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1 Introduction

We are concerned with an evolution equation

∂tu = Δpu
q (1.1)

where p, q > 0, u (x, t) is an unknown non-negative function, and Δp is the p-Laplacian:

Δpv = div
(
|∇v|p−2 ∇v

)
.

Equation (1.1) was introduced by L. S. Leibenson in 1945 in order to describe filtration
of turbulent compressible fluid through a porous medium. The physical meaning of u
is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the
medium taken by the liquid. Parameter p characterizes the turbulence of a flow while
q − 1 is the index of polytropy of the liquid, that determines relation PV q−1 = const
between volume V and pressure P .

The physically interesting values of p and q are as follows: 3
2
≤ p ≤ 2 and q ≥ 1. The

case p = 2 corresponds to laminar flow (=absence of turbulence). In this case (1.1)
becomes a porous medium equation ∂tu = Δuq, if q > 1, and the classical heat equation
∂tu = Δu if q = 1.

From mathematical point of view, the entire range p > 1, q > 0 is interesting.
G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1.1)
in Rn that are nowadays called Barenblatt solutions. Let us assume that

q (p − 1) > 1 .

In this case the Barenblatt solution is as follows:

u (x, t) =
1

tn/β

(

C − κ

(
|x|
t1/β

) p
p−1

)γ

+

where C > 0 is any constant, and

β = p + n [q (p − 1) − 1] , γ = p−1
q(p−1)−1

, κ = q(p−1)−1
pq

β− 1
p−1 . (1.2)

Parameter β determines the space/time scaling and is analogous to the walk dimension.

It is obvious that, for the above Barenblatt solution,

u(x, t) = 0 for |x| > ct1/β

so that u(∙, t) has a compact support for any t. One says that u has a finite propagation
speed. Here are the graphs of function x 7→ u(x, t) for different values of t in the case
n = 1.
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Case p = 2.5 and q = 2
Case p = 2.5 and q = 1.1

Assume now that
q (p − 1) < 1.

Then we have γ, κ < 0, and the Barenblatt solution is

u (x, t) =
1

tn/β

(

C + |κ|

(
|x|
t1/β

) p
p−1

)−|γ|

,

that is, it is positive for all x, t.

In the borderline case
q (p − 1) = 1,

the Barenblatt solution is

u (x, t) =
1

tn/p
exp

(

−c

(
|x|
t1/p

) p
p−1

)

,

where c = (p − 1)2 p−
p

p−1 . Hence, if q (p − 1) ≤ 1 then u has infinite propagation speed.

Of course, if here p = 2 then q = 1, and we obtain the fundamental solution of the
heat equation ∂tu = Δu:

u (x, t) =
1

tn/2
exp

(

−
1

4

(
|x|
t1/2

)2
)

,

2 Leibenson’s equation on manifolds

Consider on an arbitrary Riemannian manifold the operator

Lv = Δp (vq)

where
p > 1 and q > 0,

and
Δpu = div

(
|∇u|p−2 ∇u

)
.
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We will be concerned with the associated evolution equation

∂tv = Δp(v
q)

that is called the Leibenson equation. Our aim is to prove the following theorem.

Theorem 1. If q(p − 1) > 1 the any bounded non-negative solution to the Leibenson
equation has a finite propagation speed.

The exact meaning of “finite propagation speed” will be explained later on. The proof
will also be given later on.

Now we show how to obtain the Barenblatt solutions in Rn. We start with deriving a
chain rule for the p-Laplacian. Consider on an arbitrary manifold the p-Laplacian

Δpv = div
(
|∇v|p−2 ∇v

)
, (2.1)

where p > 1. Let us compute Δpf (u) assuming that f is smooth enough and

f ≥ 0 and f ′ ≤ 0.

We have ∇f(u) = f ′ (u)∇u and

Δpf (u) = div(|f ′ (u)∇u|p−2
f ′ (u)∇u)

= div
(
|f ′ (u)|p−2

f ′ (u) |∇u|p−2 ∇u
)

= − div
(
|f ′ (u)|p−1 |∇u|p−2 ∇u

)

= − |f ′ (u)|p−1
div
(
|∇u|p−2 ∇u

)
−∇

(
|f ′ (u)|p−1

)
|∇u|p−2 ∇u

= − |f ′ (u)|p−1
Δpu −∇

(
(−f ′ (u))

p−1
)
|∇u|p−2 ∇u

= − |f ′ (u)|p−1
Δpu + (p − 1) (−f ′ (u))

p−2
f ′′ (u)∇u |∇u|p−2 ∇u

= − |f ′ (u)|p−1
Δpu + (p − 1) |f ′(u)|p−2

f ′′ (u) |∇u|p .

Hence, we obtain

Δpf (u) = − (−f ′ (u))
p−1

Δpu + (p − 1) (−f ′(u))
p−2

f ′′ (u) |∇u|p . (2.2)

3 Solutions on models

3.1 Model manifolds

Let M be a model manifold R+ ×Sn−1 with the polar coordinates (r, θ) (where r ∈ R+

and θ ∈ Sn−1) and with the Riemannian metric

ds2 = dr2 + ψ2 (r) dθ2.
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Here dθ2 is the standard Riemannian metric on Sn−1 and ψ is a smooth positive function
on R+. For example, Rn \ {0} can be considered as a model manifold with ψ(r) = r.

Denote by S(r) the boundary area function

S (r) = ωnψ(r)n−1.

For example, in Rn we have S(r) = ωnrn−1.

It is known that the Laplace-Beltrami operator Δ on M admits the following repre-
sentation in the polar coordinates:

Δ =
∂2

∂r2
+

S ′

S

∂

∂r
+

1

ψ2(r)
Δθ,

where Δθ is the Laplace-Beltrami operator on Sn−1. In particular, considering the polar
radius r as a function in M , we obtain that

Δr =
S ′

S
. (3.1)

For example, in Rn we have Δr = n−1
r

. Using (3.1) and |∇r| = 1, we obtain that

Δpr = div
(
|∇r|p−2 ∇r

)
= div (∇r) = Δr =

S ′

S
.

Setting in (2.2) u = r, we obtain

Δpf (r) = − (−f ′ (r))
p−1

Δpr + (p − 1) (−f ′ (r))
p−2

f ′′ (r)

= − (−f ′ (r))
p−1 S ′

S
+ (p − 1) (−f ′ (r))

p−2
f ′′ (r) . (3.2)

Note that
(
(−f ′ (r))

p−1
S
)′

= (−f ′ (r))
p−1

S ′ − (p − 1) (−f ′ (r))
p−2

f ′′ (r) S.

