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1 Introduction

We are concerned with an evolution equation
Ou = Apu? (1)
where p,q > 0, u (x,t) is an unknown non-negative function, and A, is the p-Laplacian:

Ay = div (|Vo|P > V) .

Equation (1) was introduced by L.S. Leibenson
in 1945 in order to describe filtration of turbulent
compressible fluid through a porous medium. The
physical meaning of w is the volumetric moisture
content, i.e. the (infinitesimal) fraction of volume
of the medium taken by the liquid.

Parameter p characterizes the turbulence of a flow
while ¢ — 1 is the index of polytropy of the liquid,
that determines relation PV9~! = const between
volume V' and pressure P.
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The physically interesting values of p and ¢ are as follows: % <p<2andq>1.

The case p = 2 corresponds to laminar flow (=absence of turbulence). In this case (1)
becomes a porous medium equation O;u = Au?, if ¢ > 1, and the classical heat equation

Ou = Au if ¢ = 1.

From mathematical point of view, the entire range p > 1, ¢ > 0 is interesting.

G.I.Barenblatt constructed in 1952 spherically symmetric
self-similar solutions of (1) in R™ that are nowadays called
Barenblatt solutions. Let us assume that

q(p—1)>1|
In this case the Barenblatt solution is as follows:
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where C' > 0 is any constant, and
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Parameter § determines the space/time scaling and is analogous to the walk dimension.

L\ 7 small

It is obvious that for the Barenblatt solution
u(z,t) =0 for |z| > ct?/

so that u(-,t) has a compact support for any t.

One says that u has a finite propagation speed.

Here are the graphs of function z +— u(z,t) for

different values of ¢ in the case n = 1.

In the case ¢ (p — 1) < 1, we have ~, k < 0, and the Barenblatt solution
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is positive for all z,t. In the borderline case ¢ (p — 1) = 1, the Barenblatt solution is

1 T\ 2T
u(z,t) = gy OXP | —C (W) :

u(z,t) =

where ¢ = (p — 1)2;0_%. Hence, if ¢ (p — 1) < 1 then u has infinite propagation speed.



2 p-Laplacian on Riemannian manifolds

Our goal is to investigate finite propagation speed for Leibenson’s equation (1) on an
arbitrary Riemannian manifold M. Solutions are understood in a certain weak sense.

Consider first the case ¢ = 1, that is, the following evolution equation for p-Laplacian:
Ou = Apu.

For this equation the following result was known.

Theorem 1 (S.Dekkers 2005) Let p > 2 and let u(z,t) be a bounded non-negative solution
to Oyu = Ayu on M x Ry with initial function ug = u (-,0).

Let By = B(xo, R) be a precompact ball in M such YR
that ug = 0 wn By. Then
u=0 1n %BO X [O,to],

supp u(s.t) u(x,0)=0

where

—(p—2
to = niP HUOHLCE}:(M))

and n > 0 depends on the intrinsic geometry of By.
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Hence, solution u has a finite propagation speed inside By, and the speed of propagation
depends on the geometry of Bj via the constant 7.

For any set K C M, denote by K, the open r-neighborhood of K.

Corollary 2 Let M be complete and non-compact, p > 2, and K = supp ug be compact.
Then there exists an increasing function

r:(0,7) — Ry t
for some T € (0, 00|, such that

suppu (-, t) C Ky

for allt € (0,T). ‘a

M
If Ricciyy > 0 then r(t) = Ctr and T = oo.

The function r(t) is called a propagation rate of u. Using the Barenblatt solution in R,
one obtains that a propagation rate in R™ for large ¢ is

r(t) = ('t p+n(1p—2)

so that the result of Corollary 2 is not sharp in this case.



3 Main result

On an arbitrary manifold M of dimension n, consider Leibenson’s equation

Ou = Apu, (3)
where we assume that p > 2 and p%l < q < 1. In particular, ¢(p — 1) — 1 > 0.
Theorem 3 Let u be a bounded non-negative subsolution of (3) in M x Ry, and assume

that ug := u (-,0) € L* (M) . Let By be a precompact ball of radius R s.t. ug = 0 in By.
Then u =0 in 3By x [0,to], where

a(p—1)—1 _ —1)—1
to =nRPu(Bo)" 7 luollrian, V. (4)
Here o 1s any real such that [ R
L
oc>1lando>qlp—1)—1
supp u(s.t) u(x,1=0

and n = n(BO?p7q7n7O-) > 0.

Besides, the value o = oo is
also included and in this case

[g(p—1)—1]
(M) :

to = R [Juoll




Theorem 1 is a particular case of Theorem 3 for ¢ =1 and 0 = .

In the next two statements M is complete and non-compact, and K = supp ug is compact.

Corollary 4 There exists T € (0,T] and an increasing function r: (0,T) — R
such that

suppu (-, t) C Ky t
for allt € (0,T).

