rzu + aCESfESu) :

H
Similarly, any component of B satisfies the wave equation. In particular, if the electric
ﬁ

force E is stationary, that is, does not depend on time, then we obtain the Laplace
equation Au = 0.
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*Vibrating string

Vibrating strings are used in many musical instruments, such as pianos, guitars, etc. The
frequency of the sound produced by a vibrating string can be determined mathematically
using the string equation that we are going to derive.

Assume that initially the string rests on the z-axis and denote by u (x,t) the vertical
displacement of the string at the point x € R at time ¢. Assume also that the oscillations
of the string from the horizontal position are small. Under this assumption the horizontal
component of the tension force in the string will have the constant value that we denote
by T.

Fix time ¢ and denote by «, the angle between the tangential direction at the point
(x,u(z,t)) and the z-axis. Denote by T, the magnitude of tension at the point z. Note
that the direction of the tension is tangential to the string. Since the shape of the string
is given by the graph of function = — wu (z,t), we have

tan o, = J,u.
Since the horizontal component of tension is T, cos a,, we obtain
T,.cosa, =1T.

The net force acting on the piece (z,z + h) of the string in the vertical direction is equal
to
Sin gy p sin o,

-T

COS Ozt COS Qv

= TO.u(x+ h,t) —TO.u(x,t).

Tovnsinagyp, —Iypsina, = T

By Newton’s second law, the net force is equal to ma where m is the mass of the piece
(x,z + h) and a is the acceleration in the vertical direction. Since m = ph where p is the
linear density of the string and a = 0,,u, we obtain the equation

TOyu(x + h,t) — TOpu (x,t) = phoyu.
Dividing by h and letting h — 0, we obtain
TO .u = pOyu,

that is,
attu = c2ﬁmu

where ¢ = /T'/p. This is the vibrating string equation that coincides with the 1-dimensional
wave equation.

*Vibrating membrane

Similarly, consider a two-dimensional membrane, that initially rests on the (z;, xq)-plane
and denote by u (z,t) the vertical displacement of the membrane at the point z € R? at
time t. Assuming that the oscillations of the membrane from the horizontal position are
small, one obtains the following equation

Opu = 2 (Opyaqy W + Opyuatt)
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which is a two-dimensional wave equation.
In general we will consider an n-dimensional wave equation

Oy = A

where u = u (z,t) and « € R", t € R. Here ¢ is a positive constant, but we will see that
c is always the speed of wave propagation described by this equation.

0.1.3 Divergence theorem

Recall the divergence theorem of Gauss. A bounded open set £ C R" is called a region if
there is a C! function ® defined in an open neighborhood Q' of © such that

O(z) < 0in O
O(z) > 0in U\ Q (0.5)
®(x) =0 and VO # 0 on 01,

that is, ) is a sublevel set of a C'-function that is non-singular on 9. The latter condition
implies that 9 is a C'* hypersurface.

dby

For any point x € 0f2 define the vector
Vo(z)

v(r) = ———=

V()|

The function v : 92 — R" is called the outer unit normal vector field on 0.
For example, let 2 = Bgr where

Br={z € R":|z| < R}
is the ball of radius R centered at the origin. Then the function
d(x) = |z|° — R?

satisfies the properties (0.5). Hence, the ball is a region. Since V& = 2z, we obtain that
the outer unit normal vector field on 0Bp is
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Divergence theorem of Gauss. Let () be a rezz;on i R™ and v the outer unit normal
vector field on 2. Then for any C* vector field F : Q — R™ we have

/Qdiv?(x)dx:/ F - vdo, (0.6)

o0

— —
where o is the surface measure on 0, div F' = >}, 0y, F, is the divergence of F', and

— ) —
F - v is the scalar product of the vectors F',v.

06.04.23 Lecture 2

0.1.4 Heat equation
Heat conductivity

Let u (z,t) denote the temperature in some medium at a point x € R? at time ¢. Fix
a region 2 C R3. The amount () of the heat energy that has flown into  through its
boundary 0f) between the time moments ¢ and t + h is equal to

t+h
Q= / < / kO, u da> dt,
t 129

where v is the outer unit normal vector field to 92 and k = k(x) is the thermal conduc-
tance of the material of the body.

Indeed, by the law of heat conductivity, discovered by Jean Baptiste Joseph Fourier
in 1822, the influx of the heat energy through the surface element do in unit time is
proportional to the change of the temperature across do, that is to 0,u, and the coefficient
of proportionality k is determined by the physical properties of the material.

On the other hand, the amount of heat energy Q' acquired by a region 2 C R? from
time ¢ to time ¢ + A is equal to

o - /Q (u(z,t + h) — u(z,t)) cpde,

where p is the density of the material of the body and c is its heat capacity (both ¢
and p are functions of z). Indeed, the volume element dz has the mass pdx, and in-
crease of its temperature by one degree requires cpdx of heat energy. Hence, increase of
the temperature from u (z,t) to u (z,t + h) requires (u (x,t + h) — u(x,t)) cpdx of heat
energy.
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By the law of conservation of energy, in the absence of heat sources we have @ = @',

that is,
t+h
/ </ ko, u da) dt = / (u(z,t+h) —u(zx,t))cpde.
¢ o9 Q

Dividing by h and passing to the limit as h — 0, we obtain

/ kO, u daz/(@tu) cpdz.
) 0

Applying the divergence theorem to the vector field F = kVu, we obtain

— —
/ k&,udaz/ F'V:/didex:/div(kVu)dx,
o0 o0 Q Q

which implies
/cp@tu dr = / div (kVu) dz.
Q Q

Since this identity holds for any region (2, it follows that the function w satisfies the
following heat equation

cp Opu = div (kVu) .

In particular, if ¢, p and k are constants, then, using that

div (Vu) = Za’”k (Vu), = Z&Ek&cku = Au,
k=1 k=1

we obtain the simplest form of the heat equation
o = a*Au,

where a = y/k/ (¢p). In particular, if the temperature function w is stationary, that is,
time independent, then wu satisfies the Laplace equation Au = 0.

Stochastic diffusion

We consider here Brownian motion — an erratic movement of a microscopic particle sus-
pended in a liquid, that was first observed by a botanist Robert Brown in 1828 (see a
picture below). This irregular movement occurs as the result of a large number of random
collisions that the particle experience from the molecules.
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Brownian motion simulation in 2D

051

Brownian path in R? The event X; € Q

Based on this explanation, Albert Einstein suggested in 1905 a mathematical model
of Brownian motion. Assuming that the particle starts moving at time 0 at the origin
of R3, denote by X, its random position at time ¢. One cannot predict the position of
the particle deterministically as in classical mechanics, but it is possible to describe its
movement stochastically, by means of transition probability P (X, € Q) for any open set
) and any time ¢. The transition probability has a density: a function u (z,t) such that,
for any open set ) C R3,

P(X; € Q) :/u(:c,t)d:c.

Einstein showed that the transition density u (x,t) satisfies the following diffusion equation

@u = DA’LL,

where D > 0 is the diffusion coefficient depending on the properties of the particle and
the surrounding medium. In fact, Einstein derived an explicit formula for D and made
a prediction that the mean displacement of the particle after time ¢ is v/4Dt. The latter
prediction was verified experimentally by Jean Perrin in 1908, for which he received a
Nobel Prize for Physics in 1926. The experiment of Jean Perrin was considered as the
final confirmation of the molecular structure of the matter.

Obviously, the diffusion equation is identical to the heat equation.

0.1.5 Schrodinger equation

In 1926, Erwin Schrodinger developed a new approach for describing motion of elementary
particles in Quantum Mechanics. In this approach the movement of elementary particle
is described stochastically, by means of the transition probability and its density. More
precisely, the transition density of the particle is equal to |¢ (x,t)|> where 1 (z,t) is a
complex valued function that is called the wave function and that satisfies the following

Schrodinger equation:
2

thop) = —h—Az/} + U1,
2m
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where m is the mass of the particle, U is the external potential field, A is the Planck
constant, and ¢ = y/—1. For his discovery, Schrodinger received a Nobel Prize for Physics
in 1933.

For U = 0 we rewrite this equation in the form

b = i Ay,
2m

which looks similarly to the heat equation but with an imaginary coefficient in front of

A

The main equations to be considered in this lecture course are the Laplace, heat and
wave equations.

0.2 Quasi-linear PDEs of 2nd order and change of
coordinates

In all the above examples the PDEs are of the second order, that is, the maximal order
of partial derivatives involved in the equation is equal to 2. Although there are also
important PDEs of higher order, we will restrict ourselves to those of the second order.
Consider a second order PDE in R” (or in a domain of R") of the form

Z ij(2)Op,0,u + @ (2,1, Vu) =0 (0.7)

ij=1

where a;; and ® are given functions. If ® = 0 then this equation is called linear, because
the expression in the left hand side is a linear function of the second derivatives 3xixju.
With a general function ®, the equation is called quasi-linear.

A solution u of (0.7) is always assumed to be C?. Since O,,,,u = 9y, u, it follows that
we can assume that a;; = a;j;, that is, the matrix a = (a;;) is symmetric.

Let us make a linear change of the coordinates z1, ..., z, and see how the PDE (0.7)
changes. The goal of that is to try and find a change that simplifies (0.7). So, consider a
linear transformation of coordinates

y=Mzx

where M = (Mij)?jzl is a non-singular matrix and = and y are regarded as columns.

Explicitly we have, for any k =1, ..., n,

Yr = Z Myiz; .
k=1

The function u(x) can be regarded also as a function of y because x is a function of y.
By the chain rule we have

0
Op, 0 = %ayku = Z My,i0y, u
k ! k
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and
Oryoytt = Op, Y MOy =Y M0y, (0,,u)
k k
-t (S an0 00
k l
= Z My M0y, g,
k,l
so that
D a5(0) 0w =Y () Y My M0y, u
i, %] k,l
=) (Z aij(x)M,m-Mlj> Dy v
k.l i,j
= Z bkl(y>aykylu
k,l
where

b(y) = Y Mysay(x) M.
1,]
For the matrices a = (a;;) and b = (by;), we obtain the identity

b= MaM"] (0.8)

Hence, the change y = Mx brings the PDE (0.7) to the form

> by +  (y,u, V) =0, (0.9)

k=1

where b is given by (0.8) and ¥ is some function.
Now we fix a point zy, write for simplicity a;; = a;; (), and consider an auxiliary
quadratic form

> aygs; = €"at, (0.10)
.J

where £ € R™ is a new variable (column) vector. The quadratic form (0.10) is called the
characteristic form of (0.7) at z.
Let us make in (0.10) the following change:

£=M"n|
We obtain
> ai&g; =& = (" M) a (M) =n" (MaM")n=n"bn =" bunn.
i,j Kl

Hence, we see that
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the change y = Mz in the PDE (0.7) is equivalent to the change
& = M7Tn in the characteristic form.

Let us try and find M so that the matrix b at yo = Mz is as simple as possible. As
it is known from Linear Algebra, by a linear change ¢ = M”17 any quadratic form can be
reduced to a diagonal form; in other words, there a non-singular matrix M such that the
matrix b = MaM?7 is a diagonal matrix with diagonal elements 1 and 0:

b= diag(1,..1,—1,...,—1,0,...,0).
—— ——

p q

One says that the matrix a (zo) has signature (p, ¢). In this case we say that (0.9) is the
canonical form of (0.7) at xo.

Definition. We say that the PDE (0.7) has at the point x

e clliptic type if the matrix a (zo) has signature (n,0) (that is, the matrix a (x¢) is
positive definite);

e hyperbolic type if a (zg) has signature (n —1,1) or (1,n — 1)

e parabolic type if a (x() has signature (n — 1,0) or (0,n —1).

This classification is full in the case of dimension n = 2: indeed, in this case the only
possibilities for signatures are (2,0), (1,1) and (1,0) and the symmetric ones, which gives
us the above three cases. For a general dimension n there are many other signatures that
are not mentioned in the above Definition.

If the coefficients a;;(z) do not depend on z, then the canonical form (and, hence, the
type) is the same at all points.

Example. The Laplace equation in R™ has the form
Opyay W+ oo + Oppz, v = 0,
whose characteristic form is

4+

It is already diagonal and has signature (n,0). Hence, the Laplace equation has elliptic
type (at all points).

The n-dimensional wave equation
8ttu = Au

can be regarded as a PDE in R"™! with the coordinates (¢, 7, ..., ;). It can be rewritten
in the form
Opth — Op oy — . — Oy, b = 0,

and its characteristic form is
2 2 2
§o— &1 — - —&n

has signature (1,n). Hence, the wave equation is of hyperbolic type.
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The n-dimensional heat equation
ou = Au
can also be regarded as a PDE in R*™! as follows
Ot — Opyy U — oo — Oppz,t = 0,

and its characteristic form is —¢2 —... —¢&2. It has signature (0, n), and its type is parabolic.

Example. Let us bring to the canonical form the PDE in R?
Opatt — 205yu — 30y,u + Oyu = 0. (0.11)

Here we use notation (z,y) for the coordinates instead of (x1,z3). Hence, the new coor-
dinates will be denoted by (z/,v’) instead of (y1,ys).

The matrix a of (0.11) is
(1 1
T\ -1 -3

and the characteristic form of (0.11) is

& —2n—3=(E—n)’—a*=()" - ()’
where
§=E&—n
n = 2n.

In particular, we see that the signature of a is (1, 1) so that the type of (0.11) is hyperbolic.
The inverse transformation is

1
! ey
£—£+2n
L,
n= 577
whence we obtain
1 4 1 0
MT:< %) wdAJ:(l 1).
0 1 11
2 2 2

Therefore, the desired change of variables is

Tr =

Under this change we have
Ot — 205U — 30U = Oyt — Oyt

nd ooy, 1
x y
Loy = 0.
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Hence, the canonical form of (0.11) is

1
Oyt Ul — 8y/y/u + éay/u = 0.

Example. Let us show how to solve the PDE
gyt = 0

in R? (and in any open convex subset of R?). We assume that u € C?(R?). Since
Jy (0yu) = 0, we see that the function d,u is a constant as a function of y, that is,

Opu(z,y) = f(z),

for some C! function f. Integrating this identity in z, we obtain
u(ey) = [ f@do +C,

where C' can depend on y. Renaming [ f(z)dx back into f(z) and denoting C' by g¢(y),
we obtain

u(z,y) = f(z) +9(y)

for arbitrary C? functions f and g. Conversely, any function u of this form satisfies
Uy, = 0. Hence, the general solution of u,, = 0 is given by

u(z,y) = f(z)+g(y).

This is a unique situation when a PDE can be explicitly solved. For other equations this
is typically not the case.

*Remark. The same argument works if Q is a convex open subset of R? and a function u € C? ()
satisfies Oyyu = 0 in Q. Denote by I the projection of 2 onto the axis  and by J the projection of €
onto the axis y, so that I, J are open intervals. For any = € I, the function u(z,y) is defined for y € J,
where J, is the z-section of Q (by convexity, J, is an open interval). Since 9, (0,u) = 0 on J,;, we obtain
that d,u as a function of y is constant on J,, that is,

Oru(z,y) = f(x)

for all (z,y) € Q, where fis a function on I. For any y € J, denote by I, the y-section of Q2 and integrate
the above identity in x € I,,. We obtain

u(z,y) = f(x) + g(y)

for all (z,y) € Q, for some function g defined on J. It follows that f € C2 (I) and g € C2 (.J).
Example. Let us find the general C? solution of the following PDE in R

?O0pptt — Oy = 0 (0.12)
where ¢ > 0 is a constant. Let us show that it can be reduced to

8x/y/u =0.
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Indeed, the characteristic form is

FE == (c€+n)(c€—n) =&Y

where
g=cl+n
n=c—.
It follows that
£= 5 €+ )
2c
. 1 / /
n=5(& -7

The matrix M is therefore

iy = o (o +y)
r=—ax+-y=—(x+c
2" 297 9 Y
1 1 1
e _
V=5 gy =g (z —cy)
In the new coordinates the PDE becomes
am/y/u =0

whose solution is
u=f(")+9)
with arbitrary C? functions f,g. Hence, the solution of (0.12) is

u = f<$(:c+cy)) +g(21 (x—cy)>

= Fz+cy)+G(x—cy)

where F (s (zics and G (s (is) are arbitrary C? functions on R.
The equatlon (0.12) commdes Wlth the one-dimensional wave equation

Ot = 20y, (0.13)
if we take y = t. Hence, the latter has the general solution
u(x,t)=F(x+ct)+G(x—ct). (0.14)

Note that, for a fixed ¢ > 0, the graph of G (z — ct) as a function of z is obtained from
the graph of G(z) by shifting to the right at distance ct, and the graph of F (x + ct) is
obtained from the graph of F(z) by shifting to the left at distance ct.Hence, u is the sum
of two waves running at speed c: one to the right and the other to the left.
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G(x) G(x-ct)

F(x+ct) F(x) /\ /\
ct " ]

ct

*Remark. If Q is a convex open subset in R? and u € C?(Q) satisfies (0.13) in Q then we obtain
similarly representation (0.14), where F' and G are C? functions on the intervals I and .J that are the
projection of Q onto the axis x’ and ¥, respectively, where

¥=x+ct, y =x-—ct

In other words, I consists of all possible values of = + ¢t with (z,t) €  and J consists of all possible
values of z — ¢t with (z,t) € Q.



Chapter 1

Laplace equation and harmonic
functions

13.04.23 Lecture 3

In this Chapter we are concerned with the Laplace equation Au = 0 and Poisson equation
Au = f in a bounded domain (=open set) 2 C R™, where the function u is always assumed
to be C?. We always assume that n > 2 unless otherwise specified.

As we already know, the family of harmonic functions is very large: for example, in R?
the real part of any analytic function is a harmonic function. In applications one needs
to select one harmonic function by imposing additional conditions, most frequently — the
boundary conditions.

Definition. Given a bounded domain 2 C R", a function f : & — R and a function
¢ : 00 — R, the Dirichlet problem is a problem of finding a function u € C* () N C(Q)
that satisfies the following conditions:

Au=f in Q
{ u=¢ on 0. (1.1)

In other words, one needs to solve the Poisson equation Au = f in 2 with the boundary
condition v = ¢ on 0f). In particular, if f = 0 then the problem (1.1) consists of finding
a harmonic function in €2 with prescribed boundary condition.

We will be concerned with the questions of existence and uniqueness of solution to
(1.1) as well as with various properties of solutions.

1.1 Maximum principle and uniqueness in Dirichlet
problem

Here we will prove the uniqueness in the Dirichlet problem (1.1) using the maximum
principle. Let 2 be a domain in R".

Definition. A function u € C? () is called subharmonic in Q if Au > 0 in €.

19
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Theorem 1.1 (Maximum principle) Let  be a bounded domain in R™. If u € C*(Q) N
C(Q2) is subharmonic in € then

max u = max u. (1.2)
a 50

Since 02 and §) are compact, the function u attains its supremum on each of this sets,
so that the both sides of (1.2) are well defined. Also, (1.2) can be rewritten in the form

sup u = sup u. (1.3)
Q o9

Theorem 1.1 can be formulated as follows: any subharmonic function attains its maximum
at the boundary.

Subharmonic function f (z,y) = x? + y?

Proof. Consider first a special case when Au > 0 in 2. Let z be a point of maximum
of win Q. If z € 0N then there is nothing to prove. Assume that z € ). Since u takes a
maximum at z, all first derivatives 0,,u of u vanish at z and the second derivatives 0,,,,u

are at z non-positive, that is,
Op,z,u(2) < 0.

Adding up for all 7, we obtain that
Au(z) <0,

which contradicts Au > 0 in 2 and thus finishes the proof on the special case.
In the general case of Au > 0, let us choose a function v € C? (R") such that Av > 0.
For example, we can take v = |z|* since

Alz]* = A (27 + ... +27) =2n,

or v = e since
Aerl — axlxlecxl — 02603,’1.

Consider for any € > 0 the function u 4 v. Since

A(u+ev) =Au+eAv >0,
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we obtain by the first part of the proof that

max (u + ev) = max (u + €v) .
Q o0

Passing to the limit as € — 0, we obtain (1.2), which finishes the proof. m

Definition. A function u € C?(Q) is called superharmonic in Q if Au <0 in Q.

Corollary 1.2 (a) (Minimum principle) Let Q be a bounded domain. If u € C* () N
C(Q2) is superharmonic in € then

min « = min u. (1.4)
a o9

(b) (Maximum modulus principle) If u € C% () N C(Q) is harmonic in Q then
max |u| = max |u| (1.5)
Q Q
Proof. If u is superharmonic then —u is subharmonic. Applying Theorem 1.1 to —u, we

obtain

max (—u) = max (—u),

whence (1.4) follows. If w is harmonic, then it is subharmonic and superharmonic, so that
both w and —u satisfy the maximum principle. Hence, (1.5) follows. m

We use the maximum principle to prove uniqueness statement in the Dirichlet problem.

Corollary 1.3 The Dirichlet problem (1.1) has at most one solution u.

Proof. Let uy,uy € C*(Q) N C(Q) be two solutions of (1.1). The function u = uy — us
belongs to C? (2) N C(Q) and satisfies

Au=0 in
u=0 on 0f).

By the maximum principle (1.5) of Corollary 1.2 we obtain
max |u| = max |u| =0
Q o9
and, hence, © = 0 in Q. It follows that u; = us, which was to be proved. m
In the next theorem we give a surprising application of the maximum principle.
Theorem 1.4 (Fundamental theorem of Algebra) Any polynomial
P(z)=2"4+a1z" '+ ... +a,

of degree n > 1 with complex coefficients ay, ..., a, has at least one complex zero.
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Proof. We need to prove that there exists z € C such that P(z) = 0. Assume from the
contrary that P(z) # 0 for all z € C. Since P(z) is a holomorphic function on C, we

obtain that f(z) = % is also a holomorphic function on C. Note that

|P(2)] — 00 as [z — oo,
because
|P(2)] ~|2]" as |z] — oo.

It follows that
|f(2)] — 0 as |z| = oo. (1.6)

We know that the function u = Re f is harmonic in R%. Applying the maximum principle
to u in the ball
Br={z€R*: |z| < R},
we obtain
max |u| = max |ul ,
Br dBr
in particular,

< . .
4(0)] < max]al (17)

On the other hand, by (1.6) we have

< 0 as R
JInax fu(z)| < max [f(2)] =0 as B — oo,

which together with (1.7) yields

v (0)] < lim max|u| =0
R—oo 0BR

and, hence, u (0) = 0. In other words, we have Re f (0) = 0. Similarly one obtains that
Im f (0) = 0 whence f (0) = 0, which contradicts to f(z) = ﬁ #0. m

1.2 Representation of C? functions by means of po-
tentials

We start preparation for the proof of solvability of (1.1). Let us define a function F(z) in
R™\ {0} as follows: if n > 2 then

1

wn (n—2) |z|

E(zx) =

n—2"

where w,, is the area of the unit sphere S"~! in R™ (for example, w3 = 4r), and if n = 2
then

We already know (Exercise 3) that the function E(z) is harmonic in R™ \ {0}, but it has
singularity at 0.
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,,I’ -

Function E (z) in the case n > 2 Function E (z) = 5= In |;1| in the case n =2

Definition. The function E(z) is called a fundamental solution of the Laplace operator
in R™.
Set also, for all z,y € R"
E(z,y) =FE(x—y).

Let €2 be a region in R". As before we denote by v the outer unit normal vector field
on Jf) and by ¢ the surface measure on 0.

Theorem 1.5 Let Q be a bounded region in R™. Then, for any function u € C%*(Q) and
any y € €,

u(y) = —/E(m,y)Au(x)dx+/ E(x,y)0,u(z)do(x) — O E(x,y)u(x)do(x), (1.8)
Q a0 a0

where in 0,E(x,y) the derivative is taken with respect to the variable x.

Remark. All the terms in the right hand side of (1.8) have physical meaning in the case
of n = 3. The term

/Q B, y)Au(x)dz

is the electrostatic potential of the charge in Q with the density Awu. Its is also called
Newtonian potential, as in the case Au > 0 it is also the gravitational potential of matter
with the density Aw.

The term

/6 Ble.p)du()io(z)

is the electrostatic potential of a charge distributed on the surface 02 with the density
Oyu. It is also called the potential of a single layer.
The term
Oy E(x,y)u(x)do(x)
o9
happens to be the electrostatic potential of a dipole field distributed on the surface OS2
with the density u. It is also called the potential of a double layer.
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We will use in the proof the 2nd Green formula from Exercise 5:

(uAv — vAu) dx = (ud,v — vo,u) do (1.9)
J J

o0N

for all u,v € C*(Q).
Proof. For simplicity of notation let y = 0, so that (1.8) becomes

u(0) = —/QE($)AU($)CZ$+/ E(z)o,u(x)do(x) — O, E(z)u(x)do(x)

o0 o0

or shorter:

u(0) = —/ E Audz +/ (Ed,u —ud, FE)do. (1.10)
Q )

As before, denote by B, the open ball of radius r centered at 0.

Choose ¢ > 0 so small that B, C

and consider the set
Q. =Q\ B. .

This set is a region by Exercise 14.

The functions u, £ belong to C? (ﬁe) so that we can use the 2nd Green formula in €2,:
/ (UAE — EAu) dx = / (w0, E — Ed,u)do. (1.11)
Q. 09

Since AE = 0 in ()., we have
/ uAFE do = 0.

£

Note also that 02, = 0B. LI 02 and, hence,

/ (w0, E — Ed,u) do = / (w0, E — Ed,u) do + / (w0, E — Ed,u)do.  (1.12)
90 8B, a0

We will prove below the following limits as € — 0:
(1) fﬂg EAudr — [, EAudx
(i) [op. EO,udo — 0
(i17) faBs ud, Edo — u(0).
Then, combining (1.11) with (1.12) and using (i) — (4i7), we obtain as ¢ — 0

st (uUAE — EAu)dr = faBg (ud, E — Edyu)do + [, (u0,E — Ed,u)do

! ! ! !
0 — [,EAudz = uw(0) — 0 +  Joq (w0, E — Edyu) do
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that is,
—/ EAudr = (0) +/ (w0, E — Ed,u)do,
Q

o0

which is equivalent to (1.10). Now let us prove (i) — (i) .

17.04.23 Lecture 4

25

We will use in the proof the following formula for integration in the polar coordinates

(r,0) in R™:

Proof of (7). Since Q \ 0. = B., we have
/ EAudx

/EAudm—/ EAudx
Q Q.
<sup|Au| [ Edzx.
o _

€

Since Aw is bounded, it suffices to verify that

/Ed:z:—>0ass—>0.

(1.13)

The latter can be seen by means of integration in polar coordinates: since in the case

n>2
1

wp (n—2)rn=2’

E(x) =

and
0 (0B,) = wpr™ 1,

we obtain by (1.13)

/Edac:/ </ Ed0>dr
EE 0 OBT

: 1
_ /0 oy OB dr

The case n = 2 is handled similarly (see Exercise 15).
Proof of (ii) . Let us show that

/ Eo,udo — 0 ase — 0.
9B

(1.14)

(1.15)
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Indeed, since |0, u| = |Vu - v| < supg |Vu| and |Vul is bounded, it suffices to verify that
/ Edo — 0 ase — 0,

OB.

and the latter follows from

1
Fdo = / do
/6B5 oB. Wn (N —2)en?

1

= =) e L (0B:)
1 1 €

pumy n n— = 0.

Wn, (n—2)€”*2w c (n—2) -
Proof of (iii). Let us show that
/ ud, Edo — u(0) as e — 0. (1.16)
B.

Using again polar coordinates, observe that the direction of v on 0B. is opposite to the
radial direction, whence it follows that

aVE:—aTE:_8T< 1 >:;

wp (n—2)rn—2 Wyr—1

Consequently, we obtain

o0, F do =

0B: Wn

Next, observe that by (1.17)

o (9B.) = 1. (1.17)

gn—l

/835 u(z)0,E(x)do = /835 (u(z) —u (0))0,E do +/ w(0)8,E do

0B¢

B /83 (U(I) —u (0)) 0,E do + u(O)

and

< sup |u(z) —u(0)] 0, E do
r€0B: 0B:

/ (u(z) —u(0)) 0, E do
0B.

= sup |u(z) —u(0)] =0 ase — 0,
r€0B:

which implies (1.16). =

1.3 Green function

Let  be a domain in R". Assume that, for any y € €2, there exists a function h,(z) €
C?*(Q) such that

{ Ah, =0in (1.18)

hy(x) = E(x,y) for all z € 0Q
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Definition. Under the above assumption, the function
G(l‘,y) = E(ZE,y) - hy(x)

is called the Green function (of the Laplace operator) in €.

Note that G(z,y) is defined for all distinct z € Q and y € Q. By (1.18) we see that
the function
z = G(z,y)

is harmonic in 2\ {y}, and that

G(z,y) =0 for all z € 09.

A motivation for introduction of the Green function is the following identity.

Corollary 1.6 Let G be the Green function of a bounded region € C R". Then, for any
function v € C*(Q) and any y € 9,

uly) = — /Q Gla)dulayde = | 0,Glay)ua)io(). (1.19)

In other words, the Green function (should it exist) allows us to recover the function
u inside € by using the values of Aw in Q and the values of u on 0.

Proof. By Theorem 1.5 we have

u(y) = —/QE’(x,y)Au(a:)da: +/ (E(z,y)0,u(x) — 0, E(x,y)u(z)) do(x). (1.20)

o0

By the 2nd Green formula (1.9) we have

/ (hyAu — ulAhy) dx = / (hyOyu — ud,hy) do.
Q Gl)

Using Ah, = 0, rewrite this identity as follows:

0= —/ hyAudx +/ (hyOyu — ud,hy) do.
Q )

Subtracting it from (1.20) we obtain

u(y) = — /Q G(z,y)Au(x)dx —i—/ (G(x,y)0,u(x) — 0,G(x,y)u(x)) do(z).

o9
Finally, observing that G(x,y) = 0 at 052, we obtain (1.19). =

Remark. It is possible to show that if the Green function exists then necessarily
G(z,y) =G (y,x) forall x,y €

and that G(x,y) > 0 provided 2 is connected (see Exercises).
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Consider the Dirichlet problem

Au=f in
{ u=¢ on 0. (1.21)

If u € C?(Q) solves this problem then by (1.19)

uly) = - / G ) f (x)da — / 0,G(x, y)p(x)do(x). (1.22)

oN
The identity (1.22) suggests the following program for solving the Dirichlet problem:
1. construct the Green function of €2;

2. prove that (1.22) gives, indeed, a solution of (1.21) under certain assumptions about
f and o.

We will implement this program in the case when 2 is a ball. For general domains €2
there are other methods of proving solvability of (1.21) without using the Green function.

1.4 Green function in a ball
Consider in R™ the ball of radius R > 0:
Br={z €R": |z| < R}.
To construct the Green function of B, we will search the function £, in the form
hy(x) = ¢, E (x,y")

where y* is a point outside Br. Then h,, is automatically harmonic in Bp, but we need
also to match the boundary condition

hy(z) = E(x,y) for x € 0Bg.
This is achieved by a careful choice of y* and ¢, using specific properties of balls.

For any y € R™\ {0}, we define y*
as the inversion of y with respect
to Bg, that is

y* — RQi
5 -
|y

In other words, y* lies on the ray that starts at 0 and goes through y, and |y*| = %2', that
is,

ylly*| = R (1.23)
Clearly, if y € Bg then y* € E; and if y € 0Bpg then y* = .
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Theorem 1.7 The Green function G(x,y) of the ball B exists and is given in the case
n > 2 by the formulas

R n—2 . '

G(r,y) = E(zy) - (m) E(z,y*) ify#0 (1.24)

1 1 1 .
G(I,O) = o (TL — 2) (|:L‘|n2 - Rn_Q) ) ny - Oa (125)

and in the case n = 2 by the formulas
. 1 R ,
1 1 1
= —(In——In— if y=0. 1.2

G(z,0) o (n ™ HR) , ify=0 (1.27)

Proof. We give the proof in the case n > 2 leaving the case n = 2 to Exercises. In the
both formulas (1.24)-(1.25) we have

G(z,y) = E(z,y) = hy(2)

where L
R *
hy(x):{ (\y|) E(x,y) y#0,
1 — O
wn(n—2)R"—2> Y :

We need to prove that h,(z) is harmonic in B and that G(z,y) = 0 if € 0.

In the case y = 0 the function h,(x) is constant and, hence, is harmonic; for x € 0B,
that is, for |x| = R we obviously have G (z,0) = 0.

Consider the general case y € Bg \ {0}. The function

() = (%)E(y)

is harmonic away from y*. Since y* lies outside Bp, we see that h, is harmonic in Bg. It
remains to show that G(z,y) = 0 if z € dBg, which is equivalent to

1 (R)”‘2 1
e —y" W) o=y

-yl _ R (1.28)

that is, to

lz—yl |yl
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Indeed, we have

|z =y = |2)* = 22 y* + |y

R? R!
Ry
RQ .T2 y2
:@F<|%y —2z-y+R*|. (1.29)
If © € OBg, that is, |x| = R, then we obtain from (1.29)
R? R?
%2 2 2 2
|z =y :W(M — 2z -y + |2]°) :W!iﬂ—y! :

which is equivalent to (1.28).
Alternatively, one can prove (1.28) observing that the triangles Oxy and Oy*z are
similar. Indeed, they have a common angle at the vertex 0 and by (1.23)

vl _ |z
[yl
where in the numerator we use the sides of the triangle 0y*z and in the denominator —
those of Oxy. It follows from the similarity that also
[z —y*| _ |a]
=yl Jyl’

which is equivalent to (1.28). =

Corollary 1.8 We have, for ally € Bg and x € B, x # vy, in the case n > 2

1 1 1
G@w):w TSl ATy At = (1.30)
n y (M£|_Zpy+Rﬁ
and in the case n = 2
1 1 1
G(z,y)=— | In (1.31)

5 | |—ln
m r — 332 2
y ¢H$|_Zﬂy+R2

Proof. Consider the case n > 2. If y = 0 then (1.30) obviously identical to (1.25). If
y # 0 then we have by (1.24).