Hence, (3.2) can be rewritten in the form

Δpf (r) = −
1

S

(
S (−f ′ (r))

p−1
)′

.

5



The parabolic equation ∂tu = Δpu for a function u = u (r, t) (such that u ≥ 0 and
∂ru ≤ 0) becomes therefore

∂tu = −
1

S
∂r

(
S (−∂ru)p−1) , (3.3)

and the Leibenson equation ∂tu = Δp (uq) becomes

∂tu = −
1

S
∂r

(
S (−∂ru

q)p−1) . (3.4)

3.2 Barenblatt solutions

We solve here (3.4) assuming p > 1, q > 0 and

S (r) = rα−1,

where α is a positive real. In particular, for α = n ∈ N, this will give us the Barenblatt
solution in Rn.

The equation (3.4) becomes with this S (r)

∂tu = −
1

rα−1
∂r

(
rα−1 (−∂ru

q)p−1) , (3.5)

and we look for a solution in the form

u (x, t) = taf
(
rtb
)
,

where f is a decreasing non-negative function and a, b are (negative) reals, yet to be
determined.

Let us require in addition that the solution u (x, t) has a constant L1-norm, that is,

∫

M

taf(rtb)dμ = const < ∞,

where μ is the Riemannian measure. Computing the integral in the polar coordinates
and using

dμ = ψ(r)n−1drdθ =
1

ωn

S(r)drdθ,

we obtain that ∫ ∞

0

taf(rtb)rα−1dr = const < ∞.

A change s = rtb in the integral gives
∫ ∞

0

taf(rtb)rα−1dr =

∫ ∞

0

taf (s)
(
st−b

)α−1
t−bds = ta−bα

∫ ∞

0

f (s) sα−1ds.

Hence, we must have ∫ ∞

0

f (s) sα−1ds < ∞ (3.6)
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and
a = αb.

Using again the variable s = rtb, we obtain

∂tu = ∂t

(
taf
(
rtb
))

= ata−1f(rtb) + taf ′(rtb)rbtb−1

= bαta−1f(rtb) + bta−1rtbf ′(rtb)

= bta−1 (αf(s) + sf ′(s))

=
bta−1

sα−1
(sαf (s))′

and

∂ru
q = quq−1∂ru

= q
(
taf
(
rtb
))q−1

∂r

(
taf
(
rtb
))

= qta(q−1)f(rtb)q−1ta+bf ′(rtb)

= qtaq+bf(s)q−1f ′(s).

Hence, (3.5) is equivalent to

bta−1

sα−1
(sαf (s))′ = −

1

rα−1
∂r

(
rα−1

(
−qtaq+bf(s)q−1f ′(s)

)p−1
)

= −
qp−1t(aq+b)(p−1)

(st−b)α−1
∂r

(
(st−b)α−1

(
−f(s)q−1f ′(s)

)p−1
)

= −
qp−1t(aq+b)(p−1)

sα−1
tb∂s

(
sα−1

(
−f(s)q−1f ′(s)

)p−1
)

. (3.7)

We require that the powers of t in the both sides to match, that is,

(aq + b) (p − 1) + b = a − 1,

which together with a = bα yields

[(αq + 1) (p − 1) + 1 − α] b = −1,

[α (q (p − 1) − 1) + p] b = −1.

Setting

δ = q(p − 1) − 1

we obtain
(αδ + p) b = −1

whence

b = −
1

αδ + p
.

In particular, we see that

b < 0 ⇔ δ > −
p

α
⇔ q >

1 − p/α

p − 1
. (3.8)
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In what follows, we always assume that (3.8) is satisfied.

With this choice of b and a = αb, the powers of t and s in (3.7) cancel out, and we
obtain an ODE for f :

b (sαf (s))′ = −qp−1
(
sα−1

(
−f(s)q−1f ′(s)

)p−1
)′

.

Hence, we have

bsαf (s) = −qp−1sα−1
(
−f(s)q−1f ′(s)

)p−1
(3.9)

(ignoring a constant of integration). Since b < 0, we obtain

|b| sf = qp−1
(
−f q−1f ′

)p−1
,

|b| sf = qp−1 (−f ′)
p−1

f (q−1)(p−1),

f (q−1)(p−1)−1 (−f ′)
p−1

=
|b| s
qp−1

,

f (q−1)− 1
p−1 f ′ = −

(|b| s)
1

p−1

q
.

Set

γ := q −
1

p − 1
=

q (p − 1) − 1

p − 1
=

δ

p − 1

and rewrite the above ODE in the form

fγ−1f ′ = −
|b|

1
p−1

q
s

1
p−1 (3.10)

Assume first that δ 6= 0, that is, γ 6= 0. Then (3.10) is equivalent to

(fγ)′ = γf γ−1f ′ = −
γ |b|

1
p−1

q
s

1
p−1 ,

and integrating it, we obtain
fγ = C − κs

p
p−1

where

κ =
p − 1

p

γ |b|
1

p−1

q
=

δ

p

|b|
1

p−1

q
.

Hence,

f (s) =
(
C − κs

p
P−1

)1/γ

,

with a positive constant C.

Case 1. Let δ > 0 that is,
q (p − 1) > 1,

(which implies also that b < 0).
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Then κ > 0 and we see that f (s) is well defined for s ∈ [0, s0] where s0 is determined
by

C = κs
p

P−1

0 .

Let us extend f (s) for all s ∈ [0,∞) by setting f(s) = 0 for s > s0, that is,

f (s) =
(
C − κs

p
P−1

)1/γ

+
.

Then this function f is a weak solution of the ODE (3.10) in [0,∞] because f is contin-
uous in [0,∞] and solves (3.10) in the both intervals [0, s0] and [s0,∞). Consequently,
we obtain in this case a (weak) solution of (3.5)

u (x, t) = tαbf
(
rtb
)

=
1

tα/β

(

C − κ
( r

t1/β

) p
p−1

)1/γ

+

where

β = −
1

b
= αδ + p > 0.

Clearly, this solution has a finite propagation speed. Note that in this case β > p.

Case 2. Let δ < 0 that is,
q (p − 1) < 1.

