Leibenson’s equation on Riemannian manifolds

Alexander Grigor’yan
http://www.math.uni-bielefeld.de/~grigor

September 2022
1 Introduction

We are concerned with an evolution equation

$$\partial_t u = \Delta_p u^q$$

(1)

where $p, q > 0$, $u(x, t)$ is an unknown non-negative function, and Δ_p is the p-Laplacian:

$$\Delta_p v = \text{div} \left(|\nabla v|^{p-2} \nabla v \right).$$

Equation (1) was introduced by L. S. Leibenson in 1945 in order to describe filtration of turbulent compressible fluid through a porous medium. The physical meaning of u is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the medium taken by the liquid.

Parameter p characterizes the turbulence of a flow while $q - 1$ is the index of polytropy of the liquid, that determines relation $PV^{q-1} = \text{const}$ between volume V and pressure P.

Leonid Samuilovich Leibenson
The physically interesting values of p and q are as follows: $\frac{3}{2} \leq p \leq 2$ and $q \geq 1$.

The case $p = 2$ corresponds to laminar flow (=absence of turbulence). In this case (1) becomes a porous medium equation $\partial_t u = \Delta u^q$, if $q > 1$, and the classical heat equation $\partial_t u = \Delta u$ if $q = 1$.

From mathematical point of view, the entire range $p > 1$, $q > 0$ is interesting.

G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1) in \mathbb{R}^n that are nowadays called Barenblatt solutions. Let us assume that

$$q(p - 1) > 1.$$

In this case the Barenblatt solution is as follows:

$$u(x, t) = \frac{1}{t^{n/\beta}} \left(C - \kappa \left(\frac{|x|}{t^{1/\beta}} \right)^{\frac{p}{p-1}} \right)^\gamma,$$

where $C > 0$ is any constant, and

$$\beta = p + n [q(p - 1) - 1] , \quad \gamma = \frac{p-1}{q(p-1)-1} , \quad \kappa = \frac{q(p-1)-1}{pq} \beta^{-\frac{1}{p-1}} .$$

(2)
Parameter β determines the space/time scaling and is analogous to the walk dimension.

It is obvious that for the Barenblatt solution

$$u(x, t) = 0 \quad \text{for} \quad |x| > ct^{1/\beta}$$

so that $u(\cdot, t)$ has a compact support for any t. One says that u has a finite propagation speed.

Here are the graphs of function $x \mapsto u(x, t)$ for different values of t in the case $n = 1$.

In the case $q(p - 1) < 1$, we have $\gamma, \kappa < 0$, and the Barenblatt solution

$$u(x, t) = \frac{1}{t^{n/\beta}} \left(C + |\kappa| \left(\frac{r}{t^{1/\beta}} \right)^{\frac{p}{p-1}} \right)^{-|\gamma|}$$

is positive for all x, t. In the borderline case $q(p - 1) = 1$, the Barenblatt solution is

$$u(x, t) = \frac{1}{t^{n/p}} \exp \left(-c \left(\frac{r}{t^{1/p}} \right)^{\frac{p}{p-1}} \right),$$

where $c = (p - 1)^2 p^{-\frac{p}{p-1}}$. Hence, if $q(p - 1) \leq 1$ then u has infinite propagation speed.
2 Propagation speed inside a ball

On an arbitrary manifold M of dimension n, consider Leibenson’s equation

$$\partial_t u = \Delta_p u^q,$$

(3)

where we assume that

$$p > 1 \text{ and } q > \frac{1}{p-1},$$

(4)

that is, $\delta := q(p - 1) - 1 > 0$. Solutions of (3) are understood in a certain weak sense.