1 1 R\"? 1
(B )
SV D) (u—m N A )

Substituting here |z — y*| from (1.29), we obtain

1 1 R\"?2 1
G(«ra y) - w,, (’I’L _ 2) |LU B |n—2 - (M) , 0 1o nT—Q )
y G%(m$|_zpy+3ﬂ>
i

which is equivalent to (1.30). The case n = 2 is similar. m
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Corollary 1.9 We have G(z,y) = G (y,z) and G(z,y) > 0 for all z,y € Bg, x # y.

Proof. The symmetry G(z,y) = G (y, ) is obvious from (1.30) and (1.31). Let us prove
that G(z,y) > 0 for 2,y € Bg. By (1.30) it suffices to prove that

j[* y)”

7 — 2 -y+R*> |z -y,

for all z,y € Bg. This inequality is equivalent to

BEWE — 9p .y 4 B2 > |af? — 20y + yl?,
()
|z jy|* + R — R? [z — R?|y[* > 0,
()
(72 o) (2 — 1) > 0,

and the latter is obviously the case. m

1.5 Representation of solutions of the Dirichlet prob-
lem in balls

Theorem 1.10 Ifu € C? (ER) solves the Dirichlet problem

Au=f in Bgr
u=¢ ondBR

then, for all y € Bg,

uy) =~ [ Gl — /a Bl io@), (32

wnlt Jop, |z —y["

where G(z,y) is the Green function of Bg.

Proof. By Corollary 1.6, we have, for any y € Bp,

u(y) = — G(z,y)Au(x)dr — 0,G(x,y)u(x)do(z),

Br OBg

which implies

u(y) =— [ G(z,y)f(z)dr — 9,G(z,y)e(x)do ().

Br 8BR
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Comparison with (1.32) shows that it remains to prove the identity:

1 R2— [y
wnR |£I§' - y|n ’

_aVG(‘ra y) =

for all x € 0BR and y € Bg.
Consider the case n > 2 (the case n = 2 is similar). By Theorem 1.7, we have in the
case y # 0
R n—2
and in the case y = 0

60~ g (e~ 8-

To compute 0,G(z,y), we use the polar coordinates with the pole at y.
In the case y = 0 we obtain, using the polar radius r = |z|, that

1
—0,G(2,0) = —0,G(x,0) = —0,
(0.0) = -06(00) = -0ty
1 11 Ry
w,rnt R S wpRU T wuR Jr — vyt

In the case y # 0, the polar radius is r = |z — y|, and

E(r,y) = !

wp (n—2)rm=2

Since Vr = ** (see Exercise 2), we obtain by the chain rule (considering r as a
function of x) that

1 1 xz—y Yy—T
VE =0, Vr =— = =
(z.9) (wn (n—2) r”—2> " Wern=t wn |z — 9|
Since v = 7 and |z| = R, it follows that
y—u x z-y— |z z-y— R
O E(x,y) =VE(x,y) v=e———— — = = = (1.33)

wnlz =y Jal  wnle—y["|z]  waRle—y]
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In the same way we have

x- -yt — R?
OE (z,y") = —F — 2 1.34
(@) = S (1.34)
Recall that
L’
Yy = _2y7
]
and by (1.28)
. R
[z =y =7~z —yl.
]
Substituting these identities into (1.34), we obtain
R? 2
O E (z,y*) = v Yye K - -y —lyl
’ wo Rz —y|" (R/y))"  waR|z —y|" (R/ [y
and ) )
RA\™ z-y — |yl
— OE (x,y") = ————.
() B =23
Combining with (1.33), we obtain
R\"™* R* — |y|*
—-0,G(x,y) = —0,E(x,y) + (—) OE (x,y") = ————,
(&9) (@) | ®57) waR |z =y
which was to be proved. m
1.6 Poisson formula
Let us interchange in (1.32) = and y, and introduce the following function
1 R2— |z
K = 1.35
N (1.35)

that is defined for all x € Br and y € 0Bg.
Definition. The function K (z,y) is called the Poisson kernel.

The Poisson kernel K (z,y) of the ball B; C R? as a function of x, where y = (1,0) .
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Remark. It is clear from (1.35) that K(z,y) > 0 for all x € Bg and y € 0Bg. Assume
that y € 0Bp is fixed while © € Bg approaches a point z on the boundary 0Bg. If z # y
then |z —y| — |z —y| # 0 while R? — |z|*> — 0 so that K(z,y) — 0. Let z = y and
assume that = approaches y staying on the radius direction. Then |z —y| = R — |z| and

1 RP—|z2/° 1 R+l

K = =
($7y> wnR (R _ |x|)n wnR (R — ’x‘)n_l — 0

as || — R. Hence, K(z,y) as a function of = vanishes on 0Bg \ {y} and tends to oo as
T —y.

Remark. Let us show that, for any = € Bgp,

. K(z,y)do(y) = 1. (1.36)

Indeed, by the formula (1.32) of Theorem 1.10, if u solves the Dirichlet problem

Au = f in Bg
u=¢ on 0Bgr
then, for any y € Bg,
1 R® — |y|”
u(y) = — Gz, x)dx + / —p(x)do(z).
== capseirs g [ ke

Applying this for u = 1 and, hence, f =0 and ¢ = 1, we obtain, for any y € Bg,

1 2 — |yl
- —/ B =W (.

Interchanging here x and y yields (1.36).

Theorem 1.11 (Poisson formula) If ¢ € C' (0Bg) then the Dirichlet problem

Au=0 1in Bg
{ u=¢ ondBgR (1.37)
has the following solution
u(r) = K(x,y)e(y)do(y), « € Br. (1.38)

OBRr
More precisely, the function u that is defined by (1.38) for x € Bgr and by u(x) = ¢(x)
for x € OBg, belongs to C* (Bg) N C (Bg) and satisfies (1.37).

Proof. It follows from (1.35) that the function K(z,y) is C* as a function of = € Bp,
for any y € 0Bg. Therefore, the function u(z) defined by (1.38) belongs to C*°(Bg).
Moreover, for any partial derivative D* with respect to the variable x, we have

Du(x) = /8 i DK (z,y)e(y)do(y),
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for all z € Bg. Observe also that K(x,y) as a function of x is harmonic in Bg, that is,
AK (z,y) = 0. This can be verified directly, or one can see this as follows. By construction,

K(x, y) — _aI/G(’:C? y)7

where 0, is taken with respect to the variable y. Therefore, A as an operator acting in x
commutes with the operator 0, acting in y, and we obtain

AK(z,y) = —0,AG(z,y) = 0.

We have used here that G(z,y) is a harmonic function in = away from the point y (which
follows directly from the definition of the Green function). Consequently, we obtain that

Au(z) = /m AK (z,y)e(y)do(y) =0,

which proves the harmonicity of w in Bpg.

24.04.23 Lecture 6

Now let us prove that u € C' (Bpg). Recall that u is defined on 0By by u(z) = ¢().
Hence, it suffices to show that, for any z € 0Bp,

lim u(z) = (2).
iUEBR

By (1.36) we have, for all x € Bp,

/ K(z,y)do(y) = 1.
OBRr

It follows that

p(z) = - K (z,y)p(2)do(y)
and, hence,
u(z) — p(z) = - K(z,y) (p(y) — ¢(2)) do(y),
u(z) — p(2)] < . K(z,y) le(y) — () do(y). (1.39)

We will show that the right hand side of (1.39) goes to 0 as x — z. The reason for that

is as follows: if the variable y is close to z then the integrand function is small because

©(y) is close to ¢(z), while if y is away from z then K(z,y) will be shown to be small.
To make this argument rigorous, let us choose some small § > 0 and split the integral

in (1.39) into two parts:
/ = / + / . (1.40)
OBRr OBRrNBs(z) OBR\Bs(z)
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The first integral is estimated as follows:

[ Kl - elast < e )= ole) [ Koty

yEaBRﬁB(g(z) OBr

= sup |o(y) —e(2)].
yedBRNBs(2)

By the continuity of ¢, the last expression goes to 0 as § — 0. In particular, for any € > 0
there is 9 > 0 such that

sup [p(y) —¢(2)] < /2
y€OBRNB;(2)
and, hence, the first integral in (1.40) is bounded by &/2.
The second integral in (1.40) is estimates as follows:

/ K(z,y) le(y) — (2)|do(y) < 2suple|  sup  K(z,y) o (0Bg)
aBR\B(g(Z) yEaBR\B(g(Z)

R? — |z
<C sup —|x7|L
yedBR\Bs(») [T = Y|

where C' = W%Rsup |p|o (0BRr). As x — z, we can assume that |z — z| < 6/2. Since
ly — z| > 9, it follows then that |z — y| > 6/2. Hence, the second integral is bounded by
the expression

LR laf
0/2)"
Clearly, this expression goes to 0 as * — z, because |x| — R. Consequently, the second
integral in (1.40) is bounded by /2 if x is close enough to z, which implies that

. K(x,y)lp(y) — ¢(2)|do(y) < e

provided z is close enough to z, which finishes the proof. m
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1.7 Newtonian potential
In the next theorem we prove the essential properties of Newtonian potentials.

Theorem 1.12 Let f be a bounded measurable function in R™ with a compact support.
Then its Newtonian potential

oa) = [ Bl fwy

is a continuous function in R™. Moreover, if for some open set @ C R™ we have f € C* (Q)
then also v € C* (Q). Furthermore, if k > 2 then v satisfies in Q the equation

Av = —f.

Proof. The proof is split into three steps. Let

S={xeR: f(x) #0}

be the support of f so that we can write

wmzéEwwﬂww

Stepl: Let us prove that v is well-defined and is continuos. For any x € R™ and any
e > 0, we have by (1.14)

62

memwwz/ B()d < 5 (1.41)

B:(0)
It follows that
/Emwwzf Emw@+/ E(a,y)dy < oo
S Be(x) S\Be(x)

because the first integral is finite by (1.41) and the second integral is finite because S is
bounded and the function y — FE(x,y) is bounded for y ¢ B.(x). Hence, the function
y — FE(x,y) is integrable in S. Since the function f is bounded and measurable, we see
that also the function y — E(z,y)f(y) is integrable in S. Hence, v(z) is finite for any
r € R"

Let us now verify that v is continuous in R". Fix z € R™ and show that

v(x) = v(z) asz — 2.
For any € > 0 we have

wm—w@>=/kEmw>—E@w»f@My

R

=/ﬁumw—E@mw@@+ /<mxw—mawﬂmw.uu>

B:(z) S\B:(z)
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We estimate the first integral in (1.42) by means of (1.41) as follows. Assuming n > 2,
set M = sup |f| and first observe that by (1.41)

/ E(Z,y)f(y)dy‘SM B, y)dy < C=2,
B:(2) B:(z)

where C' = % Assuming that x € B.(z), we have B.(z) C Bs.(x) and, in the same
way,

/Bew B, y)f(y)dy‘ <

It follows that if |z — z| < e then

/B ( >E(m’y>f(y)dy’ < C(20)" = 4Ce”.

/ (B —E(z,y))f(y)dy‘ <502 (1.43)

To estimate the second integral in (1.42), assume further that |z — z| < /2. The function
E(z,y) is continuous in (x,y) in the domain

z € Bepp(2) and y € S\ Be(2),

since in this domain |z — y| > €/2 > 0. Since this domain is compact, the function E(x,y)
is also uniformly continuous. It follows that

E(z,y) 3 E(z,y) asz — 2,

where the convergence is uniform in y € S\ B.(2). It follows that

/S\B . (E(x,y) — E(z,9)) f(y)dy — 0 as x — z. (1.44)

We obtain from (1.42), (1.43) and (1.44) that

limsup |v(x) — v(y)| < 5Ce>.

r—z

Since € > 0 is arbitrary, it follows that

lim |v(z) —v(z)| =0,

r—z

which proved the continuity of v in R”.
Step 2: Assume that f € C§ (€2) where C¥ () denotes a subset of C* () consisting
of functions with a compact support in Q. This assumption is equivalent to f € C} (R").

=y

Rn

A function f € C¥(Q)
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Let us prove by induction in k that v € C* (R™). In the case k = 0 we know already
by Step 1 that v € C'(R™). For induction step from k — 1 to k, let us compute the partial
derivative

9,0 = lim v (z +te;) —v(z)

t—0 t ’

where e; is a unit vector in the z;-direction. Changing z = x —y in the integral, we obtain
via) = [ By sy = [ B@)f -2

It follows that, for all |t] < e,

v(r+te;) —v(z) flx+teg—2)— f(zx—2)
; —/HE(Z) . dz
:/ E(z)f@ﬂe"_’?_f(x_Z)dz,

where K, is a compact set that is a closed e-neighborhood of supp f (x — -). Since

flr+teg—2z)— f(xr—2)
t

=0, f(x—2) ast— 0,

where convergence is uniform with respect to z € K,, and function E(z) is integrable in
the bounded domain K, we obtain that 0,,v exists and

Oy, v() = / B(2)0uf (@ - 2)dz = / B - 9)0,f()dy. (1.45)

In particular, d,,v is the Newtonian potential of d,, f. Since d,, f € C&~ (R™), we conclude
by the induction hypothesis that d,,v € C*~! (R"). Since this is true for all i = 1,...,n,
it follows that v € C* (R").

It follows from (1.45) that, for any multiindex a with |a| <k,

Do) = [ By o)y,
Consequently, in the case k > 2, we have
Bofa) = [ B Sy

Let us choose a large enough ball B containing a point x and supp f. By Theorem 1.5,

flz) = —[BE(x,y)Af(y)dy+/ E(x,y)0,f(y)do(y) — | O,E(x,y)f(y)do(y).

0B 0B

Since f and 0, f vanish on 0B, we obtain

fa) = - /B E(z,y)Af(y)dy = —Av(z),
that is, Av = —f.
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Step 3: the general case. Assuming that f € C* (Q), we prove that v € C* (Q2). For
that, it suffices to prove that v belongs to C* in a neighborhood of any point = € €; that
is, for any point xq € , there is € > 0 such that v € C*(B. (zy)). Besides, we will prove
that if £ > 2 then Av = —f in B.(zy).

Without loss of generality, let us take o = 0. As before, we write B, = B,.(0). Let
e > 0 be so small that By, C Q. Choose any function ¢ € C* (R") such that

@ =1o0n By, and ¢ =0 outside Bs,.

Since

we can represent v in the form
Vv =Uu-+w,

where

ue) = [ B ehwin, wiw) = [ Be) (- 9) f)dy

Clearly, the function ¢f belong to CF (R™). By Step 2, we conclude that u € C* (R").
Besides, in the case k > 2 we have Au = —pf, which implies

Au=—f in B,,

since ¢ = 1 in B..
The function g := (1 — ¢) f vanishes in By, so that we have

wmzémE@m@@

In the domain « € B, and y € BS_, the function E(z,y) is C* in (z,y). Consequently,
the following three conditions hold:

1. for each z, the function y — E(z,y)g(y) is bounded and, hence, integrable in S\ By;

2. for each y, all partial derivatives 0,,(F(z,y)g(y)) exist;
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3. all partial derivatives 0,,(E(z,y)g(y)) are uniformly bounded on S\ By, by a con-
stant.

By a theorem about differentiability of integrals in parameter, the function w(zx) has
in B, all partial derivatives 0,,w and

Opw(z) = / 0w, E(z,y)g(y)dy in Be.
S\ B2

Repeating the same argument with the derivatives of w, we obtain that w € C* (B,)
and, for any partial derivative D%,

D%w(x) :/ D*E(z,y)g(y)dy in B,
S\ Bae
In particular we have
Aw(x) = / AE(z,y)g(y)dy =0 in B..
S\ Bae

Hence, we obtain that
v=u+we C"(B.),

and in B,
Av=Au+Aw=—f+0=—f,

which finishes the proof. m

Example. Let us compute the integral
v(z) = / E(x,y)dy, (1.46)
Br

that is, the Newtonian potential of the function f = 1p,. In the case n = 3 the function
—v(x) is the gravitational potential of the body Bpr with the constant mass density 1.

We assume throughout that n > 2. By Theorem 1.12 with f = 1p,, function v is
continuous in R”. Besides, since f = 0 in Bj, we have v € C®(BY) and

Av=0 in Bj.
Since f =1 in Bg, we have v € C* (Bg) and
Av = —1 in Bgp.

Also it is easy to see that v(z) depends only on |z|, because the integral in (1.46) does
not change under rotations around 0. Hence, v is a harmonic function outside By that
depends only on |z|. By Exercise 3 we conclude that outside By the function v is as
follows:

v(z) = Cy |z + Cy,

for some constants C7, Cy yet to be determined.
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Av=0

v=Cylz)™

It is obvious from (1.46) that v(z) — 0 as || — oo, which implies that Cy = 0, that is,
v(z) = Cy |z outside Bp. (1.47)
By the continuity of v, (1.47) holds also on 0Bg, that is,
v(xr) = C{R*™ for x € OBp.
Hence, the function v solves the following Dirichlet problem in Bp:

Av=-—1 in Br
v=CiR*" ondBp

It is easy to see that the following function

2
satisfies Av = —1 for any constant Cjy. To ensure the boundary condition, Cj should
satisfy the equation:
R? 9
——+Cy=C1R™". 1.49
2n +Co ! ( )

By the uniqueness of solution of the Dirichlet problem, we conclude that v(x) inside By
is indeed given by (1.48), although we do not know yet explicitly the values of Cy, Cy.
To determine C) and Cp, observe that by (1.14)

R 1 ) RQ
0) = E(y)dy = WAy = ——..
v(0) /BR (y)dy /0 W (n—2)r"*2w " " 2(n—2)

On the other hand, by (1.48) we have v (0) = Cy, whence we conclude that

R2

@3-

Then we can determine C; from (1.49) as follows:

R? 1 1 R
_ n—2 o — n | ___— —
Gi=R ( 2n+CO) R ( 2n+2(n—2)> n(n—2)
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Hence, we obtain from (1.47) and (1.48) that

R"™ 2—n
T , |zl >R

z|? 2
S+ 55, sl <R

o(z) = “n Ry ! — vol (Br) E(x).

no w,(n—2) |gz:|n_2

In other words, outside the ball Bg, the function v(z) coincides with the Newtonian
potential of a point mass vol (Bg) located at the origin. This result was first obtained
by Isaac Newton by an explicit computation of the integral (1.46) using clever geometric
tricks.

Newtonian potential of a ball (inside the ball and outside the ball)

1.8 Solution of the Dirichlet problem in a ball

Now we are able to prove the existence of a solution for the Dirichlet problem

Au=f in Bg
{ u=@ ondBpg (1.50)

in a ball Bg.

Theorem 1.13 Let f € C*(Bg) and ¢ € C(0Bg), and assume that f is bounded. Then
the Dirichlet problem (1.50) has a solution u € C*(Bgr)NC(BR). Besides, for any x € Bg,
the solution u is given by the formula

ue) == [ Glefy+ [ K)ewiot), (151)
Bgr 0BRr

where G is the Green function of Br (cf. Theorem 1.7) and K is the Poisson kernel of

Bgr (cf. (1.35)).

Remark. The statement remains true if the condition f € C?(Bg) is relaxed to f €
C%(Bg) where « is any positive real, that is, if f is Holder continuous in Bg. However,
the proof in the case f € C*(Bg) is more complicated.
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Proof. The case f = 0 was dealt with in Theorem 1.11. In the general case we extend f
to R™ by setting f = 0 outside Br and consider the Newtonian potential of function — f:

vie) == [ Baasay=— [ By (1.52)

Since f € C%*(Bpg), we conclude by Theorem 1.12, that v € C? (Bg) N C (R™) and
Av=f in Bg.
Let us introduce a new unknown function
w=u—1v

and reformulate the problem (1.50) in terms of w. Namely, the function w must be of the
class C* (Bg) N C (Bg), must satisfy the equation

Aw=A(u—v)=f—f=0 in Bg,
and must satisfy the boundary condition
w=u—v=¢—v on JdBg.

Hence, the Dirichlet problem (1.50) for u is equivalent to the following Dirichlet problem
for w:

{ Aw =0 in By (153)

w=¢ —v on JdBg.
Sine ¢ — v is continuous on dBg, by Theorem 1.11 we conclude that there exists a solution

w € C*(Bg) N C (Bg) of problem (1.53). Moreover, for any z € Bp, we have by the
Poisson formula

w(z) = . K(z,z) (¢ —v) (2)do(2)
= K(x,z)p(2)do(z) —/ K(x,z)v(z)do(z). (1.54)
dBR 0Bpgr

On this picture we show the variables
y € Bg for integration in (1.52) and
z € 0By for integration in (1.54):

In the both cases, z is a point in Bp.

Iy

Consequently, the Dirichlet problem (1.50) has a solution

u=v+we C*(Br)NC (Bg). (1.55)

If we knew that u € C? (ER) then the formula (1.51) for solution u would follow from the
formula (1.32) of Theorem 1.10 (by interchanging x and y). However, we can only ensure
that u € C? (Bg) N C (Bg) and, hence, the proof of (1.51) cannot rely on Theorem 1.10.
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We start the proof of (1.51) with observation that the second integral in (1.54) equal

to
- [ Koot = [ Ko ( / R E(z,y>f<y>dy) do(2)
-/ ( K(m)E(z,y)da(z)) F(w)dy
Br OBRr
- /B Wz, ) () dy,
where
h(z,y) = . K(z,2)E(z,y)do(z). (1.56)
Hence, for any « € Bp,
wie) = [ Ke2e()do(2)+ [ hleu)r)dy. (157
OBRr Br

Fix y € Bgr. By Theorem 1.11, it follows from (1.56) that the function h(z,y) as a
function of x solves the Dirichlet problem

Ah(z,y) =0 for z € By
h(z,y) = E(z,y) for x € OBg.

Recall that, by the definition of the Green function,
G(l’,y) = E(JZ‘, y) - hy(m)a
where the function h,(z) solves for any y € Bp the Dirichlet problem

y(x)=0 for x € By
{hy( )= E(x,y) for z € OBg.

Hence, h(z,y) and hy(x) solve the same Dirichlet problem. By the uniqueness of solution
of the Dirichlet problem, we obtain h(z,y) = h,(x), which implies that

G(l’,y) = E(ajv?/) o h(ﬂ?,y) (158)

Putting together (1.55) (1.52), (1.57) and (1.58), we obtain

v(r) +

/ Ew)f@dy+ | K(e2el2)dol) + [ herw)dy
R OBgr Bgr
/BG y)dy + - K(x,z)p(2)do(z),

which was to be proved. m
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1.9 Properties of harmonic functions

Here we obtain some consequences of Theorem 1.10. Let us restate it in the following
form to be used below: if u € C? (BR) and Au = 0 in Bpg then, for any = € Bp,

0 RepP
u(x) /a B =12l y)doty). (1.59)

Theorem 1.14 (C*-smoothness) Let ) be an open set in R™. Ifu € C*(Q) is a harmonic
function in Q then u € C™ (). Moreover, if u € C*(Q) satisfies Au = f where f €
C>® () then also u € C™ ().

Recall that by definition, a harmonic function must be a priori in the class C?. This
theorem tells that a posteriori it has to be C*. Moreover, any function u € C? is in
fact of the class C° if Au € C*°. The latter property of added smoothness is called
hypoellipticity of the Laplace operator. Typically, more general elliptic operator are also
hypoelliptic.

Proof. Consider first the case when w is harmonic in €2. In order to prove that u €
C* (Q), it suffices to prove that u € C* (Bg(z)) for any ball Bg(z) such that Br(z) C Q.
Without loss of generality, take z = 0. By (1.59) we have an integral representation of
u(z) for any x € Bg, which implies that u € C* (Bg) because the Poisson kernel

1 R?— |z

K = —

is C in x € By provided y € 0Bg.
Assume now that Au = f in Q with f € C* (), and prove again that u € C* (Bg)
where By is the ball as above. By Theorem 1.12, the Newtonian potential

o(z) = /B E(x,y)f(y)dy

of function f1p, belongs to C*°(Bg) and Av = —f in Bg. Since in Br we have
Alu+wv)=f—f=0,

the function u + v is harmonic in Bg, which implies by the first part of the proof that
u+v € C®(Bg). Hence, u € C* (Bg), which was to be proved. =

Theorem 1.15 (Mean-value theorem) Let u be a harmonic function in a domain 2 C R™.
Then, for any ball Bg(x) such that Br(xz) C Q, we have

ulz) = ]£BR($> uly)do(y) (1.60)

and

u(z) :]éR(x) u(y)dy. (1.61)
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Here we use the following notations for normalized (crossed) integrals:

1
udo = / udo
][E)Q g (89) 9

1
dy = d
]{2uy VOI(Q)/QU Y

where vol denotes the Lebesgue measure.
Hence, the value of a harmonic function u at the center of the ball is equal to the
arithmetic mean of u over the ball and over the sphere.

and

Proof. Without loss of generality we can assume that z = 0. Applying (1.59) with = 0,

we obtain . R )
0) = = u(y)d - do. 1.62
w0 =5 [ i) = Sy [ o (1.62)

Since w, R"~! = ¢ (0Bgr), we obtain (1.60).
To prove (1.61), let us recall that in the polar coordinates

/BR w(y)dy — /OR (/{)B uda) dr

/ udo = w,r" 'u (0),
0B

Since by (1.62)

we obtain R
/ u(y)dy = / wWor™ M (0) dr = “n gy (0). (1.63)
Br 0 n

Applying (1.63) with « = 1, we obtain
vol (Bp) = ““R".
n

Hence, (1.63) implies
u(y)dy = vol (Br)u(0),

Br

which is equivalent to (1.61). =

Theorem 1.16 (Harnack inequality) Let a function u € C?*(Bg) be non-negative and
harmonic in a ball Bg. Then, for any 0 <r < R,

i)

inf u. (1.64)

supu <
pus ( n

B

R/r+1
R/r—1

It is important for applications, that the constant C' = < > depends only on the
ratio R/r. For example, if R = 2r then C' = 3".

Proof. By the maximum and minimum principles we have

supu = maxu and infwu = minu.
B, OB, B, OB,



48 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Let 2’ be a point of maximum of u at B, and z” be a point of minimum of u at 0B,..

Note that, for any x € 0B, and for any y € 0Bp,
R—r<|z—y|<R+r.
It follows from (1.59) that

w@)=—— [ T i)

wnlt Jop, |2' —y["

R2 _ 7’2
< — udo
~w,R(R—r) /BBR

and similarly

mn __ L R® - |x//|2u o
u(z") = /6 —— - u(y)do(y)

wnR Jop, |2 —yl"

R? —r?
_— do.
wpR(R+7)" /83Ru 4

v

Therefore, we obtain

which is equivalent to (1.64). m

1.10 Sequences of harmonic functions

Theorem 1.17 (Harnack’s first theorem) Let {uy},-, be a sequence of harmonic func-
tions in a domain Q C R". If uy = uwin 2 as k — oo then the function u is also harmonic

i €2.

Let us recall for comparison, that uniform limits of continuous functions are again
continuous, but uniform limits of C* functions (where & > 1) do not have to be C*.
Hence, if u is a uniform limit of harmonic functions u; then a priori we can only say that
u is continuous, whereas the harmonicity of u and, in particular, the smoothness of u, are
not at all obvious.
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Proof. The function « is continuous in {2 as a uniform limit of continuous functions. To
prove that w is harmonic in €, it suffices to prove that « is harmonic in any ball Bg(z)
such that Bg(z) C Q. Assume without loss of generality that z = 0.

Denoting ¢, = uk|op, and ¢ = u|gp, we have

v, = @ on 0BR as k — oo.
Let v be the solution of the Dirichlet problem

Av =0 in Bpg
v=¢ ondBg

that exists by Theorem 1.11. Since uy, — v is harmonic in B and is continuous in By, by
the maximum principle (1.5) of Corollary 1.2, we obtain

max [ur = vl = max|u, — | = max|p, — .

Since the right hand side goes to 0 as k — o0, it follows that
u, =2 v in B as k — oo.

Since also ur = u, we conclude that u = v in Bg and, hence, u is harmonic in Br. ®

Theorem 1.18 (Harnack’s second theorem) Let {uy},-, be a sequence of harmonic func-
tions in a connected domain ) C R™. Assume that this sequence is monotone increasing,
that is, ug41(x) > ug(x) for all k > 1,2 € Q. The the function

u(z) = klim ug(x)
is either identically equal to oo in ), or harmonic in ). Moreover, in the latter case the
convergence u — u 18 locally uniform.

Proof. By replacing u; with u,—uy, we can assume that all functions u; are non-negative.
Consider the sets
F={ze€Q:u(x) < oo}

and
I={xeQ:u(xr)=o00}

so that €2 = F U I. Let us prove that both F and I are open sets.
Indeed, take a point x € F' and show that also B.(z) € F for some ¢ > 0. Choose &
so that By.(z) C Q. By the Harnack inequality, we have

sup ux < C inf uy, < Cug(z),
Be(z) Be ()

where C' = 3". By passing to the limit as £ — oo, we obtain

sup u < Cu(z).
B:(z)
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Since u(z) < 0o, we obtain that also supp_(,)u < 0o and, hence, B.(z) C F. Therefore,
F'is open.

08.05.23 Lecture 9

Let us prove that I is open. For any x € I choose as above £ > 0 so that By (x) C €.

By the Harnack inequality, we have

inf Uk,
B.(z) Be ()

u(z) < sup u, < C

which implies as k — oo

u(z) < C inf w.
B.(z)

Since u(x) = oo, it follows that u = oo in B.(z). Hence, B.(z) C I and [ is open.

Since 2 is connected and ) is a disjoint union of two open sets F' and I, it follows
that either I = Q or F' = Q. In the former case we have u = oo in €2, in the latter case
u(x) < oo for all z € Q.

Let us prove that if u < oo in 2 then w is harmonic in 2. For that, we first show that
the convergence uy — u is locally uniform, that is, for any x € €2 there is € > 0 such that

up = uin B.(x) as k — oo.

Then the harmonicity of u will follow by Harnack’s first theorem.
Choose again ¢ > 0 so that By.(x) C €. For any two indices k > [, apply the Harnack
inequality to the non-negative harmonic function u, — u;:

sup (ug —w) < C inf (up — ) < C (ur —w) (). (1.65)
BE(.’E) Bs(if)

Since the sequence of reals {uy(x)} converges, it is a Cauchy sequence, that is, (u, — w;) () —
0 as k,l — oo. It follows from (1.65) that

up —w = 01in Be(z) as k,l — oc.

Hence, the sequence of functions {u;} is a Cauchy sequence in C(B.(x)) and, therefore,
it converges uniformly in B.(x). Since {ux} converges pointwise to u, it follows that

up = uin B.(x) as k — oo,

which finishes the proof. m

As an example of application of Harnack’s second theorem, let us prove the following
extension of Theorem 1.12.
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Corollary 1.19 Let f be a non-negative locally bounded measurable function on R™. Con-
sider the Newtonian potential of f:

ow) = [ Bl fw)dy (1.66)

Then either v = oo in R™ or v is a continuous function in R™. In the latter case, if

f € C?*(Q) for some open set Q C R", then also v € C*(Q) and Av = —f in Q.

Let us emphasize that in Theorem 1.12 function f must be bounded and with a
compact support. In Corollary 1.19 the function f is only locally bounded (that is,
bounded on bounded subsets) and there is no restriction on the support of f. However, f
is assumed to be non-negative so that the integral in (1.66) is well defined as an integral
of a non-negative measurable function. Hence, the function v(z) is well defined for all
x € R™ with the values in [0, +00].

Proof. Consider a sequence {By},-, of balls B, = By, (0) and set

vpla) = /B B, 9)f (4)dy.

Since vy, is the potential of the function f1p, that is bounded and has a compact support,
by Theorem 1.12 we have v, € C' (R"). The sequence {v;} is monotone increasing and

vp(x) — v(x) for any x € R™. (1.67)

Let us show that if v # oo then v(z) is a (finite) continuous function on R™. Let z( be a
point in R” such that v (zg9) < co. Choose [ € N so big that B; contains zy. We’ll show
that v — v; is harmonic in B;. For any k > [, consider the function

(0p — ) () = /B L By = / B, 9) f Lo s, (4)dy.

Rn

Applying Theorem 1.12 with function f1p,\p, and noticing that this function vanishes in
By, we obtain that vy — v is harmonic in By, for all k& > [. The sequence {vy — v/}, is
monotone increasing in k£ and, at the point xy € B;, we have

(v — ) () < v(xg) < 00.
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Hence, the sequence {v, —v;};—, is bounded at the point g, and by Harnack’s second
theorem, the limit

lim (v —v;) = v —
k—o0

is a harmonic function in B;. It follows that v is a continuous function in B;. Since [ can
be chosen arbitrarily big, we conclude that v is continuous in R".

Assume in addition that f € C?(Q) and prove that v € C?(2). We can assume
without loss of generality that €2 is bounded. Then in the above argument we choose [ so
big that 2 C B;. As we have seen,

v — v; is a harmonic function in B;.

Since v; is the potential of the function flp € C?*(2), by Theorem 1.12 we have v, €
C? () and Av; = —f in Q.It follows that also

v:(v—vl)—l—vl EOZ(Q)
and in €
Av=Av—v)+Ay=0-f=—F,
which finishes the proof. m

1.11 Discrete Laplace operator

A graph G is a couple (V, E') where V' is a set of vertices, that is, an arbitrary set, whose
elements are called vertices, and FE is a set of edges, that is, F consists of some unordered
couples (z,y) where z,y € V. We write = ~ y if (z,y) € E and say that z is connected
to y, or x is adjacent to y, or x is a neighbor of y. By definition, x ~ y is equivalent to
Y~ .

