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1 Introduction

We are concerned with an evolution equation

∂tu = Δpu
q (1)

where p, q > 0, u (x, t) is an unknown non-negative function, and Δp is the p-Laplacian:

Δpv = div
(
|∇v|p−2 ∇v

)
.

Equation (1) was introduced by L. S. Leibenson
in 1945 in order to describe filtration of turbulent
compressible fluid through a porous medium. The
physical meaning of u is the volumetric moisture
content, i.e. the (infinitesimal) fraction of volume
of the medium taken by the liquid.

Parameter p characterizes the turbulence of a flow
while q − 1 is the index of polytropy of the liquid,
that determines relation PV q−1 = const between
volume V and pressure P .

Leonid Samuilovich Leibenson
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The physically interesting values of p and q are as follows: 3
2
≤ p ≤ 2 and q ≥ 1.

The case p = 2 corresponds to laminar flow (=absence of turbulence). In this case (1)
becomes a porous medium equation ∂tu = Δuq, if q > 1, and the classical heat equation
∂tu = Δu if q = 1.

From mathematical point of view, the entire range p > 1, q > 0 is interesting.

G.I.Barenblatt constructed in 1952 spherically symmetric
self-similar solutions of (1) in Rn that are nowadays called
Barenblatt solutions. Let us assume that

q (p − 1) > 1 .

In this case the Barenblatt solution is as follows:

u (x, t) =
1

tn/β

(

C − κ

(
|x|
t1/β

) p
p−1

)γ

+

,

where C > 0 is any constant, and Grigory Isaakovich Barenblatt

β = p + n [q (p − 1) − 1] , γ = p−1
q(p−1)−1

, κ = q(p−1)−1
pq

β− 1
p−1 . (2)
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Parameter β determines the space/time scaling and is analogous to the walk dimension.

It is obvious that for the Barenblatt solution

u(x, t) = 0 for |x| > ct1/β

so that u(∙, t) has a compact support for any t.

One says that u has a finite propagation speed.

Here are the graphs of function x 7→ u(x, t) for
different values of t in the case n = 1.

In the case q (p − 1) < 1, we have γ, κ < 0, and the Barenblatt solution

u (x, t) =
1

tn/β

(

C + |κ|
( r

t1/β

) p
p−1

)γ

is positive for all x, t. In the borderline case q (p − 1) = 1, the Barenblatt solution is

u (x, t) =
1

tn/p
exp

(

−c
( r

t1/p

) p
p−1

)

,

where c = (p − 1)2 p−
p

p−1 . Hence, if q (p − 1) ≤ 1 then u has infinite propagation speed.
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2 p-Laplacian on Riemannian manifolds

Our goal is to investigate finite propagation speed for Leibenson’s equation (1) on an
arbitrary Riemannian manifold M. Solutions are understood in a certain weak sense.

Consider first the case q = 1, that is, the following evolution equation for p-Laplacian:

∂tu = Δpu.

For this equation the following result was known.

Theorem 1 (S.Dekkers 2005) Let p > 2 and let u(x, t) be a bounded non-negative solution
to ∂tu = Δpu on M × R+ with initial function u0 = u (∙, 0) .

Let B0 = B(x0, R) be a precompact ball in M such

that u0 = 0 in B0. Then

u = 0 in 1
2
B0 × [0, t0] ,

where

t0 = ηRp ‖u0‖
−(p−2)
L∞(M)

and η > 0 depends on the intrinsic geometry of B0.
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Hence, solution u has a finite propagation speed inside B0, and the speed of propagation
depends on the geometry of B0 via the constant η.

For any set K ⊂ M , denote by Kr the open r-neighborhood of K.

Corollary 2 Let M be complete and non-compact, p > 2, and K = supp u0 be compact.

Then there exists an increasing function

r : (0, T ) → R+

for some T ∈ (0,∞], such that

supp u (∙, t) ⊂ Kr(t)

for all t ∈ (0, T ) .