Theorem 1 Let u be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_+$. Let B be a precompact ball in M of radius R, such that $u_0 := u(\cdot, 0) = 0$ in B. Then

$$u(\cdot, t) = 0 \text{ in } \frac{1}{2} B \text{ for all } t \leq t_0,$$

where

$$t_0 = \eta R^p \|u_0\|^{-\delta}_{L^\infty(M)}$$

and $\eta > 0$ depends on intrinsic geometry of B.

\[4\]
Note that the range (4) of parameters \(p, q \) is the same as that in the Barenblatt solutions with a finite propagation speed.

The only previously known case of Theorem 1 was when \(p > 2 \) and \(q = 1 \), that is, when (3) is the equation \(\partial_t u = \Delta_p u \). In this case a finite propagation speed was proved by S. Dekkers in *Comm. Anal. Geom.* 14 (2005).

Another interesting case is when \(p = 2 \) and \(q > 1 \), that is, when (3) is a *porous medium* equation \(\partial_t u = \Delta u^q \). Theorem 1 is new in this case.

Remark. The constant \(\eta \) depends on the *normalized Sobolev constant* \(c_B \) in \(B \): for any \(u \in W^{1,p}_0(B) \)

\[
\left(\int_B |\nabla u|^p \right)^{1/p} \geq \frac{c_B}{R} \left(\int_B |u|^\kappa \right)^{1/p\kappa}
\]

where \(\kappa \) is the Sobolev exponent: \(\kappa = \frac{n}{n-p} \) if \(n > p \) and \(\kappa > 1 \) is any if \(n \leq p \).

Remark. The Leibenson equation (3), that is, \(\partial_t u = \Delta_p u^q \) can be equivalently rewritten in the form

\[\partial_t u = \text{div} \left(u^{m-1} |\nabla u|^{p-2} \nabla u \right), \]

where \(m = 1 + (q-1)(p-1) = \delta + 3 - p \). The condition \(\delta > 0 \) is, hence, equivalent to \(m + p > 3 \). Therefore, Theorem 1 holds for this equation when \(p > 1 \) and \(m + p > 3 \).
3 Finite propagation speed of support

Let M be complete. Let u be a bounded non-negative subsolution of (3) with $u(\cdot, 0) = u_0$. For any set $K \subset M$ and any $r > 0$, denote by K_r the closed r-neighborhood of K.

Corollary 2 Let $K := \text{supp } u_0$ be a compact set. Then there an increasing positive function $r : (0, T) \rightarrow \mathbb{R}_+$ with some $T \in (0, \infty]$ such that

$$\text{supp } u(\cdot, t) \subset K_{r(t)}$$

for all $t \in (0, T)$.

Function $r(t)$ is referred to as a *propagation rate* of solution u.

Problem 3 Is it true that one can always have $T = \infty$? Either prove it or give a counterexample: a complete manifold and a solution u such that $\text{supp } u_0$ is compact, while $\text{supp } u(\cdot, t)$ is unbounded for large enough t.
Let M have non-negative Ricci curvature. Then the normalized Sobolev constant c_B in (5) can be taken the same for all balls and, hence, the constant η from Theorem 1 is also the same for all balls, which allows to obtain the following.

Corollary 4 If $\text{Ricci}_M \geq 0$ then any subsolution u with compactly supported u_0 has a propagation rate $r(t) = Ct^{1/p}$ for all $t > 0$.

Recall that in \mathbb{R}^n the propagation rate of the Barenblatt solution is $r(t) = Ct^{1/\beta}$ where

$$\beta = p + n \left[q(p - 1) - 1 \right] = p + n\delta. \quad (6)$$

This implies that, for any bounded non-negative solution u in \mathbb{R}^n with compactly supported u_0, the propagation rate is also $r(t) = Ct^{1/\beta}$ for large t.

Since $p < \beta$, we see that the propagation rate of the above Corollary is not sharp in \mathbb{R}^n.

