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Abstract

We construct a new homology theory for the categories of quivers and
multigraphs and describe the basic properties of introduced homology groups.
We introduce a conception of homotopy in the category of quivers and we
prove the homotopy invariance of homology groups.
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1 Introduction

There are several approaches to construct a (co)homology theory for graphs, multi-
graphs or digraphs: using of cliques of graph (see [22] and [7]), the Hochschild ho-
mology of the path algebra (see [21], [20], [9], and [13]), singular graph homolgy (see
[26] and [5]), and the path homology. The comparison of these approaches is shortly
described in [19, Introduction]. The path cohomology for digraphs was introduced
by Dimakis and Müller-Hoissen in [10], [4], [11]. This approach was developed in
[15], [16], [17], [18], and [19], where deep relations between path homology groups,
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Hochschild homology, simplicial homology, and Atkins theory were obtained (see
also [1], [2], [3], and [6]). The path homology theory has good functorial properties,
it is compatible with the homotopy theory on the graphs (digraphs), and respects
the basic graph-theoretical operations: the Cartesian product and the join of two
digraphs. Additionally, the path homology theory can be used for topological data
analysis and investigation of various networks (cf. [12], [8], [25]).

In the present paper we construct a homotopy invariant homology theory for
quivers and multigraphs, that is a natural generalization of the path homology theory
for simple digraphs and non-directed graphs that was introduced and developed in
[15], [16], [17], and [18]. Then we discuss possible applications of the results and
provide several examples of computations.

In Section 2, we give a preliminary material about the category of quivers and
path algebras of quivers.

In Section 3 and 4, we construct a homology theory on the category of quivers,
including chain complexes that arise naturally from a quiver structure.

In Sections 5, we introduce the concept of homotopy between two morphisms of
quivers and we prove the homotopy invariance of the homology groups under a mild
assumption on the ring of coefficients.

In Section 6, transfer obtained results from the category of quivers to that of
multigraph, discuss the results, and we present several examples of computation.
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2 The category of quivers and path algebras

In this section we recall a category of quivers and describe the path algebras arising
naturally on quivers.

Definition 2.1 A finite quiver is a quadruple Q = (V,E, s, t) where V is a finite
set of vertices, E is a finite set of arrows, and s, t : E → V are two maps. For an
arrow a ∈ E we refer to the point s(a) ∈ V as the start vertex of a and to the point
t(a) as the target vertex of a.

In what follows we shall consider only finite quivers. Usually the elements of V
are denoted by 0, 1, 2, . . . , n.

Definition 2.2 Given a positive integer r, an elementary r-path in a quiver Q is
a non-empty sequence a0, a1, . . . , ar−1 of arrows in Q such that t(ai) = s(ai+1) for
i = 0, 1, . . . , r − 2. Denote this r-path by p = a0a1 . . . ar−1. Define the start vertex
of p by s(p) = s (a0) and the target vertex of p by t(p) = t (ar−1).
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For r = 0 define an elementary 0-path p by p := v where v ∈ V is any vertex.
For this path set s(p) = t(p) = v.

The number r is called the length of arbitrary r-path p and is denoted by |p| .
The set of all elementary r-paths of Q is denoted by PrQ and the union of all

PrQ for all r ≥ 0 is denoted by PQ.

Definition 2.3 Let Q = (V,E, s, t), Q′ = (V ′, E ′, s′, t′) be two finite quivers. A
morphism of quivers f : Q → Q′ is defined as a pair of maps (fV , fE), where
fV : V → V ′ is a map of vertices and fE : E → E ′ is a map of arrows, such that the
following conditions are satisfied for any a ∈ E:

fV (s(a)) = s′(fE(a)) and fV (t(a)) = t′(fE(a)).

It follows immediately from Definitions 2.1 and 2.3, that the quivers with the
introduced morphisms form a category that we denote by Q.

Definition 2.4 Let K be a commutative ring with a unity and such that no positive
integer in K is a zero divisor. The graded path algebra Λ∗(Q) = K[PQ] is the free
K-module spanned by all elementary paths in Q, and the multiplication in Λ∗(Q)
is defined as a K-linear extension of concatenation of any two elementary paths p, q
on Q.

The concatenation is defined as follows: for the paths p = a0a1 . . . an and q =
b0b1 . . . bm with n,m ≥ 0 set

p ∙ q =

{
a0a1 . . . anb0b1 . . . bm, if t(an) = s(b0),

0, otherwise,

for the paths p = v ∈ V and q = b0b1 . . . bm, set

p ∙ q =

{
q, if v = s(b0),

0, otherwise,
and q ∙ p =

{
q, if v = t(bm),

0, otherwise,

and for the paths p = v, q = w where v, w ∈ V , set

p ∙ q =

{
v, if v = w,

0, otherwise.

It is obvious that the formal path
∑

v∈V

v ∈ Λ0(Q) is the left and right unity of

Λ∗(Q).
Let f : Q→ Q′ be a morphism as above. For any path p ∈ PQ define the path

f∗(p) ∈ PQ′ by the following way:

• for |p| = 0 and, hence, p = v ∈ V we put f∗(v) = fV (v) ∈ V ′;

• for |p| ≥ 1 and p = a0a1 . . . an where ai ∈ E, we put

f∗(p) = fE(a0)fE(a1) . . . fE(an) where fE(ai) ∈ E ′.
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It is clear that |f∗(p)| = |p|. Thus, a morphism f : Q → Q′ induces linear maps
f∗ : Λn(Q)→ Λn(Q′) for any n ≥ 0.

Simple examples show that it may happen that f∗(p ∙ q) 6= f∗(p) ∙ f∗(q).

Example 2.5 Let Qi = (Vi, Ei, si, ti)(i = 1, 2) be two quivers given on the next
diagrams

v1
a1−→ v2

↓ b1 ↓ a2

v4
b2−→ v3

and
w1

c1−→ w2
c2−→ w3

correspondingly. Define a morphism f : Q1 → Q2 putting

fV (v1) = w1, fV (v4) = fV (v2) = w2, fV (v3) = w3 and fE(ai) = fE(bi) = ci (i = 1, 2).

Then for the paths p = a1 and q = b2, we have f∗(p∙q) = f∗(0) = 0 and f∗(p)∙f∗(q) =
c1c2 6= 0.

Let Q = (V,E, s, t) be a quiver. For any ordered pair of vertices (v, w) ∈ V × V
define μ(v, w) as a number of arrows from v to w (this includes also the case v = w
when μ(v, v) is the number of loops at the vertex v). Set

N0 := maxv,w∈V μ(v, w). (2.1)

The number N0 will be referred to as the power of Q.

Definition 2.6 A quiver Q is called complete of power N if, for any two vertices
v, w there is exactly N arrows with the start vertex v and the target vertex w.

