Finite propagation speed for Leibenson's equation on Riemannian manifolds

Alexander Grigor'yan
http://www.math.uni-bielefeld.de/~ grigor
Based on a joint work with Philipp Sürig

August 2022

1 Introduction

We are concerned with an evolution equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{1}
\end{equation*}
$$

where $p, q>0, u(x, t)$ is an unknown non-negative function, and Δ_{p} is the p-Laplacian:

$$
\Delta_{p} v=\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)
$$

Equation (1) was introduced by L. S. Leibenson in 1945 in order to describe filtration of turbulent compressible fluid through a porous medium. The physical meaning of u is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the medium taken by the liquid.
Parameter p characterizes the turbulence of a flow while $q-1$ is the index of polytropy of the liquid, that determines relation $P V^{q-1}=$ const between volume V and pressure P.

Leonid Samuilovich Leibenson

The physically interesting values of p and q are as follows: $\frac{3}{2} \leq p \leq 2$ and $q \geq 1$.
The case $p=2$ corresponds to laminar flow (=absence of turbulence). In this case (1) becomes a porous medium equation $\partial_{t} u=\Delta u^{q}$, if $q>1$, and the classical heat equation $\partial_{t} u=\Delta u$ if $q=1$.

From mathematical point of view, the entire range $p>1, q>0$ is interesting.
G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1) in \mathbb{R}^{n} that are nowadays called Barenblatt solutions. Let us assume that

$$
q(p-1)>1 \text {. }
$$

In this case the Barenblatt solution is as follows:

$$
u(x, t)=\frac{1}{t^{n / \beta}}\left(C-\kappa\left(\frac{|x|}{t^{1 / \beta}}\right)^{\frac{p}{p-1}}\right)_{+}^{\gamma}
$$

where $C>0$ is any constant, and

Grigory Isaakovich Barenblatt

$$
\begin{equation*}
\beta=p+n[q(p-1)-1], \quad \gamma=\frac{p-1}{q(p-1)-1}, \quad \kappa=\frac{q(p-1)-1}{p q} \beta^{-\frac{1}{p-1}} . \tag{2}
\end{equation*}
$$

Parameter β determines the space/time scaling and is analogous to the walk dimension.
It is obvious that for the Barenblatt solution

$$
u(x, t)=0 \text { for }|x|>c t^{1 / \beta}
$$

so that $u(\cdot, t)$ has a compact support for any t. One says that u has a finite propagation speed.

Here are the graphs of function $x \mapsto u(x, t)$ for different values of t in the case $n=1$.

In the case $q(p-1)<1$, we have $\gamma, \kappa<0$, and the Barenblatt solution

$$
u(x, t)=\frac{1}{t^{n / \beta}}\left(C+|\kappa|\left(\frac{r}{t^{1 / \beta}}\right)^{\frac{p}{p-1}}\right)^{\gamma}
$$

is positive for all x, t. In the borderline case $q(p-1)=1$, the Barenblatt solution is

$$
u(x, t)=\frac{1}{t^{n / p}} \exp \left(-c\left(\frac{r}{t^{1 / p}}\right)^{\frac{p}{p-1}}\right),
$$

where $c=(p-1)^{2} p^{-\frac{p}{p-1}}$. Hence, if $q(p-1) \leq 1$ then u has infinite propagation speed.

$2 p$-Laplacian on Riemannian manifolds

Our goal is to investigate finite propagation speed for Leibenson's equation (1) on an arbitrary Riemannian manifold M. Solutions are understood in a certain weak sense.

Consider first the case $q=1$, that is, the following evolution equation for p-Laplacian:

$$
\partial_{t} u=\Delta_{p} u .
$$

For this equation the following result was known.
Theorem 1 (S.Dekkers 2005) Let $p>2$ and let $u(x, t)$ be a bounded non-negative solution to $\partial_{t} u=\Delta_{p} u$ on $M \times \mathbb{R}_{+}$with initial function $u_{0}=u(\cdot, 0)$.

Let $B_{0}=B\left(x_{0}, R\right)$ be a precompact ball in M such that $u_{0}=0$ in B_{0}. Then

$$
u=0 \text { in } \frac{1}{2} B_{0} \times\left[0, t_{0}\right],
$$

where

$$
t_{0}=\eta R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-(p-2)}
$$

and $\eta>0$ depends on the intrinsic geometry of B_{0}.

