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Abstract

We provide an overview of such properties of the Brownian motion on complete non-
compact Riemannian manifolds as recurrence and non-explosion. It is shown that both
properties have various analytic characterizations, in terms of the heat kernel, Green
function, Liouville properties etc. On the other hand, we consider a number of geometric
conditions such as the volume growth, isoperimetric inequalities, curvature bounds etc.
which are related to recurrence and non-explosion.
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1 Introduction

The irregular movement of microscopic particles suspended in a liquid has been known since
the beginning of the nineteenth century. In 1828, an English botanist Robert Brown published
his observations of ceaseless erratic motion of pollen grains in water. He emphasized the
universal character of the phenomenon in contrast to the previous belief which attributed it



to vital nature. That was the discovery of the physical phenomenon which was later named
the Brownian motion.

It was not until 1905 when the effect was explained by Albert Einstein [56] as the result
of the irregular collisions that the fine particles in suspension experience from molecules.
Einstein realized the stochastic nature of the Brownian motion and proved that the proba-
bility distribution of the displacement of a Brownian particle satisfied a diffusion equation.
Moreover, he computed the diffusion coefficient D and made a prediction that the mean
displacement of the particle during a time t was v/2Dt. The latter was confirmed experimen-
tally by Jean Perrin in 1908 which later brought him a Nobel prize. That work was a strong
argument in favor of the molecular-kinetic theory of heat and even the atomic structure of
matter.

The simplest mathematical model of the Brownian motion is a random walk on a lattice.
Suppose that a particle moves on the nodes of Z% as follows. At each step, it chooses randomly
one of the 2d neighboring nodes, with equal probability (2d)~!, and jumps to that node (see
Fig. 1).

Figure 1: The random walk on Z?

A natural question is what happens with the particle as the number of steps n — oc0? On
average, the displacement of the particle is of the order /n as in Einstein’s model, but this
does not say much about the trajectory of the particle. Since the rule of the movement of
the particle is homogeneous and isotropic, one may expect that, in a long run, the number
of moves in all 2d directions should be approximately the same, and the particle should be
regularly returning to a neighborhood of the origin. However, this is wrong! G.Pdlya [160]
discovered in 1921 that a long term behavior of the random walk depends on the dimension d.
If d < 2 then the particle does visit every node (including the origin) infinitely many times,
with probability 1. However, if d > 2 then the particle visits every node only finitely many
times, also with probability 1.

In other words, an observer of the two-dimensional random walk could see the particle in
his/her range at arbitrarily large moments of time whereas in the three-dimensional space,
the particle will escape from any bounded region after some time forever. The first type
of behaviour of the particle is referred to as recurrence whereas the second one is called
transience.

The same phenomenon takes place for a continuous time Brownian motion in R¢ which
can be obtained from the random walk on Z¢ as a limit by a proper refinement of the lattice
and the time step. A rigorous construction of a continuous model of the Brownian motion was
done by Norbert Wiener [189]. This process is called the Wiener process and is recognized
now as the standard model for the Brownian motion. Henceforth, we will use the term “the
Brownian motion” as a synonym for the Wiener process (see Fig. 2).

One of the goals of this paper is to study the geometric background of the property of
the Brownian motion to be recurrent or transient. In other words, what geometric properties
of the state space causes the trajectory of the stochastic process to return to any region at



Figure 2: The Brownian motion on R?

arbitrarily large times or to leave any bounded region forever?

The answer to this question depends on the family of the state spaces in question. In the
category of the Euclidean spaces (or lattices) one may answer that it is the dimension which
makes the difference. However, this becomes totally wrong in the category of Riemannian
manifolds. A Riemannian manifold is an abstract version of a smooth curved surface. This is
rather a point of view that takes into account only intrinsic properties of the surface, which
do not depend on the embedding space.

Riemannian manifolds provide rich enough family of geometries. For example, all classical
model geometries - the spherical, euclidean and hyperbolic geometries - are particular cases of
Riemannian geometries. It turns out that the continuous Brownian motion can be constructed
on any Riemannian manifold (imagine a Brownian particle moving on a curved surface). The
Brownian motion on a Riemannian manifold is called recurrent if it visits any open set at
arbitrarily large moments of time with probability 1, and transient otherwise.

We shall see that recurrence is related to various geometric properties of the underlying
Riemannian manifold such as the volume growth, isoperimetric inequalities, curvature etc. On
the other hand, recurrence happens to be equivalent to certain potential-theoretic properties
of the Laplace operator on the manifold. For example, the recurrence of the Brownian motion
in R? is linked to the fact that the fundamental solution log |x| of the Laplace operator in R?
is signed as opposed to the positivity of the fundamental solution ]az\%d in R¢, for d > 2.

The question of recurrence of the Brownian motion on Riemann surfaces goes back to the
uniformization theorem of F.Klein, P.Koebe and H.Poincaré. This celebrated theorem says,
in particular, that any simply connected Riemann surface is conformally equivalent to one of
the following canonical surfaces:

1. the sphere (surface of elliptic type)
2. the Euclidean plane (surface of parabolic type)

3. the hyperbolic plane (surface of hyperbolic type).

The problem of deciding what is the type of a given Riemann surface is known as the
type problem. It is easy to distinguish between the elliptic type and the others - the former
is compact whereas the latter are not. A more interesting question is how to distinguish the
parabolic and hyperbolic types by using intrinsic geometric properties of Riemann surfaces.
Amazingly, the parabolicity is exactly equivalent to the recurrence of the Brownian motion
on the Riemann surface in question.

The understanding of parabolicity of Riemann surfaces from the potential-theoretic point
of view is largely due to L.Ahlfors [1] - [3], P.J.Myrberg [144], R.Nevanlinna [149], [150]
and H.Royden [163]. J.Deny [47], G.Hunt [98] and S.Kakutani [105] contributed to the
potential-theoretic background of recurrence. The study of recurrence in connection with the



geometry of Riemannian manifolds was boosted by the works of S.Y.Cheng and S.-T.Yau [28]
and N.Varopoulos [184], [185].

Another property of the Brownian motion to be considered in this paper is stochastic
completeness. This is a property of a stochastic process to have infinite life time. In other
words, a process is stochastically complete if the total probability of the particle being found
in the state space is constantly equal to 1. This is also referred to as a conservation property
(of probability) or non-explosion. Despite the fact that the very term “a probability measure”
means a measure with the total mass 1, there are simple examples of stochastically incomplete
processes. Consider a Brownian motion in a bounded region Q C R? with an absorbing
boundary. After hitting the boundary 0f2, the particle dies, and this happens with a positive
probability. Therefore, at any positive time, the total probability of the particle being found
in 2, is smaller than 1.

The Brownian motion in R? (and the standard random walk in Z?) is stochastically com-
plete. One might wonder whether stochastic incompleteness has to do only with presence of
some Kkilling conditions. It turns out that even without any killing, there may exist a geomet-
ric reason for stochastic incompleteness. R.Azencott [6] showed that the Brownian motion
on a Riemannian manifold M may be stochastically incomplete even if M is geodesically
complete. Note that a bounded region © C R is not geodesically complete when considered
as a manifold.

