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Abstract. Let p ∈ [1, +∞]. Given the Lp-isoperimetric profile of two non-compact Riemann-
ian manifolds M and N , we compute the Lp-isoperimetric profile of the product M × N .
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1. Introduction

We start with an almost tautological identity for the product of Euclidean spaces: R
d =

R
n×R

m, where d = m+n. This simple fact says that dimensions of Euclidean spaces add up
under direct product. The aim of this paper is to show that this fact admits an analogue for
isoperimetric dimensions of non-compact Riemannian manifolds (and more general spaces, see
Section 7 below). As we will see, the isoperimetric dimension is in general not a number, but
rather a family of functions indexed by a parameter p ∈ [1,+∞]; we shall give a formula that
enables one to compute this family of functions for a product, given the ones associated with
the factors, and generalizes the addition of dimensions in the Euclidean case.

1.1. Dimensions of non-compact Riemannian manifolds. Let M be a Riemannian man-
ifold. The notion of the topological dimension of M does not reflect the geometry of M in
the large. One of the ways to capture the large scale structure of M is by using isoperimetric
inequalities. Let µ be the Riemannian measure on M , or more generally, a measure with a
positive C∞ density σ with respect to the Riemannian measure. We shall call (M,µ) a weighted
Riemannian manifold. For any open set Ω ⊂M , denote |Ω| = µ (Ω). On any hypersurface S in
M , consider the surface measure having the density σ with respect to the Riemannian surface
measure; let |S| be the full surface measure of S. Denote by Lip0 (M) the space of Lipschitz
functions with compact support on M .
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If, for some d > 1, C > 0 and for any non-empty precompact open set Ω ⊂ M with smooth
boundary,

(1) |Ω| d−1
d ≤ C |∂Ω| ,

then it is natural to say that M has isoperimetric dimension d. It is known ([36], [53]) that (1)
is equivalent to the following Sobolev inequality: for any function f ∈ Lip0 (M)

(S1
d)

(∫
M

|f | d
d−1 dµ

) d−1
d

≤ C

∫
M

|∇f | dµ.

Alongside (S1
d), one can consider a more general family of Sobolev inequalities of the form

(Spd)
(∫

M
|f | pd

d−pdµ

) d−p
d

≤ Cp

∫
M

|∇f |pdµ,

for any f ∈ Lip0 (M), assuming 1 ≤ p < d. If (Spd) holds, then one says that M has p-
isoperimetric dimension d. The idea that such Sobolev inequalities carry some large scale
dimensional information on Riemannian manifolds can be traced back at least to [61] and [54,
Sect. 3].

One can also write down a natural version of (Spd) for d < p < +∞ (the so-called Gagliardo-
Nirenberg inequalities), for p = d (the Trudinger-Moser inequality) and even for p = +∞ (see
[24]). Then one observes that (S∞

d ) is equivalent to the volume lower bound

V (x, r) ≥ crd, ∀x ∈M, ∀r > 0,

where V (x, r) is the volume µ(B(x, r)) of the geodesic ball B(x, r) on M of radius r centered
at x. It is possible to show that (Spd) =⇒ (Sqd) for all 1 ≤ p < q ≤ +∞ (see [15], [24]) but the
converse is in general false (see [29], [14], [4]).

The importance of Sobolev inequalities for analysis on manifolds is well known (see for instance
[1], [11], [12], [17], [44], [47], [48], [49], [50], [58]). For example, Varopoulos [61] proved that, for
d > 2, (S2

d) is equivalent to the heat kernel upper estimate

sup
x∈M

pt(x, x) ≤ Ct−d/2, ∀t > 0,

where pt(x, y) (t > 0, x, y ∈ M) is the heat kernel of (M,µ), that is the minimal positive
fundamental solution to the heat equation ∂tu = ∆u on M×R+. Here ∆ is the Laplace operator
of the weighted manifold (M,µ), that is the generator of the energy form f 	→ ∫ |∇f |2 dµ in
L2(M,µ) with domain Lip0(M) or C∞

0 (M).
However, the nice picture above is spoiled by the fact that even very simple manifolds may

not have any isoperimetric dimension. For example, none of the inequalities (Spd) takes place for
the cylinder M = R

m × S
n−m, n > m. Indeed, (Spd) holds for functions f with small supports

if and only if n ≤ d since locally M looks like R
n. On the other hand, if (Spd) is true then it

implies (S∞
d ), that is V (x, r) ≥ crd, whereas for large r we have V (x, r) ≤ Crm. Hence, we

obtain n ≤ d ≤ m which contradicts the assumption n > m. The point of this argument is that
the local topological dimension of a manifold and its asymptotic dimension at infinity may be
different, in which case the Sobolev inequality (Spd) cannot be satisfied.

A way to overcome this difficulty consists in localizing properly the Sobolev inequalities (see
[18], [21], [22], [31]) so that one distinguishes the local dimension and the dimension at infinity.
This approach is satisfactory, say for polynomial volume growth Lie groups (see for instance,
[65]), but already for Lie groups with exponential volume growth, Sobolev inequalities are not
well adapted (cf. [64]).

On the other hand, it is easy to generalize the isoperimetric inequality (1) so that it would
take place on a much larger class of manifolds including those mentioned above. Given a non-
negative non-increasing function ψ on ]0,+∞[, consider instead of (1) the following isoperimetric
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inequality

(2) ψ (|Ω|) |Ω| ≤ |∂Ω| .
Clearly, (1) is a particular case of (2) for ψ (v) = cv−1/d. The cylinder R

m × S
n−m admits (2)

with the function

ψ(v) =
{
c1v

−1/n, v ≤ 1,
c2v

−1/m, v > 1.
Lie groups with polynomial growth lead to an isoperimetric profile of a similar form. Examples
of a different kind are as follows. On unimodular amenable Lie groups with exponential volume
growth, one obtains

ψ(v) =
{
c1v

−1/n, v ≤ 2,
c2

log(v) , v > 2,

and on co-compact covering manifolds

ψ(v) =
{
c1v

−1/n, v ≤ 1,
c2

V −1(Cv)
, v > 1,

where V is the volume growth function of the deck transformation group (see [30]). More
examples of isoperimetric inequalities on manifolds and their applications can be found in [16],
[17], [19], [41], [42], [51], [68], [69].

Following [23], let us introduce a general (p, ψ)-isoperimetric inequality on M as follows: for
any precompact open set Ω ⊂M and for any f ∈ Lip0 (Ω),

(Spψ) ψ(|Ω|)‖f‖p ≤ ‖|∇f |‖p.
Here ψ is a non-negative non-increasing function on (0,+∞), p ∈ [1,+∞], and ‖ · ‖p is the
Lp (M,µ)-norm.

It is possible to show that if ψ(v) = cv−1/d (we shall refer to this as the polynomial case)
then (Spψ) is equivalent to (Spd), which justifies our notation (see [15], [24], [3]). Again, (S1

ψ) is
equivalent to (2), and (S∞

ψ ) is equivalent to

V (x, r) ≥ ψ−1(1/r), ∀x ∈M, r > 0.

Also, for 1 ≤ p < q < +∞, (Spψ) implies (Sqψ). However, contrary to the polynomial case, it is
no more true in general that (Spψ) with 1 ≤ p < +∞ implies (S∞

ψ ) (this follows from [56]).
Denote by λ1 (Ω) the bottom of the spectrum of −∆ in L2(Ω, µ), that is

λ1(Ω) = inf
f∈Lip0(Ω)

f �≡0

∫ |∇f |2 dµ∫
f2dµ

.

