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1 Introduction

We are concerned with an evolution equation
Ou = Apu? (1)
where p,q > 0, u (x,t) is an unknown non-negative function, and A, is the p-Laplacian:

Ay = div (|Vo|P > V) .

Equation (1) was introduced by L.S. Leibenson
in 1945 in order to describe filtration of turbulent
compressible fluid through a porous medium. The
physical meaning of w is the volumetric moisture
content, i.e. the (infinitesimal) fraction of volume
of the medium taken by the liquid.

Parameter p characterizes the turbulence of a flow
while ¢ — 1 is the index of polytropy of the liquid,
that determines relation PV9~! = const between
volume V' and pressure P.
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The physically interesting values of p and ¢ are as follows: % <p<2andq>1.

The case p = 2 corresponds to laminar flow (=absence of turbulence). In this case (1)
becomes a porous medium equation O;u = Au?, if ¢ > 1, and the classical heat equation

Ou = Au if ¢ = 1.

From mathematical point of view, the entire range p > 1, ¢ > 0 is interesting.

G.I.Barenblatt constructed in 1952 spherically symmetric
self-similar solutions of (1) in R™ that are nowadays called
Barenblatt solutions. Let us assume that

q(p—1)>1|
In this case the Barenblatt solution is as follows:
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where C' > 0 is any constant, and
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Parameter § determines the space/time scaling and is analogous to the walk dimension.

It is obvious that for the Barenblatt solution

L\ ¢ small
u(z,t) =0 for |z| > ct?/

so that u(-,t) has a compact support for any t.

One says that u has a finite propagation speed.

Here are the graphs of function z +— u(z,t) for

different values of ¢ in the case n = 1.

In the case ¢ (p — 1) < 1, we have v, k < 0, and the Barenblatt solution

2\ —1l
1 T p—1

is positive for all z,t¢. In the borderline case ¢ (p — 1) = 1, the Barenblatt solution is

1 r o\ T
u(z,t) = g SXP | ¢ (m> ;

where ¢ = (p — 1)2;0_%. Hence, if ¢ (p — 1) < 1 then u has infinite propagation speed.



2 Propagation speed inside a ball

On an arbitrary manifold M of dimension n, consider Leibenson’s equation
Oru = Apuf, (3)

where we assume that

p>1andq>]ﬁ, (4)

that is, 0 :== q(p — 1) — 1 > 0. Solutions of (3) are understood in a certain weak sense.

Theorem 1 Let u be a bounded non-negative subsolution of (3) in M x R,.

Let B be a precompact ball in M of radius R, T
. ~—_ 1

such that ug := u(-,0) =0 in B. Then
supp u(-,t) u(x,1=0
u(-,t) =01 1B for all t <ty

where

5
to = nRP [[uol| oo an

and n > 0 depends on intrinsic geometry of B.




Note that the range (4) of parameters p, ¢ is the same as that in the Barenblatt solutions
with a finite propagation speed.

The only previously known case of Theorem 1 was when p > 2 and ¢ = 1, that is, when

(3) is the equation Oyu = Apu. In this case a finite propagation speed was proved by
S. Dekkers in Comm. Anal. Geom. 14 (2005).

Another interesting case is when p = 2 and ¢ > 1, that is, when (3) is a porous medium
equation 0;u = Auf. Theorem 1 is new in this case.

Remark. The constant 1 depends on the normalized Sobolev constant cp in B: for any

u e WP (B) o .
(fiwar) =2 (f ) @

where x is the Sobolev exponent: k = ni_p if n>pand k> 1isanyif n <p.
Remark. The Leibenson equation (3), that is, 0yu = A,u? can be equivalently rewritten

in the form

Opu = div (v |Vul'? Vu)

where m =1+ (¢—1)(p—1) = § + 3 — p. The condition ¢ > 0 is, hence, equivalent to
m + p > 3. Therefore, Theorem 1 holds for this equation when p > 1 and m + p > 3.



3 Finite propagation speed of support

Let M be complete. Let u be a bounded non-negative subsolution of (3) with u(-,0) = wo.

For any set K C M and any r > 0, denote by K, the closed r-neighborhood of K.

Corollary 2 Let K :=suppug be a compact set. Then there an increasing positive

function r:(0,T) — Ry with some T € (0, o0]
such that
Supp u ('7 t) C Kr(t)

for allt € (0,T).

