GENERALIZED CAPACITY, HARNACK INEQUALITY AND HEAT
KERNELS ON METRIC SPACES

ALEXANDER GRIGOR’YAN, JIAXIN HU, AND KA-SING LAU

ABSTRACT. We give necessary and sufficient conditions for sub-Gaussian estimates of
the heat kernel of a strongly local regular Dirichlet form on a metric measure space.
The conditions for two-sided estimates are given in terms of the generalized capacity
inequality and the Poincaré inequality. The main difficulty lies in obtaining the elliptic
Harnack inequality under these assumptions. The conditions for upper bound alone are
given in terms of the generalized capacity inequality and the Faber-Krahn inequality.
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1.1. History and motivation. In this paper we are concerned with heat kernel estimates
in the setting of Dirichlet forms on metric measure spaces. A classical example is the heat
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kernel p; (z,y) in R™ that is the fundamental solution of the heat equation given by

(iU ) 1 e |$ — y‘2
=—Fexp| —].
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The notion of the heat kernel is well defined on any Riemannian manifold. Then p; (z,y) is
a smooth positive function but obtaining estimates is a highly non-trivial task as the heat
kernel depends significantly on the geometry of the underlying spaces. For example, on
a complete Riemannian manifold of non-negative Ricci curvature the heat kernel satisfies
the Li-Yau estimate

C d? (z, y))

v (% \/%) exp( S
where d (z,y) is the geodesic distance, V (x,r) is the volume of the geodesic ball of radius
r centered at x, and the sign < means that both inequalities with < and > are satisfied
but with different values of positive constants ¢, C'. This and further results on heat kernel
bounds on Riemannian manifolds and in R" can be found in [2, 11, 13, 14, 19, 20, 21, 44,
49, 50, 52, 53, 55] and in many other references.

The development of Analysis on fractals in the past three decades has led to construction
of diffusion processes and their associated heat kernels on wide class of fractals. For exam-
ple, the diffusion on Sierpinski gasket SG in R™ was constructed by Barlow and Perkins
[10] and Kusuoka [39]. Moreover, Barlow and Perkins [10] proved that the associated heat
kernel p; (z,y) on SG is a continuous function of ¢, z,y and satisfies the estimate

B(p )\ FT
e (z,y) < ta%exp (—c (M) s ) 7 (1.1)

where o = % is the Hausdorff dimension of SG, § = % is a so called walk
dimension, and d(z,y) = |z —y| (see also [3]). The estimate (1.1) is satisfied also on
many other fractals but with different values of the parameters «, 3 depending on the
particular fractal. For example, this is the case for Sierpinski carpets (see [4], [5]).

Kigami introduced in [34] the notion of p.c.f. fractals and showed the existence of the
heat kernel on p.c.f. fractals with regular harmonic structure. Hambly and Kumagai [31]
proved two sided estimates of heat kernel on p.c.f. fractals; in general such estimate look
more complicated than (1.1). As a consequence of their estimates, the heat kernel satisfies
the upper bound in (1.1) with the resistance metric d and the following near-diagonal
lower bound:

pe(z,y) =<

e (z,y) > ta% whenever d (z,y) < t'/°. (1.2)

The validity of the full lower bound in (1.1) depends on some additional properties of the
distance function d that are not satisfied by the resistance metric (see [30]).

The above mentioned results motivate investigation of heat kernels associated with
strongly local regular Dirichlet forms on metric measure spaces with volume doubling
property. The main problem here is to provide reasonable necessary and/or sufficient
conditions for the heat kernel bounds in terms of more convenient conditions. A number
of results in this direction were obtained in [1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35,
36, 37] and in other papers.

In this paper we prove the necessary and sufficient conditions for the heat kernel to
satisfy the upper bound in (1.1) and the lower bound (1.2) in terms of the Poincaré
inequality and a generalized capacity inequality. We state the results in Subsection 1.3
after introduction of all necessary notions, and compare them with the previously known
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results. Our work on this subject was strongly motivated by the papers of Andres and
Barlow [1] and Barlow, Bass and Kumagai [7].

NoOTATION. The letters C,C’,C;, ¢, c, ¢; will always refer to positive constants, whose
values are unimportant and may change at each occurrence. All results of this paper are
quantitative, that is, the constants in the conclusions depend only on the constants in the
assumptions.

1.2. Basic setup. Everywhere in this paper (M, d) is a locally compact separable metric
space and p is a Radon measure on M with full support (namely, p(2) > 0 for any
non-empty open subset 2 of M). We refer to such a triple (M, d, u) as a metric measure
space.

Denote by

B(z,r)={ye M :d(z,y) <r}

the open metric ball of radius r > 0 centered at x. If B is a ball of radius r, then \B
denotes the concentric ball of radius Ar.

We always assume that every ball B (z,r) is precompact. In particular, the volume
function

V(z,r):=p(B(z,r))

is finite and positive for all z € M and r > 0.

Let (£, F) be a Dirichlet form in L? := L? (M, ), where F is a dense subspace of L? and
£ is a bilinear form on F that is symmetric, non-negative definite, closed and Markovian
(see [16]). Recall that (€, F) is called regular if F N Cy (M) is dense both in F and in
Co (M), where Cy(M) is the space of all continuous functions with compact support in M,
endowed with sup-norm, and the norm in F is € (u,u) 4 ||u|3 . The form (&, F) is called
strongly local if £(f,g) = 0 for all functions f, g € F such that their supports are compact
and f = const in an open neighborhood of supp g.

Let A be the generator of (€, F), that is, A is a self-adjoint and non-positive definite
operator in L? with the domain dom (A) that is dense in F and such that, for all f €
dom (A) and g € F,

g(fug):_(Afvg)7

where (-, -) is the inner product in L?. The associated heat semigroup
Pt = etA, t> O,

is a family of contractive, strongly continuous, self-adjoint operators in L? that satisfies
the Markovian property (cf. [16]).

It is known that P, extends to a contractive semigroup in L for any p € [1,00]. The
form (&€, F) is called conservative if P;1 =1 for every t > 0.

A family {p:},., of non-negative p x p-measurable functions on M x M is called the
heat kernel of the form (&,F) if p; is the integral kernel of the operator P;, that is, for
any t > 0 and for any f € L?,

Bf (z) = /Mpt (2.9) £ (4) du (v) (1.3)

for p-almost all x € M.

For a non-empty open 2 C M, let F(Q2) be the closure of F N Cy(f2) in the norm of
F. It is known that if (£, F) is regular, then (£, F(2)) is also a regular Dirichlet form
in L2(Q, 1). Denote by P the heat semigroup of (£, F(R2)) and by A? the generator of
(E,F(Q)).
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An example of the above setting is given by a Riemannian manifold M with the geodesic
distance d, the Riemannian measure p and the classical Dirichlet form

E(f.9) = /M<Vf, Vg)du (1.4)

with the domain F = W¢ (M, pu) (cf. [21]). A particular case of this example is any
Euclidean space R™.

Another class of examples that is of utmost interest for us is given by fractal spaces (cf.
3, [34), [54]).

In the sequel we review some properties of the energy measure associated the regular
Dirichlet form (cf. [33], [47], or [16, Section 3.2]). Let (£, F) be a regular Dirichlet form
in L2. It is known that each u € F admits a quasi-continuous version u (cf. [16, Theorem
2.1.3, p.71]). In what follows we make a convention that v € F is understood to be its
quasi-continuous modification. For each u € FN L, there exists a unique positive Radon
measure I'(u) on M such that

/ fdl(u) = E(uf,u) — %5(u2,f) for any f € FNCy(M), (1.5)
M

and I'(u)(M) < co. The measure I'(u) is called the energy measure of u. Note that the
energy measure I'(u) can be uniquely extended to any u € F.
For u,w € F, we introduce a signed measure I'(u,w) by

I (s, w) = %(r<u+w> _D{u) - T{w)) . (1.6)

Then u,v +— I'(u,w) is symmetric and bilinear. The following identity is satisfied for all
u,w € FNL*® and f € FNCy

/ FdT (u, w) = % (E(uf, w) + E(uwf) — E(uw, )} (1.7)
M

(see for example [47, formula (3.11)]). For all u,w € F we have

& (u,w) = /M dl (u, w). (1.8)

Moreover, the Cauchy-Schwarz inequality holds:

[ | < ([ saw) " ([ o) w9)

< g [ racw 3 [ garw) (1.10)

for all f,g € FNCy, u,w € F, b>0.
If in addition (€,F) is strongly local, then the Leibniz and chain rules hold: for all
u,w,p € FNL>®,
dl' (uw, ) = udl(w,p) + wdl'(u, ) (Leibniz rule)
dU(®(u),w) = &' (u)dl'(u,w) (chain rule) (1.11)
where ® : R — R is any smooth function with ®(0) = 0 (see [16, Lemma 3.2.5, p.127, and
Theorem 3.2.2, p.129 ]).
For an open subset Q of M and for ui,us € F N Cy, if uy|q = uz|q, then
lodl(uy) = 1qdl(ug) on M,
and if up is constant in 2 and usg is arbitrary, then
lodI'(uy,ug) =0 on M, (1.12)



HEAT KERNEL 5

(cf. [33], or [47, formula (3.7), (3.8), p.387]). Finally, for all u,w € F N L, we have
dl(uy, w) = 1gy501dl(u, w) on M,

where uy = u V0.

1.3. Main results. Before we state our main results, let us give some necessary defini-

tions. Let (M,d, ) be a metric measure space with precompact metric balls, and (&, F)
be a strongly local, regular Dirichlet form in L? (M, ).

Definition. We say that the volume doubling condition (V' D) holds if there exists a
constant Cp such that, for all z € M and all » > 0,

V(x,2r) < CpV (z,r).

It is known that (V' D) implies that, for all x,y € M and 0 < r; < 79,

V(IE,T‘Q) < CD <T2 _{'d(‘ray)>o{7
Vv (y7 Tl) 1

for some a > 0 (cf. [24]). For example, (V' D) is satisfied on any Riemannian manifold of

non-negative Ricci curvature and on all mentioned above fractal spaces. Moreover, on the

fractal spaces one usually has a stronger volume regularity condition V (z,r) ~ r¢ for all

r > 0.

(1.13)

Definition. We say that the reverse volume doubling property (RV D) holds if there exist
positive constants o/ and C such that, for all z € M and 0 < r; < 7o,

/

Vi) o (o1 (12"
Ty 2€ <T1> . (1.14)

It is known that (VD) = (RV D) if M is connected and unbounded (cf. [24]).

Throughout the paper we fix a function ¥ that is a continuous increasing bijection of
(0, 00) onto itself satisfying the following condition

1 /R\’ U(R) Rr\"

— | — < —= <K — 1.1

AGE R (1.15)
for all 0 < » < R and for some constants 1 < 3 < 3’ and Cy > 1.

Poincaré inequality. We say that the Poincaré inequality (PI)y holds if there exist
constants Cp > 0 and o € (0,1) such that, for any ball B = B (x,r) and any function
ueF,

/ |u—u(,B|2du§C’p\I/(r)/dP<u>, (1.16)
oB B

where u4 is the mean of the function u over A, that is,

1 / p
ug = —— [ udp.
#(A) Ja
For example, in R™ and on manifolds of non-negative Ricci curvature (PI)y, holds with
U(r) =12

Definition. Let €2 be an open subset of M. We say that a function v € F is subharmonic
(resp. superharmonic) in € if

E(u,) <0 (resp. & (u,p) >0) (1.17)
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for any 0 < ¢ € F(Q).

By the standard approximation argument, it suffices to have (1.17) for any non-negative
peFNCH(N).

For a local Dirichlet form (£,F) the notion of subharmonicity can be extended to
functions outside F as follows.