7
4 Sharp propagation rate

We assume here that

\[p > 2 \text{ and } \frac{1}{p-1} < q \leq 1. \]

Theorem 5 Let \(u \) be a bounded non-negative subsolution of (3) in \(M \times \mathbb{R}_+ \), with initial function \(u_0 := u(\cdot, 0) \in L^1 \). Let \(B \) be a precompact ball of radius \(R \) s.t. \(u_0 = 0 \) in \(B \). Then

\[u(\cdot, t) = 0 \text{ in } \frac{1}{2}B \text{ for all } t \leq t_0 \]

where

\[t_0 = \eta R^p \mu(B) \frac{\delta}{\sigma} \| u_0 \|_{L^\sigma(M)}^{-\delta}. \]

Here \(\sigma \) is any real number such that

\[\sigma \geq 1 \text{ and } \sigma > \delta, \quad (\dagger) \]

and \(\eta = \eta(B, p, q, n, \sigma) > 0 \).
Corollary 6 Assume that M is complete and $\text{Ricci}_M \geq 0$. Fix a point $x_0 \in \text{supp} \ u_0$ and assume that

$$\mu(B(x_0, r)) \geq cr^\alpha \text{ for all } r \geq r_0,$$

with some $c, \alpha > 0$. Then u has propagation rate $r(t) = Ct^{1/\beta}$ for large t, where

$$\beta = p + \alpha \frac{\delta}{\sigma}$$

(7)

and σ is as in $\left(\frac{7}{7}\right)$.

In \mathbb{R}^n we have $\alpha = n$. Setting $\sigma = 1$, we obtain $\beta = p + n \delta$ that matches (6). However, we can take $\sigma = 1$ in $\left(\frac{7}{7}\right)$ only if $\delta < 1$, that is, if $q(p - 1) < 2$.

The next diagram shows the following range of p, q:

$$p > 2 \text{ and } 1 < q(p - 1) < 2.$$

For these p, q, we obtain a sharp propagation rate not only in \mathbb{R}^n, but also in a large class of model manifolds with $\text{Ricci}_M \geq 0$ and with any $\alpha \in (0, n]$.

Conjecture 7 The result of Theorem 5 holds for all $p > 1$, $q > \frac{1}{p-1}$ and for $\sigma = 1$.

9
5 Mean value inequality

The main ingredient of the proof of Theorem 1 is the following mean value inequality. We assume here that $p > 1$ and $\delta \geq 0$.

Lemma 8 Let a ball $B = B(x_0, R)$ be precompact. Let u be a non-negative bounded subsolution of (3) in cylinder

$$Q = B \times [0, T],$$

such that $u(\cdot, 0) = 0$ in B. Then, for the cylinder

$$Q' = \frac{1}{2} B \times [0, T],$$

and for any

$$\lambda \geq \max (2 + \delta, p),$$

the following inequality holds:

$$\|u\|_{L^\infty(Q')} \leq C \left(\frac{T}{R^p} \right)^{1/\lambda} \|u\|_{L^\infty(Q)}^{\delta/\lambda} \left(\int_Q u^\lambda \right)^{1/\lambda},$$

(8)

where $C = C(B, p, n, \lambda)$.

[Diagram of cylinders Q and Q' with notation and conditions for u and λ.]

10
For the proof we use the Sobolev inequality inside B and Moser’s iteration argument.

For that consider a shrinking sequence of cylinders $\{Q_k\}_{k=0}^\infty$ interpolating between $Q_0 = Q$ and $Q_\infty = Q'$, and prove that

$$\int_{Q_{k+1}} u^{\sigma(1+\nu)} \leq C(\cdots) \left(\int_{Q_k} u^{\sigma}\right)^{1+\nu} \quad (*)$$

for $\sigma \gg 1$ and $\nu > 0$ that comes from the Sobolev inequality.

In the classical Moser argument, one proves $(*)$ first for $\sigma = 2$ and then applies this inequality also to $u^{\sigma/2}$ with any $\sigma > 2$ because $u^{\sigma/2}$ is also subsolution. This allows to set in $(*)$ $\sigma = \lambda (1 + \nu)^k$ and to reach $\|u\|_{L^\infty(Q')}^*$ in the left hand side as $k \to \infty$.

