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1 Introduction

We are concerned with an evolution equation
Oru = Ayt (1.1)
where p, ¢ > 0, u (z,t) is an unknown non-negative function, and A, is the p-Laplacian:
Ay = div (|VoP 2 Vo).

Equation (1.1) was introduced by L. S. Leibenson in 1945 in order to describe filtration
of turbulent compressible fluid through a porous medium. The physical meaning of u
is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the
medium taken by the liquid. Parameter p characterizes the turbulence of a flow while
q — 1 is the index of polytropy of the liquid, that determines relation PV?~! = const
between volume V' and pressure P.

The physically interesting values of p and ¢ are as follows: % <p<2andqg>1. The
case p = 2 corresponds to laminar flow (=absence of turbulence). In this case (1.1)

becomes a porous medium equation d,u = Au?, if ¢ > 1, and the classical heat equation
Ou = Au if ¢ = 1.

From mathematical point of view, the entire range p > 1, ¢ > 0 is interesting.
G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1.1)
in R™ that are nowadays called Barenblatt solutions. Let us assume that

¢(p—1)>1|

In this case the Barenblatt solution is as follows:

_P_\ 7
1 || \ P!

where C' > 0 is any constant, and

_ C1)-1 L
B=p+nlglp—1)—1], 7:#7 ’f:%ﬁ Pt (1.2)

Parameter 3 determines the space/time scaling and is analogous to the walk dimension.

It is obvious that, for the Barenblatt solution, L\ ¢ small

u(z,t) =0 for |z| > ct'/?

so that u(-,t) has a compact support for any t.

One says that v has a finite propagation speed.

Here are the graphs of function x — u(x,t) for
different values of ¢ in the case n = 1.




Assume now that
qg(p—1) <1

Then we have v,k < 0, and the Barenblatt solution is

2\ —
1 | \
u(a:,t):W (C—i—\/ﬂ (m) ) ,

that is, it is positive for all z,t.

In the borderline case

the Barenblatt solution is

! AN
u(w,t):WeXp <\ ,

where ¢ = (p — 1)2p_p%1. Hence, if ¢ (p — 1) < 1 then u has infinite propagation speed.

Of course, if here p = 2 then ¢ = 1, and we obtain the fundamental solution of the

heat equation Oyu = Awu:
N L 1/ |z \?
u(z,t) = 2 exp “a\arz )

2 Leibenson’s equation on manifolds

Consider on an arbitrary Riemannian manifold the operator
Lv = A, (v?)

where
p>1 and ¢ >0,

and
Apu = div (|Vu' 7 Va) .

We will be concerned with the associated evolution equation

0w = Ay (v9)

that is called the Leibenson equation. Our aim is to prove the following theorem.

Theorem 1. If q(p — 1) > 1 the any bounded non-negative solution to the Leibenson
equation has a finite propagation speed.

The exact meaning of “finite propagation speed” will be explained later on. The proof
will also be given later on.



Now we show how to obtain the Barenblatt solutions in R™. We start with deriving a
chain rule for the p-Laplacian. Consider on an arbitrary manifold the p-Laplacian

Ay = div (|VoP 2 Vo), (2.1)
where p > 1. Let us compute A, f (u) assuming that f is smooth enough and
f>0 and f' <0.
We have V f(u) = f' (u) Vu and
Apf (u) = div(|f' (u) Vul" f'(u) Vu)
= div (I (P f (w) [Vul"* Vu)
= —div (I (@I |V Vu)

-1 <u>|” Laiv (IVul? Va) = V(I @) [Vul" Y
1 P Apu =V (=f (@)") IVul ™ Va
= 1F @I Aput (p = 1) (—f ()" f" () Vu |Vl Vu
— 1 @P Ayt (o= )1 @)P 7 () [Vl
Hence, we obtain
Apf () = = (= ()" Aput (= 1) (= @) ' (@) [Vul” . (22)

3 Solutions on models

3.1 Model manifolds

Let M be a model manifold R, x S*~! with the polar coordinates (r,6) (where r € R,
and # € S"™1) and with the Riemannian metric

ds? = dr® +1* (r) d6*.

Here df? is the standard Riemannian metric on S*~! and 9 is a smooth positive function
on R,. For example, R” \ {0} can be considered as a model manifold with ¢ (r) = r.

Denote by S(r) the boundary area function

S(r) = watp(r)"

For example, in R™ we have S(r) = w,r" .



It is known that the Laplace-Beltrami operator A on M admits the following repre-
sentation in the polar coordinates:

_ 8_24_2,2_‘_LA
Cor2 S or w2<7”) %

where Ay is the Laplace-Beltrami operator on S"~!. In particular, considering the polar

radius r as a function in M, we obtain that
S/
Ar = —. 3.1
e (31)

For example, in R™ we have Ar = %=1 Using (3.1) and [Vr| = 1, we obtain that

Apr = div (|Vr[P? Vr) = div (Vr) = Ar = =
Setting in (2.2) u = r, we obtain

Apf (r) = = (= ()" Apr + (0= 1) (=f (1) 1" ()

p—1 S’

== (=r0)" g +e-D=f (r)P " (). (3.2)

Note that
(1 @y s) = (=F @ s = =1 1" ()s.
Hence, (3.2) can be rewritten in the form

Af () =g (S o).