Then (S2
ψ) can be rewritten as the Faber-Krahn inequality

(3) λ1(Ω) ≥ ψ2(|Ω|),
for any non-empty precompact open set Ω ⊂M . This inequality was introduced in [39], [40] to
investigate various aspects of the heat kernel behavior. In particular, it was proved in [40] that
under certain regularity assumptions about ψ, (3) is equivalent (up to constant multiples) to
the heat kernel estimate

(4) sup
x∈M

pt(x, x) ≤ 1
ϕ(t)

, ∀ t > 0,

where the functions ϕ and ψ are related by

(5)
ϕ′(t)
ϕ(t)

= ψ2(ϕ(t)), ϕ(0) = 0

– see also Section 6 below. Another application of (Spψ) is related to the notion of p-hyperbolicity
(see [28, Sect. 3.3], [38], [40]). For details see Section 5 below.
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Given a weighted Riemannian manifold M , with each p ∈ [1,+∞] one can associate the
largest function ψ such that (Spψ) holds on M :

(6) ψM,p(v) = inf
{‖|∇f |‖p

‖f‖p : f ∈ Lip0 (Ω) \ {0}, |Ω| = v

}
,

where Ω is a precompact open subset of M , and the infimum is taken over all f and Ω as
specified. The function ψM,p is automatically non-increasing (but it can vanish). We shall call it
the p-isoperimetric profile. This notion was introduced in [26], see also [28, Sect. 3.3], although
there one considers ϕ = 1

ψ rather than ψ. In the examples considered above, the p-isoperimetric
profile does not depend on p: up to multiplicative constants ψM,p = ψ, p ∈ [1,+∞]; this fact
contains a lot of non-trivial information, concerning for instance the connection between the heat
kernel decay and the volume growth (see [27]). But this connection is not as tight in general
(see [4]), and, as we already mentioned in the polynomial case, the p-isoperimetric profile does
depend on p; one can show that if 1 ≤ p ≤ q < +∞, then

ψM,q(v) ≥ c(p, q)ψM,p(v),

but conversely (if M has bounded geometry) one only has

ψqM,q(v) ≤ C(p, q, v0)ψM,p(v), v ≥ v0,

and the examples in [29], [14] show that this is sharp.

1.2. The cases p = 1, 2,+∞. Now we can come back to our initial question on the isoperimetric
dimension of product manifolds, and reformulate it in the following way: given two weighted
Riemannian manifolds (M,µ) and (N, ν) that satisfy respectively (SpψM

) and (SpψN
) for some

p ∈ [1,+∞], which inequality (Spψ) does the product (M ×N,µ× ν) satisfy?
In the polynomial case, if the Riemannian manifolds M and N satisfy respectively (Spm) and

(Spn) for 1 ≤ p < min(m,n), then the Riemannian product M × N satisfies (Spn+m). However,
this is not so easy to prove. This was done by Varopoulos (see [62], [63]), using the interpolation
inequality for mixed norms [9], see also in [18] the remarks after Prop. 4; a more detailed proof
can be found in [59] (in the setting of graphs).

Outside the polynomial setting, the only case which was investigated so far is p = 1. The case
p = +∞ is easy, and the case p = 2 can be settled by a heat kernel argument. Let us briefly
outline the results in these cases, assuming in each case that M and N satisfy respectively the
(p, ψM )- and (p, ψN )-isoperimetric inequalities.

Case p = 1. It was proved by one of the authors [37, Theorem 2] that the product M × N
satisfies the (1, 1

3ψ)-isoperimetric inequality with

(7) ψ(w) := inf
uv=w

(ψM (u) + ψN (v)),

assuming that the functions ψM (u)u and ψN (v)v are increasing. Note that the techniques of
[37] are very specific to the case p = 1.

The shape of (7) is very natural from the point of view of (2). Indeed, consider the particular
case when the set Ω is a product ΩM × ΩN where ΩM and ΩN are precompact open sets with
smooth boundaries in M and N respectively. Then ∂Ω is the union of ∂ΩM×ΩN and ΩM×∂ΩN ,
whence

|∂Ω| = |∂ΩM | |ΩN | + |ΩM | |∂ΩN | .
Since |Ω| = |ΩM | |ΩN |, we obtain

|∂Ω|
|Ω| =

|∂ΩM |
|ΩM | +

|∂ΩN |
|ΩN | ≥ ψM (|ΩM |) + ψN (|ΩN |) ≥ ψ (|Ω|) .

On the other hand, if the (1, ψM )- and (1, ψN )-isoperimetric inequalities on M and N are sharp,
this argument shows that one cannot get better than (1, ψ)-isoperimetric inequality on M ×N .
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In other terms, if ψM , ψN , and ψM×N are the 1-isoperimetric profiles respectively of M , N , and
M ×N , then

1
3
ψ ≤ ψM×N ≤ ψ,

where ψ is defined by (7).

Case p = 2. This case can also be treated by a specific method, using the aforementioned
equivalence of the (2, ψ)-isoperimetric inequality and the heat kernel decay (4) (in the next
argument, we skip the constant factors). Indeed, the heat kernels on M and N admit the
estimates

sup
x∈M

p
(M)
t (x, x) ≤ 1

ϕM (t)
and sup

y∈N
p
(N)
t (y, y) ≤ 1

ϕN (t)
,

where ϕM and ϕN are determined by (5). The heat kernel pt on M ×N is the product of p(M)
t

and p
(N)
t in the following sense: if z = (x, y) ∈ M ×N then pt(z, z) = p

(M)
t (x, x)p(N)

t (y, y) (see
for example, [42, Section 1.5]). Hence, we obtain

sup
z∈M×N

pt(z, z) ≤ 1
ϕM (t)ϕN (t)

=
1
ϕ(t)

,

where ϕ = ϕMϕN . Therefore, M × N satisfies the (2, ψ̃)-isoperimetric inequality, where ψ̃ is
determined by

ψ̃
2
(ϕ) =

ϕ′

ϕ
=
ϕ′
M

ϕM
+
ϕ′
N

ϕN
= ψ2

M (ϕM ) + ψ2
N (ϕN ).

Consequently, if we define ψ by

(8) ψ2(w) := inf
uv=w

(
ψ2
M (u) + ψ2

N (v)
)
,

then ψ̃ ≥ ψ so that the (2, ψ)-isoperimetric inequality holds on M ×N .
Case p = +∞. For any z = (x, y) ∈M ×N , the geodesic ball B(z,

√
2r) in M ×N contains

BM (x, r) ×BN (y, r), whence

V (z,
√

2r) ≥ VM (x, r)VN (y, r) ≥ ψ−1
M (1/r)ψ−1

N (1/r) .

Defining the function ψ by

(9) ψ−1 (s) = ψ−1
M (s)ψ−1

N (s) ,

we see that M ×N satisfies the (∞, ψ̃)-isoperimetric inequality, where ψ̃(w) = ψ(
√

2w). Setting
in (9) u0 = ψ−1

M (s) and v0 = ψ−1
N (s), we obtain

ψ (u0v0) = ψM (u0) = ψN (v0),

which implies that ψ can also be defined by

(10) ψ (w) = inf
uv=w

max (ψM (u), ψN (v)) .

