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Abstract. We give necessary and sufficient conditions for sub-Gaussian estimates of
the heat kernel of a strongly local regular Dirichlet form on a metric measure space.
The conditions for two-sided estimates are given in terms of the generalized capacity
inequality and the Poincaré inequality. The main difficulty lies in obtaining the elliptic
Harnack inequality under these assumptions. The conditions for upper bound alone are
given in terms of the generalized capacity inequality and the Faber-Krahn inequality.
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1. Introduction

1.1. History and motivation. In this paper we are concerned with heat kernel estimates
in the setting of Dirichlet forms on metric measure spaces. A classical example is the heat
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kernel pt (x, y) in Rn that is the fundamental solution of the heat equation given by

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

The notion of the heat kernel is well defined on any Riemannian manifold. Then pt (x, y) is
a smooth positive function but obtaining estimates is a highly non-trivial task as the heat
kernel depends significantly on the geometry of the underlying spaces. For example, on
a complete Riemannian manifold of non-negative Ricci curvature the heat kernel satisfies
the Li-Yau estimate

pt (x, y) �
C

V
(
x,

√
t
) exp

(

−c
d2 (x, y)

t

)

where d (x, y) is the geodesic distance, V (x, r) is the volume of the geodesic ball of radius
r centered at x, and the sign � means that both inequalities with ≤ and ≥ are satisfied
but with different values of positive constants c, C. This and further results on heat kernel
bounds on Riemannian manifolds and in Rn can be found in [2, 11, 13, 14, 19, 20, 21, 44,
49, 50, 52, 53, 55] and in many other references.

The development of Analysis on fractals in the past three decades has led to construction
of diffusion processes and their associated heat kernels on wide class of fractals. For exam-
ple, the diffusion on Sierpinski gasket SG in Rn was constructed by Barlow and Perkins
[10] and Kusuoka [39]. Moreover, Barlow and Perkins [10] proved that the associated heat
kernel pt (x, y) on SG is a continuous function of t, x, y and satisfies the estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (1.1)

where α = log(n+1)
log 2 is the Hausdorff dimension of SG, β = log(n+3)

log 2 is a so called walk
dimension, and d (x, y) = |x − y| (see also [3]). The estimate (1.1) is satisfied also on
many other fractals but with different values of the parameters α, β depending on the
particular fractal. For example, this is the case for Sierpinski carpets (see [4], [5]).

Kigami introduced in [34] the notion of p.c.f. fractals and showed the existence of the
heat kernel on p.c.f. fractals with regular harmonic structure. Hambly and Kumagai [31]
proved two sided estimates of heat kernel on p.c.f. fractals; in general such estimate look
more complicated than (1.1). As a consequence of their estimates, the heat kernel satisfies
the upper bound in (1.1) with the resistance metric d and the following near-diagonal
lower bound:

pt (x, y) ≥
C

tα/β
whenever d (x, y) ≤ t1/β . (1.2)

The validity of the full lower bound in (1.1) depends on some additional properties of the
distance function d that are not satisfied by the resistance metric (see [30]).

The above mentioned results motivate investigation of heat kernels associated with
strongly local regular Dirichlet forms on metric measure spaces with volume doubling
property. The main problem here is to provide reasonable necessary and/or sufficient
conditions for the heat kernel bounds in terms of more convenient conditions. A number
of results in this direction were obtained in [1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35,
36, 37] and in other papers.

In this paper we prove the necessary and sufficient conditions for the heat kernel to
satisfy the upper bound in (1.1) and the lower bound (1.2) in terms of the Poincaré
inequality and a generalized capacity inequality. We state the results in Subsection 1.3
after introduction of all necessary notions, and compare them with the previously known
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results. Our work on this subject was strongly motivated by the papers of Andres and
Barlow [1] and Barlow, Bass and Kumagai [7].

Notation. The letters C,C ′, Ci, c, c
′, ci will always refer to positive constants, whose

values are unimportant and may change at each occurrence. All results of this paper are
quantitative, that is, the constants in the conclusions depend only on the constants in the
assumptions.

1.2. Basic setup. Everywhere in this paper (M,d) is a locally compact separable metric
space and μ is a Radon measure on M with full support (namely, μ (Ω) > 0 for any
non-empty open subset Ω of M). We refer to such a triple (M,d, μ) as a metric measure
space.

Denote by

B (x, r) = {y ∈ M : d (x, y) < r}

the open metric ball of radius r > 0 centered at x. If B is a ball of radius r, then λB
denotes the concentric ball of radius λr.

We always assume that every ball B (x, r) is precompact. In particular, the volume
function

V (x, r) := μ (B (x, r))

is finite and positive for all x ∈ M and r > 0.
Let (E ,F) be a Dirichlet form in L2 := L2 (M,μ), where F is a dense subspace of L2 and

E is a bilinear form on F that is symmetric, non-negative definite, closed and Markovian
(see [16]). Recall that (E ,F) is called regular if F ∩ C0 (M) is dense both in F and in
C0 (M), where C0(M) is the space of all continuous functions with compact support in M ,
endowed with sup-norm, and the norm in F is E (u, u) + ‖u‖2

2 . The form (E ,F) is called
strongly local if E(f, g) = 0 for all functions f, g ∈ F such that their supports are compact
and f ≡ const in an open neighborhood of supp g.

Let Δ be the generator of (E ,F), that is, Δ is a self-adjoint and non-positive definite
operator in L2 with the domain dom (Δ) that is dense in F and such that, for all f ∈
dom (Δ) and g ∈ F ,

E (f, g) = − (Δf, g) ,

where (∙, ∙) is the inner product in L2. The associated heat semigroup

Pt = etΔ, t ≥ 0,

is a family of contractive, strongly continuous, self-adjoint operators in L2 that satisfies
the Markovian property (cf. [16]).

It is known that Pt extends to a contractive semigroup in Lp for any p ∈ [1,∞]. The
form (E ,F) is called conservative if Pt1 = 1 for every t > 0.

A family {pt}t>0 of non-negative μ × μ-measurable functions on M × M is called the
heat kernel of the form (E ,F) if pt is the integral kernel of the operator Pt, that is, for
any t > 0 and for any f ∈ L2,

Ptf (x) =
∫

M
pt (x, y) f (y) dμ (y) (1.3)

for μ-almost all x ∈ M .
For a non-empty open Ω ⊂ M , let F(Ω) be the closure of F ∩ C0(Ω) in the norm of

F . It is known that if (E ,F) is regular, then (E ,F(Ω)) is also a regular Dirichlet form
in L2(Ω, μ). Denote by PΩ

t the heat semigroup of (E ,F(Ω)) and by ΔΩ the generator of
(E ,F(Ω)) .
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An example of the above setting is given by a Riemannian manifold M with the geodesic
distance d, the Riemannian measure μ and the classical Dirichlet form

E (f, g) =
∫

M
〈∇f,∇g〉dμ (1.4)

with the domain F = W 1
0 (M,μ) (cf. [21]). A particular case of this example is any

Euclidean space Rn.
Another class of examples that is of utmost interest for us is given by fractal spaces (cf.

[3], [34], [54]).
In the sequel we review some properties of the energy measure associated the regular

Dirichlet form (cf. [33], [47], or [16, Section 3.2]). Let (E ,F) be a regular Dirichlet form
in L2. It is known that each u ∈ F admits a quasi-continuous version ũ (cf. [16, Theorem
2.1.3, p.71]). In what follows we make a convention that u ∈ F is understood to be its
quasi-continuous modification. For each u ∈ F ∩L∞, there exists a unique positive Radon
measure Γ〈u〉 on M such that

∫

M
fdΓ〈u〉 = E(uf, u) −

1
2
E(u2, f) for any f ∈ F ∩ C0(M), (1.5)

and Γ〈u〉(M) < ∞. The measure Γ〈u〉 is called the energy measure of u. Note that the
energy measure Γ〈u〉 can be uniquely extended to any u ∈ F .

For u,w ∈ F , we introduce a signed measure Γ〈u,w〉 by

Γ〈u,w〉 =
1
2

(Γ〈u + w〉 − Γ〈u〉 − Γ〈w〉) . (1.6)

Then u, v 7→ Γ〈u,w〉 is symmetric and bilinear. The following identity is satisfied for all
u,w ∈ F ∩ L∞ and f ∈ F ∩ C0

∫

M
fdΓ〈u,w〉 =

1
2
{E(uf,w) + E(u,wf) − E(uw, f)} (1.7)

(see for example [47, formula (3.11)]). For all u,w ∈ F we have

E (u,w) =
∫

M
dΓ〈u,w〉. (1.8)

Moreover, the Cauchy-Schwarz inequality holds:
∣
∣
∣
∣

∫

M
fgdΓ〈u,w〉

∣
∣
∣
∣ ≤

(∫

M
f2dΓ〈u〉

)1/2(∫

M
g2dΓ〈w〉

)1/2

(1.9)

≤
1
2b

∫

M
f2dΓ〈u〉 +

b

2

∫

M
g2dΓ〈w〉, (1.10)

for all f, g ∈ F ∩ C0, u,w ∈ F , b > 0.
If in addition (E ,F) is strongly local, then the Leibniz and chain rules hold: for all

u,w, ϕ ∈ F ∩ L∞,

dΓ〈uw,ϕ〉 = udΓ〈w,ϕ〉 + wdΓ〈u, ϕ〉 (Leibniz rule)

dΓ〈Φ(u), w〉 = Φ′(u)dΓ〈u,w〉 (chain rule) (1.11)

where Φ : R→ R is any smooth function with Φ(0) = 0 (see [16, Lemma 3.2.5, p.127, and
Theorem 3.2.2, p.129 ]).

For an open subset Ω of M and for u1, u2 ∈ F ∩ C0, if u1|Ω = u2|Ω, then

1ΩdΓ〈u1〉 = 1ΩdΓ〈u2〉 on M,

and if u1 is constant in Ω and u2 is arbitrary, then

1ΩdΓ〈u1, u2〉 = 0 on M, (1.12)
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(cf. [33], or [47, formula (3.7), (3.8), p.387]). Finally, for all u,w ∈ F ∩ L∞, we have

dΓ〈u+, w〉 = 1{u>0}dΓ〈u,w〉 on M,

where u+ = u ∨ 0.

1.3. Main results. Before we state our main results, let us give some necessary defini-
tions. Let (M,d, μ) be a metric measure space with precompact metric balls, and (E ,F)
be a strongly local, regular Dirichlet form in L2 (M,μ).

Definition. We say that the volume doubling condition (V D) holds if there exists a
constant CD such that, for all x ∈ M and all r > 0,

V (x, 2r) ≤ CDV (x, r) .

It is known that (V D) implies that, for all x, y ∈ M and 0 < r1 ≤ r2,

V (x, r2)
V (y, r1)

≤ CD

(
r2 + d (x, y)

r1

)α

, (1.13)

for some α > 0 (cf. [24]). For example, (V D) is satisfied on any Riemannian manifold of
non-negative Ricci curvature and on all mentioned above fractal spaces. Moreover, on the
fractal spaces one usually has a stronger volume regularity condition V (x, r) ' rα for all
r > 0.

Definition. We say that the reverse volume doubling property (RV D) holds if there exist
positive constants α′ and C such that, for all x ∈ M and 0 < r1 ≤ r2,

V (x, r2)
V (x, r1)

≥ C−1

(
r2

r1

)α′

. (1.14)

It is known that (V D) ⇒ (RV D) if M is connected and unbounded (cf. [24]).

Throughout the paper we fix a function Ψ that is a continuous increasing bijection of
(0,∞) onto itself satisfying the following condition

1
CΨ

(
R

r

)β

≤
Ψ(R)
Ψ (r)

≤ CΨ

(
R

r

)β′

(1.15)

for all 0 < r ≤ R and for some constants 1 < β ≤ β′ and CΨ ≥ 1.

Poincaré inequality. We say that the Poincaré inequality (PI)Ψ holds if there exist
constants CP > 0 and σ ∈ (0, 1) such that, for any ball B = B (x, r) and any function
u ∈ F , ∫

σB
|u − uσB |

2 dμ ≤ CP Ψ(r)
∫

B
dΓ〈u〉, (1.16)

where uA is the mean of the function u over A, that is,

uA :=
1

μ(A)

∫

A
udμ.

For example, in Rn and on manifolds of non-negative Ricci curvature (PI)Ψ holds with
Ψ(r) = r2.

Definition. Let Ω be an open subset of M . We say that a function u ∈ F is subharmonic
(resp. superharmonic) in Ω if

E (u, ϕ) ≤ 0 (resp. E (u, ϕ) ≥ 0) (1.17)
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for any 0 ≤ ϕ ∈ F(Ω).

By the standard approximation argument, it suffices to have (1.17) for any non-negative
ϕ ∈ F ∩ C0 (Ω) .

For a local Dirichlet form (E ,F) the notion of subharmonicity can be extended to
functions outside F as follows.

Definition. Let (E ,F) be a local Dirichlet form and let Ω be an open subset of M . We
say that a Borel function u defined in Ω is subharmonic (resp. superharmonic) in Ω if
there is a function v ∈ F such that v = u in Ω and v is subharmonic (resp. superharmonic)
in the sense of the previous Definition.

A reason for this definition is that, by the locality, the value of E (v, ϕ) for ϕ ∈ F∩C0 (Ω)
does not depend on the choice of v as long as v = u in Ω.

A function is called harmonic if it is subharmonic and superharmonic.

Harnack inequality. We say that the elliptic Harnack inequality (H) holds on M if
there exist two constants CH > 1 and η ∈ (0, 1) such that, for any ball B in M and for
any function u ∈ F that is harmonic and non-negative in B, the following inequality is
satisfied:

esup
ηB

u ≤ CH einf
ηB

u .

Let us emphasize that the constants CH and η should be independent of the ball B and
function u.

The elliptic Harnack inequality is a central notion in this paper. It is known that if M
is a complete Riemannian manifold then (V D) and (PI)Ψ with Ψ (r) = r2 imply (H) (cf.
[17] and [51]). In the present generality these two conditions are not enough to obtain (H).
We need one more condition – the generalized capacity inequality, that will be described
below.

Let Ω be an open subset of M and A b Ω be a Borel set (where A b Ω means that A
is precompact and A ⊂ Ω).

Definition. A cutoff function of the pair (A, Ω) is any function φ ∈ F such that

• 0 ≤ φ ≤ 1 in M ;
• φ ≡ 1 in an open neighborhood of A;
• supp φ b Ω.

Sometimes one requires in the definition of a cutoff function also the continuity of φ (cf.
[23]), but here we do not. Denote the set of all cutoff functions of (A, Ω) by cutoff (A, Ω) .
It is known that if (E ,F) is regular, then cutoff (A, Ω) is non-empty (see [16, Lemma
1.4.2(ii), p.29]).

