Leibenson's equation on Riemannian manifolds

Alexander Grigor'yan University of Bielefeld

Chemnitz, October 2023

Based on a joint work with Philipp Sürig

1 Introduction

We are concerned with an evolution equation

$$\partial_t u = \Delta_p u^q \tag{1}$$

where p, q > 0, u(x, t) is an unknown non-negative function, and Δ_p is the p-Laplacian:

$$\Delta_p v = \operatorname{div}\left(|\nabla v|^{p-2} \, \nabla v\right).$$

Equation (1) was introduced by L.S. Leibenson in 1945 in order to describe filtration of turbulent compressible fluid through a porous medium. The physical meaning of u is the *volumetric moisture content*, i.e. the (infinitesimal) fraction of volume of the medium taken by the liquid.

Parameter p characterizes the turbulence of a flow while q-1 is the index of polytropy of the liquid, that determines relation $PV^{q-1} = \text{const}$ between volume V and pressure P.

Leonid Samuilovich Leibenson

The physically interesting values of p and q are as follows: $\frac{3}{2} \le p \le 2$ and $q \ge 1$.

The case p=2 corresponds to laminar flow (=absence of turbulence). In this case (1) becomes a porous medium equation $\partial_t u = \Delta u^q$, if q > 1, and the classical heat equation $\partial_t u = \Delta u$ if q = 1.

From mathematical point of view, the entire range p > 1, q > 0 is interesting.

G.I.Barenblatt constructed in 1952 spherically symmetric self-similar solutions of (1) in \mathbb{R}^n that are nowadays called *Barenblatt solutions*. Let us first assume that

$$\boxed{q(p-1) > 1}.$$

In this case the Barenblatt solution is as follows:

$$u\left(x,t\right) = \frac{1}{t^{n/\beta}} \left(C - \kappa \left(\frac{|x|}{t^{1/\beta}}\right)^{\frac{p}{p-1}}\right)_{+}^{\gamma},$$

where C > 0 is any constant, and

Grigory Isaakovich Barenblatt

$$\beta = p + n \left[q \left(p - 1 \right) - 1 \right], \quad \gamma = \frac{p - 1}{q(p - 1) - 1}, \quad \kappa = \frac{q(p - 1) - 1}{pq} \beta^{-\frac{1}{p - 1}}.$$
 (2)

Parameter β determines the space/time scaling and is analogous to the walk dimension.

It is obvious that for the Barenblatt solution

$$u(x,t) = 0 \text{ for } |x| > ct^{1/\beta}$$

so that $u(\cdot,t)$ has a compact support for any t. One says that u has a finite propagation speed.

Here are the graphs of function $x \mapsto u(x,t)$ for different values of t in the case n=1:

In the case q(p-1) < 1, we have $\gamma, \kappa < 0$, and the Barenblatt solution

$$u\left(x,t\right) = \frac{1}{t^{n/\beta}} \left(C + |\kappa| \left(\frac{r}{t^{1/\beta}}\right)^{\frac{p}{p-1}}\right)^{-|\gamma|}$$

is positive for all x, t. In the borderline case q(p-1)=1, the Barenblatt solution is

$$u(x,t) = \frac{1}{t^{n/p}} \exp\left(-c\left(\frac{r}{t^{1/p}}\right)^{\frac{p}{p-1}}\right),$$

where $c = (p-1)^2 p^{-\frac{p}{p-1}}$. Hence, if $q(p-1) \le 1$ then u has infinite propagation speed.

2 Propagation speed inside a ball

From now on let M be a geodesically complete Riemannian manifold of dimension n. Consider on M the Leibenson equation

$$\partial_t u = \Delta_p u^q, \tag{3}$$

where we assume that

$$p > 1 \text{ and } q > \frac{1}{p-1},$$
 (4)

that is, $\delta := q(p-1) - 1 > 0$. Solutions of (3) are understood in a certain weak sense.

Theorem 1 Let u(x,t) be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_+$.

Let B be a ball in M of radius R such that $u_0 := u(\cdot, 0) = 0$ in B. Then we have

$$u(\cdot,t) = 0$$
 in $\frac{1}{2}B$ for all $t \leq t_0$,

where

$$t_0 = \eta R^p \|u_0\|_{L^{\infty}(M)}^{-\delta}$$

and $\eta > 0$ depends on intrinsic geometry of B.

Note that the range (4) of parameters p, q is the same as that in the Barenblatt solutions with a finite propagation speed.

The only previously known case of Theorem 1 was when p > 2 and q = 1, that is, when (3) is the equation $\partial_t u = \Delta_p u$. In this case a finite propagation speed was proved by S. Dekkers in *Comm. Anal. Geom.* **14** (2005).

Another interesting case is when p = 2 and q > 1, that is, when (3) is a porous medium equation $\partial_t u = \Delta u^q$. Theorem 1 is new in this case.