1.3. Statement of the main result. We are now in a position to formulate the following
generalization of (7), (8), (10) which is the main result of this paper.
Theorem 1.1. Let p ∈ [1,+∞]. Suppose that the weighted Riemannian manifolds (M,µ) and
(N, ν) satisfy respectively the (p, ψM )- and (p, ψN )-isoperimetric inequalities, where ψM and ψN
are non-negative and non-increasing on (0,+∞). Define the function ψ by

(11) ψ(w) := inf
uv=w

(
ψpM (u) + ψpN (v)

)1/p
for p < +∞, with the obvious modification, i.e. (10), for p = +∞. Then, for any θ > 1, the
product manifold (M ×N,µ× ν) satisfies the (p, ψ̃)-isoperimetric inequality where

ψ̃(w) := cψ(θw)

and c = c(p, θ) > 0.
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If in addition for some α > 0 one of the functions ψM (u)uα and ψN (v)vα is increasing, then
θ can be taken 1.

Of course, since finally we allow a multiplicative constant in front of ψ, we could suppress p
in formula (11) and write instead

(12) ψ(w) := inf
uv=w

(ψM (u) + ψN (v)).

But the advantage of formula (11) is that it admits (10) as a limit case for p = +∞.
The fact that formula (12) is the same for every p ∈ [1,+∞[ implies that the operation

of taking finite products is not able to create substantial differences between p-isoperimetric
profiles, contrary to the constructions in [29], [14] or [4].

It is an easy exercise to check that, if ψM (u) = c1u
−1/n and ψN (v) = c2v

−1/m, then formula
(12) yields ψ(w) = cw−1/d, with d = m + n. A more exotic family of examples is treated in
Section 5 below.

An important point is that (12) is sharp: if ψM , ψN , and ψM×N are the p-isoperimetric
profiles respectively of M , N , and M ×N , then

(13) cψ(θw) ≤ ψM×N (w) ≤ ψ(w),

for any θ > 1 and c = c(p, θ) > 0. Indeed, for all u, v > 0 and any ε > 0 there exist precompact
open sets with smooth boundaries ΩM and ΩN in M and N respectively and f ∈ Lip0 (ΩM )\{0},
g ∈ Lip0 (ΩN ) \ {0}, such that

|ΩM | = u, |ΩN | = v

and
‖|∇f |‖p ≤ (1 + ε)ψM (|ΩM |)‖f‖p, ‖|∇g|‖p ≤ (1 + ε)ψN (|ΩN |)‖g‖p.

Now let w > 0, and let u, v be such that uv = w and

ψM (u) + ψN (v) ≤ (1 + ε)ψ(w).

Consider ΩM , ΩN , f , g, associated with u and v as above, and set h = fg ∈ Lip0 (ΩM × ΩM ).
Then

‖h‖p = ‖f‖p‖g‖p,
and, since ∇h = g∇f + f∇g,

‖|∇h|‖p ≤ ‖g‖p‖|∇f |‖p + ‖f‖p‖|∇g|‖p.
It follows that
‖|∇h|‖p
‖h‖p ≤ ‖|∇f |‖p

‖f‖p +
‖|∇g|‖p
‖g‖p ≤ (1 + ε) (ψM (|ΩM |) + ψN (|ΩN |)) ≤ (1 + ε)2ψ (|ΩM × ΩN |) .

Finally, since ε > 0 is arbitrary, we obtain the upper bound in (13). Of course, the lower bound
follows from Theorem 1.1.

Our method of proof of Theorem 1.1 is based on the observation that the (p, ψ)-isoperimetric
inequality is equivalent to another kind of functional inequality which we call F -Sobolev inequal-
ity, following F-Y. Wang ([66]) who considered it in the case p = 2. This inequality appeared
also in [20] and [10], also for p = 2.

Let F be a non-decreasing non-negative function on [0,+∞[ and let p ∈ [1,+∞[. We say that
M satisfies the F -Sobolev inequality in Lp if, for any f ∈ Lip0 (M) , f ≡ 0,∫

|f |pF
( |f |p
‖f‖pp

)
dµ ≤

∫
|∇f |pdµ.

Our second main observation is that it is relatively simple to deduce such an inequality on a
product manifold from similar inequalities on the factors.

A famous example of a F -Sobolev inequality is the so-called L2 Moser inequality

(14) An

∫
Rn

|f(x)|2+ 4
n dx ≤

(∫
Rn

|f(x)|2 dx
)2/n ∫

Rn

|∇f(x)|2 dx,
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which holds in R
n; here p = 2 and F (r) = Anr

2/n. In the Lp version of this inequality, one would
find F (r) = An,pr

p/n. This example shows that contrary to ψ in (p, ψ)-isoperimetric inequalities,
F contains generically a dependence on p; in this respect, the correct object to consider would
be F 1/p rather than F . This will appear in the relationship we shall establish below between F
and ψ.

In the polynomial case, our point can therefore be summarized in the following way: on the
one hand, Moser inequalities are easily seen to be “multipliable”, and on the other hand they are
equivalent to the more familiar Sobolev inequalities (this already follows from [3]). This yields an
alternative proof of the Varopoulos result on products of Sobolev inequalities mentioned above.

In Section 2 we prove, following Wang, that F -Sobolev inequalities are equivalent to suitable
(p, ψ)-isoperimetric inequalities. In Section 3, we prove that F -Sobolev inequalities are multi-
pliable. Theorem 1.1 is proved in Section 4. In Section 5 we treat a family of examples and
show an application of Theorem 1.1 to the p-hyperbolicity of a product manifold, where one
is led to estimate the p-isoperimetric profile, for p = 1, 2,+∞, in a non-polynomial situation.
In Section 6, we examine the relationship between F -Sobolev inequalities, (p, ψ)-isoperimetric
inequalities, and one-parameter log-Sobolev inequalities. In Section 7, we put our results into
the general framework of [3]. Finally, in an appendix, we use Proposition 3.1 (the fact that
F -Sobolev inequalities are multipliable) to give a new proof of the Sobolev inequalities in the
Euclidean space, and to prove the Moser inequality (14) with An = π2

4 n, which gives the correct
rate of growth of the sharp constant as n→ ∞. A similar result is proved in the case 1 ≤ p ≤ 2.

2. Equivalence of ψ-isoperimetric and F -Sobolev inequalities

In this section we show that, for p ∈ [1,+∞[, the (p, ψ)-isoperimetric inequality is equivalent
to a certain F -Sobolev inequality, up to constant multiples. Our approach is similar to the one
in [66, Thms 3.1 and 3.2] and [10], although these works treated only the case p = 2. One of
the differences with our approach is that we consider (p, ψ)-isoperimetric inequalities, whereas
[66] works with a so-called β-Nash inequality, and [10] works with a generalized Nash inequality
(introduced in [60] and [25]). It is possible to show that a β-Nash inequality can be reduced to a
generalized Nash inequality by optimizing on the parameter, and a generalized Nash inequality
is equivalent to a (p, ψ)-isoperimetric inequality (see [3, Prop.10.3]). Hence, in some sense our
approach is equivalent to that in [66] and [10], although technically our proofs are simpler,
avoiding difficulties related to inversion of a Legendre transform (cf. also Section 6).