In our case this trick is not possible: no power of subsolution is again a subsolution. Hence, we need to prove $(*)$ directly for any σ and to compute carefully the constant $C = C(\sigma)$ in $(*)$. It turns out that $C \simeq \sigma^A$ for some A and, surprisingly, this moderate growth of C with σ still allows to complete the iteration argument and to obtain (8).

Using $\left(\int_Q u^{\lambda}\right)^{1/\lambda} \leq \|u\|_{L^\infty(Q)}$, we obtain from (8)

$$\|u\|_{L^\infty(Q')} \leq C \left(\frac{T}{R^p}\right)^{1/\lambda} \|u\|_{L^\infty(Q)}^{1+\delta/\lambda}. \quad (9)$$
6 From mean value to finite propagation speed

Sketch of proof of Theorem 1. Set \(r = \frac{1}{2}R \) and fix for a while a point \(x \in \frac{1}{2}B \).

Hence, we have \(B(x, r) \subset B \).

Fix also some \(t > 0 \) and set

\[
Q_k = B(x, 2^{-k}r) \times [0, t],
\]

\[
J_k = \|u\|_{L^\infty(Q_k)}.
\]

Let \(\lambda \) be as it is needed for Lemma 8. Then by (9)

\[
J_{k+1} \leq C \left(\frac{t}{(2^{-k}R)^p} \right)^{1/\lambda} J_k^{1 + \frac{\delta}{\lambda}} = C 2^{k/\lambda} \left(\frac{t}{R^p} \right)^{1/\lambda} J_k^{1 + \frac{\delta}{\lambda}}.
\]

Iterating this inequality, we obtain an upper bound of \(J_k \) via \(J_0 \) that implies the following: if

\[
C \left(\frac{t}{R^p} \right)^{1/\lambda} \leq 2^{-1/\delta} J_0^{-\delta/\lambda}
\]
then, for all k,
\[J_k \leq 2^{-k/\delta} J_0. \] (11)

The condition (10) is equivalent to
\[t \leq \eta R^p J_0^{-\delta}. \] (12)

Since $J_0 = \|u\|_{L^\infty(Q)} \leq \|u_0\|_{L^\infty(M)}$ and, hence,
\[t_0 = \eta R^p \|u_0\|^{-\delta}_{L^\infty(M)} \leq \eta R^p J_0^{-\delta}, \]
we see that (12) is satisfied for $t = t_0$. For this t, we obtain from (11) that, for any k,
\[\|u\|_{L^\infty(B(x,2^{-k}r) \times [0,t])} \leq 2^{-k/\delta} \|u_0\|_{L^\infty}. \]

For any k, we cover the ball $\frac{1}{2} B$ by a countable (or even finite) sequence of balls $B(x_i, 2^{-k}r)$ with $x_i \in \frac{1}{2} B$. Since for all i
\[\|u\|_{L^\infty(B(x_i,2^{-k}r) \times [0,t])} \leq 2^{-k/\delta} \|u_0\|_{L^\infty}, \]
we obtain that
\[\|u\|_{L^\infty(\frac{1}{2} B \times [0,t])} \leq 2^{-k/\delta} \|u_0\|_{L^\infty}. \]

Finally, letting $k \to \infty$, we obtain that $u = 0$ in $\frac{1}{2} B \times [0, t]$, which was to be proved. □
7 Mean value inequality 2

The main ingredient in the proof of Theorem 5 is the following version of the mean value inequality. We assume here that \(p > 2 \) and \(\frac{1}{p-1} < q \leq 1 \).

Lemma 9 Let \(B = B(x_0, R) \) be a precompact ball in \(M \).