In the example of R.Azencott, the manifold M has a negative sectional curvature which
grows fast enough to —oo with the distance from an origin. The stochastic incompleteness of
the Brownian motion on M occurs because negative curvature on a manifold plays the role
of a drift to infinity, and a very high negative curvature may produce an extremely fast drift
which sweeps a Brownian particle to infinity in a finite time.

An interesting question is to understand precisely what geometric properties of M ensure
stochastic completeness or incompleteness of the Brownian motion. The crucial contributions
here are due to R.Azencott [6], M.Gaffney [66], R.Khas'minskii [111] and S.-T.Yau [194].

One may wonder what recurrence and the conservation property have in common? Both
transience and explosion (=stochastic incompleteness) reflect the tendency of the Brownian
motion to escape to infinity. While transience says that the Brownian motion escapes to
infinity, explosion means that it does it in a finite time. There is a full range of various escape
rates between transience and explosion. No wonder that many conditions of recurrence of
Brownian motion on manifolds have their counterparts for stochastic completeness.

The purpose of this paper is to expose the relationship between recurrence and the conser-
vation property on the one hand, and many other geometric and potential-analytic properties
on the other hand. For example, recurrence can be characterized in terms of a fundamental
solution to the Laplace equation, superharmonic functions, capacities, the heat kernel, the
Liouville property for certain Schrodinger equation, etc. The stochastic completeness can
also be characterized in various terms including the uniqueness in the Cauchy problem for
the heat equation in the class of bounded solutions. Given that much, these two properties
of the Brownian motion appear to be of fundamental importance for Analysis on manifolds
and for adjacent areas.

This paper splits into two parts. The first part consists of sections 2 - 9 and is rather
elementary. It focuses on the one hand on Theorems 5.1 and 6.2, which contain various char-
acterizations of transience and explosion partly already mentioned above, and on the other
hand on Theorems 7.3 and 9.1, which give the following sufficient conditions for recurrence
and non-explosion in terms of the volume growth.

Let V(r) denote the Riemannian volume of a geodesic ball of radius r with a fixed center.



Then the Brownian motion on a geodesically complete manifold M is recurrent provided

/  rdr

— =0

Vi(r)
For example, this condition is satisfied if V() < Cr2. In particular, this explains why the
Brownian motion on R? is recurrent - there is just not enough volume in the two-dimensional

Euclidean space!
Furthermore, the Brownian motion on M is stochastically complete provided

< rdr
/ logV(r)
For example, this condition is satisfied if V(r) < exp(Cr?). Clearly, all Euclidean spaces fit
into this volume growth. This explains why we have to move to manifolds in order to observe
stochastic incompleteness - R? is too small for that!

Full proofs of the key results of the first part are provided, which should be accessible
for graduate students with adequate background. Let us emphasize that we normally as-
sume known (and, thus, do not provide proof for) all facts which depend only on the local
structure of the manifold. For example, we freely use such properties of solutions to the
elliptic equations as C*°-regularity, convergence principles, maximum principle, solvability of
the Dirichlet problem etc. On the contrary, we concentrate on the properties related to the
structure of the manifold “in the large”.

The second part is devoted to the relations of recurrence and non-explosion to other
questions such as Liouville properties, heat kernel bounds, eigenvalues of the Laplace operator,
curvature, escape rate of the Brownian motion, etc. This part is more advanced and sketchy,
and some results may appear to be new even to the experts. However, we do not aim to
include the most recent and general results, and we have opted for those, which exhibit
interesting phenomena without technical complications.

The subject of this paper lies on the borderline between different fields of mathemat-
ics such as Riemannian Geometry, Stochastic Analysis, Partial Differential Equations and
Potential Theory. We refer the reader to consult the following textbooks for the necessary
background:

e Riemannian Geometry: [22], [21], [112], [158], [169].
e Analysis and PDE: [43], [68], [116], [134], [188].
e Probability: [55], [60], [103], [133], [136], [172].

e Potential Theory: [16], [30], [32], [51], [64], [179].

The following monographs and survey articles provide additional valuable information
about elliptic and parabolic differential equations on manifolds: [5], [69], [92], [130], [140],
[113], [161], [162], [167], [170], [180].

There is also a vast literature devoted to recurrence criteria for random walks on graphs
and lattices. We do not touch this question here and refer an interested reader to the books
[53] and [191] as well as to the surveys [67], [90], [166], [190].
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NOTATION

The following list of notation is provided for convenience of reading. Most of them are
also explained in the main body of the paper.

M - a smooth connected Riemannian manifold. In many cases, M is geodesically compete
and non-compact.

d > 2 - the (topological) dimension of M.
dist(z,y) - the geodesic distance on M between the points x,y € M.
i - the Riemannian volume on M.
/

' - the Riemannian measure of the co-dimension 1 on hypersurfaces in M.

|A| := u(A) or u/(A) depending on the context (for example, if A is an open subset of M
then |A| = u(A) whereas if A is a boundary of an open subset then |A] = p/(A)).

B(z,r) - the geodesic ball of radius r centered at the point x € M.
V(z,7r) := u( B(x,r)) - the volume growth function.
A - the Laplace -Beltrami operator on M.
A1(92) - the first eigenvalue of the Dirichlet problem for A in € (where Q is a region in M).
p(t,x,y) - the heat kernel associated with the operator %A.
pa(t,z,y) - the heat kernel in the region Q with the Dirichlet boundary condition on 0f2.
P, - the heat semigroup with the kernel p(¢,z,y).
P{ - the heat semigroup with the kernel pq(t, z,v).
G(z,y) - the Green kernel of —A on M.
Gq(z,y) - the Green kernel of —A in the region €2 with the Dirichlet boundary condition.
X; - the Brownian motion on M generated by %A.

P, E, - measure and expectation, respectively, on the space of paths of the Brownian motion
started at x € M.

b, sq - the subharmonic and superharmonic potentials of an open set €) - see Section 4.4.
er, hp - the hitting probabilities - see Section 4.5.
C3°(€2) - the set of smooth real-valued functions on © with compact support in €.

L(K, Q) - the set of locally Lipschitz functions ¢ on M, compactly supported in  and such that
0<¢<1and @5 = 1.



{&k} - an exhaustion sequence on M - see Section 4.2.

x — 00 - asequence {x} on M which leaves any compact set after some k. If M is geodesically
complete then this is equivalent to dist(z,0) — oo where o is a reference point.

ﬂll}x f - the flux of the function f through a smooth oriented hypersurface I, that is, fr %du’

where v is a unit normal vector field on I' associated with the orientation of I'. If I is
a boundary of an open set €2 then v points outwards from Q.

S?% - the d-dimensional unit sphere in R%*1,
H¢ - the d-dimensional hyperbolic space.
wq - the boundary area of the unit sphere in R%.

const - a positive constant which may be different at different occurrences.