Hence, solution u has a finite propagation speed inside B_{0}, and the speed of propagation depends on the geometry of B_{0} via the constant η.

For any set $K \subset M$, denote by K_{r} the open r-neighborhood of K.
Corollary 2 Let M be complete and non-compact, $p>2$, and $K=\operatorname{supp} u_{0}$ be compact.
Then there exists an increasing function

$$
r:(0, T) \rightarrow \mathbb{R}_{+}
$$

for some $T \in(0, \infty]$, such that

$$
\operatorname{supp} u(\cdot, t) \subset K_{r(t)}
$$

for all $t \in(0, T)$.
If Ricci ${ }_{M} \geq 0$ then $r(t)=C t^{\frac{1}{p}}$ and $T=\infty$.

The function $r(t)$ is called a propagation rate of u. Using the Barenblatt solution in \mathbb{R}^{n}, one obtains that a propagation rate in \mathbb{R}^{n} for large t is

$$
r(t)=C t^{\frac{1}{p+n(p-2)}}
$$

so that the result of Corollary 2 is not sharp in this case.

3 Main result

On an arbitrary manifold M of dimension n, consider Leibenson's equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{3}
\end{equation*}
$$

where we assume that $p>2$ and $\frac{1}{p-1}<q \leq 1$. In particular, $q(p-1)-1>0$.
Theorem 3 Let u be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_{+}$, and assume that $u_{0}:=u(\cdot, 0) \in L^{1}(M)$. Let B_{0} be a precompact ball of radius R s.t. $u_{0}=0$ in B_{0}. Then $u=0$ in $\frac{1}{2} B_{0} \times\left[0, t_{0}\right]$, where

$$
\begin{equation*}
t_{0}=\eta R^{p} \mu\left(B_{0}\right)^{\frac{q(p-1)-1}{\sigma}}\left\|u_{0}\right\|_{L^{\sigma}(M)}^{-[q(p-1)-1]} . \tag{4}
\end{equation*}
$$

Here σ is any real such that
$\sigma \geq 1$ and $\sigma>q(p-1)-1$
and $\eta=\eta\left(B_{0}, p, q, n, \sigma\right)>0$.
Besides, the value $\sigma=\infty$ is also included and in this case

$$
t_{0}=\eta R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-[q(p-1)-1]} .
$$

Theorem 1 is a particular case of Theorem 3 for $q=1$ and $\sigma=\infty$.
In the next two statements M is complete and non-compact, and $K=\operatorname{supp} u_{0}$ is compact.

Corollary 4 There exists $T \in(0, T]$ and an increasing function $r:(0, T) \rightarrow \mathbb{R}_{+}$ such that

$$
\operatorname{supp} u(\cdot, t) \subset K_{r(t)}
$$

for all $t \in(0, T)$.
Let us refer to $r(t)$ as a propagation rate of solution u.

Corollary 5 Assume that Ricci $_{M} \geq 0$. Fix $x_{0} \in K$ and assume that

$$
\mu\left(B\left(x_{0}, r\right)\right) \geq c r^{\alpha} \text { for all } r \geq r_{0}
$$

with some $c, \alpha>0$. Then a propagation rate is $r(t)=C t^{1 / \beta}$ for $t \geq t_{0}$, where

$$
\begin{equation*}
\beta=p+\alpha \frac{q(p-1)-1}{\sigma} . \tag{5}
\end{equation*}
$$

Recall that in \mathbb{R}^{n} a propagation rate is $r(t)=C t^{1 / \beta}$ where

$$
\beta=p+n[q(p-1)-1] .
$$

Since in $\mathbb{R}^{n} \alpha=n$, we see that the value of β in (5) is sharp if $\sigma=1$.
We can take $\sigma=1$ in Theorem 3 provided $q(p-1)-1<1$, that is, when

$$
1<q(p-1)<2
$$

This range of p, q is shown here:

For this range of p, q, we obtain a sharp propagation rate not only in \mathbb{R}^{n} but also in a large class of models with Ricci ≥ 0, with any $\alpha \in(0, n]$.

Conjecture 6 The statement of Theorem 3 holds for $\sigma=1$ and for all

$$
p>1 \quad \text { and } q>\frac{1}{p-1} \text {. }
$$

4 Mean value inequality

The main ingredient in the proof of Theorem is the following mean value inequality.