A graph G is called locally finite if each vertex has a finite number of edges. For each
point z, define its degree

deg(z) =#{y eV :x~y},

that is, deg(z) is the number of the edges adjacent to the vertex x. A graph G is called
finite if the number of vertices is finite. Of course, a finite graph is locally finite.

Definition. Let (V) E) be a locally finite graph without isolated points so that
0 < deg(z) < oo forall zeV. (1.68)

For any function u : V' — R, define a function Au : V — R by

1

yeViy~zx

1
Au(z) == dea(r)

Y (uly) —u(x)).

yeViy~z

The operator A on functions on V' is called the Laplace operator of the graph (V) E). The
equation Au = 0 is called the Laplace equation, and its solutions are called harmonic
functions on the graph.

For example, a constant function is harmonic.
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The equation Au(x) = 0 is obviously equivalent to

L )

B deg(x) yeViy~a

u(x)

that is, the value of u at vertex x is the arithmetic
mean of the values of u at the neighboring vertices.

Y
(Clearly, this is an analogue of the mean value theorem for harmonic functions in R™.
In what follows we always assume that (1.68) is satisfied so that A is well-defined on
functions on V.
One can regard a graph (V, E) as an electrical network, where the edges are the wires
that conduct electric current, and the vertices are junctions.

Let u(z) be the electric potential at the vertex x. Assuming that the resistance of
each edges is equal to 1, we obtain by the Ohm’s law, that the current along the edge zy
(from z to y) is equal to the potential difference u(y) —u(z). By Kirchhoff’s law, the sum
of the currents incoming and outcoming at the same vertex z is equal to 0, that is,

> (uly) —u(z) =0, (1.69)

yeViy~z

which is equivalent to Au(z) = 0. Hence, in the absence of the external sources of the
current (batteries or power sockets), the electric potential of the network is a harmonic
function.

It is analogues to the fact that the electrostatic potential of an electric charge in R?
is a harmonic function in a free space.

Example. Let G = Z that is, V consists of all integers and = ~ y < |z —y| = 1.

Then the equation (1.69) becomes
u(x+1)+u(z—1) —2u(x) =0,

which is a discrete analogue of the differential equation u” = 0, that is, the 1-dimensional
Laplace equation Au = 0.
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Definition. A graph G = (V| E) is called connected if any two vertices z,y € V can be
connected by a finite chain {z}},_, such that

T=Tog~Y T~ ... vVTp_1~¥Ty =Y.

Choose a subset 2 of V' and consider the following Dirichlet problem:

Au(z) = f(x) for all x € Q, (1.70)

u(z) = p(x)  for all x € Q°, '
where u : V' — R is an unknown function while the functions f: ) — R and ¢ : Q¢ — R
are given.

Theorem 1.20 Let G = (V, E) be a connected locally finite graph, and let Q2 be a finite
subset of V' such that Q¢ is non-empty. Then, for all functions f, v as above, the Dirichlet
problem (1.70) has a solution, and this solution is unique.

Note that, by the second condition in (1.70), the function u is already defined outside
2, so the problem is to construct an extension of u to {2 that would satisfy the equation
Au = f in €.
*Remark. Define the vertex boundary of € as follows:

0N ={y € Q°:y ~ x for some x € Q}.

Observe that the Laplace equation Au(z) = f(x) for x € € involves the values u(y) at neighboring vertices
y of z, and any neighboring point y belongs to either 2 or to 9. Hence, the equation Au(z) = f(x) uses
the prescribed values of u only at the boundary 052, which means that the second condition in (1.70) can

be restricted to 02 as follows:
u(z) = ¢(x) for all x € 0.

This condition (as well as the second condition in (1.70) is called the boundary condition.

11.05.23 Lecture 10

If Q° is empty then the statement of Theorem 1.20 is not true. For example, in this
case any constant function wu satisfies the same equation Au = 0 so that there is no
uniqueness. One can show that the existence also fails in this case.

The proof of Theorem 1.20 is based on the following maximum principle.

Definition. A function u : V' — R is called subharmonic in € if Au(z) > 0 for all x € Q,
and superharmonic in € if Au(x) <0 for all z € Q.

Lemma 1.21 (A maximum/minimum principle) Let the graph G = (V, E) be connected.
Let €2 be a non-empty finite subset of V' such that 2° is non-empty. Then, for any function
u:V — R, that is subharmonic in €, we have

max u < sup u.
Q Qc

For any function u : V — R, that is superharmonic in €2, we have

min v > inf u.
Q Qe
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Proof. It suffices to prove the first claim because if w is superharmonic then —u is
subharmonic.

Let u be subharmonic. If supge u = 400 then there is nothing to prove. If supge u < 0o
then, by replacing u by w + const, we can assume that supg. u = 0. Set

M = maxu
Q

and show that M < 0, which will settle the claim. Assume from the contrary that M > 0
and consider the set

S={x eV :ulx)=M}. (1.71)
Clearly, S C 2 and S is non-empty.

Claim 1. Ifx € S then all neighbors of x also belong to S.

Indeed, we have Au(z) > 0 which can be rewritten in the form

Since u(y) < M for all y € V' (note that u(y) < 0 for y € Q°), we obtain

1
u(x)gdeg(x>z deg ZM M. (1.72)

Y~z

Since u(x) = M, all the inequalities in (1.72) must be equalities, whence it follows that
u(y) = M for all y ~ x. This implies that all neighbors of = belong to S.

Claim 2. Let S be a non-empty set of vertices of a connected graph (V, E) such that,
for any x € S, also all neighbors of x belong to S. Then S =V

Indeed, let x € S and y be any other vertex. Since the graph is connected, there is a
path {z;};_, between z and y, that is,

T=Tog~T1 YTy~ ...VvTy=1.

Since o € S and x; ~ xg, we obtain x1 € S. Since x9 ~ x1, we obtain x5 € S. By
induction, we conclude that all z; € S, whence also y € S. Therefore, S = V.

It follows from the two claims that the set S defined by (1.71) must coincide with V/,
which is not possible since S C 2 and €2° is non-empty. This contradiction proves that
M<O0 m
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Proof of Theorem 1.20. If Q = () then the claim is trivial. Let Q # (). We prove first
the uniqueness. If we have two solutions u; and ug of (1.70) then the difference u = u; —us

satisfies the conditions
{ Au(z) =0 for all z € ,

u(z) =0  forall z € Q°.

We need to prove that v = 0. Since u is both subharmonic and superharmonic in €2,
Lemma 1.21 yields

(1.73)

0=infu <minu < maxu < supu =0,
Qe Q Q Qe
whence u = 0.
Let us now prove the existence of a solution to (1.70) for all f,¢. For any z € Q,
rewrite the equation Au(z) = f(x) in the form

1 1
doe(2) > uly) —ulx) = flx) - deg(z) > el (1.74)

yeQ, y~x yeNe, y~x

where we have moved to the right hand side all the terms with y € €2¢ and used that
u(y) = ¢(y). Denote by F the set of all real-valued functions u on €2 and observe that
the left hand side of (1.74) can be regarded as an operator in this space; denote it by Lu,

that is,
1

Lu(z) = dea(7)

> uly) —ulz),

YEQ, y~x
for all z € Q. Rewrite the equation (1.74) in the form

Lu=~h in Q

where

1
h(z) = f(z) - > el
deg(x) e
is a given function on 2. Note that F is a linear space. Since the family {1{$}}$€Q of
indicator functions form obviously a basis in F, we obtain that dim F = #{) < co. Hence,
the operator

L:F—F

is a linear operator in a finite dimensional space. Let us observe that
Lu=0=u=0.

Indeed, if f = 0 and ¢ = 0 then A = 0 so that the equation Lu = 0 is equivalent to (1.73),
whereas the latter has a unique solution © = 0 by the first part of the proof. Hence,
the operator L is injective. By a rank-nullity theorem from Linear Algebra, we have the
following identity for linear operators acting in finite dimensional spaces:

dimker L + dimIm L = dim F.

Since ker L = {0}, it follows that Im L = F so that L is surjective and, hence, bijective
(alternatively, the injectivity of L implies that det L # 0 whence it follows that L is
invertible and, hence, bijective). Hence, for any h € F, there is a solution u = L™'h € F,
which finishes the proof. =
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1.12 Separation of variables in the Dirichlet problem

Here is an alternative method of solving the Dirichlet problem in the two-dimensional ball
or annulus. Let (r,0) be the polar coordinates. The Laplace equation Au = 0 has in the
polar coordinates the form

1 1
&«TU + —8Tu + —2899u =0 (175)
r r

(see Exercise 18). Let us first try to find a solution in the form v = v (r) w (0). Substitution
into (1.75) gives

1 1
w4+ —v'w + —va” =0
r r
that is L1
v+ v w”
= ——. (1.76)
T—QU w

Since the left hand side here depends only on r and the right hand side only on 6, the
two functions can be equal only if they both are constants. Denoting this constant by A,
we obtain two ODEs:
W'+ w =0 (1.77)
and ) \
v+ ;v’ -5V = 0. (1.78)
The method of reduction of a PDE to two ODEs as above is called the method of separation
of variables. It is based on the observation that in (1.76) the functions that depend on
different variables (r and #) can be separated into different parts of the equation. However,
this method brings up a new unknown parameter A\ that is called a spectral parameter
and that is to be determined together with v and w.
Since w is a function of the polar angle 6, the function w (#) must be 2w-periodic.
Equation (1.77) has periodic solutions only if A > 0. We have then

w (0) = Cy cos VAD + Cysin VNG,

where C4, C, are arbitrary reals. This function is 27-periodic if and only if v/\ = k, where
k is any non-negative integer. Hence, we obtain

w(f) = Cy cos kO + Cysin kb.
Substituting A = k? into (1.78), we obtain
k’2

0"+~ — v =0.
r r

This is the Euler equation that has the following general solution:
v=Cir?+ Cor™ if k>0,
1
U201+021n— if k=0.
r
Hence, for any k£ > 0 we obtain the following harmonic functions:

U = (akrk + 5kr_k) (ay cos kO + by sin k@) , if k> 0,
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and .
ug=agp+ Poln—, if k=0,
r

where ay, 3, ax, by are so far arbitrary reals. Each function wuy, is harmonic in R? \ {0}
(or in R™ if all 8, = 0). If the series

D u

k=0

converges locally uniformly in some domain {2 then the sum is also harmonic function in
Q) by Harnack’s first theorem. By choosing coefficients one can try to match the boundary
conditions.

Let us apply this method for the Dirichlet problem in the unit disk B = B; =
{z e R?: |z| < 1}:

u=f ondB. (1.79)

The function f on the unit circle OB can be considered as a 27-periodic function of the
polar angle, so we write f(6). Since function u has to be defined also at the origin, we set
B = 0 and search the solution in the form

{Au:O in B

u(r,0) = % + Z 7% (ay, cos kO + by sin k6) | (1.80)

k=1

where the coefficients ay and by are yet to be determined from the boundary condition.
The boundary value of u is attained for » = 1. Hence, function f should have the following
expansion in the Fourier series

f(0) = % + Z (ay, cos k8 + by sin k0) . (1.81)

[e9)
k=1
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It is known that any 27-periodic function f that belongs to L*([—m,7]), admits an
expansion (1.81) that converges to f in L?([—m,x]). The coefficients are computed as
follows:

1 (7 1 ["
ap = ;/ f(0)coskbdh, by = ;/ f(0)sin k6d6. (1.82)

Moreover, it is also known that if f € C! (R) then the Fourier coefficients of f satisfy the

condition
oo

> (ax] + [bi]) < oo. (1.83)
k=1
Consequently, the Fourier series (1.81) converges absolutely and uniformly in R.

Proposition 1.22 Assume that f is a 2w-periodic function on R such that its Fourier
coefficients satisfy (1.83). Then the series (1.80) converges absolutely and uniformly for
allr <1 and § € R, its sum u is harmonic in B, continuous in B, and is equal to f at
0B. That is, u is a solution of the Dirichlet problem (1.79).
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Proof. Since for all r <1 and 8 € R

Z|rk (ay, cos kb + by sin k6)| Z lag| + |bk|) <
k=1 k=1

we conclude by the Weierstrass M-test and (1.83) that the series (1.80) converges abso-
lutely and uniformly for all » < 1 and all § € R. Hence, the function w is continuous in
B. In particular, on 0B we obtain u = f, just by taking r = 1 in (1.80). Since all the
terms ¥ cos k@ and r¥sin k@ are harmonic functions, the function u given by the series
(1.80) is also harmonic in B by Harnack’s first theorem. m

Remark. Differentiating the right hand side of (1.80) in 7 term-by-term, we obtain the
series

Z kr"=1 (ax cos k@ + by sin k6) . (1.84)

k=1

It follows from (1.83) that the series (1.84) converges absolutely and uniformly in Bp for
any R < 1, because

S b (ag cos 0 + bysinkf) < sup (KR") 3 (el + [b])
k=1 =1

where we have used that the sequence {kRk 1} v, 1s bounded. By a theorem about
differentiation of a series, we obtain the following identity in B:

Opu = Z kr*1 (ay, cos kO + by sin k6) . (1.85)
k=1

In the same way we have in B
Opu = i kr* (—ay sin kO + by cos k0) . (1.86)
Now we assume instead of (1.83) a stronger hypothesis:
i/{: (lag] + |bk]) < oc. (1.87)
k=1

Then the series in (1.85) and (1.86) converge absolutely and uniformly for r < 1 and
0 € R, that is, in B, which implies that O,u and Ogu are continuous in B and, hence,
ue Cl (B) . Similarly, one can verify that if

SR (] + Ital) < o0
k=1

then u € C? (E), etc.
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1.13 Variational problem and the Dirichlet principle

Let  be a bounded domain and ¢ be a continuous function on 0€2. Consider the varia-
tional problem

/ |Vu|? dzz — min
Q
u = @ on 0f2

(V)

where ¢ is given while u is an unknown function from C'(Q). That is, we look for a
function v € C'(Q2) with the given boundary value on 9 that minimizes the Dirichlet
integral [, |Vul® dz.

One of motivations for the problem (V') comes from the following geometric problem:
find a function u on {2 with a prescribed boundary value such that its graph S has a
minimal surface area.

R
RnJrl

v

R
50

Indeed, since

o (S) :/Q\/H \Vul*dz,

we obtain the variational problem

2 .
/Q\/l—i-\Vu\ dx — min . (1.88)

u = @ on 0f).

If we assume that |Vu| < 1, then

1
\/1+]Vu|2%1+§|Vu|2,

so that the problem (V') can be regarded as an approximation of (1.88).

Any function u that solves (1.88) is called an area minimizer. As we will see, func-
tions that solve (V') are harmonic. Hence, harmonic functions are approximately area
minimizers.

Consider also the associated Dirichlet problem

{Au:O in €,

u=@ on 0, (D)
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where now we look for a solution u in the class u € C? (2)NC*(Q). Note that if u € C*(Q)
then

/ |Vu|? dz < .
Q

Solutions of (D) in the class C'(2) are called energy finite solutions.
Recall that a bounded open set {2 C R" is called a region if there is a C'! function ®
defined in an open neighborhood of 2 such that

®(z) < 0in Q, ®(x) > 0 outside Q

®(z) =0 and VO # 0 on 9f). (1.89)

If in addition & € C"™ with m > 1 then €2 is called a C"-region.

Theorem 1.23 (The Dirichlet princi;ie) Let Q be a bounded C?-region. Then a function
u is a solution of (V) in the class C*(Q) if and only if u is a solution of (D) in the class
C*(Q)NCYQ).

Since solution to the Dirichlet problem is always unique, we see that also the variational
problem has at most one solution. As we know, if 2 is a ball then the Dirichlet problem
(D) has a solution u € C?(Q) N C(Q) for any ¢ € C(99Q). Under some additional
assumption about ¢ one obtains that u € C*(Q) (see, for example, the previous section),
which then implies the existence of a solution of (V') in this case.

Idea of proof. Let us first prove a simplified version of this theorem, when solutions of
both problems (V) and (D) are sought in the class C?(Q). Assume first that u € C?(9)
is a solution of (V') and prove that u is a solution of (D), that is, Au = 0 in 2. Fix a
function w € C§° (2) and ¢t € R and consider the function v = u 4 tw. The function v is
called a wvariation of u. Since v = u = ¢ on €1, we conclude that

/|Vv|2dx2/|Vu|2d:B.
0 Q

Vo> = |V (u+ tw)|* = |[Vul> + 2tVu - Vw + 12 [Vw|?,

Computing

we obtain

/|Vu|2dx+2t/Vu-dex+t2/|Vw|2dx2/|Vu|2dx
Q 0 0 Q

and, hence,

275/ Vu - deertQ/ \Vw|* dz > 0.
Q Q
Assuming that ¢ > 0, divide by ¢ and obtain

2/Vu-dex+t/|Vw|2dx20.
Q 0

Letting ¢ — 0, we obtain
/ Vu-Vwdx > 0.
Q
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In the same way, considering ¢ < 0, we obtain
/ Vu-Vwdr <0,
Q

whence

/ Vu-Vwdr = 0. (1.90)
Q

By the 1st Green formula we have

/wAudx:—/Vu-dex—i-/ wo,udo. (1.91)
0 Q o0

By (1.90) and w = 0 on 052 we obtain

/ wAudzr = 0.
Q

Since w € Cg° (§2) is arbitrary, it follows that Au =0 in Q.
Now assuming that u € C*(9Q) is a solution of (D), let us show that u is a solution of
(V), that is, for any v € C*(Q) such that v = ¢ on 99,

/|Vv|2dx2/|Vu|2dx.
Q Q

Set w = v — v and write again

/]Vv|2dm:/|Vu+Vw|2dx:/|Vu|2dm+2/Vu~dex—l—/|Vw|2da:.
Q Q Q Q Q

Applying again the Green formula (1.91) and using that Au=01in Q and w =u—v =0
on 0f), we obtain

/Vu~dem:0.
Q

/\Vv|2dx:/|Vu\2dx+/|Vw\2d:c2/\Vu\2d:c,
0 0 0 0

which finishes the argument. m

It follows that

Remark. The above method of the proof that uses a wvariation of an unknown function
gave the name Variational Calculus to the area of mathematics that deals with problems
like (V') and (1.88), and the problems of finding functions that minimize or maximize
certain functionals are referred to as variational problems.

Remark. In the first part of this argument, we used that a solution wu of the variational
problem is of the class C? simply in order to be able to write Au. If we only know that
u € C' (and this is the minimal natural requirement for the problem (1)), then we cannot
immediately apply A to u. In the both parts of the proof we used that u,v € C%(Q) in
order to be able to use the Green formula.
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In order to prove Theorem 1.23 under optimal requirements for u, as stated above, we
need to do some preparations.

Definition. A function ¢ on R" is called a mollifier, if ¢ is non-negative, ¢ € C3° (By),
and

U(x)dr = 1.

]Rn

For example, the following function is a mollifier

cexp <— - 122>, |z| < 1/2
(5-lal*)
0, lz] >1/2

Y

for an appropriate value of the constant c¢. Here are the graphs of this function in R! and
R2:

I 1 ! R " s 1 ! |
T T T — T

T T N I 1 T 1
-0.5 -04 -03 -02 -0.1 00 0.1 02 03 04 05
X

Each mollifier gives rise to a sequence {¢,};-, of mollifiers as follows:
() = k" (k). (1.92)

Indeed, observe that v, € Cg° (Bl /k) and
vilade = [ K () do = [ o)y =1, (1.93)
Rn n Rn

where we have made change y = kx and used that det % = k™.
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Functions ¢ = 1), 1,,15 in R!

In the next lemma we develop techniques of approximating continuous functions by
smooth ones.

Lemma 1.24 Let u be a locally integrable function in R™. For any k € N set

w=us vy [ e y) v (1.94)

Then each uy, is a C*° function in R™. Moreover, if u € C () then uy — u locally
uniformly in 2.

The sequence {uy} is called a mollification of w.

22.05.23 Lecture 12

Proof. Indeed, a change z = x — y in (1.94) yields

w(@) = [ (e - 2z

and the first claim follows from the fact that ¢, (x — z) is C*°-smooth in = (cf. the proof
of Theorem 1.12; Step 2).

Let us prove the second claim assuming that v € C(Q2). For any x € , we have by
(1.93) and (1.94)

o)~ uele) = [ atwpinlody - [ - v vy

n

= / (u(z) —u(z —y)) ¥(y)dy,
Bk

which implies that

u(z) —ux(z)| < sup |u(z) —u(r —y)|.
yEB /k
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Since w is locally uniformly continuous in {2, we obtain that

sup |u(x) —u(z —y)| — 0 as k — oo
YEB1

locally uniformly in 2, which implies that u; — wu locally uniformly in 2. =

Definition. A function u € C'(2) is called weakly harmonic in Q if, for any w € C§° (),

/ uAwdx = 0. (1.95)
0

Lemma 1.25 (a) If u is harmonic in Q) then u is weakly harmonic in ).
(b) if u is weakly harmonic in Q and u € C*(Q) then u is harmonic in 2.

Proof. If u € C? (Q) and w € C§°(Q) then we claim that

/qud:E:/Auwdx. (1.96)
Q Q

In order to justify (1.96), we use the fact that there exists a region 2" such that
suppw C 2 C Q.

Applying the 2nd Green formula in 2’ we obtain

/qudx:/ Auwdx—{—/ (u@l,w—wayu)daz/ Auvwdz,
U / 80/ /

because w and J,w vanish in 9€'. Hence, (1.96) follows.
(a) If w is harmonic in € then the right hand side of (1.96) vanishes, and we obtain,

for any w € C§° (Q2) that
/ uAwdx = 0,
Q
that is, u is weakly harmonic.
(b) If u is weakly harmonic and if u € C* (Q) then the left hand side of (1.96) vanishes
for any w € Cg° (£2), and we obtain

/Auwd:v =0.
Q

Since w € C§° (1) is arbitrary, it follows that Au = 0 in €, that is, v is harmonic in 2. m
In the next statement we strengthen the claim of path (b) by abandoning the hypothesis
that u € C*(Q).

Lemma 1.26 (Weyl’s lemma) Let Q be any open subset of R™. If u € C () is weakly
harmonic in ) then w is harmonic.



66 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Proof. By reducing {2, we can assume without loss of generality that 2 is bounded and
ueC (ﬁ) Let us define u outside Q by setting u = 0. Then w is a bounded function in
R™ in particular, u is locally integrable, so that Lemma 1.24 is applicable.

Consider the sequence {uy} given by (1.94) and show that if u is weakly harmonic in
2 then also uy, is weakly harmonic in €. Indeed, for any w € C§° (2) we have

/Quk(:;c)Aw(x)dx = /n (/Bl/k u(x—y) wk(y)dy> Aw(z)dx
-/ ) ([ wte = sutos) vy
- /Bl/k (/ u(z)Aw (2 +y) d2> Ui(y)dy,

where we have made a change z = x — y in the internal integral. Since w € C§° (£2), we
have
S :=suppw C €.

Since y € By, and, hence, |y| < 1/k, the function z — w (2 +y) has a support in S
that is a closed %—neighborhood of S. If k is large enough then

suppw (- +y) C S% C Q,

which implies by the weak harmonicity of u in €2 that, for all y € By,

/n uw(z)Aw (z +y)dz = 0.

It follows that

/ ug(z)Aw(z)dx = 0,
Q

that is, uy is weakly harmonic in Q. Since u, € C*° (€2), we obtain that wy is harmonic.
Finally, since uy — wu locally uniformly in {2, we obtain by Harnack’s first theorem
that w is harmonic in 2. =

In the next lemma we prove two more versions of the first Green formula.

Lemma 1.27 Let §2 be a bounded region in R™.
(a) If u € C*(Q), w e CYQ) then

/wAudx = —/ Vu-dex—l—/ wo,udo. (1.97)
Q Q G
(b) Let Q be a C*-region. If u € C*(Q)NCHQ), w e C*(Q)NC(Q) and w =0 on

0N then
/wAu dx = —/ Vu - Vwdz. (1.98)
o) Q

Remark. Recall for comparison that so far we have required for the Green formula that
u,w € C*(Q2). In the part (a) it suffices to have w € C*' (Q) as we do not use the second
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derivatives of w. The part (b) is more subtle because the functions wAwu and Vu - Vw
are in C () but not necessarily in C(€2) so that the integrals in (1.98) are not necessarily
well-defined or finite. The statement of (b) should read as follow: if one of the integrals
in (1.98) is well-defined then so is the other integral, and their values are the same. In
fact, one can prove that the formula (1.97) remains true also in the case (b) without

requirement w = 0 on 02, but the argument is more technical than acceptable here.

Proof. (a) If u € C*(Q) and w € C*(Q) then
Fi=wVue cl(Q).

Applying the divergence theorem with the vector field Fin Q, we obtain

/div?d:p:/ F-Vda,
Q o9

/ (wAu + Vu - Vw)dr = / wo,udo,
Q )

that is

which is equivalent to (1.97).
(b) Assume now u € C?(Q2) N C'(Q2) and w € C* (Q) N C(Q). Recall that, by the
definition of a region, there exists a C'! function ® in a neighborhood of € such that

d<0onf, & >0 outside Q,

and
®=0 and V& #0 on 0.

In particular, Q = {® < 0}. For any ¢ > 0, consider the following open subset of €:
Q. ={P(z) < —e} ={P(z) + £ < 0}.
Since V& # 0 on 02 = {® = 0}, it follows that, for small enough €4 > 0,
VO #£0 in {—g <P <0}.
In particular, for all 0 < e < &,
V(@+e)#0 on 00 ={P+ec=0} ={P=—¢}

so that €2, is also a region for these values of ¢.

8Q:{Q):0}‘
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For any 0 < & < &9, we have (. C Q and, hence, u € C? (€2.) and w € C* (€2.). Therefore,
we obtain by (1.97)

/ wAudr = —/ Vu-dex+/ wo,udo. (1.99)
. . 09,

Since u € C*(Q), we have
|0, u| < sup |Vu| =: C < 0.
Q

Since w € C(Q) and w = 0 on 9, we have

sup jw| — 0 ase —0

€

We will verify below that o (0€.) — o (0f2) as € — 0. Since

/ wo,udo| < sup |w|sup |Vu|o (0€2),
ek a

09 Q

it follows that
/ wo,udo — 0 as € — 0.
90,

Hence, letting e — 0 in (1.99), we obtain (1.98). More precisely, if one of the limits

/ wAu dr = lim wAu dz
Q

e—0 Q.
or

—/Vu-dex::—lim Vu - Vwdx
Q

e—0 Q.

exists then the other limit exists too, and their values are the same.
It remains to verify that

o(0€) — a(09) as € — 0.
For any 0 < ¢ < g¢, the open set
G.=0\Q, ={-c0<®< —¢}

is a region as a difference of two regions.
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Consider the vector field
— Vo

~vel

that is well defined in G. because V& # 0 in {—¢o < ® < 0}. By hypothesis we have

® ¢ C? and, hence, Fec (G.) for any € > 0. Applying the divergence theorem for F
in GG, we obtain

— — — —
/didex:/ F-l/dU:/ F'Vd0+/ F -vdo,
: 0G- 90 99,

where v is the outer unit normal vector field on 0G.. Observe that v on 0f), is also the
outer unit normal vector field with respect to 2., which implies that on 0.

It follows that on OS2,

Therefore, we have

Letting ¢ — 0+ we obtain

0(898):/ cuvfdx—/ F-vdo
€ o

Qe
—>/ div?dz—/ ]_7>-1/d0
Go 8950
=0 (09),
which finishes the proof. m
25.05.23 Lecture 13

Proof of Theorem 1.23. Assume first that « € C'(Q) is a solution of the variational
problem (V') and prove that u is a solution of the Dirichlet problem (D). We need only
to prove that u is a harmonic function in €2. By Lemma 1.26 it suffices to prove that u
is weakly harmonic in Q. Fix a function w € C§° (€2) and ¢ € R and consider a function
v = u+ tw. Since v = u = @ on 0, we conclude that

/|Vv]2dx2/wu]2dx.
0 0

Using the the same argument as in the previous version of the proof, we conclude that

/Vu-dex:O
Q
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By the 1st Green formula (1.97) (with swapped u and w) we have

/qudx:—/Vu-dex—i-/ ud,w do = 0.
Q Q a0

Hence, we obtain that that u is weakly harmonic and, hence, harmonic, which finishes
this part of the proof.

Let u be solution of the Dirichlet problem (D) and let us show that u solves also the
variational problem (V). That is, we need to prove that, for any v € C*(Q) such that

v = @ on 0,
/ \Vo|* dz > / Vul® dz.
Q Q
Set w = v — u and write

/]Vv|2dx:/\Vu+Vw\2dx:/\Vu|2dx+2/Vu~dex+/]Vw|2dx.
Q Q Q Q Q

Since u € C?(Q)NCYQ), w € CHQ), w =u—v = 0on I, and Au = 0 in 2, we obtain

by (1.98) that
/Vu~de3: = —/wAudx = 0.
Q 0

/\Vv\zdx:/\Vu\de+/]Vw\2dx2/\Vu\2dx,
0 0 0 0

which finishes the proof. =

It follows that

1.14 *Distributions

Denote by D the linear space C§° (R™) with certain topology that we do not describe here.
Elements of D are called test functions. A distribution is any linear continuous functional
on D. The set of all distributions is denoted by D’. Clearly, this is a linear space (that is
a dual space to D). For any f € D’ and ¢ € D the value f () is also denoted by (f, ¢) .
One says that a sequence { fi} of distributions converges to a distribution f if for any test
function ¢

{fr,0) — (f,0) as k — oo.

Any locally integrable function f in R"” determines a distribution, also denoted by f, using
the rule

(fip)= [ [feodz.

R
On the other hand, there are distributions that are not determined by functions. For
example, denote by ¢ the distribution that is defined by

(6,0) = (0).

The distribution ¢ is called the Dirac-function (although it is not a function).
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Let v be a mollifier in R", and v, be defined by (1.92), that is, 1, (z) = k"¢ (kz). By
Lemma 1.24 we have the following: for any test function ¢
Ui x p(z) — p(z) as k — oo.
Applying this to function ¢ (—x) instead of ¢, we obtain
U (T +y) p(y)dy — o (—z) ask — oo
RTL

In particular, for x = 0 we have

V1, 0) = @ (0) = (4, ) -

Hence, we can say that ¢, — d the sense of distributions. A sequence that converges to
0 is called approximation of identity.

One of huge advantages of the notion of distribution is that all partial derivatives D®
of all orders are well-defined on any distribution. Namely, for any f € D’ and for any
multiindex o = (o, ..., ;) define D f as distribution by the following identity:

(D, ) = (=1)*!(f,D*¢) Ve €D, (1.100)

This definition is compatible with the classical definition for functions in the following
sense. If f € C%(R") then D°f is defined as function for all || < k. By integration by
parts formula, the following identity is true for any ¢ € D:

| @0 peds= -0 [ gprpds
n Rn
Hence, if we consider here f and D*f as distributions, then we obtain (1.100).
Using (1.100) we can compute the derivatives of the d-function as follows:
(D3, ) = (1) D¢ (0).
It follows from (1.100) that, for the Laplace operator A,

(Af, o) = ([, Ap). (1.101)

A distribution f is called harmonic if it satisfies the Laplace equation A f = 0. By (1.101),
f € D’ is harmonic if and only if

(f,Ap) =0 Vp eD. (1.102)

Recall that a continuous function f is called weakly harmonic if for all ¢ € D

fApdr =0,
R7
which can be equivalently written as (1.102). Hence, a continuous function f is weakly
harmonic if and only if f is harmonic as a distribution. We have proved in Lemma 1.26
that any weakly harmonic function is harmonic. This lemma can be extended as follows:
any harmonic distribution is in fact a harmonic function.
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1.15 “*Euler-Lagrange equation

Let 2 be a bounded domain in R". Consider a more general variational problem

{ Jo £ (z,u, Vu) dz +— min (1.103)

u = on 0}

where L (z,p, q1, ..., q,) is a given function, called Lagrangian, and u is an unknown func-
tion. If u € C? () is a solution of (1.103) then we can again compare v with v = u + tw,
where w € C§° (€2) and ¢t € R. The function tw is called a variation of u.

By the way, the branch of mathematics that studies variational problems is called
variational calculus. The main idea here is the same as in the proof of Fermat’s theorem
in classical Analysis. In order to obtain points of minimum of a real valued function F(z)
of a variable z € R", let us compare F(z) at the minimum point z with F' (z 4 tw), where
w € R" and t € R (that is, tw is an increment of the argument z). As we know from
Analysis, if the function F' is differentiable, then the condition

F(z+tw) > F(z)
leads for t — 0 to
Fz)+tw-F'(z)+o(t) > F(z).
Since the latter has to be true both for ¢ > 0 and ¢t < 0, we obtain that w- F'(z) = 0, and
since this has to be true for all w, we obtain

F'(z) = 0.

This equation is a necessary condition for z to be a point of minimum and it can be used
to determine z or at least candidates for z.

Returning to the variational problem and assuming that £ is continuously differen-
tiable in p, ¢ and that t is small, we obtain as t — 0

L(x,u+ tw, Vu+tVw) = L (x,u, Vu) + twd,L (z,u, Vu) + tVw - 0,L (x,u, Vu) + o (t).

The condition

L (z,u+tw, Vu+ tVw)dx > / L (z,u, Vu)dz

Q Q

implies

/ t [wo,L (z,u, Vu) + Vw - 9,L (x,u, Vu)| dx > o(t),
Q

and the fact, that this has to be true both for ¢ > 0 and ¢ < 0, implies that
/ (WO, L (x,u, Vu) + Vw - 0,L (x,u, Vu)| dz = 0. (1.104)
Q

Consider a vector field
v=0,L (x,u,Vu).