The parabolic equation dyu = A,u for a function u = w (r,t) (such that v > 0 and
Oyu < 0) becomes therefore

1 bt
O = =0, (S (=000 ). (33)

and the Leibenson equation d,u = A, (u?) becomes

1 -1
o = —E@ (S (—0,u?) ) ) (3.4)
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3.2 Barenblatt solutions

We solve here (3.4) assuming p > 1, ¢ > 0 and
S(r)=rt,

where « is a positive real. In particular, for « = n € N, this will give us the Barenblatt
solution in R™.

The equation (3.4) becomes with this S (r)

L o (o (o (3.5)

atu - _Ta—l T

and we look for a solution in the form

u(z,t) =t"f (rtb) ,
where f is a decreasing non-negative function and a,b are (negative) reals, yet to be

determined.

Let us require in addition that the solution u (x,t) has a constant L'-norm, that is,

/ t*f(rt*)dp = const < oo,
M

where p is the Riemannian measure. Computing the integral in the polar coordinates
and using

1
dp = p(r)"*drd§ = —S(r)drdd,

n

we obtain that -
/ t* f(rt®)r*tdr = const < oo.
0

A change s = rt’ in the integral gives

> a by . .a—1 o > a -1, _ sa—ba > s a—1
/Otf(rt)r dr—/o tf (s) (st™")" " ttds =t /Of()s ds.

Hence, we must have
/ f(s)s*tds < o0 (3.6)
0

and

Using again the variable s = rt’, we obtain

Ou =0, (t"f (rt*))
= at" ' f(rt®) +t f (rt") bt
= bat® L f(rt?) + bt et f(rt?)
= bt (af (s) + sf'(s))



btafl
- Sa—l

(s*f ()
and

out = qui~'ou
=q(t°f (rt"))" 0, (t°f (rt"))
— qta(q_l)f(?“tb)q_lta+bf/(7“tb)
— qtanrbf(s)qflf/(S).
Hence, (3.5) is equivalent to

bta_l

Safl

(5 (3))' = g (17 (™ £ P ()"

gP 1t (aatb) (1)

= (st (=1 () 7))

gP 1t laatb) (1)

_ ) (safl (—f(s)2~ f’(s))p‘l) .3

Sa—l

We require that the powers of t in the both sides to match, that is,
(ag+b)(p—1)+b=a—1,
which together with a = ba yields
[(ag+1)(p—1)+1—a]b=—1,

la(qg(p—1)—1)+plb=—1.

Setting
d=gq(p—1)—1
we obtain
(a0 +p)b= -1
whence
B 1
 ad+p|
In particular, we see that
1 —
b<04:>5>—2<:>q>—p/a. (3.8)
« p—1

In what follows, we always assume that (3.8) is satisfied.

With this choice of b and a = ab, the powers of ¢ and s in (3.7) cancel out, and we
obtain an ODE for f:

b(sf () =~ (527 (~F ) )



Hence, we have
b f (5) = ="~ (= f ()7 () (3.9)

ignoring a constant of integration). Sillce b < (), we obtain
|b| Sf Qp ! ( fq 1f,)p 17

plsf = (=t g,

(q—1)(p—1)—1 (_ er\p—1 _ 0] 5
f ( f) - qp_17
st (BI97T
q
Set
— 1 qpp-1)-1_ ¢
vi=q— = =
p—1 p—1 p—1
and rewrite the above ODE in the form
—1 g ‘b|rll 1
7 = ———spt (3.10)

q
Assume first that 0 # 0, that is, v # 0. Then (3.10) is equivalent to

_1
(7Y =ty = -
q
and integrating it, we obtain
f1=C — kst
where ) )
_p—1lyfb[et S fp[rT
P q poq
Hence,

p 1/7
f(s)= (C—HSP*1> ,
with a positive constant C.
Case 1. Let 6 > 0 that is,
(which implies also that b < 0).

Then x > 0 and we see that f (s) is well defined for s € [0, so] where sy is determined
by

P
C=rsy .

Let us extend f (s) for all s € [0,00) by setting f(s) = 0 for s > s, that is,

p

f(s)= (C’ — ms“)l/w.

+



Then this function f is a weak solution of the ODE (3.10) in [0, co| because f is contin-
uous in [0, o] and solves (3.10) in the both intervals [0, so] and [sg, 00). Consequently,
we obtain in this case a (weak) solution of (3.5)

b b 1 royEn)
u(x,t)_t“f(rt):W(C—m(m) )

+

where

1
6:—52045—1-]) > 0.

Clearly, this solution has a finite propagation speed. Note that in this case § > p.