2 Heat semigroup on Riemannian manifolds

The simplest way to construct Brownian motion on a Riemannian manifold M is to construct
first the heat kernel which will also serve as the density of the transition probability. The
heat kernel will be denoted by p(t, z,y) where ¢t > 0 is a time, z,y are points on M. Thus, the
probability that the Brownian motion starting at the point x lies in a measurable set 2 C M
at the time ¢, is given by

/ p(t,z,y)du(y).
Q

In R%, the heat kernel is given by the classical formula

_ 1 =y
p(t,z,y) = e eXP( 5 |-

It is known to satisfy the heat equation

dp 1
£ - =0 2.1
5~ 3 2P (2.1)
in the variables (¢, z) (the point y is considered as fixed) and the initial data
Pty 2 by (22

where 4, is the delta function of Dirac.
The properties (2.1) and (2.2) can be used to define the heat kernel on an arbitrary
Riemannian manifold M, which is done below.

2.1 Laplace operator of the Riemannian metric

Let g;; be the Riemannian metric tensor on M. This means that, in any coordinate chart

(z', 22, ..., 2%) on M, the length element can be computed by

ds?® = 9ij dz'dx’

where we assume the summation on the repeated indices. Denote by ¢ the elements of the
inverse matrix ||g;;|| " and let g := det ||gi;||. Then the Laplace operator A associated with

the metric g;; is defined by
1 0 0

A= N <\/§gij%> : (2.3)
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This is a second order elliptic operator on M. It is possible to show that (2.3) defines the
same operator in different charts.
Sometimes it is useful to represent the Laplacian in the form

A =divV

where the gradient V acts on a function f by

and the divergence div acts on a vector field F = F? 821' by
0

O (VaF).

divF =

1
V9
Green’s formula, which follows easily from Stokes’s theorem, says that, for any precompact
region U and for any functions u,v € C3(U),

/UAud,u: —/ VoVudpu, (2.4)
U U

where VoVu is the inner (Riemannian) product of the vectors

ij Ou Ov
Oxt Oxd’

and du is the Riemannian volume element, which is defined by

VoVu = gij (Vu)' (Vo) =g

dp = Jgdatde®... dax? . (2.5)

If the boundary QU is smooth enough (say, C') and u,v € C? (U) N C* (U), then we have
the following version of (2.4) with a boundary term

/vAud,u:/ v%d//—/ VoVudp, (2.6)
U ou Ov U

where du/ in the middle integral is the Riemannian volume element on the submanifold oU,
and v is the outward unit normal vector field on OU.
2.2 Heat kernel and Brownian motion on manifolds

Any function on (0, 00) x M x M satisfying (2.1) and (2.2) is called a fundamental solution of
the heat equation (2.1) on M. The heat kernel is the smallest positive fundamental solution
of the heat equation on M. It was proved by J.Dodziuk [48] that the heat kernel always exists
(regardless of geodesic completeness) and is smooth in (¢, z,y). Moreover, the heat kernel
possesses the following properties.

1. Symmetry in z,y that is p(t, z,y) = p(t,y, x).
2. The semigroup identity: for any s € (0,?)

p(t,z,y) = /M p(s,z, 2)p(t — s, z,y)du(z) . (2.7)

3. Forallt>0and z € M,
[ pltzduty) < 1. (28)
M



As soon as one has (2.7) and (2.8), a (sub)Markov process X; on M can be constructed
with the transition density p, by using the standard probabilistic tools (see [30], [55]). The
process X; turns out to be a diffusion and is referred to as the Brownian motion or the Wiener
process on M. The corresponding measure in the space of paths emanating from a point x,
will be denoted by P,.

Given an open set 2 C M, one can treat €} as a manifold itself. Let us denote by pqo the
heat kernel of 2. Minimality of the heat kernel implies that pqo vanishes on the boundary
09}, at least if J€) is smooth. This implies, in turn, that po increases on enlarging of ).

The way the global heat kernel p is constructed in [48], is the following: one first defines
po for precompact sets 2 (which can be done by using the eigenfunction expansion) and then
let

pi= i
where {€} is an increasing sequence of precompact open sets with smooth boundaries, which
exhaust M.

Due to (2.7) and (2.8), the heat kernel p(z,y,t) can be considered as a kernel of the

submarkovian operator semigroup P, which acts on functions on M by

Pf = /Mpc,y,t)f(y)du(y).

The semigroup corresponding to pq, will be denoted by PtQ If f is a continuous bounded
function on M then the function u(z,t) := P, f(z) solves the Cauchy problem in M x (0, c0):

{ %—?:%Au,
u(‘,O):f.

Moreover, if f > 0 then P.f is the smallest non-negative solution to this problem. See [171]
for detailed properties of the heat semigroup on manifolds.

Let us briefly mention another way of constructing the heat kernel on Riemannian mani-
folds which goes back to Gaffney [65] and which was implemented in full generality by Cheeger
and Yau [27]. The idea is to consider A as an unbounded operator in L?(M, u). It is pos-
sible to prove that the operator A with the domain C§°(M) is essentially self-adjoint and
non-positive. Therefolre, by using the spectral theory, one can construct the one-parameter
operator semigroup ezth acting in L?(M, p1). Next, one proves that this semigroup possesses
a smooth kernel which is the heat kernel (see also [162], [169, p.94]). The equivalence of these
two approaches was proved in [48].

Other methods of constructing the Brownian motion on manifolds (or even on more
general underlying spaces) can be found in [6], [57], [63], [102], [133], [136].

Now we can precisely define the recurrence and conservation properties.

Definition 2.1 Brownian motion X; on a manifold M is recurrent if, for any non-empty
open set ) and for any point x € M,

[P, {there is a sequence t; — oo such that X; € Q} = 1.
Otherwise X; is transient.

Definition 2.2 Brownian motion X} is stochastically complete (=possesses the conservation
property or the non-explosion property) if, for all x € M and ¢t > 0,

/ p(t, 2, y)du(y) = 1
M

(in other words, [P, is a probability measure in the sense that its total mass is equal to 1).

10



It is convenient to say that a manifold is stochastically complete (recurrent, transient)
when the Brownian motion on it has this property.

2.3 Manifolds with boundary

Sometimes it is useful to allow a manifold M to possess a boundary OM. In this case,
we assume that the heat kernels p(t,z,y) and pq(t,z,y) satisfy in addition the Neumann
boundary condition on M and M N €2 respectively. For the Brownian motion this means
that X; reflects on 0M.

Most results of this paper remain true for manifolds with boundary. However, by default
we consider manifolds without boundary in order to avoid some technical complications.

3 Model manifolds

The purpose of this section is to introduce a class of model manifolds which are the manifolds
with rotational symmetry.