Let us describe the procedure of completion of an arbitrary quiver Q of power
N0. Fix an integer N such that

N ≥ N0 (2.2)

Definition 2.7 Define a quiver Q̃ = (Ṽ , Ẽ, s̃, t̃) as follows. We put Ṽ = V and, for
any ordered pair of vertices (v, w) (including the case v = w) we add (N − μ(v, w))

new arrows from v to w, that obtaining Ẽ. Clearly, Q̃ is a complete quiver of power
N . We shall refer to Q̃ as the completion of Q of power N . We will denote Q̃ also
by Q̃N when the dependence on N should be emphasized.

Note that we have a natural inclusion of quivers τ : Q↪→Q̃ that induces an inclu-
sion of K-modules

τ ∗ : Λn(Q)↪→Λn(Q̃), for any n ≥ 0.
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3 Homology groups of complete quivers

In this section we construct a chain complex and homology groups on a complete
quiver. Let us recall the following standard definition.

Definition 3.1 [27] A Δ-set consists of a sequence of sets Xn (n = 0, 1, 2, . . . ) and
maps ∂i : Xn+1 → Xn for each n ≥ 0 and 0 ≤ i ≤ n + 1, such that ∂i∂j = ∂j−1∂i

whenever i < j.

Consider a complete quiver Q = (V,E, s, t) of the power N ≥ 1. Define a product

Λ1(Q)× Λ1(Q)→ Λ1(Q), (p, q)→ [pq]

first on the arrows a, b ∈ E by

[ab] : =

{∑
c, for t(a) = s(b), s(c) = s(a), t(c) = t(b)

0, otherwise
(3.1)

and then extend it by linearity in each argument on Λ1(Q) × Λ1(Q). Note that
the sum in (3.1) contains all arrows starting at s(a) and ending at t(b). It follows
directly from the definition that

[a[bc]] = [[ab]c] =






N
∑

d, for

[
t(a) = s(b), t(b) = s(c),

s(d) = s(a), t(d) = t(c),

]

0, otherwise.

(3.2)

Now we introduce homomorphisms

∂i : Λn+1(Q)→ Λn(Q)

for all n ≥ 0 and 0 ≤ i ≤ n + 1. It suffices to define ∂ip for any elementary
(n + 1)-paths p = a0a1 . . . an and then extend ∂i by linearity.
For n = 0, i = 0, 1, we put

∂0p = Nt(p), ∂1p = Ns(p). (3.3)

For n ≥ 1, i = 0, n + 1, we put

∂0p = N(a1a2 . . . an), ∂n+1p = N(a0a1 . . . an−1). (3.4)

For n ≥ 1, 1 ≤ i ≤ n, we put

∂ip =
∑

c∈E:s(c)=s(ai−1),t(c)=t(ai)

a0 . . . ai−2cai+1 . . . an. (3.5)

Using the notation (3.1), we can rewrite (3.5) shortly as follows:

∂i(a0 . . . an) = a0 . . . ai−2[ai−1ai]ai+1 . . . an. (3.6)
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Lemma 3.2 Let p = (a0a1 . . . an) with n ≥ 2 and 1 ≤ i ≤ n − 1, we have the
following relations

a0 . . . ai−2[[ai−1ai]ai+1]ai+2 . . . an = a0 . . . ai−2[ai−1[aiai+1]]ai+2 . . . an.

Proof. Follows from definition (3.6) of ∂i and (3.2).
We put Λ−1(Q) = {0} and define ∂0 : Λ0(Q)→ Λ−1(Q) by ∂0 = 0.

Theorem 3.3 For all n ≥ 0, 0 ≤ i < j ≤ n + 1 we have

∂i∂jp = ∂j−1∂ip (3.7)

for any p ∈ Λn+1(Q). Hence, the sequence Λi(Q), i ≥ 0, with the differentials ∂i is a
Δ-set.

Proof. In the case n = 0 we have necessarily i = 0 and j = 1. Then we have
trivially ∂0∂1 = ∂0∂0 = 0.

Assume n ≥ 1 and consider various cases. It suffices to prove (3.7) for p =
(a0a1a2 . . . an).

i) Let i = 0 and j = 1. For n = 1, we have

∂0∂1(a0a1) = ∂0([a0a1]) = N2t(a1),

and
∂0∂0(a0a1) = ∂0(N(a1)) = N2t(a1).

For n ≥ 2 we have

∂0∂1(a0a1a2 . . . an) = ∂0([a0a1]a2 . . . an) = N2(a2 . . . an),

and
∂0∂0(a0a1a2 . . . an) = N2(a2 . . . an).

In the both cases, we have ∂0∂1p = ∂0∂0p.
ii) Let i = 0 and 2 ≤ j ≤ n. For n = 2 and, hence j = 2, we have

∂0∂2(a0a1a2) = ∂0(a0[a1a2]) = N([a1a2])

and
∂1∂0(a0a1a2) = N∂1(a1a2) = N([a1a2]).

For n ≥ 3, we have

∂0∂j(a0a1 . . . an) = ∂0(a0 . . . aj−2[aj−1aj ]aj+1 . . . an) = N(a1 . . . aj−2[aj−1aj ]aj+1 . . . an)

and

∂j−1∂0(a0a1 . . . an) = N∂j−1(a1a2 . . . an) = N(a1 . . . aj−2[aj−1aj ]aj+1 . . . an).

Hence, ∂0∂jp = ∂j−1∂0p.
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iii) Let i = 0 and j = n + 1. For n = 1 and hence j = 2, we have

∂0∂2(a0a1) = N∂0(a0) = N2t(a0),

and
∂1∂0(a0a1) = N∂1(a1) = N2(s(a1) = N2t(a0).

For n ≥ 2, we have

∂0∂n+1(a0 . . . an) = N∂0(a0 . . . an−1) = N2(a1 . . . an−1)

and
∂n∂0(a0 . . . an) = N∂n(a1 . . . an) = N2(a1 . . . an−1).

Hence, ∂0∂jp = ∂j−1∂0p.
iv) Let j = n + 1. This case is treated exactly the same way as the case i = 0

considered in i) – iii).
v) Let i ≥ 1, j ≤ n and j = i + 1. We have

∂i∂i+1(a0 . . . an) = ∂i(a0 . . . ai−1[aiai+1]ai+2 . . . an)

= a0 . . . ai−2[ai−1[aiai+1]]ai+2 . . . an

and

∂i∂i(a0 . . . an) = ∂i(a0 . . . ai−2[ai−1ai]ai+1 . . . an)

= a0 . . . [[ai−1ai]ai+1] . . . an

= a0 . . . [ai−1[aiai+1]] . . . an

by Lemma 3.2. Hence, ∂i∂i+1p = ∂i∂ip.
vi) Finally, let i ≥ 1 and i + 2 ≤ j ≤ n. We have

∂i∂j(a0 . . . an) = ∂i(a0 . . . aj−2[aj−1aj ] . . . an)

= a0 . . . ai−2[ai−1ai] . . . [aj−1aj ]aj+1 . . . an

and

∂j−1∂i(a0 . . . an) = ∂j−1(a0 . . . ai−2[ai−1ai]ai+1 . . . an)

= a0 . . . ai−2[ai−1ai] . . . [aj−1aj]aj+1 . . . an.

Hence, ∂i∂jp = ∂j−1∂ip.