Function r(t) is referred to as a propagation rate

of solution wu.

Problem 3 Is it true that one can always have T' = co? Either prove it or give a coun-
terexample: a complete manifold and a solution u such that supp ug is compact, while

supp (-, t) is unbounded for large enough .

supp u(e,f)

' “ K=supp uy i@

M




Let M have non-negative Ricci curvature. Then the normalized Sobolev constant cg in
(5) can be taken the same for all balls and, hence, the constant 7 from Theorem 1 is also
the same for all balls, which allows to obtain the following.

Corollary 4 If Riccipr > 0 then any subsolution u with compactly supported uy has a
propagation rate r(t) = CtY/? for all t > 0.

Recall that in R™ the propagation rate of the Barenblatt solution is r(t) = Ct'/? where

B=p+nlglp—1)—1] =p+nd. (6)

This implies that, for any bounded non-negative solution u in R™ with compactly sup-
ported wg, the propagation rate is also r(t) = Ct'/8 for large t.

Since p < (3, we see that the propagation rate of the above Corollary is not sharp in R".



4 Sharp propagation rate

We assume here that 1
p>2 and ——<qg<1.

p—1
Theorem 5 Let u be a bounded non-negative subsolution of (3) in M x Ry, with initial
function ug :=u (-,0) € L'. Let B be a precompact ball of radius R s.t. ug =0 in B.

A

Then
. 1 /E_\
u(-,t) =0 in 5B for all t <t ~ 7
where
supp u(s,t) u(x,1)=0

s -5
to = nRPu(B)- HuOHLU(M) :

Here o 1s any real number such that

oc>1 and o>, (1)

and n=mn(B,p,q,n,o) > 0.




Corollary 6 Assume that M is complete and Riccipy > 0. Fix a point xo € supp ug and

assume that
w(B(xg,r)) > cr® for all r > ro,

with some c,a > 0. Then u has propagation rate v(t) = CtY/? for large t, where

0
5=p+a; (7)

and o is as in (1) .

In R™ we have a = n. Setting ¢ = 1, we obtain [ = p + nd that matches (6). However,
we can take 0 = 1 in (I) only if § < 1, that is, if ¢(p — 1) < 2.

The next diagram shows the following range of p, ¢: q’T
p>2 and 1<q(p—1)<2. \\

For these p, g, we obtain a sharp propagation rate

not only in R™, but also in a large class of model

0 1 2 3 4

manifolds with Ricciy, > 0 and with any o € (0,n). P

Conjecture 7 The result of Theorem 5 holds for all p > 1, q > zﬁ and for o = 1.



5 Mean value inequality

The main ingredient of the proof of Theorem 1 is the following mean value inequality. We
assume here that p > 1 and 0 > 0.

Lemma 8 Let a ball B = B (xg, R) be precompact. Let u be a non-negative bounded

subsolution of (3) in cylinder

Q=B x[0,T], Y
such that w(-,0) = 0in B.
Then, for the cylinder o 0
Q =1iBx10,T],
and for any ] "’::;::f\B

0 ue0=0 < B
A >max (2+6,p), WM

the following inequality holds:

1/
YAy 116
Jull gy < € ()" 0l o) (]{2 u> , ®)
where C' = C (B, p,n, \).
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For the proof we use the Sobolev inequality inside B and Moser’s iteration argument.

For that consider a shrinking sequence of cylinders {Q},—,
interpolating between 0y = @ and Qo = @', and prove that

ka+1 cr(l—l—y) < C <fQ >1+u (*)

for 0 > 1 and v > 0 that comes from the Sobolev inequality.

In the classical Moser argument, one proves () first for ¢ = 2 and then applies this in-
equality also to u?/? with any o > 2 because u°/? is also subsolution. This allows to set
in () 0 = A(14 )" and to reach [wll oo (gry In the left hand side as k — oo.

In our case this trick is not possible: no power of subsolution is again a subsolution.
Hence, we need to prove (x) directly for any o and to compute carefully the constant
C = C(0) in (*). It turns out that C' ~ o4 for some A and, surprisingly, this moderate
growth of C' with o still allows to complete the iteration argument and to obtain (8).

1/
Using (fQ uA) < [Jull oo (gy> We obtain from (8)

1/A 1+6/\
Il gy < C () lull 205 - 9)
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6 From mean value to finite propagation s

peed

Sketch of proof of Theorem 1. Set r = %R and fix for a while a point x € %B.