Remark. The constant η depends on p, q, n as well as on the normalized Sobolev constant c_B in B: for any $u \in W_0^{1,p}(B)$

$$\left(\oint_{B} |\nabla u|^{p} \right)^{1/p} \ge \frac{c_{B}}{R} \left(\oint_{B} |u|^{p\kappa} \right)^{1/p\kappa} \tag{5}$$

where κ is the Sobolev exponent: $\kappa = \frac{n}{n-p}$ if n > p and $\kappa > 1$ is any if $n \le p$.

Remark. The Leibenson equation (3), that is, $\partial_t u = \Delta_p u^q$ can be equivalently rewritten in the form

$$\partial_t u = \operatorname{div}\left(u^{m-1} |\nabla u|^{p-2} |\nabla u|\right),$$

where $m = 1 + (q - 1)(p - 1) = \delta + 3 - p$. The condition $\delta > 0$ is, hence, equivalent to m + p > 3. Therefore, Theorem 1 holds for this equation when p > 1 and m + p > 3.

3 Finite propagation speed of support

Let u be a bounded non-negative subsolution of (3) with $u(\cdot, 0) = u_0$. For any set $K \subset M$ and any r > 0, denote by K_r the closed r-neighborhood of K.

Corollary 2 Let $K := \sup u_0$ be a compact set. Then there an increasing positive

function $r:(0,T)\to\mathbb{R}_+$ with some $T\in(0,\infty]$, such that

$$\operatorname{supp} u\left(\cdot,t\right) \subset K_{r(t)}$$

for all $t \in (0,T)$.

Function r(t) is referred to as a propagation rate of solution u.

Problem 3 Is it true that one can always have $T = \infty$? Either prove it or give a counterexample: a manifold and a solution u such that supp u_0 is compact, while supp $u(\cdot, t)$ is unbounded for large enough t.

Let M have non-negative Ricci curvature. Then the normalized Sobolev constant c_B in (5) can be taken the same for all balls. Hence, the constant η from Theorem 1 is also the same for all balls, which allows to obtain the following.

Corollary 4 If $Ricci_M \ge 0$ then any bounded non-negative subsolution u with compactly supported u_0 has a propagation rate $r(t) = Ct^{1/p}$ for all t > 0.

Recall that in \mathbb{R}^n the propagation rate of the Barenblatt solution is

$$r(t) = Ct^{1/\beta},$$

where

$$\beta = p + n [q(p-1) - 1] = p + n\delta.$$
 (6)

This implies that, for any bounded non-negative solution u in \mathbb{R}^n with compactly supported u_0 , the propagation rate is also $r(t) = Ct^{1/\beta}$ for large t.

Since $p < \beta$, we see that the propagation rate of Corollary 4 is not sharp in \mathbb{R}^n .

4 Sharp propagation rate

Instead of the previous conditions (4), we assume here more restricted hypotheses:

$$p > 2$$
 and $\frac{1}{p-1} < q \le 1$.

Theorem 5 Let u be a bounded non-negative subsolution of (3) in $M \times \mathbb{R}_+$, with initial function $u_0 := u(\cdot, 0) \in L^1$. Let B be a ball in M of radius R such that $u_0 = 0$ in B.

Then

$$u(\cdot,t) = 0$$
 in $\frac{1}{2}B$ for all $t \le t_0$

where

$$t_0 = \eta R^p \mu(B)^{\frac{\delta}{\sigma}} \|u_0\|_{L^{\sigma}(M)}^{-\delta}.$$

Here σ is any real number such that

$$\sigma \geq 1$$
 and $\sigma > \delta$, (*)

$$\delta = q(p-1) - 1 > 0,$$

 $\eta = \eta(p, q, n, \sigma, c_B) > 0.$

Corollary 6 Assume that $Ricci_M \geq 0$. Fix a point $x_0 \in \text{supp } u_0$ and assume that

$$\mu(B(x_0, r)) \ge cr^{\alpha} \quad \text{for all } r \ge r_0, \tag{7}$$

with some $\alpha, c > 0$. Then u has a propagation rate $r(t) = Ct^{1/\beta}$ for large t, where

$$\beta = p + \alpha \frac{\delta}{\sigma} \tag{8}$$

and σ is as in (*).

In \mathbb{R}^n we have $\alpha = n$. Setting $\sigma = 1$, we obtain $\beta = p + n\delta$ that matches propagation rate (6) in \mathbb{R}^n . However, we can take $\sigma = 1$ in (*) only if $\delta < 1$, that is, if q(p-1) < 2.

The next diagram shows the following range of p, q:

$$p > 2$$
 and $1 < q(p-1) < 2$.

For these p, q, we obtain a sharp propagation rate not only in \mathbb{R}^n , but also in a large class of model manifolds satisfying $Ricci_M \geq 0$ as well as (7) with any $\alpha \in (0, n]$.