Definition 3.4 Let Q be a complete quiver of power N . For all n ≥ −1, define
homomorphisms ∂ : Λn+1(Q)→ Λn(Q) by

∂ =
n+1∑

i=0

(−1)i∂i.
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Consequently, for an elementary path a0...an, we have

∂ (a0...an) = Na1...an − [a0a1] a2...an + a0 [a1a2] ...an

+... + (−1)n a0...an−2 [an−1an] + (−1)n+1 Na0...an−1. (3.8)

By a standard result about Δ-sets (see [27]), we obtain the following.

Corollary 3.5 We have ∂2 = 0 which yields a chain complex

0
∂
← Λ0(Q)

∂
← Λ1(Q)

∂
← . . .

∂
← Λn(Q)

∂
← . . . (3.9)

The chain complex (3.9) is called a path chain complex of a complete quiver Q.
Previously we have defined Λ−1 (Q) = {0}. Alternatively, we can set Λ−1(Q) =

K, and define ∂ : Λ0(Q)→ Λ−1(Q) by ∂ = ε where

ε

(
∑

v

kvv

)

=
∑

v

kv, v ∈ V, kv ∈ K,

is an augmentation. Then we obtain a chain complex with the augmentation of a
complete quiver Q

0← K
ε
← Λ0(Q)

∂
← Λ1(Q)← . . .

∂
← Λn(Q)← . . . (3.10)

4 Homology of arbitrary quivers

Now we define a chain complex and homology groups of an arbitrary finite quiver
Q = (V,E, s, t). Fix a positive integer N as in (2.2). Let Q̃ be a completion of Q

of the power N (see Section 2). We have a natural inclusion τ : Q → Q̃ that is a

morphism of quivers. It induces isomorphisms Λn(Q) → Λn(Q̃) of K-modules for
n = −1, 0, and monomorphisms of K-modules

τ ∗ : Λn(Q)→ Λn(Q̃) for n ≥ 1

defined on the elementary n-paths p = a1 . . . an by

τ ∗(a1 . . . an) = τE(a1) . . . τE(an). (4.1)

Since τ ∗ is an inclusion, we shall identify any elementary path p ∈ PQ with its
image τ ∗(p) ∈ PQ̃ and we shall consider Λn(Q) as a submodule of Λn(Q̃) for any
n ≥ −1.

Definition 4.1 Any elementary n-path p ∈ PQ̃ is called allowed if p ∈ PQ, and
non-allowed otherwise. The elements of Λn (Q) are called formal allowed n-paths.
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Note that the submodules Λn(Q) ⊂ Λn(Q̃) are in general not invariant for ∂ as

defined by (3.5) in Λ∗(Q̃). For n ≥ 0, consider the following submodules of Λn(Q)

Ωn(Q) := {v ∈ Λn(Q) : ∂v ∈ Λn−1(Q)} . (4.2)

It is clear that Ωn (Q) are ∂-invariant, that is,

∂ (Ωn (Q)) ⊂ Ωn−1 (Q) ,

which follows directly from the identity ∂2 = 0 in Λ∗(Q̃). Hence, we obtain a chain
complex Ω∗ = Ω∗ (Q):

0← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωn

∂
← . . . (4.3)

Note that Ω0(Q) = Λ0(Q) = Λ0(Q̃), Ω1(Q) = Λ1(Q) ⊂ Λ1(Q̃), and Ωn(Q) ⊂
Λn(Q) ⊂ Λn(Q̃) for n ≥ 2. Note also, that Ω∗(Q̃) = Λ∗(Q̃) as follows trivially from
(4.2).

Note that the definition of Ω∗ (Q) depends on the choice of the parameter N as

Q̃ was defined as the completion of Q of power N . In order to emphasize this, we
may use an extended notation Q̃N for the completion of Q of power N and ΩN

∗ (Q)
for the chain complex Ω∗ (Q).

Definition 4.2 Define for any n ≥ 0 the homologies of the quiver Q with coefficients
from K by

HN
n (Q,K) = Hn(ΩN

∗ (Q)).

If N is fixed then we may use also the shorter notation Hn(Q,K).

Using the augmentation homomorphisms ε : Ω0(Q) = Λ0(Q̃)→ K defined above,

we obtain the reduced homology H̃n(Q,K) as the homology of the chain complex
with the augmentation

0←− K
ε
←− Ω0

∂
←− Ω1

∂
← . . .

∂
←− Ωn

∂
←− . . .

In the case of quivers of power N = 1 (digraphs) without loops the homology
theory was constructed in the papers [15], [16], [17]. It is an easy exercise to transfer
results of the present paper to the case of simple digraphs and to check that the
obtained homology theories are isomorphic. One of advantages of the construction
of the present paper is that it provides a homology theory for quivers of power N = 1
allowing loops, that contains as a particular case the theory [15], [16], [17].

As an example of computation of homology groups, let us prove the following
statement. We say a quiver Q = (V,E, s, t) is connected if, for any two vertices
v, w ∈ V there is a sequence of vertices v = v0, v1, . . . , vn = w such that for any pair
of vertices (vi, vi+1) (i = 0, 1, 2, . . . , n − 1) there is at least one arrow a ∈ E such
that s(a) = vi, t(a) = vi+1 or s(a) = vi+1, t(a) = vi.
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Proposition 4.3 Let Q be a connected quiver. Then

HN
0 (Q,Z) ∼=

{
Z, for N = 1

Z⊕ (
⊕

n (Z/NZ)) , for N ≥ 2, n = |V | − 1.
(4.4)

In particular, for N ≥ 2 in the group HN
0 (Q,Z) there is an element of order N .

Proof. We can write directly the basic elements of Ωi(Q) for i = 0, 1. We have

Ω0(Q) = 〈v0 . . . , vn|vi ∈ V 〉,

Ω1(Q) = 〈a1, . . . ak, b1, . . . , bm|ai, bj ∈ E; s(ai) 6= t(ai), s(bj) = t(bj)〉 .

The differential ∂ : Ω1(Q)→ Ω0(Q) is defined by

∂ai = Nt(ai)−Ns(ai), ∂bj = 0.

Hence ε ◦ ∂ = 0 for the augmentation ε : Ω0(Q) → Z. Since ε(v0) = 1 6= 0,
we conclude that v0 /∈ Im ∂. For N = 1, the same line of arguments as in [14,
Proposition 2.12] shows that vi − v0 ∈ Im ∂, which proves (4.4) in the case N = 1.

For N ≥ 2, the Z-modul Ω0(Q) is generated by 〈v0, v1 − v0, . . . , vn − v0〉 and,
hence, is isomorphic to Z⊕ (

⊕
n Z). Again, the same line of arguments as in [14,

Proposition 2.12] shows that Im ∂ coincides with the subgroup of Ω0(Q) generated
by 〈N(v1 − v0), . . . , N (vn − v0)〉. Clearly, this subgroup is isomorphic to

⊕
n NZ,

whence the result follows.
Let Q = (V,E, s, t) be a quiver. As before, let N0 be defined by (2.1) and

let N ≥ N0. In the next statement we are concerned with the dependence of the
complex ΩN

∗ (Q) on N .