Definition. For any pair (A, Ω) as above define the capacity cap(A, Ω) by

cap(A, Ω) := inf {E (ϕ) : ϕ ∈ cutoff (A, Ω)} . (1.18)

Capacity condition. We say that the capacity condition (cap)Ψ is satisfied if there
exist constants κ ∈ (0, 1) and C > 1 such that, for any ball B = B (x, r) of radius r > 0,

C−1 μ (B)
Ψ (r)

≤ cap (κB,B) ≤ C
μ (B)
Ψ (r)

. (1.19)
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Definition. Let Ω be an open subset of M and A b Ω be a Borel set. For any measurable
function u on Ω, define the generalized capacity capu(A, Ω) by

capu(A, Ω) = inf

{∫

Ω
u2dΓ〈φ〉 : φ ∈ cutoff (A, Ω)

}

.

In particular, for u ≡ 1 we obtain capu(A, Ω) = cap(A, Ω).

Generalized capacity condition. We say that the generalized capacity inequality
(Gcap≤)Ψ holds if there exist two positive constants c1, c2 such that, for any u ∈ F ∩ L∞

and for any two concentric balls B1 := B(x0, R) and B2 := B(x0, R + r),

capu(B1, B2) ≤ c1

∫

B2\B1

dΓ〈u〉 +
c2

Ψ(r)

∫

B2\B1

u2dμ.

Using the definition of capu, we can restate (Gcap≤)Ψ as follows: for any u ∈ F ∩ L∞

there is φ ∈ cutoff (B1, B2) such that
∫

B2\B1

u2dΓ〈φ〉 ≤ c1

∫

B2\B1

dΓ〈u〉 +
c2

Ψ(r)

∫

B2\B1

u2dμ. (1.20)

This condition is very close to the following condition (CSA)Ψ (cutoff Sobolev inequality
in annulus) that was introduced by Andres and Barlow in [1] for the sake of proving upper
bounds of heat kernel (see discussion below).

Definition. We say that the condition (CSA)Ψ holds1 if there exists a function φ ∈
cutoff (B1, B2) such that (1.20) is satisfied for any u ∈ F ∩ L∞.

The condition (Gcap≤)Ψ is a priori weaker than (CSA)Ψ, that is,

(CSA)Ψ ⇒ (Gcap≤)Ψ,

since in (Gcap≤)Ψ function φ may depend on u.
Note that (CSA)Ψ (and, hence, (Gcap≤Ψ)) is satisfied on any geodesically complete

Riemannian manifold with Ψ(r) = r2. Indeed, the standard bump function

φ (x) =
(R + r − d (x, x0))+

r
∧ 1

vanishes outside B2, is equal to 1 on B1 and satisfies |∇φ| ≤ 1/r, whence (1.20) follows
for any u ∈ L2 with c1 = 0, c2 = 1.

Observe also that by [1, Lemma 5.1], inequality (1.20) implies (and hence, is equivalent
to) the following

∫

B2\B1

u2dΓ〈φ〉 ≤
1
8

∫

B2\B1

φ2dΓ〈u〉 +
c2

Ψ(r)

∫

B2\B1

u2dμ (1.21)

with different value c2.
We also remark that if two Dirichlet forms (E1,F1) , (E2,F2) are comparable, namely, if

there exist two positive constants C1, C2 such that

C1E1 (u) ≤ E2 (u) ≤ C2E1 (u) for all u ∈ F1 ∩ F2,

1Note that in the definition of (CSA)Ψ in [1] the cutoff function φ was assumed to be continuous and
(1.20) was assumed to hold for all u ∈ F . However, the analysis of the proofs of [1, Theorem 5.5] shows that
in obtaining (CSA)Ψ from the heat kernel upper bound the boundedness of u was used and the continuity
of φ was not established. On the other hand, the proof in the opposite direction (obtaining heat kernel
upper bound from (CSA)Ψ) goes through also if u in (1.20) is assumed bounded and φ is not necessarily

continuous.
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then so are their energy measures Γ1, Γ2 with the same constants:

C1Γ1 〈u〉 ≤ Γ2 〈u〉 ≤ C2Γ1 〈u〉 ,

see [33, Proposition 1.5.5(b)] or [47, p.389]. From this, we see that all the conditions
(PI)Ψ,(CSA)Ψ , (Gcap≤)Ψ are stable with respect to the quasi-isometry of Dirichlet forms.

The following theorem is a key result in this paper.

Theorem 1.1. Let (M,d, μ) be a metric measure space with precompact metric balls.
Let (E ,F) be a regular, strongly local Dirichlet form in L2 (M,μ) and Ψ be a function
satisfying (1.15). If conditions (V D), (RV D) are satisfied, then the following implication
takes place:

(PI)Ψ + (Gcap≤)Ψ =⇒ (H) + (cap)Ψ
Choosing in (Gcap≤)Ψ the function u ≡ 1, we obtain that, for any ball B of radius r,

cap(1
2B,B) ≤

Cμ(B)
Ψ(r)

.

We refer to this condition as (cap≤)Ψ. We conjecture that, under the hypotheses of
Theorem 1.1, the following stronger implication is true:

(PI)Ψ + (cap≤)Ψ =⇒ (H),

but we have not been able to prove this.
The proof of Theorem 1.1 will be given in Section 8. The main difficulty is to show the

validity of the Harnack inequality (H), that is, the implication

(PI)Ψ + (Gcap≤)Ψ =⇒ (H).

Here are the main steps of that proof.
In Section 5 we prove that (PI)Ψ implies a certain Faber-Krahn inequality (FK)Ψ (an

isoperimetric inequality for the first eigenvalue).
In Section 6 we use (FK)Ψ and (Gcap≤)Ψ to prove an L2-mean value inequality (MV )

for positive subharmonic functions. This is the only place in the proof where (Gcap≤)Ψ is
used at full strength. For the proof of (MV ) we adapt the method that originates from
De Giorgi [15] (see also [40] and [17]). One uses in the proof a cutoff-function φ that in the
setting of Rn and Riemannian manifolds is a standard bump function, but in the general
setting is provided by the condition (Gcap≤)Ψ.

In Section 7 we prove (H) . In the crucial Lemma 7.2 we use all conditions (MV ), (PI)Ψ,
(cap≤)Ψ to obtain some weak version of the Harnack inequality. The rest of the proof that
consists of Lemmas 7.5-7.7 and Theorem 7.8 can be regarded as a long self-improvement
argument leading from the weak Harnack inequality to (H). This argument is essentially
due to E.M. Landis who developed it in the context of elliptic equations in divergence
form in Rn (cf. [43], [42], [38], [17]). Note that this self-improvement argument uses only
(V D) and (RV D).

Comparing our proof of the Harnack inequality with the celebrated proof of J. Moser
[48], we mention the following. The first part of the Moser proof, that is frequently referred
to as “Moser iterations”, also works in our setting and also needs a cutoff function from
(Gcap≤)Ψ. The second part of the Moser proof uses John-Nirenberg lemma to obtain
the mean value inequality for positive superharmonic functions and can be done in our
setting as well. However, a careful implementation of this method in our setting would be
noticeably longer and more involved than the present approach.

Before stating the second main result, we need some more definitions. For any open set
Ω ⊂ M , set

λmin (Ω) := inf
u∈F(Ω)\{0}

E (u)
‖u‖2

2

. (1.22)
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It is easy to show that λmin (Ω) is the bottom of the spectrum of the generator −ΔΩ of
the Dirichlet form (E ,F (Ω)) .

Definition. For an open Ω ⊂ M , a linear operator GΩ : L2(Ω) → F(Ω) is called a Green
operator if, for any ϕ ∈ F(Ω) and any f ∈ L2(Ω),

E(GΩf, ϕ) = (f, ϕ) . (1.23)

If GΩ admits an integral kernel gΩ, that is, if

GΩf(x) =
∫

Ω
gΩ(x, y)f(y)dμ(y) for any f ∈ L2(Ω), (1.24)

then gΩ is called a Green function.

It is known that if λmin (Ω) > 0 then the Green operator GΩ exists and is given by

GΩf =
∫ ∞

0
PΩ

t f dt. (1.25)

(see [23, Lemma 5.1]). For an open set Ω ⊂ M , define the function EΩ on Ω by

EΩ := GΩ1Ω. (1.26)

The function EΩ is a unique weak solution of the following Poisson-type equation

− ΔΩEΩ = 1. (1.27)

This function has also the following probabilistic meaning: EΩ (x) is the mean exit time
from Ω of the process associated to (E ,F) started at x.

Mean exit time bounds. We say that condition (E)Ψ holds if there exist two constants
C > 1 and ε ∈ (0, 1) such that, for all balls B of radius r > 0,

esup
B

EB ≤ CΨ(r) and einf
εB

EB ≥ C−1Ψ(r) . (1.28)

We will refer to the first condition in (1.28) as (E≤)Ψ and the second one as (E≥)Ψ .

Green function bounds. We say that condition (G)Ψ holds if there exist constants
κ ∈ (0, 1) and Ċ > 0 such that, for any ball B := B (x,R), the Green kernel gB exists, is
jointly continuous off the diagonal, and satisfies

gB (x, y) ≤ C

∫ R

κd(x,y)

Ψ(s) ds

sV (x, s)
for μ-almost all y ∈ B \ {x},

gB (x, y) ≥ C−1

∫ R

κd(x,y)

Ψ(s) ds

sV (x, s)
for μ-almost all y ∈ κB \ {x}.

Upper bound of heat kernel. We say that condition (UE)Ψ holds if the heat kernel
pt (x, y) exists and satisfies the following upper estimate

pt (x, y) ≤
C

V (x, Ψ−1 (t))
exp

(

−
1
2
tΦ

(

c
d (x, y)

t

))

(1.29)

for all t > 0 and μ-almost all x, y ∈ M , where c, C are positive constants, independent of
x, y, t, and

Φ (s) := sup
r>0

{
s

r
−

1
Ψ (r)

}

. (1.30)
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For example, if Ψ(r) = rβ with some β > 1, then the supremum in (1.30) is attained at

r = (s/β)−
1

β−1 , which yields Φ (s) = csβ/(β−1). In this case (1.29) takes the form

pt (x, y) ≤
C

V
(
x, t1/β

) exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

(cf. (1.1)).

Near-diagonal lower bound. We say that condition (NLE)Ψ holds if the heat kernel
pt (x, y) exists and satisfies the lower estimate

pt (x, y) ≥
c

V (x, Ψ−1 (t))
, (1.31)

for all t > 0 and μ-almost all x, y ∈ M such that

d (x, y) ≤ εΨ−1 (t) , (1.32)

where c, ε > 0 are constants independent of x, y, t.

It is easy to show that under condition (1.32) the term tΦ
(
cd(x,y)

t

)
in (1.29) is bounded

by a constant, so that the upper bound (UE)Ψ is consistent with (NLE)Ψ .
It is known (cf. [23] and [9]) that the conjunction (UE)Ψ+(NLE)Ψ of the two estimates

implies that the heat kernel pt (x, y) admits a Hölder continuous in x, y version, so that
(1.29) and (1.31) are a posteriori true for all x, y ∈ M .

The following theorem is the main result of this paper about two sided estimates of the
heat kernel.

Theorem 1.2. Let (M,d, μ) be a metric measure space with precompact metric balls. Let
(E ,F) be a regular, strongly local Dirichlet form in L2 (M,μ) and Ψ be a function satisfying
(1.15). If conditions (V D), (RV D) are satisfied, then the following equivalences take place:

(UE)Ψ + (NLE)Ψ ⇔ (PI)Ψ + (Gcap≤)Ψ
⇔ (PI)Ψ + (CSA)Ψ
⇔ (PI)Ψ + (E)Ψ
⇔ (H) + (cap)Ψ
⇔ (H) + (E)Ψ
⇔ (G)Ψ .

This theorem essentially follows from the implication

(PI)Ψ + (Gcap≤)Ψ =⇒ (H) + (cap)Ψ

of Theorem 1.1 and the previously known results of [23], [30], [1, Lemma 5.4, Theorem
5.5] (see Section 8 for details).

We consider the equivalence

(UE)Ψ + (NLE)Ψ ⇔ (PI)Ψ + (Gcap≤)Ψ

as the most significant part of Theorem 1.2, which provides convenient equivalent condition
for the two-sided heat kernel estimate. Since condition (Gcap≤)Ψ is quasi-isometry stable,
Theorem 1.2 implies that (UE)Ψ + (NLE)Ψ is also quasi-isometry stable.

In the setting of Riemannian manifold with Ψ (r) = r2, the condition (Gcap≤)Ψ is
satisfied automatically, and we obtain

(UE)Ψ + (NLE)Ψ ⇔ (PI)Ψ ,
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which is the result of L.Saloff-Coste [51] (see also [17]). In the setting of geodesic metric
spaces, Barlow, Bass and Kumagai [7] (see also [6] for a setting of graphs) proved the
equivalence

(UE)Ψ + (NLE)Ψ ⇔ (PI)Ψ + (CS)Ψ ,

where (CS)Ψ stands for a cutoff Sobolev inequality, a rather complicated condition that,
similarly to (CSA)Ψ, provides the existence of a cutoff function with certain properties.
The condition (CS)Ψ is also quasi-isometry stable, which was used in [7] to prove the
stability of (UE)Ψ + (NLE)Ψ in the setting of geodesic metric spaces. Our result implies
the stability for a larger class of metric spaces, without the requirement of the metric to
be geodesic.

Now let us turn to equivalent conditions for the upper bound (UE)Ψ alone.

Faber-Krahn inequality. We say that the Faber-Krahn inequality (FK)Ψ holds if
there exist positive constants ν > 0, CF > 0 such that, for any ball B ⊂ M and for any
non-empty open set Ω ⊂ B,

λmin (Ω) ≥
CF

Ψ(R)

(
μ (B)
μ (Ω)

)ν

, (1.33)

where R is the radius of B.

Note that since μ (B) ≥ μ (Ω), the value of ν in (1.33) can be chosen to be arbitrarily
small.

It is known (cf. [17]) that (FK)Ψ with Ψ (r) = r2 holds on any geodesically complete
Riemannian manifold of non-negative Ricci curvature. It was proved in [18, Prop. 5.2] that
on geodesically complete Riemannian manifolds satisfying (V D), the following equivalence
holds with Ψ (r) = r2:

(UE)Ψ ⇔ (FK)Ψ . (1.34)

Andres and Barlow proved in [1] the following equivalent condition for (UE)Ψ in the
present abstract setting:

(UE)Ψ ⇔ (FK)Ψ + (CSA)Ψ (1.35)

assuming that the Dirichlet form (E ,F) is conservative2.
Our main result about heat kernel upper bound is the following theorem that somewhat

strengthens the result of Andres and Barlow. We denote by (C) the condition that the
Dirichlet form (E ,F) is conservative.