Let us refer to r(t) as a propagation

. < Reswpu
rate of solution . u

M

Corollary 5 Assume that Ricciyy > 0. Fix xg € K and assume that
w(B(xzg, 7)) > cr® for all r > ro,
with some c,a > 0. Then a propagation rate is r(t) = Ct'/? for t > to, where

gp—-1)-1

B=p+a



Recall that in R™ a propagation rate is r(t) = Ct'/? where
B=p+nlglp-1)—-1].

Since in R™ a = n, we see that the value of § in (5) is sharp if o = 1.

We can take 0 = 1 in Theorem 3 provided ¢(p — 1) — 1 < 1, that is, when
l<qlp—1) <2
This range of p, g is shown here:

For this range of p, ¢, we obtain a sharp |

propagation rate not only in R™ but also Q
in a large class of models with Ricct > 0,

with any a € (0,n]. .

Conjecture 6 The statement of Theorem 8 holds for c = 1 and for all

1
p>1 and q¢q> ——.
o=

oLl



4 Mean value inequality
The main ingredient in the proof of Theorem is the following mean value inequality.

Theorem 7 Let B = B (xg,7) be a precompact ball in M.

Let u be a non-negative bounded

subsolution of (3) in the cylinder 7 //—Q\
Q= B x[0,T], — —

and let u(-,0) =0 in B. Then, 0’ 0
for the cylinder
Q = %B x 0,77,

the following inequality holds: 0
M

¢ Atla(p—1)—1] v
el < (5w | , )

where A > 0 is any and C depends on p,q, X and on the intrinsic geometry of B.



Proof of Theorem 7 starts with the following Lemma.

Lemma 8 Let u be a non-negative subsolution of (3).

Set
qlp—1)—-1
p—2

a =

If 0<a <1 then the function

v=(u"— H)i/a

Function fy(s)=(s* —O)i/a

15 a subsolution for any 6 > 0. ,
It satisfies f910f92:f91+92

The condition 0 < a < 1 holds, in particular, in the case when
p>2 q(p—1)>1 and ¢<1.
For the p-Laplacian case, that is, when ¢ = 1, we have a = 1. In this case it is well known

that v = (u — ¢)_ is a subsolution. If also p = 2 that is, if (3) is the heat equation then
v = f(u) is a subsolution for any convex f.
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Sketch of proof of Theorem 7. Fix some 6 > 0 and define a sequence {uy},., of
functions:

for k>1

Ug =u, U, = (UZ—1 — 2_k9)+

1/a

It is easy to see that u, = (ua — (1 — 2_’“) 9)+

Consider a decreasing sequence of radii
rs=(3+27% ) r
so that rg =r > rp \, %r, and cylinders
Qr = B (xg,71) % [0, 1]
so that
Qo=Q D Qr\¢Q

as k — 00.

Set

Jk:/ u;+[¢1(p—1)—1].
Qk

Clearly, Jy. 1 < Ji. Using a Caccioppoli type inequality for u; and ux; as well as a certain
Faber-Krahn type inequality for A, in B (which reflects the intrinsic geometry of B), we
prove that
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C A
(u(3)937“p>

where v = p/n is the Faber-Krahn exponent for A, and C, A are some constants.

14+v
Jk—l—l S I/Jk )

Analyzing this recursive inequality we show that if

- ()

then J, — 0 as £ — oo, which implies

[ [0 <o

that is, u® < 6 in @'. Choosing the minimal value of § in (7), we obtain

! (M(B)Tp> <M(B)7’p /Qu e

which proves (6).

This method works for A > 2. The case 0 < A < 2 is obtained from A = 2 using an
additional iteration procedure. m
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5 From mean value to finite propagation speed

Sketch of proof of Theorem 3. Given a ball By of radius R, set r = %R, fix some
t>0andx € %BO, and set for any k € N

_______________________

"""""""""""""""""""""""""""""""

_________

X

o

13



Applying the mean value inequality (6) in @y and Q) = Qk41 with
A=o—[glp—1)-1>0

we obtain

- 1/
< ’ '
HUHL"O(Q/C-H) — (Iu (B(gjj 2_k7“)) (2_kr)p /Qk N )

Raising this to power ¢ and integrating over Qy.1, we obtain

Ok o/
< tu(B _ )
Jet1 < M( 0) (M(Bo) Rp Jk)

Since o/ > 1, iteration of this inequality allows to prove that J; decays double exponen-
tially in &k provided ¢ <ty (where t( is determined by (4)):

Jp = / W < CA-IN (8)
B(z,2=kr)x[0,t]

and this is true for all x € %BO and k > 0, with the same constants C' and A > 1.
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For any fixed k, let us cover 3By = B(z,r) by a sequence of balls B(x;,2%r) with some
T € %BO. The minimal number of such balls is bounded by D¥ for some constant D.

Hence, adding up (8) for all x = x;, we obtain
| wr <opharen

This inequality holds for any k. Letting £ — oo and noticing that the right hand side — 0
thanks to 0/A > 1 and A > 1, we obtain that u=01in Q’. m
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