Leibenson's equation on Riemannian manifolds

Alexander Grigor'yan
University of Bielefeld

Chemnitz, October 2023

Based on a joint work with Philipp Sürig

1 Introduction

We are concerned with an evolution equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{1}
\end{equation*}
$$

where $p, q>0, u(x, t)$ is an unknown non-negative function, and Δ_{p} is the p-Laplacian:

$$
\Delta_{p} v=\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)
$$

Equation (1) was introduced by L. S. Leibenson in 1945 in order to describe filtration of turbulent compressible fluid through a porous medium. The physical meaning of u is the volumetric moisture content, i.e. the (infinitesimal) fraction of volume of the medium taken by the liquid.
Parameter p characterizes the turbulence of a flow while $q-1$ is the index of polytropy of the liquid, that determines relation $P V^{q-1}=$ const between volume V and pressure P.

Leonid Samuilovich Leibenson

The physically interesting values of p and q are as follows: $\frac{3}{2} \leq p \leq 2$ and $q \geq 1$.
The case $p=2$ corresponds to laminar flow (=absence of turbulence). In this case (1) becomes a porous medium equation $\partial_{t} u=\Delta u^{q}$, if $q>1$, and the classical heat equation $\partial_{t} u=\Delta u$ if $q=1$.

From mathematical point of view, the entire range $p>1, q>0$ is interesting.
G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1) in \mathbb{R}^{n} that are nowadays called Barenblatt solutions. Let us first assume that

$$
q(p-1)>1 \text {. }
$$

In this case the Barenblatt solution is as follows:

$$
u(x, t)=\frac{1}{t^{n / \beta}}\left(C-\kappa\left(\frac{|x|}{t^{1 / \beta}}\right)^{\frac{p}{p-1}}\right)_{+}^{\gamma}
$$

where $C>0$ is any constant, and

Grigory Isaakovich Barenblatt

$$
\begin{equation*}
\beta=p+n[q(p-1)-1], \quad \gamma=\frac{p-1}{q(p-1)-1}, \quad \kappa=\frac{q(p-1)-1}{p q} \beta^{-\frac{1}{p-1}} . \tag{2}
\end{equation*}
$$

Parameter β determines the space/time scaling and is analogous to the walk dimension.
It is obvious that for the Barenblatt solution

$$
u(x, t)=0 \text { for }|x|>c t^{1 / \beta}
$$

so that $u(\cdot, t)$ has a compact support for any t. One says that u has a finite propagation speed.

Here are the graphs of function $x \mapsto u(x, t)$ for different values of t in the case $n=1$:

In the case $q(p-1)<1$, we have $\gamma, \kappa<0$, and the Barenblatt solution

$$
u(x, t)=\frac{1}{t^{n / \beta}}\left(C+|\kappa|\left(\frac{r}{t^{1 / \beta}}\right)^{\frac{p}{p-1}}\right)^{-|\gamma|}
$$

is positive for all x, t. In the borderline case $q(p-1)=1$, the Barenblatt solution is

$$
u(x, t)=\frac{1}{t^{n / p}} \exp \left(-c\left(\frac{r}{t^{1 / p}}\right)^{\frac{p}{p-1}}\right),
$$

where $c=(p-1)^{2} p^{-\frac{p}{p-1}}$. Hence, if $q(p-1) \leq 1$ then u has infinite propagation speed.

2 Propagation speed inside a ball

From now on let M be a geodesically complete Riemannian manifold of dimension n. Consider on M the Leibenson equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p} u^{q} \tag{3}
\end{equation*}
$$

where we assume that

$$
\begin{equation*}
p>1 \text { and } q>\frac{1}{p-1}, \tag{4}
\end{equation*}
$$

that is, $\delta:=q(p-1)-1>0$. Solutions of (3) are understood in a certain weak sense.
Theorem 1 Let $u(x, t)$ be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_{+}$.
Let B be a ball in M of radius R such that $u_{0}:=u(\cdot, 0)=0$ in B. Then we have

$$
u(\cdot, t)=0 \text { in } \frac{1}{2} B \quad \text { for all } t \leq t_{0}
$$

where

$$
t_{0}=\eta R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-\delta}
$$

and $\eta>0$ depends on intrinsic geometry of B.