Since κ < 0, the solution

f (s) =
(
C + |κ| s

p
P−1

)−1/|γ|

is defined and positive for all s ≥ 0. Note that by (3.8)

p

p − 1

1

|γ|
=

p

(p − 1)
(

1
p−1

− q
) =

p

1 − q (p − 1)
=

p

−δ
> α,

that is,
f (s) ' s−(α+ε) as s → ∞

where ε > 0. Since also
f (s) ' const as s → 0

we obtain the finiteness of the integral (3.6).

We obtain in this case a solution

u (x, t) =
1

tα/β

(

C + |κ|
( r

t1/β

) p
p−1

)−1/|γ|

that is defined for all x and t > 0 and belongs to L1 (M) for any t > 0. Hence, this
solution has infinite propagation speed. Note that in this case β < p.

Case 3. Let δ = 0 that is,
q (p − 1) = 1,
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In this case γ = 0 and

b = −
1

αδ + p
= −

1

p
.

Then (3.10) becomes

f

f

′

= −
s

1
p−1

p
1

p−1 q

whence

ln f = −
1

p
1

p−1 q

s
p

p−1

p
p−1

= −κs
p

p−1 ,

where

κ =
1

p
1

p−1 q p
p−1

=
(p − 1)2

p
p

p−1

> 0.

It follows that
f (s) = exp

(
−κs

p
p−1

)

whence

u (x, t) =
1

tα/p
exp

(

−κ
( r

t1/p

) p
p−1

)

.

For example, in the case p = 2 and, hence, q = 1 we obtain κ = 1
4

and

u (x, t) =
1

tα/2
exp

(

−
1

4

r2

t

)

.

Hence, the finite propagation speed for the above solutions occurs if and only if δ > 0,
that is, q (p − 1) > 1.

4 Weak solutions

Let Ω be an open subset of M and I be an interval in [0,∞). By a subsolution of the
equation

∂tv = Δp (vq) (4.1)

in the cylinder Ω×I we mean a non-negative function v of an appropriate class satisfying

∂tv ≤ Δp (vq) . (4.2)

In fact, this equation is understood in a certain weak sense, and a function v is taken
from the following class:

v ∈ C
(
I; L2(Ω)

)
and vq ∈ Lp

loc

(
I; W 1,p(Ω)

)
.

That is, for any t ∈ I,

v (∙, t) ∈ L2 (Ω) , vq(∙, t) ∈ W 1,p(Ω),
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the function t 7→ v(∙, t) is continuous in L2(Ω), and, for any compact subinterval J ⊂ I,

∫

J

‖vq(∙, t)‖p
W 1,p(Ω) dt < ∞,

that is, ∫

J

∫

Ω

(vqp + |∇vq|p) dμdt < ∞. (4.3)

Let us first show that the Leibenson operator Lv = Δp (vq) can be rewritten in the
form

Lv = c div
(
vm |∇v|p−2 ∇v

)
(4.4)

for some c,m, that is,

div
(
|∇vq|p−2 ∇vq

)
= c div

(
vm |∇v|p−2 ∇v

)
. (4.5)

Indeed, we have
∇vq = qvq−1∇v

and
div
(
|∇vq|p−2 ∇vq

)
= qp−1 div

(
v(q−1)(p−1) |∇v|p−2 ∇v

)
.

Hence, (4.5) holds provided

m = (q − 1) (p − 1) (4.6)

and c = qp−1. The Leibenson equation becomes

∂tv = qp−1 div
(
vm |∇v|p−2 ∇v

)
,

and (4.2) becomes
∂tv ≤ qp−1 div

(
vm |∇v|p−2 ∇v

)
. (4.7)

5 Caccioppoli type inequality

We start here the proof of Theorem 1. The first step is obtaining a Caccioppoli type
inequality.

For simplicity of notation, we omit in all integrations the notation of measure. All
integration in M is done with respect to dμ, and in M ×R – with respect to dμdt. We
assume that

p > 1, q > 0

and use the notation
δ = q(p − 1) − 1.

Let Ω be an open subset of M and I be an interval in R.
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Lemma 2. Let v = v (x, t) be a bounded non-negative subsolution to (4.1) in a cylinder
Ω× I. Let η (x, t) be a Lipschitz non-negative bounded function in Ω× (0, T ) such that
η (∙, t) has compact support in Ω for all t ∈ I. Fix some real σ such that

σ ≥ max (p, pq) . (5.1)

Set

λ = σ − δ and α =
σ

p
. (5.2)

Then, for all t1, t2 ∈ I such that t1 < t2, we have

[∫

Ω

vληp

]t2

t1

+ c1

∫ t2

t1

∫

Ω

|∇ (vαη)|p ≤
∫ t2

t1

∫

Ω

[
pvληp−1ηt + c2v

σ |∇η|p
]
, (5.3)

where c1, c2 are positive constants depending on p, q, λ (see below (5.13) and (5.14)).

In particular, if η does not depend on t then

[∫

Ω

vληp

]t2

t1

+ c1

∫ t2

t1

∫

Ω

|∇ (vαη)|p ≤ c2

∫ t2

t1

∫

Ω

vσ |∇η|p . (5.4)

Let us explain why all the integrals in (5.3) are well defined. Observe that always
λ ≥ 2. Indeed, if q ≥ 1 then, using σ ≥ pq, we obtain

λ = σ − δ ≥ pq − (q(p − 1) − 1) = q + 1 ≥ 2, (5.5)

and if q < 1 then, using σ ≥ p, we obtain

λ = σ − δ ≥ p − δ = p − (q(p − 1) − 1) = (p + 1) − (p − 1) q > (p + 1) − (p − 1) = 2.

Since v (∙, t) ∈ L2(Ω) and v is bounded, it follows that, for any t ∈ I,
∫

Ω

vλ(∙, t) ≤ ‖v‖λ−2
L∞

∫

Ω

v2 (∙, t) < ∞.

Consequently, the expression [∫

Ω

vληp

]t2

t1

is well-defined. It also follows that
∫ t2

t1

∫

Ω

vληp−1 |ηt| ≤ const

∫ t2

t1

∫

Ω

v2 (∙, t) < ∞.

Since ∇η(∙, t) and v are bounded and σ ≥ pq, we obtain

∫ t2

t1

∫

Ω

vσ |∇η|p ≤ const

∫ t2

t1

∫

Ω

vσ ≤ const ‖v‖σ−pq
L∞

∫ t2

t1

∫

Ω

vpq < ∞, (5.6)

where we have used (4.3). The hypothesis σ ≥ pq implies that α ≥ q. Hence, the
function Φ(s) = s

a
q is Lipschitz on any bounded interval in [0,∞). Since

∇vα = ∇Φ (vq) = Φ′(vq)∇vq
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and vq is bounded, it follows that

|∇vα| ≤ C |∇vq| .