Theorem 1.3. Let (M,d, μ) be a metric measure space with precompact metric balls. Let
(E ,F) be a regular, strongly local Dirichlet form in L2 (M,μ) and Ψ be a function satisfying
(1.15). If condition (V D) is satisfied, then the following equivalences take place

(UE)Ψ + (C) ⇔ (FK)Ψ + (Gcap≤)Ψ (1.36)

⇔ (FK)Ψ + (E≥)Ψ . (1.37)

Since (Gcap≤)Ψ with Ψ (r) = r2 holds on any geodesically complete Riemannian man-
ifold and on any such manifold (V D) implies (C), we see that the equivalence (1.36) in
the case of manifolds amounts to the above mentioned result (1.34) of [18, Prop. 5.2].

The proof of Theorem 1.3 is given in Section 9. We conjecture that (Gcap≤)Ψ in (1.36)
can be replaced by (cap≤)Ψ.

2The condition of conservativeness of (E ,F) was not explicitly stated in [1], but was implicitly used.
Without the conservativeness the implication (UE)Ψ ⇒ (CSA)Ψ is not true (cf. discussion in [24, p.516]).
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2. Subharmonic and superharmonic functions

In this section we present some properties of subharmonic and superharmonic functions
that will be used later on.

Proposition 2.1. Assume that (E ,F) is regular and strongly local. Let u be a bounded
subharmonic function in a non-empty precompact open set Ω ⊂ M .

(1) If f ∈ C2(R) with f ′′ ≥ 0, f ′ ≥ 0, f (0) = 0 then f(u) is also a subharmonic
function in Ω. In particular, the function up is subharmonic in Ω for any p ≥ 1.

(2) For any a ≥ 0, the function (u − a)+ is subharmonic in Ω.

Proof. (1) We can assume that u ∈ F∩L∞, which implies that also f(u) belongs to F∩L∞

(see [16, Theorem 1.4.2(v), p.28]). It is enough to show that

E (f(u), ϕ) ≤ 0 (2.38)

for any non-negative ϕ ∈ F(Ω) ∩ L∞. Using the Leibniz and chain rules, we have

E (f(u), ϕ) =
∫

M
dΓ〈f(u), ϕ〉 =

∫

M
f ′(u)dΓ〈u, ϕ〉

=
∫

M
dΓ
〈
u, f ′(u)ϕ

〉
−
∫

Ω
ϕf ′′(u)dΓ〈u〉

≤
∫

M
dΓ
〈
u, f ′(u)ϕ

〉
≤ 0,

since u is subharmonic and 0 ≤ f ′(u)ϕ ∈ F(Ω). This proves (2.38), showing that f(u) is
subharmonic in Ω.

(2) Clearly, we have (u − a)+ ∈ F ∩ L∞ for any a ≥ 0. Set g(t) = (t − a)+ for any
t ∈ R. Let {g}∞k=1 be a sequence of functions such that each gk ∈ C2(R), g′′k ≥ 0, gk(0) =
g′k(0) = 0, and as k → ∞, gk ⇒ g uniformly while g′k → g′ everywhere except at point a.
We will show that

E (gk(u) − g(u)) → 0 as k → ∞. (2.39)

Indeed, let hk := gk − g. Note that by (1.12), we see that 1{u=a}Γ〈u〉 = 0 for any u ∈ F .
Therefore, using the dominated convergence theorem,

E (gk(u) − g(u)) = E (hk(u)) =
∫

M

[
h′

k(u)
]2

dΓ〈u〉

=
∫

{u=a}

[
h′

k(u)
]2

dΓ〈u〉 +
∫

{u 6=a}

[
h′

k(u)
]2

dΓ〈u〉

=
∫

{u 6=a}

[
h′

k(u)
]2

dΓ〈u〉 → 0 as k → ∞,

proving (2.39).
By the above step (1), the function gk(u) is subharmonic in Ω, that is E (gk(u), ϕ) ≤ 0.

Passing to the limit as k → ∞ and then using (2.39), we have that E (g(u), ϕ) ≤ 0, thus
proving that (u − a)+ is subharmonic in Ω. �

For non-negative subharmonic functions, we have the following general result.

Proposition 2.2. Assume that (E ,F) is strongly local and regular. Let u ∈ F ∩ L∞ be
non-negative and subharmonic in a precompact open subset Ω. Then, for any 0 ≤ φ ∈
F(Ω) ∩ L∞, ∫

Ω
φ2dΓ〈u〉 ≤ 4

∫

Ω
u2dΓ〈φ〉 , (2.40)
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and

E (uφ) =
∫

Ω
dΓ〈uφ〉 ≤ 10

∫

Ω
u2dΓ〈φ〉. (2.41)

Proof. Since uφ2 ∈ F(Ω) ∩ L∞ and u is subharmonic in Ω, we obtain by the Leibniz rule
and Cauchy-Schwarz inequality (1.10) that

0 ≥ E
(
u, uφ2

)
=
∫

M
dΓ
〈
u, uφ2

〉

=
∫

M
φ2dΓ〈u, u〉 + 2

∫

M
φudΓ〈u, φ〉

≥
∫

M
φ2dΓ〈u〉−

(
1
2

∫

M
φ2dΓ〈u〉 + 2

∫

M
u2dΓ〈φ〉

)

=
1
2

∫

M
φ2dΓ〈u〉−2

∫

M
u2dΓ〈φ〉 ,

whence (2.40) follows.
Next, using bilinearity of Γ, (1.10), and (2.40), we obtain

E (uφ) =
∫

M
dΓ〈uφ〉

=
∫

M
u2dΓ〈φ〉 +

∫

M
φ2dΓ〈u〉 + 2

∫

M
φudΓ〈u, φ〉

≤ 2
∫

M
u2dΓ〈φ〉 + 2

∫

M
φ2dΓ〈u〉

≤ 10
∫

M
u2dΓ〈φ〉,

thus proving (2.41). �

Let us introduce conditions (A1) and (A2) to be used later to prove the L2 mean value
inequality.

Condition (A1). We say that condition (A1) holds if there exists a constant C0 > 0 such
that, for any ball B = B (x0, r) of radius r and for any bounded non-negative subharmonic
function u in B, there is some φ ∈ cutoff( 1

2B,B) satisfying
∫

B
u2dΓ〈φ〉 ≤

C0

Ψ(r)

∫

B
u2dμ. (2.42)

Let us emphasize that the constant C0 is independent of B, u, φ, whilst the cutoff function
φ may depend on u.

condition (A2). We say that condition (A2) holds if there exists a constant C1 > 0 such
that, for any ball B of radius r and for any bounded non-negative subharmonic function
u in B, there is some φ ∈ cutoff( 1

2B,B) satisfying

E(uφ) ≤
C1

Ψ(r)

∫

B
u2dμ. (2.43)

Most likely, the both conditions (A1) and (A2) are unstable with respect to the quasi-
isometry of Dirichlet forms, because the class of subharmonic functions changes uncon-
trollably under quasi-isometry. However, the both conditions (A1), (A2) are consequences
of the stable condition (Gcap≤)Ψ as below.
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Proposition 2.3. Assume that (E ,F) is regular and strongly local. Then

(Gcap≤)Ψ ⇒ (A1) ⇒ (A2) . (2.44)

Proof. We first show the implication

(Gcap≤)Ψ ⇒ (A1).

Let u be a bounded non-negative subharmonic function in a ball B of radius r. If (Gcap≤)Ψ
holds, then it follows from (1.21) that there is some φ ∈ cutoff( 1

2B,B) such that
∫

B
u2dΓ〈φ〉 ≤

1
8

∫

B\ 1
2
B

φ2dΓ〈u〉 +
c2

Ψ(r)

∫

B\ 1
2
B

u2dμ

≤
1
8

∫

B
φ2dΓ〈u〉 +

c2

Ψ(r)

∫

B
u2dμ

≤
1
2

∫

B
u2dΓ〈φ〉 +

c2

Ψ(r)

∫

B
u2dμ, (2.45)

where in the last line we have used (2.40). Clearly, (2.45) implies (2.42).
To prove the implication

(A1) ⇒ (A2) ,

observe that, by (2.41) and (2.42),

E (uφ) ≤ 10
∫

B
u2dΓ〈φ〉 ≤

10C0

Ψ(r)

∫

B
u2dμ,

whence (2.43) follows. �

As a conclusion of this section, we state some technical results to be used later.

Lemma 2.4. Let (E ,F) be regular and strongly local. Assume that u is a bounded super-
harmonic function in an open set Ω ⊂ M and u ≥ ε in Ω for some positive constant ε.
Then the function − log u is subharmonic in Ω.

Proof. By definition of a (bounded) superharmonic function, we can assume that u ∈
F ∩L∞. The function log u is not necessarily defined on M as u may take negative values
outside Ω. To extend it to the whole of M , choose a function l (t) for t ∈ R as follows:
l ∈ C∞ (R), l (t) = log t for t ≥ ε and l (t) = 0 for t ≤ 0. Then l (u) is defined on M and
all functions l (u) , l′ (u) , l′′ (u) are in F ∩ L∞ by a general theory of Dirichlet forms. On
the other hand, in Ω we have l (u) = log u, l′ (u) = 1

u and l′′ (u) = − 1
u2 .

For any 0 ≤ ϕ ∈ F ∩ C0(Ω), we have by the Leibniz and chain rules,

dΓ (l (u) , ϕ) = l′ (u) dΓ〈u, ϕ〉

= dΓ
〈
u, l′ (u) ϕ

〉
− ϕl′′ (u) dΓ〈u〉

= dΓ
〈
u, u−1ϕ

〉
+ ϕu−2dΓ〈u〉 . (2.46)

Since u is superharmonic and u−1ϕ ∈ F(Ω), we have E(u, u−1ϕ) ≥ 0, and hence,
∫

dΓ〈−l (u) , ϕ〉 = −E(u, u−1ϕ) −
∫

ϕu−2dΓ〈u〉 ≤ 0. (2.47)

Hence, −l (u) = − log u is subharmonic in Ω. �

Lemma 2.5. Let u be a strictly positive bounded superharmonic function in an open set
Ω. Then u−1 is subharmonic in Ω.
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Proof. Indeed, for any 0 ≤ φ ∈ F ∩ C0(Ω), we have by the chain and product rules
(similarly to the previous proof), that

dΓ
〈
u−1, φ

〉
= −u−2dΓ〈u, φ〉

= −dΓ
〈
u, u−2φ

〉
− 2φu−3dΓ〈u, u〉 .

Since u is superharmonic and u−2φ ∈ F(Ω), we have that E(u, u−2φ) ≥ 0, and hence,
∫

Ω
dΓ
〈
u−1, φ

〉
= −E(u, u−2φ) − 2

∫

Ω
φu−3dΓ〈u〉 ≤ 0,

so that u−1 is subharmonic �

3. Condition (CSA)Ψ

In this section we will prove the following implication:

(S)Ψ ⇒ (CSA)Ψ , (3.1)

where condition (S)Ψ is defined as follows.

Survival estimate. We say that the condition (S)Ψ holds if there exist constants
ε, ε′ ∈ (0, 1) such that, for any ball B of radius r > 0 and for all t ≤ ε′Ψ(r),

1 − PB
t 1B(x) ≤ ε for μ-almost all x ∈

1
4
B. (3.2)

Condition (S)Ψ with Ψ(r) = rβ was introduced in [24].
Before we can prove (3.1), we investigate the following equation

− ΔΩuΩ + λuΩ = 1Ω weakly in Ω, (3.3)

where Ω is an open subset of M , ΔΩ is the infinitesimal generator of (E ,F(Ω)) as before,
and λ > 0 is a constant. The function uΩ ∈ F(Ω) is said to be a weak solution of (3.3) if

E(uΩ, ϕ) + λ

∫

Ω
uΩϕdμ =

∫

Ω
ϕdμ (3.4)

for any ϕ ∈ F(Ω). Note that, for any λ > 0, equation (3.3) admits a unique weak solution

uΩ =
∫ ∞

0
e−λt PΩ

t 1Ω dt, (3.5)

where as before
{
PΩ

t

}
t≥0

is the heat semigroup of (E ,F(Ω)).

Lemma 3.1. Let (E ,F) be a regular Dirichlet form in L2. For any non-empty precompact
open Ω ⊂ M , the function (3.5) satisfies for all t > 0 the following inequalities

te−λtPΩ
t 1Ω ≤ uΩ ≤ λ−1 in M. (3.6)

Proof. Since PΩ
t 1Ω is decreasing in t, we obtain

uΩ ≥
∫ t

0
e−λs PΩ

s 1Ω ds ≥ te−λt PΩ
t 1Ω,

which proves the left inequality in (3.6).
Since PΩ

t 1Ω ≤ 1, we obtain

uΩ ≤
∫ ∞

0
e−λtdt = λ−1.

which finishes the proof of (3.6). �
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Theorem 3.2. Assume that (E ,F) is a regular, strongly local Dirichlet form in L2. Then

(S)Ψ ⇒ (CSA)Ψ . (3.7)

We use in the proof essentially the same argument as Andres and Barlow did in [1,
Lemmas 5.3, 5.4 and Theorem 5.5] to prove (UE)Ψ ⇒ (CSA)Ψ, but with the necessary
modifications and without reference to the stochastic process.

Proof. Set B1 := B(x0, R) and B2 := B(x0, R+r). Using (S)Ψ, we will construct a function
φ ∈ cutoff (B1, B2) such that (1.20) holds for any u ∈ F ∩ L∞. Set A := ∂B

(
x0, R + r

2

)

and
Ω := B(x0, R + r) \ B(x0, R).

For any point z ∈ A consider the ball Bz = B
(
z, r

2

)
⊂ Ω (see Figure 1).

 
( )2, rzB

( )20, rRxBA +∂=

( )8, rzB

0xR 

R+r

z

Figure 1. The ball B
(
z, r

2

)
⊂ Ω and the set A = ∂B

(
x0, R + r

2

)
.

Let uΩ be as in (3.5) with λ = Ψ(r)−1. Applying the survival estimate (3.2) with
t = ε′Ψ(r) and using (3.6) we obtain for μ-almost all x ∈ 1

4Bz that

uΩ(x) ≥ te−λtPΩ
t 1Ω(x)

≥ te−λtPBz
t 1Bz(x)

≥
(
ε′Ψ(r)

)
e−ε′(1 − ε) = c0Ψ(r).

Since z is arbitrary, the family
{

1
4Bz

}
z∈A

covers the r
8 -neighborhood of A, and, hence, in

this neighborhood we have
uΩ ≥ c0Ψ(r). (3.8)

On the other hand, we have from (3.6) that in Ω (and also in M),

uΩ ≤ λ−1 = Ψ(r). (3.9)

Define the function vΩ on M by

vΩ :=
uΩ

c0Ψ(r)
, (3.10)

where the constant c0 is the same as in (3.8). Clearly, vΩ ∈ F(Ω). Moreover, using (3.8)
and (3.9), we see that vΩ ≥ 1 in some neighborhood of A, and

vΩ ≤ c−1
0 in M. (3.11)

Now we define a desired cutoff function φ by

φ =

{
1, in B

(
x0, R + r

2

)
,

vΩ ∧ 1, outside B
(
x0, R + r

2

)
.