3.1 Polar coordinates

Let us fix a point o € M and denote by Cut(o) the cut locus of 0. Away from Cut*(o) :=
Cut(o) U {o}, one can defined the polar coordinates with the pole o (see Fig. 3). Namely,
for any point x € M \ Cut*(o) there corresponds a polar radius p := dist(z,0) and a polar
“angle” 6 € S%~! such that the shortest geodesics from o to x starts at o to the direction 6
in T,M. We can identify T,M with R? so that # can be regarded as a point on S* . In
particular, M \ Cut*(o) is diffeomorphic to a star-like region on Ry x S¥~! (see [112] and [69]
for proofs of the facts mentioned here).

Figure 3: Polar coordinates in M \ Cut*(0)

The Riemannian metric in M \ Cut*(0) has in the polar coordinates the form
ds? = dp* + A (p,0)do"de? (3.1)

where (0',67%,...,0971) are coordinates on S9! and || 4;;(p, 0)| is a positive definite matrix. In
fact, Ai;(p,-) is the Riemannian metric tensor on the geodesic sphere S, := 0B(o, p) \ Cut(0).
Denote A = det || A;;||. Then we have, by (2.5), the area element on S,

dpl|g, = VAdO dO?...dod . (3.2)

11



In particular,
1'(S,) = - VAdOde?...dod ", (3.3)

assuming that 01,62, ...,0%1 are defined almost everywhere on S%1.

It follows easily from (2.3) and (3.1) that the Laplace operator has in the polar coordinates
the form )
1 9 0 0 )
A= (VAL)+ Ag, = o (1 A)— A 3.4
ﬂap(*/_apH 5= g5, + og VA 5, T A, (3.4)
where ()" denotes §/9p and Ag, is the Laplace operator on the submanifold S,.
We say that M is a manifold with a pole if M possesses a point o with an empty cut
locus Cut(o). The point o is called the pole of M and the polar coordinates are defined on
M \ {o}. If, in addition, M is geodesically complete then M is diffeomorphic to R?.

3.2 Spherically symmetric manifolds

In the next sections, we will introduce methods for determining whether a given manifold is
recurrent or stochastically complete. The simplest class of manifolds where these methods
apply and give straightforward answers, is the class of spherically symmetric manifolds.

A manifold M with a pole o is called a spherically symmetric manifold or a model if the
Riemannian metric on S, (see (3.1)) is given by

Aqij(p,0)do'de’ = o*(p)do*

where df? is the standard Euclidean metric S%~! and o(p) is a smooth positive function of
p. In other words, the Riemannian metric on S, is obtained by scaling that of S%1 by the
factor o2.

Given a smooth positive function o(p) on (0, Rp), the necessary and sufficient condition

that such a manifold exists, is
o(0)=0 and o'(0)=1. (3.5)
The hypotheses (3.5) ensures that the metric on the cone (0, Ry) x S~ defined by
ds* = dp® + o*(p)do?,

can be smoothly extended to the origin p = 0. (see [69]). We assume in the sequel that o
satisfies (3.5) and denote by M, the cone (0, Ry) x S~ with the added origin.

Clearly, the model manifold M, is diffeomorphic to an open ball in R? of radius Ry (or
the whole R? if Ry = oo). The metric on any geodesic sphere dB(o0,7) on M, is obtained
from that of S¥~! by scaling it by the factor (). In certain situations, M, can be regarded
as a surface of revolution in R4*! (see Fig. 4).

Since VA = 0?1 we see from (3.3) that the boundary area S(r) of the geodesic sphere
0B(o,r) is computed by

8(r) = wao®L(r),

where wy is the area of the unit sphere in R%. The volume V'(r) of the ball B(o,r) is given by

v - [ " S(6)de = wq / "ot () de.

The Laplace operator on M, can be written down as follows (cf. (3.4))

0? o' 0 1
A=—— —-1)——+ =A .
32p+(d )Jap+a2 0 (3.6)

12



Figure 4: The metric on the surface of revolution M,

or
02 S0 1

_ Z 2 4L A 3.7
82p+58p+02 o (37)

where Ay denotes the Laplace operator on the sphere S~ 1. It is important that the operator
Ay does not depend on the variable p.
The major examples of model manifolds are as follows.

A

Example 3.1 If Ry = co and
o(r)y=r

then M, is isometric to R¢. The boundary area is
S(r) = wagrd™?
and the Laplace operator is

A 9? Ld-1 o 1
d?p  p Op p?
Example 3.2 Let us set

o(r) =sinr.

Then M, is the sphere S¢ (assuming that Ry takes the maximum possible value 7 and that
the endpoint with p = 7 is added to M,). If d = 2 then r becomes the latitude measured
from the pole, and 6 is the longitude (see Fig. 5).

Figure 5: The polar coordinates on S?

The boundary area is

S(r) = wgsin®tr.

13



The Laplace operator on S? acquires the form

0? 0 1
A= ——+4+(d—-1)cotp—+ —5— Ay,
0%p ( Jcotp dp  sin?p ’
where Ay is the Laplace operator on the sphere S¢1. This formula can be iterated in the
dimension d to produce a full expansion of the spherical Laplace operator in the angular
coordinates.

Example 3.3 Let us set
o(r) =sinhr.
Then M, is the hyperbolic space H? - the complete simply connected d-dimensional manifold
with constant sectional curvature —1 (assuming Ry = 00). The boundary area on H? is equal
to
S(r) = wgsinh? 17
and the Laplace operator is

2
A:a——i—(d—l)cothp 0

g A,
02p dp ' simhZp !

It turns out that recurrence and stochastic completeness of M, can easily be determined
via the boundary area S(r). The following tests were proved by many authors in various
settings ([1], [139], [111], [99], [100], [75]).

Proposition 3.1 Let M, be a model manifold with Ry = oo (so that M, is geodesically
complete and non-compact). Then M, is recurrent if and only if
 dr
— = 0. 3.8
S - (38)

Proposition 3.2 Let M, be a model manifold with Ry = co. Then M is stochastically com-

plete if and only if
00 V(’I”) B
/ S0 dr = . (3.9)

The proofs will be given in Sections 5 and 6 respectively.! The condition (3.8) holds for

S(r) <comnstr, r— o0

and fails if
S(r) > constriTe, &> 0.

This explains why R? is recurrent for d < 2 and transient if d > 2. The hyperbolic space is
transient because S(r) on H? grows exponentially fast.
The borderline for the stochastic completeness condition (3.9) is much higher: it holds,
for example, if, for large r,
S(r) = exp (7‘2)
and fails if
S(r) =exp (r**¢), e>0.

The latter yields an example of a geodesically complete but stochastically incomplete mani-
fold.

MIf one neglects the angular direction, then recurrence and non-explosion on a model manifold amount to

the same properties for the one-dimensional diffusion on (0, c0) generated by the operator ;% + %’d%. The
results of Feller [58] and Khas’minskii [111, pp.193-194] cover such diffusions and yield exactly the tests (3.8)
and (3.9).
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4 Some potential theory

In this section, we will give analytic characterization of certain hitting probabilities. Let F
be a closed subset of M. Denote by ep(z) the P,-probability that the process X; hits F' ever,
that is, X; € F for some ¢ > 0. Obviously, ep(z) = 1 on F. It turns out that ep(z) is a
harmonic function outside F' and superharmonic on M.