Let \(u \) be a non-negative bounded subsolution of (3) in the cylinder
\[
Q = B \times [0, T],
\]
and let \(u(\cdot, 0) = 0 \) in \(B \). Then,

for the cylinder
\[
Q' = \frac{1}{2} B \times [0, T],
\]

the following inequality holds:

\[
\|u\|_{L^\infty(Q')} \leq C \left(\frac{T}{R^p} \right)^{1/\lambda} \left(\int_Q u^{\lambda + \delta} \right)^{1/\lambda},
\]

where \(\lambda > 0 \) is any, \(\delta = q(p-1) - 1 \), and \(C = C(B, p, \delta, \lambda) \).
In the proof of Lemma 9 we use the following lemma.

Lemma 10 Let u be a non-negative subsolution of (3).

Set

$$a = \frac{q(p - 1) - 1}{p - 2}.$$

If $0 < a \leq 1$ then the function

$$v = (u^a - \theta)^{1/a}$$

is a subsolution for any $\theta > 0$.

The condition $0 < a \leq 1$ holds, in particular, in the case when

$$p > 2 \quad \text{and} \quad \frac{1}{p - 1} < q \leq 1$$

For the p-Laplacian case, that is, when $q = 1$, we have $a = 1$. In this case it is well known that $v = (u - \theta)_+$ is a subsolution. If also $p = 2$ that is, if (3) is the heat equation, then $v = f(u)$ is a subsolution for any convex f.

15
Sketch of proof of Lemma 9. Fix some $\theta > 0$ and define a sequence \(\{u_k\}_{k=0}^{\infty} \) of functions:

\[
 u_0 = u, \quad u_k = (u_{k-1}^a - 2^{-k}\theta)^{1/a} \quad \text{for} \quad k \geq 1
\]

It is easy to see that \(u_k = (u^a - (1 - 2^{-k})\theta)^{1/a} \).

Consider a decreasing sequence of radii \(r_k = (\frac{1}{2} + 2^{-k-1}) R \) so that \(r_0 = r \geq r_k \searrow \frac{1}{2} R \), and cylinders \(Q_k = B(x_0, r_k) \times [0, t] \) so that \(Q_0 = Q \supset Q_k \searrow Q' \) as \(k \to \infty \).

Set

\[
 J_k = \int_{Q_k} u_{k+1}^{\lambda+\delta}. \quad \text{(16)}
\]

Clearly, \(J_{k+1} \leq J_k \). Using a Caccioppoli type inequality for \(u_k \) and \(u_{k+1} \) as well as a certain Faber-Krahn type inequality for \(\Delta_p \) in \(B \) (which reflects the intrinsic geometry of \(B \)), we prove that
\[J_{k+1} \leq \frac{CA^k}{\left(\frac{\mu(B)\theta^\alpha}{\lambda r^p}\right)^\nu} J_k^{1+\nu}, \]

where \(\nu > 0 \) is the Faber-Krahn exponent for \(\Delta_p \), and \(C, A \) are some constants.

Analyzing this recursive inequality, we show that if

\[\theta \geq \left(\frac{C J_0}{\mu(B) r^p} \right)^\frac{\alpha}{\lambda}, \quad (14) \]

then \(J_k \to 0 \) as \(k \to \infty \), which implies

\[\int_{Q'} \left[(u^a - \theta)^{1/a^+} \right]^\lambda + \delta = 0, \]

that is, \(u^a \leq \theta \) in \(Q' \). Choosing the minimal value of \(\theta \) in (14), we obtain

\[u \leq \left(\frac{C J_0}{\mu(B) r^p} \right)^\frac{1}{\lambda} = \left(\frac{C}{\mu(B) r^p} \int_Q u^{\lambda + \delta} \right)^\frac{1}{\lambda} \text{ in } Q' \]

which proves (13).

This method works for \(\lambda \geq 2 \). The case \(0 < \lambda < 2 \) is obtained from \(\lambda = 2 \) using an additional iteration procedure.