Case 2. Let 6 < 0 that is,
g(p—1) <L

Since k < 0, the solution

p \ /M
f(s)=(C+nls7r)
is defined and positive for all s > 0. Note that by (3.8)

1
p p p _P o,

p=1hl " o1 (F—q) Le-D =0

p—1

that is,
f(s)~ s as s — o0

where € > 0. Since also
f(s) ~const ass—0

we obtain the finiteness of the integral (3.6).

We obtain in this case a solution

1 o2\ D
U(I,t):W(C‘FL‘ﬂ <t17> )

that is defined for all z and ¢ > 0 and belongs to L' (M) for any ¢ > 0. Hence, this
solution has infinite propagation speed. Note that in this case 3 < p.

Case 3. Let 6 = 0 that is,

q¢(p—1)=1,
In this case v = 0 and
B r 1
 ad+p
Then (3.10) becomes
fr s
s =T
f pr—tq



whence

1 sp-1I D
Inf=—-——F——F—=—rsrT,
pr=tq p-1
where )
1 —1
K=—F = (p L) >0
ppfl qp%l pp—l

It follows that

whence . ,
- e (T
u(z,t) = walp exp ( K <t1/p> ) )

For example, in the case p = 2 and, hence, ¢ = 1 we obtain x = 1 and

4
1 172
u(x,t) = WGXP —Z? .

Hence, the finite propagation speed for the above solutions occurs if and only if § > 0,
that is, g (p — 1) > 1.

4 Weak solutions

Let © be an open subset of M and I be an interval in [0, 00). By a subsolution of the
equation

o = A, (v7) (4.1)

in the cylinder 2 x I we mean a non-negative function v of an appropriate class satisfying
o < A, (V7). (4.2)

In fact, this equation is understood in a certain weak sense, and a function v is taken
from the following class:

veC(I;L*(Q) and o€ Ly (I;W(Q)).
That is, for any ¢ € I,
v(-,t) e L*(Q), vi(-,t) € WH(Q),

the function ¢ — v(-,t) is continuous in L?(2), and, for any compact subinterval J C I,

109 )l dE < 00,
J

that is,

// (v + |Vvi|P) dudt < oc. (4.3)
JJa
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Let us first show that the Leibenson operator Lv = A, (v?) can be rewritten in the
form

Lv = cdiv (0™ Vol Vo) (4.4)
for some ¢, m, that is,
div (VP2 Vo?) = ediv (v™ |[Vo]P > Vo). (4.5)
Indeed, we have
V! = qui~ Vo

and
div (|Vvq|p_2 Vo?) = ¢"~div (v(q_l)(p_l) |VolP~? Vo).
Hence, (4.5) holds provided

m=(q—1)(p—1) (4.6)
and ¢ = ¢?~!. The Leibenson equation becomes

O = ¢*div (v™ |Vu[P 2 V),

and (4.2) becomes
v < ¢"Hdiv (v™ V|~ Vo) . (4.7)

5 Caccioppoli type inequality

We start here the proof of Theorem 1. The first step is obtaining a Caccioppoli type
inequality:.

For simplicity of notation, we omit in all integrations the notation of measure. All
integration in M is done with respect to du, and in M x R — with respect to dudt. We
assume that

p>1 ¢g>0

and use the notation
d=qlp—1)—1.
Let 2 be an open subset of M and I be an interval in R.

Lemma 2. Let v = v (x,t) be a bounded non-negative subsolution to (4.1) in a cylinder
Qx 1. Letn(z,t) be a Lipschitz non-negative bounded function in Q x (0,T") such that
n (-, t) has compact support in Q0 for all t € I. Fixz some real o such that

o > max (p,pq) - (5.1)

Set

A=0—0 and a:%. (5.2)

Then, for all t1,ts € I such that t; < ts, we have

to to to
{/ v’\np} + cl/ / IV (v*n)|P < / / [pv’\np_lnt + cov? |Vn|p] , (5.3)
Q t1 t1 Q t1 Q

where ¢1, ¢y are positive constants depending on p, q, A (see below (5.13) and (5.14)).

11



In particular, if n does not depend on ¢ then

t2 12 t2
[/ v’\np} —i—cl/ /]V(vanﬂp SCQ/ /v"|V77\p. (5.4)
Q t1 t1 Q t1 Q

Let us explain why all the integrals in (5.3) are well defined. Observe that always
A > 2. Indeed, if ¢ > 1 then, using ¢ > pq, we obtain

A=0—-0>2pg—(glp—1)—-1)=q+1>2, (5.5)
and if ¢ < 1 then, using o > p, we obtain
A=c-62p=0=p—(p-1)-)=@pE+)-(p-1¢>@p+1)-p-1)=2

Since v (+,t) € L*(Q) and v is bounded, it follows that, for any ¢ € I,

JoACn <o [ o0 <oo
Q Q
Consequently, the expression
to
Lo
Q th
is well-defined. It also follows that
to to
/ /v’\npl In,| < const/ /112( t) < oo
t1 Q t1 Q

Since Vrn(+,t) and v are bounded and o > pq, we obtain

/ / v [Vl <const/ /U < const [|v[|7F1 / /qu < 00, (5.6)

where we have used (4.3). The hypothesis ¢ > pg implies that @ > ¢. Hence, the
function ®(s) = sq is Lipschitz on any bounded interval in [0, c0). Since

Vo* =V (v?) = &' (v!) V!
and v? is bounded, it follows that
Vo < C'|Vvi].