We obtain that
∫ t2

t1

∫

Ω

|∇ (vαη)|p ≤ C

∫ t2

t1

∫

Ω

|∇vα|p ηp + vαp |∇η|p

≤ C

∫ t2

t1

∫

Ω

|∇vq|p + vσ |∇η|p

< ∞ ,

where we have used (4.3) and (5.6). Hence, all the integrals in (5.3) are well-defined.
Let us record for a later usage that

vαη ∈ Lp
loc

(
I; W 1,p

0 (Ω)
)

(5.7)

because
∫ t2

t1

∫

Ω

(vαη)p + |∇ (vαη)|p ≤ const

∫ t2

t1

∫

Ω

vσ +

∫ t2

t1

∫

Ω

|∇ (vαη)|p < ∞.

Proof of Lemma 2. Let us rewrite (4.7) in the form

q1−p∂tv ≤ div
(
vm |∇v|p−2 ∇v

)
(5.8)

where
m = (q − 1) (p − 1) . (5.9)

Multiplying (5.8) by vλ−1ηp and integrating it over the cylinder Q = Ω × [t1, t2], we
obtain

q1−p

∫

Q

vtv
λ−1ηp ≤

∫

Q

div
(
vm |∇v|p−2 ∇v

)
vλ−1ηp

= −
∫

Q

vm |∇v|p−2 ∇v∇
(
vλ−1ηp

)

= −
∫

Q

vm |∇v|p−2 ∇v
[
(λ − 1) vλ−2ηp∇v + pvλ−1ηp−1∇η

]

= − (λ − 1)

∫

Q

vλ+m−2 |∇v|p ηp − p

∫

Q

vλ+m−1 |∇v|p−2 ηp−1 (∇v,∇η)

≤ − (λ − 1)

∫

Q

vλ+m−2 |∇v|p ηp + p

∫

Q

vλ+m−1 |∇v|p−1 ηp−1 |∇η| .

(5.10)

Observe that, for any fixed t,

vλ−1ηp(∙, t) ∈ W 1,p
0 (Ω),

which allows to use the integration-by-part formula without the boundary term. In-
deed, we have vq ∈ W 1,p(Ω) by the definition of a weak solution, which implies
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vλ−1 ∈ W 1,p(Ω) because v is bounded and λ − 1 ≥ q by (5.5), whence the inclusion
vλ−1ηp ∈ W 1,p

0 (Ω) follows because η is compactly supported in Ω.

Since

λ + m − 2 = λ + (q − 1) (p − 1) − 2 = λ + (p − 1) q − 1 − p = λ + δ − p = σ − p,

we rewrite (5.10) as follows:

q1−p

∫

Q

vtv
λ−1ηp ≤ − (λ − 1)

∫

Q

vσ−p |∇v|p ηp + p

∫

Q

vσ−p+1 |∇v|p−1 ηp−1 |∇η| . (5.11)

Since σ ≥ p, the function v enters all the integrals in (5.11) in non-negative powers;
hence, the integrals are finite.

Next, let us use the following inequality for all X,Y ≥ 0 and ε > 0:

XY ≤ εp′Xp′ +
1

εp
Y p

where p′ = p
p−1

is the Hölder conjugate of p (here we use that p > 1). Applying this
inequality with

X = vξ |∇v|p−1 ηp−1 and Y = v(σ−p+1−ξ) |∇η|

(where ε and ξ are yet to be determined) we obtain

vσ−p+1 |∇v|p−1 ηp−1 |∇η| = XY ≤ εp′
(
vξ |∇v|p−1 ηp−1

)p′
+

1

εp

(
vσ−p+1−ξ |∇η|

)p

= εp′vξp′ |∇v|p ηp +
1

εp
v(σ−p+1−ξ)p |∇η|p .

We would like to have
ξp′ = σ − p

whence

ξ :=
σ − p

p′
.

With this ξ we have

(σ − p + 1 − ξ) p =

(

(σ − p) + 1 −
(σ − p)

p′

)

p =

(
σ − p

p
+ 1

)

p = σ

and

vσ−p+1 |∇v|p−1 ηp−1 |∇η| ≤ εp′vσ−p |∇v|p ηp +
1

εp
vσ |∇η|p .

It follows that

q1−p

∫

Q

vtv
λ−1ηp ≤ − (λ − 1)

∫

Q

vσ−p |∇v|p ηp + p

∫

Q

[

εp′vσ−p |∇v|p ηp +
1

εp
vσ |∇η|p

]

= −
(
λ − 1 − pεp′

)∫

Q

vσ−p |∇v|p ηp +
p

εp

∫

Q

vσ |∇η|p . (5.12)
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On the other hand, we have

|∇ (vαη)|p =
∣
∣αvα−1η∇v + vα∇η

∣
∣p

≤ 2p−1αpvp(α−1) |∇v|p ηp + 2p−1vαp |∇η|p

= 2p−1αpvσ−p |∇v|p ηp + 2p−1vσ |∇η|p ,

where we have used that, by (5.2),

p (α − 1) = σ − p.

It follows that

vσ−p |∇v|p ηp ≥ 21−pα−p |∇ (vαη)|p − α−pvσ |∇η|p .

Substituting into (5.12) yields

q1−p

∫

Q

vtv
λ−1ηp ≤ −

(
λ − 1 − pεp′

)
21−pα−p

∫

Q

|∇ (vαη)|p

+
((

λ − 1 − pεp′
)

α−p +
p

εp

)∫

Q

vσ |∇η|p .

Hence,

λ

∫

Q

vtv
λ−1ηp ≤ −c1

∫

Q

|∇ (vαη)|p + c2

∫

Q

vσ |∇η|p

where
c1 = λqp−1

(
λ − 1 − pεp′

)
21−pα−p

and

c2 = λqp−1
((

λ − 1 − pεp′
)
α−p +

p

εp

)
.

We choose ε so small that c1 > 0, that is,

pεp′ < λ − 1.