Since
div (wv) = Vw - v + wdivy
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(see Exercises) and by the divergence theorem

/div(wv) dx:/ wvdo =0,
0 o0

/Vwmdac:—/wdivvdx.
Q Q

Substituting this into (1.104), we obtain

we obtain that

/ w [0,L (z,u, Vu) — div 0,L (x,u, Vu)| dx = 0,
0

where div is taken with respect to z. Since w is arbitrary, we obtain the u satisfies the
following PDE in €:
0L (z,u, Vu) = div 9,L (x,u, Vu) ,

or more explicitly
0pL (1, V) = Y 0,,05,L (x,u, Vu) . (1.105)
i=1
This PDE is called the Euler-Lagrange equation of the problem (1.103).
For example, the problem (V') corresponds to the Lagrangian
L(z,p.q) = ¢+ ... + .
Then 0,£ =0, 9,,L = 2¢;, and (1.105) becomes
0="> 0y, (205,u),

which is equivalent to Au = 0.
The variational problem (1.88) has the Lagrangian

L(x,p,q) = \/1+q%+---+q7%'

Since

8ql.£= & 9
VItE+..+¢

we obtain the following Euler-Lagrange equation

n
Oy,

So, (2
i=1 \/1+ |Vul?

that is called the minimal surface equation.

=0

1.16 *Dirichlet problem in arbitrary domains (overview)

We discuss here various methods of proof of the solvability of the Dirichlet problem in an
arbitrary bounded open set 2 C R"™. In the case of a ball we have solved the Dirichlet
problem by constructing the Green function. However, this method does not work for
general domains because construction of the Green function in general domains requires
solution of a certain Dirichlet problem. We state below only the ideas of the methods,
without rigorous statements.
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Perron’s method.

Let u be a solution to the Dirichlet problem

ieo om0 (1.106)

{ Au=0 1in
Observe that if v is a superharmonic function in €2 such that v > ¢ on 92, then by the
minimum principle we obtain v > wu. It follows that

u(z) = inf {v(x) : v is superharmonic in 2 and v > ¢ on N} . (1.107)

This formula can be used to define a function u(x). Indeed, there are always superhar-
monic functions v with v > ¢ on 952, for example, large enough constants, so that the
right hand side of (1.107) always makes sense.

The main idea of Perron’s method is a non-trivial fact that the function u defined by
(1.107) is always harmonic in 2. The next step is to show that wu satisfies the boundary
condition, which can be done using certain assumptions about the boundary 02, provided
v € C(09). For example, this method works if 0f2 satisfies a so-called the cone condition,
that is, if any point x € 92 can be touched from outside €2 by a solid cone. In particular,
this is the case when (2 is a region.

Brownian motion and Kakutani’s formula.

Let {X;} be Brownian motion in R" (see Section 2.7 for more details). Then solution of
(1.106) can be determined by Kakutani’s formula:

where x € {2 and 7 is the first time when X; hits 0€) starting at x at time 0. For example,
if ) is a ball centered at x, then X is uniformly distributed on 0 and we obtain the
mean value property: wu(z) is the arithmetic mean of . In general, u(z) is a weighted
mean of ¢ where the weight is given by the exit measure of Brownian motion, that is,
by the distribution of X, on 0€). Similarly to the Perron method, one proves that u is
always a harmonic function in €2, and that u = ¢ on 0f2 provided 0f) satisfies the cone
condition.

Fredholm’s method and integral equations.

Assume that €2 is a region and let us look for the solution of (1.106) in the form

u(x) = — / OB p)e()da(y) (1.108)

where v is a new unknown function on 0€2. This formula is motivated by the Poisson
kernel of the ball that is equal to 0,G(z,y) where G is the Green function of the ball.
Since we do not know the Green function of €2, we use in (1.108) the fundamental solution
instead, but replace the boundary function ¢ by a new unknown function.
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It is easy to show that w is a harmonic function in {2, assuming that v is a reasonably
good function. The main problem is to find v so that u satisfies the boundary condition
u = @ on 0f). The key observation is the following fact: for any x € 902

lim  u(z) = %v(:c) + u(x)

z€Q,z—x

(consequently, u is in general discontinuous at 0f2). Then the boundary condition

lim  u(z) = ¢(z)

2€Q,z—x
gives the integral equation for v

So(e) — [ B y))do(y) = o)
El9)
at 0{2. The Fredholm theory develops methods for solving such integral equations. In
particular, the celebrated Fredholm alternative asserts that the existence of solution of
the integral equation for any right hand side ¢ is equivalent to the uniqueness of solution
of a certain dual integral equation. This is similar to the proof of existence of solution of
the discrete Dirichlet problem when we first proved the uniqueness. However, the proof
of the Fredholm alternative is much more complicated as it requires tools of functional
analysis, that is, the theory of infinite dimensional linear spaces.

The Dirichlet method and weak topology.

We have learned in Theorem 1.23 that instead of solving (1.106) it suffices to solve the
variational problem

2 .

u = ¢ on Jf2.

If u e C*(Q) and w € C§° () then, applying the divergence theorem to the vector field
V (wu), we obtain the identity

/qudx:—/qudx.
Q Q

This identity is used to define the notion of a weak gradient. Namely, a vector field F' in
Q) is called a weak gradient of u in Q if, for any w € C§° (1),

/dex:—/qudx.
Q Q

The weak gradient (if it exists) will also be denoted by Vu. The advantage of the notion
of weak gradient is that it can be defined for functions that are not necessarily pointwise
differentiable.

Recall that the Lebesgue space L?(£2) consists of measurable functions u in  that

are square integrable, that is,
/ u?dr < oo.
Q
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It is known that L? (Q2) is a Hilbert space with the inner product

(U, ) 12 :/uvdx.
Q

Define the Sobolev space W2 () as the subspace of L*(Q) that consists of functions u
possessing the weak gradient Vu such that [Vu| € L? (Q). The Sobolev space is a Hilbert
space with respect to the inner product

(U, V)12 = / (uv + Vu - Vo) dz. (1.110)
Q
Hence, the norm in W12 (Q) is given by

fulfe = [ (2 +190f)

We write shortly W2 = W2 (Q). Consider also the subspace W, of W2 that is the
closure of Cg° () in W2, It is possible to prove that if  is bounded then W,* admits
also an equivalent norm

o = [ (9l

which corresponds to the following inner product in VVO1 2,

(“>U)W01’2 = /QVU -Vodx.

Assume that the boundary function ¢ extends to a function in 2 and that the extended
function belongs to W2. Then we understand the boundary condition of (1.109) in the
following generalized sense:

u—pe Wy (1.111)

Indeed, we consider the functions in I/VOl ' as vanishing on 9 in some generalized sense as
they are obtained as limits of functions from C§° (£2) vanishing on df2 in the strong sense.
Setting v = u — ¢, we see that the variational problem (1.109) amounts to the following:
find a function v € W,"* where the functional

P (v) = /Q IV (v + @) da

attains its minimal value. It is easy to show that if HUHWOLz — oo then @ (v) — oo so that
we can restrict the problem of finding the minimum of ® in a ball

Bj = {v € Wa? : [[ulyre < R}

in VVO1 2 of a large enough radius R. It is also easy to see that @ is a continuous functional
in . If this problem were in a finite dimensional Euclidean space then we could have
concluded that ¢ attains its minimum in the ball by the extreme value theorem, because
the ball is compact. However, in the infinite dimensional space WO1 2 balls are not compact!

To overcome this difficulty, one introduces a so-called weak topology in VVO1 2 In
contrast to the norm topology, the ball Br happens to be compact in the weak topology,
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and function ® is continuous in the weak topology (although the both statements are
non-trivial). Hence, one obtains the existence of a minimum point of ®.

The function u that one obtains in this way is an element of W2, Then one uses
additional methods to show that this function is smooth enough in 2 and continuous up
to 02, in particular, that it solves (1.106). These methods belong to the regularity theory.

The Riesz representation theorem and geometry of Hilbert spaces.

Consider now the Dirichlet problem

Au=f in
u=0 on 0f).

We will understand this problem also in a generalized sense as in the previous method.
The boundary condition we understand in the sense

u € Wy?.

The equation Au = f is equivalent to the integral identity

/wAudx:/wfdx for any w € Cj° (),
Q Q

/Vu-dea::—/wfdx.
Q Q

Since u € W, and the class of test functions w can also be extended from CZ° () to its
closure W, ?, we restate the latter identity in the form

which is equivalent to

(u, w>Wol‘2 = U (w) for any w € Wy, (1.112)

where

U (w) == —/wadm.

Clearly, ¥ is a linear functional on W,?. One can show that it is continuous. Then
one can apply the Riesz representation theorem: any continuous linear functional ¥ on a
Hilbert space has the form ¥ (w) = (w, u) for some element u of the Hilbert space. Hence,
this element u is our solution.

The proof of the Riesz representation theorem is based on the following geometric
observation. The set null set of ¥, that is, the set

N =A{w: V¥ (w)=0}

is a closed linear subspace of the given Hilbert space. The equation ¥ (w) = (w, u) implies

that u must be orthogonal to N. In the theory of Hilbert spaces one proves the existence

of a non-zero vector that is orthogonal to N. Then one finds u as a multiple of this vector.
Finally one uses the regularity theory to show that u is a smooth enough function.



78 CHAPTER 1. LAPLACE EQUATION AND HARMONIC FUNCTIONS



Chapter 2

Heat equation

The main subject of this Chapter will be the heat equation

oyu = Au,

where v = u(z,t) is an unknown function of x € R™ and ¢t € R. Here n > 1 is any natural
number. In fact, the domain of the heat equation is R"*! or a subset of R"*!,

We have seen that in the study of the Laplace equation an important role was played
by the fundamental solution of A. The heat equation possesses also a similarly important
solution.

2.1 Heat kernel

Definition. The following function

pe(z) =p(x,t) = (47rt1)"/2 exp (—%) : (2.1)

where ¢t > 0 and x € R", is called the fundamental solution of the heat equation or the
heat kernel. 1t is also called the Gauss-Weierstrass function.

The choice of notation p for the heat kernel is motivated by a probabilistic meaning
of this function that will be discussed later on.

Graphs of function x — p; (z) in R for ¢ = 1 (black), t = 5 (blue), t = 1 (green), t = 1= (red).

79
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The main properties of the heat kernel are stated in the following lemma.
Lemma 2.1 The function py(x) has the following properties:
(a) it is positive and C* smooth in R := R x (0, +00);
(b) it satisfies the heat equation
Oipr = Apy ; (2.2)

(c) it satisfies the following identity for all t > 0:
/ pe(z)de =1 ; (2.3)

(d) for any r > 0, we have
/ pe(z)dr — 0 ast — 0. (2.4)
B

c
r

Proof. (a) The smoothness and positivity of p;(z) are obvious.
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(b) In order to verify the equation (2.2), consider the function

o 1

u(z,t) :=Inp(z) = L +1In

2 4t (4m)"*

Differentiating the identity p; = e*, we obtain
8tpt = ate“ = e“@tu
and
8$k$kpt = axka:keu - (a.l‘kl‘ku + (aa:ku)2) euv

which implies
atpt — Apt =e" (8tu — Au — |VU|2> .

Hence, the heat equation (2.2) is equivalent to
dyu = Au + |Vul*.

It follows from (2.5) that

Ll
2t A2
Using that A |z|> = 2n and V |z|* = 2z, we obtain

3tu:—

2
2]

n T 9 T
A = —— = —— = —,
w=—gp Vu=-—g5 Vel =5
It follows that
2 _ \x|

which proves (2.6).
(¢) To prove (2.3), let us use the identity

/ e ds = Nz

[e.9]

that implies by a change in the integral that

/ e~/ s — \/art.

Reducing the integration in R™ to repeated integrals, we obtain

_ 1 L
/n pe(z)de = R /Rn exp (—E> dx

1 Cafttap
= m f, P 4t s

47rt”/2/ /Hexp( )dxl e

dx,,

81

(2.5)

2.7)
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! ﬁ/e i d
= — " xp | —— | dx
(drtyr2 L1 [ P\ )

1 n
= Gty (V)
=1.

(d) To verify (2.4), let us make the change y = 7 in the integral (2.4). Since dy = 2%

and, hence, dr = t"/2dy, the factor t*/? cancels out and we obtain

1 |z 1 ly|?
pe(x)de = —n/ e it dx = —n/ e 1 dy. (2.8)
/B (4t) /2 {z:]z|>r} (4m)n/2 {y:|y|2%}

c
T

Since the integral in the right hand side is convergent and % — 00 as t — 0, we obtain
that this integral tends to 0 as ¢ — 0, which was to be proved. m

2.2 Solution of the Cauchy problem

One of the most interesting and frequently used problems associated with the heat equa-

tion is the Cauchy problem (also known as the initial value problem): given a function
f(z) on R", find u(z,t) such that

{@u = Au in R ©)

U|t=0 = f

where R = R"x (0, 00). The function u is sought in the class C?(R’™") so that the both
derivatives d;u and Au make sense. The initial condition u|;—g = f can be understood in
two equivalent ways:

(i) ue C(ETI) where RTI =R" x [0, +00) and u (x,0) = f(x) for all z € R™;
(77) locally uniformly in = € R

u(z,t) — f(x)ast — 0+ . (2.9)

Indeed, if (i) is satisfied then wu is locally uniformly continuous in KZH whence
u(x,t) — u(x,0) = f(z) as t — 0+ locally uniformly in z. If (i) is satisfied then

extending u to Riﬂ by setting u (z,0) = f(x), we obtain a continuous function in @1“.

Theorem 2.2 If f is a bounded continuous function in R™ then the following function

w@t) = (o P @) = [ o= o) )y .10

n

1s C*° smooth in R’ffl and solves the Cauchy problem (C'). Moreover, the function u is
bounded and, for allt >0 and x € R",

inf f <wu(x,t) <supf. (2.11)
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Remark. Set

1 o
p(x) = pi(z) = (a7 o <_T)

and observe that

1 T
r)=—mp| — |- 2.12
p) = (1) 212
In particular, if we denote k = \/i%, then
pil) = kp (k)
which is the same rule that was used in Lemma 1.24 to create a sequence {¢;,} of mollifiers
from a mollifier ¢). The function p(x) is not a mollifier because its support is unbounded,
but it has many properties of mollifiers. In particular, the fact that the function u (x,t)
satisfies the initial condition (2.9) can be reformulated as follows:
pexf— fast—0

that is similar to the statement of Lemma 1.24 that

Y x f— f as k — oo.

01.06.23 Lecture 14

We use in the proof the following property of integrals depending on parameter.

Proposition 2.3 Let G be a non-negative integrable function on R™. Let F(x,y) be a
continuous function of (z,y) forx € Q andy € R™ where Q C R™ is an open set. Assume
that

|F (z,y)| < G(y) forallxz € Q and y € R". (2.13)

Then the function

Ua) = [ Py

is continuous in 2. Furthermore, if a partial derivative 0., F(z,y) exists, is continuous
and admits the estimate

10, F(z,y)| < G(y) forallz e Q andy e R", (2.14)

then 0,, U exists, is continuous in ) and satisfies the identity

8ku(x):/ On F(x,y)dy.
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The conditions (2.13) and (2.14) are called the domination conditions.
Proof of Theorem 2.2. Let us first prove that the function

uet) = [ pila =) flo)dy (2.15)

is C'*° smooth in R’}fi. It suffices to prove that u € C*°(£2) for any bounded open subset
Q of R™*! such that Q C R}*!. The function

F(x,t,y) = p(z —y)f(y)

as a function of (x,t) € Q and y € R” is continuous and satisfies the domination condition

Ipi(x —y) f(y)] < sup|f] (Sglg@pt(x )

= sup|f| sup ;/2 exp [ 17 ol
(@.t)e (4mt)" 4t

S CeXp (_C ’y|2) )

for some positive constants C, ¢ (we use here that, for (z,t) € €, the value of ¢ is bounded
between two positive constants and |z| is also bounded). Hence, the function u is contin-
uous in €2.

Since F' is continuously differentiable in any x; and the derivative

Ou F((x,t,y) = Opuu(x — y) f(y)

admits a similar domination condition, we obtain that u is continuously differentiable in
;. and

axku($, t) = 89%]775 (ZL‘ - y) f(y)dy

R’!L
In the same way we obtain the time derivative d;u and then by induction all partial
derivatives D*u with respect to (z,t) of any order: they all are continuous and satisfy

Du(z,t) = / Dpy (x —y) f(y)dy.

Hence, u € C*™ (R%™). It follows also that

0 — A)u(z.t) = / 0 — A pi (@ — ) fly)dy =0,

n

because p; solves the heat equation by Lemma 2.1 (cf. (2.2)).
Let us now verify (2.11). Indeed, change z = z — y in (2.15) gives

u(z,t) = / pe(2) f(z — 2)dz. (2.16)
The positivity of the heat kernel, (2.3) and (2.15) imply that

u(z) <sup f [ pz)dz = sup f
o
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and in the same way u > inf f, which proves (2.11).
Finally, let us prove (2.9). The proof is very similar to that of Lemma 1.24. By (2.3),
we have

f@) = [ n) @

which together with (2.16) yields

o) = f0) = [ () (Flo = 2) - fla) d

n

Since f is continuous at z, for any € > 0 there exists § > 0 such that
2| <d=|f(x —2)— f(z)| <e.

Furthermore, since f is locally uniformly continuous, § can be chosen locally uniformly,
that is, d can be chosen to be the same for all z varying in a compact set. Then we have

ju(z,t) = f()] <

/B () (fla — =) — f(z))dz

+

/B (&) (o — 2) — f(2)dz

c
&

< [ ndzrzawlf] [ pleie

By (2.3) we have [p, pi(z)dz =1 and by (2.4) [z pi(2)dz — 0 as t — 0. In particular, if
8
t is sufficiently small then

2sup |f| | pi(2)dz <,
B

which implies
u (1) — f(x)] < 2.

Hence, we obtain
u(z,t) — f(z) ast — 0.

The convergence here is locally uniform in x as ¢ can be chosen locally uniformly. m

Remark. It is clear from the proof that if f(z) is uniformly continuous in R" then
u(t,z) — f(x) uniformly in x € R™.

2.3 Maximum principle and uniqueness in Cauchy
problem

The Cauchy problem (C) is called bounded if the initial function f is bounded and the
solution u must also be bounded. Theorem 2.2 claims the existence of solution of the
bounded Cauchy problem for a continuous initial function f.
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The uniqueness in the bounded Cauchy problem will follow from the mazimum prin-
ciple, which is of its own interest. Let U C R™ be a bounded open set. Fix some positive
real T" and consider the cylinder

Q=Ux(0,T) Cc R

The boundary 0% is the union of three parts: the top U x {T'}, the bottom U x {0} and
the lateral boundary OU x [0,7] (where OU is the boundary of U in R").

Definition. Define the parabolic boundary 0,2 of the cylinder 2 as the union of its
bottom and the lateral boundary, that is

9,9 := (U x {0}) U (9U x [0,T]).

Note that 9,82 is a compact subset of R™**.

Rn

The parabolic boundary 0,2

Lemma 2.4 (Parabolic maximum principle) Let Q be a cylinder as above. If u € C* ()N
C(Q) and

Ou — Au < 0 in Q (2.17)
then
SUp 4 = Sup u. (2.18)
Q 3,92

Equivalently, one can write (2.18) in the form

By changing u to —u, we obtain the minimum principle: if

Ou— Au > 01in Q (2.19)
then
infu = inf u, (2.20)
Q 9,9

P

or, equivalently,

min v = min u.
Q 5,0
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In particular, if u solves the heat equation in €2 then both (2.18 and (2.20) are satisfied.

Remark. Solutions to the heat equation are called caloric functions (analogously to
harmonic functions). Any function that satisfies (2.17) is called a subsolution of the
heat equation or a subcaloric function. Any function that satisfies (2.19) is called a
supersolution of the heat equation or a supercaloric function (analogously to sub- and
superharmonic functions). Hence, subcaloric functions satisfy the maximum principle,
and supercaloric functions satisfy the minimum principle.

Proof. By hypotheses, u € C?(U x (0,T)). Let us assume first a bit more, that u €
C? (U x (0,T]), that is, v is C? up to the top of the cylinder (in the end we will get rid
of this assumption). The u satisfies dyu —Au < 0in U x (0, 7. Note that we still assume

ue C(Q).

Consider first a particular case when wu satisfies a strict inequality in U x (0, T:
Ou — Au < 0. (2.21)

Let (z0,t9) be a point of maximum of function u in Q. Let us show that (zg,ty) € 9,9,
which will imply (2.18). If (zg,%9) ¢ 0,82 then (z,%o) lies either inside €2 or at the top
of Q. In the both cases, 7o € U and 0 < t, < T. Since the function  — u (to, ) in U
attains the maximum at x = x,, we have

Op,a;u (20, t9) < Oforall j=1,..,n

whence Au (xg,t) < 0.

The restriction of u(t, z) to the lines in the direction z; and in the direction of ¢
(downwards) attains the maximum at (¢, zo).

On the other hand, the function ¢ +— w (¢, z0) in (0, o] attains its maximum at ¢t = ¢,

whence
(9tu (Io, to) Z 0

(if to < T then, in fact, dyu (xo,tp) = 0). Hence, we conclude that
(Ou — Au) (9, t9) > 0,

which contradicts (2.21).
Consider now the general case, when u satisfies dyu — Au < 0in U x (0,77]. Set

U = U — €,
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where ¢ is a positive parameter. Clearly, we have
Oue — Au. = (Oyu — Au) —e < 0.
Hence, the previous argument applies to the function u., and we conclude that

sup (u — et) = sup (u — et) .
Q 9,
Letting ¢ — 0 we obtain (2.18).

Finally, let us prove (2.18) under the assumption that v € C?(Q) (and, of course,

u € C(12)). Choose any sequence {7} },-, such that T < T and T, — T as k — oo, and
consider the cylinders Q; = U x (0,7;) . Then u € C? (U x (0,T%]) and we obtain by the
above argument that

sSup u = sup u.
Q, DpShp

As k — o0, the sequence {2} exhausts 2, that is,  is the union of all Q, which implies

Sup 4 — Sup u.
Q, Q

Similarly, {0, } exhausts 0,82 and, hence,

sup u — sup u,
pSe 0,02

whence (2.18) follows. m

Remark. As we see from the proof, the requirement that u € C? (Q) is a bit superfluous:
it suffices for u to have in Q the first time derivative d,u and all second unmixed derivatives
Oy, U

* Remark. The maximum principle remains true for a more general parabolic equation

n

3tu = Z CL»L‘j (x)@xixju + Z bk(:r)azku7
k=1

ij=1

where the right hand side is an elliptic operator.

05.06.23 Lecture 15

Now we can prove the uniqueness result.

Theorem 2.5 For any continuous function f(x), the Cauchy problem (C') has at most
one bounded solution u (x,t).

Proof. Fix some T > 0 and consider the restricted Cauchy problem

{ Owu=Au inR" x (0,7), (2.22)

U|t:0 = 0
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It suffices to prove that if u is a bounded solution of (2.22) then uw = 0. Since 7" > 0 is
arbitrary, the uniqueness in (C') will follows.
Consider the function
v(x,t) = |z|* + 2nt,

that obviously satisfies the heat equation
o = Av.
Fix some € > 0 and compare u and v in a cylinder
Q= Br x (0,7,

where R is to be chosen. At the bottom of the cylinder (that is, at ¢ = 0) we have
u =0 < ev. At the lateral boundary 9Br x [0,T] we have v > R? because |z| = R.
Therefore, ev > eR%. Choosing R so big that supu < e R?, we obtain that v < ev on the
lateral boundary of €2. Hence, the inequality u < ev holds on 9,2.

u< supu<eR’<gv

/’_ 0 u=0<gv

R7

Comparison of functions u and ev on 9,€2.

The function u — ev satisfies the heat equation in (2 and the inequality u —cv < 0 on
the parabolic boundary 0,). By Lemma 2.4, we conclude that u —ev < 0 in 2. Letting
R — oo we obtain u —ev < 0 in R™ x (0,7"). Letting ¢ — 0, we obtain v < 0. In the
same way u > 0, whence u =0. m

Remark. We have proved a bit stronger property that was claimed in Theorem 2.5: the
uniqueness of a bounded solution of the heat equation in a strip R x (0,7 .

* Unbounded Cauchy problem. In fact, the uniqueness class for solutions to the Cauchy problem is
much wider than the set of bounded functions. For example, the Tikhonov theorem says that if u (¢, x)
solves the Cauchy problem with the initial

lu (t, )| < Cexp (c \x|2) (2.23)

for some constant C' and all t > 0, z € R”, then © = 0. On the other hand, one cannot replace here |x\2
by |z|*T¢ for & > 0.

There is an example, also by Tikhonov, of a solution u (¢,z) to (2.22) that is not identical zero for
t > 0. In fact, for any ¢ > 0, the function x — w (¢, ) takes large positive and negative values and, of
course, does not satisfy (2.23). This solution of the heat equation is non-physical as it cannot represent

an actual physical temperature field.
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Theorems 2.2 and 2.5 imply that, for any bounded continuous function f, the Cauchy
problem has a unique bounded solution, given by (2.10). Let us show an amusing example
of application of this result to the heat kernel. We use the notion of convolution f * g of
two functions in R™:

frgle)= | [(z—y)gly)dy.
Rn
Proposition 2.6 The following identity is true for all ¢,s > 0
Pt * Ps = D (2.24)

Proof. Let f be a bounded continuous function in R™. By Theorem 2.2, the function
us = py * [ solves the bounded Cauchy problem with the initial function f. Consider now
the Cauchy problem with the initial function wu,:

{ O = Av in R

Vlt—o = us

Obviously, the function v(x,t) = uis(x) is a bounded solution to this problem. On the
other hand, another bounded solution is v(z,t) = p; * us(z). Since a bounded solution is
unique by Theorem 2.5, we obtain the identity

Ut+s = Pt * Us,

that is

Prrs* f=pix (ps* f).
By the associative law of convolution (which is a consequence of Fubini’s theorem), we
have

pe* (s f) = (prxps) * f,

whence

Prrs * f = (pe* ps) * f.
Since this is true for all functions f € C,(R™), we conclude that p;ys = p; * ps. ®

The identity (2.24) can also be proved by a direct computation, but this is not very
simple.

It follows from (2.24) that the one-parameter function family {p:},., forms a con-
volution semigroup, that is a semigroup with respect to the operation of convolution;
moreover, this semigroup is isomorphic to the additive semigroup of R, .

2.4 Mixed problem and separation of variables

Let U be a bounded domain in R™. Consider the following initial-boundary problem (that
is also called mized problem) in the cylinder Q = U x R,

(M)

Oyu = Au in Q,
U= on 0,2,

where ¢ is a given bounded continuous function on the parabolic boundary 9,(2. Function

u should be in the class C2 (Q) N C(Q).
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Proposition 2.7 If u is a solution of (M) then in €
inf o <u <supp. (2.25)
Consequently, the problem (M) has at most one solution.

Proof. Denote Qr = U x (0,T). By the parabolic maximum principle, we have for any
T7>0
supu = sup u < sup @
Qr BpQr 9,Q
and similarly
infu = inf u > inf .
Qr OpQp 9pQ
Letting 7" — oo we obtain (2.25).
If uy, ug are two solutions of (M) then u = uy — uy solves the problem

Ou=Au in
u=0>0 on 0,12

It follows from (2.25) that u = 0 in 2, whence also u; = uz. ®

For existence of solution of (M), we restrict ourself to the most important particular
case, when ¢ = 0 on the lateral boundary OU x [0, c0). We rewrite (M) in the form:

Oru = Au in U x (0,00)
u(x,t) =0 on OU x [0,00) (boundary condition) (MO)
u(z,0) =p(z) in U (initial condition)

where ¢ is now a given function on U such that ¢|s = 0. The latter makes consistent
the boundary condition and initial condition.

In order to solve (M0), we use the method of separation of variables as follows. Let
us first look for a solution to the heat equation in the form u (z,t) = v(z)w (¢). Then the
equation 0;u = Au becomes

vw' = (Av) w,

which is equivalent to
/

w Av
w v

Since the left hand side is a function of ¢ and the right hand side is a function of x, the
identity can hold only if they both are constant. Denote this constant by —\, so that we
obtain two equations:

Av+ X =0 and w' + \w = 0.

In fact, we require that v = 0 on QU because then also u (z,t) = 0 on OU x [0, T]. Hence,
we obtain for v the following eigenvalue problem:

Av+ =0 inU
{ v=20 on OU. (E)
Of course, we require that v € C? (U) N C (U) and v # 0 (clearly, the solution v = 0 has
no value for us). The question is to find non-trivial solutions v to (E) as well as those
values of A for which non-trivial solution exists.
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Definition. If, for some A, the eigenvalue problem (F) admits a non-trivial solution v,
then this A is called an eigenvalue of (E) and the solution v is called an eigenfunction.

* This problem is similar to the eigenvalue problem in linear algebra: if A is a linear operator in a linear
space V over R or C then ) is an eigenvalue of A if the equation Av = Av has a non-zero solution v € V,
that is called eigenvector. It is known that any operator in an n-dimensional space V' has at most n

eigenvalues (and at least 1 eigenvalue if V' is over C).

As we shall see later, the problem (E) has a countable sequence of eigenvalues that
are positive real numbers. Moreover, they can be enumerated as an increasing sequence
{)\k},jil such that A\, — oo as k — o0. Let v, be an eigenfunction that corresponds to .

Solving w’ + Ayw = 0 we obtain w = Ce !, Hence, for any k& € N, we obtain the
following solution to the heat equation:

g (1,1) = iy ()

that satisfies also the boundary condition u, = 0 on OU x [0, 00). Let us look for solution
u(x,t) of (MO) in the form of a linear combination of all u:

U (I,t) = chuk (I,t) )
k=1

for appropriate constants c;. Note that uy (z,0) = vg(x). Hence, for t = 0 we obtain the
identity

p(r) = cuk(), (2.26)

which can be used to determine c;. However, the question arises why such an expansion
is possible for an arbitrary initial function . For a general domain U this problem will
be addressed in the last Chapter.

However, in the case when n = 1 and U is an interval, the question of representation
(2.26) can be solved as follows. Let U = (0, 7). The mixed problem (M0) becomes

Oyu = Ozt in (0,7) x (0,00)
u(0,t) =u(m,t) =0 forte|0,00) : (2.27)
u(z,0) = p(z) for z € [0, 7

where ¢(x) is a given continuous function on [0, 7| that vanishes at = 0 and x = m. The
eigenvalue problem (E) becomes

{ V" + X =0 in (0,m)
v(0)=wv(m)=0.

If A < 0 then setting A = —a? we obtain the general solution of v” — v = 0 in the form
v(x) = Cre™® + Cre ",

that cannot vanish at two points unless it is identical zero. In the case A = 0 the general
solution is v(z) = C} + Cyx that also cannot vanish at two points. Assume A > 0. Then
the general solution is

v(z) = Cy sin V Az 4 Cy cos VAz.
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At = = 0 we obtain v (0) = Cy, whence Cy = 0. Take without loss of generality that
Cy = 1 and, hence, v(z) = sinv/Az. At © = 7 we obtain v (r) = sin /A7 so that we
obtain the equation for A:

sin VA = 0.

Solutions are VA = k € N, that is, A\, = k2. Hence, we have determined the sequence of
the eigenvalues A\, = k%, k = 1,2, .... The corresponding to )\ eigenfunction is vj, = sin k.
Hence, the solution of (2.27) will be sought in the form

u(w,t) = Z;O:l cre " tsin ka |, (2.28)

where ¢;, are determined from
o(x) = ch sin kz. (2.29)
k=1

Claim. Any function ¢ € C* ([0, 7)) with ¢ (0) = ¢ (1) = 0 admits an expansion (2.29)
with the coefficients ¢, such that

D Jer| < oo (2.30)
k=1

In particular, the series (2.29) converges absolutely and uniformly.

Proof. Indeed, let us extend ¢ to [—m, 7] oddly, by setting ¢(z) = —¢ (—z) for < 0.
Then extend ¢ from [—7, 7| to a 2m-periodic function on R.

A

Then ¢ € C'(R) and, hence, ¢ allows an expansion into a Fourier series

a - :
o(x) = 30 + ; (ay cos kx + by sin k),

with Y72 (Jax| + |bk|) < co. Recall that

1 [" 1 [7
ap = —/ o(x)coskrdr and by = —/ o(x) sin kx dx.
7r

™ J_x —T

Since ¢ is odd and cos kx is even, we obtain that a; = 0. Renaming b into ¢, we obtain
the expansion (2.29), where

1 [" 2 [T
k= —/ o(x) sin kx dx = —/ o(x) sin kx dx. (2.31)
0

- T
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Proposition 2.8 Assume that ¢ is given by a series (2.29) with the coefficients satisfying
(2.30). Then the Fourier series (2.28) determines a solution of (2.27).

In particular, this Proposition applies when ¢ € C* ([0, 7]) and ¢ (0) = ¢ (7) = 0.
Proof. Since
|cwe ™ sin kx| < |l

the series (2.28) converges absolutely and uniformly for all z € [0, 7] and ¢ > 0. Hence,
u e C([0,7] x [0,00)).