Definition. Let (£,F) be a local Dirichlet form and let © be an open subset of M. We
say that a Borel function u defined in Q is subharmonic (resp. superharmonic) in € if
there is a function v € F such that v = u in 2 and v is subharmonic (resp. superharmonic)
in the sense of the previous Definition.

A reason for this definition is that, by the locality, the value of £ (v, ¢) for ¢ € FNCp ()
does not depend on the choice of v as long as v = u in €.
A function is called harmonic if it is subharmonic and superharmonic.

Harnack inequality. We say that the elliptic Harnack inequality (H) holds on M if
there exist two constants Cy > 1 and n € (0,1) such that, for any ball B in M and for
any function u € F that is harmonic and non-negative in B, the following inequality is
satisfied:

esupu < Cpyeinfu .
nB nB

Let us emphasize that the constants C'y and n should be independent of the ball B and
function wu.

The elliptic Harnack inequality is a central notion in this paper. It is known that if M
is a complete Riemannian manifold then (VD) and (PI)y with ¥ () = 72 imply (H) (cf.
[17] and [51]). In the present generality these two conditions are not enough to obtain ( H).
We need one more condition — the generalized capacity inequality, that will be described
below.

Let © be an open subset of M and A € Q2 be a Borel set (where A € 2 means that A
is precompact and A C ).

Definition. A cutoff function of the pair (A, Q) is any function ¢ € F such that
e 0<¢p<1in M; o
e ¢ =1 in an open neighborhood of A;
e supp ¢ € 2.

Sometimes one requires in the definition of a cutoff function also the continuity of ¢ (cf.
[23]), but here we do not. Denote the set of all cutoff functions of (A, 2) by cutoff (A, Q).
It is known that if (£,F) is regular, then cutoff (A, (2) is non-empty (see [16, Lemma
1.4.2(i4), p.29]).

Definition. For any pair (A4, 2) as above define the capacity cap(A4, ) by
cap(A, Q) :=inf {€ (¢) : ¢ € cutoff (4,Q)} . (1.18)

Capacity condition. We say that the capacity condition (cap)y, is satisfied if there
exist constants x € (0,1) and C' > 1 such that, for any ball B = B (z,r) of radius r > 0,

1 (B)
W(r)

C’_IM <cap(kB,B)<C

50 (1.19)
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Definition. Let €2 be an open subset of M and A € ) be a Borel set. For any measurable
function u on 2, define the generalized capacity cap, (A, Q) by

cap, (4, Q) = inf { /Q u?dT(¢) : ¢ € cutoff (A, Q)}.

In particular, for v = 1 we obtain cap,, (4, 2) = cap(4, ).

Generalized capacity condition. We say that the generalized capacity inequality
(Geap< )y holds if there exist two positive constants ci,cz such that, for any u € F N L*
and for any two concentric balls By := B(zg, R) and By := B(xzg, R+ 1),

cap, (B1, Ba) < cl/ dl' (u) + 0—2/ uldp.
Bo\B W(r) B\ B

Using the definition of cap,,, we can restate (Gecap<)y as follows: for any u € F N L*>
there is ¢ € cutoff (B, B2) such that

/ u2dr<¢>gc1/ T (u) + —2 / rm (1.20)
B2\By B2\ B W(r) B2\B1

This condition is very close to the following condition (C'SA)y, (cutoff Sobolev inequality
in annulus) that was introduced by Andres and Barlow in [1] for the sake of proving upper
bounds of heat kernel (see discussion below).

Definition. We say that the condition (C'SA)y holds® if there exists a function ¢ €
cutoff (By, Bg) such that (1.20) is satisfied for any u € F N L.

The condition (Gcap<)y is a priori weaker than (CSA)y, that is,
(CSA)y = (Geapo)y,
since in (Gcap<)y function ¢ may depend on wu.

Note that (C'SA)y (and, hence, (Geap<y)) is satisfied on any geodesically complete
Riemannian manifold with ¥(r) = r2. Indeed, the standard bump function
(R+r—d(x,x0))
¢ (@) = . -
vanishes outside Bs, is equal to 1 on B; and satisfies |V¢| < 1/r, whence (1.20) follows
for any u € L? with ¢; = 0,¢9 = 1.

Observe also that by [1, Lemma 5.1], inequality (1.20) implies (and hence, is equivalent
to) the following

1 c
24T - 241 2 24 1.21
/32\31u (¢) < S /32\31¢ (u) + ) /BQ\Blu 1 (1.21)

with different value cs.
We also remark that if two Dirichlet forms (&1, F1), (€2, F2) are comparable, namely, if
there exist two positive constants C7, C such that

0151 (u) < 52 (u) < 0251 (u) for all u € FiN fQ,

Al

INote that in the definition of (CSA)g in [1] the cutoff function ¢ was assumed to be continuous and
(1.20) was assumed to hold for all u € F. However, the analysis of the proofs of [1, Theorem 5.5] shows that
in obtaining (C'SA), from the heat kernel upper bound the boundedness of u was used and the continuity
of ¢ was not established. On the other hand, the proof in the opposite direction (obtaining heat kernel
upper bound from (C'SA),,) goes through also if u in (1.20) is assumed bounded and ¢ is not necessarily
continuous.
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then so are their energy measures I'1,I's with the same constants:
C1F1 <u> S FQ <u) S Cgrl <u> N

see [33, Proposition 1.5.5(b)] or [47, p.389]. From this, we see that all the conditions
(PI)y,(CSA)y , (Geap< )y are stable with respect to the quasi-isometry of Dirichlet forms.
The following theorem is a key result in this paper.

Theorem 1.1. Let (M,d,p) be a metric measure space with precompact metric balls.
Let (€, F) be a regular, strongly local Dirichlet form in L?> (M, p) and ¥ be a function
satisfying (1.15). If conditions (V D), (RV D) are satisfied, then the following implication
takes place:

(PI)g + (Geap<)y = (H) + (cap)q

Choosing in (Gcap<)y the function u = 1, we obtain that, for any ball B of radius 7,
Cu(B)

U(r)
We refer to this condition as (capg)\p. We conjecture that, under the hypotheses of
Theorem 1.1, the following stronger implication is true:

(PI)g + (cap<)w = (H),

but we have not been able to prove this.
The proof of Theorem 1.1 will be given in Section 8. The main difficulty is to show the
validity of the Harnack inequality (H ), that is, the implication

(PI)y + (Geap< )y = (H).

Here are the main steps of that proof.

In Section 5 we prove that (PI)y, implies a certain Faber-Krahn inequality (F'K)y (an
isoperimetric inequality for the first eigenvalue).

In Section 6 we use (FK)g and (Geap< )y to prove an L?*-mean value inequality (MV)
for positive subharmonic functions. This is the only place in the proof where (Geap )y is
used at full strength. For the proof of (MV) we adapt the method that originates from
De Giorgi [15] (see also [40] and [17]). One uses in the proof a cutoff-function ¢ that in the
setting of R™ and Riemannian manifolds is a standard bump function, but in the general
setting is provided by the condition (Gecap<)g.

In Section 7 we prove (H) . In the crucial Lemma 7.2 we use all conditions (M V), (PI)y,
(cap<)y to obtain some weak version of the Harnack inequality. The rest of the proof that
consists of Lemmas 7.5-7.7 and Theorem 7.8 can be regarded as a long self-improvement
argument leading from the weak Harnack inequality to (H). This argument is essentially
due to E.M. Landis who developed it in the context of elliptic equations in divergence
form in R™ (cf. [43], [42], [38], [17]). Note that this self-improvement argument uses only
(VD) and (RV D).

Comparing our proof of the Harnack inequality with the celebrated proof of J. Moser
[48], we mention the following. The first part of the Moser proof, that is frequently referred
to as “Moser iterations”, also works in our setting and also needs a cutoff function from
(Geap<)w. The second part of the Moser proof uses John-Nirenberg lemma to obtain
the mean value inequality for positive superharmonic functions and can be done in our
setting as well. However, a careful implementation of this method in our setting would be
noticeably longer and more involved than the present approach.

Before stating the second main result, we need some more definitions. For any open set
QC M, set

cap(%B,B) <

Amin (Q) :=  inf g(“;
ueFQ\{0} [|lull3

(1.22)
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It is easy to show that Ami, () is the bottom of the spectrum of the generator —A® of
the Dirichlet form (€, F ().

Definition. For an open 2 C M, a linear operator G : L?(Q) — F(Q) is called a Green
operator if, for any ¢ € F(Q) and any f € L?(Q),

E(G.0) = (f.9). (1.23)
If G admits an integral kernel ¢*2, that is, if
G2 (@) = [ o) )dn(o) for any J € I3@), (120

then ¢% is called a Green function.

It is known that if A, () > 0 then the Green operator G exists and is given by

oo
G = / P dt. (1.25)
0
(see [23, Lemma 5.1]). For an open set 2 C M, define the function E* on Q by
= G, (1.26)
The function E*? is a unique weak solution of the following Poisson-type equation
—A2ER =1, (1.27)

This function has also the following probabilistic meaning: E () is the mean exit time
from € of the process associated to (£, F) started at x.

Mean exit time bounds. We say that condition (E)y holds if there exist two constants
C > 1 and ¢ € (0,1) such that, for all balls B of radius r > 0,

esup B < CW (1) and einf EB>Cc7lw(r). (1.28)
B 3
We will refer to the first condition in (1.28) as (F<)y and the second one as (E> )y,
Green function bounds. We say that condition (G)y holds if there exist constants

k€ (0,1) and C' > 0 such that, for any ball B := B (z, R), the Green kernel ¢? exists, is
jointly continuous off the diagonal, and satisfies

R
U (s)ds
B
g (x,y) < C —————— for p-almost all y € B\ {z},
) Nd:cy)sv(w 3) \{ }
g2 (z,y) > C~ / for p-almost all y € kB \ {z}.
d(z,y) sV

Upper bound of heat kernel. We say that condition (UFE)y holds if the heat kernel
pt (z,y) exists and satisfies the following upper estimate

e (,y) < mexp (—%t@ <cd(ﬁ’y)>> (1.29)

for all ¢ > 0 and p-almost all x,y € M, where ¢, C are positive constants, independent of
x,y,t, and

B (s) :zsup{i—%}. (1.30)

r>0 (T)
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For example, if ¥(r) = 7 with some 3 > 1, then the supremum in (1.30) is attained at
1
r = (s/B)” 71, which yields ® (s) = ¢s* (3=, In this case (1.29) takes the form

c d (2,y)\ 7
pe (z,y) < WQXP <—C <Ty> )
(cf. (1.1)).

Near-diagonal lower bound. We say that condition (NLE), holds if the heat kernel
pt (z,y) exists and satisfies the lower estimate

C

> 1.31
bt (xay)— V("E,\I’fl (t))u ( 3 )

for all ¢ > 0 and p-almost all x,y € M such that
d(z,y) <e¥ (1), (1.32)

where ¢, > 0 are constants independent of z, v, t.

It is easy to show that under condition (1.32) the term t® (c@) in (1.29) is bounded

by a constant, so that the upper bound (UFE)y, is consistent with (NLE)y, .

It is known (cf. [23] and [9]) that the conjunction (UE)y+(NLE)y, of the two estimates
implies that the heat kernel p; (x,y) admits a Holder continuous in x,y version, so that
(1.29) and (1.31) are a posteriori true for all z,y € M.

The following theorem is the main result of this paper about two sided estimates of the
heat kernel.