Since

λ

∫

Q

vtv
λ−1ηp =

∫

Q

∂tv
ληp =

[∫

Ω

vληp

]t2

t1

− p

∫

Q

vληp−1ηt

we obtain

[∫

Ω

vληp

]t2

t1

= λ

∫

Q

vtv
λ−1ηp + p

∫

Q

vληp−1ηt

≤ −c1

∫

Q

|∇ (vαη)|p + c2

∫

Q

vσ |∇η|p + p

∫

Q

vληp−1ηt

and, hence,

[∫

Ω

vληp

]t2

t1

+ c1

∫

Q

|∇ (vαη)|p ≤
∫

Q

[
pvληp−1ηt + c2v

σ |∇η|p
]
.
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Finally, let us specify c1 and c2. Let us choose ε so that

pεp′ =
1

2
(λ − 1)

that is
c1 = λ (λ − 1) 2−pqp−1α−p . (5.13)

It follows that

c2 = λqp−1

(
1

2
(λ − 1) α−p +

p

εp

)

= λqp−1

(
1

2
(λ − 1) α−p +

p
(

1
2
(λ − 1) /p

)p/p′

)

= λqp−1

(
1

2
(λ − 1) α−p +

2p/p′p1+p/p′

(λ − 1)p/p′

)

.

Since
p

p′
+ 1 =

p

p′
+

p

p
= p

we have

c2 = 1
2
λ (λ − 1) qp−1α−p +

λ2p−1ppqp−1

(λ − 1)p−1 . (5.14)

Remark. For the future we need the ratio c2
c1

. It follows from (5.13) and (5.14) that

c2

c1

= 2p−1 + λ
2p−1pp

(λ − 1)p−1 λ (λ − 1) 2−pα−p

= 2p−1 +
22p−1σp

(λ − 1)p ,

where we have used that αp = σ. Since σ = λ + δ, we obtain

c2

c1

= 2p−1 +
22p−1 (λ + δ)p

(λ − 1)p .

It follows that, for all λ ≥ 2,
c2

c1

≤ Cp,q , (5.15)

where Cp,q depend only on p and q but does not depend on λ.

Remark. Let obtain an upper bound of c2. Using

α =
σ

p
=

λ + δ

p

we obtain

c2 =
1

2

λ (λ − 1)

(λ + δ)p qp−1pp +
λ2p−1ppqp−1

(λ − 1)p−1 .
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As λ ≥ 2 and λ + δ ≥ p > 1, it follows that

c2 ≤ Cp,qλ
2−p . (5.16)

Of course, if p ≥ 2 then c2 is uniformly bounded by a constant Cp,q independently of
λ, but if p < 2 then c2 may grow with λ as λ2−p.

Lemma 3. Let M be geodesically complete. Let v = v (x, t) be a bounded non-negative
subsolution to (4.7) in M × I. Then, for all large enough λ, including λ = ∞, the
function

t 7→ ‖v(∙, t)‖Lλ(M)

is monotone decreasing. Consequently, if I = [a, b] then

‖v‖L∞(M×I) ≤ ‖v (∙, a)‖L∞(M) .

Proof. If M is geodesically complete, then W 1,p
0 (M) = W 1,p(M). Hence, vλ−1(∙, t) ∈

W 1,p
0 (M) for any t ∈ I, and we can use the argument in the proof of Lemma 2 with

η ≡ 1 (without assumption that η(∙, t) is compactly supported). Assuming that λ
is large enough so that σ := λ + δ satisfies (5.1), we obtain from (5.3) that, for all
t1, t2 ∈ I, t1 < t2, [∫

M

vλ

]t2

t1

≤ 0,

which proved the claim for a finite λ. The case of an infinite λ is obtained then by
letting λ → ∞.

6 Sobolev and Moser inequalities

Let B be a precompact ball in a manifold M of dimension n. The Sobolev inequality
in B of order p says the following: for any non-negative function w ∈ W 1,p

0 (B)

(∫

B

wpκ

)1/κ

≤ SB

∫

B

|∇w|p , (6.1)

where κ > 1 is some constant and SB is called the Sobolev constant in B. The value
of κ is independent of B and can be chosen as follows:

κ =
n

n − p
if n > p,

and κ is an arbitrary real number > 1 if n ≤ p.

We always assume that SB is chosen to be minimal possible. In this case the function

B 7→ SB

is clearly monotone increasing with respect to inclusion of balls.
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Fix a precompact ball B ⊂ M and set Q = B × I, where I ⊂ R is an interval Assume
that the Sobolev inequality (10.5) holds in B with exponent κ > 1. Let κ′ be its Hölder
conjugate. Set

ν =
1

κ′
=

κ − 1

κ
.

Lemma 4. Let w ∈ Lp(I; W 1,p
0 (B)) be a non-negative function. Then

∫

Q

wp(1+ν) ≤ SB

(∫

Q

|∇w|p
)

sup
t∈I

(∫

B

wp

)ν

(6.2)

Proof. By the Hölder inequality, we have, for any fixed t ∈ I,

∫

B

wp(1+ν) =

∫

B

wpwpν ≤

(∫

B

wpκ

)1/κ(∫

B

wpνκ′

)1/κ′

=

(∫

B

wpκ

)1/κ(∫

B

wp

)ν

≤

(∫

B

wpκ

)1/κ

sup
t∈I

(∫

B

wp

)ν

,

where we have used that νκ′ = 1.

By the Sobolev inequality (6.1) we have, for any t ∈ I,

(∫

B

wpκ

)1/κ

≤ SB

∫

B

|∇w|p .

It follows that ∫

B

wp(1+ν) ≤ SB

(∫

B

|∇w|p
)

sup
t∈I

(∫

B

wp

)ν

.

Integrating this inequality in t ∈ I gives (6.2).

7 Comparison in two cylinders

Here we assume that
δ := q(p − 1) − 1 ≥ 0.

Lemma 5. Consider two balls B = B (x, r) and B′ = B (x, r′) with 0 < r′ < r, and
two cylinders

Q = B × [0, T ], Q′ = B′ × [0, T ] .

Assume that B is precompact. Let σ be any real such that

σ ≥ max(p, pq). (7.1)

Let v be non-negative bounded subsolution of (4.1) in Q such that

v (∙, 0) = 0 in B.
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Then ∫

Q′

vσ(1+ν) ≤
CSBσ(2−p)ν

(r − r′)p(1+ν)

(∫

Q

vσ

)(∫

Q

vσ+δ

)ν

, (7.2)

where C depends only on p, q and ν, while it is independent of σ.

Proof. As in Lemma 2, set λ = σ− δ and α = σ
p

and recall that α ≥ 1 and λ ≥ 2. Let

η = η(x) be a bump function of B′ in B. By (5.7), we have

w := vαη ∈ Lp
(
[0, T ] ; W 1,p

0 (B)
)

Applying (6.2) with this function w and using

wp = vσηp,

we obtain that
∫

Q

vσ(1+ν)ηp(1+ν) ≤ SB

(∫

Q

|∇ (vαη)|p
)

sup
t∈[0,T ]

(∫

B

vσηp

)ν

.