(3.12)
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Clearly, φ = 1 in some neighborhood of the ball B
(
x0, R + r

2

)
(in particular φ = 1 in B1),

and φ = 0 outside B2 because so is vΩ. Also φ ∈ F . Thus, φ ∈ cutoff (B1, B2).
It remains to show (1.20). Let us first prove that, for any u ∈ F ∩ L∞,

∫

M
u2dΓ〈φ〉 ≤

∫

M
u2dΓ〈vΩ〉. (3.13)

Indeed, applying the following identity

E (f, g) = lim
t→0+

[
1
2t

∫

M×M
(f (x) − f (y)) (g (x) − g (y)) Pt(x, dy)dμ (x)

+
1
t

∫

M
fg (1 − Pt1) dμ

]

,

that holds for all f, g ∈ F (cf. [16, (4.5.7)]), we obtain
∫

M
u2dΓ〈φ〉 = E(u2φ, φ) −

1
2
E(u2, φ2)

= lim
t→0+

[
1
2t

∫

M×M
u2(x)(φ(x) − φ(y))2Pt(x, dy)dμ (x)

+
1
2t

∫

M
φ2u2(1 − Pt1)dμ

]

.

Using here inequalities
|φ(x) − φ(y)| ≤ |vΩ(x) − vΩ(y)|

and φ(x) ≤ vΩ(x), we obtain (3.13).
On the other hand, by the Cauchy-Schwarz inequality (1.10), we have

∫

M
u2dΓ〈vΩ〉 = E(u2vΩ, vΩ) −

1
2

∫

Ω
dΓ〈u2, v2

Ω〉

= E(u2vΩ, vΩ) − 2
∫

Ω
uvΩdΓ〈u, vΩ〉

≤ E(u2vΩ, vΩ) +
1
2

∫

M
u2dΓ〈vΩ〉 + 2

∫

Ω
v2
ΩdΓ〈u〉,

and thus ∫

M
u2dΓ〈vΩ〉 ≤ 2E(u2vΩ, vΩ) + 4

∫

Ω
v2
ΩdΓ〈u〉. (3.14)

By the upper bound (3.11) of vΩ, we have
∫

Ω
v2
ΩdΓ〈u〉 ≤

1
c2
0

∫

Ω
dΓ〈u〉. (3.15)

In order to bound E(u2vΩ, vΩ), we use (3.4) with ϕ = u2vΩ, (3.10), (3.11) and obtain

E(u2vΩ, vΩ) = E(u2vΩ,
uΩ

c0Ψ(r)
) =

1
c0Ψ(r)

E
(
u2vΩ, uΩ

)

=
1

c0Ψ(r)

(∫

Ω
u2vΩdμ − λ

∫

Ω

(
u2vΩ

)
uΩdμ

)

≤
1

c0Ψ(r)

∫

Ω
u2vΩdμ ≤

1
c2
0Ψ(r)

∫

Ω
u2dμ.

Combining this with (3.14), (3.15), (3.13), we conclude that
∫

M
u2dΓ(φ) ≤

2
c2
0Ψ(r)

∫

Ω
u2dμ +

4
c2
0

∫

Ω
dΓ(u), (3.16)



18 GRIGOR’YAN, HU, AND LAU

thus proving (1.20) with c1 = 4/c2
0, c2 = 2/c2

0. �

Remark. Note that the following implication is true:

(E)Ψ ⇒ (S)Ψ ,

see [29, Theorem 6.13]. Combining with Theorem 3.2 and Proposition 2.3, we obtain

(E)Ψ ⇒ (S)Ψ ⇒ (CSA)Ψ ⇒ (Gcap≤)Ψ ⇒ (A1) ⇒ (A2) . (3.17)

Remark. For a large class of fractals with effective resistance (cf. [34, 54]), condition
(S)Ψ with Ψ(r) = rβ for some β > 2 was proved to be true, see [29, Theorem 6.13].
In particular, condition (S)Ψ holds on the Sierpinski gasket in Rn for the standard local
regular conservative self-similar Dirichlet form where

Ψ(r) = r
log(n+3)

log 2 .

Thus condition (CSA)Ψ is true on this class of fractals.

4. Alternative form of the Poincaré Inequality

Here we prove some consequences from (PI)ψ.

Lemma 4.1. The condition (PI)ψ is equivalent to the following condition: for some c > 0,
σ ∈ (0, 1) and for all f ∈ F and B = B (x0, r),

∫

B
dΓ 〈f〉 ≥

c

Ψ(r) μ (σB)

∫

σB

∫

σB
(f (x) − f (y))2 dμ (y) dμ (x) . (4.18)

Proof. Set B′ = σB and

a =
1

μ (B′)

∫

B′
fdμ.

Then we have
∫

B′

∫

B′
(f (x) − f (y))2 dμ (y) dμ (x)

=
∫

B′

∫

B′
f (x)2 dμ (y) dμ (x) +

∫

B′

∫

B′
f (y)2 dμ (y) dμ (x)

−2
∫

B′

∫

B′
f (x) f (y) dμ (y) dμ (x)

= 2μ
(
B′)

∫

B′
f2dμ − 2

(∫

B′
fdμ

)2

= 2μ
(
B′)

(∫

B′
f2dμ − a2μ

(
B′)
)
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and, hence,
∫

B′
(f − a)2 dμ =

∫

B′
f2dμ − 2a

∫

B′
fdμ + a2

∫

B′
dμ

=
∫

B′
f2dμ − 2a2μ

(
B′)+ a2μ

(
B′)

=
∫

B′
f2dμ − a2μ

(
B′)

=
1

2μ (B′)

∫

B′

∫

B′
(f (x) − f (y))2 dμ (y) dμ (x) .

Therefore, (4.18) is equivalent to (PI)ψ with the same value of σ and with CP = 1
2c . �

Lemma 4.2. The condition (PI)ψ implies that, for all f ∈ F and B = B (x, r),
∫

B
dΓ 〈f+〉 ≥

c

Ψ(r)
μ (H)
μ (σB)

∫

σB
f2
+dμ (4.19)

where σ and c are the same as in (4.18) and

H = {x ∈ σB : f ≤ 0} .

Proof. Applying (4.18) to the function f+ and restricting integration in y in the right side
to y ∈ H, we obtain

∫

B
dΓ 〈f+〉 ≥

c

Ψ(r) μ (B′)

∫

B′

(∫

H
(f+ (x) − f+ (y))2 dμ (y)

)

dμ (x)

=
c

Ψ(r) μ (B′)

∫

B′
f+ (x)2 μ (H) dμ (x) ,

which was to be proved. �

In fact, the condition (4.19) is equivalent to (PI)ψ but we do not use this.

5. The Faber-Krahn inequality

In this section we show that the Poincaré inequality implies the Faber-Krahn inequality
if both conditions (V D) and (RV D) hold. The method of proof is motivated by a similar
result in [17] obtained in a setting of Riemannian manifolds.

Theorem 5.1. Let (E ,F) be a regular, strongly local Dirichlet form. Assume that condi-
tions (V D), (RV D), and (1.15) are satisfied. Then

(PI)Ψ ⇒ (FK)Ψ . (5.1)

Proof. Let B := B(x0, R) be a ball in M and Ω ⊂ B be a non-empty open set. Observe first
that in the definition (1.22) of λmin (Ω) the range of u can be restricted to u ∈ F ∩C0(Ω)
without changing the value of inf, due to the regularity of the Dirichlet form (E ,F). Next,
the range of u can be restricted to non-negative functions due to E (u) ≥ E (|u|). Hence,
we need to show that for all non-negative functions u ∈ F ∩ C0(Ω),

E (u) ≥
CF

Ψ(R)

(
μ (B)
μ (Ω)

)ν

‖u‖2
2 (5.2)

for some positive constants CF , ν that are independent of u, Ω, B. We split the proof of
(5.2) into three steps.

Step 1. Construction of the balls B(x, rx). Fix some t > 0 and consider the set

Ωt = {x ∈ Ω : u(x) > t} .
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As u is continuous, the set Ωt is open. Let us show that, for each x ∈ Ωt, there exists
rx ∈ (0, C1R) such that

μ (B(x, rx) ∩ Ωt) ≥
1
2
V (x, rx) and μ

(
B(x, rx) \ Ωt

)
≥

1
2
V (x, rx) (5.3)

where the constant C1 > 0 is independent of x, t and B (see Figure 2).

 

Ω 

B(x,rx) 

B(x0,R) 

Ωt

x 

Figure 2. The sets Ωt ⊂ Ω ⊂ B(x0, R) and the ball B(x, rx).

To that end consider the function

v (r) = μ (B (x, r) ∩ Ωt) .

Since Ωt is open and x ∈ Ωt, for sufficiently small r > 0 we have an inclusion B(x, r) ⊂ Ωt

and, hence,
v (r) = μ (B(x, r)) = V (x, r).

Let us show that, for r ≥ C1R,

v (r) ≤
1
4
V (x, r) ,

where the constant C1 depends on the constants in the reverse volume doubling condition.
Indeed, since

B (x, r) ∩ Ωt ⊂ B (x0, R) ⊂ B (x, 2R) ,

we have by (RV D)

v (r) ≤ V (x, 2R) ≤ C

(
2R

r

)α′

V (x, r) ≤
1
4
V (x, r)

provided r ≥ C1R with C1 = 2 (4C)1/α′
. Hence, the function

h (r) :=
v (r)

V (x, r)
=

μ (B (x, r) ∩ Ωt)
μ (B (x, r))

is equal to 1 for small values of r and is ≤ 1
4 for r ≥ C1R.

If h is continuous then there exists an intermediate value 0 < rx < C1R that satisfies
h (rx) = 1

2 , which implies the both conditions in (5.3). However, in general h does not
have to be continuous, but it is always left continuous since so are the functions V (x, r)
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and v (r), which follows from the σ-additivity of measure μ. Besides, function h has right
limits at any point as the ratio of two monotone functions. Furthermore, since

V (x, r+) := lim
t→r+

V (x, t) = μ
(
B(x, r)

)

and a similar identity holds for v (r+), we obtain

h (r+) =
μ
(
B(x, r) ∩ Ωt

)

μ
(
B(x, r)

) .

Setting

rx = sup

{

r : h (r) >
1
2

}

,

we obtain that 0 < rx < C1R and

h (rx) ≥
1
2

and h (rx+) ≤
1
2
.

The first of this inequalities implies the first condition in (5.3), while the second one yields

μ
(
B(x, rx) ∩ Ωt

)
≤

1
2
μ
(
B(x, rx)

)

and, hence,

μ
(
B(x, rx) \ Ωt

)
≥

1
2
μ
(
B(x, rx)

)
≥

1
2
V (x, rx) ,

that is the second condition in (5.3).
Step 2. Estimating of the energy of u between the level sets. Let {B(x, rx)}x∈Ωt

be the
family of the balls constructed as above. Set Rx = 2

σ rx where σ ∈ (0, 1) is the constant
from (PI)ψ. Since the family {B (x,Rx)}x∈Ωt

is a covering of Ωt and condition (V D)
holds, we can choose by the classical ball covering argument a countable disjoint family
{B(xk, Rk)}

∞
k=1 of balls with Rk = Rxk

such that

Ωt ⊂ ∪∞
k=1B(xk, 5Rk).

Set rk = rxk
and

U :=
∞⋃

k=1

B(xk, rk)

and observe that by (5.3) and (V D)

μ (U ∩ Ωt) =
∞∑

k=1

μ (B(xk, rk) ∩ Ωt)

≥
1
2

∞∑

k=1

μ (B(xk, rk))

≥ c0

∞∑

k=1

μ (B(xk, 5Rk))

≥ c0μ (Ωt) , (5.4)

where c0 > 0 depends on the constants CD and σ.
Fix some pair t′ > t > 0 and define a function f by

f = (u − t)+ ∧ (t′ − t) =






t′ − t, in Ωt′ ,
u − t, in Ωt \ Ωt′ ,
0, in M \ Ωt,

see Figure 3.
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t

t

t -t

u

f=u-t

t

t

t

f= t -t

t

Figure 3. The function f

By the Markov property of (E ,F), we have f ∈ F ∩ C0 (Ω). Next, we would like to ap-
plying the inequality (4.19) of Lemma 4.2 to function f in the balls B(xk, 2rk), B (xk, Rk),
whose radii have the ratio exactly σ. The set

H := {x ∈ B (xk, 2rk) : f (x) = 0}

contains B (xk, 2rk) \ Ωt and, hence, B (xk, rk) \ Ωt. Since by (5.3)

μ
(
B (xk, rk) \ Ωt

)
≥

1
2
V (xk, rk) ≥

1
2
C−1

D V (xk, 2rk) ,

we obtain by Lemma 4.2
∫

B(xk,rk)
f2dμ ≤

∫

B(xk,2rk)
f2dμ ≤ CΨ(Rk)

∫

B(xk,Rk)
dΓ〈f〉 . (5.5)

Let us estimate Rk from above using R and μ (Ω). By (5.3) we have

μ
(
B (xk, rk) ∩ Ωt

)
≥

1
2
V (xk, rk) ,

whence

V (xk, rk) ≤ 2μ (Ωt) ≤ 2μ (Ω) .

On the other hand, by (V D) and rk ≤ C1R,

μ (B) = V (x0, R) ≤ V (xk, (C1 + 1) R) ≤ C ′
(

R

rk

)α

V (xk, rk).

Combining this two inequalities, we obtain

μ (B) ≤ 2C ′
(

R

rk

)α

μ (Ω) ,

which implies

rk ≤ CR

(
μ(Ω)
μ (B)

)1/α

.
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Further, using the monotonicity of Ψ, (1.15) and μ(Ω)
μ(B) ≤ 1, we obtain

Ψ(Rk) = Ψ

(
2
σ

rk

)

≤ Ψ

(
2
σ

CR

(
μ(Ω)
μ (B)

)1/α
)

≤ CΨ

(
2
σ

C

)β′

Ψ

(

R

(
μ(Ω)
μ (B)

)1/α
)

≤ C ′
(

μ(Ω)
μ (B)

)β/α

Ψ(R). (5.6)

Substituting this into (5.5), summing up in all k, and using that the balls B (xk, Rk) are
disjoint, we obtain that

∫

U
f2dμ ≤ C

(
μ(Ω)
μ (B)

)β/α

Ψ(R)
∞∑

k=1

∫

B(xk,Rk)
dΓ〈f〉

≤ C

(
μ(Ω)
μ (B)

)β/α

Ψ(R)
∫

M
dΓ〈f〉

= C

(
μ(Ω)
μ (B)

)β/α

Ψ(R)
∫

Ωt\Ωt′

dΓ〈u〉, (5.7)

where in the last line we have also used the fact that Γ 〈f〉 = 0 outside Ωt \ Ωt′ while
Γ 〈f〉 = Γ 〈u〉 inside Ωt \ Ωt′ , due to the strong locality of (E ,F).