Theorem 4.4 Let Q = (V,E, s, t) be a connected quiver. Let N0 be the power of Q.
Then the K-modules ΩN

n (Q) are naturally isomorphic for all N ≥ N0 + 1.

Proof. Clearly, ΩN
0 (Q) does not depend on any N > N0. Hence, in what follows

we assume n ≥ 1. Let

p =
∑

I=(i1,...,in)

cI(ai1 . . . ain) ∈ ΩN
n (Q),

where cI ∈ K and N > N0. Recall that p ∈ ΩN
n (Q) if and only if p ∈ Λn(Q) and

∂Np ∈ Λn−1 (Q) . For the operator ∂N , we have

∂Np = ∂N
0 p +

n−1∑

k=1

(−1)k ∂N
k p + (−1)n ∂N

n p, (4.5)

where
∂N

0 p = N
∑

I

cI(ai2 . . . ain), ∂N
n p = N

∑

I

cI(ai1 . . . ain−1),
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and, for 1 ≤ k ≤ n− 1,

∂N
k p =

∑

I

cI(ai1 . . . aik−1
[aikaik+1

]aik+2
. . . ain).

Since p ∈ Λn (Q), it is clear that ∂N
0 p and ∂N

n p lie in Λn−1(Q). Since ∂Np ∈ Λn−1 (Q),
it follows that

n−1∑

k=1

(−1)k ∂N
k p = ∂Np− ∂N

0 p− (−1)n ∂N
n p ∈ Λn−1 (Q) .

The key observation is that [aikaik+1
] is the sum of N arrows in Q̃N with the same

start and target vertices. Since in Q the maximal number of arrows with the same
start and target vertices is at most N0 < N , we see that [aikaik+1

] is the sum of
at most N0 allowed arrows in Q and at least N − N0 non-allowed arrows from
Q̃N . Therefore, the sum (ai1 . . . aik−1

[aikaik+1
] aik+2

. . . an) contains at least N − N0

elementary paths that are not allowed in Q. Therefore, all such terms in the sum
(4.5) must cancel out in order to ensure that ∂Np ∈ Λn−1 (Q), that is,

n−1∑

k=1

(−1)k ∂N
k p = 0.

Note also, that if the cancellation of all the terms in this sum occurs for some N > N0

then it will take place also for any other N ′ > N0. Hence, we obtain

∂N ′
p = ∂N ′

0 p + (−1)n ∂N ′

n p ∈ Λn−1 (Q) , (4.6)

which implies p ∈ ΩN ′

n (Q) .

Remark 4.5 Let us emphasize that although the K-modules ΩN
∗ (Q) do not depend

on N > N0, the differentials in ΩN
∗ (Q) do depend on N and, in fact, the homology

groups HN
∗ (Q) may actually depend on N. For example, Proposition 4.3 shows that

HN
0 (Q) depends on N .

Example 4.6 Consider the following quiver Q:

v1
b
−→ v2

↑a ↗c

v0

Here

Ω1
0(Q) = 〈v0, v1, v2〉, Ω1

1(Q) = 〈a, b, c〉, Ω1
2(Q) = 〈ab〉, and Ω1

i (Q) = 0 for i ≥ 3.

It is easy to see that for any N ≥ 2 we have

ΩN
0 (Q) = 〈v0, v1, v2〉, ΩN

1 (Q) = 〈a, b, c〉, and ΩN
i (Q) = 0 for i ≥ 2.

Hence, the chain complexes Ω1
∗(Q) and ΩN

∗ (Q) are not isomorphic for N ≥ 2. In
this case we also have

0 = H1
1 (Q,Z) � HN

1 (Q,Z) ∼= Z for N ≥ 2.
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Now we construct homomorphisms of homology groups that are induced by a
morphism of quivers.

Let Q = (V,E, s, t) and Q′ = (V ′, E ′, s′, t′) be quivers of power N0 and N ′
0,

respectively, and f = (fV , fE) : Q→ Q′ be a morphism of quivers. Consider quivers

Q̃N and Q̃′
N

that are the completions of power

N ≥ max{N0 + 1, N ′
0} (4.7)

of the quivers Q and Q′, respectively. For any n ≥ 0, consider a diagram

ΩN
n (Q) ⊂ Λn(Q) ⊂ Λn(Q̃N )

↓ f∗

ΩN
n (Q′) ⊂ Λn(Q′) ⊂ Λn(Q̃′

N
)

where the map f∗ is a homomorphism induced by f . Our first aim is to restrict f∗
to ΩN

n (Q).

Proposition 4.7 For N ≥ max{N0 + 1, N ′
0} the restriction of the homomorphism

f∗ to ΩN
n (Q) induces a morphism of chain complexes

f∗ : ΩN
∗ (Q) −→ ΩN

∗ (Q′),

and, hence, a homomorphism

f∗ : HN
∗ (Q,K)→ HN

∗ (Q′, K)

of homology groups.

Proof. We need to prove that

f∗
(
ΩN

n (Q)
)
⊂ ΩN

n (Q′)

and that f∗ commutes with ∂N . The case n = 0 is obvious, so let us assume n ≥ 1.
Recall that p ∈ ΩN

n (Q) if and only if p ∈ Λn(Q) and ∂Np ∈ Λn−1 (Q). Let

p =
∑

I=(i1,...,in)

cI(ai1 . . . ain) ∈ ΩN
n (Q), cI ∈ K.

We have

∂Np = ∂N
0 p + (−1)n ∂N

n p
︸ ︷︷ ︸

∈Λn−1(Q)

+
n−1∑

k=1

(−1)k
∑

I

cI(ai1 . . . aik−1
[aikaik+1

]aik+2
. . . ain). (4.8)

Since N > N0, by the same argument as in the proof of Theorem 4.4, all the terms

ai1 . . . aik−1
[aikaik+1

]aik+2
. . . an

12



from (4.8) cancel out in order to ensure that ∂Np ∈ Λn−1 (Q). Hence,

∂Np = ∂N
0 p + (−1)n ∂N

n p.

Let us show that f∗p ∈ ΩN
n (Q′). For that, we need to verify that ∂N (f∗p) ∈

Λn−1 (Q′). We have

f∗p =
∑

I=(i1,...,in)

cI(bi1 . . . bin),

where bj = f∗(aj) ∈ E ′, and

∂N(f∗p) = ∂N
0 (f∗p) + (−1)n ∂N

n (f∗p)
︸ ︷︷ ︸

∈Λn−1(Q′)

+
n−1∑

k=1

(−1)k
∑

I

cI(bi1 . . . bik−1
[bikbik+1

]bik+2
. . . bin), (4.9)

where bj = f∗(aj) ∈ E ′. Because of the cancellation of all the terms in the sum
(4.8), we see that all the terms in the sum (4.9) cancel out. Therefore, we have

∂N(f∗p) = ∂N
0 (f∗p)+(−1)n ∂N

n (f∗p) = f∗(∂
N
0 p+(−1)n ∂N

n p) = f∗(∂
Np) ∈ Λn−1 (Q′) .