As in [66], [10], the path from (p, ψ)-isoperimetric inequalities to F -Sobolev uses the truncation
technique already exploited in [3], whereas the converse implication is more direct.
Proposition 2.1. Let p ∈ [1,+∞[ and assume that (M,µ) satisfies the (p, ψ)-isoperimetric
inequality. Then, for any η > 1, (M,µ) satisfies the F -Sobolev inequality in Lp with

(15) F (r) := cψp(
η

r
)

and c = c (p, η) > 0.
Proof: Let f ∈ Lip0 (M) and suppose that∫

M
|f |pdµ = 1.

Fix ρ > 1 and define, for any k ∈ Z, the set

Ωk = {x ∈M : |f(x)| ≥ ρk}
and the function fk by

fk = min
(
(|f | − ρk)+, (ρk+1 − ρk)

)
.

One has
|Ωk| = µ{|f | ≥ ρk} ≤ ρ−pk

∫
|f |pdµ = ρ−pk.
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Applying the (p, ψ)-isoperimetric inequality to each fk and observing that fk ∈ Lip0(Ωk), we
obtain ∫

|∇fk|p dµ ≥ ψp(|Ωk|)
∫
fpkdµ ≥ ψp(ρ−pk)

∫
fpkdµ,

since ψ is non-increasing. It is also clear that∫
fpkdµ ≥

∫
Ωk+1

fpkdµ = |Ωk+1| (ρk+1 − ρk)p.

Combining with ∫
M

|∇f |pdµ ≥
∑
k∈Z

∫
Ωk\Ωk+1

|∇f |pdµ =
∑
k∈Z

∫
|∇fk|pdµ

and denoting

a :=
(ρ− 1)p

1 − ρ−p
=

(ρk+1 − ρk)p

ρpk − ρp(k−1)

we obtain ∫
M

|∇f |pdµ ≥
∑
k∈Z

ψp
(
ρ−pk

)
|Ωk+1| (ρk+1 − ρk)p

= a
∑
k∈Z

ψp
(
ρ−pk

)
µ
{
|f |p ≥ ρp(k+1)

}
(ρpk − ρp(k−1))

≥ a
∑
k∈Z

∫ ρpk

ρp(k−1)

ψp(
1
t
)µ
{|f |p ≥ ρ2pt

}
dt

= a

∫ +∞

0
ψp(

1
t
)µ
{|f |p ≥ ρ2pt

}
dt

= b

∫ +∞

0
ψp(

ρ2p

s
)µ {|f |p ≥ s} ds,(16)

where

b := aρ−2p =
(ρ− 1)p

ρ2p − ρp
.

Define the function F̃ by

F̃ (r) =
b

r

∫ r

0
ψp(

ρ2p

s
)ds.

Then we have ∫
M

|f |pF̃ (|f |p)dµ = b

∫
M

(∫ |f(x)|p

0
ψp(

ρ2p

s
)ds

)
dµ(x)

= b

∫ +∞

0

(∫
{|f |p≥s}

dµ

)
ψp(

ρ2p

s
)ds

= b

∫ +∞

0
ψp(

ρ2p

s
)µ{|f |p ≥ s}ds.

Comparing with (16), we see that M satisfies the F̃ -Sobolev inequality.
Let us observe that, for any 0 < ε < 1,

F̃ (r) ≥ b

r

∫ r

εr
ψp(

ρ2p

s
)ds ≥ b (1 − ε)ψp(

ρ2p

εr
).

If 1 < ρ2p < η, then take ε = ρ2p

η , which yields

F̃ (r) ≥ b

(
1 − ρ2p

η

)
ψp(

η

r
).
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Finally, optimizing in ρ, we obtain F̃ (r) ≥ F (r) where F is defined by (15) and

c = c (p, η) := sup
1<ρ<η1/2p

(ρ− 1)p

ρ2p − ρp

(
1 − ρ2p

η

)
.

Proposition 2.2. Fix p ∈ [1,+∞[, and assume that M satisfies the F -Sobolev inequality in Lp.
Then for any 0 < ε < 1, M satisfies the (p, ψ)-isoperimetric inequality with ψ defined by

(17) ψp(w) = (1 − ε)F
( ε
w

)
.

Proof: Let Ω be a precompact open subset of M and let f ∈ Lip0 (Ω) be a function such
that

(18)
∫

|f |pdµ = 1.

Let F−1 be the generalized inverse to F defined by

F−1(t) = inf {s : F (s) ≥ t} .
Observe that the following inequality is true for all non-negative s and t:

ts ≤ sF (s) + tF−1(t).

Taking here s = |f |p we obtain

(19) t |f |p − tF−1(t) ≤ |f |p F (|f |p).
Integrating (19) over Ω yields

t

∫
|f |pdµ− tF−1(t)|Ω| ≤

∫
|f |pF (|f |p)dµ.

Applying (18) and the F -Sobolev inequality, we obtain

t− tF−1(t)|Ω| ≤
∫

|∇f |p dµ.

This inequality is valid for all t ≥ 0. Fix ε ∈]0, 1[ and choose t = F
(

ε
|Ω|
)

so that F−1(t) ≤ ε
|Ω| .

Hence, we obtain

(1 − ε)F
(
ε

|Ω|
)

≤
∫

|∇f |p dµ,

which exactly means that the (p, ψ)-isoperimetric inequality is valid with ψ defined by (17).

3. F -Sobolev inequality on a product manifold

In this section we shall prove the following.

Proposition 3.1. Let p ∈ [1,+∞[. Suppose that the weighted Riemannian manifolds (M,µ) and
(N, ν) satisfy respectively the F - and G-Sobolev inequalities in Lp. Then the product manifold
(M ×N,µ× ν) satisfies the cpH-Sobolev inequality in Lp, where the function H is given by the
formula

H(r) = inf
st=r

[F (s) +G(t)]

and

(20) cp =
{

1, p ≥ 2,
2(p/2)−1, p < 2.
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Proof: Let f ∈ Lip0 (M ×N). Without loss of generality, we can assume

(21)
∫
M×N

|f |p dµ dν = 1.

Introduce the function

h(y) :=
(∫

M
|f(x, y)|pdµ(x)

) 1
p

.

Applying the F -Sobolev inequality to f(x, y) as a function of x and then integrating in y, we
obtain

(22)
∫
N

∫
M

|f |pF
( |f |p
hp

)
dµ dν ≤

∫
N

∫
M

|∇xf |p dµ dν.

By (21), we have ‖h‖p = 1. Applying the G-Sobolev inequality to h(y) (h is a Lipschitz function
as one can see from (25) below) we obtain

(23)
∫
N

∫
M

|f |pG(hp) dµ dν =
∫
N
hpG(hp) dν ≤

∫
N
|∇yh|p dν.

Let us observe that

(24)
∫
N
|∇yh|p dν ≤

∫
M

∫
N
|∇yf |p dµ dν.

Indeed, we have

∇yh =
1
p

(∫
M

∇y |f |p dµ
)(∫

M
|f |pdµ

) 1
p
−1

=
(∫

M
(∇y |f |) |f |p−1 dµ

)(∫
M

|f |pdµ
) 1

p
−1

,

whence, by the Hölder inequality,

(25) |∇yh| ≤
(∫

M
|∇yf | |f |p−1 dµ

)(∫
M

|f |pdµ
) 1

p
−1

≤
(∫

M
|∇yf |p dµ

)1/p

,

and (24) follows.
Summing up (22), (23) and using (24), we obtain∫

N

∫
M

|f |pF
( |f |p
hp

)
dµ dν+

∫
N

∫
M

|f |pG(hp) dµ dν ≤
∫
N

∫
M

|∇xf |p dµ dν+
∫
N

∫
M

|∇yf |p dµ dν.