Theorem 1.2. Let (M, d, 1) be a metric measure space with precompact metric balls. Let
(€, F) be a regular, strongly local Dirichlet form in L*> (M, 11) and ¥ be a function satisfying
(1.15). If conditions (V D), (RV D) are satisfied, then the following equivalences take place:

(UE)y + (NLE)y, < (PI)y+ (Gcapg)q,
& (Pl)y + (CSA)y
& (Pl)y + (E)y
& (H)+ (cap)y
& (H)+ (E)y
< (G)y-

This theorem essentially follows from the implication
(PI)y + (Geap<)y = (H) + (cap)y

of Theorem 1.1 and the previously known results of [23], [30], [1, Lemma 5.4, Theorem
5.5] (see Section 8 for details).
We consider the equivalence

(UE)g + (NLE)y & (PI)y + (Geap<)w

as the most significant part of Theorem 1.2, which provides convenient equivalent condition
for the two-sided heat kernel estimate. Since condition (Gcap <)y is quasi-isometry stable,
Theorem 1.2 implies that (UE)y + (NLE), is also quasi-isometry stable.

In the setting of Riemannian manifold with W (r) = 72, the condition (Geap.)y is
satisfied automatically, and we obtain B

(UE)y + (NLE)y & (Pl)y
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which is the result of L.Saloff-Coste [51] (see also [17]). In the setting of geodesic metric
spaces, Barlow, Bass and Kumagai [7] (see also [6] for a setting of graphs) proved the
equivalence

(UE)y + (NLE)y < (PI)y + (CS)y,

where (CS)y, stands for a cutoff Sobolev inequality, a rather complicated condition that,
similarly to (C'SA)y, provides the existence of a cutoff function with certain properties.
The condition (CS)y is also quasi-isometry stable, which was used in [7] to prove the
stability of (UE)y + (NLE)y in the setting of geodesic metric spaces. Our result implies
the stability for a larger class of metric spaces, without the requirement of the metric to
be geodesic.

Now let us turn to equivalent conditions for the upper bound (UFE)y, alone.

Faber-Krahn inequality. = We say that the Faber-Krahn inequality (FK )y holds if
there exist positive constants v > 0,Cr > 0 such that, for any ball B C M and for any
non-empty open set Q C B,

s Cr (2B)Y
o > 575 () 1

where R is the radius of B.

Note that since p (B) > p (), the value of v in (1.33) can be chosen to be arbitrarily
small.

It is known (cf. [17]) that (FK)y with ¥ (r) = 72 holds on any geodesically complete
Riemannian manifold of non-negative Ricci curvature. It was proved in [18, Prop. 5.2] that
on geodesically complete Riemannian manifolds satisfying (V' D), the following equivalence
holds with WU (r) = r2:

(UE)y & (FK)y . (1.34)

Andres and Barlow proved in [1] the following equivalent condition for (UE)y in the
present abstract setting:

(UE)y & (FK)y + (CSA)y (1.35)

assuming that the Dirichlet form (€, F) is conservative?.

Our main result about heat kernel upper bound is the following theorem that somewhat
strengthens the result of Andres and Barlow. We denote by (C) the condition that the
Dirichlet form (&€, F) is conservative.

Theorem 1.3. Let (M,d, 1) be a metric measure space with precompact metric balls. Let
(€, F) be a regular, strongly local Dirichlet form in L? (M, 1) and ¥ be a function satisfying
(1.15). If condition (VD) is satisfied, then the following equivalences take place

(UE)y +(C) & (FK)y+ (Geap)y (1.36)
& (FK)y+ (Es)g. (1.37)

Since (Gcap< )y with W (r) = r2 holds on any geodesically complete Riemannian man-
ifold and on any such manifold (VD) implies (C), we see that the equivalence (1.36) in
the case of manifolds amounts to the above mentioned result (1.34) of [18, Prop. 5.2].

The proof of Theorem 1.3 is given in Section 9. We conjecture that (Gecap<)y in (1.36)
can be replaced by (cap<)g. -

2The condition of conservativeness of (€, F) was not explicitly stated in [1], but was implicitly used.
Without the conservativeness the implication (UE)y = (CSA), is not true (cf. discussion in [24, p.516]).
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2. SUBHARMONIC AND SUPERHARMONIC FUNCTIONS

In this section we present some properties of subharmonic and superharmonic functions
that will be used later on.

Proposition 2.1. Assume that (£,F) is reqular and strongly local. Let u be a bounded
subharmonic function in a non-empty precompact open set @ C M.
(1) If f € C*(R) with f” > 0,f >0, f(0) = 0 then f(u) is also a subharmonic
function in Q. In particular, the function uP is subharmonic in Q for any p > 1.
(2) For any a > 0, the function (u — a), is subharmonic in Q.

Proof. (1) We can assume that « € FNL>, which implies that also f(u) belongs to FNL>
(see [16, Theorem 1.4.2(v), p.28]). It is enough to show that

E(f(u),p) <0 (2.38)
for any non-negative ¢ € F(§2) N L*°. Using the Leibniz and chain rules, we have

E(flu)p) = /MdF<f(U),<p>— /Mf’(U)dF<u,<p>
- / dr(u, /()0 — / o (u)dT (u)
M Q
/ ar (u, '(u)g) <0,
M

since u is subharmonic and 0 < f'(u)p € F(). This proves (2.38), showing that f(u) is
subharmonic in €.

(2) Clearly, we have (u—a), € F N L* for any a > 0. Set g(t) = (t —a), for any
t € R. Let {g}72; be a sequence of functions such that each g € C*(R), g > 0, gx(0) =
9,(0) =0, and as k — oo, g =3 ¢ uniformly while g;, — ¢’ everywhere except at point a.
We will show that

IN

E(gr(u) —g(u)) — 0 as k — oo. (2.39)

Indeed, let hy := g — g. Note that by (1.12), we see that 17,_,\I'(u) = 0 for any u € F.
Therefore, using the dominated convergence theorem,

€ (gule) —gw) = €(uw) = [ [(w]*driw)

- [ eParw s [ ) )
{u=a} {u#a}

= / [hﬁg(u)]2 dl'(u) — 0 as k — oo,
{u#a}

proving (2.39).
By the above step (1), the function gg(u) is subharmonic in Q, that is € (gx(u), ¢) < 0.
0

Passing to the limit as £ — oo and then using (2.39), we have that & (g(u), ) <
proving that (u — a)_ is subharmonic in . O

For non-negative subharmonic functions, we have the following general result.

Proposition 2.2. Assume that (£, F) is strongly local and regular. Let u € F N L> be
non-negative and subharmonic in a precompact open subset ). Then, for any 0 < ¢ €

F(Q) N L™,
/ $2dl (u) < 4 / w?dl (o), (2.40)
Q Q
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and

£ (up) = /Q dT (ug) < 10 /Q u?dl (). (2.41)

Proof. Since u¢p? € F(Q) N L and u is subharmonic in 2, we obtain by the Leibniz rule
and Cauchy-Schwarz inequality (1.10) that

0 > € (u,ug?) = /M dl(u, ug®)
- /M ¢?dT (u, u) + 2 /M pudl'(u, )
= /M Fdlw) - (% /M Fdlu) +2 /M UQdF<¢>>

_ 1/M¢2dr<u> —2/ u?dl'(¢)

2 M
whence (2.40) follows.
Next, using bilinearity of I", (1.10), and (2.40), we obtain

£ (up) = jgldf<u¢>
= /Mqur<¢)+/M ¢2dr<u>+2/M¢>udF<uy¢>
2/M u2dF<¢>+2/M ¢*dI(u)
10/ w?dl (),
M

thus proving (2.41). O

IN

IN

Let us introduce conditions (A1) and (Asz) to be used later to prove the L? mean value
inequality.

Condition (A;). We say that condition (A7) holds if there exists a constant Cy > 0 such
that, for any ball B = B (g, r) of radius r and for any bounded non-negative subharmonic
function w in B, there is some ¢ € cutoff (%B7 B) satisfying

C
2 0 2
udFQﬁg—/udu. 2.42
[ iy < g | (2.42)
Let us emphasize that the constant Cj is independent of B, u, ¢, whilst the cutoff function
¢ may depend on u.

condition (A3). We say that condition (As2) holds if there exists a constant C; > 0 such
that, for any ball B of radius r and for any bounded non-negative subharmonic function
u in B, there is some ¢ € cutoff(3 B, B) satisfying

C )
£(ud) < gy /B u*dp. (2.43)

Most likely, the both conditions (A1) and (As3) are unstable with respect to the quasi-
isometry of Dirichlet forms, because the class of subharmonic functions changes uncon-
trollably under quasi-isometry. However, the both conditions (A;), (A2) are consequences
of the stable condition (Gcap<)y as below.
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Proposition 2.3. Assume that (€,F) is reqular and strongly local. Then
(Geap<)w = (A1) = (A2). (2.44)
Proof. We first show the implication
(Geap<)y = (41).

Let u be a bounded non-negative subharmonic function in a ball B of radius 7. If (Gcap<)w
holds, then it follows from (1.21) that there is some ¢ € cutoff (3 B, B) such that

2 1 2 e 2
/Bu dl'{(¢) < S/B\éB(b dF(u>—|—\I}(T)/B\§Bu o
1 2 c2 2
- dr’ — d
1 2 C2 2
< §/Bu dr{(¢) + /Bu du, (2.45)

W(r)

where in the last line we have used (2.40). Clearly, (2.45) implies (2.42).
To prove the implication

(A1) = (A2),
observe that, by (2.41) and (2.42),
5u¢§10/u2df¢§ /ud,
(o) <10 [ wtar(e) <5 [ wran
whence (2.43) follows. O

As a conclusion of this section, we state some technical results to be used later.

Lemma 2.4. Let (€,F) be reqular and strongly local. Assume that u is a bounded super-
harmonic function in an open set Q2 C M and u > € in § for some positive constant e.
Then the function —logu is subharmonic in €.

Proof. By definition of a (bounded) superharmonic function, we can assume that u €
F N L>®. The function log u is not necessarily defined on M as v may take negative values
outside Q. To extend it to the whole of M, choose a function [ (t) for ¢t € R as follows:
le C®(R),1(t) =logt for t > cand I (t) =0 for ¢ < 0. Then I (u) is defined on M and
all functions [ (u),l’ (u),1” (u) are in F N L* by a general theory of Dirichlet forms. On
the other hand, in Q we have [ (u) =logu, I' (u) = L and I” (u) = — 5.

For any 0 < ¢ € F N Cp(2), we have by the Leibniz and chain rules,

a1 (), 9) = (u)d{u,e)
= dI' (u,l' (u) o) — @l" (u) dT(u)
= dI'(u, u_1<p> + u2dT (u) . (2.46)

Since u is superharmonic and u =ty € F(Q), we have &(u,u"l¢) > 0, and hence,
/dF(—l (u), @) = —E(u,u" ) — /gpu_QdF(u> <0. (2.47)
Hence, — (u) = —logu is subharmonic in . O

Lemma 2.5. Let u be a strictly positive bounded superharmonic function in an open set
Q. Then u™' is subharmonic in .
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Proof. Indeed, for any 0 < ¢ € F N Cp(2), we have by the chain and product rules
(similarly to the previous proof), that

d(u',¢) = —u 2dl(u,¢)
= —dl(u,u2¢) — 2¢u"dT (u, u).

Since u is superharmonic and u~2¢ € F (), we have that £(u,u 2¢) > 0, and hence,
/dr<u1,¢> = —E(u,u?¢) — 2/ du3dl (u) <0,
Q Q
so that ! is subharmonic O

3. CONDITION (C'SA)y
In this section we will prove the following implication:
(S)y = (CSA)y, (3.1)

where condition (.5)y, is defined as follows.