Hence, we have B (z,r) C B. e T e T
Fix also some ¢t > 0 and set : s . : \v/
Qr = B(z,27%r) x [0, 1], o Oi | Ok 0
Jk - ||UHLOO(QI€) ’ S O ) R
_ 0 {ue0=0 (LB — B}
Let A be as it is needed for W07 e y

N

Lemma 8. Then by (9)

¢ 1/)\ 5 ¢ 1/)\ 5
Joi1 < C (W) J.T = ook (_> J

[terating this inequality, we obtain an upper bound of J, via Jy that impl
if
1/
t —1/8 7=0/A

12

ies the following:

(10)



then, for all k,

Je < 27F0 . (11)
The condition (10) is equivalent to

t < nRPJ;. (12)
Since Jo = [|u| oo () < ltoll oo (ar) and, hence,

to = nR” HUOHZfo(M) < nRPJ;°
we see that (12) is satisfied for ¢ = ty. For this ¢, we obtain from (11) that, for any £,
H“HL"O(B(z,z—kr)x[o,t]) <27 [[wol| oo -

For any k, we cover the ball B by a countable (or even finite) sequence of balls B(z;, 27%r)
with z; € %B. Since for all 7

Hu”LOO(B((Ei,Q_kT)X[O,t]) = 27H/° HuOHLOO )

we obtain that
el e (3 o) < 27° lloll e

Finally, letting k — oo, we obtain that v = 0 in %B x [0,t], which was to be proved. m
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7 Mean value inequality 2

The main ingredient in the proof of Theorem 5 is the following version of the mean value
inequality. We assume here that p > 2 and p%l <q< 1.

Lemma 9 Let B = B(xg, R) be a precompact ball in M.

Let u be a non-negative bounded
subsolution of (3) in the cylinder . 6\
Q=Bx[0,T], — 1
and let u (-,0) =0 in B. Then, o' 0
for the cylinder
Q' =3B x[0,T], I

the following inequality holds: 0 b
M

bl < ()™ (f

1/
u>\+5> : (13)
Q

where A > 0 is any, 6 = q(p—1) — 1, and C = C(B,p,0, \).
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In the proof of Lemma 9 we use the following lemma.

Lemma 10 Let u be a non-negative subsolution of (3).

Set
gp—1)—1
p=2

a =

If 0 <a <1 then the function

v=(u"— 9)3“

Function fg(s)=(s* —O)i/a

15 a subsolution for any 0 > 0. ,
It satisfies f910f92:f91+92

The condition 0 < a < 1 holds, in particular, in the case when
1
p>2 and — <¢<1
p—1

For the p-Laplacian case, that is, when ¢ = 1, we have a = 1. In this case it is well known
that v = (u — ), is a subsolution. If also p = 2 that is, if (3) is the heat equation, then
v = f(u) is a subsolution for any convex f.
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Sketch of proof of Lemma 9. Fix some ¢ > 0 and define a sequence {u},, of
functions:

for k>1

Ug =u, U, = (UZ—1 — 2_]“9)
It is easy to see that u, = (ua — (1 — 2_’“) 0)1/a.

Consider a decreasing sequence of radii
= (% + 2_1‘7_1) R
so that ro =r > rp \, %R, and cylinders
Qr = B (xg,71) % [0, 1]
so that
Qo=Q D Qr\¢Q

as k — 00.

Set

Clearly, Jy.1 < Ji. Using a Caccioppoli type inequality for u; and ux; as well as a certain
Faber-Krahn type inequality for A, in B (which reflects the intrinsic geometry of B), we
prove that

16



C A
(u(3)937“p>

where v > 0 is the Faber-Krahn exponent for A,, and C, A are some constants.

14+v
Jk—l—l S I/Jk )

Analyzing this recursive inequality, we show that if

(k).

then J, — 0 as £ — oo, which implies

// [(u“ - Q)i/a:| A+6 o

that is, u* < 6 in @)’. Choosing the minimal value of € in (14), we obtain
Yo ( CJo ) :( C /uMa)A e
p(B)re u(B)rr Jq

This method works for A > 2. The case 0 < A < 2 is obtained from A = 2 using an
additional iteration procedure. m

which proves (13).
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