Another function hp(x) to be considered here is the P,-probability of the event that X;
visits F' at arbitrarily large moments of time. This function turns out to be harmonic on all
of M (see Propositions 4.3 and 4.4 below). Both hitting probabilities play important role in
the part of this paper devoted to recurrence.

4.1 Harmonic functions

A function u defined in a region of M is harmonic if
Au = 0. (4.1)

The equation (4.1) is understood either in the sense of distribution or pointwise. In the latter
case, the function w is initially C? smooth. In both cases, u will be actually C*. Indeed, u
satisfies locally an elliptic equation of the second order with smooth coefficients. Therefore,
smoothness of u follows from the general theory of elliptic PDE (see for example [68]). Other
consequences are the maximum principle, the local Harnack inequality and the convergence
principles.

The standard way of constructing harmonic functions is by solving the Dirichlet problem.
If B is a precompact open set on M with smooth boundary then, for any continuous function
f on OB, there exists a unique function u € C(B) N C?(B) such that

Au=0,
{ ulpp = f . (42)

This is proved exactly in the same way as the solvability of the Dirichlet problem for elliptic
equations in bounded regions of R%, for example, by constructing a weak solution and then
proving its regularity or, by constructing the Perron solutions.

Alternatively, the solution of (4.2) is given by the formula of Kakutani

u(z) = E; (f (X7)) ,

where 7 is the first hitting time of the boundary dB by the process X;.
The Green formula (2.6) implies that, for a harmonic function u and for any precompact
open set € in the domain of w, the flux of u through the boundary 952 is zero, that is

ou
fluxu:= [ =—dy' =0 4.3
b= | Gy =0, (4.3)

where v is the outward normal unit vector field on 9 (assuming 92 is smooth enough).
Moreover, (4.3) is equivalent to harmonicity of u. Indeed, it implies by (2.6)

/Aud,uZO,
Q

for any €2 in the domain of u, whence Au = 0.
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A function s defined in the region  C M, is called superharmonic if s is continuous® and
if, for any precompact region U CC € and any harmonic function u € C*(U) N C(U), s > u
on QU implies s > v on U. If s € C?(12) then the superharmonicity of s is equivalent to

As <0, (4.4)

which easily follows from the maximum principle. Conversely, if s € C(€2) and (4.4) holds is
the sense of distributions then s is superharmonic.
Let us mention the following simple properties of superharmonic functions.

1. If {24} is a family of open sets and the function s is superharmonic in each €, then s
is superharmonic in their union J,, Qa.

2. The minimum of two superharmonic functions is also superharmonic.

A function u is subharmonic if —u is superharmonic.

4.2 Green function

As soon as we have constructed the heat kernel, the easiest way to introduce the Green
function G(x,y) is to set

G@yy:%AwMu%wﬁ. (4.5)

The factor % appears because the heat kernel is generated by %A rather than by A.

An independent definition is as follows: G(z,y) is the smallest positive fundamental
solution of the Laplace equation on M. We follow the convention that G = +oo if there is no
positive fundamental solution, which matches the case when the integral in (4.5) diverges. If
G # oo then we have, for any fixed y,

For example, in R%, d > 2, the Green function is given by

Cd
G(.ﬁl:‘,y) = ’1‘ _ y]d_z >

where ¢g = (wg(d—2))"'. In R?, we have G = oo (indeed, the fundamental solution
log |z — y| is signed).

Yet another way of construction of G' (which will be most useful for our purposes) is by
using an ezhaustion sequence. A sequence {&} of sets in M is called an exhaustion sequence
if

e cach & is a precompact region with a smooth boundary;

o & CC &ryrs

2Sometimes it is useful to relax the continuity of s as to the lower semi-continuity. However, we will not
use lower-semicontinuous superharmonic functions here.
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One first constructs in each & a Green function Gg, (z,y) of the Dirichlet problem in &,
which is continuous up to the boundary 0& (as a function of x, for any y € &) and vanishes
on 0&;. By the maximum principle, the sequence {Gg, } increases in k. The limit as k — oo
(finite or infinite) is the global Green function G(z,y). It is easy to see that this limit is
independent of the choice of the exhaustion sequence. This construction is justified in [122].

If M is a manifold with boundary then the Green functions G and Ggq are assumed to
satisfy the Neumann boundary condition on M and OM N €2, respectively.

The following properties of G(x,y) will be frequently used.

1. The Green function G(z,y) is either finite for all  # y or infinite for all z,y. In the
former case, we will say that G is finite. The on-diagonal value G(z, z) is always infinite.
Moreover, the singularity of G(z,y) as © — y is of the same order as that in R%, that
is,

2—d >
1 =

Ty Z as r = dist(z,y) — 0. (4.6)

log <.,

Gle.0) = { §;
2. Positivity: G(z,y) > 0.
3. Symmetry: G(z,y) = G(y, ).

4. G(-,y) is harmonic away from y (in fact, G(-,y) is superharmonic on M if one allows
+o0o as a value of the function).

5. If €2 is a precompact region with smooth boundary then the flux of G (,y) through 09
is equal to —1 if y € Q and equal to 0 if y ¢ €2, that is
0G(x,y)

_ 7
ﬂalil?XG - 90 ov d/.L (JJ) { 0,

1, yeq,
y ¢,

where v denotes the outward unit normal vector field on 9. Moreover, (4.7) is equiva-
lent to the fact that G is a fundamental solution. The second line in (4.7) follows from
the harmonicity of G away from y (cf. (4.3)) whereas the first one reflects the fact that
AG = —§,.

(4.7)

6. A consequence of the minimality:

nf G(z,y) =0.

Example 4.1 Let M, be a spherically symmetric manifold with the pole o. Let us prove
that the Green function G(z,0) at o can be computed as follows
 dr
G('r: 0) = QN (48)
p S(r)
where p = dist(x, 0) (assuming that the integral in (4.8) converges).
To that end, let us first consider the function

v(p) = % (4.9)

(we take the indefinite integral here). We claim that v(p) is harmonic function on M \ {o}
assuming that p is the polar radius. Indeed, (4.9) implies that v satisfies the following ODE
!

v+ %v’ =0 (4.10)
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(in fact, (4.9) was found to solve (4.10)). On the other hand, by (3.7), equation (4.10) is the
radial part of the Laplace equation. Thus, Av = 0.

Moreover, the flux of v through any sphere dB(o,7) is equal to 1. Indeed, (4.9) implies
v = ﬁ whence

ov
ﬂuxv:/ —du =v'(r)S(r) = 1. 4.11
o= [ S = Vs (4.11)
Thus, the function
> dr
p S(r)

is harmonic away from o, has the flux —1 through any sphere dB(o, ) and vanishes at p = oo,
which implies that it coincides with the Green function G (o, ).