Theorem 7 Let $B=B\left(x_{0}, r\right)$ be a precompact ball in M.
Let u be a non-negative bounded subsolution of (3) in the cylinder

$$
Q=B \times[0, T]
$$

and let $u(\cdot, 0)=0$ in B. Then, for the cylinder

$$
Q^{\prime}=\frac{1}{2} B \times[0, T]
$$

the following inequality holds:

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq\left(\frac{C}{\mu(B) r^{p}} \int_{Q} u^{\lambda+[q(p-1)-1]}\right)^{1 / \lambda} \tag{6}
\end{equation*}
$$

where $\lambda>0$ is any and C depends on p, q, λ and on the intrinsic geometry of B.

Proof of Theorem 7 starts with the following Lemma.
Lemma 8 Let u be a non-negative subsolution of (3).
Set

$$
a=\frac{q(p-1)-1}{p-2} .
$$

If $0<a \leq 1$ then the function

$$
v=\left(u^{a}-\theta\right)_{+}^{1 / a}
$$

is a subsolution for any $\theta>0$.

$$
\begin{aligned}
& \text { Function } f_{\theta}(s)=\left(s^{a}-\theta\right)_{+}^{1 / a} \\
& \text { It satisfies } f_{\theta_{1}} \circ f_{\theta_{2}}=f_{\theta_{1}+\theta_{2}}
\end{aligned}
$$

The condition $0<a \leq 1$ holds, in particular, in the case when

$$
p>2, \quad q(p-1)>1 \text { and } q \leq 1
$$

For the p-Laplacian case, that is, when $q=1$, we have $a=1$. In this case it is well known that $v=(u-\theta)_{+}$is a subsolution. If also $p=2$ that is, if (3) is the heat equation then $v=f(u)$ is a subsolution for any convex f.

Sketch of proof of Theorem 7. Fix some $\theta>0$ and define a sequence $\left\{u_{k}\right\}_{k=0}^{\infty}$ of functions:

$$
u_{0}=u, \quad u_{k}=\left(u_{k-1}^{a}-2^{-k} \theta\right)_{+}^{1 / a} \text { for } k \geq 1
$$

It is easy to see that $u_{k}=\left(u^{a}-\left(1-2^{-k}\right) \theta\right)_{+}^{1 / a}$.
Consider a decreasing sequence of radii

$$
r_{k}=\left(\frac{1}{2}+2^{-k-1}\right) r
$$

so that $r_{0}=r \geq r_{k} \searrow \frac{1}{2} r$, and cylinders

$$
Q_{k}=B\left(x_{0}, r_{k}\right) \times[0, t]
$$

so that

$$
Q_{0}=Q \supset Q_{k} \searrow Q^{\prime}
$$

as $k \rightarrow \infty$.
Set

$$
J_{k}=\int_{Q_{k}} u_{k}^{\lambda+[q(p-1)-1]} .
$$

Clearly, $J_{k+1} \leq J_{k}$. Using a Caccioppoli type inequality for u_{k} and u_{k+1} as well as a certain Faber-Krahn type inequality for Δ_{p} in B (which reflects the intrinsic geometry of B), we prove that

$$
J_{k+1} \leq \frac{C A^{k}}{\left(\mu(B) \theta^{\frac{\lambda}{a}} r^{p}\right)^{\nu}} J_{k}^{1+\nu},
$$

where $\nu=p / n$ is the Faber-Krahn exponent for Δ_{p} and C, A are some constants.
Analyzing this recursive inequality we show that if

$$
\begin{equation*}
\theta \geq\left(\frac{C J_{0}}{\mu(B) r^{p}}\right)^{\frac{a}{\lambda}} \tag{7}
\end{equation*}
$$

then $J_{k} \rightarrow 0$ as $k \rightarrow \infty$, which implies

$$
\int_{Q^{\prime}}\left[\left(u^{a}-\theta\right)_{+}^{1 / a}\right]^{\lambda+q(p-1)-1}=0
$$

that is, $u^{a} \leq \theta$ in Q^{\prime}. Choosing the minimal value of θ in (7), we obtain

$$
u \leq\left(\frac{C J_{0}}{\mu(B) r^{p}}\right)^{\frac{1}{\lambda}}=\left(\frac{C}{\mu(B) r^{p}} \int_{Q} u^{\lambda+[q(p-1)-1]}\right)^{\frac{1}{\lambda}} \text { in } Q^{\prime}
$$

which proves (6).
This method works for $\lambda \geq 2$. The case $0<\lambda<2$ is obtained from $\lambda=2$ using an additional iteration procedure.