Let us show that d;u exists. The term-by-term differentiation in ¢ of the series (2.28)
gives the series

Oru (x,t) chkQ “sin k. (2.32)

For justification of the equality here, we Wlll verify that the series in the right hand side
of (2.32) converges in [0, 7] x (0,00) locally uniformly. Fix ¢ > 0 and observe that, for
t> ¢,

cek?e ™t sin kx‘ < |ep| K2 < M. |cy]

where
M. = sup e e < oo
k>1
Hence, the series (2.32) converges absolutely and uniformly in [0, 7] X (g, 00). Since € > 0
is arbitrary, it follows that this series converges locally uniformly in [0, 7] X (0, 00). Hence,
the sum of the series in this domain is a continuous function that is equal to 0O;u.
In the same way, we prove that, for x € [0,7] and ¢ € (0, 00),

t) = Z cpke ™ cos ka
k=1

and
o

Ot (1) = — Z cek?e ™ sin k. (2.33)
k=1
Moreover, similar identities hold for all other partial derivatives of u with respect to =
and t. It follows that u € C* ([0, 7] x (0,00)). Comparison of (2.32) and (2.33) shows
that d,u = 0,,u. The boundary and initial conditions are obvious, so u is a solution of
(2.27). =

Example. Consider the function ¢(x) = z (7 —z) on [0,7]. Computing by (2.31) its
Fourier coefficients yields

9 [m 0, k even

_ 2 PR _ 92.34

Ck 7T/0 x (m — x)sinkx dz 17 k odd (2.34)
k3

Therefore, we obtain the solution u of (2.27) as follows:

EDIE

k odd

—k;2 8 e~ 9t e~ 25t
& sin kx = ( tsing + 2—78in3x + 15

sin 5z + ) . (2.35)
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Note that by Proposition 2.7 we have u > 0 although this is not obvious from (2.35). It
follows also from (2.35) that, for any = € (0,7),

8 _, .
u(x,t) ~ —e 'sinx ast— oc.
7r

Hence, for large ¢, the function = — wu (z,t) takes the shape of sin x.

25T

20T

05T

0.0 t t f
0 1 2 3
X

Solution u (z,t) at t =0, ¢t =1, t = 2sin t0

Since the series (2.35) converges uniformly, integrating it in z over [0, 7], we obtain,
for any t > 0,

T 8 1 i 16 1
/ u(x,t)de = — Z Ee_k%/ sin kx dr = — Z Ee_k%,
0 Tk odd Nl o T Kodd
—2/k

which implies

T 16
/ u(z,t)dr ~ —e ' ast — oo,
0 7r

The physical meaning of this integral is the heat energy (heat contents) of the interval
[0, 7] at time t. Due to the “cooling” condition at the boundary, the heat energy decays
to 0 exponentially as t — oc.

2.5 *Mixed problem with the source function

Consider now the Dirichlet problem in (0, 7) x R, with the source function f (x,t) at the
right hand side:
Oyt — Ogeu = f(x,t) in (0,7) x (0,00)
u(0,t) =u(m,t)=0 fort e [0,+00) (2.36)
u(x,0)=0 for z € [0, 7] .
Alongside with the method of separation of variables, we use also the method of wvariation

of constants. Namely, we search for solution u in the form (2.28) but now ¢, will be
unknown functions of ¢:

u(x,t) = Z e (t) et sin k. (2.37)
k=1

o0
Assuming that we can differentiate the series term-by-term, we obtain

o

Ou = Z (ch (t) — ci (t) K?) e ¥ sin ka

k=1
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and
o
Opptl = — Z cx (1) k2e %t sin ka
k=1
whence

Ot — Opptt = Z ¢, (t) e sin k.
k=1
On the other hand, expanding the function f (z,t) in a series in sin kx yields
flat)=>" fu(t)sinke
k=1

where

fr (t) = %/wa(x,t)sink:mdx.

Comparing (2.38) and (2.39) we obtain the following equations for functions c:

d (t) e = fi(t).
The initial condition wu|,—o will be satisfied if we require that

Hence, solving (2.40) with this initial condition, we obtain

o (t) = /Ot i (s) €°ds.

(2.38)

(2.39)

(2.40)

(2.41)

Of course, in order to be rigorous, one needs to investigate the convergence of the series
(2.37) as we did in Proposition 2.8, and verify that the series can be differentiated term-
by-term. We skip this part but observe that if the series in (2.39) is finite then the series
(2.37) is also finite, and no further justification is needed. Consider an example of this

type.

Example. Let
f(z,t) = e 'sinx + tsin 2.

We obtain from (2.41)
¢
c () = / e *e’ds =t
0

t 11 1
t — 4Sd — _t__ 4t _
2 (1) /0 e s (4 16)e T

while ¢, = 0 for all £ > 3. Hence, the solution w is

and

w(z,t) = c(t)e'sing + ¢y (t) e *sin 2z
1 1 1
= te 'sinz + (Zt 16 + Ee““) sin 2.

In particular, we obtain the following asymptotic as t — oo for any x € (0, 7):

te™! r=1
~ ’ 2
u(@?) { ttsin2z, x#7/2



2.6. *CAUCHY PROBLEM WITH SOURCE FUNCTION AND DUHAMEL’S PRINCIPLE97

Solution u(x,t)

2.6 *Cauchy problem with source function and Duhamel’s
principle

Let ¢(z) be a function in some domain D C R™. Recall that the notation p € C* (D)
means that ¢ has in D all partial derivatives of the order at most k and all these derivatives
are continuous in D. We write ¢ € CF (D) if in addition all these derivatives are bounded
in D. In particular, Cj, (D) is the set of all bounded continuous functions in D.

Let f (z,t) be a function in some domain D C R""!. We write f € C* (D) if f has
all partial derivatives in x of the order at most k£ and in ¢ of the order at most [, and
all these derivatives are continuous in D. We write f € le ! (D) if in addition all these
derivatives are bounded in D. We use the convention that the derivative of the order zero
is the function itself.

Given a function f (r,t) in R and a function ¢(z) in R", consider the following
Cauchy problem

{ Ou—Au=f in R (2.49)

U‘t:() =@
where the solution u is sought in the class C*! (R7*) N C (ETI).

Lemma 2.9 There is at most one solution u of (2.42) that is bounded in any strip R™ x
(0,T) with T < 0.

Proof. Indeed, if uy, uy are two solutions, then u = u; — uy is a bounded in R™ x (0, 7))

solution of
ou—Au=0
U|t:0 =0.
By Theorem 2.5 we obtain v = 0 and, hence, u; = uy. ®
Let us use the following notations: u;(x) := u (z,t) and fi(z) = f (z,t).
Theorem 2.10 (Duhamel’s principle) Assume that ¢ € C, (R") and f € C’f’o(ﬁiﬂ).
Then the problem (2.42) has the following solution

t
U = pt % SD -"‘ / pt—S * fS dS (243)
0
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Moreover, the following estimate holds:
sup [u;| < sup || +tsup |f]. (2.44)
Since by (2.44) the solution u is bounded in any strip R™ x (0,7"), we see by Lemma

2.9 that it is the unique solution of this class.

Example. Assume that ¢ = 0. If f = 1 then p,_¢ x 1 = 1 and we obtain by (2.43)
u(x) = t.
Consider one more example when f;(x) = ps(x).Then

Pi—s * fs =Pit—s *Ps = Pt
and we obtain from (2.43) that u,(z) = tp:(z).
For the proof of Theorem 2.10 we need some lemmas. We use the following notation

* f, t>0,
Ptf_{];ct f t=0.

If f € C,(R™) then, for t > 0, the function P, f is also in C}, (R"™) so that P, can be
considered as an operator in Cj, (R™). We consider P, f(z) as a function of x and ¢. Note

that, by Theorem 2.2, the function P, f(x) belongs to C*° (R’*') N C’b(KTI). In the next

. . . =ntl
statement we investigate the smoothness of P, f(z) in RT .

Lemma 2.11 For any integer k > 0, if f € CF(R") then P, f(x) € C’f’o(ﬁiﬂ). More-
over, for any partial derivative D in x of the order |o| < k, and any t > 0,
DP,f = P, (D“f). (2.45)

Furthermore, if f € C¢ (R™) then P,f(z) € Cf’l(@iﬂ).

Proof. The case k = 0 follows from Theorem 2.2 as it was already mentioned. Let k& = 1.
For any ¢ > 0 we have

0.1 =0, | m()f @ =)y
— [ nl)0.f @) dy

because the latter integral converges absolutely and uniformly in z, due to the bounded-
ness of d,, f. Hence,
For ¢t = 0 this identity is trivial. Since 0., f € Cj, (R™), it follows that P; (0., f) € Cb(mﬂ)

and, hence, P,f € Cbl’o(@iﬂ).
For a general k the result follows by induction.
If f € C?(R") then we obtain by Theorem 2.2 and (2.45) that, for ¢ > 0,

b f=APf=PF(Af).
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Since Af € Cy(R"™), we have P, (Af) € C’b(@iﬂ), which implies that also 0;P.f €
Cy(R}™). Hence, P,f € C2Y(R}™). m

It follows from the estimate (2.11) of Theorem 2.2, that if {fx} is a sequence of
functions from Cj, (R™) such that fr = f in R™ then

—n+1

P.fr(z) = P.f(x) in Ry

In the next lemma we prove a similar property with respect to the local uniform conver-
gence.

Lemma 2.12 Let {f} be a sequence of uniformly bounded continuous functions in R™.
If fr(x) — f(x) as k — oo locally uniformly in x € R™ then

Pifi(x) — Pif(z)

—n+1

locally uniformly in (x,t) € R,

Proof. Fix some x € R™ and choose R large enough, in particular R > 2|z|. For any
€ > 0 and for all large enough k we have

sup If — fl <e. (2.46)
Set

9x = Jfilp, and hy = frlpe
g = [lp, andh=flpg

so that gp + hy = fr and g + h = f. Then we have

\P, fe — P f| < |Pgr, — Pig| + | Pehi, — Pih|
<|Pgr — Pig| + |Pihi| + [ PR .

By (2.46) we have
sup lgr —g| < ¢

whence it follows that

sup sup |Pgr — Pig| < e.
>0 zeRn

Next, we have
Piula) = [ pia =) fw)dy itt>0
By
and
By R > 2|z| we have
BR/Q(Q?) - BR

and, hence,
B]c{ C BR/Q(IL‘)C.
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Since | fi| < C where C' is the same constant for all k, we obtain

Pohi(2)] < o/ pi (z — y) dy

BE%/Q(‘T)

o] e

R/2

= C’/ e 1P gy
{w:|w|>t*1/2R/2}

— 0 as R — oo,

where the convergence is uniform in any bounded domain in (x,¢) € R}, In the same
way Ph(z) — 0 as R — 0, whence the claim follows. =

Now we consider a function fi(z) = f(z,s) of (x,s) € RTl. Then P, fs(x) is a

function of the triple

n-+2

(z,t,8) € Ry == {(z,t,s) : 2 € R",t,s € [0,400)} .

Lemma 2.13 The following is true.

(a) If f € CyR™) then Pf.(x) € Cy(RT).

—n-+1

(b) If f € CPORTT) then Pof,(x) € CPYORTT).

Here the class C;"*" means the existence of bounded continuous derivatives in z of the
order at most 2, in ¢ of the order at most 1 and in s of the order 0.

Proof. (a) For any s > 0, the function P,fs is continuous in (z,t) € @Tl, and

sup | B fs(2)] < sup |fo(z)| < sup [f (z,5)] < o0

(r,t)eﬁf—l z€R™ (m,s)eﬁr_ﬁ—l

It remains to prove that P, fs(z) is jointly continuous in (z,¢,s). Since this function is
continuous in (z,t) for any s > 0, it suffices to show that it is also continuous in s, locally
uniformly in (z,t). Indeed, since the function f(z,s) is bounded and locally uniformly
continuous, the family {f,},., of functions on R" is uniformly bounded and f, — f, as
s — 8o locally uniformly in . Hence, by Lemma 2.12, P,f, — P, f, locally uniformly in
(x,t), which finishes the proof.

(b) By Lemma 2.11, for any partial derivative D* in z of the order |a| < 2 we have

Daptfs = ]Dt (Dafs) .
Since D f, € Cb(@i“), we have by (a) that also D*P,f, € Cb(ﬁiﬁ).
For the time derivative 0; we have

atptfs =A (Ptfs) = Pt (Afs> .

Since Af, € C’b(JRTiH), we obtain O;P; f, € Cb(@Tz). Hence, P, f, € Cf’l’O(RTQ). ]
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Proof of Theorem 2.10. In the view of Theorem 2.2, it suffices to prove that the
function

v(z) =v(t,x) = /0 s * fs(x)ds = / P,_sfs (z)ds (2.47)

0
is a solution of the Cauchy problem

o —Av=f inR!
V]t=o =0 in R™.

By Lemma 2.13, the function P,_,f,(z) belongs to C;""? in the domain z € R™, ¢ > s > 0.
It follows from (2.47) that v € C (@Tl) and v|;—o = 0. It follows also from (2.47) that

t t
ol < [ sup|Prufilds < [ suplslds = tsupl ],
0 n 0

which implies (2.44).
Let us show that v € O%! (RTI) and that v satisfies Oyjv — Av = f. Let us first
compute dyv. We have by (2.47)

atv = Pt—sfs|s:t + /0 815 (Pt—sfs) ds = ft + /0 A (Pt—sfs) dS, (248)

which is justified because J; (P,_sfs) belongs to Cy. It follows that d,v € C (@Tl)
Let D be any partial derivative in x of the order < 2. By Lemma 2.11 we have
D*(P,_sfs) € Cp, whence by (2.47)

Doy = /0 D* (P, f. ) ds. (2.49)

It follows that D*v € C’(Eiﬂ) and, hence, v € 02’1(E1+1).

Finally, we have by (2.49)

t
Av= / A(Pof.) ds,
0

which together with (2.48) implies
0w — Av = fi,

which was to be proved. m

2.7 *Brownian motion

Brownian motion in R" is a diffusion process that is described by random continuous
paths {X;},., in R" and by the family {IP,} _g. of probability measures, so that each P,
is a probability measure on the set 2, of all continuous paths w : [0,00) — R" such that
isw(0) = z.
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Brownian motion simulation in 2D

05

<-X-->

Brownian path in R?

Let us briefly explain the construction of {P,}. It suffices to define P, first on subsets
of 2, of the following type:

{weQ w(t) € Ay, ...,w(ty) € A}, (2.50)

where 0 < t; < ty < ... <t} is any finite sequence of reals and Ay, ..., A is any sequence
of Borel subsets of R™. Under certain consistency condition, PP, can be then extended to
a o-algebra F, in , thus giving a probability space (2., F,,P,), for any z € R™.

There are various ways of defining P, on the sets (2.50). We use for that the heat
kernel p;(z). Let us write p;(z,y) = p; (x — y) and set

P, (w () € Ay, oyw (1) € Ap) (2.51)

= / / Dy (T, 21) Dry—ty (T1,22) .. Pty —t,_, (Th—1, Tp) dq...dxy.
A, Ja,

The consistency condition that has to be verified is the following: if A; = R™ for some ¢,
then the condition w (¢;) € A; can be dropped without affecting the probability, that is,
P, (w(ty) € Ar,eoyw (t) € R L w (tr) € Ak) =Pp(w (t1) € A, ooy vy oy w (tr) € Ag),
(2.52)
where in the right hand side the ¢-th condition is omitted. Indeed, if ¢« = k then integrating
in (2.51) first in dxj and using that

/ Pty—ti_q (xkfla 1‘1@) dxy =1,
we obtain (2.52). If i < k then integrating in (2.51) first in dz; and using

/ pti—ti_l ('ri—17 xi)pt“_l—ti ('Iiv xi-‘rl) dxz - ptH_l—ti_l (xi—17 xi-ﬁ-l) )
n

we again obtain (2.52) (in the case i = 1 use the convention ¢ty = 0 and =g = ).
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The random path X, is a random variable on 2, that is defined by X, (w) = w (t). It
follows from (2.51) with k = 1 that

1 o~y
IPIXGA:/ x, d:/—ex — dy, 2.53
(X; € 4) Apt( y)dy ) p< T y (2.53)

which gives the distribution function of Xj.

Event X; € A

The formula (2.53) can be extended as follows: for any bounded Borel function f on
R™

E, (f (X)) = / P, y) F () dy. (2.54)

n

Note that (2.53) is a particular case of (2.54) for f = 14. Comparison with Theorem 2.54
yields Dynkin’s formula: the function

u(z,t) = E, (f (X))

is the solution of the Cauchy problem for the heat equation with the initial function f.
As it was already mentioned above, the Dirichlet problem

Au=0 in
u=¢ on 0f)

in a bounded domain €2 C R" can be solved by means of Kakutani’s formula
u(@) =E; (¢ (X7)), (2.55)

where 7 :=inf {t > 0: X, ¢ Q} is the first exit time of X; from Q.
Consider a more general boundary value problem

{ Au+Vu=0 in(, (2.56)

U= on 01},

where V' (z) is a given continuous function in 2. The operator A+ V is called a stationary
Schrodinger operator. Under certain natural assumptions about V' and ¢, one can prove
that the solution of (2.56) is given by the following Feynman-Kac formula:

u(z) = E, (exp ( /0 TV(Xt)dt) gp(XT)) | (2.57)

Clearly, (2.55) is a particular case of (2.57) for V = 0.
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Chapter 3

Wave equation

12.06.23 Lecture 16

Here we will be concerned with the wave equation
3ttu = Au (31)

where u = wu(z,t) is a function of + € R™ and ¢ € R. Recall that the physical wave
equation contains a parameter ¢ > 0:

Opu = 2 Aw. (3.2)

The parameter ¢ plays an important physical role as the speed of wave. However, the
change s = ct reduces the latter PDE to Ossu = Au, which is equivalent to (3.1). Hence,
all results for (3.1) can be reformulated for (3.1) using the change of time.

Note also that the change s = —t brings (3.1) to the same form Ossu = Au, which
means that the properties of the wave equation for ¢ > 0 and for ¢ < 0 are the same,
unlike the heat equation.

One of the main problems associated with the wave equation is the Cauchy problem:

(9ttu = Au in RZL_+1
Ulj=o=9¢g InR" (3.3)
3tu]t:0 =h inR"

where g(z) and h(x) are given function. Solution u is sought in the class u € C? (Eiﬂ).

Clearly, for that we must have
ge C?*(R™) and heC'(R"), (3.4)

which will be assumed in what follows. The method of solving (3.3) depends on the
dimension n, so we consider separately the cases n = 1,2, 3.

3.1 Cauchy problem in dimension 1

Consider the Cauchy problem in the case n = 1:

ﬁttu = ﬁmu in Ri
ulj—o=9g R (3.5)
Owuli—o =h in R

105
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We have seen in Section 0.2 that a general C? solution of the wave equation
8ti&u = axacu
in R? (or in RY) is given by (0.14), that is,
u(z,t)=F(x+1t)+G(x—1), (3.6)

where F' and G are arbitrary C? functions on R.
Let us find F' and G to satisfy the initial conditions

u(z,0)=g(x), Ou(x,0)=h(z).
Indeed, substituting into (3.6) ¢ = 0 we obtain equation
g(x) = F(z) + G(z). (3.7)

It follows from (3.6) that
u=F(x+t)—G (z—1),

and setting ¢ = 0 we obtain one more equation
h(z) = F'(z) — G'(z). (3.8)
Assuming g € C? and h € C', we solve the system (3.7)-(3.8) as follows. Differentiating

(3.7) we obtain
g (z) = F'(z) + G'(x),
which together with (3.8) gives

1 /
F(x) = L () + h(a)
and .
G'(x) = L (¢ ()  h(a)
Therefore, we obtain
1
=3 ( )dy) +C (3.9)
and .
=3 ( )dy) C, (3.10)
so that ' and G satisfy (3.7) and (3.8). Substltutlng into (3.6) we obtain that
T+t
u(z,t)=1(g (x+t)+g(z—t))+%/ h(y)dy|. (3.11)
z—t

Let us state the outcome of the above argument as follows.

Theorem 3.1 (D’Alembert’s formula) If g € C? (R) and h € C' (R) then the function
(3.11) is a unique solution of (3.5).
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Proof. The uniqueness is clear since we have obtained (3.11) assuming that a solution
u exists. It remains to verify that the function u from (3.11) solves (3.5). Indeed, this
function satisfies (3.6), that is,

u(z,t)=F(x+t)+G(x—1),

where the functions F and G are given by (3.9) and (3.10). Since F, G € C* (R), it follows
that v € C? (R?) and u satisfies the wave equation in R?. Finally, u satisfies the initial
conditions by the choice of F,G. =

Note that we have obtained a solution u of the Cauchy problem (3.5) not only in R
but in the whole R

Example. Consider the initial functions
g(x) =sinz and h(z) = z.

Then (3.11) gives

u(x,t):%(Sin(x—l—t)+sin(m_t))+l((x—i-t) B (x —t) )

2 2 2

= sinxcost + xt.

The Cauchy problem in higher dimensions is more difficult and we return to it later
on.

3.2 Uniqueness in the mixed problem

Given a bounded domain U in R™ and T' € (0, o¢], consider the mixed problem for the
wave equation in the cylinder Q@ = U x (0,7):

Opu = Au  in €
u=g on 0,0 | (M)
(9tu\t:0 =h inU

where g and h are given functions.

Theorem 3.2 IfU is a region then the problem (M) has at most one solution u € C%(€2).

Proof. It suffices to prove that if ¢ = 0 and A = 0 then u = 0. Consider the energy of
the solution w at time t:

E(t) = %/U((atu)% IVul?) da. (3.12)

Since u € C?(Q), the function E (t) is C* in t € [0,T). Differentiating E(t) in ¢, we
obtain

1
E' (t) = §/U (0 (Ou)* + 0, (Vu - Vu)) dz = /U (Opu Oyu + Vu - Voyu) du.
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Now we use the Green formula (1.97) of Lemma 1.27. We have u(-,t) € C%(U) and
w = (-, t) € CH(U).

Since u = 0 on the lateral boundary 0U x [0,7"), we obtain w = dyu = 0 on U x [0,T)).
Hence, we obtain by (1.97)

/Vu-vatudx:/Vu-dex:—/wAudx+/ w@,,uda:—/wAudx.
U U U U U

It follows that

E'(t) = / (wOyu — wAU) do = / w (Oyu — Au) dx = 0.
U U
Therefore, E (t) = const on [0,7).

Since E (0) = 0 (by the initial conditions v = 0 and J,u = 0 at ¢t = 0), we conclude
that £ () = 0. This implies that the functions d;u and |Vu| are identically equal to zero
in 2, whence v = const in 2. The initial condition v = 0 implies © = 0 in 2, which was
to be proved. m

The physical meaning of the function (3.12) is as follows. If u (z,t) is the displacement
of a vibrating membrane over U, then 1 (8yu)? is (the density of) the kinetic energy at

the point z at time ¢, while 1 |Vu|? is (the density of) the potential energy of tension,
because the latter is proportional to the increase of the area

1
\/1+|Vu|2—1%§|Vu|2.

We have proved that the energy E(t) of the vibrating membrane with a fixed boundary
remains constant, which is an instance of the law of conservation of energy.

15.06.23 Lecture 17

3.3 Solution of the mixed problem

Let U be a bounded domain in R” and @ = U x (0, c0). Consider the mixed problem for
the wave equation in 2 with the vanishing boundary condition:

Oypu = Au  in Q
u=0 on U x [0, 00)
ulio=9 U
Ou|g—o = h in U

(M)

where g and h are given functions. A solution is sought in the class u € C%(Q). The
condition u € C?*(Q) implies that

g€ C*(U) and h e CY(U). (3.13)
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The functions ¢ and A have to be compatible with the boundary condition u = 0 on
OU x [0,00). Indeed, u = 0 on U x [0,00) implies g = 0 on OU. Since also dyu = 0 on
U x [0, 00), we obtain that h = 0 on OU. Since dyu = 0 on OU x [0, 00) and Oyu = Au in
Q, we obtain that Au = 0 on U x [0, c0), which at ¢ = 0 implies Ag = 0 on OU. Hence,
we obtain the following compatibility conditions for ¢ and h:

g=h=Ag=0on0dU. (3.14)

Since (3.13) and (3.14) are necessary conditions for the existence of a solution u € C?(€Q),
we can further assume that g and h satisfy (3.13) and (3.14).

Using the method of separation of variables, we search first for solutions of the wave
equation in the form u (z,t) = v(z)w (t). We obtain

vw"” = (Av)w

and A
vooow
—_— = — = —)\
v w
where A\ is a constant. Imposing also the boundary condition v = 0 on U, we obtain the

following eigenvalue problem

(3.15)

Av+dv=0 inU
U|8U:0

where both eigenvalues A and eigenfunctions v are to be found. This problem is the same
as the one we obtained considering the heat equation. As before, denote by {A.},-,
the sequence of the eigenvalues of (3.15) and by {vy},-, the corresponding sequence of
eigenfunctions. Recall also that all A\; > 0 by Exercise 66.
For w we obtain the equation
w’ + dw =0,

which gives for any A = A\, a solution

w (t) = ag, cos \/ At + by sin / \it,

where a5, and by are real constants. Hence, we can search the solution u of (M) in the
form

u(x,t) = Z (ak cos /At + by, sin \/)\_kt> vg(x). (3.16)

If v, € C2(Q) and the series (3.16) and all the series of its first and second derivatives
converge uniformly in Q, then we obtain « € C?(Q) and that u satisfies the wave equation
in © as well as the boundary condition u = 0 on OU X [0, 00).

The coefficients a and by should be determined from the initial conditions. Assume
that g and h have the following expansions

g(x) = grow(x) (3.17)

and

h(x) =) hyvg(). (3.18)
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Setting in (3.16) t = 0 we obtain

whence we see that a; = gi. Differentiating (3.16) in t we obtain

[e.o]

Opu(x,t) = \/A_k <—ak sin \//\_kt + by, cos \/)\_kt> vg(x)

k=1

and setting ¢ = 0 we obtain

( ) 0tu l‘ 0 Z \/_bk’l)k

k=1

whence by, = hy./+/Ax. Hence, the solution u becomes

u(z,t) = Z (gkCOS\/_H

sin \/_ t> vg(x

In order to make the above argument rigorous, we have to justify the above assumptions:
(i) v € C? (Q)

(77) A uniform convergence of the series (3.16) as well as of its first and second deriva-
tives.

However, we can justify this approach in the case n = 1. Let U = (0, 7), so that the
mixed problem (M) becomes

Ot = Ogpll in (0,7) x (0, 00)
u(0,t) =u(mt)=0 fort e 0,00)
u(x,0) = g(z) for z € {O m (3.19)

7]
Oyu (z,0) = h(x) for x € [0, 7]

We know that the sequence of the eigenvalues of this problem is A\, = k2, k € N, and the
sequence of the eigenfunctions is vy = sin kx. Assuming that

g(x) = Z grsin kx (3.20)
k=1
and .
= th sin kx, (3.21)
k=1

we obtain the (candidate for the) solution in the form

o0 h
u(x,t) = Zk:l <gk cos kt + f sin kt) sin k. (3.22)
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Proposition 3.3 Assume that
> (K |gil + K [hal) < oo. (3.23)
k=1

Then the function u from (3.22) belongs to C* ([0, 7] x R) and solves the mized problem
(3.19).

Proof. We need only to verify the above assumptions (i)-(ii). Clearly, vg(z) = sinkx €
C? ([0, 7]). Let us verify that the series (3.22) converges absolutely and uniformly for all
x € [0, 7] (even for all x € R) and t € R, and so do the series of its partial derivatives of
the order < 2.

Indeed, each differentiation in ¢ or in x results in an additional factor k in the k-th
term of (3.22), so that, for any derivative of at most second order, the additional factor is
at most k2. Hence, the uniform convergence of the series (3.22) and that for its derivatives
of the order < 2 follows from

Zk?( k|+—|> < 00,

which is equivalent to (3.23). =

However, the condition (3.23) is too restrictive. Recall that g € C* ensures only
the convergence of Y |gx|, and to obtain the convergence of Y k? |g| we have to assume
g € C3. Next theorem uses a different method to obtain (3.22) under optimal assumptions.

Theorem 3.4 Assume that
9602([0,7T]), hECl([O,ﬂ) (3.24)

and
9(0) = g (r) = ¢" (0) = ¢ () = h(0) = h () = 0. (3.25)

Then the mized problem (3.19) has a solution u € C* ([0, 7] x R). Besides, this solution
is given by the series (3.22) that converges absolutely and uniformly in [0, 7] x R.

Remark. The conditions (3.24) and (3.25) coincide with (3.13) and (3.14), respectively.
Hence, these conditions are necessary for the existence of a C? solution.

Remark. It is worth mentioning that the solution (3.22) is not only 27-periodic in z but
also 2m-periodic in t.

*Remark. Let us discuss the physical meaning of a solution
= Z (ay cos kt + by sin kt) sin ka. (3.26)
k=1

Assume that u (z,t) describes the vibration of a string initially placed at the interval [0, 7]. The value
u (x,t) is the vertical displacement of the string at point = at time ¢. The boundary condition u (0,t) =
u (m,t) means that the endpoints of the string are fixed. The initial condition u (x,0) = g(z) describes



112 CHAPTER 3. WAVE EQUATION

the initial vertical displacement of the string, and dyu (z,0) = h describes the initial speed of the string
in the vertical direction.
While vibrating, the string produces a sound whose pitch is determined by the frequency of vibration.
The term
(ay, cos kt + by, sin kt) sin ka = Ay, cos (kt + ;) sin kz,

that corresponds to the sound of frequency k, is called the k-th harmonic. The amplitude of the k-th

harmonic is
_ /.2 2
A = ay + bk

By (3.26), the sound produced by the string is superposition of the sounds of all the integer frequencies k.
The dominant frequency will be the one with the maximal amplitude. Typically this is the first harmonic
(k = 1), that is also called fundamental tone. The higher harmonics (k > 1) are called overtones. The
timbre of the sound depends on the ratio of the amplitudes of the overtones to that of the fundamental

tone.

Example. Consider the mixed problem (3.19) with ¢ = 0 and h(z) = 2 (7 — z) on [0, 7].
These functions clearly satisfy (3.24) and (3.25). The coefficients hy of the sin-Fourier of
h were computed in (2.34):

0, k even,

h, = 8
%, k Odd

Since the condition (3.23) is satisfied, the series (3.22) gives the following solution of the
mixed problem:

8 1
u(z,t) = = Z ﬁsinktsink:x
k odd

8 (. .. 1 . : 1. .
= <smtsmx + g1 om 3t sin 3z + 625 50 St sin dx + ) . (3.27)

Function x — u (x,t) at different moments of time.

*Remark. In fact, already the first term in the series (3.27) provides a reasonable approximation to w,
that is,

u(z,t) =~ %sintsin x. (3.28)

The error of approximation can be roughly estimated as follows. Using the inequality |[sin kx| < k |sin x|
that can be proved by induction in k£ € N, we obtain that, in the region 0 < z < w and 0 < t < 7,

|sin kt sin k2| < k% sinasint
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whence

1
Z T sin kt sin kx
k odd, k>3

< 1 sintsinx L2 1 )sintsinx < 0.24sintsinx

g — == - .

- k2 8
k odd, k>3

and

8 ..
u(x,t) — —sintsinx

m s

8
<0.24 ( sin ¢ sin 33) .
Hence, the error of approximation in (3.28) is at most 24%, but in practice it is much less than that.

Example. Consider the initial conditions g(x) = x(r —x) and h = 0 on [0,7]. The
function g belongs to C* ([0, 7]) and g (0) = g (7) = 0 but ¢” (0) and ¢” (7) do not vanish

because ¢”(x) = —2. The coefficients of the sin-Fourier series for this function are
{ 0, k even
gk = 8 )
m, k odd

and the series (3.22) becomes

8 1
u(x,t) = — Z — cos kt sin kx. (3.29)
k odd
The condition (3.23) is not satisfied in this case so that Proposition 3.3 does not apply.
Since the function g does not satisfy (3.14), Theorem 3.4 does not apply either.
Despite of that, the series (3.29) converges absolutely and uniformly, and the same is

true for its first derivatives so that u € C'. However, the series of the second derivative

Oy 18
8 1 . 8 1 .
— g Oy <F cos kt sin k;x) = —— E z cos kt sin kz,

™ ™
k odd k odd

which does not converge uniformly and its sum is not a continuous function, although
this is not quite obvious. In fact, in this case u ¢ C?.

Nevertheless, the mixed problem (3.19) with the initial functions g(z) = x (7 — x) and
h = 0 has a perfect physical sense: this is the problem of vibration of a string having
initially the displacement g(z) and vanishing velocity. In the absence of a C? solution,
one accepts the function u (x,t) from (3.29) as a weak solution of (3.19). The topic of
weak solutions is elaborated in Exercises 63-65.

Proof of Theorem 3.4. Let us first prove the existence of solution of (3.19). For
that, let us extend the both functions h and g from [0, 7] oddly to [—m, 7] and then 27-
periodically to R. Since the both functions belong to C' ([0, 7]) and vanish at = 0 and
x = m, these extensions belong to C'! (R) as we have seen above on p.93.

Let us verify that, in fact, g € C?(R). Indeed, the function ¢” is continuous on
[0, 7] and vanishes at * = 0 and x = 7. Since ¢” extends oddly to [—m, 7] and then
2m-periodically to R, the function ¢” is continuous on R.

Now let us solve the Cauchy problem

8ttu = 8mu in ]Ri
upmo=9g mR . (3.30)
Oiuli—o =h in R
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Since g € C? (R) and h € C*(R), by Theorem 3.1 this problem has a solution v € C? (R?).

19.06.23 Lecture 18

Let us show this the same function u solves the mixed problem (3.19). Indeed, the
wave equation and the initial conditions are true by (3.30). We need only to verify the
boundary condition

u(0,t) = u(mt) =0.

By Theorem 3.1, the solution is given by

u(x,t)=F(x+t)+G(x—1) (3.31)
where ) | e
F(a) = 59)+ 5 [ hw)dy
0
and
1 1 [
Gla) = 59(0) ~ 5 [ hlu)dy
0
Since g and h are odd functions, the function fo y)dy is even, and we obtain
1 Y 1 1 [*
G (=)= 50000 —5 [ Wy = —590) =5 [ by = ~F(a),
0 0
that is,
G(—z) = —F(z)
Hence,

u(0,t) = F(t)+ G (—t) = 0.