It follows that f∗p ∈ ΩN
n (Q′) and that f∗ commutes with ∂N , which finishes the

proof.
Now assume that instead of (4.7) we have N = max{N0, N

′
0} and investigate

the induced morphisms of the chain complexes ΩN
∗ (Q) and ΩN

∗ (Q′). In this case we
impose an additional condition.

Definition 4.8 A morphism f : Q → Q′ is called strong if, for any two distinct
arrows a, b ∈ E with s(a) = s(b) and t(a) = t(b) we have fE(a) 6= fE(b).

The quivers with strong morphisms define a subcategory QI of the category
Q. Any strong morphism f : Q → Q′ can be extended to a strong morphism

f̃ : Q̃N → Q̃′
N

as on the following diagram (that is defined up to isomorphism):

Q
f
−→ Q′

↓ τ ↓ τ ′

Q̃N f̃
−→ Q̃′

N

(4.10)

Here τ and τ ′ are natural inclusions, and the map f̃ = (f̃Ṽ , f̃Ẽ) is defined as follows:

i) f̃Ṽ coincides with fV (recall that V = Ṽ , V ′ = Ṽ ′).

ii) The restriction f̃Ẽ|E coincides with fE (recall that E ⊂ Ẽ, E ′ ⊂ Ẽ ′).

iii) For any two vertices v, w ∈ V , denote by Ev,w the set of arrows in Ẽ that does
not lie in E and have the start vertex v and target vertex w. Denote by E ′

f(v),f(w)

the set of arrows in Ẽ ′ that does not lie in fE(E) and have the start vertex f(v) and
target vertex f(w). By the injectivity of fE, we have |Ev,w| = |E ′

f(v),f(w)|. Then we

extend fE to Ẽ by an isomorphism of sets Ev,w → E ′
f(v),f(w) thus obtaining f̃Ẽ.

Hence, f̃ is a strong morphism.
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Remark 4.9 Note that, for any v, w ∈ V , the strong morphism f̃ provides a bijec-
tion between the set of arrows with start vertex v and target vertex w and the set
of vertices with start vertex f(v) and target vertex f(w).

Proposition 4.10 If f : Q→ Q′ is a strong morphism, then the morphism f̃ : Q̃ −→
Q̃′, defined by (4.10), induces a morphism of chain complexes

f̃∗ : Λ∗(Q̃) −→ Λ∗(Q̃′) (4.11)

and, hence, a homomorphism H∗(Q̃,K)→ H∗(Q̃′, K) of homology groups.

Proof. It is sufficient to check that ∂i(f̃∗(p)) = f̃∗(∂ip) for any elementary
(n + 1)-path p = a0 . . . an and 0 ≤ i ≤ n + 1. By definition, we have

f̃∗(p) = f̃Ẽ(a0) . . . f̃Ẽ(an), ai ∈ Ẽ.

The cases i = 0 and i = n+1 follow from relation between f̃Ẽ and f̃Ṽ for n = 0 and
from Remark 4.9 for n ≥ 1. For the rest cases it is sufficient to check that

f̃Ẽ[ai−1ai] = [f̃Ẽ(ai−1)f̃Ẽ(ai)],

which follows from Remark 4.9, as well.

Proposition 4.11 Let Q = (V,E, s, t) and Q′ = (V ′, E ′, s′, t′) be quivers of power
N0 and N ′

0, respectively, and f : Q→ Q′ be a strong morphism. Let N = max{N0, N
′
0}

and let p ∈ ΩN
n (Q). Then f∗(p) ∈ ΩN

n (Q′) and the morphism f induces a morphism
of chain complexes

ΩN
∗ (Q) −→ ΩN

∗ (Q′)

and hence a homomorphism of homology groups

HN
∗ (Q,K) −→ HN

∗ (Q′, K)

in all dimensions.

Proof. By Proposition 4.10 we have a morphism (4.11) of chain complexes.
For any n, consider the restriction of this morphism to Λn (Q), that is, we have a
commutative diagram:

Λn (Q)
f∗−→ Λn (Q′)

↓ τ ↓ τ ′

Λn(Q̃)
f̃∗−→ Λn(Q̃′)

For any p ∈ Λn(Q) we have

∂Np = ∂Nτ(p) ∈ Λn−1(Q).

Then f∗(p) ∈ Λn(Q′) and

∂Nf∗(p) = ∂N(τ ′f∗(p)) = ∂N(f̃∗τ(p)) = f̃∗(∂
Nτ(p)) = f∗(∂

Nτ(p)) ∈ Λn−1(Q
′),

whence f∗(p) ∈ Ωn (Q′).
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5 Homotopy invariance of path homology groups

of quivers

In this section we define the notion of homotopy between two quiver morphisms and
give conditions when homotopic maps induce the same homomorphism of homology
groups.

Let In = (Vn, En, sn, tn) (n ≥ 1) be a quiver with the set of vertices Vn =
{0, 1, . . . , n} and the set of arrows En that contains exactly one of the two arrows
(i→ (i+1)) and ((i+1)→ i) for i = 0, 1, . . . , n−1, and no other arrow. We denote
by I0 the quiver which has one vertex 0 and has no arrows.

Any quiver In is called a line quiver of the length n. Denote also by I = ∪n≥0In

the set of all line quivers. The length of a line quiver J will be also denoted by |J |.

Definition 5.1 Q = (V,E, s, t) be a quiver and In = (Vn, En, sn, tn) be a line quiver.
Define the Cartesian-product

Π = Q�In = (VΠ, EΠ, sΠ, tΠ)

as a quiver with the set of vertices VΠ = V × Vn, the set of arrows

EΠ = {E × Vn} t {V × En},

and the maps sΠ, tΠ as follows:

sΠ(a, i) = (s(a), i), tΠ(a, i) = (t(a), i) for a ∈ E, i ∈ Vn,

sΠ(v, b) = (v, sn(b)), tΠ(v, b) = (v, tn(b)) for v ∈ V, b ∈ En.

The product Q�In can be considered as a cylinder over the quiver Q. We have
identifications Q with the bottom of Q�{0} and with the top Q�{n} of the cylinder
by using natural inclusions.

Let I be the line quiver of length 1 with two vertices {0, 1} and exactly one arrow
(0→ 1).

Definition 5.2 Let Q and R be two quivers.
i) We call two morphisms f, g : Q → R one-step homotopic and write f '1 g if

there exists a morphism F : Q�I → R such that at least one of the two following
conditions is satisfied:

1. F |Q�{0} = f, F |Q�{1} = g;

2. F |Q�{0} = g, F |Q�{0} = f.

ii) We call two (strong) morphisms f, g : Q → R homotopic and write f ' g if
there exists a sequence of (strong) morphisms

fi : Q→ R, i = 0, ..., n,
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such that f = f0 '1 f1 '1 ∙ ∙ ∙ '1 fn = g.
iii) Two quivers Q and R are called (strong) homotopy equivalent if there exist

(strong) morphisms
f : Q→ R, g : R→ Q

such that
fg ' Id R, gf ' IdQ .