Survival estimate. We say that the condition (S)y holds if there exist constants
e,e’ € (0,1) such that, for any ball B of radius r > 0 and for all t < &'W¥(r),

1
1— PP1g(z) <e for p-almost all x € ZB. (3.2)

Condition (S)y with ¥(r) = 7 was introduced in [24].
Before we can prove (3.1), we investigate the following equation

— A%ug + Aug = 1o weakly in Q, (3.3)

where € is an open subset of M, A? is the infinitesimal generator of (£, F(2)) as before,
and A > 0 is a constant. The function ug € F(Q) is said to be a weak solution of (3.3) if

E(ug, ¢) + A/ uqpdp = / pdp (3.4)
Q Q
for any ¢ € F(Q2). Note that, for any A > 0, equation (3.3) admits a unique weak solution
oo
uq = / e M P dt, (3.5)
0

where as before { Pf* is the heat semigroup of (£, F(Q2)).

}t20

Lemma 3.1. Let (£, F) be a regular Dirichlet form in L?. For any non-empty precompact
open Q@ C M, the function (3.5) satisfies for all t > 0 the following inequalities

te MPMg <ug < AP in M. (3.6)
Proof. Since P{*1q is decreasing in t, we obtain

t
uq > / e s Psﬂlg ds > te Ptﬂlg,
0

which proves the left inequality in (3.6).
Since Ptﬂlg < 1, we obtain

oo
uq < / e Mdt = 2L
0

which finishes the proof of (3.6). O
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Theorem 3.2. Assume that (£, F) is a regular, strongly local Dirichlet form in L?. Then
(S)g = (CSA)y . (3.7)

We use in the proof essentially the same argument as Andres and Barlow did in [1,
Lemmas 5.3, 5.4 and Theorem 5.5] to prove (UE)y, = (CSA)y, but with the necessary
modifications and without reference to the stochastic process.

Proof. Set By := B(xg, R) and By := B(zo, R+r). Using (5),, we will construct a function
¢ € cutoff (By, Bs) such that (1.20) holds for any uw € F N L>®. Set A := 0B (z9, R+ %)
and

Q= B(zo,R+ 1)\ B(zo, R).
For any point z € A consider the ball B, = B (z, %) C Q (see Figure 1).

FIGURE 1. The ball B (z, %) C Q and the set A = 0B (mO,R—i- %)

Let ug be as in (3.5) with A = ¥(r)~!. Applying the survival estimate (3.2) with
t ='U(r) and using (3.6) we obtain for y-almost all z € B, that
te MNP g(x)
te MPP1p_(z)
(e"¥(r)) e (1—e) = coU(r).
Since z is arbitrary, the family {%Bz}z c4 Covers the g-neighborhood of A, and, hence, in
this neighborhood we have

uq ()

AVARLVARLY]

ug > co¥(r). (3.8)
On the other hand, we have from (3.6) that in Q (and also in M),
ug <A =T(r). (3.9)
Define the function vg on M by
uQ
= 1
e oW (r)’ (3:10)

where the constant ¢ is the same as in (3.8). Clearly, vg € F(Q2). Moreover, using (3.8)
and (3.9), we see that vg > 1 in some neighborhood of A, and

vo < ¢yt in M. (3.11)
Now we define a desired cutoff function ¢ by

|1, inB(xo,R+§)’
¢ = { vo A1, outside B (%'o,R—i— %) ) (3.12)
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Clearly, ¢ = 1 in some neighborhood of the ball B (xg, R+ %) (in particular ¢ = 1 in By),
and ¢ = 0 outside Bs because so is vg. Also ¢ € F. Thus, ¢ € cutoff (B, Ba).
It remains to show (1.20). Let us first prove that, for any u € F N L,

/ u?dl{(¢) < / u?dl (vg). (3.13)
M

M
Indeed, applying the following identity

etto) = Jim |y [ (@)~ 10) @) -9 0) Pl o

1
+1 [ g90-raa).
tJm
that holds for all f,g € F (cf. [16, (4.5.7)]), we obtain

[ atire) = £to.0) - jewt o)
M
1

lim |—
t—0+ | 2t

1
+ % /M P*u?(1 — Ptl)d,u] :

/ W2 () (6(x) — 6(w) 2P, dy)dps (2)
MxM

Using here inequalities

[6(z) — o(y)| < |va(z) —va(y)]
and ¢(z) < vq(z), we obtain (3.13).
On the other hand, by the Cauchy-Schwarz inequality (1.10), we have

/uZdF(vm = 5(U2UQ,UQ)—%/dP<U2,U&%>
M Q

= 5(U21)Q,’UQ) —2/ wvadl(u, va)
Q

1
< g(UQUQ,UQ)+§/ quF<UQ>+2/v?2dF<u>,

M Q
and thus
/ u?dl (vg) < 2E(u?vq, vg) +4/ v3dD (u). (3.14)
M Q
By the upper bound (3.11) of vg, we have
1
/ v3dT (u) < —2/ dT(u). (3.15)
Q Co JQ
In order to bound &(u?vq,vq), we use (3.4) with ¢ = u?vq, (3.10), (3.11) and obtain
2 _ 2 ug 1 2
E(uvq,vq) = E(u“vg, co\I/(r)) = co\IJ(T)g (u ’UQ,UQ)
1 2 2
= dp — A\ d
caay (oot [ 62e0) )

1 2 1 2
< ——— | uvqdu < —/u du.
cOfo(r)/Q Mg Jo

Combining this with (3.14), (3.15), (3.13), we conclude that

2 2 2 4
/Mu dl'(¢) < 2001 /Qu dp+ % QdI‘(u), (3.16)
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thus proving (1.20) with ¢; = 4/c2, co = 2/c3. O

Remark. Note that the following implication is true:
see [29, Theorem 6.13]. Combining with Theorem 3.2 and Proposition 2.3, we obtain

(E)g = (8)y = (CSA)y = (Geaps)y = (A1) = (A2) . (3.17)

Remark. For a large class of fractals with effective resistance (cf. [34, 54]), condition
(S)g with ¥(r) = P for some 3 > 2 was proved to be true, see [29, Theorem 6.13].
In particular, condition (5)y holds on the Sierpinski gasket in R™ for the standard local
regular conservative self-similar Dirichlet form where

log(n+3)

U(r) =r le2

Thus condition (C'SA)y, is true on this class of fractals.

4. ALTERNATIVE FORM OF THE POINCARE INEQUALITY

Here we prove some consequences from (PI),,.

Lemma 4.1. The condition (Pl)w is equivalent to the following condition: for some ¢ > 0,
€ (0,1) and for all f € F and B = B (xq,7),

[z g [ [ t@-reawae. @
Proof. Set B’ = 0B and

Then we have

/ (f @) — F (9))* du () dp ()
B/ B/
- / F (@) dp (y) du (z / f () du(y) dp (z)
! B/ ! B/
—2 / [ (@) f(y)du(y)du(x)
! B/

= 2u(B) /B/f2du—2</3/fdu>2
= 2u(B) (/B frdp—a’p (B’))
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and, hence,
//(f_a)2d” = B/fzdu—2a/Blfdu+a2/B/du

= [ Pu 20 () + au ()
B/

— / f2dM—CL2/l(B,)
B/

_ 1 - ,

~ ot [ U@ TP d ).

Therefore, (4.18) is equivalent to (PI), with the same value of o and with Cp = ~. O

C

Lemma 4.2. The condition (PI),, implies that, for all f € F and B = B (z,7),

c  p(H)
/Bd”f”%(rmws)

where o and ¢ are the same as in (4.18) and
H={xeoB: f<0}.

(4.19)

Proof. Applying (4.18) to the function fi and restricting integration in y in the right side

to y € H, we obtain
dU(fy) > — (F (@) = f 1)) dp(y) ) dp (2)

/B w<> (B) / (/ )
- ST / Fe (@) (H) dp (x),

which was to be proved. ]

v

In fact, the condition (4.19) is equivalent to (PI),, but we do not use this.

5. THE FABER-KRAHN INEQUALITY

In this section we show that the Poincaré inequality implies the Faber-Krahn inequality
if both conditions (VD) and (RV D) hold. The method of proof is motivated by a similar
result in [17] obtained in a setting of Riemannian manifolds.

Theorem 5.1. Let (€, F) be a regular, strongly local Dirichlet form. Assume that condi-
tions (VD), (RVD), and (1.15) are satisfied. Then

(PI)y = (FK), . (5.1)

Proof. Let B := B(xg, R) beaballin M and 2 C B be a non-empty open set. Observe first
that in the definition (1.22) of Apin (2) the range of u can be restricted to u € F N Cy(N2)
without changing the value of inf, due to the regularity of the Dirichlet form (&, F). Next,
the range of u can be restricted to non-negative functions due to £ (u) > € (Ju|). Hence,
we need to show that for all non-negative functions u € F N Cp(Q),

Cr (wB)Y" 1
£ 2 g (M) (5.2

for some positive constants C'r, v that are independent of u, ), B. We split the proof of
(5.2) into three steps.
Step 1. Construction of the balls B(x,r;). Fix some t > 0 and consider the set

Q={zreQ:u(xr) >t}.
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As wu is continuous, the set €; is open. Let us show that, for each x € €, there exists
ry € (0,C1R) such that

w(B(z, ) NQy) > =V(z,ry) and p(B(z,rg) \ Q) > %V(m,rx) (5.3)

N

where the constant C7 > 0 is independent of z,t and B (see Figure 2).

FIGURE 2. The sets Q; C 2 C B(zo, R) and the ball B(x,ry).

To that end consider the function
v(r)=p(B(z,r)N).

Since €, is open and z € €, for sufficiently small r > 0 we have an inclusion B(z,r) C Q;
and, hence,

Let us show that, for » > C1 R,
1
v(r) < Z—lV(a:,r),

where the constant C] depends on the constants in the reverse volume doubling condition.
Indeed, since

B(z,r)NQ C B(x9,R) C B(z,2R),
we have by (RV D)

2R\ 1
v(r) <V (z,2R) < C <T> Vix,r) < ZV(SE,’F)
provided r > C1 R with C; = 2(4C)"*". Hence, the function

wv(r) (B (x,r) Ny
M= T (B )

is equal to 1 for small values of r and is < % for r > C1R.