By (5.4) we have ∫

Q

|∇ (vαη)|p ≤
c2

c1

∫

Q

vσ |∇η|p .

and

sup
t∈[0,T ]

(∫

B

vληp

)

≤ c2

∫

Q

vσ |∇η|p .

Let us use the latter inequality also for other values of the parameters as follows:

sup
t∈[0,T ]

(∫

B

vλ′
ηp

)

≤ c′2

∫

Q

vσ′
|∇η|p ,

where
σ′ = σ + δ and λ′ = σ′ − δ = σ.
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Then we have

sup
t∈[0,T ]

(∫

B

vσηp

)

≤ c′2

∫

Q

vσ′
|∇η|p .

It follows that
∫

Q

vσ(1+ν)ηp(1+ν) ≤ SB
c2

c1

∫

Q

vσ |∇η|p
(

c′2

∫

Q

vσ′
|∇η|p

)ν

.

Using that η = 1 in B′ and |∇η| ≤ 1
r−r′

we obtain

∫

Q′

vσ(1+ν) ≤ SB
c2

c1

(c′2)
ν

(r1 − r2)
p(1+ν)

(∫

Q

vσ

)(∫

Q

vσ′

)ν

.

By (5.15) we have
c2

c1

≤ Cp,q,

and (5.16)

c′2 ≤ Cp,q (λ′)
2−p

= Cp,qσ
2−p.

Hence, (7.2) follows.

Corollary 6. Under the hypotheses of Lemma 5, we have

∫

Q′

vσ(1+ν) ≤
CSBσ(2−p)ν ‖v‖δν

L∞(Q)

(r − r′)p(1+ν)

(∫

Q

vσ

)1+ν

, (7.3)

where C = C(p, q, ν).

8 Auxiliary lemma about sequences

Lemma 7. Let a sequence {Jk}
∞
k=0 of non-negative reals satisfies

Jk+1 ≤
Ak

D
J1+ω

k for all k ≥ 0. (8.1)

where A,D, ω > 0. Then, for all k ≥ 0,

Jk ≤
((

A1/ωD−1
)1/ω

J0

)(1+ω)k (
A−k−1/ωD

)1/ω
. (8.2)

In particular, if
D ≥ A1/ωJω

0 , (8.3)

then, for all k ≥ 0,
Jk ≤ A−k/ωJ0. (8.4)
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Proof. Consider the sequence

Xk =
((

A1/ωD−1
)1/ω

J0

)(1+ω)k (
A−k−1/ωD

)1/ω
.

Then we have
X0 =

(
A1/ωD−1

)1/ω
J0

(
A−1/ωD

)1/ω
= J0

and

Ak

D
X1+ω

k =
Ak

D

((
A1/ωD−1

)1/ω
J0

)(1+ω)k+1 (
A−k−1/ωD

) 1+ω
ω

=
((

A1/ωD−1
)1/ω

J0

)(1+ω)k+1

AkD−1
(
A−k−1/ωD

) (
A−k−1/ωD

) 1
ω

=
((

A1/ωD−1
)1/ω

J0

)(1+ω)k+1

A−1/ω
(
A−k−1/ωD

)1/ω

=
((

A1/ωD−1
)1/ω

J0

)(1+ω)k+1 (
A−(k+1)−1/ωD

)1/ω
= Xk+1.

Hence, by comparison we obtain Jk ≤ Xk, which was to be proved.

For the second statement, if (8.3) holds then we can assume without loss of generality
that

D = A1/ωJω
0 .

Substituting this value of D into (8.2) we obtain

Jk ≤
(
A−kJω

0

)1/ω

which is equivalent to (8.4).

9 Mean value inequality

We assume here that
δ = q (p − 1) − 1 ≥ 0.

Lemma 8. Let B = B (x0, R) be a precompact ball. Let u be a non-negative bounded
subsolution of (4.1) in

Q = B × [0, t]

such that
u (∙, 0) = 0 in B.

Let σ be as in (7.1). Then, for the cylinder

Q′ =
1

2
B × [0, t] ,

we have

‖u‖L∞(Q′) ≤

(
CSB

Rp(1+ν)

) 1
σν

‖u‖
δ
σ

L∞(Q) ‖u‖Lσ(Q) , (9.1)

where C = C (p, q, ν, σ).
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Remark. Since

‖u‖Lσ(Q) =

(∫ t

0

∫

B

uσ

)1/σ

≤ (tμ(B))
1
σ ‖u‖L∞(Q) ,

we obtain from (9.1) that

‖u‖L∞(Q′) ≤

((
CSB

Rp(1+ν)

) 1
ν

tμ(B)

) 1
σ

‖u‖
1+ δ

σ

L∞(Q) . (9.2)

Remark. Unlike Lemma 5 where we have explicitly traced the dependence of the con-
stants on σ, in (9.1) and (9.2) the dependence of C on σ is unimportant because these
inequalities will be applied only with a fixed σ.

Proof. Consider a sequence of radii

rk =

(
1

2
+ 2−k−1

)

R

so that r0 = R and rk ↘ 1
2
R as k → ∞. Set

Bk = B (x0, rk) , Qk = Bk × [0, t]

so that
B0 = B, Q0 = Q and Q∞ := lim

k→∞
Qk = Q′.
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Set also
σk = σ (1 + ν)k

and

Jk =

∫

Qk

uσk .

Applying (7.3) to the cylinders Qk and Qk+1, we obtain

Jk+1 =

∫

Qk+1

uσk(1+ν) ≤
CSBk

σ
(2−p)ν
k ‖u‖δν

L∞(Qk)

(rk − rk+1)
p(1+ν)

(∫

Qk

uσk

)1+ν

=
CSBk

σ
(2−p)ν
k ‖u‖δν

L∞(Qk)

(rk − rk+1)
p(1+ν)

J1+ν
k

≤
C2kp(1+ν) (1 + ν)k(2−p)ν σ(2−p)νSB ‖u‖δν

L∞(Q)

Rp(1+ν)
J1+ν

k

≤ AkD−1J1+ν
k ,

where
A = 2p(1+ν) (1 + ν)(2−p)+ν ≥ 1

and

D−1 =
CSB ‖u‖δν

L∞(Q)

Rp(1+ν)
,

where we have absorbed σ(2−p)ν into C. By Lemma 7 we conclude that

Jk ≤
((

A1/νD−1
)1/ν

J0

)(1+ν)k

D1/ν = A
(1+ν)k

ν2 D− (1+ν)k−1
ν J

(1+ν)k

0 .