In this case, we shall write Q ' R (or Q
s
' R in the case of strong homotopy) and

shall call the morphisms f , g (strong) homotopy inverses of each other.

In order to state and prove the main result, let us introduce some notations. For
any quiver Q = (V,E, s, t) set

Q̂ = Q�I.

We shall put the hat ” ̂ ” over all notations related to Q̂ that are similar to
corresponding notations for Q. For example, V̂ is the set of vertices of Q̂, Ê is
the set of arrows of Q̂, Λ̂n = Λn(Q̂) and Ω̂N

n = Ωn(Q̂N ). Write also P = PQ and

P̂ = P (Q̂).

Any vertex v ∈ V is identified with the vertex (v, 0) ∈ V̂ . Set also v′ = (v, 1) ∈ V̂ .

Similarly, any arrow a ∈ E is identified with (a, 0) ∈ Ê. Set also a′ = (a, 1) ∈ Ê.

For any path p ∈ P define the path p′ ∈ P̂ as follows: if p = v ∈ V then p′ = v′ and
if p = a0 . . . an then

p′ = a′
0 . . . a′

n.

For any vertex v ∈ V , denote by bv the arrow (v → v′) ∈ Ê. For a path p ∈ P ,

define the path p̂ ∈ P̂ that is called lifting of p as follows. For any 0-path p = v ∈
V = P0 set

p̂ = bv ∈ P̂1.

For any path p = a0a1a2 . . . an ∈ Pn+1 (n ≥ 0) set

p̂ = bs(a0)a
′
0a

′
1 . . . a′

n +
n∑

i=0

(−1)i+1 (a0...aibt(ai)a
′
i+1...a

′
n

)
, (5.1)

so that p̂ ∈ P̂n+2. By K-linearity this definition extends to all p ∈ Λn+1 (n ≥ −1)

thus giving p̂ ∈ Λ̂n+2.
Let N0 be the power of Q. Fix some N ≥ N0 and write for simplicity ∂N ≡ ∂.

Lemma 5.3 For any p ∈ Λn with n ≥ 0, we have

∂p̂ = −∂̂p + N(p′ − p). (5.2)

Proof. It suffices to prove (5.2) for any p ∈ Pn. Let us first prove (5.2) for

p = v ∈ V = P0. In this case we have ∂p = 0, ∂̂p = 0, and p̂ = bv = (v → v′)
whence

∂p̂ = N(p′ − p) = −∂̂p + N(p′ − p).
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Then it suffices to prove (5.2) for p = a0...an where n ≥ 0, which will be done by
induction in n.

For n = 1, we have p = a0 =: a. Set a = (v → w). Then we have

∂p = N(w − v), ∂̂p = N(bw − bv), p̂ = bva
′ − abw, (5.3)

whence

∂p̂ = Na′ − [bva
′] + Nbv − (Nbw − [abw] + Na)

= N (a′ − a)− [bva
′] + [abv] + N (bv − bw) . (5.4)

Note that [bva
′] is the sum of all arrows from s (bv) = v to t (a′) = w′, while [abw] is

the sum of all arrows from s (a) = v to t (bw) = w′, whence we see that

[bva
′] = [abv] . (5.5)

Combining (5.3) and (5.4) we obtain (5.2).
In the inductive step we shall use the following identity. For any path a0....an ∈

Pn+1 with n ≥ 1 set β = a0...an−1 and

γ =

{
a0...an−2, n ≥ 2,
s (a0) , n = 1.

Then it follows from (3.8) that

∂ (βan) = (∂β − (−1)nNγ) an + (−1)n γ [an−1an] + (−1)n+1 Nβ

= (∂β) an + (−1)n+1Nγan + (−1)n γ [an−1an] + (−1)n+1 Nβ. (5.6)

For the inductive step from n to n + 1, consider p = a0...an ∈ Pn+1 and set

u = a0...an−1 and w =

{
a0...an−2, n ≥ 2,
s (a0) , n = 1.

Set also
j = t (an−1) = s (an) and k = t (an)

as on the following diagram:

−→ •
a′

n−1−→ •j
′ a′

n−→ •k
′

↑ ↑ bj ↑ bk

−→ • −→
an−1

•j −→
an

•k

We obtain from (5.1) that

p̂ = ûa = ûa′
n + (−1)n+1uanbk, (5.7)

whence
∂p̂ = ∂ (ûa′

n) + (−1)n+1∂ (uanbk) . (5.8)
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Since u = wan−1, it follows from (5.1) that

û = ŵa′
n−1 + (−1)n wan−1bj .

In order to compute ∂ (ûa′
n) observe that every elementary path in û has the end

vertex j ′, while the last arrow can be of two kinds: a′
n−1 or bj . Hence, applying (5.6)

in order to compute ∂ of elementary paths of these two kinds, we obtain

∂ (ûa′
n) = (∂û) a′

n + (−1)n+2N (γ′ + γ′′) a′
n

+ (−1)n+1 γ′
[
a′

n−1a
′
n

]
+ (−1)n+1 γ′′ [bja

′
n] + (−1)n+2 Nû (5.9)

where
γ′ = ŵ and γ′′ = (−1)n wan−1 = (−1)n u.

Observe also that in (5.9) γ′′a′
n = (−1)n ua′

n = 0.
Next, using again (5.6), we obtain

∂ (uanbk) = ∂ (uan) bk + (−1)n+2Nubk + (−1)n+1 u [anbk] + (−1)n+2 Nuan. (5.10)

Combining (5.9) and (5.10), we obtain

∂p̂ = (∂û) a′
n + (−1)n+2Nŵa′

n

+ (−1)n+1 ŵ
[
a′

n−1a
′
n

]
− u [bja

′
n] + (−1)n+2 Nû

+ (−1)n+1 ∂ (uan) bk + (−1)2n+3Nubk+u [anbk]−Nuan

Using

∂ (uan) = (∂u) an + (−1)n+1Nwan + (−1)n w [an−1an] + (−1)n+1 Nu (5.11)

and observing that, similarly to (5.5), [bja
′
n] = [anbk], we obtain

∂p̂ = (∂û) a′
n + (−1)n+2Nŵa′

n

+ (−1)n+1 ŵ
[
a′

n−1a
′
n

]
− u [bja

′
n] + (−1)n+2 Nû

+ (−1)n+1 (∂u) anbk + Nwanbk − w [an−1an] bk + Nubk

−Nubk+u [anbk]−Nuan

= (∂û) a′
n + (−1)n+2Nŵa′

n

+ (−1)n+1 ŵ
[
a′

n−1a
′
n

]
+ (−1)n+2 Nû

+ (−1)n+1 (∂u) anbk + Nwanbk − w [an−1an] bk −Nuan.

By the inductive hypothesis, we have

∂û = −∂̂u + N (u′ − u)

and, hence,

∂p̂ = −(∂̂u)a′
n + Nu′a′

n + (−1)n+2Nŵa′
n

+ (−1)n+1 ŵ
[
a′

n−1a
′
n

]
+ (−1)n+2 Nû

+ (−1)n+1 (∂u) anbk + Nwanbk − w [an−1an] bk −Nuan,
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where we have used again ua′
n = 0.