If A is continuous then there exists an intermediate value 0 < r, < C1R that satisfies
h(ry) = %, which implies the both conditions in (5.3). However, in general h does not
have to be continuous, but it is always left continuous since so are the functions V (z, )
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and v (1), which follows from the o-additivity of measure u. Besides, function h has right
limits at any point as the ratio of two monotone functions. Furthermore, since

V(x,r+) = tlirgrv (z,t) = p(B(z, 1))
and a similar identity holds for v (r+), we obtain
M (E(l’, T) N Qt)
p(B(z,r))

1 1
h(rg) > 3 and R (ry+) < 5

h(r+) =

Setting

N | —

Ty = sup{r ch(r) >
we obtain that 0 < r, < C1R and

The first of this inequalities implies the first condition in (5.3), while the second one yields

n (Bla,ra) N0 < 2t (Bla, )
and, hence,
1 (B(z,ry) \ ) >

that is the second condition in (5.3).
Step 2. Estimating of the energy of u between the level sets. Let {B(x,74)},cq, be the

7 (E(x,m)) > %V(m,rx),

N | =

family of the balls constructed as above. Set R, = %rx where o € (0,1) is the constant
from (PI),. Since the family {B (z, Ry)},cq, is a covering of € and condition (VD)
holds, we can choose by the classical ball covering argument a countable disjoint family
{B(xk, Ri)} ., of balls with Ry, = R,, such that

Q, C Uzole(ﬂj'k,5Rk).
Set ry, =y, and

U:= U B(xk, k)
k=1

and observe that by (5.3) and (VD)

pUNQ) = > p(Blagre) N Q)

v
N =
(]2
=
=
8
¥
3
N

k=1
> co Y p(B(xk,5Ry))
k=1
> o (), (54)

where ¢y > 0 depends on the constants C'p and o.
Fix some pair ¢ >t > 0 and define a function f by

t,—t, il’th/,
==t At —t) =< u—t, in Y\ Q,
07 inM\Qh

see Figure 3.
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A A
[—‘—\u
t
et f= t-t

t f=u-t

Qr t

H_) > H_J >
Q O

FiGURE 3. The function f

By the Markov property of (€, F), we have f € FNCy (). Next, we would like to ap-
plying the inequality (4.19) of Lemma 4.2 to function f in the balls B(xg, 2rk), B (zk, Rg),
whose radii have the ratio exactly o. The set

H :={x € B(xy,2r;): f(x) =0}

contains B (zy, 2r%) \ Q¢ and, hence, B (zg,7%) \ €. Since by (5.3)

_ 1 1
(B (g, ) \ Q) > §V(xk,7“k) > §CBIV(wk,2Tk),

we obtain by Lemma 4.2

[ paws[ o paccury [ . (5.5)
B(zg,rk) B(xy,2rk) B(xy,Ry)

Let us estimate Ry, from above using R and p (€2). By (5.3) we have

_ 1
H (B (l’k,?"k) N Qt) > EV (xkark) 5

whence
Vi (zg,rr) <20 () <2u(Q).
On the other hand, by (VD) and r, < C1R,

p(B) =V (20, R) <V (24, (C1 + 1) R) < C' <§)QV(xk,rk).

Combining this two inequalities, we obtain
«
1 (B) < 2C" <—) (),
Tk

which implies

rkSCR<%>W.
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Further, using the monotonicity of ¥, (1.15) and £ éB% <1, we obtain

o = o (3e) <o (Gen(i5) )
o) o (o))
i <M>% e (5.6)

1 (B)
Substituting this into (5.5), summing up in all k, and using that the balls B (zy, Ry) are

disjoint, we obtain that
BN S
f3d c <—) V(R / dr(f
/U : 1 (B) ( ); B(zx,Ry) V)

< ¢ (%)M wr) [ ar)

C <%)M W(R) /Q s (5.7)

where in the last line we have also used the fact that I' (f) = 0 outside Q; \ Qy while
['(f) =T (u) inside 4 \ Qp, due to the strong locality of (&, F).
Let us assume in addition that ¢’ is chosen so close to ¢ that

w0\ Q) <ep (), (5.8)

where ¢ = ¢ and ¢ is the constant from (5.4). By (5.4), we obtain

IA

IN

w(UNQy) = Z,u (g, k) N Q) > 22 ()

which together with (5.8) implies
H(Uﬂﬁt/) = M(UﬂQt)—M(Um(Qt\ﬁt/))
> 260 () — 1 ((Q\ Q)
> ep ().
It follows that

~
[\
IS
=
v

/ _
U UﬂQtl

(t' =) (UNQ)
> e (t'—1) p().
Combining this with (5.7), we conclude that

/ 2 / M(Q) Ble
et —t)"u() <C <m> U(R) /Qt\Qt/ dl(u). (5.9)
Step 3. The proof of (FK)y. Set for all t >0

m(t) = p(Q) and m(t) = p(Q)

where

Q={recQ:u(z)>t}.
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The functions m (t) and 7 (t) are monotone decreasing, m (t) < m (t), and they both
vanish for large enough ¢ as u is bounded. Furthermore, m (¢) is right-continuous, while
m (t) is left-continuous, which follows from

= U Q and Q=) Qs

s>t s<t
and the o-additivity of u.

Let us define inductively an increasing sequence {t; }‘;10 of non-negative reals as follows:
to = 0 and
tit1 :=sup{s:m(s) > (1 —e)m(t;)}

for all  =0,1,2,---. By the left-continuity of ™ we obtain that
m (tj+1) =m (tj+1—) >m (tj+1—) > (1 — 8) m (tj) , (5.10)
while the right-continuity of m implies that
m(tj+1) < (L—e)m (). (5.11)

It follows from (5.10) that

m (t;) = (tjr1) < em (),
that is, the condition (5.8) is satisfied with ¢’ = ¢;1; and ¢t = ¢;. Applying (5.9) with these
values of t/,t and then summing up over all j, we obtain that

Ew) = /dFu—Z/ .

B/a o>
w(9
> {C/ <%) } e (tje1 — 1) m(t)). (5.12)
f =
On the other hand, it is clear that
i =3 /Q S Ztm m (1)) (5.13)

By [17, Lemma 1.2], for any increasing sequence {tj} ~ o With o = 0 and for any sequence
{m;};Z, of non-negative reals, satisfying for some ¢ € (0, 1) the condition

mj+1 < (1 —e)m; forall j=0,1,2,..., (5.14)
the following inequality holds:
o0
> (i —t)*m; > — Zt]ﬂ — 1) (5.15)
7=0

(which is a consequence of the Hardy 1nequahty). Since by (5.11) the sequence m; = m (t;)
satisfies (5.14), combining (5.12), (5.13), and (5.15) we conclude that

PR
E(u) > E{C (m) \P(R)} Hquy

which proves (5.2) with v = §/a. O

6. MEAN-VALUE INEQUALITY FOR SUBHARMONIC FUNCTIONS

In this section, we will obtain an L? mean value inequality for any non-negative sub-
harmonic function assuming that conditions (F'K)y, and (Geap< )y are satisfied.
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6.1. Admissible subharmonic functions. Let us introduce a class of admissible func-
tions. Fix two constants C'y > 0 and v > 0 whose values will be determined later.

Definition. We say that a function v € F N L is admissible in a ball B(xg, R) if for
any 0 < 71 < R and any 5 < ry < 71, there exists some ¢ € cutoff (B(xo,r2), B(xo,71))

satisfying
CA < T9 )7/ 2
E(pu) < u“dp. 6.1
00 < 5o () L (6.1)

Note that the cutoff function ¢ may depend on w, B(xzg, R),r2,71.

Lemma 6.1. Assume that (£,F) is regular and conditions (V D), (Az2) hold. Let u be a
bounded, non-negative subharmonic function in a ball B (zo, R). Then u is admissible in
B (xo, R) .

Proof. Let By := B(zg,r2) and B; := B(xg,71) where r1,79 are as above. We will con-
struct a function ¢ € cutoff (B, B1) such that (6.1) holds with v = «

C r2 )a/ 2
. 3 u2d 6.2
02 575 (7)o .

for some positive constant C' > 0, where « is the same as in (1.13).

Indeed, set s :=r; —rg € (0,72). By the doubling condition, there exists an integer N
such that the ball By can be covered by the union of balls { B(y, s/ 2)}5:1 centered at Bo,
whilst the balls {B(y, 5/10)}2[:1 are disjointed (see Figure 4).

FIGURE 4. The balls B(yk, s/2) and By, Bs.

Observe that there exists a constant C' > 0 (depending only the doubling constant Cp)
such that

N<C (%)a (6.3)

since we have from (1.13) that, for s = r; —ro < o,

V(zo,71) d(zo, yx) + 11\
V(Y. 5/10) <(b( 5/10 )

ro +1r1\”
<
(b(smo> :

IN

Q
VN
® |3
N——
°
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and hence,

N N .
V(xzg,m1) > ZV(yk,s/lo) > ZV(mo,m)C—l (_)

thus proving (6.3).
For simplicity, set Uy := B(y, s). For each 1 < k < N, by inequality (2.43), there is
¢y, € cutoff (%Uk, Uk) such that

€ (udy) < ﬁ; /U i (6.4)

We set
=1V Py V-V oy.

Clearly, ¢ € cutoft (B, B1). We will show that (6.2) holds with this ¢.
Indeed, as u > 0 in Bj, we see that

pu = (P1u) V (ppu) V- -+ V (¢nu) .
Observe that for any u,v € F,
E(uVvv) <E(u)+E&(v),
since, using the facts that
1 1
u\/vzﬁ(u+v+\u—v|) andu/\v:§(u+v—|u—v|),
we have
1
E(wVo)+E(unv) = Z{S(u+v+|u—v])+5(u+v—]u—v[)}
1
= §{€(u+v)+5(]u—v])}

< %{g(u—i-v)—i-g(u—v)}
= E(u)+E&(v).

Therefore, it follows from (6.4), Uy C By and (6.3), that

E(pu) = E((d1u) V (dou) V-V (dyu)) Z (¢ u)

o Z/U < cgz i/ 2d

/
= C1 N u’dp ¢

1
ORI 5@@&/&“2“’”’

thus proving (6.2). Hence, u is admissible in B(zg, R). O

IN
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6.2. The L?>-mean value inequality. We prove an L? mean value inequality for any
non-negative (not necessarily subharmonic) function v € FN L*> if (u — k)4 is admissible
for any k£ > 0.

Theorem 6.2 (L? mean value inequality). Let (£,F) be a regular Dirichlet form.
Assume that (FK)g and (VD) are satisfied. If u € F N L™ is non-negative in a ball
B := B(xo, R) and if (u — k)+ is admissible in B for any k > 0, then

C
2 2
esup u” < —/ udy, (6.5)
iB w(B) Jp

where the constant C' is independent of B, u.

Proof. We split the proof into two steps.
Step 1. For any 0 <7y < R and 5 < ry <71, let Uz := B(zo,72) and Uy := B(zo,71).
Fix some 0 < p; < py and set

ay ::/ (u—py)2dp and az ::/ (u — py)idpu,
U1 U2

so that as < a1. We will prove the following relation between aq and ao:

U Y 1+v
ay < Cl (Tl) _ ( T2 > al ot (66)
U(ry —r2)u(U1)” \11—7r2/) (p2—p1)

which will be used later on to do iterations.
Choose a quasi-continuous version of u, a function ¢ € cutoff (U, Uy) (to be specified
below) and consider a set

E =suppgN{u=>py} C Ui, (6.7)
By the regularity of u, for any € > 0 there is an open set {2 C U; that contains E and
such that
p() <p(E)+e (6.8)
(see Fig. 5).

FIGURE 5. Sets E and )
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As p(u—py)+ = 0in E¢, we see that ¢p(u—py)4+ = 0 also in Q¢ C E€. Since ¢p(u—py)+ is
quasi-continuous, it follows that ¢(u—py)y € F () (cf. [16, Corollary 2.3.1, p.98]). Since
the function (u — py)+ is admissible in B by assumption, the function ¢ can be chosen so
that

ot < gt (725) [ - etan (69)

\I/(’I“l — 7"2) M —T9
From this and using (F'K)y,, we obtain

o = [ wepRdus [ (ou= o)} du
Uz

Ui
B E(B(u — p))
- /Q (Olu—pa)a? g < SEE—LE)

\Ig;) (5<<[£]21))>”{qj(:f r2) (7“174—27“2)7/%(“’_'02)3-‘1“} (6.10)

\Il(rl) 2 7 v
= % ey <> w) ar

Since ¢ in (6.8) can be taken arbitrarily small, we obtain

IN

(r1) ra 1\’ v
a9 S CI\II(Tl — T'Q)M (Ul)y <7"1 — 7“2) ;L(E) ai. (6.11)

On the other hand, by definition (6.7) of E, we have
o= [ tw=ptdn= [ (= p)hdn = (s = pi (B,
1

whence
a
(P2 — P1)2
Substituting this into (6.11), we obtain (6.6), as desired.
Step 2. Here we prove (6.5) using (6.6) and (VD). Without loss of generality, we can
assume that

n(E) <

HUHL2(B) =1 (6.12)

Fix some p > 0 to be determined later on and set
1
Ry = (5 + 2_k_1> R and p,=p (2 - 2"“) L k> 0. (6.13)

The sequence {Ry};-, is non-increasing, Ry = R, Ry, — %R as k — oo, and
0<Rp_1—R,=2""1R<R,. (6.14)
Similarly, the sequence {p; }r is non-decreasing, py = p, p, — 2p as k — oo, and
pr— i1 =27"p.
For k > 0, set Uy := B(xo, Ry) and

o= [ (w-pdn (6.15)
Uk
Note that Uy = B(zg, R), and a1 < a; <1 for any k& > 0.
Clearly, we see from (6.13) and (6.14) that
1 —k
Ry, ! (i +2 ) R < 9k+2.