It follows that

(∫

Qk

uσk

)1/σk

= J
1

σ(1+ν)k

k ≤ A
1

σν2 D− 1−(1+ν)−k

σν

(∫

Q

uσ

)1/σ

.

Leting k → ∞, we obtain

‖u‖L∞(Q′) ≤ A
1

σν2 D− 1
σν ‖u‖Lσ(Q) =

(
A

1
ν D−1

) 1
σν

‖u‖Lσ(Q)

≤

(

A
1
ν

CSB ‖u‖δν
L∞(Q)

Rp(1+ν)

) 1
σν

‖u‖Lσ(Q)

=

(
CSB

Rp(1+ν)

) 1
σν

‖u‖
δ
σ

L∞(Q) ‖u‖Lσ(Q) ,

where A
1
ν was absorbed into C.
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10 Normalized Sobolev constant

Let B be a precompact ball in M and w ∈ W 1,p
0 (B). Dividing the Sobolev inequality

(6.1) by μ(B)1/κ, we obtain

(

−
∫

B

wpκ

)1/κ

≤ μ(B)νSB−
∫

B

|∇w|p

where

ν =
κ − 1

κ
=

1

κ′
,

and (

−
∫

B

wpκ

)1/(pκ)

≤ (μ(B)νSB)1/p

(

−
∫

B

|∇w|p
)1/p

, (10.3)

Denoting by r(B) the radius of B, let us define a new quantity

ι(B) =
1

μ(B)

(
r(B)p

SB

)1/ν

so that

SB =
r(B)p

(ι(B)μ (B))ν (10.4)

and

(μ(B)νSB)1/p =
r(B)

ι(B)
ν
p

.

Hence, (10.3) can be rewritten in the form

(

−
∫

B

|∇w|p
)1/p

≥
ι(B)

ν
p

r(B)

(

−
∫

B

wpκ

)1/pκ

. (10.5)

It is clear from (10.5) that the value of κ can be always reduced (by modifying the
value of ι(B)). It is only important that κ > 1. In fact, the exact value of κ does not
affect the results, although various constants depend on κ.

The constant ι(B) is called the normalized Sobolev constant in B. It is known that if
M is complete and RicciM ≥ 0 then, for all balls B, the normalized Sobolev constant
ι(B) is bounded below by a positive constant.

11 Propagation speed inside a ball

We assume here that M is geodesically complete and

δ = q(p − 1) − 1 > 0.
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Theorem 9. Let u be a bounded non-negative subsolution of (4.1) in M × [0, T ] with
the initial condition u (∙, 0) = u0. Let B0 = B (z0, R) be a ball in M such that

u0 = 0 in B0.

Set
t0 = η ι(B0)R

p ‖u0‖
−δ
L∞(M) ∧ T, (11.1)

where η is a sufficiently small positive constant depending only on p, q, ν. Then

u = 0 in
1

2
B0 × [0, t0] .

Proof. Set r = 1
2
R and fix for a while a point x ∈ 1

2
B0 so that B := B (x, r) ⊂ B0.

Fix also some t ∈ (0, T ] and set

Qk = 2−kB × [0, t] and Jk = ‖u‖L∞(Qk) .

Our purpose is to obtain an upper bound for Jk(x) = ‖u‖L∞(Qk) that ensures that

Jk(x) → 0 as k → ∞ uniformly in x ∈ 1
2
B0.
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Let us fix σ satisfying (7.1), for example, σ = max (p, pq) . Applying inequality (9.2) of
Lemma 8 in the cylinders Qk, Qk+1, we obtain

Jk+1 = ‖u‖L∞(Qk+1) ≤





(
CS2−kB

(2−kr)p(1+ν)

) 1
ν

tμ(2−kB)





1
σ

‖u‖
1+ δ

σ

L∞(Qk)

≤ 2(k+1)
p(1+ν)

σν

((
CSB0

Rp(1+ν)

) 1
ν

tμ(B0)

) 1
σ

J
1+ δ

σ
k ,

where we have used that S2−kB ≤ SB0 and μ(2−kB) ≤ μ(B0). By (10.4) we have

(SB0)
1/ν =

(
Rp

(ι(B0)μ (B0))
ν

)1/ν

=
Rp/ν

ι(B0)μ (B0)
,

whence (
SB0

Rp(1+ν)

) 1
ν

μ(B0) =
Rp/ν

Rp
(1+ν)

ν ι(B0)μ (B0)
μ(B0) =

1

ι(B0)Rp
.

It follows that

Jk+1 ≤ 2(k+1)
p(1+ν)

σν

(
Ct

ι(B0)Rp

) 1
σ

J
1+ δ

σ
k

= AkD−1J1+ω
k ,

where

ω =
δ

σ
, A = 2

p(1+ν)
σν

and

D−1 = A

(
Ct

ι(B0)Rp

) 1
σ

.

By Lemma 7, if
D−1 ≤ A−1/ωJ−ω

0 (11.2)

then, for all k ≥ 0,
Jk ≤ A−k/ωJ0. (11.3)

The condition (11.2) is equivalent to

A

(
Ct

ι(B0)Rp

) 1
σ

≤ A−1/ωJ−ω
0

that is, to
t ≤ C−1ι(B0)R

pJ−δ
0 , (11.4)

where A is absorbed to C. Since by Lemma 3

J0 = ‖u‖L∞(Q) ≤ ‖u0‖L∞(M) ,

the condition (11.4) is satisfied for t = t0, where t0 is determined by (11.1) with
η = C−1.
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Hence, for t = t0 we obtain from (11.3) that, for any k,

‖u‖L∞(2−kB×[0,t]) ≤ A−k/ω ‖u0‖L∞ .

For any k, we cover the ball 1
2
B0 by a finite sequence of balls B

(
xi, 2

−kr
)

with xi ∈ 1
2
B0.

Since for all i
‖u‖L∞(B(xi,2−kr)×[0,t]) ≤ A−k/ω ‖u0‖L∞ ,

we obtain that
‖u‖L∞( 1

2
B0×[0,t]) ≤ A−k/ω ‖u0‖L∞ .

Finally, letting k → ∞, we obtain that u = 0 in 1
2
B0 × [0, t], which was to be proved.