Now, by the definition of the product metric on M ×N , we have

|∇f |2 = |∇xf |2 + |∇yf |2 .
Therefore,

|∇f |p =
(
|∇xf |2 + |∇yf |2

)p/2
≥ cp (|∇xf |p + |∇yf |p) ,

where cp is defined by (20). Thus

(26)
∫
N

∫
M

|f |pF
( |f |p
hp

)
dµ dν +

∫
N

∫
M

|f |pG(hp) dµ dν ≤ c−1
p

∫
N

∫
M

|∇f |p dµ dν.

In order to estimate the left-hand side of (26) from below, we use the definition of function
H which implies

F

( |f |p
hp

)
+G(hp) ≥ H(|f |p).

Therefore (26) yields ∫
N

∫
M

|f |pH(|f |p) dµ dν ≤ c−1
p

∫
N

∫
M

|∇f |p dµ dν,

which is exactly the cpH-Sobolev inequality on M ×N .
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4. Proof of the main theorem

We are finally in a position to prove Theorem 1.1. The case p = +∞ has already been
treated, let therefore p ∈ [1,+∞[. Assuming that the manifolds M and N satisfy respectively
the (p, ψM )- and (p, ψN )-isoperimetric inequalities, Proposition 2.1 says that they also satisfy
the cFM - and cFN -Sobolev inequalities in Lp, where

FM (r) = cψpM (
η

r
) and FN (r) = cψpN (

η

r
),

η > 1 is arbitrary and c = c(p, η) > 0. By Proposition 3.1, M × N satisfies the F -Sobolev
inequality where F is defined by

F (r) = cp inf
st=r

[FM (s) + FN (t)]

= ccp inf
st=r

[ψpM (
η

s
) + ψpN (

η

t
)]

= ccp inf
uv=η2/r

[
ψpM (u) + ψpN (v)

]
= ccpψ

p(
η2

r
),

the function ψ being defined by (11). By Proposition 2.2, M×N satisfies the (p, ψ̃)-isoperimetric
inequality where

ψ̃
p
(w) := (1 − ε)F (

ε

w
) = (1 − ε)ccpψp(ε−1η2w).

We are left to observe that θ := ε−1η2 > 1 can be made arbitrarily close to 1.
If, say, ψM (u)uα is increasing for some α > 0, then we see from

(ψ(w)wα)p = inf
v>0

[(
ψM (

w

v
)
(w
v

)α)p
vαp + ψpN (v)wαp

]
that ψ(w)wα is non-decreasing. Therefore, for any θ > 1, we have ψ (θw) θαwα ≥ ψ(w)wα and
ψ(θw) ≥ θ−αψ(w), which settles the second claim of Theorem 1.1.

5. An example and an application

To motivate our family of examples, suppose that the heat kernel on a manifold M admits
the following upper bound

(27) sup
x∈M

p
(M)
t (x, x) ≤ C

tα logγ t
, t ≥ t0 > 0,

with α > 0 and γ ∈ R (such examples can be found in [4]). By using [40, Theorem 2.2], (27)
implies that M satisfies the (2, ψ)-isoperimetric inequality, with

ψ2(v) = cv−
1
α (log v)

γ
α , v ≥ v0 > 0.

Let now p ∈ [1,+∞[. Suppose that M and N satisfy respectively the (p, ψM )- and (p, ψN )-
isoperimetric inequalities, with ψM and ψN such that

ψpM (u) = c1u
− 1

α (log u)δ1, u ≥ u0 > 1,

and
ψpN (v) = c2v

− 1
β (log v)δ2, v ≥ v0 > 1,

where α, β > 0 and δ1, δ2 ∈ R. Using Theorem 1.1, one can check that M × N satisfies the
(p, ψM×N )-isoperimetric inequality with

ψpM×N (w) = cw
− 1

α+β (logw)δ1
α

α+β
+δ2

β
α+β , w ≥ w0,

for a large enough w0 and some c > 0. In order to estimate

inf
uv=w

[
ψpM (u) + ψpN (v)

]
,
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let us first observe that

(28) inf
uv=w,u≤u0

[
ψpM (u) + ψpN (v)

] ≥ inf
u≤u0

ψpM (u) ≥ ψpM (u0),

since ψM is non-increasing. Similarly,

(29) inf
uv=w,v≤v0

[
ψpM (u) + ψpN (v)

] ≥ ψpN (v0).

Finally, to estimate

(30) inf
uv=w,u≥u0,v≥v0

[
ψpM (u) + ψpN (v)

]
,

observe that the infimum in (30) is attained when the two summands are comparable, which is
the case for

(31) u = w
α

α+β (logw)δ3,

where δ3 = (δ1 − δ2)( 1
α + 1

β )−1. Note that if w is large enough then u > u0 and v := w/u > v0.
Substituting (31) into (30) and taking into account that the infima in (28) and (29) are bounded
by positive constants, we obtain the claim.

In [28, Theorem 3.3], it was shown that if 1 < p <∞ and M satisfies the (p, ψ)-isoperimetric
inequality with a function ψ such that

(32)
∫ +∞ dv

(vψ(v))
p

p−1

< +∞,

then M is p-hyperbolic (the case p = 2 was treated before in [40, Theorem 2.3]; see also [43,
Section 10]). For example, if ψ(v) = cv−

1
p logθ v, for large v, then M is p-hyperbolic provided

θ > p−1
p .

Suppose that (M,µ) satisfies the (p, ψ1)-isoperimetric inequality with ψ1(u) = c1u
− 2

p logθ1 u,
for large u, and that (N, ν) satisfies the (p, ψ2)-isoperimetric inequality with ψ2(v) = c2v

− 2
p logθ2 v,

for large v, where θ1 and θ2 are real numbers. We have just seen that the (p, ψ)-isoperimetric
inequality on (M ×N,µ× ν) holds with the function

ψ(w) = cw
− 1

p log(θ1+θ2)/2 w,

for large w. Hence, we conclude that (M ×N,µ× ν) is p-hyperbolic provided θ1 + θ2 >
2(p−1)
p .

6. One-parameter log-Sobolev inequalities and ultracontractivity

Given 1 ≤ p < +∞ and a decreasing1 function m(t) : (0,+∞) → R, we say that the m-log-
Sobolev inequality holds in Lp (M,µ) if

(33)
∫
M

|f |p log
( |f |p
‖f‖pp

)
dµ ≤ t

∫
|∇f |p +m(t)

∫
|f |p dµ ,

for all f ∈ Lip0(M), f ≡ 0, and all t > 0. Such inequalities were introduced by Davies and
Simon [35] and were intensively used to investigate the decay of the heat semigroup (see for
example [32], [33]).

Let ∆ be the Laplace operator of (M,µ). We say that the heat semigroup
{
et∆
}
t≥0

is m-
ultracontractive if for all t > 0

(34) ‖et∆‖1→∞ ≤ em(t).