< =
Rk—l — Rk Rk—l — Rk 2_k_1R

(6.16)
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From this and using (1.15), we obtain

U(Rg_1) ( Ry )ﬁl Iokf!
— (g | —————— < C2%P 6.17
U(Rpy — Ry) =\ Ry — Ry) (647
By condition (V' D), we have
1 _
p(Ux-1) > n(5B) = Cp i (B). (6.18)

Applying (6.6) with 7 = Ri_1,70 = Ry and with p;, py being respectively replaced by
Pr_1s P, and substituting (6.16), (6.17), (6.18), we obtain

ChU(Ry_1) ( Ry, >” a, ™y

= U(Rp—1 — Ri)p (Ug—1)" \Rk—1 = R ) (P — P
" —2v

O (02 (O (B) ) 2527 (274)

= Cou(B)™" p*2”2k8a}:‘1’ = A2k5a,1:_“§

for any k£ > 1, where

ak )2V

IN

s=03+~v+2v
and
A= Cou(B) p 2. (6.19)
Setting ¢ := 1 + v, we obtain by iteration
ap, < A2ksaz_1 < (A2ks> (AZ(k_l)saZ_Q)q < ...

<A1+q+...+qk—1> (2s(k+(k—1)q+~~+q’“*1)> agk

IN

"1 sw

Aad19 (q—1)2

k_q (@ =1)(at1)
ATT95 12

< (CSAqil)qkl , (6.20)

IN

IN

where we have used ag < 1, the elementary identity

g _ T =kt Dgtk _ (¢ -1 (@+1)
(¢ —1)? - (g-1)2

a1
and set C3 = 2° @172 Noticing that A depends on p, we can choose p so that the following
equation is satisfied:

Bt (k=g +-+a

L _ opait
_ = q—1,
2 3

Indeed, by (6.19) and ¢ — 1 = v this equation is equivalent to
1 -1 _
5 ::(Iui(lg) 1/) 27
which yields

p? =204 (B) . (6.21)
We obtain from (6.20) that, for any k,

k

RV A
/B( IR)(U—QP)idMSGk < (CgAqil)q = <§> — 0 as k — oc.
%0,75
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From this and (6.21), we obtain

esup u? < 4p? =8C4u (B)_1 ,
B(:po,%R)

which in the view of (6.12) finishes the proof. O

Let us introduce the condition (MV') (mean value inequality).

Mean value inequality. =~ We say that the condition (MV) is satisfied if there ex-
ists a constant Cpryy > 0 such that, for any ball B and for any bounded non-negative
subharmonic function w in B, the following inequality holds:

C
2 MV 2
esupu” < —/ u“dp. 6.22
1B M(B) B ( )

The following is the main result of this section.

Theorem 6.3. Assume that (£,F) is a strongly local regular Dirichlet form and that
condition (V D) holds. Then the following implication is true:

(FK)y + (Geap<)y = (MV).

Proof. Let B and u be as in the above Definition of the mean value inequality. As follows
from definition of subharmonic functions, there exists a function v’ € FNL* such that u =
v’ in B. By the locality of (€, F), the function «’ is subharmonic in B. By Proposition 2.1,
function (u’ — k), is subharmonic for any & > 0. By Proposition 2.3, we have (Gcap<)y =
(Az). Thus, by Lemma 6.1, the function «’ is admissible in B(xg, R). Finally, Theorem
6.2 yields the mean value inequality for «’ and, hence, for u. O

7. PROOF OF ELLIPTIC HARNACK INEQUALITY

In this section we prove the elliptic Harnack inequality. We assume here that the
following conditions are known to be true: (MV'), (PI)y, (cap<)w, and will prove the
Harnack inequality (H). The proof follows essentially the argument of Landis [41], [38]
with some simplifications (see also [17] for a version of this argument for parabolic Harnack
inequality).

Let us introduce condition (cap<)w.

Upper bound of capacity. We say that the condition (cap<)y holds if there exists
constant C' > 0 such that, for all balls B of radius r > 0,

Cu(B)
¥(r)

cap (B,2B) < . (7.23)

Lemma 7.1. Assume that (€, F) is regular and strongly local, and that u is a strictly
positive, bounded superharmonic function in a ball 2B where B = B (xg,r) . If condition
(cap<)w holds, then we have

1
/deF<logu> < \II(T)M(B)’ (7.24)

where constant C1 is independent of u, zq, .
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Proof. Let [ (t) be the function from the proof of Lemma 2.4, so that [ (u) !’ (u),l” (u) are
in 7N L, while in 2B we have [ (u) =logu, I’ (u) =+ and " (u) = =% = =V (u)?.
By the chain rule, we have in 2B

dr(l (w))y = 1" (u)*dl(u) = —1" (u) dI (u) = —dl (u, ' (u)) = —dI'(u, u_1>. (7.25)

Let ¢ be an “almost” optimal test function for cap (B,2B) so

2Cu(B)
w(r)

Integrating (7.25) and using that u is superharmonic in 2B, we obtain

/¢2dr<1ogu> = —/¢2df<u,u_1> = —/dr<u,¢2u—1>+2/¢u—1dr<u, b)

u

that we obtain by (cap)y,

E(¢) <2cap(B,2B) < (7.26)

1
< 2/¢u1dr<u, Py < 5/¢2u2dr<u> +2/dr<¢>
1
= §/¢2dF(log u) +2€ (9),
where all integrals are taken over 2B. Hence, we obtain
/ dT (logu) < 4E () . (7.27)
2B
Combining (7.26) and (7.27), we conclude that
Cu(B
/ dT(log u) < / 2dT (log uy < SSHB).
B 2B ¥(r)
thus proving (7.24). O
For any ball B and any measurable set A C M denote
p(ANB)
wp(A) = ————,
5(4) 1 (B)

the occupation measure of the set A in B. If A has the form {u > a} where u is a function
and a € R, then we write for simplicity w (A) = w (u > a) without additional brackets.

Lemma 7.2. Assume that (€, F) is reqular and strongly local, and that (V D) holds. Let
u be any non-negative bounded harmonic function in a ball 2B and a > 0 be any number.
If conditions (MV'), (PI)y, (cap<)w hold, then (see Figure 6)

C
i > _ . .
e%gléu > aexp < oop @S a)> (7.28)

Proof. We can assume without loss of generality, that w is strictly positive in 2B (otherwise
apply (7.28) to function u. = u + € and constant a + ¢ for any € > 0 and then let ¢ — 0).
Let B = B(x,7). By Lemma 7.1 (where condition (cap<)y is used), we have for

f=logy
C
dl{f) < ——pu (B).
[t < g ()
By Lemma 4.2 (where condition (P1I)y is used), we have

C

> < 2du.
[tz grean <o [ s
Since f <0< u > a and, hence,

weB (f <0) =wep (u>a) = w,
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FIGURE 6. Set {u >a} NoB

we obtain

C c
B 2 g [, i

C

Z 2
< —.
an+dM Cw

By Lemma 2.4, the function f is subharmonic, and so is f; by Proposition 2.1. Thus, we
conclude by (MV') that

whence it follows that

whence

which is equivalent to (7.28). O

Lemma 7.2 plays an important part in our analysis. Once this lemma is established, we
can derive the Harnack inequality (H) by using condition (V' D) alone, without using the
conditions (MV'), (PI)y, (cap<)w anymore. Of course, in order to prove Lemma 7.2 we
have already used all these three conditions.

In the rest of this Section we assume that (V' D) and the validity of Lemma 7.2 hold.

Corollary 7.3. There exists some constant 6 € (0,1) such that for any ball B and for
any bounded harmonic function u in B,

eoscu < 6 eoscu, (7.29)
%O‘B B

where eoscp u = esupg u — einf p u is the oscillation of uw over B.
Proof. By rescaling we can assume that

einfu =0 and esupu = 2.
B B
It suffices to prove that

eoscu < 20
io‘B
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for some constant 6 € (0,1) that is independent of u, B. By (7.28) with a = 1, we have
. C
einfu>exp| ————— | .
iUB w%a’B (u > 1)
Applying (7.28) again to function 2 — u, we obtain
5)

C
2—esupu>exp| ———— =
w%o‘B (U

1
4a'B

IN

Since one of the quantities Wisp ({u <1}, Wi, p ({u > 1}) should be at least 3, we obtain
by adding up the above inequalities that

2 —eoscu > exp (—2C),

joB
whence (7.29) follows. O
Corollary 7.4. Any bounded harmonic function admits a Holder continuous version.
Proof. Let u be a bounded harmonic function in a ball By. Fix a ball B := B (z,r) such
that B C By. Write Bs = B(x, s) for s > 0. It is enough to show that for any p < or,

%
eoscu < 2 (—) €0sC u (7.30)
B, r/ B,

for some constant « > 0 independent of p,r and u, where § = }la with the same ¢ as in
(7.29).
Indeed, we have by (7.29) that

eoscu < 6 eoscu. (7.31)

or r

For any p < ér, there exists an integer k > 1 such that
e < p < k.
Iterating (7.31), we obtain

eoscu < eoscu < 0% cosc u

4 Békr By
log % 1 log %
< 05 eoscu =~ (E) 55 e0sc u.
B, r B,
Note that the constant 0 in (7.29) can be assumed to satisfy § > 1/2. Therefore, inequality
. log 1
(7.30) follows with v = %. O

From now on we use continuous versions of harmonic functions. In particular, the
inequality (7.28) of Lemma 7.2 implies

C
> Y — 7.32
u(x)_aexp( wJB(UZOL))’ (7.32)
where x is the center of B and w is non-negative and harmonic in 2B.

Lemma 7.5. Let u be non-negative bounded harmonic in a ball B (z,R). Then, for all
yeB (:n, %R) and r < %%, and for any a > 0,

w(@) > a (%)Nexp <_WBW) ((fu _ a})> , (7.33)

where N is a positive constant that depends only on the constants in the hypotheses (see
Fig. 7).
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FIGURE 7. Set {u > a} N B (y,r)

Proof. Set B = B (y,r) and observe that 20~ !B C B (z, R) since

d(z,y) + 20 1r < %R—i—? <R.