We obtain that

to to
/ / V)l < ¢ / / TP P + 00 [P
t1 Q t1 Q
to
< C/ /]Vvq\p—irv"wn\p
t1 Q

< o0,

where we have used (4.3) and (5.6). Hence, all the integrals in (5.3) are well-defined.
Let us record for a later usage that

vy € LY (I; Wy()) (5.7)

loc

12



because

to to to
/ /(van)p—l— IV (v*n)[? gconst/ /v"—l—/ /!V(van)\p < 0.
t1 Q t1 Q t1 Q

Proof of Lemma 2. Let us rewrite (4.7) in the form
q" PO < div (v™|Vu['? Vo) (5.8)

where
m=(q¢—1)(p—1). (5.9)

Multiplying (5.8) by v*~!n? and integrating it over the cylinder Q = Q x [t, %], we
obtain

ql_p/ v P < / div (v™ Vol Vo) v P
Q Q
= —/ o™ |Vv|p_2 VoV (kalnp)
Q
= —/ o™ Vo' 2 Vo [(A = 1) 0’ 2PV + pot T ]
Q
== (= 1) [T = p [ T (V0. v)
Q Q
<= 1) [T e [T v,
Q Q
(5.10)
Observe that, for any fixed ¢, the function v*~'n? belongs to VVO1 () which allows
to use the integration-by-part formula without the boundary term. Indeed, we have
v? € WHP(Q) by the definition of a weak solution, which implies v*~1 € Whr(Q)

because v is bounded and A — 1 > ¢ by (5.5), whence the inclusion v’\_lnp c Wol’p(Q)
follows because 7 is compactly supported in €.

Since
Atm—2=A+(@—1D(p—-1)—-2=XA+(p—-1)qg—1—-p=AX+d—p=0—p,

we rewrite (5.10) as follows:
ql_p/ v < — (X — 1)/ V7P| VolP 0P +p/ TP P P L (5.10)
Q Q Q

Since ¢ > p, the function v enters all the integrals in (5.11) in non-negative powers;
hence, the integrals are finite.

Next, let us use the following inequality for all X, Y >0 and € > 0:

b 1
XY <P XP 4+ —YP
ep

13



where p’ = ]% is the Holder conjugate of p (here we use that p > 1). Applying this

inequality with
X =08 |[VolP ' Pt and Y = olPHE0 |y
(where ¢ and £ are yet to be determined) we obtain
_ / _ / 1
PV V| = XY < (o Vo) o (0 |l
/ / 1
= P8P |Vv|p nP + _pv(o—p+1—£)p |V77|p .
€

We would like to have

whence

With this £ we have

(c—p+1—-¢&p= (a—p—kl—(az;p))p: (JT?p—I—l)p:a

and
VTPV T O < P07 Vo 0% [Vl
&

It follows that
/ 1
ql_p/ v P < — (A — 1)/ V7P |VolP P +p/ {sp VTPV g+ —0” |V77|p}
Q Q Q <
=— <)\ -1 —pgp/> / V7P |VulP P + £/ v [VnlP. (5.12)
Q & Jq

On the other hand, we have

IV (v*n)” = [av* 'nVu + v*Vn[”
< 2= LaPyPle= D) |7y [P P 4 2010 |V
= 9p—1,pyo—p |VU’p " + op—1,0 |V77|p,

where we have used that, by (5.2),
pla—1)=0—p.
It follows that
VPV > 217PamP [V (0% ) P — a7Po” [Vl

Substituting into (5.12) yields
1-p A-1_p p’ 1-p —p « p
q /vtv n S—(x\—l—pé)Q a /|V(U7})|
Q Q

14



+ ((A —1 —pep/> o+ 8%) /Qv" IVn|P.

Hence,
)\/ v P < —cl/ |V(vo‘77)]p+02/ V7 |Vnl?
Q Q Q
where
c1 = APt ()\ -1 —pap/) 217PqP
and

cy = A\gP™1 ((A —1—p)a P+ gp) .