Note that the range (4) of parameters p, q is the same as that in the Barenblatt solutions with a finite propagation speed.
The only previously known case of Theorem 1 was when $p>2$ and $q=1$, that is, when (3) is the equation $\partial_{t} u=\Delta_{p} u$. In this case a finite propagation speed was proved by S. Dekkers in Comm. Anal. Geom. 14 (2005).

Another interesting case is when $p=2$ and $q>1$, that is, when (3) is a porous medium equation $\partial_{t} u=\Delta u^{q}$. Theorem 1 is new in this case.
Remark. The constant η depends on p, q, n as well as on the normalized Sobolev constant c_{B} in B : for any $u \in W_{0}^{1, p}(B)$

$$
\begin{equation*}
\left(f_{B}|\nabla u|^{p}\right)^{1 / p} \geq \frac{c_{B}}{R}\left(f_{B}|u|^{p \kappa}\right)^{1 / p \kappa} \tag{5}
\end{equation*}
$$

where κ is the Sobolev exponent: $\kappa=\frac{n}{n-p}$ if $n>p$ and $\kappa>1$ is any if $n \leq p$.
Remark. The Leibenson equation (3), that is, $\partial_{t} u=\Delta_{p} u^{q}$ can be equivalently rewritten in the form

$$
\partial_{t} u=\operatorname{div}\left(u^{m-1}|\nabla u|^{p-2} \nabla u\right),
$$

where $m=1+(q-1)(p-1)=\delta+3-p$. The condition $\delta>0$ is, hence, equivalent to $m+p>3$. Therefore, Theorem 1 holds for this equation when $p>1$ and $m+p>3$.

3 Finite propagation speed of support

Let u be a bounded non-negative subsolution of (3) with $u(\cdot, 0)=u_{0}$. For any set $K \subset M$ and any $r>0$, denote by K_{r} the closed r-neighborhood of K.

Corollary 2 Let $K:=\operatorname{supp} u_{0}$ be a compact set. Then there an increasing positive function $r:(0, T) \rightarrow \mathbb{R}_{+}$with some $T \in(0, \infty]$, such that

$$
\operatorname{supp} u(\cdot, t) \subset K_{r(t)}
$$

for all $t \in(0, T)$.
Function $r(t)$ is referred to as a propagation rate of solution u.

Problem 3 Is it true that one can always have $T=\infty$? Either prove it or give a counterexample: a manifold and a solution u such that $\operatorname{supp} u_{0}$ is compact, while $\operatorname{supp} u(\cdot, t)$ is unbounded for large enough t.

Let M have non-negative Ricci curvature. Then the normalized Sobolev constant c_{B} in (5) can be taken the same for all balls. Hence, the constant η from Theorem 1 is also the same for all balls, which allows to obtain the following.

Corollary 4 If Ricci $_{M} \geq 0$ then any bounded non-negative subsolution u with compactly supported u_{0} has a propagation rate $r(t)=C t^{1 / p}$ for all $t>0$.

Recall that in \mathbb{R}^{n} the propagation rate of the Barenblatt solution is

$$
r(t)=C t^{1 / \beta}
$$

where

$$
\begin{equation*}
\beta=p+n[q(p-1)-1]=p+n \delta . \tag{6}
\end{equation*}
$$

This implies that, for any bounded non-negative solution u in \mathbb{R}^{n} with compactly supported u_{0}, the propagation rate is also $r(t)=C t^{1 / \beta}$ for large t.
Since $p<\beta$, we see that the propagation rate of Corollary 4 is not sharp in \mathbb{R}^{n}.

4 Sharp propagation rate

Instead of the previous conditions (4), we assume here more restricted hypotheses:

$$
p>2 \quad \text { and } \quad \frac{1}{p-1}<q \leq 1 .
$$

Theorem 5 Let u be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_{+}$, with initial function $u_{0}:=u(\cdot, 0) \in L^{1}$. Let B be a ball in M of radius R such that $u_{0}=0$ in B. Then

$$
u(\cdot, t)=0 \text { in } \frac{1}{2} B \text { for all } t \leq t_{0}
$$

where

$$
t_{0}=\eta R^{p} \mu(B)^{\frac{\delta}{\sigma}}\left\|u_{0}\right\|_{L^{\sigma}(M)}^{-\delta}
$$

Here σ is any real number such that

$$
\begin{equation*}
\sigma \geq 1 \quad \text { and } \quad \sigma>\delta \tag{*}
\end{equation*}
$$

$\delta=q(p-1)-1>0$,
$\eta=\eta\left(p, q, n, \sigma, c_{B}\right)>0$.