If RicciM ≥ 0 then r(t) = Ct
1
p and T = ∞.

The function r(t) is called a propagation rate of u. Using the Barenblatt solution in Rn,
one obtains that a propagation rate in Rn for large t is

r(t) = Ct
1

p+n(p−2)

so that the result of Corollary 2 is not sharp in this case.
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3 Main result

On an arbitrary manifold M of dimension n, consider Leibenson’s equation

∂tu = Δpu
q, (3)

where we assume that p > 2 and 1
p−1

< q ≤ 1. In particular, q(p − 1) − 1 > 0.

Theorem 3 Let u be a bounded non-negative subsolution of (3) in M ×R+, and assume
that u0 := u (∙, 0) ∈ L1 (M) . Let B0 be a precompact ball of radius R s.t. u0 = 0 in B0.
Then u = 0 in 1

2
B0 × [0, t0], where

t0 = ηRpμ(B0)
q(p−1)−1

σ ‖u0‖
−[q(p−1)−1]
Lσ(M) . (4)

Here σ is any real such that

σ ≥ 1 and σ > q(p − 1) − 1

and η = η (B0, p, q, n, σ) > 0.

Besides, the value σ = ∞ is
also included and in this case

t0 = ηRp ‖u0‖
−[q(p−1)−1]
L∞(M) .
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Theorem 1 is a particular case of Theorem 3 for q = 1 and σ = ∞.

In the next two statements M is complete and non-compact, and K = supp u0 is compact.

Corollary 4 There exists T ∈ (0, T ] and an increasing function r : (0, T ) → R+

such that

supp u (∙, t) ⊂ Kr(t)

for all t ∈ (0, T ) .

Let us refer to r(t) as a propagation

rate of solution u.

Corollary 5 Assume that RicciM ≥ 0. Fix x0 ∈ K and assume that

μ(B(x0, r)) ≥ crα for all r ≥ r0,

with some c, α > 0. Then a propagation rate is r(t) = Ct1/β for t ≥ t0, where

β = p + α
q(p − 1) − 1

σ
. (5)
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Recall that in Rn a propagation rate is r(t) = Ct1/β where

β = p + n [q(p − 1) − 1] .

Since in Rn α = n, we see that the value of β in (5) is sharp if σ = 1.

We can take σ = 1 in Theorem 3 provided q(p − 1) − 1 < 1, that is, when

1 < q(p − 1) < 2.

This range of p, q is shown here:

For this range of p, q, we obtain a sharp

propagation rate not only in Rn but also

in a large class of models with Ricci ≥ 0,
with any α ∈ (0, n].

Conjecture 6 The statement of Theorem 3 holds for σ = 1 and for all

p > 1 and q >
1

p − 1
.
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4 Mean value inequality

The main ingredient in the proof of Theorem is the following mean value inequality.

Theorem 7 Let B = B (x0, r) be a precompact ball in M .

Let u be a non-negative bounded
subsolution of (3) in the cylinder

Q = B × [0, T ],

and let u (∙, 0) = 0 in B. Then,

for the cylinder

Q′ = 1
2
B × [0, T ] ,

the following inequality holds:

‖u‖L∞(Q′) ≤

(
C

μ(B)rp

∫

Q

uλ+[q(p−1)−1]

)1/λ

, (6)

where λ > 0 is any and C depends on p, q, λ and on the intrinsic geometry of B.
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Proof of Theorem 7 starts with the following Lemma.

Lemma 8 Let u be a non-negative subsolution of (3).

Set

a =
q(p − 1) − 1

p − 2
.

If 0 < a ≤ 1 then the function

v = (ua − θ)1/a
+

is a subsolution for any θ > 0.
Function fθ(s)=(sa−θ)

1/a
+

It satisfies fθ1
◦fθ2

=fθ1+θ2

The condition 0 < a ≤ 1 holds, in particular, in the case when

p > 2, q(p − 1) > 1 and q ≤ 1.