We choose ¢ so small that ¢; > 0, that is,

pe? < A —1.
Since
to
A / v = / O P = { / UW’] —p / v,
Q Q Q t1 Q
we obtain
to
{/ v’\npl — /\/ vthlnanp/ v P,
9) t1 Q Q
<—a [ IV@P e [ v [varep [ P
Q Q Q
and, hence,

to
[ / n} e / V (o) < / oo, + 0" |Vl
Q th Q Q

Finally, let us specify ¢; and ¢y. Let us choose € so that

|
P
pl =35 (A—1)

that is

ci=AAN—1)27P¢ aP | (5.13)

It follows that

co = AP ! (% A=1)a P+ p)

b1 1 -p P
~ g (5()\—1)04 +(%()\—1)/p)p/pl>

()\ _ 1)17/11’

A=1Da?+

N | —

15



Since

—+1 +1=p
4 p/(p—1)
we have
2P~ 1ppgp—1
o =N\ =1) ¢ ta P+ 5.14
2 2 ( )q (A—l)p_l ( )
| ]

Remark. For the future we need the ratio 2. It follows from (5.13) and (5.14) that

€ g1y y 2
c A=D1 AN =1)2PaP
22p—15p
— or—1
oo

where we have used that ap = o. Since 0 = A + 0, we obtain

02 — op— 1 22p—1 ()\"‘(S)p
C1 ()\ — 1)1)
It follows that, for all A > 2,
2 <o (5.15)
&1

where (), , depend only on p and ¢ but does not depend on .

Remark. Let obtain an upper bound of ¢;. Using

o A+0
og= - = —
p p
we obtain 1/\(/\ ) JUS——
Co = p 1pp ppq 1
2 (A +6)” (A—1)""
AsA>2and A+ > p > 1, it follows that
cg < Cp NP (5.16)

Of course, if p > 2 then ¢y is uniformly bounded by a constant C,, independently of
A, but if p < 2 then ¢, may grow with A as \*7?.

Lemma 3. Let M be geodesically complete. Let v = v (x,t) be a bounded non-negative
subsolution to (4.7) in M x I. Then, for all large enough X, including A = oo, the
function

t= ol Ol

is monotone decreasing. Consequently, if I = [a,b] then

1Vl oo (arry < M1V Gy @) oo ary -

16



Proof. If M is geodesically complete, then W, 7 (M) = WhP(M). Hence, v’ (-, t) €
WyP(M) for any t € I, and we can use the argument in the proof of Lemma 2 with
n = 1 (without assumption that n(-,¢) is compactly supported). Assuming that A
is large enough so that o := X\ 4 J satisfies (5.1), we obtain from (5.3) that, for all

ti1,t9 € ], t1 < 1o,
to
M t1

which proved the claim for a finite A. The case of an infinite A is obtained then by
letting A — oco. ®

6 Sobolev and Moser inequalities

Let B be a precompact ball in a manifold M of dimension n. The Sobolev inequality
in B of order p says the following|: for any non-negative function w € W, " (B)

( / wm)wssg R (6.1)

where k > 1 is some constant and Sg is called the Sobolev constant in B. The value
of x is independent of B and can be chosen as follows:

K = if n > p,

n—p
and k is an arbitrary real number > 1 if n < p.

We always assume that Sp is chosen to be minimal possible. In this case the function
B~ S B

is clearly monotone increasing with respect to inclusion of balls.

Fix a precompact ball B C M and set ) = B x I, where I C R is an interval Assume
that the Sobolev inequality (10.5) holds in B with exponent x > 1. Let «’ be its Holder
conjugate. Set

1 k—1
V= — = .
K K

Lemma 4. Let w € LP(I; Wy(B)) be a non-negative function. Then

/ wPH) < S (/ |Vw|p> sup (/ wp) (6.2)
Q Q tel B

Proof. By the Holder inequality, we have, for any fixed ¢ € I,

1/k 1/K'
e = ()
B B B B

17




-/, >j ()
(L) s ([e)

where we have used that vs’ = 1.

By the Sobolev inequality (6.1) we have, for any ¢ € I,

1/k
(/ wp”) < SB/ |Vw|”.
B B
/ w’) < Sp (/ |Vw|p) sup (/ wp> :
B B tel \JB

Integrating this inequality in ¢ € I gives (6.2). m

It follows that

7 Comparison in two cylinders

Here we assume that
d:=q(p—1)—12>0.

Lemma 5. Consider two balls B = B (z,r) and B’ = B (x,r") with 0 <1’ < r, and
two cylinders
Q=Bx|[0,T], Q=B x[0,T].
Assume that B is precompact. Let o be any real such that
0 > max(p, pq). (7.1)
Let v be non-negative bounded subsolution of (4.1) in Q such that

v(-,0) =0 in B.

(2-p)v v
/ v ) < CSgo 11’ (/ UJ) (/ Ua+5) ’ (7.2)
/ (r — T/)p( +v) 0 0

where C' depends only on p, q and v, while it is independent of o.