Applying (7.28) to the function u in the ball 20~! B, we obtain

C
i > — | =1 ay. .
%né’u > aexp ( p s a)) ay (7.34)

If 4071B C B (z, R) then we can apply (7.28) in the ball 40~ !B and obtain

infu > a1 ex —L
B = a1 eXp wQB(uZal) ’

Noticing that by (7.34) the set {u > a1} contains B and, hence,
wap (u>a1) > wep (3B) > ¢,
we obtain
yrznce ()
infu>ajexp | —— | =ca1 =: ao,
B c
where € := exp (—%) If 8071B C B (z, R) then in the same way
inf u > eag = 62(11,
2B
and so on (see Fig. 8).
As long as
215713 ¢ B (x,R), (7.35)
we obtain by (7.28)

. k k C
inf u>¢e%a =c"aexp| —— .
2k—1B wp(u>a)
Let k be the maximal integer satisfying (7.35). Then we have
ko=l L d(z,y) <R (7.36)

while
26251 £ d(z,y) > R.
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FIGURE 8. Level sets {u > a},{u > a;} etc

It follows that

2k=1p >
= 0 3

>d(x,y),

where the last inequality is true because

8 8
(1+—>d(w,y) < <1+—> R<R
o o/ 9

It follows that z € B (y, 2k_1r) and, hence,

u(z) > efaex ¢
- P wp(u>a))’
Then (7.36) implies

2k+1 < E

— r )
whence N
ks Jktl s (L)
ez 2 (4
1

with N = = which implies (7.33). 0

Lemma 7.6. Let u be a bounded harmonic function in a ball 2B with center x. Then

supu > <1 +exp <-%>) u(z). (7.37)

Proof. If u(xz) < 0 then there is nothing to prove. So, let us assume wu(x) > 0 and
supyg u = 1. Setting v = 1 — u and noticing that u < 0 < v > 1, we obtain by (7.32)

v(x) > exp (-ﬁ> ’

whence
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which is equivalent to (7.37). O

Applying (7.37) to function u — a and replacing 2B by B, we obtain

C
sgpu >a+ (1 + exp (—W>> (u(x) —a). (7.38)

Lemma 7.7. There is a constant ¢ > 0 such that for any bounded harmonic function in
a ball B= B (x,r),
c

7 - 1> u(x), (7.39)

supu > exp | ————
B wB(u>0

provided u (x) > 0, where « is the same as in (1.13).

Applying (7.39) to the function u — a and assuming u () > a, we obtain

supu > a + exp ;1 —1) (u(z)—a). (7.40)
B wp (u > a)/®
In particular, assuming u (z) > 0 and setting
a=-u(x) and b=supu,
2 B
we obtain from (7.40)
(0%
c
wpu>a)> | ——— | . 7.41
5 )—<1+1n(§—1)> (741)

Proof. Let ¢ < %a be a positive constant to be chosen later on. We have for any y €
B (w,37)

pB@n) _ o

(B (y,er))
whence

p{u> 0} 0B (ger) _ o _qi({u>0}0B)
< Ce
(B (y,er)) (B (z,7))
Now we would like to chose ¢ to satisfy the equality

WB(y,er) (u > O) = = Ce %wp (u > 0) .

1
Ce®wp(u>0)= 2

that is, define € by
e = (2Cwp (u > 0))/« (7.42)

Since £ must be smaller than 1o, the choice (7.42) is possible provided
(u>0)< L) (7.43)
wp (u 50 \1%) - .
If the opposite inequality holds, then (7.39) can be satisfied simply by choosing

1\ Y1
< | — —0.
€= (20) g

Therefore, we can assume in the sequel that (7.43) is satisfied, and we choose ¢ from (7.42).
For this € we have

WB(y,er) (u > 0) <

N |
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and, hence,
1
WB(y,er) (’U, < O) 2 5
Set
2e
p=—r.
o
Since £ < 10, we have p < r/2 and B (y, p) C B (x,r). Applying (7.37), we obtain

C
supu><1+exp<— ))uyZl—l—cuy,

where ¢ = exp (—2C). It follows that there is a point y’ such that
y' € B(y,p) and u(y) > 1+c)u(y).

Applying this with y = x we obtain that there is a point x; such that
x1 € B(z,p) and wu(x;)> (1+c)u(z).

Since % < %, the point z; lies in B (:U, %7") Applying the previous procedure with y = x1,
we obtain that there is a point xo such that

x9 € B(x1,p) and wu(x3)> (14 c)u(zy).

Continuing further this way, we construct a sequence {zy};~( in B (see Fig. 9) such that
ro = x and
xp € B(xk_1,p) and wu(zg) > (1+c)u(xp_q).

FIGURE 9. Sequence of balls B (z, p)

It follows from the construction that
xp € B(x,kp).

As long as kp < r/2, that is, when
2¢ 1
k— < = 7.44
~ <3 (7.44)
we have x;, € B (:c, %7’), and the process of construction can be continued further to obtain
Zi+1- Choose the maximal k with (7.44). For this k& we have

g
k+1>—
+ ~ 4e
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and

u(eren) > (140" u(@) > (14 0)% u(x)

CI
> exp | ———— 7 | u(@),
wg (u > 0)/«
whence (7.39) follows. O

Theorem 7.8. Assume that (£, F) is regular and strongly local, and that (VD) holds.
Then following implication is true:

(MV) + (PI)y + (cap<)w = (H).

Proof. Let u be a bounded non-negative harmonic function in a ball n~'B where B =
B (z,R) and

1
n=1g% (7.45)
We will prove that if
supu = 2,
B
then
u(z) >c>0, (7.46)

which is equivalent to (H).

For that, we construct by induction a finite sequence {x}},~, of points in 2B such that
u(ry) = 2F. Since supgu = 2, there exists a point 1 € B such that u(z1) = 2 (The
point 1 € OB by using the maximum principle, see [23, Proposition 4.3]). If 2, € 2B
with u (1) = 2% is already constructed then, for small enough r > 0, we have

sup u < ok+1,
B(:Ek’r)

Set
rE = Sup {r € (0,R]: sup u< 2’““} .
B(wg,r)

If r, = R then the inductive process stops without constructing zp,1. If rp, < R, then we
have

sup u = 2’““,

B(zg,rk)

and we can find ., € B (xp,7%) such that u(zpry) = 2F1. If 241 € 2B then the
inductive process goes further, while in the case xp11 ¢ 2B the process stops.

As a result of this construction, we obtain a sequence of balls {B (zj,r)},_; (see Fig.
10) where x € 2B, 1, < R, and
sup  u < 2u(xp) = 2FFL (7.47)
B(x}mrk)

For the largest index n in this sequence we have either r, = R or z,41 ¢ 2B. In the
latter case, since x1 € B, d(xp,xx+1) < 7% and x,41 ¢ 2B, we obtain by the triangle
inequality

2R < d(xz,zp4+1) <d(x,z1) +d(z1,22) + - + d(Tp, Tpt1)
< R4+ri+ro+...+7n,
and hence,
ri+ro+..+r, > R. (7.48)
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X14-...

B(x,R)

F1cure 10. The sequence {zy}

In the former case 7, = R this inequality is also trivially satisfied. It follows from (7.48)
that there is kK < n such that

re > ﬁ. (7.49)
On the other hand, applying (7.41) in B (zg, rg) with
a:=gu (zp) = 2~ 1
and using (7.47), that is,
b:= sup u<4a,
B(zk,rk)
we obtain
c “ c “ ,
WB(ay,my) (U > a) = (m) = (1 +1n3> =:c. (7.50)

Next, we will apply Lemma 7.5 for the ball B (z, R') with R = 'R and for y = x,

p = ). Since n = {5, we have

xx € B(z,2R) =B (x, %R’)

and
re < R< %R’.

Hence, the hypotheses of Lemma 7.5 are satisfied, and we obtain, using a = 281, (7.49),
and (7.50),

v = a(f) e (T y)

Jﬁw exp (_Q) .

2k—1
nf ——— >
k=1 (k (k+ 1))

we obtain u (x) > const, which was to be proved.

v

Since

)
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It remains to consider a general (unbounded) harmonic function u. Let u be a non-
negative, harmonic function in a ball B C M. Set fr = u Ak for any £ > 0 and denote by
uy, the solution of the Dirichlet problem

uy, is harmonic in B,
U = fk mOdf(B),

where u = v mod F (B) means that there exists some h € F (B) such that u —v = h in
M. Since 0 < f, < k in B, we have also 0 < uy, < k in B (cf. [30, Lemma 7.2]). Since

the sequence {fi} increases and fj 7 u, it follows that uyp — w almost everywhere in
B (cf. [30, Lemma 7.2]). Each function uj is bounded and, hence, satisfies the Harnack
inequality in B, that is,
esup up < Celnf U

nB

nB
Replacing up on the right-hand side by a larger function u and passing to the limit as
k — 00, we obtain the same inequality for u. The proof is complete. ]

8. PROOFS OF THEOREMS 1.1 AND 1.2
In this section we complete the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We distinguish two steps.
Step 1. (PI)y + (Geap<)y = (cap)y.
Indeed, we know already that
(Geap<)y = (cap<)w.

To prove the lower bound
H B

U (r
(81

~—

cap (B,2B) > (8.1)

) in the proof of Lemma 8.3]):

2B).

we use the following general fact (cf. [23, formula

cap (B,2B) > (1 (B) Amin
Substituting here the inequality

>\min (2B) Z

c
v (r)’
that is true by (FK)y, we obtain (8.1).

Step 2. (PI)y + (Gecap<)w = (H). By Theorem 5.1, condition (FK)y holds, and then
by Theorem 6.3 we obtain the mean value inequality (MV). Since (cap<)y holds by the
previous step, we obtain the elliptic Harnack inequality (H) by Theorem 7.8.

The proof of Theorem 1.1 is complete. O

Proof of Theorem 1.2. The following equivalences were proved in [23, Theorem 3.14]:
(H) + (cap)y < (H)+(E)y
< (G)y
& (UE)y + (NLE)y

Hence, it remains to prove that

(UE)y +(NLE)y = (Pl)y+(E)y (82)
~ (PI)y + (CSA) (8.3)
— (PD)y + (Geap<)y (8.4)
= (H)+ (cap)y (35)



HEAT KERNEL 41

y (3.17) we have (8.3), and (8.4) is trivial, and by Theorem 1.1 we have (8.5). The
implication
UE)y = (E)y
in (8.2) was proved in [24, Theorem 2.2]. Finally, let us prove that
(NLE)y = (PI)y,

which will finish the proof of Theorem 1.2. By Lemma 4.1, (PI)y is equivalent to the
following condition: for any ball B = B (x¢,r) and for any f € F

L= g | / PP duydn(n), (50

so we will prove (8.6). Let us deﬁne a new quadratic form

E(f) =/Bdr ()

for all f € FNCy (M), and define a new measure 1 to be the measure 1z extended to OB
by setting 7z (OB) = 0. It can be shown that this quadratic form is closable in L? (B,ﬁ)

and its closure (g F ) is a regular Dirichlet form in L2 (E, /7) (private communication of
Zhen-Qing Chen, based on [12, Theorems 3.3.9, 6.2.13 and 6.2.14]). In fact, the Dirichlet

form (€, F) is related to the Neumann boundary value problem in B.
Let P; be the heat semigroup associated with (€, F). Denote by (-,-) the scalar product
in L? (B,p) and by ||-|| its norm. It is a well known fact from the theory of Dirichlet

forms, that for any f € F , the function

‘s (f Ptf’f>

is monotone increasing as t decreases to 0, and converges to & (f); in particular, we have

EN =y (1-Rrr).