1We understand the terms “decreasing” and “increasing” in the non-strict sense, that is, as synonyms for
“non-increasing” and “non-decreasing”, respectively.
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By [34, Theorem 2.2.3], if et∆ is m-ultracontractive then the m-log-Sobolev inequality holds,
with the same function m. Conversely, by [34, Corollary 2.2.8] if the m-log-Sobolev inequality
holds in L2 then et∆ is m̃-ultracontractive where

m̃(t) =
1
t

∫ t

0
m(τ)dτ ,

provided m̃(t) is finite.
It is well known in various contexts that log-Sobolev inequalities behave nicely with respect

to taking direct product of the underlying spaces (see for instance [5, p.108]). This is also the
case for (33) as is shown in the following statement (the proof is similar to Proposition 3.1 and
is omitted).
Proposition 6.1. If the m1- and m2-log-Sobolev inequalities hold in Lp(M,µ) and Lp(N, ν)
respectively, then the m-log-Sobolev inequality holds in Lp(M×N,µ×ν), where m = cp(m1+m2)
and cp is the constant defined by (20).

In this section, we will establish a direct link between the F -Sobolev and the m-log-Sobolev
inequalities. Together with Proposition 6.1, this yields an alternative route for computing the
(p, ψ)-isoperimetric inequalities on product manifolds, although this route is longer than the one
used in the proof of Theorem 1.1.
Theorem 6.2. Let 1 ≤ p < +∞.

(a) If the F -Sobolev inequality holds in Lp (M,µ) then the m-log-Sobolev inequality holds in
Lp (M,µ) where

(35) m(t) := sup
s>0

{log s− tF (s)},

provided the right-hand side of (35) is finite.
(b) If the m-log-Sobolev inequality holds in Lp (M,µ) then the F̃ -Sobolev inequality holds in

Lp (M,µ) with function

(36) F̃ (r) = cF (r/η)

for any η > 1 and c = c(p, η) > 0, where

(37) F (s) := sup
t>0

1
t
{log s−m(t)} ,

provided the right-hand side of (37) is finite and non-negative.
Remark 6.3. It is clear that the function m obtained by (35) is decreasing, and the function
F obtained by (37) is increasing.
Remark 6.4. In the case p = 2, a very close result was proved by Biroli and Maheux [10].
Namely, they showed the equivalence of the F -Sobolev inequality and the m-log-Sobolev in-
equality in L2 via two intermediate steps – a generalized Nash inequality and an energy-entropy
inequality. Part (a) for p = 2 was also observed in [57].

Proof: (a) Let f ∈ Lip0(M) and ‖f‖p = 1. By the definition (35) of m(t), we have for all
t, s > 0

log s ≤ tF (s) +m(t).
Multiplying this inequality by s, setting s = |f |p, and integrating over M we obtain∫

|f |p log |f |pdµ ≤ t

∫
|f |pF (|f |p)dµ +m(t)

∫
|f |pdµ.

Applying the F -Sobolev inequality yields (33).
(b) As an intermediate step, we first prove that the m-log-Sobolev inequality in Lp (M,µ)

implies the (p, ψ)-isoperimetric inequality where ψ is defined by

(38) ψp(v) := sup
t>0

1
t

{
log

1
v
−m(t)

}
.
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Consider first the case p > 1. Let Ω be a non-empty precompact open subset of M , and let
f ∈ Lip0 (Ω), ‖f‖p = 1. We start with Jensen’s inequality:

− log
∫

|f |dµ = − log
∫

|f |1−p|f |pdµ ≤ −
∫

(log |f |1−p)|f |pdµ =
p− 1
p

∫
|f |p log |f |pdµ.

Hence, the m-log-Sobolev inequality (33) implies

(39) − p

p− 1
log
∫

|f |dµ ≤ t

∫
|∇f |pdµ+m(t).

The Hölder inequality and ‖f‖p = 1 yield

(40)
∫

Ω
|f |dµ ≤ |Ω| p−1

p

(∫
|f |pdµ

) 1
p

= |Ω| p−1
p .

Therefore, combining (39) and (40), we obtain

− log |Ω| ≤ t

∫
|∇f |pdµ+m(t)

and hence
1
t

(
log

1
|Ω| −m(t)

)
≤
∫

|∇f |pdµ.
Taking sup in t yields

ψp (|Ω|) ≤
∫

|∇f |pdµ,
that is the (p, ψ)-isoperimetric inequality.

In the case p = 1 we argue slightly differently. Assuming that f ∈ Lip0 (Ω), ‖f‖1 = 1, and
using Jensen’s inequality, we have

− log
∫

|f |1/2 dµ = − log
∫

|f |−1/2 |f |dµ ≤ −
∫ (

log |f |−1/2
)
|f | dµ =

1
2

∫
|f | log |f | dµ.

Then (33) implies

−2 log
∫

|f |1/2 dµ ≤ t

∫
|∇f |dµ +m(t).

On the other hand, by the Cauchy-Schwarz inequality,∫
Ω
|f |1/2dµ ≤ |Ω|1/2

(∫
|f |dµ

)1/2

= |Ω|1/2 ,

whence

− log |Ω| ≤ t

∫
|∇f | dµ+m(t).

One finishes the proof as above in the case p > 1.
By Proposition 2.1, the (p, ψ)-isoperimetric inequality implies the F̃ -Sobolev inequality in Lp

with the function F̃ (s) = cF (s/η) where F (s) = ψp (1/s). Combining this result with (38), we
conclude the proof.

We summarize the above proof of Theorem 6.2 in the following diagram:

(41)

F̃ (r)=cψp( η
r )

F -Sobolev � F̃ -Sobolev

↙ ↖

m-log-Sobolev −→ (p, ψ)-isoperimetric

m(t)=sups>0{log s−tF (s)} ψp(v)=supt>0
1
t{log 1

v
−m(t)}
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Let us introduce the functions

(42) f(σ) = F (eσ) and g(τ ) = τm(1/τ ).

Then the equations (37) and (35) can be rewritten as follows:

(43) f(σ) = sup
τ∈R+

{τσ − g(τ )} and g(τ ) = sup
σ∈R

{τσ − f(σ)}.

In other words, the functions f and g are related by the Legendre transform.
Consider the following two functional classes

(44) C+ =
{
f : R → R+ | f is convex, increasing, lim

σ→+∞
f(σ)
σ

= +∞
}

and

(45) C =
{
g : R+ → R | g is convex, g(0) ≤ 0, lim

τ→+∞
g(τ )
τ

= +∞
}

(where R+ = [0,+∞)). The condition g(0) ≤ 0 in (45) can be replaced by the requirement that
g(τ )/τ is increasing.

Denote by L the Legendre transform on the class C, and by L+ the Legendre transform on
the class C+, given by (43). An elementary argument shows that L maps C to C+ and L+ maps
C+ to C; moreover, L and L+ are mutually inverse. We skip this argument but indicate the
following points:

• the condition limσ→+∞ f(σ)/σ = +∞ ensures the finiteness of g (the same applies to
the finiteness of f);

• the condition g(0) ≤ 0 is equivalent to the non-negativity of f ;
• the fact that L and L+ are the mutually inverse transforms roots in the observation that

the derivatives f ′ and g′ are mutually inverse functions.
Consider also the following functional classes:

(46) F =
{
F : R+ → R+ | F (s) and sF ′(s) are increasing, lim

s→+∞
F (s)
log s

= +∞
}
,

assuming that F is absolutely continuous so that F ′ makes sense, and

(47) M =
{
m : R

∗
+ → R

∣∣ m is convex, decreasing, m(0+) = +∞} .
It is easy to show that

F (s) ∈ F ⇐⇒ F (eσ) ∈ C+ and m(t) ∈ M ⇐⇒ τm(1/τ ) ∈ C.
Consequently, the relations (35), (37) provide a bijection between F and M, and we obtain the
following statement.
Corollary 6.5. If F ∈ F , then starting with the F -Sobolev inequality and making a loop in the
diagram (41), we arrive at the F̃ -Sobolev inequality with F̃ (s) = cF (s/η).