Then

o Y

| 1

o Gom

M

18



Proof. Asin Lemma 2, set A =0 —¢§ and o = % and recall that o > 1 and A\ > 2. Let
n = n(z) be a bump function of B’ in B. By (5.7), we have

w:=v*n e L ([0,T]; Wol’p(B))
Applying (6.2) with this function w and using
w? = o7,

we obtain that

/UU(1+V)77P(1+V) SSB (/ |V(Ua77)|p) sup (/ Uanp> ]
Q Q te[0,T] B

By (5.4) we have
[venr=2 [ e,
Q 1 JQ

sup (/ vAnp) S@/v"\vnlp-
t€[0,7) B Q

Let us use the latter inequality also for other values of the parameters as follows:
s ([ er) < [ oo
t€[0,T B Q

oc=0c+0 and N =0 —§=o0.

sup </ U"??p) < 0'2/ v |Vl
t€[0,T] B Q
It follows that

/UU(1+y)np(1+u) SSBQ/UU|VT]|IJ (CIQ/UO'/ ’vmp) .
Q 1 Jg Q

Using that 7 =1 in B’ and |Vn| < -1 we obtain

/\V v
/ v < SBC_2—<C2> ) (/ UU) (/ UJ/) '
' 1 (ry — )’ Q Q

By (5.15) we have

and

where

Then we have

and (5.16)

Hence, (7.2) follows. =
Corollary 6. Under the hypotheses of Lemma 5, we have

2=p)v ||| 1+v
/ o (H+Y) < CSpo™? Hv||L°°(Q) (/ Uo‘) (73)
/ - (r — 7n/>z>(1+1/) 0

where C' = C(p,q,v).
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8 Auxiliary lemma about sequences

Lemma 7. Let a sequence {Ji}-, of non-negative reals satisfies
Ak
Jpp1 < EJ;W for all k > 0.

where A, D,w > 0. Then, for all k > 0,

1/ 1\l (14w)" —k—1/ 1/w
Je < (D) ge) T (ark D)
In particular, if

D> AY g8,

then, for all k > 0,
J, < AR .

Proof. Consider the sequence
w (1+"J)k w
Xy, = ((A”“’D‘l)l/ J0> (AR Dy

Then we have
1/w 1/w

Xo = (AY*D™ )" Jy (A7V*D) " = Jy

and

(1+w)k+1

k k
B (0 )
W)k
_ ((Al/“’D_l)l/w Jo) (14w) Ak p-1 (A—k—l/wD) (A—k—l/wD)%

)1/w Jo) (1+w)* !

14w
w

(A—k—l/wD)

1/w

e A—l/w (A—k—l/wD)

1/w

(A_(k+1)—1/wD) 1w _ Xk+1-

((Al/“’D_l
( To

(

Hence, by comparison we obtain J, < X}, which was to be proved.

w)ETL
Al/“’D_l) )(1+ )

For the second statement, if (8.3) holds then we can assume without loss of generality

that
D= AYe gy,

Substituting this value of D into (8.2) we obtain
T < (A7RJ2)H

which is equivalent to (8.4). m
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9 Mean value inequality
We assume here that
d=q(p—-1)—1>0.

Lemma 8. Let B = B (9, R) be a precompact ball. Let u be a non-negative bounded
subsolution of (4.1) in

Q=B x[0.1]
such that
u(-,0) =0 in B.
Let o be as in (7.1). Then, for the cylinder
, 1
Q = §B X [O,t],
we have )
CSg \° s
ol < (s ) Nellimi@ ol o.)

where C' = C (p,q,v,0).

M

Remark. Since

t 1/o )
el gy = ( I u) < (@) ull ey

we obtain from (9.1) that

1
cs v 7 148
Joll ey < ((W) tu(B)> Jully 5. (9:2)

Remark. Unlike Lemma 5 where we have explicitly traced the dependence of the con-
stants on o, in (9.1) and (9.2) the dependence of C' on ¢ is unimportant because these
inequalities will be applied only with a fixed o.
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Proof. Consider a sequence of radii

1
T = (5 —|— 2_k_1) R

so that 7o = R and 1, \, %R as k — oo. Set

Bk =B ((L’Q,T’k) ) Qk - Bk X [Ovt]

so that
By=B, Qo=0Q and Q= klim Qr=0Q"
t
0
Y,
Set also
or =0 (1+v)"
and
Jk :/ u’*.
k
Applying (7.3) to the cylinders Q) and Qy1, we obtain
(2—p)v ov
Jri1 :/ o+ (1+v) < CSBkUk ||u”1L°°(Qk) / U’k
Quts (re — i)™ o,
2—p)v ov
_ 85,0 |ullf g i
(rk — Tk+1)p(1+y) ’
Cokp(14v) (1+ V)k(2—p)v oPvg, ||u||iV°°
Rp(1+v) k

kny— v
< A*D7L,
where
A= 2v(+) (1 4 )PP >

and

ov
L OSp

Rp(1+v) ’
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where we have absorbed ¢>?)" into C'. By Lemma 7 we conclude that

1/v -1 1/v (14" —-1/v 1/v
< (D)) (A7)

(1+)k—1 (1+v)k—1

— AT pE

It follows that

1/op 1 =k K 1/c
( / u""‘) = it < A D ( / uff) .
Qk Q

As k — o0, we obtain

1

11 1 ov
HUHLOO(Q’) < Ae? Do HUHLU(Q) = <A”D 1) HUHLU(Q)