4.3 Capacity

Let €2 be an open set on M and K be a compact set in Q2. We call the pair (K, Q) a capacitor
and define the capacity cap(K, ) by

K,Q) f d 4.12
can(i.0) = it [ Vol dp. (112)

where £(K, Q) is a set of locally Lipschitz functions ¢ on M with a compact support in Q
such that 0 < ¢ <1 and ¢|x = 1.
For an open precompact set K C §2, we define its capacity by

cap(K, Q) := cap(K, Q).

Therefore, definition (4.12) can be applied in this case, too since ¢|x = 1 is equivalent to
¢lz = 1. It is possible to define the capacity when K is a Borel set but we do not need that
(see [29] and [134, Section 2.2]). Since V¢ = 0 on K, we see that the capacity cap(K, ) is
determined by the intrinsic properties of Q \ K.

If O = M then we write cap(K) for cap(K, ). It is obvious from the definition that the
set L(K, ) increases on expansion of Q (and on shrinking of K). Therefore, the capacity
cap(K, Q) decreases on expanding of 2 (and on shrinking of K). In particular, one can prove
that, for any exhaustion sequence {&},

cap(K) := klingo cap(K, &) -

Let Q be precompact. It is well known that Dirichlet integral in (4.12) is minimized by a
harmonic function. Therefore, the infimum in (4.12) is attained at the function ¢ = u which
is the (Perron) solution to the following Dirichlet problem in Q \ K:

Au=0
ulogn =0 (4.13)
ulog = 1.

The function u is called the equilibrium potential or the capacity potential of the capacitor

(K, Q).
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It is obvious that if the boundaries of Q2 and K are smooth enough then u € L(K, Q). We
have then, by the Green formula (2.6) and (4.13)

cap(K,Q) = /Q|Vu2d,u:/g\K\Vu]2d,u

= —/ uAud,LH—/ @udu’
O\K oK Ua0 OV

= /. % dy' = —g}yxu (4.14)
where v is the outward unit normal vector field on 9(2 \ K) (the negative sign in (4.14)
appears because v points inward to K). On the other hand, the harmonicity of u and (4.3)
imply
0= flux u=fluxu — fluxu. (4.15)
B(Q\K) o0 oK

Identities (4.14) and (4.15) imply the following formulas of the capacity:

K,Q) = 2du = —fluxu = —fluxu. 4.16
cap(K, Q) /Q!VU\ 1 luxwu luxu (4.16)

In general, despite the fact that u may not be in L£(K, ), the Dirichlet integral of u is still
equal to the capacity.

It is useful to know that various classes of test functions in the definition of capacity may
be allowed without changing the value of the capacity. For example, the class £ in (4.12) can
be replaced by the following class D

D(K,Q):={p € C(R):0< ¢ <1land ¢ =1 in a neighbourhood of K} . (4.17)

If M is a manifold with boundary then all the above remain true, with the additional
property that the capacity potential u of (K, ) should satisfy the Neumann boundary condi-
tion on OM N (2\ K) should the latter be non-empty. If M is made of a conducting material
then a physical meaning of cap(K, Q) is a conductivity of the piece of M between 0K and
0f). Put differently, the flux of u through 0K and 0 is equal to the current through M
provided the potential difference between 0K and 0f is equal to 1 (see Fig. 6).

K Au=0
oK Q\K
/
oM o0
—_

Figure 6: The capacity potential for the capacitor (K, 2) on a manifold with boundary

Given an open set ¥ C M, one can define the capacity relative to E as follows:

K,Q)= inf Vol d 4.18
capp(K.0) = int [ Vola (115)
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where (K, ) is a capacitor on M as above. The difference between (4.18) and (4.12) is
that the integral in the former is taken over {2 N E rather than over ). Clearly, the capacity
capp (K, Q) does not depend on the geometry away from E. If Q = M then we write cap g (K)
for capy (K, Q).

If OF is smooth enough then E can be considered as a manifold with boundary. In this
case the relative capacity capp coincides with the capacity capz on the manifold E, in the
following sense:

capp(K,Q) = capz(K N E,QNE). (4.19)

Example 4.2 Let us show how to compute the capacity cap (B(o,r), B(o, R)) on the model
manifold M, where o is the pole of M, and 0 < r < R. The function

g
y 5@

is the capacity potential of the capacitor (B(o,r), B(o, R)) where the constant a is chosen to

ensure u(r) =1 i.e. n .
“:<l ﬁ%) . (4.21)

flux u = —a,
0B(o,R)

u(p,0) = u(p) = a (4.20)

Since by (4.11)

we conclude by (4.16) that

-1

cap (B(o,r), B(o, R)) = ( / " %) (4.22)

and

cap (B(o,r)) = (/OO %) o (4.23)

In particular, in R? we have

car®2, d> 2,
ap (Blor) = { (17§75

The following statement establishes a useful link between capacity and the Green function.

Proposition 4.1 ([127], [71]) Let U be an open precompact set in M andy € U. Then the
following inequality is true

inf G(z,y) < cap(U)™' < sup G(z,y). (4.24)
zeoU =rs104

Furthermore, if Q is a precompact set in M with a smooth boundary and Q O U, then

inf Go(z,y) < cap (U,Q)"' < sup Gol(z,y). (4.25)
xedU zcdU
Proof. Since (4.24) follows from (4.25) by letting € T M, it suffices to prove (4.25). Let us

set

:= max Gq(z, and b := min Gq(x,y).
a 1= max Go(z, y) n min Ga(z,y)
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Ga(x,y)=a

oQ

Figure 7: Sets F, and F

For any number c, let us define
F.:={ze€Q:Gq(zr,y) >c}.

We claim that B
F,CcUCF,. (4.26)

Indeed, the function Gg(-,%) is harmonic in Q \ U and, by the maximum principle, its
supremum in Q\ U is attained on the boundary 9 (Q2\ U) = dQU8U. Since Gq vanishes on
0L}, we have

sup_Go(z,y) = max Go(z,y) = a,
2eO\T xedU

whence F, C U. Similarly, the function Ggq(-,y) is superharmonic in U whence, by the
minimum principle,

inf G = min G =b

inf Go(z,y) = min Ga(z,y)

and I, D U (see Fig. 7).
The inclusions (4.26) imply

cap (Fa, ) < cap (U, ) < cap (F}, (),
whence (4.25) will follow if we show that, for any ¢ > 0 (in particular, for ¢ = a and ¢ = b),
1
cap (Fe,Q) = —.
c
Indeed, the function u := %Gg(-,y) is the equilibrium potential of the capacitor (F, ().

Therefore, by (4.16) and (4.7),

1 1
cap (Fe, Q) = _ﬂalfllxu = _Eﬂa%XGQ("y) =

which was to be proved. W

4.4 Massive sets

The following notion of massiveness will play an important role in the sequel.
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Definition 4.1 Given an open set 2 C M, we say that a function v > 0 is an admissible
subharmonic function for € if it is a bounded subharmonic function on M such that v = 0
in M\ ©Q and supgv > 0 (see Fig. 8). An open set 2 is called massive if there is at least
one admissible subharmonic function for 2. Alternatively, ) is massive if there exists an
admissible superharmonic function u for  i.e. a bounded superharmonic function v > 0 on
M such that u = 1 outside 2 and infqg u = 0.