Since g and h are 2m-periodic and f:r h(y)dy = 0, it follows that the function F' is
2m-periodic. Hence, we obtain

u(mt)=F(n+t)+G(r—t)=F(r+t—2m)— F (-7 +1t)=0.

Hence, u is a C? solution of (3.19).
Let us show that u satisfies (3.22). Since F is 2m-periodic and F' € C*(R), it can be
represented by an absolutely and uniformly convergent Fourier series:

= %—l—; (o coskx + B sinkx) .

It follows that

G(z)=—F (—z) = —% - Z (g cos kx — (B sinkx) .

Hence, we obtain from (3.31)

Z (agcosk (z+t) + Bsink (x + 1))

)
k=1
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WE

(apcosk (x —t) — B sink (x —t))

b
Il

1

= — Z2ak sin kx sin kt + 2251@ sin kx cos kt
k=1 k=1

(ag cos kt + by sin kt) sin kz,

NE

i
I

where a, = 203, b = —2a;, and the series converges absolutely and uniformly.

Since F’ € C!, the Fourier series for F’ converges absolutely and uniformly; moreover,
it is obtained by means of term by term differentiating of the Fourier series of F. It
follows that the same is true for u: the Fourier series for d;u can be obtained by means
of term by term differentiating of the series of u, that is,

[e.9]

Oy = Z 0y (ay, cos kt + by, sin kt) sin kx = Z (—ayk sin kt + bk cos kt) sin kz.
k=1 k=1

Since the both functions g, h are 2mw-periodic and odd, their Fourier series are sin-Fourier
series as (3.20) and (3.21). Since g, h € C, the series (3.20) and (3.21) converge absolutely
and uniformly. Hence, the coefficients a; and b, of the above expansion of u can be
determined from the initial conditions as follows:

whence a; = g, and

h(z) = O (z,0) = Zbkk sin kz,
k=1

whence bk = hy. Hence, we obtain (3.22). =

Remark. We have obtained in the proof that the series for v can be differentiated in
t or in x term by term. However, we cannot prove the same for the second derivatives
unless we require g € C® and h € C?. Note that we did not use the second derivatives of
the series of u because we employed a different method to prove that u satisfies the wave
equation.

3.4 Uniqueness in the Cauchy problem
Now let us discuss uniqueness in the Cauchy problem:

Opu=Au inR" x (0,7,
ulj=o=9g  inR", (C)
Ouli—o = h in R™,

where T' € (0,00] and u € C* (R" x [0,T)).
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Theorem 3.5 (Uniqueness for the Cauchy problem the wave equation) The problem (C')
has at most one solution u € C? (R™ x [0,7)).

Note that, in contrast to the case of heat equation, there are no restrictions like
boundedness of solution.
For any g € R™ and ¢y, > 0 define the cone of dependence by

Co (m0) = {(z,t) ER™ 0 <t <o, |v—mo| <to—t}.

A

Ct,(x0)

t (x0.%0) /
A=

Bt(,-z(xo)

Clearly, the section of the cone Cy, (o) at a fixed time level ¢t € [0, %] is a closed ball
Byt (70) . In particular, the base of the cone at ¢ = 0 is the ball By, (x), the top of the
cone at t = t; is the point xg.

The following theorem plays the main role in the proof of Theorem 3.5.

Theorem 3.6 (Domain of dependence) If a function u € C? (Cy, (x0)) satisfies the wave
equation in Cy, (xg) and if

U)o = 0 and Oyuli—g =0 in By, (xo)

then
u=0 1in Cy (xg).

Proof of Theorem 3.5. It suffices to prove that if ¢ = 0 and h = 0 then u = 0.
Choose any point zp € R™ and any to € (0,7"). Since g = h = 0 in By, (29), we obtain
by Theorem 3.6 that u = 0 in the cone Cy, (o), in particular at (zo, ). Since (o, o) is
arbitrary, we obtain u = 0, which was to be proved. m

Proof of Theorem 3.6. For simplicity of notation take xq = 0 and skip z( in all
notations of balls and cones. Consider the energy of u in the ball By _; at time ¢:

F(t) = %/B ) ((Bpu)? + |Vul*) d.

Let us show F is differentiable and F’ (t) < 0 for ¢ € [0, to], which will then implies that
F(t) = 01in [0,t0). In turn, this will yield that dyu = 0 and Vu = 0 in Cy,, that is,
u = const in Cy,, whence also u = 0 in Cy, will follow.
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In order to differentiate F'(t), consider first a simpler function

1

<I>('r,t):§/ (0u)? + [Vul?) de,

T

that is defined for » > 0 and ¢ > 0 whenever B, x {t} lies in the domain of u. As in the
proof of Theorem 3.2 we have
1

r

= / (attu 3tu + Vu - Va{d) dz

T

= / (Opu — Au) Opudx + Oyu dyu do

T 0B

= / o,ududo.
9B,

1
Dyudu < |Vul ] < - ((Bru)? + |Vul?)

Since

we obtain the estimate

0 < 1/ (0)? + |Vul?) do
2 OB,

In order to compute 0, P, let us first represent ® using integration in the polar coordinates:

O (r,t) = %/0 (/83 ((8pu)? + |Vul*) da) ds,

0,® — %/ ((0)? + |Vul?) do > 8,®. (3.32)
0B,

which implies

Now we can differentiate the function
F(t)=®(ty—t,1)
by means of the chain rule, which yields
F' = —(8,®) (tg — t,t) + (0,®) (tg — t,1) .

Using (3.32), we see that F’ < 0, which was to be proved. m

Corollary 3.7 (Finite propagation speed) Let u € C%(R" x [0,T)) be a solution to the
Cauchy problem (C'). If, for some R > 0,

suppg C Bg and supph C Bpg (3.33)

then, for any 0 <t < T, B
suppu (+,t) C Bryt. (3.34)
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Proof. Fix some ¢ € (0,7 and a point x ¢_§R+t. It suffices to show that u (z,t) = 0.
Indeed, the cone C; () is based on the ball By (x) and, due to condition = ¢ Bry, we see
that the balls B; () and Bp are disjoint.

‘Since the functions u(z, 0) = g(x) and dyu(z,0) = h(x) vanish outside By, they vanish
in By (x). By Theorem 3.6 we conclude that u = 0 in C; (z), in particular, u (x,t) = 0,
which was to be proved. m

This statement shows clearly that the wave travels in time ¢ the distance at most t,
that is, the speed of propagation of the wave is bounded by 1.

Example. Let us show in example, that the speed of wave can be exactly 1, that is, the
radius R + ¢ in (3.34) is sharp and cannot be reduced. Consider in the case n = 1 the
solution

uw(z,t)=F(x+1t)+ F(x—1)

where F' is a non-negative C? function with supp F' = [~ R, R]. Then
u(x,0) =2F(x) and O (x,0)=0

so that the condition (3.33) is satisfied. At any time ¢ > 0 we obtain

suppu (z,t) =[-R—t,R—t|U[-R+t,R+1],

that is, supp u (z,t) is the union of two intervals, and the external boundary points of
them are —R — t, R + t, that is, the endpoints of the interval [—R — ¢, R +t| = Bprys.
Hence, the latter interval cannot be reduced.

“Remark. Compare the result of Corollary 3.7 with the properties of the heat equation. If now u (,1) is
a bounded solution of the Cauchy problem with the initial function f with supp f C Bgrand f >0, f Z 0,

then we see from
1 z —y|”
U $,t) = / €xXp - f(y)dy7
( e (4rt)™? ( 4t

that u (z,t) > 0 for all z € R™ and ¢t > 0. Hence, for any ¢t > 0 we have supp u (z,¢) = R™. This, of course,
contradicts the physical meaning of u: the temperature cannot propagate instantaneously at infinite
distance. This phenomenon reflects the fact that the heat equation describes the heat propagation only
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approximately. To overcome this difficulty, fix some ¢ > 0 to be considered as the error of measurement,
and consider the notion of e-support:

supp, f = {z € R": [f(z)| = €} .
Then one can prove the following: if supp, f C Br then supp,, u(-,t) C Ep(t) where
/ T
0 t>T,

where T > 0 depends on the function f and C' = C(n) > 0 (see Exercise 58). We see that the heat
travels in time ¢ the distance roughly /¢, which matches experimental data.

3.5 Spherical means

Our next goal is to solve the Cauchy problem (C') for the wave equation in the cases n = 2
and n = 3. We will prove in the next section that in the case n = 3 the solution is given

by Kirchhoff’s formula

() = at]gw tg (y) do(y) + ]éBt(w) th (y) do(y).

That is, in order to determine u(z,t), we must integrate functions g and h over the sphere
0By (x). Before we can prove this formula, we need to investigate some properties of the
spherical means.

Given a continuous function f in R", we define for z € R™ and r > 0 the function

1
Fan=f et = o [ o) (3.3)
For r = 0 let us set
F(z,0) = rlir& F(z,r) = f(x). (3.36)

The function F'(x,r) is called the spherical mean of f. We use also the simpler notation
F (r) instead of F' (z,r) in the case when the point z is fixed.

Lemma 3.8 Fiz x € R*. If f € C™ (R") where m > 0 then F € C™ ([0,00)). Further-
more, if f € C*(R"™) then, for all r > 0,

, r
Fo)=f  afudot) =1 Aty (3.37)
dB;(x) nJB,(z)
where v is the outer normal unit vector field on 0B, (x), and
" n—1
P = Afdet) - Arw (3.33)
OB () n JB.(z)

Proof. If r > 0 then making in (3.35) change y = = + rz, observing that y € 0B,(x) <
z € OBy and do(y) = r"'do(z), we obtain

Fory= 2 [ flatr)doz)] (3.39)

Wn 0B1
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Clearly, (3.39) holds also for » = 0. From this formula we see that if f € C™ (R") then
FeC™(]0,00)).
Let f € C?. Differentiating (3.39) in r > 0, we obtain

F’:i O (f(x+rz))do(2)

wn 831

_ 1 (V) (z+7r2)-2do(z)

- 1_/ (VH @) L do(y).

OB () r

Since ¥~* = v is the outer normal unit vector field on 0B, (z), we obtain that

(V) *—==Vf-v=0.],

whence
1

P agio={ apwie),
Wyt OB () OBr(x)
which proves the first identity in (3.37). Next, the Green formula yields

F' = 17 / O, f do

9B, (z)
1
= A d 4
o /B - f (y)dy (3.40)
1w, , T
— =2l arw = Aty
WnT n By (z) n Br(z)

w
I(B,(z)) = 22y
vol(B,(x)) = 2
Rewrite (3.40) in the form
1
F - S G (r),

where

G = [ Afwiy- / ,« ( / . Af(y)da(y)) ds.

We see that G is differentiable in r and
6= [ Aoty
OrB(x)

It follows that
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1 / n—1
= Af(y)do(y) — / Af (y)dy
o™y (y)do(y) o™ (y)

n—1
~f o Aot =" Ar Gy

that proves (3.38). m
Now let us consider F' (z,r) as a function of z and r.

Lemma 3.9 If f € C™ (R") then F' as a function of (x,r) belongs to C™ (R™ x [0, 00)).
If f € C*(R") then, for anyr >0,

AF (z,r) :]([93 ( )Af(y)da(y). (3.41)

Proof. By (3.39) we have

1
F(x,r)=— f(x+rz)do(z).
Wn 0By
If f e C™(R") then f(z + rz) belongs to C™ (R™ x [0,00) x R™) as a function of z,r, z,
which implies that F' € C™ (R" x [0,00)). If m = 2 then we obtain

AF @) = - [ A (@+r2)dolz)

wn 8B1

_ 1 (Af) (z+rz)do(2)

wn 8B1

- ][ Af(y)do(y),
OBr(x)

which was to be proved. m

Let us consider the Cauchy problem in dimension n:

Oyu = Au in ]R’fr“
u|t=0 =g in R™ ) (C>
at’d’t:o =h inR"

where g, h are given functions in R". We will assume that u € C? (@Tl) and, consequently,

that
geC*(R"), heC'(RY).

Define the spherical means

G (z,r) = ][ L IWoty) (3.42)

H(2,r) = ][ | H)ioty), (3.43)
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and
Ul(xz,rt) :]éB ( )u (y,t)do(y), (3.44)

where x € R™ and r > 0. All these functions are also defined at r = 0 by continuity. If
the point x is fixed then we omit x and use the shorter notations G (r), H (r),U (r,t).

Set
Q = R+ X <Oa OO)

and denote the points of @ by (r,t) where r,t > 0.

Proposition 3.10 (Euler-Poisson-Darboux equation) If u solves (C) then, for any fized
x € R, the function U (r,t) belongs to C* (Q) and solves the following mixed problem

@tU = arrU + nT_larU m Q,

U(0,t) =u(x,t) for allt >0, (3.45)
U(r,0) =G (r) for allr >0, '
oU (r,0) = H (1) for all r > 0.

tlk

0
U(0,6)=u(x,t)
0,U=0,U+=L .U
0 U(r,0)=G(r) ;
o,U(r,0)=H(r)
Proof. We have by (3.39)
Urt) = - / w (@ +r2,1) do(2), (3.46)
Wn 0B,

which implies that U € C? (@) By Lemma 3.8 we have

r

0.U = —][ Au (y,t)dy
nJ B, ()

and
n—1

9Br(z) n r(z)

which implies

n —

1
U ][ Au(y,t) do(y)
r OB ()

0 U +
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_ ][ Duvt (y, 1) dor(y)
OB, (x)
- 8ttU.

The boundary condition U (0,t) = w(x,t) follows from (3.46). The initial conditions
follow also from (3.46) and from u (x,0) = g(x) and dyu (z,0) = h(z). =

3.6 Cauchy problem in dimension 3
Consider the Cauchy problem for n = 3:

3ttu = Au in Ri
ulmo=g inR3 . (C3)
8tu|t:0 =h in RS

As before, solution is sought in the class u € C? (Ei), while g € C? (R?), h € C* (R?).

Theorem 3.11 (Case n = 3, Kirchhoff’s formula) If u is a solution of (C3) then, for all
z€R? andt >0,

w@t) =of oot + [ () doty) (3.47)
OB¢(x) OB¢(z)
Remark. An alternative form of (3.47) is

u (a.1) = f (9(y) + t0,9(y) + th(y)) do(y). (3.48)
9Bt (z)

Indeed, (3.47) can be rewritten in the form
u(z,t) = 0 (tG) + tH.

Since
and by Lemma 3.8
0G = vg(y) do(y),
OB¢(x)
we see that the right hand sides of (3.47) and (3.48) are identical.

Remark. Recall that the ball By(z) is the bottom of the cone of dependence Cy(z). As
we know from Theorem 3.6, the value w (z,t) is completely determined by the initial
conditions in the ball B,(x). The formula (3.47) shows that in the case of dimension 3
a stronger statement is true: w (z,t) is completely determined by the initial conditions
on the sphere OB;(x) (more precisely, in a little neighborhood of the sphere because one
needs 9,9 as well). This is a specific property of wave propagation in R3.

For comparison, recall d’Alembert’s formula in dimension 1:

we.t) =5+t rgle—0)+; [
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In this case By(z) = (x — t,x +t) and 0By(x) consists of two points x — ¢,z + t so that
we can rewrite this formula in the form

u(x,t) —][ gdo +][ t h(y)dy.
OB¢(x) Bi(z)

In particular, we see that the value u (x,t) depends on the values of h in the full “ball”
Bt(l‘)

26.06.23 Lecture 20

Proof of Theorem 3.11. Let us fix x € R? and use the spherical means G(r), H(r),
U(r,t) of the functions g, h, u respectively, that are defined in (3.42), (3.43) and (3.44)
(note that z is fixed and is omitted from the notations). Since g € C?*(R?), h € C'(R)
and u € CQ(Ei), we obtain by Lemma 3.8 that G € C?([0,00)) and H € C' ([0, 0)),
and by Lemma 3.10 that U € C? (@), where

Q = R+ X (O, OO) .
We need to prove that
u(z,t) = 0y (tG(t)) + tH(t). (3.49)
By Lemma 3.10 we have
U = 0,,U +"20,U in Q,
U(0,t) =u(x,t) for all ¢t > 0,

U(r,0) =G(r) for all » > 0,
oU (r,0) = H (r) for all r > 0.

(3.50)

Consider also the functions
G(r)=rG(r), H(r):=rH(r), U(rt):=rU(r1).
Using (3.50) and n = 3, we obtain
0,U = ro.U + U,

n —

, 18TU) = TattU = 8,5,5(7.

0 U =0, (ro,U +U) = rd,,U +20,U = r (&TU +

t“

G0 30=0,0

\4

0 U(r.0)=G(r)
3,U(r.0)=H(r)
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It follows that U is a solution of the following 1-dimensional mixed problem for the
wave equation in the quadrant Q:

8tt(7 57«,“(7 in Q
U(O t)=0 for all ¢ >0
U(r 0)=G(r) forallr>0"

oU (r,0)=H (r) forallr>0

(3.51)

We solve the problem (1.86) similarly to the proof of Theorem 3.1. Since U is a solution
of the wave equation in (), it has to be of the form

U(rt)=®(r+t)+ ¥ (r—t),

for some C? functions ® and W. Let us use the boundary and initial conditions in order
to determine ® and W. B
Setting r = 0 and using U (0,¢) = 0, we obtain

O (t)=—V(—t) forallt>0.

Setting t = 0 we obtain, for all » > 0,

O(r)+ W (r)=G(r).

Differentiating U in ¢ and setting ¢ = 0 we obtain

O (r)—V'(r)=H(r).

Solving these two equations as in the proof of Theorem 3.1, we obtain

@@p:%&ﬂ@+£%ﬂ@@)

for all » > 0. In the range t > r > 0 we have

U(r,t):®(r+t)+\ll(r—t)
=d(r+t)—d(t—r)

t—r

:%( (r+1t) + / H (s ) <G(t—r)—|—/ H(S)ds>
0

1

=5 (G+n-cu-n) / B (s

Since i
w () = tim U (7, ¢) — lim 800,
r—0 0 r

it follows that

r—0 2r 2r

u (2,1) = lim (G(t+r)—G(t—r) +i/t+rﬁ<s)d8>
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=G (t)+ H (t)
= (tG) +tH, (3.52)

which proves (3.49). m

Finally, we can prove the existence of solution of (C3).

Theorem 3.12 (Kirchhoff’s formula: existence of solution ) If g € C?(R?) and h €
C? (R3) then the function

u(a,t) = atjéBt(m) tg (y) do(y) + ]{)Bt(@ th (y) do(y) (3.53)

is a solution of (C3).

Note that the requirements for the differentiability of the functions ¢ and h are here
higher than in Theorem 3.11.

Proof. The identity (3.53) is equivalent to
u(z,t) = 0 (tG(x,t)) + tH(x,t) = G(x,t) + t0,G(x,t) + tH(x,t).
We need to prove that this function u solves (C'3). By Lemma 3.9, we have
G(z,r) € C° (R® x [0,00)) and H(z,r) € C* (R® x [0,00)),

whence

u(z,t) € C? (R? x [0,00)) .

At t = 0 we obtain
u(2,0) = G (2,0) = g(x).

Let us verify the second initial condition. Since
3tu = 28{/G —+ t@ttG -+ t@tH —+ H

and by Lemma 3.8
t
0G(z,t) = — Ag(y)dy — 0 as t — 0,
) By (x)

it follows that
Owu (x,0) = H (x,0) = h(x).

It remains to verify that u satisfies the wave equation. It suffices to show that each of the
functions tH and 0, (tG) satisfies the wave equation. Consider first the function

v(z,t) =tH (z,t).
It follows by Lemmas 3.8 and 3.9 that, for ¢ > 0,

att’l) = 23,5H + t@ttH
2t n—1

— Ahdy + t][ Ahdo — t][ Ah dy
) Bi(x) 0B;(z) n Bi(x)
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= t][ Ahdo
9By (z)

=tAH = Av,

where we have used that n — 1 = 2. Hence, v satisfies the wave equation.

Similarly, the function w(z,t) = tG(x,t) satisfies the wave equation dyw = Aw.
Since the function w belongs to C?, differentiating this equation in ¢ and noticing that
0; commutes with d; and A, we obtain that J,w also satisfies the wave equation, which
finishes the proof. m

3.7 Cauchy problem in dimension 2

Consider now the Cauchy problem of the dimension n = 2:

attu = Au in Ri_
ulmo =g inR%Z . (C2)
8tU|t:0 =h in RQ

Solution is sought in the class u € CQ(@i).

Theorem 3.13 (Poisson formula and existence of solution) Let g € C3(R?) and h €
C? (R?). Then (C2) has the following solution:

u(,t) = l]i( | tg(y) +1Vg - (y — x)|j £h) 4, (3.54)

2 =z —y

Proof. Let us extend (C2) to a Cauchy problem in dimension 3. Indeed, any function
f (21, 72) defined in R? extends trivially to a function in R? by setting

f (ZL’l,Z'Q,CL’g) = f <$1,$2> .

So, let us extend u,g and h to R?® in this way. In particular, we have u (z, %o, x3,t) =
u (1, x9,t) and
Oryay U + Opouot + Opyrst = Op U + Opya, U

Hence, (C2) is equivalent to the Cauchy problem in dimension 3

8ttu = A'U, n Ri
uli—o = g (C3)
ﬁtu|t:0 = ]’L

with an additional condition is that the solution w should not depend on z3.

Denote the points in R? by X = (1, 29, z3) and set x = (1, 72) € R?, that is, x is the
projection of X onto the plane x1,z5. The same convention we use for notations ¥ and
y. By Theorem 3.12 and (3.48), the problem (C3) has solution

u(X,t) :][ (9 +td,g +th)do (Y) :][ ¢ (Y)do(Y), (3.55)
OB¢(X) 0B¢(X)
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where B; (X) is a ball in R?, v is outer normal unit vector field on 0B, (X) and
O =g+ 1,9 + th. (3.56)

Using the fact that g and h do not depend on x3, let us prove that the integral (3.55)
coincides with the integral (3.54). This will imply that u does not depend on z3 and,
hence, is a solution of (C2).

X3 A

/v
«y

Ryl

—

Dix) ox 7 R2

x5

Recall that if S is a surface in R? that is the graph of a function

ys=f(y), ye€Q,

in a domain 2 C R? then, for any continuous function ® on S,

/S & (V) do (Y) = / By, () \/1+ [V fdy. (3.57)

The sphere 0B, (X) is given by the equation

(y1 — I1)2 + (Y2 — 902)2 + (ys — $3)2 = t?,

and it consists of two hemispheres that can be represented as the graphs of the following
functions

Ys = w3 £ \/’52 — (1 —21)" = (2 — )’

over the disk D;(z) in R? of radius ¢ centered at x (to distinguish the balls in R? and R?,
we refer to those on R? as disks and denote them by D rather than B).

Hence, we apply (3.57) to compute the integral in (3.55) when the surface S is one of
the two hemispheres of 0B, (X) that are the graphs over Q = D;(x) of the functions

fly)=as£/t2 |y —af”.

Let us compute the function ® in (3.56). At any point Y € 0B, (X), the normal vector v
is given by
Y -X
v = .
t
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Using that 0,,9 = 0, we obtain
Y - X

taug = th : = (amgaangaax:;g) ’ (Y - X)

= (aﬂqgvaﬂczg) ’ (y - l’)
=Vyg-(y—u),

where from now on V denotes the gradient in R2. Hence, we obtain

O(Y)=yg(y)+Vg-(y—x)+ th(y).

129

In particular, we see that ® depends only on y = (y;,¥2) and does not depend on ys.

Consequently, in the expression ®(y, f(y)), we do not need to use the value of f (y).

Now let us compute the factor 1/1 + |V f|>. We have for i = 1,2

Yi — T
ayif =+ 2
— |y — |
whence
2 2
—x —x
1 + |Vf|2 _ 1 + (yl 1) . (y2 2) .
?—ly—af” —|y—z
t2
—ly—af*

Hence, we obtain from (3.57)

/SCD(Y)do(Y):/Dt(x)éY —

_ / tg(y) + th — )+ tQh(y)dy
Dy(z)

| 2

| 2

-y

Since OB;(X) consists of two semispheres and o(0B(X)) = 4wt?, we obtain

u(X,t) :]({B(X) ddo (V)

2 tg(y )+tvg —z) + t2h(y )dy
Amt? I p, () |x B y|2
1 2h(y

i g<>+tv9 — o)+ he)
2 Dt(x) y|2

where we have used that the area of Dy(z) is equal to mt. Since the last integral does

not depend on z3, we obtain that u (X,t) = u (z,t) is a solution of (C2). =
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3.8 *Cauchy problem in higher dimensions

Similar formulas for solution of the Cauchy problem for the wave equation can be found
in arbitrary dimension n, which we state without proof. Consider the Cauchy problem
(C) in arbitrary dimension n > 2. As above, consider the spherical means

G (x,t) :][ gdo and H (x,t) :][ gdo.
OB¢(x) OB¢(x)

As we know, in the case n = 3 the solution can be written in the form
u=0,(tG) +tH = G + t8,G + tH. (3.58)

n+1

Theorem 3.14 Letn > 3 be odd. If g € C"2° (R™) and h € C*z (R™) then the following
function is a solution of (C'):

n—3

u= ﬁ [t Gat) T (t"?G) + (%at) N (t”‘2H)] : (3.59)

Here k!l =1-3-5... -k for the case of odd k and k!l =2-4-....k in the case of even k.
Clearly, in the case n = 3 (3.59) coincides with (3.58). In the case n = 5 we have

t Gat>2 (£°G) + Gat) (t3H)] .

(72) (ve) -

2

1
3

u =

Since

| =

and .
(gat) (t°H) = 3tH + t*0,H,

we obtain in the case n = 5 that
1
U=z [3G + 5t0,G + t°0,G + 3tH + t*0,H] .

For the case of even n, we introduce the following notation:

~ 9(y)

G (x,1) :][ dy
Bi@) 12 — |z — y|”

H (z,1) :][ hy) dy.
Bil@) /12 — | — y|”

Theorem 3.15 Let n > 2 be even. If g € C2T2(R") and h € C>*1(R") then the
following function is a solution of (C'):

and

oo () (e« () 7 (). 30
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The eigenvalue problem

29.06.23 Lecture 21

4.1 Distributions and distributional derivatives

Let €2 be an open subset of R™. Any function ¢ € C§° () is called a test function. Denote
by D () the linear space of all test functions with the following notion of convergence:
a sequence {p,} of test functions converges to a test function ¢ in the space D () if the
following two conditions are satisfied:

1. ¢, = ¢ in Q and D%p;, = D%p for any multiindex « of any order;

2. there is a compact set K C 2 such that supp ¢, C K for all £.

This convergence is denoted by ¢, KA @. It is possible to show that the convergence
in D () is topological, that is, given by a certain topology. Hence, D (2) is a linear
topological space. Note that D () and C§° (€2) coincide as sets and linear spaces, but
D () is distinguished by the above convergence/topology.

Any linear topological space V has a dual space V' that consists of continuous linear
functionals on V.

Definition. Any linear continuos functional f : D (£2) — R is called a distribution in
Q (or a generalized function). The set of all distributions in € is denoted by D’ (Q). If
f € D' (Q) then the value of f on a test function ¢ € D () is denoted by (f, ¥).

Any locally integrable function f : {2 — R determines a distribution as follows: it acts
on any test function ¢ € D () by the rule

(f.p) = / fod. (4.1)

The distributions that are determined by locally integrable functions are called regular and
otherwise - singular. The set of all regular distributions is denoted by D;,(€2). Clearly,
it is a subspace of D’ (£2).

Note that two locally integrable functions f, g determine the same distribution if and
only if f = g almost everywhere, that is, if the set

{reQ: fz)# g(x)}

131
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has measure zero. We write shortly in this case

f=ga.e. (4.2)

Clearly, the relation (4.2) is an equivalence relation that gives rise to equivalence classes
of locally integrable functions. The set of all equivalence classes of locally integrable
functions is denoted! by L} (). Hence, we have the identity

loc

Lige () = Dy, (Q).

reg

There are singular distributions, that is, the difference D'\ D, is not empty. For example,

define for any z, € € the distribution d,, € D'(Q2) as follows:
(5107 90> =@ (370) for all (S D (Q) :

It is easy to see that d,, is not determined by any locally integrable function so that ¢d,,
is a singular distribution. Historically ., is called a Dirac delta-function, although it is
not a function.

Definition. Let f € D' (). A distributional derivative 0,,f is a distribution that acts
on test functions ¢ € D () as follows:

where 0., is the classical (usual) derivative of .

Note that the right hand side of (4.3) makes sense because 0, € D (2). Moreover,
the right hand side of (4.3) is obviously a linear continuous functional in ¢ € D (£2), which
means that 0,, f exists always as a distribution.

In particular, the above definition applies to f € L}, (€). Consequently, any function
[ € L. (Q) has always all partial derivatives 9,, f as distributions.

Let us show that if f € C'(Q) then its classical derivative d,.f coincides with the
distributional derivative. For that, it suffices to check that the classical derivative 0,,f

satisfies the identity (4.3). Indeed, have, for any ¢ € D (Q2),

(Ot ) = /Q Oy f oz = — /Q fOupde = — (f,000)

where we have used integration by parts and ¢ € C§° ().

Let f € D' (Q2). Applying successively the definition of distributional partial deriva-
tives 0,,, we obtain higher order distributional partial derivatives D f for any multiindex
a= (a1, ...,ay,). It follows from (4.3) by induction in |a| that

(D°f,¢) = (=) (f, D%) Yo €D(Q). (4.4)
Example. Consider the function f(z) = |z| in R. This functions has the following
classical derivative:
o)L, x>0
ra={t 120 (45)

() is loosely used to denote the set of all locally integrable functions in 2. However,

1. (8) are not functions but equivalence classes of functions.

!Sometimes L},

in a strict sense, the elements of L
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and is not differentiable at x = 0. Let us show that the function (4.5) is the distributional
(and, hence, weak) derivative of |z|. Note that the value of f'(z) at = 0 does not matter
because the set {0} has measure 0. For any ¢ € D () we have

(f,¢") = /_Z fy'dx

0
:/ xgo’d:c—/ ¢ dx
0 —00
%) 0
:/ md@—/ xdp
0 —0o0
0

~ (@l — [ edo—mp@) .+ [ pds

=—(f"9),

where we have used that xy(z) vanishes at = 0, 0o, —o0.

Example. Let f(z) be a continuous function on R. Assume that f is continuously
differentiable in R \ M where M = {x1,..zx} is a finite set, and that f’(x) has right
and left limits as x* — x; for any ¢ = 1,..., N. Then we claim that the classical derivative
f'(x), defined in R\ M, is also a weak derivative of f (again, the values of f” at the points
of M do not matter since M has measure 0). Indeed, assuming that r; < x5 < ... < zy

and setting o = —oo and x4 = +00, we obtain, for any ¢ € D (R),
/ OO / = o /
(f.¢) =/ fsoda:=2/ f'dx
- k=0 v Tk

Tp41

=S Il - fode=— [ flade=—(f"0),
N S A L .

where we have used that
N

[felatt = (=fe(xo) + fo(21)) + (= fo (v1) + fo (2))
k=0
ot (—felenv-1) + fe(an)) + (=fe(an) + fe(zna))
= 0,
because fo(xg) = fe(xni1) = 0 and all other terms cancel out.

Example. Consider the function

ro={g 120

z <0

as element of L}, . (R). Let us compute its distributional derivative. For any ¢ € D (R)

loc
we have

uwﬁz—Usz—[mex:—lw¢m=¢w»
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It follows that f’ = §, where § is the delta-function at 0, that is, (J,¢) = ¢ (0).

*Example. Consider the delta-function d,, at an arbitrary point zy € . We have by (4.4)
(D60, 0) = (=1)*! (30, D) = (=1)"* D (a0) .

Hence, the distribution D“d,, acts on test functions using evaluation of D%y at zg.

*Example. Consider a function f(z) = |z|” in R™. Observe that

,r,oHrn

1 1 1
(z)dx = wn/ ey = wn/ retr=lgr = w, [ ] < 00
B 0 0 a+mnl,

provided a +n > 0, and similarly

fl@)dx = oo
B

if a +n < 0. So, assuming a > —n, we obtain that f € L{  (R"). In R"\ {0} we have

loc

a1 Ti

x|

Since [0y, f| < |af |2|*~", we see that if & > —n + 1, then also 8, f € L},. (R™). Let us show that in this

case the classical derivative 0,, f is a weak derivative, that is, for any ¢ € D (R™)

aLf =« |x‘0471 aqu

| = olz|

Since in R™ \ {0}
Oz, f o+ [Or,0= 0, (fp)

it suffices to prove that

/n O, (fp)dz = 0.

Let supp ¢ € Bgr. For any 0 < r < R we have by the divergence theorem

[ _onGede=[  fendo= [ fomd
Br\B., a(BR\E) 8B,

where v is the outer normal unit vector field on the boundary of Bg \ B,. Observe that ¢ and v; are
uniformly bounded, whereas

fdo = r®wpr" = wrtt T S 0 as r — 0.
dB,
Hence, also
fyorvido — 0 asr — 0,
dB,
which implies that
/ Oz, (f)dx = lim Oz, (f)dx = 0.
n =0 Jp,\B,
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4.2 Sobolev spaces

Let us first recall construction of Lebesgue spaces. Fix an open subset €2 of R"” and some
p € [1,00). A Lebesgue measurable function f: € — R is called p-integrable if

/|f|pdx<oo.
Q

Measurable functions f and ¢ in  (in particular, p-integrable functions) are called equiv-
alent if

f=gas.

This is an equivalence relation, and the set of all equivalence classes of p-integrable func-
tions in  is denoted by L? (Q2). It follows from the Hélder inequality, that

LP () C L ().

Consequently, all the elements of LP (€2) can be regarded as regular distributions, and
LP (§2) can be regarded as a subspace of D’ (2).