1
CSp l[ul P\
1 L=(Q)
< (AV Rpr(1+v) HuHLJ(Q)

CSp \7 , .2
=\ pea+n) ||u||L0°(Q) ||u||Lff(Q)7

where Av was absorbed into C. m

10 Normalized Sobolev constant

Let B be a precompact ball in M and w € W,”(B). Dividing the Sobolev inequality
(6.1) by u(B)'*, we obtain

(]{9 wfm) " u(BY'Suf. [Vul

where

and

(]é wm) . < (u(B)"Sp)"'" (][B IVw|p) Up, (10.3)

Denoting by r(B) the radius of B, let us define a new quantity

UB) = ﬁ <T(Si)p>l/y

so that
(10.4)



and

Hence, (10.3) can be rewritten in the form

(]{9 IVw|”> "y Lﬁﬁ;;’ (]é wzm) ol (10.5)

It is clear from (10.5) that the value of x can be always reduced (by modifying the
value of «(B)). It is only important that x > 1. In fact, the exact value of x does not
affect the results, although various constants depend on k.

The constant ¢(B) is called the normalized Sobolev constant in B. It is known that if
M is complete and Ricciy; > 0 then, for all balls B, the normalized Sobolev constant
t(B) is bounded below by a positive constant.

11 Propagation speed inside a ball

We assume here that M is geodesically complete and
d=q(p—1)—1>0.

Theorem 9. Let u be a bounded non-negative subsolution of (4.1) in M x [0,T] with
the initial condition u (-,0) = ug. Let By = B (zy, R) be a ball in M such that

ug = 0 in By.

Set
to =nu(Bo)RP HUUHZi(M) AT, (11.1)

where 1 1s a sufficiently small positive constant depending only on p,q,v. Then

1
u=0 1n §B0 X [O,to].
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Proof. Set r = 1R and fix for a while a point x € 1B, so that B := B (x,r) C By.
Fix also some ¢ € (0,7 and set

Qu=2""Bx[0,t] and Ji = [[ull pw(q,)-

z =N
Oi+1| Ok

Our purpose is to obtain an upper bound for Ji(z) = [[ul (g, that ensures that
Je(z) — 0 as k — oo uniformly in z € $B.

Let us fix o satisfying (7.1), for example, o = max (p, pq) . Applying inequality (9.2) of
Lemma 8 in the cylinders Q, Qk1+1, we obtain

1 o

CSyrp \ . ok 142
Jierr = [[ull g (gy) < (W) tn27B) | lull =gy

1
1 o
(k1) 20E0) CSp, \* 142
< 2B ((W tu(Bo) | . 7,

where we have used that S, x5 < Sp, and u(27*B) < u(Byp). By (10.4) we have

| RP /v RV
(S0) ‘<<L<BO>M<BO>>") ~ ((Bo)u (By)’

whence

5, )i - |
w(By) = — w(By) = .
(RP(H—V) (Bo) RP%L(BO),M (Bo) (Bo) 1(Bo) Rp

It follows that

1
(141) Ct o g4
Jep < 205055 < > e

L(Bo)Rp
— AkD_1J1i+w,
where 5
w = ) A:Qp(};:;u)
g
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and )
Ct I3
Dl'=A—| .
(L(BO)R”)

Dt < ATV v (11.2)

By Lemma 7, if

then, for all £ > 0,
Je < AT, (11.3)

The condition (11.2) is equivalent to

1
Ct \°
A < ATHe g
(L(BO)R”) B ’

t < CN(By)RPJI,®, (11.4)
where A is absorbed to C'. Since by Lemma 3

that is, to

Jo = [[ull e @) = lluoll g ary -
the condition (11.4) is satisfied for ¢ = ¢y, where ¢y is determined by (11.1) with
n=C
Hence, for ¢t = t, we obtain from (11.3) that, for any k,

HUHLOO(2*’“B><[O,t]) < AT [[uoll 1 -

For any k, we cover the ball %Bo by a finite sequence of balls B (xi, 2"%‘) with z; € %Bo.

Since for all ¢
||UHLOO(B(xi,Q—kr)X[O,t]) < AR ||u0HL°<> )
we obtain that

||U’||L°C(%Bo><[0,t]) < ATH [[o| oo -

Finally, letting k — oo, we obtain that v = 0 in 1By x [0,¢], which was to be proved.
[
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12 Propagation speed of support

In this section we assume M is geodesically complete, that is, all geodesic balls are

precompact. Let also
d=q(p—1)—1>0.

For any set K C M and any r > 0, denote by K, a closed r-neighborhood of K.

Theorem 10. Let u(x,t) be a non-negative bounded subsolution of (4.1) in M x R,
with the initial function ug = u (-, 0) . Assume that the support K = supp ug is compact.
Then there exists T > 0 and an increasing continuous function p : (0,T) — Ry such
that

suppu (-,t) C Kpyu

forallt € (0,T).