Observe that
2(f- Pt f) = 20017 —2(Ps f)
> 2(f%P1) -2 (Pt f)
= (£281) + (Bs21) —2(Rr.f).
Fix some point z € B and set a = f (x). Then we have
ﬁt (a— f)2 = a2]3t1 + ﬁtfz — 2a]5tf.
The value of this function at x is equal to
f (@) P (@) + Bof? (2) = 2f (2) Bof (),
and its inner product with 1 is equal to
(72 R1) + (Ps21) = 2(Bsif)
Therefore,
2(f=Bf.f) = (B(f @)1= @), 1@),
whence we obtain

ENz g (BU@I-1@.1@). (57)
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For any open set 2 C B consider the restriction (£, F (€)) of the Dirichlet form (&, F).
We claim that

(&, F () = (£, F (),
which follows from the fact that © = on £ and any function f € F N Cy(2) belongs to
the both spaces with

Elf) = /B ar (f) = /Q ar (f) = £ (f). (8.8)

Consequently, the heat semigroups ﬁtﬂ and Pf are also the same. Since for any non-
negative function h

P,h > P*h = P,
applying this with h = (f ()1 — f)2, we obtain that for any f € F

(P(f @)1= @), 1) = (PR @)1= 2 (), 1))
Combining with (8.7) and (8.8), we conclude that, for any f € F,
E) 2 5 (PR @1~ 1P @),1(). (8.9)
Now let 2 = B. By a result of [8] (see also [26]) we have
(UE)y + (NLE)y = (LLE)

where (LLE)y, is the following local lower estimate of the heat kernel: the heat semigroup
PP possesses the heat kernel p? (z,v) that satisfies
c

V (o, W=1(2))°

for all 0 < t < W(er) and p-almost all x,y € B(xg,eV~1(t)), where ¢ € (0,1) and ¢ > 0
are constant independent of B,x,y,t. Observe that the right hand side of (8.9) is equal
to

i (2,y) > (8.10)

//pt £,y) (f (@) — F () dp () dps ()

Setting in (8.9) t = W (er) and restricting the integration to the ball B (z,e¥ ! (t)) = &’B
where (8.10) holds, we obtain

E = 5 [, [ e @ - ) ) de )
> ﬁ/@/@ﬁ(f(w)—f(y))Qdu(y)du(w)
> SoEE /23 [ 0@ = @) du ) duta).

which proves (8.6) with o = &2 O

9. EQUIVALENT CONDITIONS FOR UPPER BOUND

In this Section we prove Theorem 1.3, which will be preceded by auxiliary statements.

For any p > 0, we say that the LP-mean value inequality (M V)p is satisfied if there a
constant C > 0 such that, for any ball B and for any bounded non-negative subharmonic
function w in B, the following inequality holds:

C
esup u? < —/ uPdp. 9.1
%B ,U(B) B ( )
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The previously used condition (MV') coincides with (MV'),. In this proof we will also
need (MV),.
In all the statements we assume that (VD) is satisfied.

Lemma 9.1. Let (MV), be satisfied. Let u be a non-negative bounded subharmonic
function in an arbitrary ball B = B (xg,r). Then, for any ¢ € (0,1),

co
2 2
esup u S—/ud, 9.2
(1-6)B w(B) Jp a ©-2)

where the positive constant C does not depend on B,u,d, and where o comes from (1.13).

Proof. Indeed, for any z € (1 — §) B let us apply (MV), in the ball B (x,0r) C B so that
C
2 2
esup u” < —/ u“d.
B(:r,gr) 2 (B (1’, 5T)) B(z,0r)

By (1.13) we have

whence it follows that

6—(1
esup u® < ¢ /qu/,L.
B(x.21) w(B) Jp

Since (1 —8) B can be covered by a finite number number of balls like B (z, gr) with
x € (1 —6) B, we obtain (9.2) O

Lemma 9.2. (MV), = (MV),.

Proof. Choose some 0 < 7 < 7’ < 1. We have by (9.2) with § =1 — 7/7/, that

T\ —a/2 _
esupu < C (1 - ;) u(r'B)~1/? lull 27y -

B
Noting that
p(B) \'"? o/
(i) =c@)

and
1/2 1/2 1/2 1/2
lull 2oy < Nl gy Nl E ) < Nl gy Il o)
we obtain
—a/2 _ 1/2 1/2

esupu < C (v = 1) ()2 ull i 2 oy (9:3)

We will use this inequality to do iterations as follows.
Set
1/3\"
Tk:1—§<zl> for k=0,1,2,---. (9.4)

Clearly, the sequence {74}, is non-decreasing, 79 = %, Ty — 1 as k — oo and

1/3\F
Tk+1—Tk:§ 1)
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Applying (9.3) with 7 = 74 and 7/ = 7441, we obtain

1 /3\F\ " 1/2 1/2
il ey < 0(5 (z)) W82 ull V2 Wl 2

_ 3 —ka/2 12
= (D)

A= C'u(B) ™ lull

where

(B) "

Iterating this inequality, we obtain

_ 1/2
1/2 3\ /2 1/2
Allull sy py < A4 A 4 el (7o)

k
1 3 2Zk 05k
At (4) a2

—k
= C"A |JulFoo(r, ) -

IN
IN

||u”L°°(ToB)

IN

Setting £ — oo and noticing that ||u||%;f(7k3) — 1, we obtain
HU”LOO(%B) < C"A? =Cu(B)™ ull g1 ()
which is equivalent to (MV), . O
For any measurable f, we say that u € F (Q2) satisfies
— Au < f weakly in Q (9.5)

if, for any non-negative function ¢ € F (2),
£ (u,9) < /Q fedp. (9.6)

Proposition 9.3. Let (£, F) be a regular Dirichlet form in L? and let Q C M be an open
set with 1 () < oo. If u € F () is a non-negative solution to (9.5) for some f € LP(Q)
with p > 2, then, for any s > 0,

1-1/p
= shilh < 5 151, (07

where Eg = {x € Q:u > s} and E. is any open neighborhood of Ej.

Proof. Without loss of generality, we can assume that u is quasi-continuous. Using the
properties of Dirichlet forms, (9.6) with ¢ = (u— s)+ € F (2), and the Holder inequality,
we obtain

E((w—s)y) < E(u(u—s))
< /Q (u— ). fdp
< =9l I£1,
< w(B)7 2 (w—s)1l, If1
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where p/ = —1 is the Holder conjugate of p. Since (u —s), = 0 q.e. outside Es and,
hence, outside E’, we obtain by definition of A\pin (E%) that

= o)1 < o)

By the Cauchy-Schwarz inequality we have
1/2
1w = )41l < ()2 | (u—8)4 -
Combining all the above inequalities, we obtain (9.7). O
We now derive an L>-estimate for any non-negative function v satisfying (9.5).

Theorem 9.4. Let (£, F) be a regular Dirichlet form in L?. For any ball B of radius
r > 0 and for any non-empty open set  C B, let u € F (2) be non-negative and satisfy
(9.5) for some f € LP(B). If condition (FK)y, holds, then for any p > max {2,v71},

where constants v, Cr and function ¥ come from condztwn (FK)\I, In particular, we have
(FK)gy = (E<)y (9.9)
where (E<)y, refers to the first condition in (1.28).

Proof. The proof is motivated by the argument in [40, Lemmas 5.1 and 5.2, p.71] and [45
Lemma 4].

If [Jull,, = O then (9.8) is trivially satisfied. If ||f|[, = O then it follows from (9.6)
with ¢ = u that v = 0 and again (9.8) is satisfied. Hence, in the sequel we assume that
|ulloo > 0 and | f[[, > 0. Let Es = {x € Q: u > s} as before. Note that

o(s) = Nl =)+, = [ (B dt

(see for example [46, P.36]), and that

’

¢ (s) =—p(Es),  ¢(0) = |lull;,

and ¢(s) = 0 for any s > [lul|,, while ¢(s) > 0 for s < [jul|,. Let E. be an open
neighborhood of E. It follows from (9.7) and (FK), that

1-1/p
o) = -l < 5211,

W(r) (p(EY) 1-1/p
o) (ML) gy g1,

Since p (E%) can be taken arbitrarily close to u (Es), we obtain that

U(r) Y B / q+1
0= g gt BTl = A{ =00 f
where ()
A:W”f”p and ¢=v—1/p>0.

Assuming that s < ||lul|, and dividing by ¢ (s), we obtain

AV < g (5)p(s) "V 04D = _@di {¢(S)q/(q+1>} _
q S
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Integrating this inequality over [0, s], we obtain
A, o« 4+ {¢(0)q/<q+1> _ ¢<S)q/<q+1>}
T q
g qu Looyatatn) = 4 qu L))+

<

which yields
+1
< q AV D

Letting s T ||ul|,, and using ||u||; < ||ull, #(£2), we obtain

lull o, < %Al/(q—&-l) ||u||gé(q+1) (@),

which implies

full, < (%f Ap(0)
(™40 0,

thus proving (9.8).
Finally, as the function E? satisfies (9.5) with f = 1 and Q = B, we obtain by letting

p — oo in (9.8) that
1" w(r)
EP 1 — 9.10
2% < (1+5) 2 (910
thus proving condition (E<)y,. O

Remark. The implication (9.9) can also be proved by combining two arguments in [24]
as follows. By [24, Lemma 5.5], (FK)y implies the following estimate of the heat kernel
pP (x,y) in any ball B of radius 7:

C \If(r)>1/”
B
esup p; (z,y) < —( .
z,yeB ! ( ) N(B) 3

Then we use the argument from [24, p.557] in the following simplified form. Integrating
this inequality in y over B and then in ¢ from 0 to oo, we obtain, for any 7" € (0, c0)

00 T 00
EB = / PPlipdt = / PP1gat + / PP1pdt
T

1/v
§T+C/< > dt

— T+C'V )1/VT1 1/1/

where we have used that v < 1 (note that, without loss of generality, v can be assumed
arbitrarily small). Setting 7" = W (1) we obtain

EB <Cw(r),
which finishes the proof.
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Proof of Theorem 1.3. The statement will follow from the following sequence of implica-
tions:

(FK)g + (Geapo)y = (FK)y + (Ex)y (9.11)
= (FK)y+ (E)y (9.12)
= (UE)y +(C) (9.13)
= (FK)g+(9)y (9.14)
= (FK)g+ (Gcapg)\p (9.15)

As follows from Theorem 6.3 and Lemma 9.2, we have

(FK) + (Geap<)w = (MV),
By Theorem 9.4 we have

(FK) = (E<)y - (9.16)

Let us show that
(MV), + (cap<)w = (E>)y
which will give us the implication (9.11) and, by combining with (9.16), also (9.12).
Recall that (E> ), refers to the second condition in (1.28), which we state as follows:
einf BB > ¢W (r)
1
8
where B is any ball, E® := GP1 and c is a positive constant. Note that the function
u = EB = GP1 is superharmonic in B. This function is also bounded by Proposition 9.4.

Set u. = u—+¢ for any € > 0 and note that, by the strong locality, u. is also superharmonic
in B. By (2.47) we obtain that, for any non-negative function ¢ € cutoff (%B, %B)

Eueruzlp) = /B d (log e, ) — /B puz2d0(u)

1/2 1/2
([ dI'(log u€>> ([ dF(cp)) . (9.17)
1B 1p

2

IN

By Lemma 7.1 that uses only (cap<)y, we have

C
ﬁBdFﬂOgue) < WM(B)

2

where r is the radius of B. By (Capg)\p, the function ¢ can be chosen so that

E(p) <

Hence, we obtain from (9.17) that

E(ue,uz'p) <

1

Since by the strong locality &€(u + &,uZ1p) = E(u,u-1p), we obtain

E(u,uzty) <

On the other hand, by v = GP1, we have

E(u,ute) = (Luty) = /B uz tpdp > / Bugldu,
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so that

_ C
ABUE tdp < WN(B)-

By Lemma 2.5, the function u;l is subharmonic. Applying (MV'); to this function in %B ,
we obtain

C/
esupu; ' < Cp (B)_l/ uZldp < ——,

ip iB W (r)

whence

einfue > ¥ (7).

iB
Letting € — 0, we obtain (E> )y, and, hence, finish the proof of (9.11) and (9.12).

By [30, Lemma 7.3] we have
(E)g = (C).
Under the standing assumption (C'), the following equivalences were proved in [24, Theo-
rems 2.1, 2.2]3:
(FK)y + (E)y © (UE)y & (FK)y +(5)y -

Hence, the implications (9.13) and (9.14) follow. Finally (9.15) holds by Theorem 3.2. O
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