For the p-Laplacian case, that is, when q = 1, we have a = 1. In this case it is well known
that v = (u − θ)+ is a subsolution. If also p = 2 that is, if (3) is the heat equation then
v = f(u) is a subsolution for any convex f .
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Sketch of proof of Theorem 7. Fix some θ > 0 and define a sequence {uk}
∞
k=0 of

functions:
u0 = u, uk =

(
ua

k−1 − 2−kθ
)1/a

+
for k ≥ 1

It is easy to see that uk =
(
ua −

(
1 − 2−k

)
θ
)1/a

+
.

Consider a decreasing sequence of radii

rk =
(

1
2

+ 2−k−1
)
r

so that r0 = r ≥ rk ↘ 1
2
r, and cylinders

Qk = B (x0, rk) × [0, t]

so that

Q0 = Q ⊃ Qk ↘ Q′

as k → ∞.

Set

Jk =

∫

Qk

u
λ+[q(p−1)−1]
k .

Clearly, Jk+1 ≤ Jk. Using a Caccioppoli type inequality for uk and uk+1 as well as a certain
Faber-Krahn type inequality for Δp in B (which reflects the intrinsic geometry of B), we
prove that
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Jk+1 ≤
CAk

(
μ(B)θ

λ
a rp
)ν J1+ν

k ,

where ν = p/n is the Faber-Krahn exponent for Δp and C,A are some constants.

Analyzing this recursive inequality we show that if

θ ≥

(
CJ0

μ(B)rp

) a
λ

, (7)

then Jk → 0 as k → ∞, which implies
∫

Q′

[
(ua − θ)1/a

+

]λ+q(p−1)−1

= 0,

that is, ua ≤ θ in Q′. Choosing the minimal value of θ in (7), we obtain

u ≤

(
CJ0

μ(B)rp

) 1
λ

=

(
C

μ(B)rp

∫

Q

uλ+[q(p−1)−1]

) 1
λ

in Q′

which proves (6).

This method works for λ ≥ 2. The case 0 < λ < 2 is obtained from λ = 2 using an
additional iteration procedure.
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5 From mean value to finite propagation speed

Sketch of proof of Theorem 3. Given a ball B0 of radius R, set r = 1
2
R, fix some

t > 0 and x ∈ 1
2
B0, and set for any k ∈ N

Qk = B(x, 2−kr) × [0, t] and Jk =

∫

Qk

uσ.
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Applying the mean value inequality (6) in Qk and Q′
k = Qk+1 with

λ = σ − [q(p − 1) − 1] > 0

we obtain

‖u‖L∞(Qk+1) ≤

(
C

μ (B(x, 2−kr)) (2−kr)p

∫

Qk

uσ

)1/λ

.

Raising this to power σ and integrating over Qk+1, we obtain

Jk+1 ≤ tμ(B0)

(
Ck

μ (B0) Rp
Jk

)σ/λ

.

Since σ/λ > 1, iteration of this inequality allows to prove that Jk decays double exponen-
tially in k provided t ≤ t0 (where t0 is determined by (4)):

Jk =

∫

B(x,2−kr)×[0,t]

uσ ≤ CA−(σ/λ)k

, (8)

and this is true for all x ∈ 1
2
B0 and k ≥ 0, with the same constants C and A > 1.

14



For any fixed k, let us cover 1
2
B0 = B(x0, r) by a sequence of balls B(xi, 2

−kr) with some
xi ∈ 1

2
B0. The minimal number of such balls is bounded by Dk for some constant D.

Hence, adding up (8) for all x = xi, we obtain

∫

Q′

uσ ≤ CDkA−(σ/λ)k

.

This inequality holds for any k. Letting k → ∞ and noticing that the right hand side → 0
thanks to σ/λ > 1 and A > 1, we obtain that u = 0 in Q′.
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