Let us assume in addition that t′ is chosen so close to t that

μ
(
Ωt \ Ωt′

)
≤ εμ (Ωt) , (5.8)

where ε = c0
2 and c0 is the constant from (5.4). By (5.4), we obtain

μ (U ∩ Ωt) =
∞∑

k=1

μ (B(xk, rk) ∩ Ωt) ≥ 2εμ (Ωt) ,

which together with (5.8) implies

μ
(
U ∩ Ωt′

)
= μ (U ∩ Ωt) − μ

(
U ∩

(
Ωt \ Ωt′

))

≥ 2εμ (Ωt) − μ
((

Ωt \ Ωt′
))

≥ εμ (Ωt) .

It follows that ∫

U
f2dμ ≥

∫

U∩Ωt′

f2dμ

=
(
t′ − t

)2
μ
(
U ∩ Ωt′

)

≥ ε
(
t′ − t

)2
μ (Ωt) .

Combining this with (5.7), we conclude that

ε
(
t′ − t

)2
μ (Ωt) ≤ C ′

(
μ(Ω)
μ (B)

)β/α

Ψ(R)
∫

Ωt\Ωt′

dΓ〈u〉. (5.9)

Step 3. The proof of (FK)Ψ. Set for all t ≥ 0

m (t) = μ (Ωt) and m (t) = μ
(
Ωt

)

where
Ωt = {x ∈ Ω : u (x) ≥ t} .
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The functions m (t) and m (t) are monotone decreasing, m (t) ≤ m (t), and they both
vanish for large enough t as u is bounded. Furthermore, m (t) is right-continuous, while
m (t) is left-continuous, which follows from

Ωt =
⋃

s>t
Ωs and Ωt =

⋂

s<t
Ωs

and the σ-additivity of μ.
Let us define inductively an increasing sequence {tj}

∞
j=0 of non-negative reals as follows:

t0 = 0 and
tj+1 := sup {s : m(s) > (1 − ε)m(tj)}

for all j = 0, 1, 2, ∙ ∙ ∙ . By the left-continuity of m we obtain that

m (tj+1) = m (tj+1−) ≥ m (tj+1−) ≥ (1 − ε) m (tj) , (5.10)

while the right-continuity of m implies that

m (tj+1) ≤ (1 − ε) m (tj) . (5.11)

It follows from (5.10) that

m (tj) − m (tj+1) ≤ εm (tj) ,

that is, the condition (5.8) is satisfied with t′ = tj+1 and t = tj . Applying (5.9) with these
values of t′, t and then summing up over all j, we obtain that

E(u) =
∫

Ω
dΓ〈u〉 =

∞∑

j=0

∫

Ωtj \Ωtj+1

dΓ〈u〉

≥

{

C ′
(

μ(Ω)
μ (B)

)β/α

Ψ(R)

}−1

ε
∞∑

j=0

(tj+1 − tj)
2 m (tj) . (5.12)

On the other hand, it is clear that

‖u‖2
2 =

∞∑

j=0

∫

Ωtj \Ωtj+1

u2dμ ≤
∞∑

j=0

t2j+1 (m (tj) − m (tj+1)) . (5.13)

By [17, Lemma 1.2], for any increasing sequence {tj}
∞
j=0 with t0 = 0 and for any sequence

{mj}
∞
j=0 of non-negative reals, satisfying for some ε ∈ (0, 1) the condition

mj+1 ≤ (1 − ε)mj for all j = 0, 1, 2, ..., (5.14)

the following inequality holds:
∞∑

j=0

(tj+1 − tj)
2mj ≥

ε

12

∞∑

j=0

t2j+1 (mj − mj+1) (5.15)

(which is a consequence of the Hardy inequality). Since by (5.11) the sequence mj = m (tj)
satisfies (5.14), combining (5.12), (5.13), and (5.15) we conclude that

E(u) ≥
ε2

12

{

C ′
(

μ(Ω)
μ (B)

)β/α

Ψ(R)

}−1

‖u‖2
2 ,

which proves (5.2) with ν = β/α. �

6. Mean-value inequality for subharmonic functions

In this section, we will obtain an L2 mean value inequality for any non-negative sub-
harmonic function assuming that conditions (FK)Ψ and (Gcap≤)Ψ are satisfied.
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6.1. Admissible subharmonic functions. Let us introduce a class of admissible func-
tions. Fix two constants CA > 0 and γ ≥ 0 whose values will be determined later.

Definition. We say that a function u ∈ F ∩ L∞ is admissible in a ball B(x0, R) if for
any 0 < r1 ≤ R and any r1

2 ≤ r2 < r1, there exists some φ ∈ cutoff (B(x0, r2), B(x0, r1))
satisfying

E(φu) ≤
CA

Ψ(r1 − r2)

(
r2

r1 − r2

)γ ∫

B(x0,r1)
u2dμ. (6.1)

Note that the cutoff function φ may depend on u,B(x0, R), r2, r1.

Lemma 6.1. Assume that (E ,F) is regular and conditions (V D) , (A2) hold. Let u be a
bounded, non-negative subharmonic function in a ball B (x0, R). Then u is admissible in
B (x0, R).

Proof. Let B2 := B(x0, r2) and B1 := B(x0, r1) where r1, r2 are as above. We will con-
struct a function φ ∈ cutoff (B2, B1) such that (6.1) holds with γ = α

E(φu) ≤
C

Ψ(r1 − r2)

(
r2

r1 − r2

)α ∫

B(x0,r1)
u2dμ (6.2)

for some positive constant C > 0, where α is the same as in (1.13).
Indeed, set s := r1 − r2 ∈ (0, r2). By the doubling condition, there exists an integer N

such that the ball B2 can be covered by the union of balls {B(yk, s/2)}N
k=1 centered at B2,

whilst the balls {B(yk, s/10)}N
k=1 are disjointed (see Figure 4).

 
( )syB k , ( )2, s

kyB

),( 0 RxB0xr2 

R r1 

B1 B2 

Figure 4. The balls B(yk, s/2) and B1, B2.

Observe that there exists a constant C > 0 (depending only the doubling constant CD)
such that

N ≤ C
(r2

s

)α
, (6.3)

since we have from (1.13) that, for s = r1 − r2 ≤ r2,

V (x0, r1)
V (yk, s/10)

≤ CD

(
d(x0, yk) + r1

s/10

)α

≤ CD

(
r2 + r1

s/10

)α

≤ C
(r2

s

)α
,
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and hence,

V (x0, r1) ≥
N∑

k=1

V (yk, s/10) ≥
N∑

k=1

V (x0, r1)C
−1
(r2

s

)−α

= V (x0, r1)C
−1
(r2

s

)−α
N,

thus proving (6.3).
For simplicity, set Uk := B(yk, s). For each 1 ≤ k ≤ N, by inequality (2.43), there is

φk ∈ cutoff
(

1
2Uk, Uk

)
such that

E (uφk) ≤
C1

Ψ(s)

∫

Uk

u2dμ. (6.4)

We set

φ = φ1 ∨ φ2 ∨ ∙ ∙ ∙ ∨ φN .

Clearly, φ ∈ cutoff (B2, B1). We will show that (6.2) holds with this φ.
Indeed, as u ≥ 0 in B1, we see that

φu = (φ1u) ∨ (φ2u) ∨ ∙ ∙ ∙ ∨ (φNu) .

Observe that for any u, v ∈ F ,

E (u ∨ v) ≤ E (u) + E (v) ,

since, using the facts that

u ∨ v =
1
2

(u + v + |u − v|) and u ∧ v =
1
2

(u + v − |u − v|) ,

we have

E (u ∨ v) + E (u ∧ v) =
1
4
{E (u + v + |u − v|) + E (u + v − |u − v|)}

=
1
2
{E(u + v) + E(|u − v|)}

≤
1
2
{E(u + v) + E(u − v)}

= E (u) + E (v) .

Therefore, it follows from (6.4), Uk ⊂ B1 and (6.3), that

E(φu) = E ((φ1u) ∨ (φ2u) ∨ ∙ ∙ ∙ ∨ (φNu)) ≤
N∑

k=1

E(φku)

≤
C1

Ψ(s)

N∑

k=1

∫

Uk

u2dμ ≤
C1

Ψ(s)

N∑

k=1

∫

B1

u2dμ

=
C1

Ψ(s)
N

∫

B1

u2dμ ≤
C ′

Ψ(s)

(r2

s

)α
∫

B1

u2dμ,

thus proving (6.2). Hence, u is admissible in B(x0, R). �
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6.2. The L2-mean value inequality. We prove an L2 mean value inequality for any
non-negative (not necessarily subharmonic) function u ∈ F ∩L∞ if (u− k)+ is admissible
for any k > 0.

Theorem 6.2 (L2 mean value inequality). Let (E ,F) be a regular Dirichlet form.
Assume that (FK)Ψ and (V D) are satisfied. If u ∈ F ∩ L∞ is non-negative in a ball
B := B(x0, R) and if (u − k)+ is admissible in B for any k > 0, then

esup
1
2
B

u2 ≤
C

μ(B)

∫

B
u2dμ, (6.5)

where the constant C is independent of B, u.

Proof. We split the proof into two steps.
Step 1. For any 0 < r1 ≤ R and r1

2 ≤ r2 < r1, let U2 := B(x0, r2) and U1 := B(x0, r1).
Fix some 0 < ρ1 < ρ2 and set

a1 :=
∫

U1

(u − ρ1)
2
+dμ and a2 :=

∫

U2

(u − ρ2)
2
+dμ,

so that a2 ≤ a1. We will prove the following relation between a1 and a2:

a2 ≤
C1Ψ(r1)

Ψ(r1 − r2)μ (U1)
ν

(
r2

r1 − r2

)γ a1+ν
1

(ρ2 − ρ1)2ν
, (6.6)

which will be used later on to do iterations.
Choose a quasi-continuous version of u, a function φ ∈ cutoff (U2, U1) (to be specified

below) and consider a set
E = supp φ ∩ {u ≥ ρ2} ⊂ U1. (6.7)

By the regularity of μ, for any ε > 0 there is an open set Ω ⊂ U1 that contains E and
such that

μ (Ω) ≤ μ (E) + ε (6.8)

(see Fig. 5).

U2

U1

supp

E

φ

Figure 5. Sets E and Ω
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As φ(u−ρ2)+ = 0 in Ec, we see that φ(u−ρ2)+ = 0 also in Ωc ⊂ Ec. Since φ(u−ρ2)+ is
quasi-continuous, it follows that φ(u−ρ2)+ ∈ F (Ω) (cf. [16, Corollary 2.3.1, p.98]). Since
the function (u − ρ2)+ is admissible in B by assumption, the function φ can be chosen so
that

E(φ(u − ρ2)+) ≤
CA

Ψ(r1 − r2)

(
r2

r1 − r2

)γ ∫

U1

(u − ρ2)
2
+dμ. (6.9)

From this and using (FK)Ψ, we obtain

a2 =
∫

U2

(u − ρ2)
2
+dμ ≤

∫

U1

{φ(u − ρ2)+}
2 dμ

=
∫

Ω
{φ(u − ρ2)+}

2 dμ ≤
E(φ(u − ρ2)+)

λmin(Ω)

≤
Ψ(r1)
CF

(
μ (Ω)
μ (U1)

)ν { CA

Ψ(r1 − r2)

(
r2

r1 − r2

)γ ∫

U1

(u − ρ2)
2
+dμ

}

(6.10)

≤ C1
Ψ(r1)

Ψ(r1 − r2)μ (U1)
ν

(
r2

r1 − r2

)γ

μ (Ω)ν a1.

Since ε in (6.8) can be taken arbitrarily small, we obtain

a2 ≤ C1
Ψ(r1)

Ψ(r1 − r2)μ (U1)
ν

(
r2

r1 − r2

)γ

μ (E)ν a1. (6.11)

On the other hand, by definition (6.7) of E, we have

a1 =
∫

U1

(u − ρ1)
2
+dμ ≥

∫

E
(ρ2 − ρ1)

2
+dμ = (ρ2 − ρ1)

2μ(E),

whence
μ (E) ≤

a1

(ρ2 − ρ1)
2 .

Substituting this into (6.11), we obtain (6.6), as desired.
Step 2. Here we prove (6.5) using (6.6) and (V D). Without loss of generality, we can

assume that
‖u‖L2(B) = 1. (6.12)

Fix some ρ > 0 to be determined later on and set

Rk =

(
1
2

+ 2−k−1

)

R and ρk = ρ
(
2 − 2−k

)
, k ≥ 0. (6.13)

The sequence {Rk}
∞
k=0 is non-increasing, R0 = R, Rk → 1

2R as k → ∞, and

0 < Rk−1 − Rk = 2−k−1R < Rk. (6.14)

Similarly, the sequence {ρk}
∞
k=0 is non-decreasing, ρ0 = ρ, ρk → 2ρ as k → ∞, and

ρk − ρk−1 = 2−kρ.

For k ≥ 0, set Uk := B(x0, Rk) and

ak =
∫

Uk

(u − ρk)
2
+dμ. (6.15)

Note that U0 = B(x0, R), and ak+1 ≤ ak ≤ 1 for any k ≥ 0.
Clearly, we see from (6.13) and (6.14) that

Rk

Rk−1 − Rk
<

Rk−1

Rk−1 − Rk
=

(
1
2 + 2−k

)
R

2−k−1R
< 2k+2. (6.16)
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From this and using (1.15), we obtain

Ψ(Rk−1)
Ψ(Rk−1 − Rk)

≤ CΨ

(
Rk−1

Rk−1 − Rk

)β′

≤ C ′2kβ′
. (6.17)

By condition (V D), we have

μ (Uk−1) ≥ μ(
1
2
B) ≥ C−1

D μ (B) . (6.18)

Applying (6.6) with r1 = Rk−1, r2 = Rk and with ρ1, ρ2 being respectively replaced by
ρk−1, ρk, and substituting (6.16), (6.17), (6.18), we obtain

ak ≤
C1Ψ(Rk−1)

Ψ(Rk−1 − Rk)μ (Uk−1)
ν

(
Rk

Rk−1 − Rk

)γ a1+ν
k−1

(ρk − ρk−1)2ν

≤ C1

(
C ′2kβ′

) (
Cν

Dμ (B)−ν) 2(k+2)γ
(
2−kρ

)−2ν
a1+ν

k−1

= C2μ (B)−ν ρ−2ν2ksa1+ν
k−1 := A2ksa1+ν

k−1

for any k ≥ 1, where
s = β′ + γ + 2ν

and
A := C2μ (B)−ν ρ−2ν . (6.19)

Setting q := 1 + ν, we obtain by iteration

ak ≤ A2ksaq
k−1 ≤

(
A2ks

)(
A2(k−1)saq

k−2

)q
≤ ∙ ∙ ∙

≤
(
A1+q+∙∙∙+qk−1

)(
2s(k+(k−1)q+∙∙∙+qk−1)

)
aqk

0

≤ A
qk−1
q−1 2

s
qk+1−(k+1)q+k

(q−1)2

≤ A
qk−1
q−1 2

s
(qk−1)(q+1)

(q−1)2

≤
(
C3A

1
q−1

)qk−1
, (6.20)

where we have used a0 ≤ 1, the elementary identity

k + (k − 1)q + ∙ ∙ ∙ + qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤

(
qk − 1

)
(q + 1)

(q − 1)2

and set C3 = 2
s q+1

(q−1)2 . Noticing that A depends on ρ, we can choose ρ so that the following
equation is satisfied:

1
2

= C3A
1

q−1 .