12 Propagation speed of support

In this section we assume M is geodesically complete, that is, all geodesic balls are
precompact. Let also

δ = q(p − 1) − 1 > 0.

For any set K ⊂ M and any r > 0, denote by Kr a closed r-neighborhood of K.

Theorem 10. Let u (x, t) be a non-negative bounded subsolution of (4.1) in M × R+

with the initial function u0 = u (∙, 0) . Assume that the support K = supp u0 is compact.
Then there exists T > 0 and an increasing continuous function ρ : (0, T ) → R+ such
that

supp u (∙, t) ⊂ Kρ(t)

for all t ∈ (0, T ) .
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Here both T and ρ (t) may depend on u. The function ρ(t) is called a propagation rate
of u.

Proof. Let us fix a reference point x0 ∈ K and define the following function for all
r > 0:

ϕ (r) =
η

4p+p/ν
ι(B(x0, r))r

p ‖u0‖
−δ
L∞(M) . (12.1)

Denote
r0 = diam K.

Let us prove that that, for any r ≥ r0,

t ≤ ϕ (3r + r0) ⇒ supp u (∙, t) ⊂ Kr,

that is,
u(∙, t) = 0 in M \ Kr.

Let us first prove that
u(∙, t) = 0 in K2r \ Kr.

Fix a point x ∈ K2r \ Kr.We have

d (x,K) ≤ 2r ⇒ d (x, x0) ≤ 2r + r0.
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It follows that
B (x, r) ⊂ B (x0, 3r + r0) = B(x0, R)

where
R := 3r + r0.

The condition r ≥ r0 implies R ≤ 4r. Since B(x, r) ⊂ B(x0, R), we have by the
monotonicity of function (10.4) that

ι(B(x, r))μ(B(x, r))

rp/ν
≥

ι(B(x0, R))μ(B(x0, R))

Rp/ν
.

It follows that

ι(B(x, r))rp

ι(B(x0, R))Rp
≥
( r

R

)p+p/ν μ(B(x0, R))

μ(B(x, r))

≥
1

4p+p/ν
ι(B(x0, R))Rp.

Therefore, the hypothesis

t ≤ ϕ (R) =
η

4p+p/ν
ι(B(x0, R))Rp ‖u0‖

−δ
L∞(M)

implies that
t ≤ ηι(B(x, r)))rp ‖u0‖

−δ
L∞(M) .

Since u(∙, 0) = 0 in B(x, r), we conclude by Theorem 9 that

u(∙, t) = 0 in B(x, r/2).

Since this is true for any x ∈ K2r \ Kr, we obtain that

u(∙, t) = 0 in K2r \ Kr. (12.2)

Let us show that also
u(∙, t) = 0 in M \ K2r. (12.3)

Fix some s >> 2r and let η (x) be a bump function of Ks \K2r in K2s \Kr; that is, η
is the following function of |x| := d (x,K):

η (x) =






(
|x|
r
− 1
)

+
, |x| ≤ 2r,

1, |x| ∈ [2r, s] ,

2
(
1 − |x|

2s

)

+
, |x| ≥ s.

Function η
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Applying the inequality (5.4) of Lemma 2 with some fixed λ, we obtain
[∫

M

uληp

]t

0

≤ c2

∫ t

0

∫

M

uσ |∇η|p . (12.4)

Since u (∙, 0) = 0 on supp η and η = 1 on Ks \ K2r, the left hand side here is bounded
below by ∫

Ks\K2r

uλ(∙, t).

Since η = 0 in Kr, u(∙, τ ) = 0 in K2r \ Kr for all τ ≤ t (by (12.2)), and ∇η = 0 in
Ks \ K2r, the right hand side in (12.4) is equal to

c2

∫ t

0

∫

M\Ks

uσ |∇η|p .

Since

|∇η| ≤
1

s
in M \ Ks,

we obtain that
∫

Ks\K2r

uλ(∙, t) ≤ c2

∫ t

0

∫

M\Ks

uσ |∇η|p ≤
c2

sp

∫ t

0

∫

M\Ks

uσ.

The right hand side goes to 0 as s → ∞, which implies that u (∙, t) = 0 in M \ K2r,
thus proving (12.3).

Now let us define in [r0,∞) a function

ψ (r) =
1

2
sup

r0≤s≤r
ϕ (3s + r0)

so that ψ (r) is monotone increasing. If t ≤ ψ (r) then t ≤ ϕ (3s + r0) for some
s ∈ [r0, r], which implies by the first part of the proof that

u(∙, t) = 0 in M \ Ks

and, hence,
u(∙, t) = 0 in M \ Kr.

It is unclear whether ψ is continuous or not. As a monotone function, ψ may have only
jump discontinuities. By subtracting all these jumps, we obtain a continuous monotone
function ψ̃ ≤ ψ with the same property|:

t ≤ ψ̃(r) ⇒ u(∙, t) = 0 in M \ Kr. (12.5)

As a continuous monotone increasing function, ψ̃ has an inverse ρ = ψ̃
−1

on [t0, T )
where

t0 = ψ̃(r0) and T = sup ψ̃.

Let us extend ρ(t) to t < t0 by setting ρ(t) = ρ(t0). Then r = ρ(t) implies t ≤ ψ̃(r),
and by (12.5)

u(∙, t) = 0 in M \ Kr,

which was to be proved.
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13 Curvature and propagation rate

In this section we assume again that M is geodesically complete and

δ = q(p − 1) − 1 > 0.

Theorem 11. Let M be geodesically complete, non-compact, and let RicciM ≥ 0. Let
u be a bounded non-negative subsolution of (4.1) in M ×R+ with the initial condition
u (∙, 0) = u0. Set K = supp u0. Then, for any t ≥ 0,

supp u(∙, t) ⊂ KCt1/p ,

where C depends on ‖u0‖L∞, p, q, n.

Proof. It is known that on such manifolds ι(B) ≥ const > 0 for all balls B ⊂ M.

Let B = B(x, r) be any ball that is disjoint with K. It follows from Theorem 9, that is

t ≤ crp ‖u0‖
−δ
L∞(M) ,

where c > 0 is a small enough constant, then

u(∙, t) = 0 in
1

2
B.

Hence, if
r ≥ Ct1/p

where C = c−1/p ‖u0‖
δ/p
L∞(M) , then

supp u(∙, t) ∩
1

2
B = ∅.

It follows that
supp u(∙, t) ⊂ K 1

2
r,

whence the claim follows.
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