The set L? (2) is a linear space over R. Moreover, it is a Banach space (=complete
normed space) with respect to the norm

1/p
T ( / |f|”dw> .

The Banach spaces L? (Q2) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L? (2) has the inner product

(f,9)1 Z/Qfgdfc,

whose norm coincides with || ||, because

1l = ( / f2dx) RN

Hence, L? (2) is a Hilbert space.

Definition. Let f € L? (Q2). If the distributional derivative D*f is a regular distribution
given by a function from L? (), then we denote this function also by D*f and refer to it
as the weak derivative. In this case we write D*f € LP (Q).

In other words, the weak derivative D®f is a function from LP (€2) such that, for all
¢ €D(Q),

/ D°fpdr = (—1)! / f DY dx, (4.6)
Q Q
as it follows from (4.4).

Definition. Let £ € N and p > 1. The Sobolev space W*? (Q) is a subspace of L? (2)
defined by

Wk (Q) = {f € LP(Q): D*f € L* (Q) for all  with |a| < k}.
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It is easy to see that C¥ () ¢ W*?(Q) for any k and p. The letter “W” in the
notation W*? refers to the word “weak” similarly to the letter “C” in the notation C*
that refers to “continuous”. Hence, we have the following chain of inclusions:

D(Q) CCEEOQ)cWkP(Q)CLP(Q) C L, (Q) CD(Q).

Since we need only the spaces W*? (that is, the case p = 2), we are going to use a

shorter notation
Wk: - W/C,Q

Especially important for us is the Sobolev space W!:
WHQ) ={feL*(Q):0,feL*Q) foralli=1,...,n}.

By (4.6), the weak derivative d,, f € L?(f2) satisfies the identity

/Gxifgpd:v = —/ f Oz pdx forall p € D(Q),
Q Q
which can be equivalently stated in terms of the inner product as follows:

(Oui fy @) 12 = — (f, On,p) 2 forall p € D(Q). (4.7)

We will use also a vector-valued space L? (©) whose elements are vector-valued functions
f=(f1,..., fn) such that each f; € L* (). The inner product in this space is defined by

n

(]?7 912 = Z (fir 9i)

i=1

and the corresponding norm is given by

n
g 2
1£1172 = D fillz. -
i=1

If f € WYQ) then the weak gradient

Vf = (8x1f7 axzfa e aznf)
belongs to L2 (). Define in W'(€2) the following inner product

=1

Clearly, (f, )y satisfies all the axioms of an inner product. The associated norm is given

by
L5 = £ + IV £l = / <f2 +> <8zif>2> de.
Q i=1
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Proposition 4.1 The space W () with the above inner product is a Hilbert space.

Proof. We need to prove that W1(Q) is complete, that is, any Cauchy sequence {f}
in W1(Q) converges to an element of W!(Q). The fact that the sequence {f;} is Cauchy
means that

1fx = Fnllyr — 0

as k,m — oo, which is equivalent to

ka - fm||L2 — 0 and Haxlfk - al'imeLz —0

for any ¢ = 1,...,n. That is, the sequences {fy} and {0, fr} are Cauchy sequences
in L*(Q). Since L*(Q) is complete, it follows that {fx} converges in L? to a function
f e L*Q), and {0,, fr} converges in L? to a function g; € L?(Q). Hence, we have

[fx = fll;z—0 ask —0

and, for any ¢ =1, ..., n,
|0z, fr — gill = 0 as k — 0.

Let us show that, in fact, g; = 0,, f, that is, g; is the weak 0,, derivative of f. Indeed, by
(4.7) we have, for any ¢ € D (Q),

(afsza SO)L2 = - (fka 83%80)[/2 .

Passing to the limit as £ — oo and using the continuity of the inner product, we obtain

(gi7 QD)L2 = - (f7 (9%(,0)]:2 ’

which means that
Consequently, f € W(Q). Finally, we obtain

1fs = fllws — 0O

because
ka - fHL2 — 0 and Hawsz - axzf

| = 1102 fk = gill = O

as k — 0o0. m

4.3 Weak Dirichlet problem

Let us consider the Laplace operator A = Y" | 9, acting in the space D'(Q) of distri-
bution. It follows from (4.4) that, for any u € D'(Q2) and ¢ € D(Q),

(Au, ) = (u, Ap).
A distribution u € D’ () is called harmonic if Au = 0, which is equivalent to

(u, Ap) =0 for any p € D(Q).
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If u is a regular distribution (that is, v € L. (2)) then this identity amounts to

loc

/qudx:O,
Q

which was used in the definition of a weakly harmonic function (cf. (1.95).
Let 2 be a bounded domain in R". Consider the Dirichlet problem in 2

{Au:f in O

, (4.8)
U’aQ =0

and reformulate it in a weak sense. For that, we will understand the Laplace operator

Aw in distributional sense so that solution u can be sought in the class L}, (©2). However,

within such a general class it is impossible to understand the boundary condition u = 0
pointwise as typically the boundary 02 has Lebesgue measure zero. We are going to
reduce the class of functions u in order to make sense out of the boundary condition.

Definition. Define the subspace W () of W! (Q) as the closure of D () in W (Q):

we@ =p@" .

Note that C§° (Q) is dense in L?(Q), but in general not in W' (2), so that Wy (2) is
in general a proper subspace of W1 (£2).

Definition. The weak Dirichlet problem in €2 is stated as follows:

{Au:f in 0

ue Wy (Q) (4.9)

where Au is understood in the distributional sense and the condition u € Wy () replaces
the boundary condition u|sq = 0.

Since u € W' (Q2), we have, for any ¢ € D (Q),

n n

(A’U,, 30) = Z (a’lfza’fzuv 90) == Z (al"zuv 8331()0) = - (V’U,, VQO)L2 :

i=1 =1

Hence, we can rewrite the problem (4.9) in the following form:

Vu,V =—(/, Vo € D (2
(Vu 190)1;2 (fs¢)pe ¥ (€2) , (4.10)
ue Wy (Q)
using the inner products in L* and L2.
Lemma 4.2 The problem (4.10) is equivalent to
(VUJ?vQD)L? :_(f,SO)L2 VQOEWOl (Q)’ (4 11)
ue Wy (Q) '
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In other words, the class of test functions ¢ € D (€2) can be extended to W (Q).
Proof. It suffices to prove that if w is a solution of (4.10) then, for any ¢ € Wy (Q),

(Vu, V)2 == (f,¢)1:- (4.12)

By definition of W (), there exists a sequence {¢,},-, of functions from D () such
that

Wl
Y — @ as k — oo,

that is,
L? L2
o — ¢ and Vi, — ¢.

By (4.10) we have
(VU, vspk)LQ == (f7 gpk‘)LQ :

Passing to limit as k — oo, we obtain (4.12). m

Theorem 4.3 (Existence and uniqueness in the weak Dirichlet problem) For any bounded
domain © in R™ and for any f € L*(Q), the weak Dirichlet problem (4.11) has a unique
solution.

Before the proof we need the following lemma.

Lemma 4.4 (Friedrichs-Poincaré inequality) Let Q be a bounded domain in R™. Then,
for any v € D (1),

/ *dr < (diam ©)° / Vol da. (4.13)
Q Q
Proof. Let first n = 1. In this case (4.13) becomes

/Q ©*dz < (diam )’ /Q (¢')? da, (4.14)

for any ¢ € D (). Consider the interval I = (inf Q,sup ) that has the same diameter
as €, and observe that any ¢ € D () belongs also to D (I). Therefore, in (4.14) we can
replace 2 with I.

Hence, we assume that 2 is an open bounded interval. Moreover, without loss of
generality, we can assume that 0 = (0,1), where [ = diam Q. For any x € (0, 1), we obtain,
using ¢ (0) = 0, the fundamental theorem of calculus, and Cauchy-Schwarz inequality
inequality, that, for any = € (0,1),

P (x) = (/Oxgo%s)ds)gs/jws)?ds/Omdssz/Olgo'<s>2ds.

Since the right hand side does not depend on x, integrating this inequality in x € (0,1),

we obtain l l
/ P (0)de < P / o () ds,
0 0

which is exactly (4.14).
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Let now n > 1. For any y = (21, ...,2,-1) € R"!, denote by Q, the 1-dimensional
section of €2 at the level y, that is,

Q,={seR:(z1,...,2,-1,5) € Q}.

Then €2, is an open subset of R and diam 2, < diam (2.

Xn A
diamQ

V=10 0sXn1) R~1

Since, for any fixed y € R"!, the function ¢(z1,...,2, 1,7,) as a function of wx,
belongs to D (£2,), the 1-dimensional Friedrichs inequality in the direction x,, yields

/ ¢?dr, < (diam Qy)Q/ (8, ¢)° dr, < (diam Q)z/ \V|® dz,.
Qy Qy Qy

Extending ¢ to R™ by setting ¢ = 0 outside €2, we obtain ¢ € D (R"), and the above
inequality can be rewritten as

/gpQ(xl, oy Tp1, Tp)dr, < (diam Q)Q/ IVo(xy, ...,xn_l,xn)|2 dx,,.
R R

Integrating further in x4, ..., x,_; and using Fubini’s theorem, we obtain

/ Oldr = // (/ g02(x1,..,xn_1,xn)dxn> da,_q...dz;
n R JR \JR
< (diamQ)Q/.../ (/ |Vgp(m1,...,xn_l,xn)|2dxn> dxp,_1...dz;
R JrR \JR

= (diam Q) IVo|® dz,
RTL

which proves (4.13). m

06.07.23 Lecture 23

Proof of Theorem 4.3. Let us reformulate Lemma 4.4 as follows: for any v € D (Q2)
[vll 2 < C Vol (4.15)

where C' = diam Q. We claim that (4.15) holds any v € W, (). Indeed, there is a
sequence of functions {vy} from D () such that

Wl
v, — U as k — oo.
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that is,
ok —v||;2 — 0 and ||V, — V||, = 0 as k — oo,

whence
vkllpz = llvll. and  [[Vog|l. — [Vl as k — oo,

Applying (4.15) to any function vy, and passing to the limit, we prove the claim.

The functional v — [|[Vu|,. is a semi-norm in v € W' (Q) (it is not a norm because
it vanishes at a non-zero element v = 1). However, it turns out that ||Vv||,. is a norm
in v € Wy () because by (4.15) ||Vvl|;» = 0 implies |[v]|;» = 0 and, hence, v = 0. So,
consider in W, () a new norm

[vllwy = IVl .-
Let us compare ||v||W01 and ||v||y. for v € Wy (). We have by (4.15)
[l 2 < Clvllyy

whence
2 2 2 2 2
[vllss < Nl = vllze + [1Vollze < (C% + 1) vl

that is, the two norms HUHWOI and ||v||;y1 are equivalent in the space Wy (€2). Since Wy ()

is a closed subspace of W1 (Q), it is complete with respect to the norm ||v||y1; therefore,
W (Q) is also complete with respect to the norm HUHWOI.
The following bilinear form

(u, v)y == (Vu, Vo)
is an inner product in W, () because
2
(0, 00z = ol

Hence, we conclude that W (2) with this inner product is a Hilbert space.
Now we use the Riesz representation theorem: in any Hilbert space H, for any linear
bounded functional [ : H — R, there exists exactly one element u € H such that

(u, )y =1(p) forall p € H. (4.16)

Rewrite the Dirichlet problem (4.11) in the form

(u,go)Wol =—(f, ). forall o € Wy (Q)], (4.17)

where v € Wj (€), which matches exactly the problem (4.16) for H = Wy (). Indeed,
L(¢) := —(f,9);2 is a linear bounded functional in Wy () because by the Cauchy-
Schwarz inequality and the Friedrichs-Poincaré inequality

L)l = 1(f, @) 2l < Ul lelle < CHF 2 Vel = C el

where C" = C'||f||,=. Applying the Riesz representation theorem in the Hilbert space
W, (), we obtain the existence and uniqueness of a solution u of (4.11).
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Lemma 4.5 (Energy estimate of solution) Let u be a solution of the weak Dirichlet prob-
lem (4.11). Then we have
[ullyy < (diam Q) [[£]] - , (4.18)

and
. 2
[ull > < (diam Q)™ || f]l 2 - (4.19)

Proof. Substituting into (4.17) ¢ = wu and using the Cauchy-Schwarz inequality, we
obtain

2
lullwg = = (fiw) gz < a2 £ 2 -

Since u € Wy (£2), we have by the Friedrichs-Poincaré inequality
[ull 2 < Cllully (4.20)
where C' = diam 2. Combining the above two inequalities, we obtain
2
ullys < CIfll L2 lullwg

whence (4.18) follows. Combining (4.20) with (4.18), we obtain (4.19). =

4.4 The Green operator

Let 2 be a bounded domain in R™. Define an operator G : L? () — L? () as follows: for
any f € L? (), the function v = G/f is the unique solution of the weak Dirichlet problem

Au = _f in {2 PN (vua v@)]ﬁ = (fa SO)LQ vgp € Wﬂl (Q> (D)
ue Wy (Q) ue Wy (Q)
The operator G is called the Green operator.
Of course, we know that u € W () and, hence, Gf € Wy (Q) so that G can be
considered as an operator from L? () to Wy (). However, it will be more convenient for
us to regard G as an operator from L? (Q2) to itself.

Theorem 4.6 The operator G : L?(Q) — L?*(Q) is linear, bounded, self-adjoint and
positive definite.

Proof. The linearity is obvious and follows from the linearity of A. The boundedness
means that

IG I < ClNlL (4.21)

for some constant C' and all f € L? (). Set u = Gf so that u solves (D). By Lemma 4.5
we have

lull 2 < (diam @)% || f1] 2 ,

which is equivalent to (4.21) with C' = (diam Q).
The fact that G is self-adjoint means symmetry with respect to the inner product,
that is,
(Gf.g)pe = (f.Gg)pa forall f,g € L*(Q).
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To prove this, set w = G f and v = Gg. Setting in (D) ¢ = v, we obtain
(Vu, Vo). = (f,v)2.

Similarly, using the weak Dirichlet problem for v, we obtain
(Vo,Vu) = (g,u)p» -

Since the left hand sides of these identities coincide, we obtain that

(gau’)LQ - (f?U)LQ 3

which is equivalent to the self-adjointness of G.
The positive definiteness of G means that (Gf, f) > 0 for all non-zero f € L? ().
Indeed, setting u = G f we obtain from (D) with ¢ = u

(Vu, vu)]ﬁ = (f, U)L2 )

whence
(Gfo f)pe = (u, )z = (Y, V) 1o = [Jull > 0.

If [[ullyy = O then u = 0, whence f = —Au = 0, which contradicts the assumption that
f is non-zero. Hence, ||u||W01 > 0 and (Gf, f) > 0, which finishes the proof. m

Consider also the weak eigenvalue problem

Av+ v =0 in Q
v e Wy (2)\ {0}
that is equivalent to
(Vo, V)2 =A(v,0) . Yo € Wh(Q) (B)
ve Wy (@)\{0}

Lemma 4.7 A function v € L*(Q) is an eigenfunction of G with the eigenvalue u if and
only if v is an eigenfunction of (E) with A = i

Proof. Let v € L? () be an eigenfunction of G' with the eigenvalue y, that is, Gv = uv.
Note that u > 0 because

(G, U)L2 = (v, U)LQ

and both expressions (Gv, v),. and (v,v),, are positive. Since Gv € W () and Gv = pw,
it follows that also v € Wy (). It follows also that

A (pv) = —v
and, hence,
1
Av+—v=0
1

so that v is an eigenfunction of (£) with the eigenvalue A\ = i
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Let v € W, () be an eigenfunction of (E) with the eigenvalue \. Setting ¢ = v we
obtain
IVollze = Allollz.

Estimating the right hand side by means of the Friedrichs-Poincaré inequality
[0l > < (diam Q) [[Vol| 2,

we obtain that A > m, in particular, A > 0. By (F), we have Av = —\v so that
function v solves the weak Dirichlet problem (D) with the right hand side f = Av, which

)
implies that G (Av) =v and Gv = pv with = 5. =

4.5 Compact operators

Given two Banach spaces X,Y, an operator A : X — Y is called compact if, for any
bounded sequence {z;} C X, the sequence { Az} hat a convergence subsequence in Y.

Note for comparison that if A is bounded, that is, ||A|| < oo, then, for any bounded
sequence {x,} C X, the sequence {Axzy} is bounded in Y.

It is known that in an oo-dimensional space Y bounded sequences do not have to con-
tain convergent subsequences, so that compactness of an operator is a stronger condition
than boundedness.

Let us mention without proof the following simple properties of compact operators:

1. Any compact operator is bounded.

2. Composition of a compact operator with a bounded operator is compact.

Out goal will be to prove that the Green operator in compact, which will allow us to
invoke the Hilbert-Schmidt theorem about diagonalization of self-adjoint compact opera-
tors. A crucial step for that is the following theorem.

Theorem 4.8 (Compact embedding theorem) Let Q be a bounded domain in R"™. Then
the natural embedding

18 a compact operator.

Equivalently, if {fz} is a bounded sequence in W (2) then there is a subsequence
that converges in L? (€2). The point is that the norm in Wy () is stronger than that in
L? () so that the boundedness in Wy (2) implies the compactness in L? ().

The proof of Theorem 4.8 will be given later on.

10.07.23 Lecture 24
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4.6 Eigenvalues and eigenfunctions of the weak Dirich-
let problem

Now we can state and prove the main theorem in this chapter. Consider again the weak
eigenvalue problem in a bounded domain 2 C R™:

Av+ v =0in Q (Vo, V)2 =X(v,90),2 Vo € Wy (Q) (B)
ve W @)\ {0} v e W (Q)\ {0}

Theorem 4.9 Let ) be a bounded domain in R™. Then there exists an orthonormal basis
{vr i, in L* () that consists of eigenfunctions of (E), and the corresponding eigenvalues
A\ are positive reals, the sequence {\,},—, is monotone increasing and A\, — +0o as
k — oo.

Proof. We use the Green operator G acting in L? (2), that was constructed in Section
4.4. Recall that if f € L? (Q) then the function u = G f solves the weak Dirichlet problem

Au = _f in () PN (VU, VSO)L2 = (f7 QO)L2 VQD S WOl (Q) (D)
u e Wy (Q) u e Wy ()
By Theorem 4.6, the operator GG is bounded, self-adjoint and positive definite, and by
Lemma 4.7, function v is an eigenfunction of (E) with eigenvalue A if and only if v is an
eigenfunction of the operator G with the eigenvalue p = %

Hence, it suffices to prove that there is an orthonormal basis {vg},-, in L?(2) that
consists of the eigenfunctions of G, and the corresponding sequence of eigenvalues {u }
is monotone decreasing and converges to 0 (we know already that u, > 0). For that, we
will apply the Hilbert-Schmidt theorem that requires the compactness of the operator in
question.

Hence, let us prove that the operator GG is compact. For that, define the operator

G: L (Q) — Wi (Q)

as follows: for any f € L2 (Q), the function v = Gf € W} (Q) is the solution of the weak
Dirichlet problem (D). Of course, the function G'f was also defined as the solution of the
same problem (D), so that Gf = Gf, but G acts from L?(Q) to L?(Q), while G acts
from L? (Q) to W¢ (Q).

Therefore, the Green operator G can be represented as a composition of two operators:

G=10G

as on the diagram
W5 (©)
G
/ N\
L? (9 —  L*(Q)

where [ is the natural embedding operator.
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Observe that the operator G is bounded, because by Lemma 4.5 the solution v = G f
satisfies the estimate

lullwg < C Iz (4.22)

where C' = diam (). The embedding operator [ is compact by Theorem 4.8. Hence, the
composition G = [ o Gis a compact operator.

Since G is a compact self-adjoint operator in L? (), we are in position to apply
the Hilbert-Schmidt theorem. This theorem says the following: if H is a separable oco-
dimensional Hilbert space and A is a compact self-adjoint operator in H, then there exists
an orthonormal basis {vy },-, in H that consists of the eigenvectors of A, the corresponding
eigenvalues p;, are real, and the sequence {1} goes to 0 as k — oo.

Applying this theorem for A = G, we obtain all these statements for G. In addition,
we know that the eigenvalues i, of G are positive. Since the sequence {y,} converges to
0, it is possible to rearrange it to become a monotone decreasing sequence, which finishes
the proof. m

Remark. The fact that the sequence {vy} in Theorem 4.9 is orthogonal is a consequence
of the following simple fact: if v/, v” are two eigenfunctions of ( E') with distinct eigenvalues
N, A" then v and v” are orthogonal, that is (v/,v”),, = 0. Indeed, setting in (E) ¢ = v”
we obtain

(VU,, VU”)LQ -\ (UI, U”)L2

and similarly
(VUH7 V/U,)LQ -\ (U”, U/>L2 '

It follows that
)\/ (U/, U//)L2 — )\/l ('U/,U//)Lz

which is only possible if (v/,v"),, = 0. By the way, this implies that also
(v',v")W& = (Vu', V"), =0

so that v" and v" are also orthogonal in W (£2).

Remark. If {v;} is a sequence of eigenfunctions of (£) that forms an orthogonal basis in
L? (), then the corresponding sequence {\;} of eigenvalues contains all the eigenvalues
of (E). Indeed, if A is one more eigenvalue with the eigenfunction v then the condition
A # )\ for all k implies that v is orthogonal to all vy. However, if v is orthogonal to all
the elements of a basis {vx} then v = 0, and v is not an eigenfunction.

Remark. Note that the sequence {)\;} can have repeated elements, as we will see in
examples below. If a number A\ appears in {\;} exactly m times then m is called the
multiplicity of A (in particular, if A is not eigenvalue then m = 0). Since \; — oo as
k — 0o, we see that the multiplicity is always finite.

The sequence {\},, of eigenvalues of (E) is also called the spectrum of the Dirichlet
problem in {2 or simply the spectrum of €.

Consider a domain 2 C R" of the form 2 = U x W where U is a domain in R™ and W
is a domain in R"™™. Denote the points of 2 by (z,y) where x € U and y € W. Let us
find eigenfunctions in €2 using the method of separation of variables. Namely, we search
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for an eigenfunction v in  in the form v(z,y) = u(x)w(y), where u and w are functions
in U and W. Since
Av = A+ Ay = (Au) w + uAw,

the equation Av + Av = 0 becomes
(Au) w + uAw + Auw = 0
that is,

Au Aw
u w

(y) = —=A.

It follows that the both functions % and % must be constants, say

where a« + = A. The boundary 02 consists of the union of U x W and U x dW.
Therefore, to ensure the boundary condition v = 0 on 0f2, let us assume that

ulgy =0 and w|aw = 0.

Hence, u should be a solution of the eigenvalue problem

Au+au=01in U
(4.23)
U|3U =0
and w should be a solution of the eigenvalue problem
Aw+ pPw=0in W
& (4.24)
w|aw =0

Denote by {uy},., the sequence of the eigenfunctions of the weak problem (4.23) such
that uy € Wy (U) and {us},-, is an orthonormal basis in L? (U); let {ax},, be their
eigenvalues Also, denote by {w;},-, a similar sequence of the eigenfunctions of (4.24) and
by {f,},2, their eigenvalues. It is possible to prove that the following function in

Uka(@,y) = up(@)wi(y)
belongs to Wy (), it is an eigenfunction of (E) with the eigenvalue
Akp = o + 3,

and the double sequence {ugw;};;_, is an orthonormal basis in L? (Q2). Hence, in this way
we obtain all the eigenfunctions and eigenvalues in €.

Example. Let us compute the eigenvalues of (E) in the interval Q = (0,a). The eigen-
value problem is

{ V" +Av=01in (0,a)
v(0) =v(a)=0.
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The ODE v” + Av = 0 has for positive A the general solution
v(z) = Cy cos V Az + Cysin vz
At x = 0 we obtain that C| = 0, and at x = a we obtain that

sin vV a = 0,

2
)\:(W—k> , keN.
a

Hence, we obtain the sequence of eigenvalues A\, = (%’“)2 and the corresponding eigenfunc-
tions vg(z) = sin 2. It is possible to prove that v, € Wy (0,a). Besides, the sequence
{sin %’ix}zozl is known to be an orthogonal basis in L? (0, a), which implies that we have
found all the eigenfunctions and eigenvalues.

which gives all solutions

Example. Compute now the eigenvalues of (FE) in the rectangle Q = (0,a) x (0,b).
Using the previous argument with U = (0,a) and W = (0,b), we obtain the following
eigenfunctions in U and W
k l
ug(x) = sin T and w;(y) = sin Ty

a b

k> AN
w=(5) a=(3)
for arbitrary k,l € N. Hence, we obtain that {2 has the following eigenfunctions and
eigenvalues:

and the eigenvalues

. mkx | wly
Vg (x,y) = sin — sin —=
a

b
Ay = 7 (@2 . (z)j |
’ a b
For example, in the case a = b = 7, the eigenvalues are
Ay = k> + 12,
that is, all sums of squares of two natural numbers. Setting k,l = 1,2, 3,4, ... we obtain
Mi1=2, M2=X1=5,A2=8 Mg=X31=10, Ag3 =A32 =13, A33 =18, Ay 4 =M1 =17, ...
The sequence of the eigenvalues in the increasing order is
2,5,5,8,10,10,13,13,17,17, 18, ....

In particular, the eigenvalues 5, 10, 13, 17 have multiplicity 2.

Denote by m (A) the multiplicity of an arbitrary number X in the sequence {A;;}.
Clearly, m () is equal to the number of ways in which A can be represented as a sum of
squares of two positive integers. For example, m (50) = 3 because

50=524+52=12+7*=7*4+1%
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An explicit formula for m (\) is obtained in Number Theory, using decomposition of A
into product of primes. In particular, it is known that

m(5?) =q+1

if ¢ is an odd number. Consequently, m (\) can be arbitrarily large. For example, we

have for ¢ = 3
m (125) = 4,

and the corresponding representations of 125 in the form k2 + [? are

125 =22 + 112 =112 + 22 =52 + 10° = 10®> + 5°.

Example. For a general n, consider a box in R"
Q=1(0,a1) x (0,a3) X ... x (0,a,),

where aq, ..., a, are positive reals. Applying the method of separation of variables, we
obtain the following eigenvalues and eigenfunctions in {2:

71']{311'1 . ﬂ-k:nxn
Uky, b (@) = sin ...sin

where ki, ..., k, are arbitrary natural numbers.

Remark. For any bounded domain €2 C R", the following Weyl’s asymptotic is known:

L 2/n
)\kwcn(m> as k — oo,

where ¢, > 0 depends on n only.

13.07.23 Lecture 25

4.7 Proof of the compact embedding theorem

For the proof of Theorem 4.8 we need some knowledge of multidimensional Fourier series.
Recall that any f € L? (—,7) allows expansion into the Fourier series

f(z) = % + Z (a cos kx + by sin kx)
k=1
that converges in L? (—m, 7). Setting ¢, = % (ax, — ibg) we have

- 1
cpe'® = 3 (ax — iby) (cos kx + isin kx)
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1
= — (agcoskx + bysinkz) + i (...
2

whence

ay, cos kx + by sinkx = 2Re (cke’kx) = e 4 e e,

Hence, we can rewrite the Fourier series as follows (setting by = 0):

f(l') = o+ Z (Ckeikz _i_@efikx) _ cheikx7

k=1 kEZ

where ¢ is defined for £ < 0 as follows: ¢, = ¢_. Hence, we obtain a representation of f
as a complex-valued Fourier series

f) = 3 cpet

that converges in L? (—m, 7). We have proved this for a real valued function f, but this
representation exists for any complex-valued function f € L?(—m,7) because we can
apply this argument to Re f and Im f.

Note that the sequence {e™*} rez 18 orthogonal in L? (—m,m) as for k # 1

(%, ¢0) , = [ etoeigy = [ e-Dagy = - 1_ [eik-D=]" —
i(k—1)

—T —T

because the function e® is 2m-periodic. Therefore, {e““z
L? (—m, 7).

Consider now n-dimensional cube

} rer2 18 an orthogonal basis on

Q= (_qr7ﬂ)n
and the space L?(Q) over C. For any £ € Z" consider the function z — €** (where

§-x =" &;) that is clearly in L?(Q). Since

n

eif-m _ H eiﬁjm]-

J=1

where &, takes arbitrary integer values, the sequence { et is an orthogonal basis in

Yeezn
L?(Q) as a tensor product of 1-dimensional bases. Note also that

||ei£'zHi2 = /Qeig'xmdx = /de = (2m)". (4.25)

Hence, any function f € L*(Q) admits an expansion in this basis, and the coefficients of
this expansion will be denoted by f (£), that is,

flo)y=>_f(©e, (4.26)

gezn

where the series converges in L? (Q). The series (4.26) is called n-dimensional (complez-
valued) Fourier series.
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RI? Z”

=T

Function f(z) is defined on Q C R”, while f (€) is defined on Z"

Taking an inner product of the series (4.26) with ¢%? for some fixed ¢ € Z" and using
(4.25) we obtain that

(f.e%) 0 = F (&) (€57, e%) , = 2m)" £ (€),

which implies that
£ _ 1 —il-x
f = 2 /Qf(:v)e dx. (4.27)

Similarly, we compute the norm || f||3, as the sum of squares of the norms of the summands
in (4.26):

A1z = > IS € e*lize = (2m)" Y If (&) ™

£€Z" EeZn

This identity is called Parseval’s identity.
Consider the following space of sequences on Z":

12:l2(Z”):{g:Z”—>C: Zyg(5)|2<oo}.

cezn

Then [? is a Hilbert space over C with the Hermitian inner product

(9:h)2 =Y g(§)h(§)

cezn

and the corresponding norm

lgll> = > lg (O

¢ezn

Hence, Parseval’s identity can be restated as follows: for any f € L?(Q) we have f €
I2(Z") and
2 nl g
£l = @m)" 1 £1]7- (4.28)

The mapping f +— f is called discrete Fourier transform. Let us denote it by F, that is,
Fo12 (@) — (@)

A

Ff=f.
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By (4.28) this mapping is an isometry (up to the constant factor (27)"), in particular,
injective. In fact, it is also surjective since for any g € [ (Z") the series

> get

cezn
converges in L% (Q) and, hence, gives F'g. Hence, F is an isomorphism of the Hilbert
spaces L? (Q) and I (Z™).
If f € D(Q) then, for any multiindex «, the partial derivative D*f is also in D (Q),
and the Fourier series of D“f is given by

Df(x) = (i) f (&) e, (4.29)

where
(i6)" = (i)™ ... (i)™
Indeed, the Fourier coefficients of D f are given by

o f(p)e €y = (—1)1 ) DY 4%y
/QDf() dz = (1) /f<>D a

_ |a/f fiﬁ-a:dx
= (i) f (¢

where we have used integration by parts. As we see from (4.4), the differential operator
D* becomes in Fourier transform a multiplication operator by (i£)®, which can be written
as follows:

FoD= (i) o F

The function (i€)“ is called the symbol of the differential operator D®.
It follows from Parseval’s identity that

1D fI72 = @m)" > 1EPIF ) 1” (4.30)

cezn

In particular, we have, for any j =1,...,n,

10s, flI72 = @m)" D 1E;PIF (O

ezn

which implies

IV Az = D 110s, £ = @m" D 167 1F ©) 1 (4:31)
j=1 cezn
Proof of Theorem 4.8. A natural embedding I : Wy () — L? () is defined by
I(f) = f, that is, for each f € W (), its image I f is the same function f but considered
as an element of L? ().
We need to prove that the natural embedding I is compact, which means the following:
for any sequence {f} of functions from W (Q) that is bounded in the norm of 1, there
exists a subsequence that converges in L? ().
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Note that if a sequence {f;} is bounded in L? () then it does not have to contain a
subsequence that converges in L? (€2) as it was mentioned above. Hence, the point of this
theorem is that the boundedness of {f;} in the norm of W is a stronger hypothesis, that
ensures the existence of a convergent subsequence in L?.

Recall that Wy () possesses two norms: || f||y1 and || f ||W(} that are equivalent. Hence,
we can assume that the sequence {fi} is bounded in the norm W,

Since D () is dense in W () with respect the norm W?, we can choose for any k a
function gx € D (Q2) such that

1
I = il < 7

Then {g;} is bounded in Wy (), and if {g;} contains a subsequence {g;, } that converges
in L? (), then {fy,} also converges in L* (Q) to the same limit because

ka _ngLz — 0 as k — 0.

Renaming g back to fi, we can assume without loss of generality that all functions fj
belong to D (£2).

Since € is bounded, ) is contained in a cube @ = (—a,a)"” for large enough a. Since
D () C D(Q), we can forget about © and work with the domain @ instead. Finally,
without loss of generality, we can assume

Q= (—mm)".

Hence, we assume in the sequel that all functions f; belong to D (Q) and that the sequence
{fx} is bounded in the norm W* (Q), that is, there is a constant C' such that, for all k > 1,

I fill7e < C and |V fil7. < C.

It follows from (4.28) and (4.31) that, for all k > 1,

DE@OP<C and Y KPP <C. (4.32)

cezn cezn

We need to show that there exists a subsequence {fi,} that converges in L* (Q), that is,
a subsequence that is a Cauchy sequence in L? (Q). In the view of Parseval’s identity, the
latter is equivalent to the fact that subsequence { fkj} is a Cauchy sequence in [% (Z").

It follows from (4.32) that, for each ¢ € Z", the sequence {f) (£)}32, of complex
numbers is bounded. By theorem of Bolzano-Weierstrass, this sequence has a convergent
in C subsequence { fk]. (€)}. Using the diagonal process, we will select a subsequence that
converges pointwise at all £ € Z", not just at one &.

Indeed, since the set Z™ is countable, we can enumerate all the elements of Z™ by
€1,€5, ... Choose first a subsequence of indices {k;} so that the sequence { fk]. (&1)} con-

verges. Let us use the notation f;l) = fkj so that {fj(l)} is a subsequence of {fj} and

fl(l) (&), JE2(1) &), .. fj(l) (&), ... converges.