Conjecture 7 The result of Theorem 5 holds for all p > 1, $q > \frac{1}{p-1}$ and for $\sigma = 1$.

5 Mean value inequality

The main ingredient of the proof of Theorem 1 is the following mean value inequality. We assume here that p > 1 and $\delta \ge 0$.

Lemma 8 Let $B = B(x_0, R)$ be a ball in M. Let u(x, t) be a non-negative bounded

subsolution of (3) in the cylinder

$$Q = B \times [0, T]$$

such that $u_0 \equiv u(\cdot, 0) = 0$ in B.

Then, for the cylinder

$$Q' = \frac{1}{2}B \times [0, T]$$

and for any

$$\lambda \ge \max(p, pq),$$

the following inequality holds:

$$||u||_{L^{\infty}(Q')} \le C\left(\frac{T}{R^p}\right)^{1/\lambda} ||u||_{L^{\infty}(Q)}^{\delta/\lambda} \left(\oint_Q u^{\lambda} \right)^{1/\lambda}, \tag{9}$$

where $C = C(p, q, n, \lambda, c_B)$.

For the proof we use the Sobolev inequality inside B and Moser's iteration argument.

For that consider a shrinking sequence of cylinders $\{Q_k\}_{k=0}^{\infty}$ interpolating between $Q_0 = Q$ and $Q_{\infty} = Q'$, and prove that

$$\int_{Q_{k+1}} u^{\sigma(1+\nu)} \le C(\cdots) \left(\int_{Q_k} u^{\sigma} \right)^{1+\nu} \tag{*}$$

for $\sigma \gg 1$ and $\nu > 0$ that comes from the Sobolev inequality.

In the classical Moser argument, one proves (*) first for $\sigma = 2$ and then applies this inequality also to $u^{\sigma/2}$ with any $\sigma > 2$ because $u^{\sigma/2}$ is also a subsolution. This allows to set in (*) $\sigma = \lambda (1 + \nu)^k$ and to reach $||u||_{L^{\infty}(Q')}$ by iterations as $k \to \infty$.

In our case this trick is not possible: no power of subsolution is again a subsolution. Hence, we need to prove (*) directly for any σ and to compute carefully the constant $C = C(\sigma)$ in (*). It turns out that $C \simeq \sigma^A$ for some A. Surprisingly, this moderate growth of C with σ still allows to complete the iteration argument and to obtain (9).

Using
$$\left(\int_{Q} u^{\lambda} \right)^{1/\lambda} \le \|u\|_{L^{\infty}(Q)}$$
, we obtain from (9)

$$||u||_{L^{\infty}(Q')} \le C \left(\frac{T}{R^p}\right)^{1/\lambda} ||u||_{L^{\infty}(Q)}^{1+\delta/\lambda}. \tag{10}$$

6 From mean value to finite propagation speed

Sketch of proof of Theorem 1. Set $r = \frac{1}{2}R$ and fix for a while a point $x \in \frac{1}{2}B$.

Hence, we have $B(x,r) \subset B$.

Fix also some t > 0 and set

$$Q_k = B(x, 2^{-k}r) \times [0, t],$$

$$J_k = \|u\|_{L^{\infty}(Q_k)}.$$

Let λ be as it is needed for Lemma 8. Then by (10)

$$J_{k+1} \le C \left(\frac{t}{(2^{-k}R)^p} \right)^{1/\lambda} J_k^{1+\frac{\delta}{\lambda}} = C 2^{k/\lambda} \left(\frac{t}{R^p} \right)^{1/\lambda} J_k^{1+\frac{\delta}{\lambda}}.$$

Iterating this inequality, we obtain an upper bound of J_k via J_0 that implies the following: if

$$C\left(\frac{t}{R^p}\right)^{1/\lambda} \le 2^{-1/\delta} J_0^{-\delta/\lambda} \tag{11}$$

then, for all k,

$$J_k \le 2^{-k/\delta} J_0. \tag{12}$$

The condition (11) is equivalent to

$$t \le \eta R^p J_0^{-\delta}. \tag{13}$$

Since $J_0 = ||u||_{L^{\infty}(Q)} \le ||u_0||_{L^{\infty}(M)}$ and, hence,

$$t_0 = \eta R^p \|u_0\|_{L^{\infty}(M)}^{-\delta} \le \eta R^p J_0^{-\delta}$$

we see that (13) is satisfied for $t \leq t_0$. For such t, we obtain from (12) that, for any k,

$$||u||_{L^{\infty}(B(x,2^{-k}r)\times[0,t])} \le 2^{-k/\delta} ||u_0||_{L^{\infty}}.$$