Corollary 6 Assume that Ricci $_{M} \geq 0$. Fix a point $x_{0} \in \operatorname{supp} u_{0}$ and assume that

$$
\begin{equation*}
\mu\left(B\left(x_{0}, r\right)\right) \geq c r^{\alpha} \quad \text { for all } r \geq r_{0} \tag{7}
\end{equation*}
$$

with some $\alpha, c>0$. Then u has a propagation rate $r(t)=C t^{1 / \beta}$ for large t, where

$$
\begin{equation*}
\beta=p+\alpha \frac{\delta}{\sigma} \tag{8}
\end{equation*}
$$

and σ is as in $(*)$.
In \mathbb{R}^{n} we have $\alpha=n$. Setting $\sigma=1$, we obtain $\beta=p+n \delta$ that matches propagation rate (6) in \mathbb{R}^{n}. However, we can take $\sigma=1$ in $(*)$ only if $\delta<1$, that is, if $q(p-1)<2$. The next diagram shows the following range of p, q :

$$
p>2 \text { and } 1<q(p-1)<2
$$

For these p, q, we obtain a sharp propagation rate not only in \mathbb{R}^{n}, but also in a large class of model manifolds satisfying $R i c c i_{M} \geq 0$ as well as (7) with any $\alpha \in(0, n]$.

Conjecture 7 The result of Theorem 5 holds for all $p>1, q>\frac{1}{p-1}$ and for $\sigma=1$.

5 Mean value inequality

The main ingredient of the proof of Theorem 1 is the following mean value inequality. We assume here that $p>1$ and $\delta \geq 0$.

Lemma 8 Let $B=B\left(x_{0}, R\right)$ be a ball in M. Let $u(x, t)$ be a non-negative bounded subsolution of (3) in the cylinder

$$
Q=B \times[0, T]
$$

such that $u_{0} \equiv u(\cdot, 0)=0$ in B. Then, for the cylinder

$$
Q^{\prime}=\frac{1}{2} B \times[0, T]
$$

and for any

$$
\lambda \geq \max (p, p q)
$$

the following inequality holds:

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq C\left(\frac{T}{R^{p}}\right)^{1 / \lambda}\|u\|_{L^{\infty}(Q)}^{\delta / \lambda}\left(f_{Q} u^{\lambda}\right)^{1 / \lambda} \tag{9}
\end{equation*}
$$

where $C=C\left(p, q, n, \lambda, c_{B}\right)$.

For the proof we use the Sobolev inequality inside B and Moser's iteration argument.
For that consider a shrinking sequence of cylinders $\left\{Q_{k}\right\}_{k=0}^{\infty}$ interpolating between $Q_{0}=Q$ and $Q_{\infty}=Q^{\prime}$, and prove that

$$
\begin{equation*}
\int_{Q_{k+1}} u^{\sigma(1+\nu)} \leq C(\cdots)\left(\int_{Q_{k}} u^{\sigma}\right)^{1+\nu} \tag{*}
\end{equation*}
$$

for $\sigma \gg 1$ and $\nu>0$ that comes from the Sobolev inequality.

In the classical Moser argument, one proves ($*$) first for $\sigma=2$ and then applies this inequality also to $u^{\sigma / 2}$ with any $\sigma>2$ because $u^{\sigma / 2}$ is also a subsolution. This allows to set in $(*) \sigma=\lambda(1+\nu)^{k}$ and to reach $\|u\|_{L^{\infty}\left(Q^{\prime}\right)}$ by iterations as $k \rightarrow \infty$.
In our case this trick is not possible: no power of subsolution is again a subsolution. Hence, we need to prove $(*)$ directly for any σ and to compute carefully the constant $C=C(\sigma)$ in $(*)$. It turns out that $C \simeq \sigma^{A}$ for some A. Surprisingly, this moderate growth of C with σ still allows to complete the iteration argument and to obtain (9).
Using $\left(f_{Q} u^{\lambda}\right)^{1 / \lambda} \leq\|u\|_{L^{\infty}(Q)}$, we obtain from (9)