Indeed, by (6.19) and q − 1 = ν this equation is equivalent to

1
2

= C4μ (B)−1 ρ−2,

which yields
ρ2 = 2C4μ (B)−1 . (6.21)

We obtain from (6.20) that, for any k,
∫

B(x0, 1
2
R)

(u − 2ρ)2+dμ ≤ ak ≤
(
C3A

1
q−1

)qk−1
=

(
1
2

)qk−1

→ 0 as k → ∞.
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From this and (6.21), we obtain

esup
B(x0, 1

2
R)

u2 ≤ 4ρ2 = 8C4μ (B)−1 ,

which in the view of (6.12) finishes the proof. �

Let us introduce the condition (MV ) (mean value inequality).

Mean value inequality. We say that the condition (MV ) is satisfied if there ex-
ists a constant CMV > 0 such that, for any ball B and for any bounded non-negative
subharmonic function u in B, the following inequality holds:

esup
1
2
B

u2 ≤
CMV

μ(B)

∫

B
u2dμ. (6.22)

The following is the main result of this section.

Theorem 6.3. Assume that (E ,F) is a strongly local regular Dirichlet form and that
condition (V D) holds. Then the following implication is true:

(FK)Ψ + (Gcap≤)Ψ ⇒ (MV ).

Proof. Let B and u be as in the above Definition of the mean value inequality. As follows
from definition of subharmonic functions, there exists a function u′ ∈ F∩L∞ such that u =
u′ in B. By the locality of (E ,F), the function u′ is subharmonic in B. By Proposition 2.1,
function (u′ − k)+ is subharmonic for any k ≥ 0. By Proposition 2.3, we have (Gcap≤)Ψ ⇒
(A2). Thus, by Lemma 6.1, the function u′ is admissible in B(x0, R). Finally, Theorem
6.2 yields the mean value inequality for u′ and, hence, for u. �

7. Proof of elliptic Harnack inequality

In this section we prove the elliptic Harnack inequality. We assume here that the
following conditions are known to be true: (MV ), (PI)Ψ, (cap≤)Ψ, and will prove the
Harnack inequality (H). The proof follows essentially the argument of Landis [41], [38]
with some simplifications (see also [17] for a version of this argument for parabolic Harnack
inequality).

Let us introduce condition (cap≤)Ψ.

Upper bound of capacity. We say that the condition (cap≤)Ψ holds if there exists
constant C > 0 such that, for all balls B of radius r > 0,

cap (B, 2B) ≤
Cμ(B)
Ψ(r)

. (7.23)

Lemma 7.1. Assume that (E ,F) is regular and strongly local, and that u is a strictly
positive, bounded superharmonic function in a ball 2B where B = B (x0, r) . If condition
(cap≤)Ψ holds, then we have

∫

B
dΓ〈log u〉 ≤

C1

Ψ(r)
μ (B) , (7.24)

where constant C1 is independent of u, x0, r.
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Proof. Let l (t) be the function from the proof of Lemma 2.4, so that l (u) , l′ (u) , l′′ (u) are
in F ∩ L∞, while in 2B we have l (u) = log u, l′ (u) = 1

u and l′′ (u) = − 1
u2 = −l′ (u)2 .

By the chain rule, we have in 2B

dΓ〈l (u)〉 = l′ (u)2 dΓ〈u〉 = −l′′ (u) dΓ (u) = −dΓ
(
u, l′ (u)

)
= −dΓ

〈
u, u−1

〉
. (7.25)

Let φ be an “almost” optimal test function for cap (B, 2B) so that we obtain by (cap)Ψ

E (φ) ≤ 2 cap (B, 2B) ≤
2Cμ(B)

Ψ(r)
. (7.26)

Integrating (7.25) and using that u is superharmonic in 2B, we obtain
∫

φ2dΓ〈log u〉 = −
∫

φ2dΓ
〈
u, u−1

〉
= −

∫
dΓ
〈
u, φ2u−1

〉
+ 2

∫
φu−1dΓ〈u, φ〉

≤ 2
∫

φu−1dΓ〈u, φ〉 ≤
1
2

∫
φ2u−2dΓ〈u〉 + 2

∫
dΓ〈φ〉

=
1
2

∫
φ2dΓ〈log u〉 + 2E (φ) ,

where all integrals are taken over 2B. Hence, we obtain
∫

2B
φ2dΓ〈log u〉 ≤ 4E (φ) . (7.27)

Combining (7.26) and (7.27), we conclude that
∫

B
dΓ〈log u〉 ≤

∫

2B
φ2dΓ〈log u〉 ≤

8Cμ(B)
Ψ(r)

,

thus proving (7.24). �

For any ball B and any measurable set A ⊂ M denote

ωB (A) =
μ (A ∩ B)

μ (B)
,

the occupation measure of the set A in B. If A has the form {u ≥ a} where u is a function
and a ∈ R, then we write for simplicity ω (A) = ω (u ≥ a) without additional brackets.

Lemma 7.2. Assume that (E ,F) is regular and strongly local, and that (V D) holds. Let
u be any non-negative bounded harmonic function in a ball 2B and a > 0 be any number.
If conditions (MV ), (PI)Ψ, (cap≤)Ψ hold, then (see Figure 6)

einf
1
2
σB

u ≥ a exp

(

−
C

ωσB (u ≥ a)

)

. (7.28)

Proof. We can assume without loss of generality, that u is strictly positive in 2B (otherwise
apply (7.28) to function uε = u + ε and constant a + ε for any ε > 0 and then let ε → 0).

Let B = B (x, r). By Lemma 7.1 (where condition (cap≤)Ψ is used), we have for
f = log a

u ∫

B
dΓ〈f〉 ≤

C1

Ψ(r)
μ (B) .

By Lemma 4.2 (where condition (PI)Ψ is used), we have
∫

B
dΓ 〈f+〉 ≥

c

Ψ(r)
ωσB (f ≤ 0)

∫

σB
f2
+dμ.

Since f ≤ 0 ⇔ u ≥ a and, hence,

ωσB (f ≤ 0) = ωσB (u ≥ a) =: ω,
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2B 

σB 

x 

½σB 

B 

{ u > a}  

Figure 6. Set {u ≥ a} ∩ σB

we obtain
C1

Ψ(r)
μ (B) ≥

c

Ψ(r)
ω

∫

σB
f2
+dμ,

whence it follows that

−
∫

σB
f2
+dμ ≤

C

ω
.

By Lemma 2.4, the function f is subharmonic, and so is f+ by Proposition 2.1. Thus, we
conclude by (MV ) that

esup
1
2
σB

f2
+ ≤ C−

∫

σB
f2
+dμ ≤

C

ω
≤

C

ω2

whence

einf
1
2
σB

u

a
≥ exp

(

−
C

ω

)

,

which is equivalent to (7.28). �

Lemma 7.2 plays an important part in our analysis. Once this lemma is established, we
can derive the Harnack inequality (H) by using condition (V D) alone, without using the
conditions (MV ), (PI)Ψ, (cap≤)Ψ anymore. Of course, in order to prove Lemma 7.2 we
have already used all these three conditions.

In the rest of this Section we assume that (V D) and the validity of Lemma 7.2 hold.

Corollary 7.3. There exists some constant θ ∈ (0, 1) such that for any ball B and for
any bounded harmonic function u in B,

eosc
1
4
σB

u ≤ θ eosc
B

u, (7.29)

where eoscB u := esupB u − einfB u is the oscillation of u over B.

Proof. By rescaling we can assume that

einf
B

u = 0 and esup
B

u = 2.

It suffices to prove that
eosc
1
4
σB

u ≤ 2θ
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for some constant θ ∈ (0, 1) that is independent of u,B. By (7.28) with a = 1, we have

einf
1
4
σB

u ≥ exp

(

−
C

ω 1
2
σB (u ≥ 1)

)

.

Applying (7.28) again to function 2 − u, we obtain

2 − esup
1
4
σB

u ≥ exp

(

−
C

ω 1
2
σB (u ≤ 1)

)

.

Since one of the quantities ω 1
2
σB ({u ≤ 1}) , ω 1

2
σB ({u ≥ 1}) should be at least 1

2 , we obtain
by adding up the above inequalities that

2 − eosc
1
4
σB

u ≥ exp (−2C) ,

whence (7.29) follows. �

Corollary 7.4. Any bounded harmonic function admits a Hölder continuous version.

Proof. Let u be a bounded harmonic function in a ball B0. Fix a ball B := B (x, r) such
that B ⊂ B0. Write Bs = B(x, s) for s > 0. It is enough to show that for any ρ < δr,

eosc
Bρ

u ≤ 2
(ρ

r

)γ
eosc
Br

u (7.30)

for some constant γ > 0 independent of ρ, r and u, where δ = 1
4σ with the same σ as in

(7.29).
Indeed, we have by (7.29) that

eosc
Bδr

u ≤ θ eosc
Br

u. (7.31)

For any ρ ≤ δr, there exists an integer k ≥ 1 such that

δk+1r < ρ ≤ δkr.

Iterating (7.31), we obtain

eosc
Bρ

u ≤ eosc
B

δkr

u ≤ θk eosc
Br

u

≤ θ

log r
ρ

log 1
δ

−1
eosc
Br

u =
1
θ

(ρ

r

) log 1
θ

log 1
δ eosc

Br

u.

Note that the constant θ in (7.29) can be assumed to satisfy θ > 1/2. Therefore, inequality

(7.30) follows with γ =
log 1

θ

log 1
δ

. �

From now on we use continuous versions of harmonic functions. In particular, the
inequality (7.28) of Lemma 7.2 implies

u (x) ≥ a exp

(

−
C

ωσB (u ≥ a)

)

, (7.32)

where x is the center of B and u is non-negative and harmonic in 2B.

Lemma 7.5. Let u be non-negative bounded harmonic in a ball B (x,R). Then, for all
y ∈ B

(
x, σ

9 R
)

and r ≤ σR
4 , and for any a > 0,

u (x) ≥ a
( r

R

)N
exp

(

−
C

ωB(y,r) ({u ≥ a})

)

, (7.33)

where N is a positive constant that depends only on the constants in the hypotheses (see
Fig. 7).
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B(x,R) 

B(y,r) 

y x 

_ 

Figure 7. Set {u ≥ a} ∩ B (y, r)

Proof. Set B = B (y, r) and observe that 2σ−1B ⊂ B (x,R) since

d (x, y) + 2σ−1r ≤
σ

9
R +

R

2
< R.

Applying (7.28) to the function u in the ball 2σ−1B, we obtain

inf
1
2
B

u ≥ a exp

(

−
C

ωB (u ≥ a)

)

=: a1. (7.34)

If 4σ−1B ⊂ B (x,R) then we can apply (7.28) in the ball 4σ−1B and obtain

inf
B

u ≥ a1 exp

(

−
C

ω2B (u ≥ a1)

)

.

Noticing that by (7.34) the set {u ≥ a1} contains 1
2B and, hence,

ω2B (u ≥ a1) ≥ ω2B

(
1
2B
)
≥ c,

we obtain

inf
B

u ≥ a1 exp

(

−
C

c

)

= εa1 =: a2,

where ε := exp
(
−C

c

)
. If 8σ−1B ⊂ B (x,R) then in the same way

inf
2B

u ≥ εa2 = ε2a1,

and so on (see Fig. 8).
As long as

2k+1σ−1B ⊂ B (x,R) , (7.35)
we obtain by (7.28)

inf
2k−1B

u ≥ εka1 = εka exp

(

−
C

ωB (u ≥ a)

)

.

Let k be the maximal integer satisfying (7.35). Then we have

2k+1σ−1r + d (x, y) ≤ R (7.36)

while
2k+2σ−1r + d (x, y) > R.
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Figure 8. Level sets {u ≥ a} , {u ≥ a1} etc

It follows that

2k−1r ≥ σ
R − d (x, y)

8
> d (x, y) ,

where the last inequality is true because
(

1 +
8
σ

)

d (x, y) <

(

1 +
8
σ

)
σ

9
R < R.

It follows that x ∈ B
(
y, 2k−1r

)
and, hence,

u (x) ≥ εka exp

(

−
C

ωB (u ≥ a)

)

.

Then (7.36) implies

2k+1 ≤
R

r
,

whence

εk ≥ εk+1 ≥
( r

R

)N

with N =
ln 1

ε
ln 2 , which implies (7.33). �

Lemma 7.6. Let u be a bounded harmonic function in a ball 2B with center x. Then

sup
2B

u ≥

(

1 + exp

(

−
C

ωσB (u ≤ 0)

))

u (x) . (7.37)

Proof. If u (x) ≤ 0 then there is nothing to prove. So, let us assume u (x) > 0 and
sup2B u = 1. Setting v = 1 − u and noticing that u ≤ 0 ⇔ v ≥ 1, we obtain by (7.32)

v (x) ≥ exp

(

−
C

ωσB (u ≤ 0)

)

,

whence

u (x) ≤ 1 − exp

(

−
C

ωσB (u ≤ 0)

)

≤
1

1 + exp
(
− C

ωσB(u≤0)

) ,
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which is equivalent to (7.37). �

Applying (7.37) to function u − a and replacing 2B by B, we obtain

sup
B

u ≥ a +

(

1 + exp

(

−
C

ω 1
2
σB (u ≤ a)

))

(u (x) − a) . (7.38)

Lemma 7.7. There is a constant c > 0 such that for any bounded harmonic function in
a ball B = B (x, r),

sup
B

u ≥ exp

(
c

ωB (u > 0)1/α
− 1

)

u (x) , (7.39)

provided u (x) > 0, where α is the same as in (1.13).

Applying (7.39) to the function u − a and assuming u (x) > a, we obtain

sup
B

u ≥ a + exp

(
c

ωB (u > a)1/α
− 1

)

(u (x) − a) . (7.40)

In particular, assuming u (x) > 0 and setting

a =
1
2
u (x) and b = sup

B
u,

we obtain from (7.40)

ωB (u > a) ≥

(
c

1 + ln
(

b
a − 1

)

)α

. (7.41)

Proof. Let ε < 1
4σ be a positive constant to be chosen later on. We have for any y ∈

B
(
x, 1

2r
)

μ (B (x, r))
μ (B (y, εr))

≤ Cε−α,

whence

ωB(y,εr) (u > 0) =
μ ({u > 0} ∩ B (y, εr))

μ (B (y, εr))
≤ Cε−α μ ({u > 0} ∩ B)

μ (B (x, r))
= Cε−αωB (u > 0) .