Figure 8: Admissible subharmonic function v for €.

We say that an open set €2 is D-massive if there is an admissible subharmonic function v
for 2 (or an admissible superharmonic function ) which has a finite Dirichlet integral:

/ \Vol? dp < oc.
M

Clearly, massiveness is an intrinsic property of €2, despite the function v being formally defined
on the whole M. The manifold itself is always massive because the constant function is an
admissible subharmonic function. The empty set is always non-massive.

We say that an open set Q is proper if  # M. By the maximum principle, a proper open
precompact set is never massive.

Proposition 4.2 Massiveness (D-massiveness) is preserved by increasing the set Q, as well
as by reducing it by a compact (for the latter, we assume that Q0 is proper).

Proof. If Q' D Q then any admissible subharmonic function v for € is also admissible
subharmonic for '. If Q" = Q\ K where K is a compact then the function v' := (v —¢),
where ¢ := supy v, is admissible subharmonic for €. Indeed, we need only to show that
supv’ > 0. The fact that € is proper, implies v # const. Therefore, by the strong maximum
principle, ¢ < supg v whence supv’ > 0. B

Let us show some examples of massive and non-massive sets. Note that in R?, all proper
open subsets are non-massive because there is no bounded subharmonic function except for
the constant function.

Example 4.3 The exterior Q of ball B(o,1) in R?, d > 2, is massive. Indeed, the function

o[>, | > 1

“(‘7"):{ L el <1

is an admissible superharmonic function for 2. Moreover, u has finite Dirichlet integral so
that € is D-massive.
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Example 4.4 A half-space in R? is non-massive - a simple proof of that will be given below
(see Example 4.6). Similarly, any cone? in R? is non-massive. On the contrary, any angle on
the hyperbolic plane H? is D-massive (see [73, Section 3]). Any cone in H¢ is massive but
not D-massive unless d = 2 (see [73, Section 5]).

Example 4.5 Consider a domain of revolution in R¢
Dy := {a: €ER?:0< 2z <oo and ‘:ﬂ < f(xl)}

where 2/ = (z9,...,24) and [ is a smooth function possessing certain regularity (see Fig.
9). Denote Qf = R*\ Dy and a = 1/(d — 3), assuming d > 3. Then Qy is massive if
f(t) = tlog=(@*2) ¢ (¢ is large and & > 0) and is not massive if f(t) = tlog~* t. Moreover, Qy
is D-massive if f(t) = t~(®*) and is not D-massive if f(t) = t=®. See [85, Proposition 6.3]
for a criterion of massiveness of €2 and [73, Section 3] for a criterion for D-massiveness of
Qp.

Q= CDx

Rd

Figure 9: Set )¢ is the exterior of the domain of revolution Dy.

Definition 4.2 The subharmonic potential bo of an open set 2 is the supremum of all
admissible subharmonic functions v for €2 such that v < 1. The superharmonic potential sq
of Q is the infimum of all admissible superharmonic functions for €.

If there is no admissible subharmonic (superharmonic) function then we naturally let
bo = 0 (respectively, sq = 1). It is obvious that always

s+ bq =1,

and the function bq is increasing on expansion of {2 whereas sq is decreasing. Clearly, €2 is
massive if and only by # 0 and sq # 1.

The function b, is called also the harmonic measure of the set F' := M \ €. Another term
for sq is the reduced (or reduit) function of F. Let us emphasize that the functions bq, sq
are determined by the set ) intrinsically.

For a set €2 with smooth boundary, we will construct bg and sq as the limits of solutions of
a series of certain Dirichlet problems. Choose an exhaustion {&;} of M so that the boundaries

3By “a cone” we always mean an infinite cone with a compact base.
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0&, and 9N are transversal, and solve, for any set Q N &, the following Dirichlet problem
(see Fig. 10)
Ab,, =0
bloane, =0 (4.27)
bilos,no = 1.

Figure 10: Function by

Proposition 4.3 Let Q0 C M be a non-empty open set.
(i) Assume that Q has non-empty smooth boundary. Then

b = lim by in Q.

k—oo

The function bq is continuous, subharmonic on M and harmonic in ). Respectively,
the function sq is continuous, superharmonic on M and harmonic in Q.

(i) For any proper open set S, we have
bQ = sup bQ/ )
Q/

where the supremum is taken over all regions Q' with smooth boundaries whose closure
is contained in Q.

(iii) The following dichotomy takes place:

either € is non-massive, bg = 0 and sq = 1

or € is massive, supbg = 1 and inf s = 0.

Proof. (i) By the maximum principle, the sequence {b;} is decreasing. The limit by, :=
limg_, o b is harmonic in €2, continuous up to 0f2 and vanishes on 02. Let us extend by, by
setting it equal to 0 in M \ Q. We claim that by, = bg. Indeed, the function b, is obviously a
continuous subharmonic function, 0 < by, < 1, and by, vanishes outside €2. If there is another
function v possessing these properties, then by the maximum principle, v < by in & N Q
whence v < by,. Hence, by is the supremum of all admissible subharmonic functions v such
that v < 1, that is, boo = b (see Fig. 11).

Note that if 9 is not smooth then b,, may be discontinuous at irregular points of the
boundary 0f2.
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0Q & OEs1

Figure 11: Sequence of by,

(ii) Since bg > by, we have only to show that

bQ < sup bQ/ . (428)
Q/

For any open ' such that €/ C Q , there exists an open set Q" with smooth boundary such
that Q' C Q" and Q7 C Q, whence b < bgr. Therefore, it suffices to prove (4.28) without
the requirement that 9 is smooth. Let v be any admissible subharmonic function for €.
Take any € € (0,supv) and consider the set Q' = {v > ¢}. Since (v —¢), is an admissible
subharmonic function for €', we have

(’U—E)+ SbQ/.

By taking sup over v and &, we obtain (4.28).

(iii) By definition, bg # 0 is equivalent to the massiveness of €. Let us show that bg # 0
implies sup bg = 1. If supbg =: ¢ < 1 then, for any admissible subharmonic function v, we
have supv < c. However, then the function ¢ v is also admissible subharmonic, whence, by
the definition of bq, we obtain ¢ v < by and supbg > 1. W

Example 4.6 Let us show that a half-space € in R? is non-massive. Consider the function
u which is equal to b on €2 and is extended oddly over the boundary 02 to the whole space.
Since w is harmonic in R% and bounded, the Liouville theorem implies u = const and, hence,
u = 0. Therefore, bo = 0, and (2 is non-massive.

4.5 Hitting probabilities

In this section, we compute, in terms of the function sq, the following probabilities.

1. The P,-probability that the Brownian motion X; visits a set F© C M ever. Denote it
by
ep(x) =P, {3t >0 suchthat X, € F}.

In the potential-theoretic language, the function eg is called the reduit function of F
and is denoted by R}p.