Here both T and p (¢) may depend on u. The function p(t) is called a propagation rate
of w.

Proof. Let us fix a reference point oy € K and define the following function for all
r > 0: 7
-5
@ (r) = WL(B(CUOW))TP ol £oo (ary - (12.1)

Denote
ro = diam K.

Let us prove that that, for any r > r,
t<o(@Br+ry) = suppu(-t) C K,,

that is,
u(,t) =0 in M\ K,.

Let us first prove that
u(-,t) =0 in Ky, \ K,.

Fix a point = € Ky, \ K,.We have

d(z,K) <2r=d(x,z0) < 2r+ .
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<t

—_—
'

It follows that
B (z,r) C B(x¢,3r +19) = B(x0, R)

where
R :=3r+r.

The condition r > ry implies R < 4r. Since B(x,r) C B(xzg, R), we have by the
monotonicity of function (10.4) that

u(B(x, 1)) (B(x, )

rp/l’

B(wo, R)p(B(zo, R))

> L<
= Rp/v

It follows that

W(Bla.r)m v\l p(Bao. R)
\(B(xo, R)) R? > (%) 1(B(x.7))

R
Z WL<B($O’ R))Rp

Therefore, the hypothesis

t < o(R) B(zo, R)R” [[uo|| 72 a1,

_ Ty
T pptp/v

implies that
-5
t < mu(B(w,r))r? |[uoll oo ar)
Since u(+,0) = 0 in B(z,r), we conclude by Theorem 9 that

u(-,t) =0 in B(x,r/2).
Since this is true for any = € Ks, \ K,, we obtain that
u(,t) =0 in Ky \ K,. (12.2)

Let us show that also
u(- 1) =0 in M\ K. (12.3)
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Fix some s >> 2r and let 1 (z) be a bump function of K\ Ky, in Ky, \ K,; that is, n
is the following function of |z| := d (x, K):

1 (X))

r 2r s 2s x|

Function n

Applying the inequality (5.4) of Lemma 2 with some fixed A, we obtain

3 t
{/ u’\np} < 02/ / u’ |Vl (12.4)
M 0 0 JM

Since u (+,0) = 0 on suppn and n = 1 on K, \ Ks,, the left hand side here is bounded

below by
/ u(-,t).
K.S\KQT

Since n = 0 in K,, u(-,7) = 0 in Ky, \ K, for all 7 < ¢ (by (12.2)), and Vn = 0 in
K\ K, the right hand side in (12.4) is equal to

t
02// u” VP
0 JM\K,

1
IVn| < —in M\ K,
s

Since

we obtain that

¢ t
/ u(-,t) < 02/ / u’ VP < 0—2/ / u’.
K \Kar 0o Ja\K, sP Jo Sk,

The right hand side goes to 0 as s — oo, which implies that u (-,t) = 0 in M \ Ky,
thus proving (12.3).

Now let us define in [rg, 00) a function

P (r) = 1 sup ¢ (3s +rg)

2 ro<s<r
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so that 1 (r) is monotone increasing. If ¢ < 4 (r) then ¢t < ¢ (3s+1y) for some
s € [ro, 7], which implies by the first part of the proof that

u(-,t) =0 in M\ K

and, hence,
u(-,t) =0 in M\ K,.

It is unclear whether v is continuous or not. As a monotone function, ¥ may have only
Jump discontinuities. By subtracting all these jumps, we obtain a continuous monotone
function 1 < 1 with the same property|:

t <o) = ul-t) =0 in M\ K,. (12.5)

~ 1
As a continuous monotone increasing function, ¢ has an inverse p = ¢  on [tg,T)
where B B

to = 1(rg) and T' = sup .

Let us extend p(t) to t < to by setting p(t) = p(ty). Then r = p(t) implies t < ¥(r),
and by (12.5)
u(,t) =0 in M\ K,,

which was to be proved. m

13 Curvature and propagation rate

In this section we assume again that M is geodesically complete and
d=q(p—1)—1>0.

Theorem 11. Let M be geodesically complete, non-compact, and let Riccipy > 0. Let
u be a bounded non-negative subsolution of (4.1) in M x Ry with the initial condition
u(+,0) =wug. Set K =suppug. Then, for any t > 0,

supp u(-,t) C Koy,
where C' depends on |ug|| ., p, g, n.
Proof. It is known that on such manifolds «(B) > const > 0 for all balls B C M.
Let B = B(xz,r) be any ball that is disjoint with K. It follows from Theorem 9, that is
=)
t<er? “uOHLOO(M) 5
where ¢ > 0 is a small enough constant, then
.1
u(-,t) =0 in §B.

Hence, if
r> Ot/
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where C' = ¢~ /7 HUO”(;,/OI;(M) , then

1
supp u(+,t) N §B = 0.

It follows that
supp u(+,t) C K1

P

whence the claim follows. m
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