For any k, we cover the ball $\frac{1}{2}B$ by a finite sequence of balls $B(x_i, 2^{-k}r)$ with $x_i \in \frac{1}{2}B$. Since for all i

$$||u||_{L^{\infty}(B(x_i,2^{-k}r)\times[0,t])} \le 2^{-k/\delta} ||u_0||_{L^{\infty}}$$

we obtain that

$$||u||_{L^{\infty}(\frac{1}{2}B\times[0,t])} \le 2^{-k/\delta} ||u_0||_{L^{\infty}}.$$

As $k \to \infty$, we obtain that u = 0 in $\frac{1}{2}B \times [0, t]$, which was to be proved. \blacksquare

7 Mean value inequality 2

The main ingredient in the proof of Theorem 5 is the following version of the mean value inequality. We assume here that p > 2 and $\frac{1}{p-1} < q \le 1$.

Lemma 9 Let $B = B(x_0, R)$ be a precompact ball in M.

Let u be a non-negative bounded subsolution of (3) in the cylinder

$$Q = B \times [0, T],$$

and let $u(\cdot,0) = 0$ in B. Then,

for the cylinder

$$Q' = \frac{1}{2}B \times [0, T],$$

the following inequality holds:

$$||u||_{L^{\infty}(Q')} \le C\left(\frac{T}{R^p}\right)^{1/\lambda} \left(\oint_{Q} u^{\lambda+\delta}\right)^{1/\lambda},\tag{14}$$

where $\lambda > 0$ is any, $\delta = q(p-1) - 1$, and $C = C(p, q, n, \lambda, c_B)$.

In the proof of Lemma 9 we use the following lemma.

Lemma 10 Let u be a non-negative subsolution of (3).

Set

$$a = \frac{q(p-1)-1}{p-2}.$$

If $0 < a \le 1$ then the function

$$v = (u^a - \theta)_+^{1/a}$$

is a subsolution for any $\theta > 0$.

Function $f_{\theta}(s) = (s^a - \theta)_+^{1/a}$ It satisfies $f_{\theta_1} \circ f_{\theta_2} = f_{\theta_1 + \theta_2}$

The condition $0 < a \le 1$ holds, in particular, in the case when

$$p > 2$$
 and $\frac{1}{n-1} < q \le 1$

For the p-Laplacian case, that is, when q = 1, we have a = 1. In this case it is well known that $v = (u - \theta)_+$ is a subsolution. If also p = 2 that is, if (3) is the heat equation, then v = f(u) is a subsolution for any convex f.

Sketch of proof of Lemma 9. Fix some $\theta > 0$ and define a sequence $\{u_k\}_{k=0}^{\infty}$ of functions:

$$u_0 = u$$
, $u_k = (u_{k-1}^a - 2^{-k}\theta)_+^{1/a}$ for $k \ge 1$

It is easy to see that $u_k = (u^a - (1 - 2^{-k})\theta)_+^{1/a}$.

Consider a decreasing sequence of radii

$$r_k = \left(\frac{1}{2} + 2^{-k-1}\right)R$$

so that $r_0 = r \ge r_k \setminus \frac{1}{2}R$, and cylinders

$$Q_k = B\left(x_0, r_k\right) \times [0, t]$$

so that

$$Q_0 = Q \supset Q_k \setminus Q'$$

as $k \to \infty$.

Set

$$J_k = \int_{\Omega_k} u_k^{\lambda + \delta}.$$

Clearly, $J_{k+1} \leq J_k$. Using a Caccioppoli type inequality for u_k and u_{k+1} as well as a certain Faber-Krahn type inequality for Δ_p in B (which reflects the intrinsic geometry of B), we prove that

$$J_{k+1} \le \frac{CA^k}{\left(\mu(B)\theta^{\frac{\lambda}{a}}r^p\right)^{\nu}}J_k^{1+\nu},$$

where $\nu > 0$ is the Faber-Krahn exponent for Δ_p , and C, A are some constants.

Analyzing this recursive inequality, we show that if

$$\theta \ge \left(\frac{CJ_0}{\mu(B)r^p}\right)^{\frac{a}{\lambda}},\tag{15}$$

then $J_k \to 0$ as $k \to \infty$, which implies

$$\int_{O'} \left[(u^a - \theta)_+^{1/a} \right]^{\lambda + \delta} = 0,$$

that is, $u^a \leq \theta$ in Q'. Choosing the minimal value of θ in (15), we obtain

$$u \le \left(\frac{CJ_0}{\mu(B)r^p}\right)^{\frac{1}{\lambda}} = \left(\frac{C}{\mu(B)r^p} \int_{Q} u^{\lambda+\delta}\right)^{\frac{1}{\lambda}} \text{ in } Q'$$

which proves (14).

This method works for $\lambda \geq 2$. The case $0 < \lambda < 2$ is obtained from $\lambda = 2$ using an additional iteration procedure.