On the other hand, using (5.11) and (5.7), we have

∂̂p = ∂̂(uan) = (̂∂u)an + (−1)n+1Nŵan + (−1)n ŵc + (−1)n+1Nû

= (∂̂u)a′
n + (−1)n (∂u) anbk +

+ (−1)n+1Nŵa′
n + (−1)n+1(−1)nNwanbk

+ (−1)n ŵ
[
a′

n−1a
′
n

]
+ (−1)n (−1)n w [an−1an] bk + (−1)n+1 Nû

where c = [an−1an]. Adding up the two identities, we see that most of the terms
cancel out, and we obtain

∂p̂ + ∂̂p = Nu′a′
n −Nuan = N(p′ − p),

which finishes the proof of (5.2).

Proposition 5.4 Let Q be a quiver of power N0 and N ≥ N0. If p ∈ ΩN
n then

p̂ ∈ Ω̂N
n+1.

Proof. The condition p ∈ ΩN
n means that p ∈ Λn and ∂p ∈ Λn−1. Since p̂ ∈ Λ̂n+1

and ∂̂p ∈ Λ̂n, we obtain by (5.2) that also ∂p̂ ∈ Λ̂n. Hence, p̂ ∈ Ω̂N
n+1.

Now we can prove the main result about connection between homotopy and the
homology groups of quivers.

Theorem 5.5 Let Q,R be two quivers of power N0 and N ′
0, respectively. Let K be

a commutative ring with unity. Fix an integer N ≥ max{N0, N
′
0} and assume that

the element N ∈ K is invertible. Let f ' g : Q → R be two homotopic morphisms
of quivers. Assume that either N > max{N0, N

′
0} or N ≥ max{N0, N

′
0} and f, g

are strong morphisms.

(i) Then f and g induce the identical homomorphisms

f∗ = g∗ : HN
∗ (Q,K)→ HN

∗ (R,K).

(ii) Let the quivers Q and R be homotopy equivalent by mutually inverse morphisms
f : Q→ R and g : R→ Q. Then the induced maps f∗ and g∗ provide mutually
inverse isomorphisms of the homology groups HN

∗ (Q,K) and HN
∗ (R,K).

Proof. (i) Let F be a homotopy between f and g as in Definition 5.2. It suffices
to prove the statement for the one-step homotopy using the line quiver I = (0→ 1).
By Propositions 4.7 and 4.11, the maps f and g induce morphisms of chain complexes

f∗, g∗ : ΩN
∗ (Q)→ ΩN

∗ (R),

and F induces a morphism of chain complexes

F∗ : ΩN
∗ (Q̂)→ ΩN

∗ (R).
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where Q̂ = Q�I. Note that, for any path p ∈ P (Q̂) that lies in P (Q), we have

F∗ (p) = f∗ (p), and for any path p′ ∈ P (Q̂) that lies in P (Q′), we have F∗ (p′) =
g∗ (p).

In order to prove that f∗ and g∗ induce the identical homomorphisms HN
∗ (Q)→

HN
∗ (R), it suffices by [23, page 40, Theorem 2.1] to construct a chain homotopy

between the chain complexes ΩN
∗ (Q) and ΩN

∗ (R), that is, the K-linear maps

Ln : ΩN
n (Q)→ ΩN

n+1(R)

such that
∂Ln + Ln−1∂ = g∗ − f∗,

where ∂ ≡ ∂N . Let us define the mapping Ln as follows

Ln(p) =
F∗ (p̂)

N
,

for any p ∈ ΩN
n (Q). Here p̂ ∈ ΩN

n+1(Q̂) is lifting of p ∈ ΩN
n (Q) as above.

Since F∗ is a morphism of chain complexes we have ∂F∗ = F∗∂. Now using (5.2)
we obtain

(∂Ln + Ln−1∂)(p) =
1

N
∂(F∗(p̂)) +

1

N
F∗(∂̂p)

=
1

N
F∗ (∂p̂) +

1

N
F∗(∂̂p)

=
1

N
F∗(∂p̂ + ∂̂p) =

1

N
F∗ (N(p′ − p))

= F∗(p
′)− F∗(p) = g∗ (p)− f∗ (p) .

(ii) Note that morphisms f, g induce the following homomorphisms

HN
n (Q,K)

f∗→ HN
n (R)

g∗→ HN
n (Q,K)

f∗→ HN
n (R,K) ,

where by (i), f∗ ◦g∗ = Id and g∗ ◦f∗ = Id, which implies that f∗ and g∗ are mutually
inverse isomorphisms of HN

n (Q,K) and HN
n (R,K).

6 Homology of multigraphs and examples

In this section we transfer the homology theory to a category of multigraphs, discuss
possible applications, and give several examples of computations.

At first we describe how to transfer the homology theory from the category of
quivers to that of multigraphs. To denote a multigraph and morphisms of multi-
graphs we shall use a bold font (similarly to [15, §6]), while for quivers we use a
normal font.

Definition 6.1 i) A finite multigraph is a triple G = (V,E, r) where V is a finite
set of vertices, E is a finite set of edges, and r : E → V × V is a map which
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assigns to each edge an unordered pair of endpoint vertices. An edge a ∈ E with
r(a) = (x,x),x ∈ V is called a loop.

ii) A morphism from a multigraph G = (VG,EG, rG) to a multigraph H = (VH,EH, rH)
is a pair of maps fV : VG → VH and fE : EG → EH such that for any edge a ∈ EG

with rG(a) = (x,y) we have

rH(fE(a)) = (fV(x), fV(y)).

We will refer to morphisms of multigraphs as graph maps.

For a multigraph G = (V,E, r) and any nonordered pair of vertices (x,y) ∈ V ×V
define μ(x,y) as the number of edges a ∈ E for which r(a) = (x,y). Set

N0 := max
(x,y)∈V×V

{{μ(x,y)|x 6= y}, 2μ((x,x))} . (6.12)

The set of finite multigraphs with graph maps forms a category G. We can
associate to each multigraph G = (VG,EG, rG) a symmetric quiver

G = O(G) = (VG, EG, sG, tG)

where VG = VG and EG, sG, tG are defined as follows. For any a ∈ EG with
rG(a) = (x,y) we have two arrows a1, a2 ∈ EG with

s(a1) = x, t(a1) = y and s(a2) = y, t(a2) = x.

Thus we obtain a functor O that provides an isomorphism of the category G and a
subcategory of symmetric quivers of the category Q.

Definition 6.2 For any multigraph G = (V,E, r) and N ≥ N0 define the homolo-
gies with coefficient from K by

HN
n (G) = HN

n (O(G)).

It follows directly from the Definition, that the homology groups of a multi-
graph are well defined. It is an easy exercise to obtain the basic properties of these
homology groups from the corresponding results about quivers.

Now we generalize the notion of the Atkins connectivity graph that was defined
for simplicial complexes in [1], [2], [6]. Namely, we define a connectivity multigraph
of a CW -complex, so that the path homology theory of multigraphs can be applied
for investigation of connectivity properties of CW -complexes. Recall the definition
of CW -complex (cf. [24]).