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq C\left(\frac{T}{R^{p}}\right)^{1 / \lambda}\|u\|_{L^{\infty}(Q)}^{1+\delta / \lambda} . \tag{10}
\end{equation*}
$$

6 From mean value to finite propagation speed

Sketch of proof of Theorem 1. Set $r=\frac{1}{2} R$ and fix for a while a point $x \in \frac{1}{2} B$.
Hence, we have $B(x, r) \subset B$.
Fix also some $t>0$ and set

$$
\begin{gathered}
Q_{k}=B\left(x, 2^{-k} r\right) \times[0, t], \\
J_{k}=\|u\|_{L^{\infty}\left(Q_{k}\right)} .
\end{gathered}
$$

Let λ be as it is needed for

Lemma 8. Then by (10)

$$
J_{k+1} \leq C\left(\frac{t}{\left(2^{-k} R\right)^{p}}\right)^{1 / \lambda} J_{k}^{1+\frac{\delta}{\lambda}}=C 2^{k / \lambda}\left(\frac{t}{R^{p}}\right)^{1 / \lambda} J_{k}^{1+\frac{\delta}{\lambda}} .
$$

Iterating this inequality, we obtain an upper bound of J_{k} via J_{0} that implies the following: if

$$
\begin{equation*}
C\left(\frac{t}{R^{p}}\right)^{1 / \lambda} \leq 2^{-1 / \delta} J_{0}^{-\delta / \lambda} \tag{11}
\end{equation*}
$$

then, for all k,

$$
\begin{equation*}
J_{k} \leq 2^{-k / \delta} J_{0} \tag{12}
\end{equation*}
$$

The condition (11) is equivalent to

$$
\begin{equation*}
t \leq \eta R^{p} J_{0}^{-\delta} \tag{13}
\end{equation*}
$$

Since $J_{0}=\|u\|_{L^{\infty}(Q)} \leq\left\|u_{0}\right\|_{L^{\infty}(M)}$ and, hence,

$$
t_{0}=\eta R^{p}\left\|u_{0}\right\|_{L^{\infty}(M)}^{-\delta} \leq \eta R^{p} J_{0}^{-\delta}
$$

we see that (13) is satisfied for $t \leq t_{0}$. For such t, we obtain from (12) that, for any k,

$$
\|u\|_{L^{\infty}\left(B\left(x, 2^{-k} r\right) \times[0, t]\right)} \leq 2^{-k / \delta}\left\|u_{0}\right\|_{L^{\infty}} .
$$

For any k, we cover the ball $\frac{1}{2} B$ by a finite sequence of balls $B\left(x_{i}, 2^{-k} r\right)$ with $x_{i} \in \frac{1}{2} B$. Since for all i

$$
\|u\|_{L^{\infty}\left(B\left(x_{i}, 2^{-k} r\right) \times[0, t]\right)} \leq 2^{-k / \delta}\left\|u_{0}\right\|_{L^{\infty}}
$$

we obtain that

$$
\|u\|_{L^{\infty}\left(\frac{1}{2} B \times[0, t]\right)} \leq 2^{-k / \delta}\left\|u_{0}\right\|_{L^{\infty}}
$$

As $k \rightarrow \infty$, we obtain that $u=0$ in $\frac{1}{2} B \times[0, t]$, which was to be proved.

7 Mean value inequality 2

The main ingredient in the proof of Theorem 5 is the following version of the mean value inequality. We assume here that $p>2$ and $\frac{1}{p-1}<q \leq 1$.

Lemma 9 Let $B=B\left(x_{0}, R\right)$ be a precompact ball in M.
Let u be a non-negative bounded subsolution of (3) in the cylinder

$$
Q=B \times[0, T],
$$

and let $u(\cdot, 0)=0$ in B. Then, for the cylinder

$$
Q^{\prime}=\frac{1}{2} B \times[0, T]
$$

the following inequality holds:

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(Q^{\prime}\right)} \leq C\left(\frac{T}{R^{p}}\right)^{1 / \lambda}\left(f_{Q} u^{\lambda+\delta}\right)^{1 / \lambda} \tag{14}
\end{equation*}
$$

where $\lambda>0$ is any, $\delta=q(p-1)-1$, and $C=C\left(p, q, n, \lambda, c_{B}\right)$.