Similarly, the sequence { f;l)} contains a subsequence { f]@)} that is convergent at &,:

f1(2) (&), f2(2) (&), ooy f® (&), ... converges.

J
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Continuing by induction, we obtain for any k a sequence { f](k)} that is a subsequence of

{f;kil)} converging at &
k ok ;
Pe), A€, e F9 (€, ... converges.

Consider the diagonal sequence fl(l), f2(2), e fJ(J ), ... that is a subsequence of { fj} The

diagonal sequence is shown by arrows on the following diagram, where the k-th row
converges at £

A1 (1 A(1 P
g g
N\

£(2 (2 (2 r
o e e e

N
£(3 (3 ~(3 P
O e L e
N

We claim that the diagonal sequence converges at any &,. Indeed, its tail { f;j )}jzk
starts at k-th row and, hence, is a subsequence of the k-th row { f](k)} that converges at
&,. Hence, the diagonal sequence { f G )} converges at all £ € Z".

To simplify notation and Wlthout loss of generality we can now assume that the whole
sequence { fk} converges pointwise at all £ € Z". Hence, for any &, the sequence { i &)}
of complex numbers is a Cauchy sequence in C.

Let us finally prove that {f,} is Cauchy sequence in [? (Z"). Indeed, for all positive
integers k, m,r we have

o=l = D" 1 (©=Fun ) P =3 1 (O) = fin (O P+ i (&)= fim (€) % (4.33)

cezm l€|<r €[>

ZI’I

Since the first sum in (4.33) is finite and each summand goes to 0 as k,m — oo, the
first sum goes to 0 as k,m — oo. The second sum where || > r, is estimated as follows:

D@ =Fn©OFP <2D I @©FP+2> 1fm ()

€[> [€1=>r &1=r
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Since by (4.32)

. 2 C
Slh@r<Y Eier<

r2
|§1=r [€1=>r

it follows that

. . . . 4C'
1= Funllte < D21 (©) = Fun (O P + =5
lgl<r
Hence, we obtain as k,m — oo that
) A A 4C'
lmsup | e = fulle < 5

Since r can be chosen arbitrarily large, it follows that
Lm || fy — fmll2 =0,
k,m—o0

which was to be proved. m

4.8 *Higher order weak derivatives

Our purpose is to investigate higher order differentiability of solutions of the weak Dirichlet

problem. In particular, we will be able to prove that the eigenfunctions of the Dirichlet

problem constructed in Theorem 4.9 as functions from W{ (€2), are in fact C* functions.
Recall that the Sobolev space W* (2) is defined by

WrQ) ={feLl?Q):D*feL*Q) forall awith |af <k}.
The space W* has an inner product

(fmg)Wk = Z (DafaDaf)

| <k

and the associated norm
2 2
£ 15e =D IDfII7- -

Similarly to Proposition 4.1 it is possible to prove that W* (Q) is a Hilbert space.
Similarly, define the space

WE(Q) = {f e L, (Q):D*f el (Q) foral awith || <k}.

loc loc

4.8.1 Higher order derivatives in a cube

Let @ = (—m,7)" as above. The first main result is the following theorem.

Theorem 4.10 Let u € W' (Q) and U be an open subset of Q such that U C Q.
(a) If Au € L*(Q) then u € W2 (U) and

lellys) < € (lullwr gy + 180l 2 )
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where constant C depends on U and n. Consequently, u € W2.(Q) .
(b) If Au € Wk (Q) then u e WEF2(U) and

||U||wk+2(U) <C (H“HWl(Q) + HAUHW’“(Q)> ’

where the constant C' depends on U,n,k. Consequently, u € WFT2(Q).

loc

In particular, if u solves the weak Dirichlet problem

Au=f in Q
u € Wy (Q)

with f € L?(Q) then, in fact, u € W2, (Q). Moreover, if f € W*(Q) then u € W (Q).

loc
The statement of Theorem 4.10 remains true if the cube @) is replaced by any bounded

domain €2, which will be stated and proved below as a Corollary. For the proof of Theorem
4.10 we will need two lemmas. We use the Fourier series in L? (Q) as above.

Lemma 4.11 Let u € L*(Q) and assume that, for some multiindez c,

P la @) < oo. (4.34)

gezn

Then Du € L? (Q) and, moreover,

Du="Y (i&)" (&) e (4.35)
cezn
and
ID*ul|7> = (2m)" > 1€ |a (§)[. (4.36)
Eegm

The function (i£)® in (4.35) is called the symbol of the operator D®. Recall that we
have already proved the identities (4.35) and (4.36) in the case u € C§° (Q)) — see (4.29)
and (4.30), respectively.

Example. Assume that

> el () < oo

gezr
Then, for any j = 1,...,n, we have

STg P la@©F < oo,

cezn

that is, the condition (4.34) holds for o = (0, ...1,...0) where the 1 is at position j. By
Lemma 4.11 we conclude that 9, u € L* (Q),

Oyu =Y i&;0 () €,

and

10a, 7. = 20" Y |6 1a©F.

gezn
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It follows that u € W' (Q) and

IVullfe =3 [|0null;, = @m)" > 1l a(€))
j=1

cezn

Example. Assume now that

> et a ) < oo.

Lezn

Then, for all j =1,...,n we have

STlgMa@©F < oo,

gezn

that is, the condition (4.34) holds for o = (0, ...2,...0) where the 2 is at position j. By
Lemma 4.11 we conclude that 9,,,,u € L* (Q) and

Oyt = — ) &5 (€) €.
gezr
In particular, it follows that Au € L? (Q) and
Bu=3 Oneu==3_ |efu(e)e,
j=1 gezn

whence by Parseval’s identity

1Aul7. = @m)" ) |l @ ()

gezn
The function — |€|* on Z" is called the symbol of A.

Proof of Lemma 4.11. By the hypothesis (4.34), the following function
o(x) = ) (&) a(g) e (4.37)
gezn

belongs to L?(Q). Let us show that D = v. By definition, D% is a distribution that
is defined by

(D*u,0) = (—1)" (u, D*¢) Ve € D(Q).
Hence, in order to prove that D*u = v, we need to verify that, for any ¢ € D (Q),

/ vpdr = (—1)'0"/ uD%pdz. (4.38)
Q Q
Since the Fourier series (4.37) and

u(z) =Y @(§)e”

gezn
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converge in L? (Q)), we can compute both integrals in (4.38) by substituting the Fourier
series of u and v and interchanging integration in x with summation in £&. We obtain

/Q uD%dz = Y i (€) / €7 Dp(2)dx

= Q
= a () (-1l [ DUep(a)dz,
by /,

where we have used integration by parts because ¢ € C§° (Q). Since
Daei§~m — (lﬁ)a €i§~x7

we obtain

uD*pdr = Q 1)l i) e p(x)dx
/Q pde = 3" a(©) ()" [ (i€)" <ol

EGZTL Q

= (1) /Q < > &) a(€) f) p(z)dz

cezn

= ()" [ vpda,
Q
which proves (4.38). Then identities (4.35) and (4.36) follow from (4.37). =

Definition. For any u € L} (), define the support supp u as the complement in € of

the maximal open subset of €2 where u =0 a.e..

Observe that the maximal open subset of {2 with this property exists since it is the
union of all open subsets of 2 where u =0 a.e..

By construction, supp u is a closed subset of € (by the way, the same construction
can be used to define the support of any distribution). If w is continuous then supp u
coincides with the closure in Q of the set where u # 0.

The following lemma is a partial converse of Lemma 4.11.

Lemma 4.12 Let u € L? (Q) and assume that suppu is a compact subset® of Q.
(a) If D*u € L? (Q) then (4.34), (4.35) and (4.36) hold.

(b) If Au € L? (Q) then
Au=—Y"[¢fa(g) e, (4.39)

cezn

where the series (4.39) converges in L* (Q), and
1Aulfz. = (2m)" Y It a (O (4.40)

cezn
2Recall that the notion of compactness of a set does not depend on the choice of an ambient topological
space. In the statement of Lemma 4.12 there are two natural choices of the ambient space: R™ or Q.
Since a subset of R™ is compact if and only if it is bounded and closed, the phrase “supp u is a compact
subset of @)” means that “supp u is a closed subset of R” and suppu C @” (then supp u is automatically
bounded and, hence, compact). However, this phrase does not mean that “supp v is a closed subset of
the topological space Q" as there are closed (and obviously bounded) subsets of the topological space Q
that are not compact.
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Proof. (a) Let U be an open neighborhood of supp u such that U C Q. Let 1) be a
function from D (Q) such that ¢» = 1 in U. Any function ¢ with this property is called a
cutoff function of U in Q). Denote by h () the discrete Fourier transform of D*u. Observe
that supp D%u C U because if u = 0 a.e. in an open set then also D*u = 0 a.e. in the
same set. Since ¢ = 1 on U, we have the identity

YD = D% in @,
which implies
1 } 1 .
h - D~ —i-x dr = —— D —i&-x do.
O = e |, e e = s | Do S vy

Since ¢(z) 1= e ®%(x) € D(Q), we have by the definition of distributional Laplacian
D%y that

(D%u, @) = (=) (u, D*p),
whence

1yl |
h (&) = % /QuDa (e %"y (z)) da. (4.41)

Observe that e=%¢%1) = ¢~ in U. Therefore, in U

D (e ) = DY = (—if)* 7T = (1)1 (i) eI,
Since the integration in (4.41) can be restricted to U, we obtain
b
(27)"

which proves (4.35). Then (4.34) and (4.40) follow by Parseval’s identity.

(b) The proof is the same as that of (a), we just replace everywhere D* by A. Let ¢
be the same cutoff function of U in @, and let h (§) the discrete Fourier transform of Auw.
Since supp Au C U and ¢ = 1 on U, we have the identity

hie) = /Q W (i€)" e dr = (i€) . (€).

YAu = Au in Q,

which implies

1 —i€-x _ 1 —i&-x
h(§) = (27)"/QAue ¢ dx—W/QAue S (x)da.

Since ¢(z) 1= e ®%(x) € D(Q), we have by the definition of distributional Laplacian
Au that

(Auv 90) = (u’ AQD) )

ﬁ /QuA (e *yY(x)) da. (4.42)

Since e~ %) = e~ on U, it follows that in U

whence

h(§) =

A (e_’f'x@/}) = Ae %% = |§|2 e,



160 CHAPTER 4. THE EIGENVALUE PROBLEM

Since the integration in (4.42) can be restricted to U, we obtain

h(§) = "o

which proves (4.39). Then (4.40) follows by Parseval’s identity. =

- /Q“ € e de = —[¢[*a (¢),

Proof of Theorem 4.10. (a) Let ¢ be a cutoff function of U in Q. Set v = wip. By
the product rule for the Laplacian, we have

Av = A (Yu) = pAu+ 2V - Vu + Ay u.
Note that Au, Vu and u are all in L?, whereas 1, Vi) and At are in D (Q). Tt follows
that Av € L? (Q) and, moreover,

180l0) < € (Itlhwsq + 18Ul

where C' depends on sup |V#| and sup |Ae| and, hence, on U.
Since supp v is a subset of supp ¥ and, hence, is a compact subset of (), we obtain by

Lemma 4.12 that
2 n 4~ 2
|Av][7, = (2m)" > 1€ 8 ().

cezn

Since for all indices 7,1 = 1,...,n we have

1 1
&l < S 16l + 5 16l < 1e

we obtain

> 6 o)) < > e B (9 < o

cezn gezn

Note that the function —¢;&; is the symbol of the operator J,,,,. Hence, we conclude by
Lemma 4.11 that the distributional derivative 8,,,,v belongs to L? (Q) and

10200152y = @m)" D G561 @ (O < 1 A0]Z2qq) -

gezn

Similarly, since |§ j‘ <€ \2, we obtain

2. X

Dol @F < Y let o @) < oo

gezn gezn
Hence, 9,,v € L? (Q) and

2 n 2.
102,0]1 2y = @) D1 1@ (€)1 < 1Av][72 g -
cezn

We conclude that v € W?(Q) and

of20) = 012 + D 190,0[15 + D 10,000l < N0l72g) + C 1AWz g -
=1 ji=1
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Since v = u in U, we obtain that v € W? (U) and

2 2 2
lullivery < 0llz2g) + C 1AV]72(q)
< C' (Il + 180l 2(g )

which was to be proved.

(b) Induction in k. The induction basis for k = 0 was proved in (a). For the inductive
step from k to k+1, choose a cube Q' = (7 — &, — )" for some £ > 0, such that U C Q'
Assume that v € W' (Q) and Au € W*1(Q). Since Au € L?(Q), by part (a) we have
u e W?(Q') and

Il < € (Iully gy + I1Aul ) - (1.43)
Set v = 8,,u and observe that v € W' (Q’) and Av = 9, Au € W (Q'). By the inductive
hypotheses applied to cube Q' instead of Q, we obtain v € W*+2 (U) and
Pl <€ (Il + 1800y

< C (el + 1Aulyrin )

Substituting here the estimate of [|ul|y(g from (4.43), we obtain

Ilhwasaay < € (Il + 18ulying) -

Finally, since this estimate holds for any partial derivative v = 0,,u of u, it follows that
uw € W (U) and

lullyesso) < € (Iullw ) + 18ullyang))

which proves the inductive step.

Finally, let us show that u € W} 2 (Q) (both in the cases (a) and (b)). Indeed, since
for any multiindex « of order < k+2 we have D € L? (U) for any open set U such that
U C Q, we see that Du € L2, (Q) and, hence, u € W (Q). m

loc loc

4.8.2 Higher order derivatives in arbitrary domain

Our next task is to generalize Theorem 4.10 to general domains. For that we prove first
two lemmas.
Let f, g be distributions in €. If U is an open subset of {2 then we say that f = g in
U if
(f.9) =(9,¢) Vo eD(U).

Lemma 4.13 Let Q = U UV where U,V are open domains in R™. If f,g € D' () and
f=ginUandinV then f =g in Q.

Proof. We have to prove that

(fr0)=(9,¢) VoeD(Q). (4.44)
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Fix ¢ € D () and denote K = suppp. If K C U then ¢ € D (U) and (4.44) holds by
assumption that f = g in U. In the same way (4.44) holds if K C V. However, if K is
not contained in U or V, then additional argument is needed. In fact, it suffices to show
that ¢ can be represented in the form

© = + @, (4.45)

where ¢, € D (U) and ¢, € D (V). Then, adding up the identities (4.44) with ¢, and ¢,,
we obtain that for ¢. The representation (4.45) is called partition of ¢ subordinated to
UV.

Since K C U UV, for any point x € K there is a ball B, of small enough radius
centered at x such that B, is contained in U or in V. The family {B,},_, is an open
cover of K, so there exists a finite subcover, say Bji,...B;. Denote by U’ the union of all
balls B; with B; C U, and by V' — the union of all balls B; with B; C V (some balls B,
may be used in both U’ and V).

Covering of the set K (grey shaded) with U’ (the union of blue balls) and V' (the union
of red balls)

By construction we have
KcUuV, UcU VcV.

Therefore, there is a cutoff function 1, of U’ in U, and a cutoff function ¢, of V' in V.
Set then

pr =11 and @y = (1 —1y) dyp.
Clearly, ¢, € D (U) and ¢, € D (V). Besides,

1+ P = (V1 + 1y — 13hy) @
=1 =1 =91 —1)) e,

which implies that
® ¢, + vy =0 = p outside K;
e v, +py, = on V' UU’ because on this set either ¢, =1 or ¢, = 1.

Since K is covered by V'UU’, we conclude that ¢, 4@, = ¢ everywhere, which finishes
the proof. m
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Lemma 4.14 Let Q = U UV where U,V are open domains in R". Let u be a measurable
function in Q. If u € W*(U) and u € Wk (V) then u € W* (Q). Besides, we have

2 2 2
lullin ) < llullery + llullire - (4.46)

Proof. Obviously, if u € L? (U) and u € L* (V) then
/u2dac < / qux—l—/ wldr < oo
Q U v

2 2 2
lullz20y < Nullzz@ + lullz2qr -

Assume that, for some multiindex «, we know that D*u € L? (U) and D*u € L* (V). Let
us prove that D%u € L*(Q2). Denote by v; the function D% in U and by v, the function
D%u in V. Observe then that D% in U NV is equal simultaneously to v; and vy so that
v1 = vy in UNV. Let us define function v in U UV by

so that v € L? (Q2) and

?}1(37), YIS U7

v(w) = { v(z), z€V.

Clearly, v is well-defined and v € L? (2). Then D% = v in U and in V. Therefore, by
Lemma 4.13 we conclude that D%u = v in Q. It follows that

« 2 o 2 o 2
| D UHL2(Q) <|D u||L2(U) + D U”L2(V)'

Summing up such identities over all multiindices |a| < k, we obtain (4.46). m

Theorem 4.15 Let Q be any bounded domain in R". If u € W' () and Au € W* (Q)
then, for any open subset U of Q, such that U C Q, we have u € W*2 (U) and

lllyeraqy < € (Hullys oy + 18ullypa))

where the constant C' depends on Q,U,n, k. Consequently, u € W}F+? (Q).

loc

Proof. For any point x € Q) there exists € = ¢(z) > 0 such that the cube
Qr:=(r1—¢e,11+¢) X ... X (x, —€,2,+¢)

is contained in . Denote by U, a similar cube where ¢ is replaced by ¢/2. Clearly,
the family {U,}, . is an open covering of U. By the compactness of U, there is a finite
subcover, denote its element by Uy, ...,U;. Applying Theorem 4.10 in the corresponding
cubes Q1, ..., Q; (instead of @), we obtain that u € W++2 (Uj) and

lullwsaqoy < C5 (lllwiay + 18ulhyea) )

< C (Il + 1Al acey)
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where C' = max (. Since U C Ué:l U, using Lemma 4.14, we obtain by induction in !
that uw € W*+2(U) and

! 1/2
2
HUHWJCH(U) < (Z Hu||Wk+2(Uj)>
j=1

!
< Z [ullyrrz,
j=1

< ¢ (Jullsa + 1Aullyugey )

where C’" = [C', which finishes the proof. m

Corollary 4.16 Let Q be a bounded domain and v € W () be an eigenfunction of the
weak Dirichlet problem in ) with the eigenvalue A\. Then v € W2 ().

Proof. It suffices to prove that v € W* (U) for k € N and for any open set U such that
U C Q. Given k and U, let us construct a sequence of open sets Uy, ..., Uy, such that
Uy = 1, Uj D) Uj+1, and U, = U. Set

f = _)\U7

so that
Av = f.

Since v € W (Uy) then also f € W' (U). Therefore,
ve W (Uy) and Ave W' (1),

which implies by Theorem 4.15 that v € W3 (U;) . Hence, also f € W? (U;). Therefore,
ve W (Uy) and Ave W3 (U,),

which implies by Theorem 4.15 that v € W? (U,). Continuing further by induction, we
obtain that u € W2**1 (U}), which finishes the proof. m

4.9 *Sobolev embedding theorem

Recall that C™ (€2) denotes the space of all m times continuously differentiable functions
in Q. Set
[ullgmiqy = sup sup|[Du(z)|.
{a:|a|<m} z€Q

Note that [lu[|omg) can be equal to oo. Define also the space Cj"(€2) as a subspace
of €™ (€2) with [[u[|gmg) < co. Then Cy"(Q) is a normed linear space with the norm
[/l gm (- Moreover, it is a Banach space.

The following implications are trivial:

ue C™(Q)=ue W, (Q)
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and, if 2 is bounded, then

ue Oy () =ueWm(Q).

Notational remark. A better notion for C™ () would have been C7. () and for C7* (Q) — simply
C™ (). In this case the notation for C™-spaces would have matched those for W¥-spaces. However, we

use the notations that are commonly accepted in mathematics, even if they are not best possible.

The next theorem states a kind of converse to the above implications. It is one of the
most amazing results of Analysis.

Theorem 4.17 (Sobolev embedding theorem) Let Q2 be an open subset of R™ and let m, k
be non-negative integers such that

k>m+g. (4.47)

If ue WE_(Q) then u e C™(9). B
Moreover, if u € W* (Q) then, for any open set U such that U is a compact subset of
Q, we have uw € CJ* (U) and

HuHCm(U) <C HUHW’“(Q) g (4.48)
where the constant C' depends on Q,U, k, m,n.
Note that w is a priori an element of L? (£2) and, hence, is the class of measurable
functions defined almost everywhere. When we claim that u € C™ (Q2) and, in particular,
u € C(22), we understand u as a function defined pointwise. A precise meaning of that is
as follows: if u € W, () then u as a class of functions has a representative, also denoted
by u, such that this representative belongs to C™ (2).

The identification of u € W, (Q) with its C™-representative allows to define an em-
bedding (=injective linear mapping) of linear spaces

W (@) — O™ (©).
The estimate (4.48) implies that there is an embedding
Wk (Q) = C} (U)

of normed linear spaces, and this embedding is a bounded operator.

Example. Let n = 1. Then the condition (4.47) becomes k > m + § that is equivalent
to k > m + 1. Hence, if u € W}, then u € C*7!, provided k > 1. In particular, any
function from W!  has to be continuous. We have seen above that the continuous function
u(z) = |z| in R has the weak derivative ' = sgnz and, hence, belongs to W;._. On the
other hand, the function u(x) = 1}y that has only one point of discontinuity at = = 0

has the distributional derivative ' = ¢ and, hence, is not in W}, .

Example. For a general n and for m = 0, the condition (4.47) becomes & > . That is,
if
k>g (4.49)
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then v € W} _implies that u is continuous. Let us show that the condition (4.49) is sharp.
For that, consider in R” the function u(z) = |z|* where « is a real number. This function
is clearly C'™° smooth outside the origin, but it is continuous in R if and only if o > 0.
We use without proof the fact that u € L7 if and only if

- n
a —_——
2

(cf. Example at the end of Section 4.1). It is also possible to prove that any classical
derivatives of u of the order k (which is defined outside 0) belongs to L2 . if and only if

loc

n
— k> ——
o 5
which is equivalent to
a>k—g. (4.50)

Under this condition the classical derivative coincides with the weak derivative, which
therefore belongs to L .

Hence, under the condition (4.50) we obtain u € W . If k < % then there exists a < 0
that satisfies (4.50). Then the function u(z) = |z|* belongs to W}*, but is not continuous
at 0. This example shows that the condition (4.49), under which all functions from W},
are continuous, is sharp.

Before the proof of Theorem 4.17, let us state some consequences.

Corollary 4.18 Let () be a bounded domain in R™. Let u be solution of the weak Dirichlet
problem
Au=f in €
{ ue Wy (Q)

where f € L*(Q). If in addition f € WE_(Q) where

k+2>m+g, (4.51)

then uw € C™ (). Here k,m are non-negative integers.

In particular, the statement of Corollary 4.18 holds if f € C* (). If k > Z then
(4.51) holds with m = 2, and we obtain that u € C? () and that the equation Au = f
is satisfied in the classical sense.

Proof. Fix an open subset U of {2 such that U C Q. Then we have f € W* (U). Since
u € WH(U) and Au € W*(U), we obtain by Theorem 4.15 that u € W} (U). By

Theorem 4.17 and and (4.51), we conclude that v € C™ (U). Since U is arbitrary, it
follows that u € C™ (€2). m

Example. Let n = 2. Then the condition k + 2 > m + 1 is equivalent to £k > m. In the
case n = 3 the condition

3
k+2>m+§

is also equivalent to k& > m. Hence, in the both cases n = 2,3 we obtain if f € W} _(Q)
then u € C* (Q).

If n = 4 then the condition k+2 > m+2 is equivalent to k¥ > m+1.Hence, f € WF_(Q)
implies u € C*~1 (Q) provided k > 1.
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Corollary 4.19 In any bounded domain 2 C R", all eigenfunctions of the weak Dirichlet
problem belong to C™ ().

Proof. Let v be an eigenfunction of the weak Dirichlet problem in 2. By Corollary 4.16,

we have v € WF_(Q) for any k. Hence, by Theorem 4.17 we conclude that v € C™ (Q)
for any m, that is, v € C*(Q2). =

*Remark. The question remains if the boundary condition v € W{ () is the statement of the weak
eigenvalue problem can be turned into the classical boundary condition v = 0 on 952, which in particular
requires the continuity of v in Q. This question is more difficult than the continuity of v inside €2, because
the answer depends on the properties of the boundary 0f2.

In short, if the boundary is good enough, for example, if Q is a region, then indeed v € C(Q) and
v =0 on 02 pointwise. A similar statement holds for weak solutions of the Dirichlet problem.

However, the study of the boundary behavior is outside the range of this course.

Proof of Theorem 4.17. The proof will be split in a few parts.

Part 1. Let Q = (—m,m)" be the cube as above. Assume first that u € L? (Q) and
that suppu is a compact subset of Q. We prove in this part that if « € W*(Q) with
k > n/2 then u € C'(Q) and, moreover,

HUHc(Q) <C HU’HW’C(Q) (4.52)

for some constant C' = C' (n, k) (which corresponds to the case m = 0).
By Lemma 4.12(a), we have, for any multiindex a with |a| < k the identity (4.36),
that is,

S Ie la (9 = 2m) " 1D%ul% < o.

cezn

Applying this with a = (0, ..., 0, k, 0, ..., 0) , where k stands at position i, we obtain
. “n 2

DGl [a@©F = 2m) ™" (|0t ul[ . < oo

gezn
Adding up in all ¢ =1, ..., n, we obtain

> (Il + o 1eaP*) @ ©F < lulfs

ez

Observing that
n k n
€ = (Z |£Z-|2> <Cy L&l
i=1 i=1

where C' = n*, we obtain
D P @©F < Cllullf < oo (4.53)
gezn

On the other hand, we have by the Cauchy-Schwarz inequality,
2 2

Soga@l] =1 > e la©)

£ezm\{0} £ezm\{0}
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< D0 Tl ar. (4.54)
£ezm\{0} gezr
If £ > & then 2k > n. We claim that if 2k > n then
YK <o (4.55)
gezr\{0}
(see Lemma 4.20 below). Combining this with (4.53) and (4.54), we obtain
> (@< C ullys < 0.
£ezm\{0}
In particular, this implies that the Fourier series
>l
gezn

converges absolutely and uniformly in x € ). Therefore, its sum is a continuous function
in Q. On the other hand, we know that this series converges in L? to u(x). Hence, L?
function w(z) has a continuous version that is the pointwise sum of the Fourier series.
Besides, we have for the continuous function wu(x)

sup [u(@)] < Y |a(€) e < [a )]+ > |a()l

2€Q gezn €ezm\{0}
1
< — d o
< (27T)n/Q|u(x)| T+ ||u||Wk

<l gz + C el
< C"lullype

which proves (4.52).

Part 2. Let us extend the result of Part 1 to the case m > 1. Namely, in the setting
of Part 1, assume that v € W*(Q) with k& > m + % and prove that u € C™ (Q) and,
moreover,

Hu”cm(Q) <C HUHWk(Q) : (4.56)
We still have (4.53), but instead of (4.54) we write

2 2
STRMa©] = D ke la©)]
£ezm\{0} £ezZm\{0}
< >0 TN e lae)”
£czZn\{0} cezn

Since 2 (k —m) > n, we obtain that

> < o,

£ezm\{0}
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Combining this with (4.53) and noticing that |£|™ = 0 for £ = 0, we obtain

STIE™ ()] < O llully < oo,

gezn

We claim that, for any « with |a| < m, the classical derivative D*u exists and is given
by the series

Du(x) =y (i€)" a () e, (4.57)

Lezn

where the convergence is absolute and uniform. Indeed, since this series is obtained a
term by term application of D® to the series

u(x) =Y a(€) e,
cegm

it suffices to prove that the series (4.57) converges absolutely and uniformly in z € @ for
all |a] < m. Observe that

€] = 1€, €1 < (6] + o+ 1€
<C(P+ . +le) " =g (4.58)

Therefore, for any o # 0 with |a| < m,

ST ae) et <oy lelae)

cezn tezn

<O g ()l

cegn
< C'[ullype < 0o, (4.59)

which proves (4.57). Besides, we obtain from (4.57) and (4.59) that
| D*u(z)| < C" |y ,

whence (4.56) follows.
Part 3. Assume that u € W* (Q) and prove that v € C™ (Q) provided k > m + 2.

Besides, we prove that, for any open set U such that U C Q,

[ullom @y < Cllullyrg) - (4.60)

Let ¢ be a cutoff function of U in (). Then the function v = 1u has a compact support
in Q and v € W* (Q). Indeed, to see the latter, let us use the Leibniz formula

D (gu) = ) (O‘)D“%Dﬁu,

{B:8<a} g

where § < o means that §; < a; for all j =1,...,n, and (g) is a polynomial coefficient

defined by
o o!
(é>_5wa—ﬁw
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where a! = oy!...a;,!. If |a] < k then also |3] < k and DPu € L%, (Q). Since D* P4 is

loc

supported in supp % and is bounded, we obtain that the product D D"y is supported
in supp ¢ and, hence, belongs to L? (Q). Hence, D* (yv) € L?(Q), whence v € W* (Q)
follows.
By Part 2 we conclude that v € C™ (@) and
||U||Cm(Q) <cC ||U||Wk(Q)-

Since u = v on U, we obtain (4.60).

Part 4. Let Q be an arbitrary open set and v € WF_(Q). Let Q be any cube (of any
size) such that @ C Q. Then u € W* (Q) and, hence, by Part 3, u € C™ (Q). Since such
cubes (@ cover all the set 2, we conclude that u € C™ ().

Assume now that u € W¥ (Q). Let U be an open set such that U is a compact subset
of €. As in the proof of Theorem 4.15, choose for any point = € € some £ > 0 such that
the cube

Q.= (r1—g,x1+¢) X ... X (T, —&,2, +¢€)

is contained in 2. Denote by U, a similar cube where ¢ is replaced by e/2. Clearly,
the family {U,}, . is an open covering of U. By the compactness of U, there is a finite
subcover, denote its element by Uy, ..., U;. By (4.56), we have for any j

HUHCW(U]-) <Cj ||U||Wk(Qj) : (4.61)
Since the union U;Zl U; covers U, taking (4.61) supremum in j, we obtain

ullem@y < Cllullyrqy

which finishes the proof. m

To complete the proof of Theorem 4.17, it remains to prove the following lemma.

Lemma 4.20 For any v > n we have

Y T < oo, (4.62)

gez™\{0}
Proof. Let us first estimate the following number:
N(R)=#{€Z":|¢| <R},

where R > 0. In other words, N (R) is the number of integer points inside the ball Br of
R™. With any £ € Z", let us associate a unit cube

Q¢ = {mEanfj <z; <+, ‘v’jzl,...,n}.
In other words, ¢ is the bottom left corner of the cube Q¢. For any z € ()¢, we have

n 1/2
|z —¢&| = (lej_fj‘2> <Vn.

=1



4.10. * SOBOLEV SPACES OF FRACTIONAL ORDERS 171

Hence, if £ € By then
|z < [¢] + [z =&l < R+ v/n,

which implies
Since all the cubes Q)¢ are disjoint and the volume of each cube ¢ is equal to 1, we obtain

N (R) = Z vol (Q¢) < vol Bry m = ¢y (R+\/ﬁ)n,

§EBR

where ¢, is the volume of the unit ball in R™. Assuming that R is a positive integer and,
in particular, R > 1, we obtain

N (R) < CR",

for some constant C' = C'(n). Therefore, we obtain

> |§r”=i > €|~

£ezm\{0} k=0 {eezn:ok<|g|<2kt1}

D RS

k=0 {SEZ”’:2k§‘§|<2k+1}

- i 2k (N (2541) - N (29)
< i o—kv N\ (2k+1)

k=0

<C Z 27k72(k+1)n

k=0
=(C2" Z 2~k o,
k=0

where we have used that y >n. m

4.10 * Sobolev spaces of fractional orders

Let u € L? (Q) and assume that supp u is a compact subset of . Combination of Lemmas
4.11 and 4.12 gives the following: D%u € L? (Q) if and only if

Pl (@) < oo (4.63)

¢ezn

By (4.58) we have |¢%| < C'|¢]'*!. Hence, (4.63) holds for all multiindices o with |o| < k
provided

> e () < oo (4.64)

gezn
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Hence, if (4.64) holds then u € W* (Q) and

gy < C Y 1 a )

cezn

On the other hand, by (4.53) we have the converse: is u € W* (Q) then

YO < Cllullyg

cezn

and, in particular, (4.63) holds.
Hence, u € W* (Q) is equivalent to (4.64), and

gy = > 161 |a (4.65)

ceun

where the sign ~ means the equivalence of the two expressions in the sense that their
ratio is bounded from above and below by positive constants.
Using (4.65) as motivation, we can introduce the norm ||ully. g, for all positive real

values of s by setting
2 25 |~ ey (2
llfyeiy = > €17 12 (€)
gezn

and define the space W* (Q) as the set containing all v € L? (Q) with compact® supp u
and with [|ully. ) < oo.

As in the proof of Theorem 4.17, one can show that if u € W*(Q) and s > m + §
then u € C™ (Q).

Note that one can define also spaces C'(Q) for positive real values of parameter t.
For simplicity, let us restrict ourselves to the case 0 <t < 1. Then C* (Q) is the space of
functions v in () that are Holder continuous with the Holder exponent ¢, that is,

[u(@) — u(y)| < C'le =yl
for some constant C'. The norm in C* (Q) is defined by

ju(z) = u(y)|

ullce gy = lull gy + sup
Q) Q) ]a:—y|t

Then the following is true: if v € W*(Q) and s > ¢ + , where s,¢ are non-negative reals,
then u € C*(Q) and
ullge (w) < C HUHWs(Q)

30ne can extend this definition to allow in W* (Q) functions whose support is not necessarily compact.
However, we skip this direction.
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