Definition 6.3 A CW -complex X is a topological space X which is the union of a
sequence of subspaces Xn such that, inductively, X0 is a discrete set of points (called
vertices) and Xn is the pushout obtained from Xn−1 by attaching disks Dn along
attaching maps ∂(Dn)→ Xn−1. Each resulting map j : Dn → X is called a n-cell.
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Given a finite CW -complex X, let us fix two integers 0 ≤ s < n, enumerate all
n-cells of X by integers and define the connectivity quiver Gn

s = (V,E, r) as follows.
The vertices of Gn

s are given by all n-cells of X, and the arrows of Gn
s are given by

s-cells of X by the following rule. A s-cell j0 : Ds → X is an arrow from the vertex
j1 : Dn → X to the vertex j2 : Dn → X if the number of j1 is smaller than that of
j2 and j0(Ds) ⊂ ji(Dn) for i = 1, 2.

Similarly, the connectivity multigraph Gn
s = (V,E, r) of X is defined as follows.

The vertices of Gn
s are n-cells of X, and a s-cell j0 : Ds → X determines an edge

between two vertices ji : Dn → X (i = 1, 2) if j0(Ds) ⊂ ji(Dn) for i = 1, 2.
Now we give several examples of computations of homology groups of quivers in

small dimensions.

Example 6.4 Consider a cell complex with three 2-cell that are enumerated by
v0, v1, v2 as on Fig. 1.

Figure 1: A CW -complex.

The corresponding connectivity quiver G2
1 = Q = (V,E, s, t) is given on the

following diagram

v1
b
→ v2

a ↑↑a1

v0

Here V = {v0, v1, v2} and E = {a, a1, b}. Let us take N = 2 and set Ω∗ ≡ Ω2
∗.

Clearly, Ωn(Q) = 0 for n ≥ 3 and

Ω0(Q) = 〈v0, v1, v2〉, Ω1(Q) = 〈a, a1, b〉, Ω2(Q) = 〈ab− a1b〉.

The boundaries are given by

∂a = 2(v1 − v0), ∂a1 = 2(v1 − v0), ∂b = 2(v2 − v1),

and
∂(ab− a1b) = 2(a1 − a).

Let us change the bases in Ω∗(Q) as follows:

Ω0(Q) = 〈v0, v1 − v0, v2 − v1〉, Ω1(Q) = 〈a, a1 − a, b〉, Ω2(Q) = 〈ab− a1b〉.
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Then
∂a = 2(v1 − v0), ∂(a1 − a) = 0, ∂b = 2(v2 − v1),

and
∂(ab− a1b) = 2(a1 − a).

Hence, H1(Q,Z) = Z2 is generated by (a1−a0) mod 2, H2(Q,Z) = 0, and H0(Q,Z) ∼=
Z ⊕ Z2 ⊕ Z2 where Z is generated by v0 and the summands Z2 are generated by
(v1 − v0) mod 2 and (v2 − v1) mod 2, respectively.

Example 6.5 Let X consist of two identical n-gons (n ≥ 3) with identified bound-
aries. Then its connectivity quiver G2

1 = Q = (V,E, s, t) has two vertices V =
{v0, v1} and n arrows E = {a1, . . . an}, such that s(ai) = v0, t(ai) = v1, for i =
1, . . . , n. Let N = n and Ω∗ ≡ Ωn

∗ . Then Ωk(Q) = 0 for k ≥ 2 and

Ω0(Q) = 〈v0, v1〉 and Ω1(Q) = 〈a1, . . . an〉.

The only nontrivial differential is ∂ : Ω1(Q)→ Ω0(Q) given by ∂ai = n(v1 − v0) for
i = 1, . . . , n. Changing the basis in Ω∗(Q) we can write

Ω0(Q) = 〈v0, v1 − v0〉 and Ω1(Q) = 〈a1, a1 − a2, . . . , a1 − an〉.

Clearly, ∂a1 = n(v1 − v0) and ∂(a1 − ai) = 0 for i = 2, . . . n. Hence Hk(Q,Z) = 0
for k ≥ 2 and

H0(Q,Z) ∼= Z⊕ Zn and H1(Q,Z) ∼= Zn−1.

Example 6.6 Now we give an exampe of quiver Q for which H2
2 (Q,Z) is nontrivial.

Consider at first a quiver Q1 (”cycle”) as on the diagram:

v2
a2−→ v3

a1 ↑ ↙a3

v1

with V1 = {v1, v2, v3} and E1 = {a1, a2, a3}. Now construct the quiver Q =
(V,E, s, t) that is a ”double suspension” over Q1 as follows. We add two new vertices
v4 and v5 and arrows b1, b

′
1, b2, b

′
2, b3, b

′
3, c1, c

′
1, c2, c

′
2, c3, c

′
3 such that

s(bi) = s(b′i) = s(ci) = s(c′i) = vi, i = 1, 2, 3,

and
t(bi) = t(b′i) = v4, t(ci) = t(c′i) = v5, i = 1, 2, 3.

Let N = 2 and Ω∗ ≡ Ω2
∗. We have Ωn(Q) = 0 for n ≥ 3. Consider a nontrivial

element ω ∈ Ω2(Q) as follows:

ω = a3b1 + a3b
′
1 + a1b2 + a1b

′
2 + a2b3 + a2b

′
3− a3c1− a3c

′
1− a1c2− a1c

′
2− a2c3− a2c

′
3.

It is easy to check, that ∂ω = 0, and hence H2(Q,Z) 6= 0.
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Figure 2: A quiver with two loops.

Using the iteration of the suspension it is relatively easy to construct quivers
with nontrivial homology group in any dimension similarly to [16].

Example 6.7 Now we give an example of quiver with nontrivial finite one-dimensionsl
homology group. Consider a quiver Q = (V,E, s, t) as in Fig. 2. with one vertex
{v0} and two arrows c0, c1, such that s(ci) = t(ci) = v0. Set N = 2 and Ω∗ = Ω2

∗.
We have

Ω0(Q) = 〈v0〉, Ω1(Q) = 〈c0, c1〉, and Ω2 = 〈c0c0, c0c1, c1c0, c1c1〉.

The differentials are trivial in dimensions zero and one. We have

∂(c0c0) = 2c0 − c0 − c1 + 2c0 = 3c0 − c1,
∂(c0c1) = 2c1 − c0 − c1 + 2c0 = c0 + c1,
∂(c1c0) = 2c0 − c0 − c1 + 2c1 = c0 + c1,
∂(c1c1) = 2c1 − c0 − c1 + 2c1 = 3c1 − c0.

(6.13)

and, hence, ∂(c0c0 + c0c1) = 4c0. It is easy to check directly, that 2c0 /∈ Im{∂ : Ω2 →
Ω1}. Changing the basis we have

Ω1(Q) = 〈c0, c0 + c1〉.

Thus we obtain

Hi(Q,Z) =

{
Z, for i = 0,

Z4, for i = 1.
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