5 From mean value to finite propagation speed

Sketch of proof of Theorem 3. Given a ball B_{0} of radius R, set $r=\frac{1}{2} R$, fix some $t>0$ and $x \in \frac{1}{2} B_{0}$, and set for any $k \in \mathbb{N}$

$$
Q_{k}=B\left(x, 2^{-k} r\right) \times[0, t] \quad \text { and } \quad J_{k}=\int_{Q_{k}} u^{\sigma} .
$$

Applying the mean value inequality (6) in Q_{k} and $Q_{k}^{\prime}=Q_{k+1}$ with

$$
\lambda=\sigma-[q(p-1)-1]>0
$$

we obtain

$$
\|u\|_{L^{\infty}\left(Q_{k+1}\right)} \leq\left(\frac{C}{\mu\left(B\left(x, 2^{-k} r\right)\right)\left(2^{-k} r\right)^{p}} \int_{Q_{k}} u^{\sigma}\right)^{1 / \lambda}
$$

Raising this to power σ and integrating over Q_{k+1}, we obtain

$$
J_{k+1} \leq t \mu\left(B_{0}\right)\left(\frac{C^{k}}{\mu\left(B_{0}\right) R^{p}} J_{k}\right)^{\sigma / \lambda}
$$

Since $\sigma / \lambda>1$, iteration of this inequality allows to prove that J_{k} decays double exponentially in k provided $t \leq t_{0}$ (where t_{0} is determined by (4)):

$$
\begin{equation*}
J_{k}=\int_{B\left(x, 2^{-k} r\right) \times[0, t]} u^{\sigma} \leq C A^{-(\sigma / \lambda)^{k}} \tag{8}
\end{equation*}
$$

and this is true for all $x \in \frac{1}{2} B_{0}$ and $k \geq 0$, with the same constants C and $A>1$.

For any fixed k, let us cover $\frac{1}{2} B_{0}=B\left(x_{0}, r\right)$ by a sequence of balls $B\left(x_{i}, 2^{-k} r\right)$ with some $x_{i} \in \frac{1}{2} B_{0}$. The minimal number of such balls is bounded by D^{k} for some constant D.
Hence, adding up (8) for all $x=x_{i}$, we obtain

$$
\int_{Q^{\prime}} u^{\sigma} \leq C D^{k} A^{-(\sigma / \lambda)^{k}}
$$

This inequality holds for any k. Letting $k \rightarrow \infty$ and noticing that the right hand side $\rightarrow 0$ thanks to $\sigma / \lambda>1$ and $A>1$, we obtain that $u=0$ in Q^{\prime}.

References

[1] Barenblatt G.I., On self-similar motions of compressible fluids in a porous medium, (in Russian) Prikl. Mat. Mekh., 16 (1952) 679-698.
[2] Benedikt, J., Girg, P., Kotrla, L., Takáč, P., Origin of the p-Laplacian and A. Missbach, Electronic Journal of Differential Equation, 2018 (2018) no.16, 1-17.
[3] Dekkers S.A.J., Finite propagation speed for solutions of the parabolic p-Laplace equation on manifolds, Comm. Anal. Geom., 14 (2005) no.4, 741-768.
[4] DiBenedetto E., "Degenerate parabolic equations", Universitext, Springer, 1993.
[5] Grigor'yan A., Sürig Ph., Finite propagation speed for Leibenson's equation on Riemannian manifolds, preprint
[6] Leibenson L. S., Turbulent movement of gas in a porous medium, (in Russian) Izvestia Akad. Nauk SSSR, 9 (1945) 3-6.
[7] Leibenson L. S., General problem of the movement of a compressible fluid in a porous medium, (in Russian) Izvestia Akad. Nauk SSSR, 9 (1945) 7-10.
[8] Leibenson L. S., "Motion of natural liquids and gases in porous media", (in Russian) Gostekhizdat, Moscow, USSR, 1947.