Alternatively, one can say that if m ∈ M then a loop on the diagram (41) returns to the
initial hypothesis, up to constant multiples.

Note that the condition lims→+∞ F (s)/ log s = +∞ in the definition of F is important.
Indeed, if F (s) = log s (for large s) then the F -Sobolev inequality amounts to a non-parametric
log-Sobolev inequality, which is known to be weaker than any m-log-Sobolev inequality.

In the case p = 2 the diagram (41) can be complemented by the above mentioned relations
between log-Sobolev inequalities and the ultracontractivity of the heat semigroup (see [57, Sec-
tion 4] for a direct relation between F -Sobolev inequalities and ultracontractivity). Consider
for comparison another line of implications based on an alternative method of obtaining the
ultracontractive estimate (34) using a generalized Nash inequality (this method was employed
in [40] and [25]).
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Given a decreasing non-negative function ψ on (0,+∞), we say that the ψ-Nash inequality
holds in L2 (M,µ) if, for any f ∈ Lip0(M), f ≡ 0,

(48) ψ

(‖f‖2
1

‖f‖2
2

)
‖f‖2 ≤ ‖∇f‖2.

It is known (see [3, Theorem 10.3], [40, Lemma 2.1]) that the (2, ψ)-isoperimetric inequality
implies the ψ̃-Nash inequality with

(49) ψ̃ (v) =
1
2
ψ (4v) .

Conversely, the ψ-Nash inequality implies the (2, ψ)-isoperimetric inequality, just by the Cauchy-
Schwarz inequality.

By the standard Nash method one deduces from the ψ-Nash inequality that et∆ is m-
ultracontractive where m(t) is determined by the differential equation

(50) −dm
dt

= ψ2
(
e−m

)
, m(0+) = +∞,

provided such m exists (see for example, [25, Proposition 2.1], [40, Theorem 2.1], [60]). It is easy
to see that any m satisfying (50) must be in M. On the other hand, if m ∈ M0 ⊂ M where

M0 =
{
m ∈ C1(R∗

+)
∣∣ m is convex, m′ < 0, m(0+) = +∞, m(+∞) = −∞} ,

then indeed m solves (50); the corresponding class of functions F (s) = ψ2 (1/s) is

F0 =
{
F ∈ C(R∗

+)
∣∣ F > 0, F is increasing,

∫ +∞ ds

sF (s)
< +∞

}
(cf. [40, Section 2]). There are examples of ψ-Nash inequalities which do not imply any ultra-
contractivity; this follows from [35, Section 6, Remark 1, p. 359].

It was observed respectively in [40, Proof of Theorem 2.2] and [25, Proposition II.2] that the
m-ultracontractivity implies the (2, ψ)-isoperimetric and the ψ-Nash inequality with

(51) ψ2 (v) = sup
t>0

1
t

(
log

1
v
−m(t)

)
,

assuming m ∈ M. It is worth mentioning that the function m(t) = log ‖et∆‖1→∞ is always in
M. Let us also emphasize a remarkable fact that (51) is identical to (38) with p = 2; that is
the m-log-Sobolev inequality and the m-ultracontractivity imply the same (2, ψ)-isoperimetric
inequality.

Combining together the above statements and neglecting the constant multiples in (49), we
obtain one more diagram:

(52)

F̃ (s)=supt>0
1
t
(log s−m(t))

(2, ψ)-isoperimetric � (2, ψ̃)-isoperimetric

↙ ↖m∈M

ψ-Nash inequality m∈M0−→ m-ultracontractivity

−m′=F (em), m(0+)=+∞

Here we use the notation F (s) ≡ ψ2 (1/s) and F̃ (s) ≡ ψ̃
2
(1/s).

Let us verify that always F̃ ≤ F , as one should expect. Indeed, it suffices to show that for all
σ ∈ R and t > 0

(53)
1
t

(σ −m(t)) ≤ F (eσ) .
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If m(t) ≥ σ then there is nothing to prove. Otherwise, there exists 0 < t∗ < t so that m(t∗) = σ.
Using the convexity of m and the intermediate value theorem, we obtain

1
t

(σ −m(t)) =
m(t∗) −m(t)

t
≤ m(t∗) −m(t)

t− t∗
≤ −m′ (t∗) = F (eσ).

For example, if m(t) = exp
(

1
tα

)
, α > 0, then for s large enough

F (s) = α log s (log log s)
α+1

α

whereas
F̃ (s) � log s (log log s)

1
α << F (s).

Situations with such function m(t) were considered in [35], [46], [20], [7], [2], [8].
For any δ > 0, introduce the following subclass of M0:

(54) Mδ =
{
m ∈ M0 :

∣∣m′ (2t)
∣∣ ≥ δ

∣∣m′(t)
∣∣ , for all t > 0

}
.

We claim that if m ∈ Mδ then

F̃ (s) ≥ δ

2
F (s), for all s > 0

(cf. [40]). Indeed, choosing t so that m(t) = log s, we obtain

F̃ (s) ≥ 1
2t

(log s−m(2t)) =
m(t) −m(2t)

2t
≥ −1

2
m′ (2t) ≥ −δ

2
m′ (t) =

δ

2
F (em(t)) =

δ

2
F (s).

Hence, if m ∈ Mδ then the loop on the diagram (52) comes back to the initial hypothesis, up
to constant multiples.

7. A more general setting

For the sake of exposition, we have so far presented our results in the setting of Riemannian
manifolds. They are however valid in the more general setting of [3], which covers other situations
such as manifolds endowed with a second-order subelliptic operator or graphs endowed with a
Markov kernel. We explain now the way one should state the above results so that they fit in
this setting. We refer to [3, sections 2 and 7] for details on the examples that can be treated in
this way.

Fix 1 ≤ p < +∞. Let (M,µ) and (N, ν) be two measured spaces, FM and FN some classes of
measurable functions on M and N respectively, stable under truncation (see [3, pp. 1037-1038]
for details) and WM and WN some semi-norms on FM and FN respectively. One can then
write (Spψ) inequalities, F -Sobolev inequalities, etc. on M and N simply replacing ‖|∇f |‖p by
WM (f) (or ‖|∇g|‖p by WN (g)!), and Lip0 (M) (resp. Lip0 (N)) by FM (resp. FN ) in the above
definitions.

Consider now the product space (M ×N,µ× ν), and let F be a class of measurable functions
on M ×N , such that, if u ∈ F then u(·, y) ∈ FM for ν-almost every y ∈ N , and u(x, ·) ∈ FN for
µ-almost every x ∈ M . Let WM×N be a semi-norm on F . We must assume the following three
axioms:

(i) There exists α > 0 such that for all u ∈ F

W p
M×N(u) ≥ α

(∫
N
W p
M (u(·, y))dν(y) +

∫
M
W p
N (u(x, ·))dµ(x)

)
.

This axiom means that the functional WM×N is adapted to the product structure.
(ii) Fix ρ > 1; for k ∈ Z, and f ∈ FM , set

fρ,k := min{(|f | − ρk)+, ρk(ρ− 1)}.
Then one should have

WM (f)p ≥ β
∑
k∈Z

WM (fρ,k)p,
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for any f ∈ FM and some β > 0. The functional WN should satisfy a similar property,
possibly for a different ρ.