Now we would like to chose ε to satisfy the equality

Cε−αωB (u > 0) =
1
2
,

that is, define ε by
ε = (2CωB (u > 0))1/α . (7.42)

Since ε must be smaller than 1
4σ, the choice (7.42) is possible provided

ωB (u > 0) <
1

2C

(
1
4
σ

)α

. (7.43)

If the opposite inequality holds, then (7.39) can be satisfied simply by choosing

c ≤

(
1

2C

)1/α 1
4
σ.

Therefore, we can assume in the sequel that (7.43) is satisfied, and we choose ε from (7.42).
For this ε we have

ωB(y,εr) (u > 0) ≤
1
2
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and, hence,

ωB(y,εr) (u ≤ 0) ≥
1
2
.

Set

ρ =
2ε

σ
r.

Since ε < 1
4σ, we have ρ < r/2 and B (y, ρ) ⊂ B (x, r). Applying (7.37), we obtain

sup
B(y,ρ)

u >

(

1 + exp

(

−
C

ωB(y,εr) (u ≤ 0)

))

u (y) ≥ (1 + c) u (y) ,

where c = exp (−2C). It follows that there is a point y′ such that

y′ ∈ B (y, ρ) and u
(
y′
)

> (1 + c) u (y) .

Applying this with y = x we obtain that there is a point x1 such that

x1 ∈ B (x, ρ) and u (x1) ≥ (1 + c) u (x) .

Since 2ε
σ < 1

2 , the point x1 lies in B
(
x, 1

2r
)
. Applying the previous procedure with y = x1,

we obtain that there is a point x2 such that

x2 ∈ B (x1, ρ) and u (x2) ≥ (1 + c) u (x1) .

Continuing further this way, we construct a sequence {xk}k≥0 in B (see Fig. 9) such that
x0 = x and

xk ∈ B (xk−1, ρ) and u (xk) ≥ (1 + c) u (xk−1) .

 

{ u > 0} x x1 x2 x3 
x4 

B(x,r) 

Figure 9. Sequence of balls B (xk, ρ)

It follows from the construction that

xk ∈ B (x, kρ) .

As long as kρ < r/2, that is, when

k
2ε

σ
<

1
2
, (7.44)

we have xk ∈ B
(
x, 1

2r
)
, and the process of construction can be continued further to obtain

xk+1. Choose the maximal k with (7.44). For this k we have

k + 1 ≥
σ

4ε
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and

u (xk+1) ≥ (1 + c)k+1 u (x) ≥ (1 + c)
σ
4ε u (x)

≥ exp

(
c′

ωB (u > 0)1/α

)

u (x) ,

whence (7.39) follows. �

Theorem 7.8. Assume that (E ,F) is regular and strongly local, and that (V D) holds.
Then following implication is true:

(MV ) + (PI)Ψ + (cap≤)Ψ ⇒ (H).

Proof. Let u be a bounded non-negative harmonic function in a ball η−1B where B =
B (x,R) and

η =
1
18

σ. (7.45)

We will prove that if
sup
B

u = 2,

then
u (x) ≥ c > 0, (7.46)

which is equivalent to (H).
For that, we construct by induction a finite sequence {xk}k≥1 of points in 2B such that

u (xk) = 2k. Since supB u = 2, there exists a point x1 ∈ B such that u (x1) = 2 (The
point x1 ∈ ∂B by using the maximum principle, see [23, Proposition 4.3]). If xk ∈ 2B
with u (xk) = 2k is already constructed then, for small enough r > 0, we have

sup
B(xk,r)

u < 2k+1.

Set

rk = sup

{

r ∈ (0, R] : sup
B(xk,r)

u ≤ 2k+1

}

.

If rk = R then the inductive process stops without constructing xk+1. If rk < R, then we
have

sup
B(xk,rk)

u = 2k+1,

and we can find xk+1 ∈ B (xk, rk) such that u (xk+1) = 2k+1. If xk+1 ∈ 2B then the
inductive process goes further, while in the case xk+1 /∈ 2B the process stops.

As a result of this construction, we obtain a sequence of balls {B (xk, rk)}
n
k=1 (see Fig.

10) where xk ∈ 2B, rk ≤ R, and

sup
B(xk,rk)

u ≤ 2u (xk) = 2k+1. (7.47)

For the largest index n in this sequence we have either rn = R or xn+1 /∈ 2B. In the
latter case, since x1 ∈ B, d (xk, xk+1) ≤ rk and xn+1 /∈ 2B, we obtain by the triangle
inequality

2R ≤ d(x, xn+1) ≤ d(x, x1) + d(x1, x2) + ∙ ∙ ∙ + d (xn, xn+1)

≤ R + r1 + r2 + ... + rn,

and hence,
r1 + r2 + ... + rn ≥ R. (7.48)
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xk xk+1 

{ u > 2k-1}  

B(x,R) 

x1 

B(xk,rk) 

x2 

… … 

xn+1 

Figure 10. The sequence {xk}

In the former case rn = R this inequality is also trivially satisfied. It follows from (7.48)
that there is k ≤ n such that

rk ≥
R

k (k + 1)
. (7.49)

On the other hand, applying (7.41) in B (xk, rk) with

a :=
1
2
u (xk) = 2k−1

and using (7.47), that is,

b := sup
B(xk,rk)

u ≤ 4a,

we obtain

ωB(xk,rk) (u > a) ≥

(
c

1 + ln
(

b
a − 1

)

)α

≥

(
c

1 + ln 3

)α

=: c′. (7.50)

Next, we will apply Lemma 7.5 for the ball B (x,R′) with R′ = η−1R and for y = xk,
ρ = rk. Since η = σ

18 , we have

xk ∈ B (x, 2R) = B
(
x,

σ

9
R′
)

and

rk ≤ R <
σ

4
R′.

Hence, the hypotheses of Lemma 7.5 are satisfied, and we obtain, using a = 2k−1, (7.49),
and (7.50),

u (x) ≥ a
( rk

R′

)N
exp

(

−
C

ωB(xk,rk) ({u ≥ a})

)

≥
2k−1

(k (k + 1))N
ηN exp

(

−
C

c′

)

.

Since

inf
k≥1

2k−1

(k (k + 1))N
> 0,

we obtain u (x) ≥ const, which was to be proved.
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It remains to consider a general (unbounded) harmonic function u. Let u be a non-
negative, harmonic function in a ball B ⊂ M . Set fk = u∧ k for any k > 0 and denote by
uk the solution of the Dirichlet problem

{
uk is harmonic in B,
uk = fk modF (B) ,

where u = v modF (B) means that there exists some h ∈ F (B) such that u − v = h in
M . Since 0 ≤ fk ≤ k in B, we have also 0 ≤ uk ≤ k in B (cf. [30, Lemma 7.2]). Since

the sequence {fk} increases and fk
F
→ u, it follows that uk → u almost everywhere in

B (cf. [30, Lemma 7.2]). Each function uk is bounded and, hence, satisfies the Harnack
inequality in B, that is,

esup
ηB

uk ≤ C einf
ηB

uk.

Replacing uk on the right-hand side by a larger function u and passing to the limit as
k → ∞, we obtain the same inequality for u. The proof is complete. �

8. Proofs of Theorems 1.1 and 1.2

In this section we complete the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We distinguish two steps.
Step 1. (PI)Ψ + (Gcap≤)Ψ ⇒ (cap)Ψ.
Indeed, we know already that

(Gcap≤)Ψ ⇒ (cap≤)Ψ.

To prove the lower bound

cap (B, 2B) ≥ c
μ (B)
Ψ (r)

, (8.1)

we use the following general fact (cf. [23, formula (8.19) in the proof of Lemma 8.3]):

cap (B, 2B) ≥ μ (B) λmin (2B) .

Substituting here the inequality

λmin (2B) ≥
c

Ψ(r)
,

that is true by (FK)Ψ, we obtain (8.1).
Step 2. (PI)Ψ +(Gcap≤)Ψ ⇒ (H). By Theorem 5.1, condition (FK)Ψ holds, and then

by Theorem 6.3 we obtain the mean value inequality (MV ). Since (cap≤)Ψ holds by the
previous step, we obtain the elliptic Harnack inequality (H) by Theorem 7.8.

The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. The following equivalences were proved in [23, Theorem 3.14]:

(H) + (cap)Ψ ⇔ (H) + (E)Ψ
⇔ (G)Ψ
⇔ (UE)Ψ + (NLE)Ψ

Hence, it remains to prove that

(UE)Ψ + (NLE)Ψ ⇒ (PI)Ψ + (E)Ψ (8.2)

⇒ (PI)Ψ + (CSA)Ψ (8.3)

⇒ (PI)Ψ + (Gcap≤)Ψ (8.4)

⇒ (H) + (cap)Ψ (8.5)
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By (3.17) we have (8.3), and (8.4) is trivial, and by Theorem 1.1 we have (8.5). The
implication

(UE)Ψ ⇒ (E)Ψ
in (8.2) was proved in [24, Theorem 2.2]. Finally, let us prove that

(NLE)Ψ ⇒ (PI)Ψ ,

which will finish the proof of Theorem 1.2. By Lemma 4.1, (PI)Ψ is equivalent to the
following condition: for any ball B = B (x0, r) and for any f ∈ F

∫

B
dΓ 〈f〉 ≥

c

Ψ(r) μ (σB)

∫

σB

∫

σB
(f (x) − f (y))2 dμ (y) dμ (x) , (8.6)

so we will prove (8.6). Let us define a new quadratic form

Ẽ (f) =
∫

B
dΓ 〈f〉

for all f ∈ F∩C0 (M), and define a new measure μ̃ to be the measure 1Bμ extended to ∂B
by setting μ̃ (∂B) = 0. It can be shown that this quadratic form is closable in L2

(
B, μ̃

)

and its closure (Ẽ , F̃) is a regular Dirichlet form in L2
(
B, μ̃

)
(private communication of

Zhen-Qing Chen, based on [12, Theorems 3.3.9, 6.2.13 and 6.2.14]). In fact, the Dirichlet
form (Ẽ , F̃) is related to the Neumann boundary value problem in B.

Let P̃t be the heat semigroup associated with (Ẽ , F̃). Denote by (∙, ∙) the scalar product
in L2

(
B,μ

)
and by ‖∙‖ its norm. It is a well known fact from the theory of Dirichlet

forms, that for any f ∈ F̃ , the function

t →

(
f − P̃tf

t
, f

)

is monotone increasing as t decreases to 0, and converges to Ẽ (f); in particular, we have

Ẽ (f) ≥
1
t

(
f − P̃tf, f

)
.

Observe that

2
(
f − P̃tf, f

)
= 2 ‖f‖2 − 2

(
P̃tf, f

)

≥ 2
(
f2, P̃t1

)
− 2

(
P̃tf, f

)

=
(
f2, P̃t1

)
+
(
P̃tf

2, 1
)
− 2

(
P̃tf, f

)
.

Fix some point x ∈ B and set a = f (x) . Then we have

P̃t (a − f)2 = a2P̃t1 + P̃tf
2 − 2aP̃tf.

The value of this function at x is equal to

f (x)2 P̃t1 (x) + P̃tf
2 (x) − 2f (x) P̃tf (x) ,

and its inner product with 1 is equal to
(
f2, P̃t1

)
+
(
P̃tf

2, 1
)
− 2

(
P̃tf, f

)
.

Therefore,

2
(
f − P̃tf, f

)
=
(
P̃t (f (x) 1 − f)2 (x) , 1 (x)

)
,

whence we obtain

Ẽ (f) ≥
1
2t

(
P̃t (f (x) 1 − f)2 (x) , 1 (x)

)
. (8.7)
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For any open set Ω ⊂ B consider the restriction (Ẽ , F̃ (Ω)) of the Dirichlet form (Ẽ , F̃).
We claim that

(Ẽ , F̃ (Ω)) = (E ,F (Ω)),

which follows from the fact that μ = μ̃ on Ω and any function f ∈ F ∩ C0 (Ω) belongs to
the both spaces with

Ẽ 〈f〉 =
∫

B
dΓ 〈f〉 =

∫

Ω
dΓ 〈f〉 = E (f) . (8.8)

Consequently, the heat semigroups P̃Ω
t and PΩ

t are also the same. Since for any non-
negative function h

P̃th ≥ P̃Ω
t h = PΩ

t h,

applying this with h = (f (x) 1 − f)2, we obtain that for any f ∈ F
(
P̃t (f (x) 1 − f)2 (x) , 1 (x)

)
≥
(
PΩ

t (f (x) 1 − f)2 (x) , 1 (x)
)

.

Combining with (8.7) and (8.8), we conclude that, for any f ∈ F ,

Ẽ (f) ≥
1
2t

(
PΩ

t (f (x) 1 − f)2 (x) , 1 (x)
)

. (8.9)

Now let Ω = B. By a result of [8] (see also [26]) we have

(UE)Ψ + (NLE)Ψ ⇒ (LLE)Ψ
where (LLE)Ψ is the following local lower estimate of the heat kernel: the heat semigroup
PB

t possesses the heat kernel pB
t (x, y) that satisfies

pB
t (x, y) ≥

c

V (x0, Ψ−1(t))
, (8.10)

for all 0 < t ≤ Ψ(εr) and μ-almost all x, y ∈ B(x0, εΨ−1(t)), where ε ∈ (0, 1) and c > 0
are constant independent of B, x, y, t. Observe that the right hand side of (8.9) is equal
to ∫

B

∫

B
pB

t (x, y) (f (x) − f (y))2 dμ (y) dμ (x) .

Setting in (8.9) t = Ψ(εr) and restricting the integration to the ball B
(
x0, εΨ−1 (t)

)
= ε2B

where (8.10) holds, we obtain

Ẽ (f) ≥
1
2t

∫

ε2B

∫

ε2B
pB

t (x, y) (f (x) − f (y))2 dμ (y) dμ (x)

≥
1

2Ψ (εr)

∫

ε2B

∫

ε2B

c

V (x0, εr)
(f (x) − f (y))2 dμ (y) dμ (x)

≥
cε

Ψ(r) μ (ε2B)

∫

ε2B

∫

ε2B
(f (x) − f (y))2 dμ (y) dμ (x) ,

which proves (8.6) with σ = ε2. �

9. Equivalent conditions for upper bound

In this Section we prove Theorem 1.3, which will be preceded by auxiliary statements.
For any p > 0, we say that the Lp-mean value inequality (MV )p is satisfied if there a

constant C > 0 such that, for any ball B and for any bounded non-negative subharmonic
function u in B, the following inequality holds:

esup
1
2
B

up ≤
C

μ(B)

∫

B
updμ. (9.1)
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The previously used condition (MV ) coincides with (MV )2. In this proof we will also
need (MV )1.

In all the statements we assume that (V D) is satisfied.

Lemma 9.1. Let (MV )2 be satisfied. Let u be a non-negative bounded subharmonic
function in an arbitrary ball B = B (x0, r). Then, for any δ ∈ (0, 1),

esup
(1−δ)B

u2 ≤
Cδ−α

μ(B)

∫

B
u2dμ, (9.2)

where the positive constant C does not depend on B, u, δ, and where α comes from (1.13).