In the proof of Lemma 9 we use the following lemma.
Lemma 10 Let u be a non-negative subsolution of (3).
Set

$$
a=\frac{q(p-1)-1}{p-2} .
$$

If $0<a \leq 1$ then the function

$$
v=\left(u^{a}-\theta\right)_{+}^{1 / a}
$$

is a subsolution for any $\theta>0$.

$$
\begin{aligned}
& \text { Function } f_{\theta}(s)=\left(s^{a}-\theta\right)_{+}^{1 / a} \\
& \text { It satisfies } f_{\theta_{1}} \circ f_{\theta_{2}}=f_{\theta_{1}+\theta_{2}}
\end{aligned}
$$

The condition $0<a \leq 1$ holds, in particular, in the case when

$$
p>2 \quad \text { and } \quad \frac{1}{p-1}<q \leq 1
$$

For the p-Laplacian case, that is, when $q=1$, we have $a=1$. In this case it is well known that $v=(u-\theta)_{+}$is a subsolution. If also $p=2$ that is, if (3) is the heat equation, then $v=f(u)$ is a subsolution for any convex f.

Sketch of proof of Lemma 9. Fix some $\theta>0$ and define a sequence $\left\{u_{k}\right\}_{k=0}^{\infty}$ of functions:

$$
u_{0}=u, \quad u_{k}=\left(u_{k-1}^{a}-2^{-k} \theta\right)_{+}^{1 / a} \text { for } k \geq 1
$$

It is easy to see that $u_{k}=\left(u^{a}-\left(1-2^{-k}\right) \theta\right)_{+}^{1 / a}$.
Consider a decreasing sequence of radii

$$
r_{k}=\left(\frac{1}{2}+2^{-k-1}\right) R
$$

so that $r_{0}=r \geq r_{k} \searrow \frac{1}{2} R$, and cylinders

$$
Q_{k}=B\left(x_{0}, r_{k}\right) \times[0, t]
$$

so that

$$
Q_{0}=Q \supset Q_{k} \searrow Q^{\prime}
$$

as $k \rightarrow \infty$. \qquad
Set

$$
J_{k}=\int_{Q_{k}} u_{k}^{\lambda+\delta}
$$

Clearly, $J_{k+1} \leq J_{k}$. Using a Caccioppoli type inequality for u_{k} and u_{k+1} as well as a certain Faber-Krahn type inequality for Δ_{p} in B (which reflects the intrinsic geometry of B), we prove that

$$
J_{k+1} \leq \frac{C A^{k}}{\left(\mu(B) \theta^{\frac{\lambda}{a}} r^{p}\right)^{\nu}} J_{k}^{1+\nu},
$$

where $\nu>0$ is the Faber-Krahn exponent for Δ_{p}, and C, A are some constants.
Analyzing this recursive inequality, we show that if

$$
\begin{equation*}
\theta \geq\left(\frac{C J_{0}}{\mu(B) r^{p}}\right)^{\frac{a}{\lambda}} \tag{15}
\end{equation*}
$$

then $J_{k} \rightarrow 0$ as $k \rightarrow \infty$, which implies

$$
\int_{Q^{\prime}}\left[\left(u^{a}-\theta\right)_{+}^{1 / a}\right]^{\lambda+\delta}=0
$$

that is, $u^{a} \leq \theta$ in Q^{\prime}. Choosing the minimal value of θ in (15), we obtain

$$
u \leq\left(\frac{C J_{0}}{\mu(B) r^{p}}\right)^{\frac{1}{\lambda}}=\left(\frac{C}{\mu(B) r^{p}} \int_{Q} u^{\lambda+\delta}\right)^{\frac{1}{\lambda}} \text { in } Q^{\prime}
$$

which proves (14).
This method works for $\lambda \geq 2$. The case $0<\lambda<2$ is obtained from $\lambda=2$ using an additional iteration procedure.