This axiom is called (Hρ
p ) in the terminology of [3]. It plays a role in the proof of the

equivalence between the (p, ψ) and the F -Sobolev inequality in Lp when applying a truncation
argument (Proposition 2.1).

(iii) This condition is imposed on only one of the functionals (say, WN ) and it reads: if u ∈ F ,
then

f(x) :=
(∫

M
|u(x, ·)|pdµ(x)

) 1
p

belongs to FN and ∫
M
W p
N (u(x, ·))dµ(x) ≥ γW p

N (f) ,

for some γ > 0.
This axiom is forced upon us by the estimate (24) in the proof of Proposition 3.1.
If all axioms (i), (ii) and (iii) are satisfied, then one can prove along the same lines a gener-

alization of Theorem 1.1.
It has been shown in [3] that axiom (ii) is satisfied for a variety of local and non-local gradients.

As for (iii), consider first the case of local gradients, e.g. WN (f) is the Lp norm of the “carré
du champ” of a diffusion semi-group, or

WN (f) =

∫
N

(
l∑
i=1

|Xif |2
) p

2

dν


1
p

,

where {Xi, i = 1, . . . , l} is a family of vector fields on N . Then (iii) follows from the property
that for a local gradient ∇, f ∈ Lip0(M), and α > 0,

|∇|f |α| ≤ α|f |α−1|∇f |.
Applying then Hölder’s inequality, one gets (iii) following the same lines as in the proof of
Proposition 3.1.

In the non-local case, say

WN (f) =
(∫

N

∫
N
|f(·, y1) − f(·, y2)|pK(y1, y2)dµ(y1)dµ(y2)

) 1
p

,

where K is a non-negative kernel such that∫
N
K(x, y) dµ(y) +

∫
N
K(x, y) dµ(x) ≤ C < +∞,

axiom (iii) is a consequence of the elementary inequality∣∣∣∣∣
(∫

M
|f(x, y1)|pdµ(x)

) 1
p

−
(∫

M
|f(x, y2)|pdµ(x)

) 1
p

∣∣∣∣∣ ≤
(∫

M
|f(x, y1) − f(x, y2)|pdµ(x)

) 1
p

.

8. Appendix: Euclidean inequalities

Let us first observe that our method yields yet another proof of the Sobolev inequality in
R
n (see for instance [13, pp. 162-164] for the classical proof, and [52] for an alternative proof).

Start with
2 sup
t∈R

|f(t)| ≤
∫

R

|f ′(t)| dt,
which is true for any f ∈ Lip0(R) and which obviously implies the one-dimensional L1 Moser
inequality:

2
∫

R

f2(t) dt ≤
∫

R

|f(t)| dt
∫

R

|f ′(t)| dt.
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Now, Proposition 3.1, applied n times, yields the n-dimensional L1 Moser inequality

(55) Cn

∫
Rn

|f(x)|1+ 1
n dx ≤

(∫
Rn

|f(x)| dx
)1/n ∫

Rn

|∇f(x)| dx.

It follows from the results of Section 2 or [3] that (55) is equivalent to the regular Sobolev
inequality (S1

n) (this can be seen also in a more direct way by going through the isoperimetric
inequality (1)). Hence, it implies all the (Spn), 1 ≤ p ≤ +∞ (see Introduction for the meaning
of (Spn) if p ≥ n).

The above simple-minded procedure can be applied to obtain also the n-dimensional Lp Moser
inequality and, surprisingly enough, gives for 1 ≤ p ≤ 2 a constant that grows with n at a correct
rate. Let us start with the one-dimensional L2 Moser inequality

A1

∫
R

f6(t) dt ≤
(∫

R

|f(t)|2 dt
)2 ∫

R

|f ′(t)|2 dt,

with the sharp constant A1 = π2

4 that was computed by Nagy [55]. Assuming that we have
already the n-dimensional Moser inequality

(56) An

∫
Rn

|f(x)|2+ 4
n dx ≤

(∫
Rn

|f(x)|2 dx
)2/n ∫

Rn

|∇f(x)|2 dx,

with some constant An > 0, let us compute An+1. Indeed, (56) is equivalent to the F -Sobolev
inequality with F (v) = Anv

2/n. Therefore, Proposition 3.1 applied to M = R
n and N = R

yields the H-Sobolev inequality on R
n+1 with

H(v) = inf
r>0

(
Anr

2
n +A1(

v

r
)2
)
.

Evaluating this infimum, which is attained at r = (A1nv2

An
)

n
2(n+1) one obtains

H(v) = A
n

n+1
n (A1n)

1
n+1

(
1 +

1
n

)
v

2
n+1 ,

that is the Moser inequality holds in R
n+1 with the constant

An+1 = A
n

n+1
n (A1n)

1
n+1

(
1 +

1
n

)
.

One easily obtains by induction that

An = A1n =
π2

4
n.

It is shown in [6] that the best constant A∗
n in the Moser inequality has the following asymptotic:

A∗
n ∼ πe

2
n, n→ ∞.

Hence, our approach gives the correct linear rate of growth of An as n → ∞. Note also that
A2 = π2

2 = π · 1. 570 8... whereas A∗
2 = π · 1.8623... (see [67]).

For p = 2, the above procedure does not yield the correct asymptotic order for the best
constant of the n-dimensional Lp Moser inequality, which is known to be n

p
2 (see [6]). In the

case 1 ≤ p < 2, the origin of the difficulty is the constant cp in the proof of Proposition 3.1. One
can overcome this difficulty by defining a modified length of the gradient in the following way:

|∇f |p(x) :=

(
n∑
i=1

| ∂f
∂xi

(x)|p
) 1

p
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(a similar idea was used in [45] in a discrete setting). Using the inequality(
n∑
i=1

api

)1/p

≤ n
1
p
− 1

2

(
n∑
i=1

a2
i

)1/2

, 1 ≤ p < 2,

one sees immediately

(57)
∫

Rn

|∇f |ppdx ≤ n1− p
2

∫
Rn

|∇f |pdx.
On the other hand, if one rewrites Proposition 3.1 with M = R

n endowed with the functional∫
Rn |∇f |ppdx, and N = R, one finds that the constant cp disappears.
Now starting with the one-dimensional Lp Moser inequality with constant A1,p and applying

n times this version of Proposition 3.1, one obtains

Ãn,p

∫
Rn

|f(x)|p+ p2

n dx ≤
(∫

Rn

|f(x)|p dx
)p/n ∫

Rn

|∇f |pp(x) dx
with

Ãn,p = nÃ1,p = nA1,p.

Taking (57) into account yields

An,p

∫
Rn

|f(x)|p+ p2

n dx ≤
(∫

Rn

|f(x)|p dx
)p/n ∫

Rn

|∇f |p(x) dx
with

An,p = Ãn,pn
p
2
−1 = Ã1,p nn

p
2
−1 = A1,p n

p
2 .

which gives the correct asymptotic order in n.
In the case p > 2, the constant cp is 1, but the above procedure leads us only to An,p =

nA1,p � n while the correct order for the best constant is n
p
2 .
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[29] Coulhon T., Ledoux M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz:

un contre-exemple, Ark. Mat., 32 (1994) 63-77.
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