Proof. Indeed, for any x ∈ (1 − δ) B let us apply (MV )2 in the ball B (x, δr) ⊂ B so that

esup
B(x, δ

2
r)

u2 ≤
C

μ (B (x, δr))

∫

B(x,δr)
u2dμ.

By (1.13) we have

μ (B (x0, r))
μ (B (x, δr))

≤ Cδ−α

whence it follows that

esup
B(x, δ

2
r)

u2 ≤
Cδ−α

μ(B)

∫

B
u2dμ.

Since (1 − δ) B can be covered by a finite number number of balls like B
(
x, δ

2r
)

with
x ∈ (1 − δ) B, we obtain (9.2) �

Lemma 9.2. (MV )2 ⇒ (MV )1 .

Proof. Choose some 0 < τ < τ ′ ≤ 1. We have by (9.2) with δ = 1 − τ/τ ′, that

esup
τB

u ≤ C
(
1 −

τ

τ ′

)−α/2
μ(τ ′B)−1/2 ‖u‖L2(τ ′B) .

Noting that
(

μ (B)
μ (τ ′B)

)1/2

≤ C
(
τ ′)−α/2

and

‖u‖L2(τ ′B) ≤ ‖u‖1/2
L1(τ ′B)

‖u‖1/2
L∞(τ ′B) ≤ ‖u‖1/2

L1(B)
‖u‖1/2

L∞(τ ′B) ,

we obtain

esup
τB

u ≤ C
(
τ ′ − τ

)−α/2
μ(B)−1/2 ‖u‖1/2

L1(B)
‖u‖1/2

L∞(τ ′B) . (9.3)

We will use this inequality to do iterations as follows.
Set

τk = 1 −
1
2

(
3
4

)k

for k = 0, 1, 2, ∙ ∙ ∙ . (9.4)

Clearly, the sequence {τk}
∞
k=0 is non-decreasing, τ0 = 1

2 , τk → 1 as k → ∞ and

τk+1 − τk =
1
8

(
3
4

)k

.
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Applying (9.3) with τ = τk and τ ′ = τk+1, we obtain

‖u‖L∞(τkB) ≤ C

(
1
8

(
3
4

)k
)−α/2

μ(B)−1/2 ‖u‖1/2
L1(B)

‖u‖1/2
L∞(τk+1B)

= A

(
3
4

)−kα/2

‖u‖1/2
L∞(τk+1B) ,

where

A := C ′μ(B)−1/2 ‖u‖1/2
L1(B)

.

Iterating this inequality, we obtain

‖u‖L∞(τ0B) ≤ A ‖u‖1/2
L∞(τ1B) ≤ A

{

A

(
3
4

)−α/2

‖u‖1/2
L∞(τ2B)

}1/2

≤ ∙ ∙ ∙

≤ A1+ 1
2
+ 1

22
+...

(
3
4

)−α
2

∑∞
k=0

k

2k

‖u‖2−k

L∞(τkB)

= C ′′A2 ‖u‖2−k

L∞(τkB) .

Setting k → ∞ and noticing that ‖u‖2−k

L∞(τkB) → 1, we obtain

‖u‖L∞( 1
2
B) ≤ C ′′A2 = Cμ(B)−1 ‖u‖L1(B) ,

which is equivalent to (MV )1 . �

For any measurable f , we say that u ∈ F (Ω) satisfies

− Δu ≤ f weakly in Ω (9.5)

if, for any non-negative function ϕ ∈ F (Ω) ,

E (u, ϕ) ≤
∫

Ω
fϕdμ. (9.6)

Proposition 9.3. Let (E ,F) be a regular Dirichlet form in L2 and let Ω ⊂ M be an open
set with μ (Ω) < ∞. If u ∈ F (Ω) is a non-negative solution to (9.5) for some f ∈ Lp(Ω)
with p ≥ 2, then, for any s ≥ 0,

‖(u − s)+‖1 ≤
μ (Es)

1−1/p

λmin (E′
s)

‖f‖p , (9.7)

where Es = {x ∈ Ω : u ≥ s} and E′
s is any open neighborhood of Es.

Proof. Without loss of generality, we can assume that u is quasi-continuous. Using the
properties of Dirichlet forms, (9.6) with ϕ = (u− s)+ ∈ F (Ω), and the Hölder inequality,
we obtain

E ((u − s)+) ≤ E (u, (u − s)+)

≤
∫

Ω
(u − s)+fdμ

≤ ‖(u − s)+‖p′ ‖f‖p

≤ μ (Es)
1
p′
− 1

2 ‖(u − s)+‖2 ‖f‖p ,
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where p′ = p
p−1 is the Hölder conjugate of p. Since (u − s)+ = 0 q.e. outside Es and,

hence, outside E′
s, we obtain by definition of λmin (E′

s) that

‖(u − s)+‖
2
2 ≤

E ((u − s)+)
λmin (E′

s)
.

By the Cauchy-Schwarz inequality we have

‖(u − s)+‖1 ≤ μ (Es)
1/2 ‖(u − s)+‖2 .

Combining all the above inequalities, we obtain (9.7). �

We now derive an L∞-estimate for any non-negative function u satisfying (9.5).

Theorem 9.4. Let (E ,F) be a regular Dirichlet form in L2. For any ball B of radius
r > 0 and for any non-empty open set Ω ⊂ B, let u ∈ F (Ω) be non-negative and satisfy
(9.5) for some f ∈ Lp(B). If condition (FK)Ψ holds, then for any p > max

{
2, ν−1

}
,

‖u‖∞ ≤

(
ν + 1 − 1/p

ν − 1/p

)ν+1−1/p Ψ(r)
CF

(
μ(Ω)
μ(B)

)ν {

−
∫

Ω
|f |pdμ

}1/p

, (9.8)

where constants ν, CF and function Ψ come from condition (FK)Ψ. In particular, we have

(FK)Ψ ⇒ (E≤)Ψ , (9.9)

where (E≤)Ψ refers to the first condition in (1.28).

Proof. The proof is motivated by the argument in [40, Lemmas 5.1 and 5.2, p.71] and [45,
Lemma 4].

If ‖u‖∞ = 0 then (9.8) is trivially satisfied. If ‖f‖p = 0 then it follows from (9.6)
with φ = u that u = 0 and again (9.8) is satisfied. Hence, in the sequel we assume that
‖u‖∞ > 0 and ‖f‖p > 0. Let Es = {x ∈ Ω : u ≥ s} as before. Note that

φ(s) := ‖(u − s)+‖1 =
∫ ∞

s
μ (Et) dt

(see for example [46, P.36]), and that

φ
′
(s) = −μ (Es) , φ(0) = ‖u‖1 ,

and φ(s) = 0 for any s > ‖u‖∞ while φ (s) > 0 for s < ‖u‖∞. Let E′
s be an open

neighborhood of Es. It follows from (9.7) and (FK)Ψ that

φ(s) = ‖(u − s)+‖1 ≤
μ (Es)

1−1/p

λmin (E′
s)

‖f‖p

≤
Ψ(r)
CF

(
μ (E′

s)
μ (B)

)ν

μ (Es)
1−1/p ‖f‖p .

Since μ (E′
s) can be taken arbitrarily close to μ (Es), we obtain that

φ (s) ≤
Ψ(r)

CF μ (B)ν μ (Es)
1+ν−1/p ‖f‖p = A

{
−φ

′
(s)
}q+1

,

where

A =
Ψ(r)

CF μ (B)ν ‖f‖p and q = ν − 1/p > 0.

Assuming that s < ‖u‖∞ and dividing by φ (s), we obtain

A−1/(q+1) ≤ −φ
′
(s)φ(s)−1/(q+1) = −

q + 1
q

d

ds

{
φ(s)q/(q+1)

}
.
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Integrating this inequality over [0, s] , we obtain

A−1/(q+1)s ≤
q + 1

q

{
φ(0)q/(q+1) − φ(s)q/(q+1)

}

≤
q + 1

q
φ(0)q/(q+1) =

q + 1
q

‖u‖q/(q+1)
1 ,

which yields

s ≤
q + 1

q
A1/(q+1) ‖u‖q/(q+1)

1 .

Letting s ↑ ‖u‖∞ and using ‖u‖1 ≤ ‖u‖∞ μ(Ω), we obtain

‖u‖∞ ≤
q + 1

q
A1/(q+1) ‖u‖q/(q+1)

∞ μ(Ω)q/(q+1),

which implies

‖u‖∞ ≤

(
q + 1

q

)q+1

Aμ(Ω)q

=

(
ν + 1 − 1/p

ν − 1/p

)ν+1−1/p Ψ(r)
CF

(
μ(Ω)
μ(B)

)ν

μ(Ω)−1/p ‖f‖p ,

thus proving (9.8).
Finally, as the function EB satisfies (9.5) with f = 1 and Ω = B, we obtain by letting

p → ∞ in (9.8) that
∥
∥EB

∥
∥
∞ ≤

(

1 +
1
ν

)ν+1 Ψ(r)
CF

, (9.10)

thus proving condition (E≤)Ψ. �

Remark. The implication (9.9) can also be proved by combining two arguments in [24]
as follows. By [24, Lemma 5.5], (FK)Ψ implies the following estimate of the heat kernel
pB

t (x, y) in any ball B of radius r:

esup
x,y∈B

pB
t (x, y) ≤

C

μ (B)

(
Ψ(r)

t

)1/ν

.

Then we use the argument from [24, p.557] in the following simplified form. Integrating
this inequality in y over B and then in t from 0 to ∞, we obtain, for any T ∈ (0,∞)

EB =
∫ ∞

0
PB

t 1Bdt =
∫ T

0
PB

t 1Bdt +
∫ ∞

T
PB

t 1Bdt

≤ T + C

∫ ∞

T

(
Ψ(r)

t

)1/ν

dt

= T + C ′Ψ(r)1/ν T 1−1/ν ,

where we have used that ν < 1 (note that, without loss of generality, ν can be assumed
arbitrarily small). Setting T = Ψ(r) we obtain

EB ≤ CΨ(r) ,

which finishes the proof.
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Proof of Theorem 1.3. The statement will follow from the following sequence of implica-
tions:

(FK)Ψ + (Gcap≤)Ψ ⇒ (FK)Ψ + (E≥)Ψ (9.11)

⇒ (FK)Ψ + (E)Ψ (9.12)

⇒ (UE)Ψ + (C) (9.13)

⇒ (FK)Ψ + (S)Ψ (9.14)

⇒ (FK)Ψ + (Gcap≤)Ψ. (9.15)

As follows from Theorem 6.3 and Lemma 9.2, we have

(FK) + (Gcap≤)Ψ ⇒ (MV )1

By Theorem 9.4 we have
(FK) ⇒ (E≤)Ψ . (9.16)

Let us show that
(MV )1 + (cap≤)Ψ ⇒ (E≥)Ψ ,

which will give us the implication (9.11) and, by combining with (9.16), also (9.12).
Recall that (E≥)Ψ refers to the second condition in (1.28), which we state as follows:

einf
1
8
B

EB ≥ cΨ(r)

where B is any ball, EB := GB1 and c is a positive constant. Note that the function
u = EB = GB1 is superharmonic in B. This function is also bounded by Proposition 9.4.
Set uε = u+ε for any ε > 0 and note that, by the strong locality, uε is also superharmonic
in B. By (2.47) we obtain that, for any non-negative function ϕ ∈ cutoff

(
1
4B, 1

2B
)

E(uε, u
−1
ε ϕ) =

∫

B
dΓ〈log uε, ϕ〉−

∫

B
ϕu−2

ε dΓ〈uε〉

≤

(∫

1
2
B

dΓ〈log uε〉

)1/2(∫

1
2
B

dΓ〈ϕ〉

)1/2

. (9.17)

By Lemma 7.1 that uses only (cap≤)Ψ, we have
∫

1
2
B

dΓ〈log uε〉 ≤
C

Ψ(r)
μ (B)

where r is the radius of B. By (cap≤)Ψ, the function ϕ can be chosen so that

E (ϕ) ≤
C

Ψ(r)
μ (B) .

Hence, we obtain from (9.17) that

E(uε, u
−1
ε ϕ) ≤

C

Ψ(r)
μ (B) .

Since by the strong locality E(u + ε, u−1
ε ϕ) = E(u, u−1

ε ϕ), we obtain

E(u, u−1
ε ϕ) ≤

C

Ψ(r)
μ (B) .

On the other hand, by u = GB1, we have

E(u, u−1
ε ϕ) =

(
1, u−1

ε ϕ
)

=
∫

B
u−1

ε ϕdμ ≥
∫

1
4
B

u−1
ε dμ,
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so that ∫

1
4
B

u−1
ε dμ ≤

C

Ψ(r)
μ (B) .

By Lemma 2.5, the function u−1
ε is subharmonic. Applying (MV )1 to this function in 1

4B,
we obtain

esup
1
8
B

u−1
ε ≤ Cμ (B)−1

∫

1
4
B

u−1
ε dμ ≤

C ′

Ψ(r)
,

whence
einf
1
8
B

uε ≥ cΨ(r) .

Letting ε → 0, we obtain (E≥)Ψ, and, hence, finish the proof of (9.11) and (9.12).
By [30, Lemma 7.3] we have

(E)Ψ ⇒ (C) .

Under the standing assumption (C), the following equivalences were proved in [24, Theo-
rems 2.1, 2.2]3:

(FK)Ψ + (E)Ψ ⇔ (UE)Ψ ⇔ (FK)Ψ + (S)Ψ .

Hence, the implications (9.13) and (9.14) follow. Finally (9.15) holds by Theorem 3.2. �
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[51] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res.

Notices, (1992), pp. 27–38.
[52] , Aspects of Sobolev-type inequalities, Cambridge Univ. Press, Cambridge, 2002.
[53] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, 1994.
[54] R. Strichartz, Differential equations on fractals: a tutorial, Princeton University Press, 2006.
[55] D. Stroock, Estimates on the heat kernel for the second order divergence form operators , in Probabil-

ity theory. Proceedings of the 1989 Singapore Probability Conference held at the National University
of Singapore, June 8-16 1989, ed. L.H.Y. Chen, K.P. Choi, K. Hu and J.H. Lou. Walter De Gruyter,
1992, pp. 29–44.

Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.
E-mail address : grigor@math.uni-bielefeld.de

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.
E-mail address : hujiaxin@mail.tsinghua.edu.cn

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong.

E-mail address : kslau@math.cuhk.edu.hk


	1. Introduction
	1.1. History and motivation
	1.2. Basic setup
	1.3. Main results

	2. Subharmonic and superharmonic functions
	3. Condition ( CSA) 
	4. Alternative form of the Poincaré Inequality
	5. The Faber-Krahn inequality
	6. Mean-value inequality for subharmonic functions
	6.1. Admissible subharmonic functions
	6.2. The L2-mean value inequality

	7. Proof of elliptic Harnack inequality
	8. Proofs of Theorems 1.1 and 1.2
	9. Equivalent conditions for upper bound
	References