2. The P, -probability that the Brownian motion X; hits F' at a sequence of arbitrarily
large times. Denote it by

hp(x) := P, {3{tx} such that t; — ocoand Xy, € F', for all k € N}.
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Proposition 4.4 Let Q0 C M be a non-empty open set with smooth boundary, and denote
F:=M\Q.

(i) (G.A.Hunt) For any x € M, we have
er(x) = sq(x).

(ii) Let us denote
Pysq = tlim Pisq(x). (4.29)
—00

Then, for any x € M,
hp(z) = Psosq(x).

=S
\ hr = P2
F Q=M\F —

Figure 12: The hitting probabilities e and hp

Remark: The function bg(x) is also called the escape function of Q because, due to (i),
bo(z) = 1 — ep(x) which is equal to the P -probability of X; escaping to infinity within 2,
without touching 9.4

Remark: The function u := Py sq is harmonic on M because Pyu = u. Thus, hp(z) is a
harmonic function of x on all of M. Let us recall for comparison that ep = sq is harmonic
in Q but is superharmonic in M (see Fig. 12).

Remark: Assertion (i) implies that massiveness has the following probabilistic meaning: the
set € is massive if and only if ep(x) # 1.
Proof. (i) If z € F then ep(x) =1 = sq(z), and there is nothing to prove.

Now let z € Q. Choose an exhaustion sequence {&} and consider the event 4 that
the trajectory X; hits the boundary 9 before 0&. Clearly, the sequence of events { A} is
expanding, and their union is the event to hit 9 (and thus F') ever, whence

ep(x) = kh_}n;() Py (Ag). (4.30)

On the other hand, let f; be a function on 9 (& N §2) which is equal to 1 on 9 and 0 on
0&, and let 7 denote the first hitting time of 0€2. We have

P, (Ax) = By (fr (X7)) = sk() (4.31)

“One should distinguish the following two events: (1) to never hit F, which has the P,-probability ba; (2)
to stay in € for all ¢ > 0, which has the P,-probability P11 < bo. The latter may be strictly smaller than the
former in the case when the process can reach infinity from within €2 in a finite time. If the manifold M is
stochasically complete then we do have P1 = bg.
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Figure 13: Events Aj and Ay

where sj solves the Dirichlet problem in &, N € :

Asp =0
skloa =1 (4.32)
sklog, = 0.

Since sq = limy_, o g by Proposition 4.3, we conclude from (4.30) and (4.31) that sq = ep.
(ii) Denote by B; the event that Xp hits F' at some time 7' > ¢t. Then we have the
following identity

B, (B) = Prso() = /Mpu, £,9)sa(u)du(y). (4.33)

Indeed, at time ¢, the P,-law of the Brownian particle y = X; is p(t,z,y)du(y). Since the
[P,-probability of the Brownian motion hitting F' is equal to sq(y), we obtain (4.33) by the
Markov property.

Obviously, the sequence of events {B;} is decreasing in ¢ (which implies, in particular,
that the limit (4.29) exists) and their intersection is the event By, that the Brownian motion
visits F' at a sequence of arbitrarily large times. Therefore,

hp(xz) =P, (Bx) = tliglo P, (B:) = Pxosq,
which was to be proved W

4.6 Exterior of a compact

If Q is an exterior of a compact F' on M then some additional criteria of massiveness of €2
hold true.

Proposition 4.5 Let Q0 C M be an open set with non-empty smooth boundary and let F :=
M\ Q be compact.

(a) The following dichotomy takes places:

either € is not massive, sg = 1 and Pysq =1,

or € is massive, sg Z 1 and Psxsq = 0.
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(b) We have

dsq , ,
. Ed = Cap(F), (434)

where v is the outward normal vector field at 02, and
/ |Vsal? du = cap(F). (4.35)
M

Corollary 4.6 Let 2 C M be an open set with non-empty smooth boundary and let F =
M\ Q be compact. Then

(a) Q is massive if and only if Q is D-massive.
(b) Q is massive if and only if cap(F) > 0.
(¢) The massiveness of S is equivalent to ep Z 1 and to hp = 0.

Proof. [Corollary 4.6] (a) If 2 massive then, by (4.35), sq has finite Dirichlet integral. Thus,
) is D-massive. The opposite direction is a general fact which follows from the definition of
massiveness and D-massiveness.

(b) The massiveness of 2 is equivalent to sq # 1 which is equivalent to cap(F) > 0 by
(4.34) or (4.35).

(c) This follows immediately from Propositions 4.4 and Proposition 4.5(a). W
Proof. [Proposition 4.5] (a) Assume that € is non-massive and show that M is stochastically
complete, that is, P,1 = 1. If we know that already then we argue as follows: the non-
massiveness of {2 implies sq = 1 whence Pysq = Pyl = lim; oo P11 = 1.

Let us suppose, on the contrary that P;1 # 1 and consider the functions v(z,t) = P;1(z)
and

w(z) = /OOO e~ o(a, ) dL.

It is easy to see that
o
0<w§/ e tdt=1
0

and

1 > 1 < Lo _¢joo R
—Aw:/ e —Avdt:/ e '—dt = ve | +/ e tvdt=—-1+w<0.
2 0 2 0 ot o

Therefore, w is a positive superharmonic function on M. The assumption P;1 # 1 implies
that, for some x € M, we have w(z) < 1 whence Aw(z) < 0 and w # const. By the strong
minimum principle, infj; w < infpw. Hence, the function min(1, w/infp w) is superhar-
monic admissible for © and, thus, Q is massive, which contradicts the hypothesis®.

Assume now that 2 is massive and, thus, sq # 1. Let us set u = Pysq. Function w is
harmonic on M because Pyu = u. Also, we know that

0<u<sg<L

®The proof of the first part of the assertion (a) of Proposition 4.5 contains the following implication: the
explosion = the existence of a non-constant positive superharmonic function (cf. Corollary 6.4 in Section
6).

Another proof can be obtained by using the strong Markov property of the Brownian motion. Indeed, if
sqo = 1 then, by Proposition 4.4, the probability er of hitting F' is identically equal to 1. By the strong Markov
property, the probability hr of hitting F' at arbitrary large times is also 1, whence Psxsq = hrp = 1.
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We need to verify that u = 0. Assume on the contrary, that sup « > 0. Since inf u < inf s =0
(see Proposition 4.3(iii)), we have u # const. By the strong maximum principle and the
compactness of F,

sup u < sup u.
F M

Choose a number ¢ such that

supu < ¢ < supu
F M

and consider the set U := {u > c}. By the choice of ¢, we have U C Q whence (see Fig. 14)

SU 2 $Q 2 U. (4.36)
A
1
% Su
—
S
c
F U

Figure 14: Functions sq, sy and u

The set U is massive since the function (u — ¢), is admissible subharmonic for U. By Propo-
sition 4.3, infyy sy = 0. However, infyy u = ¢ > 0 which contradicts (4.36)5.

(b) Let sy, solve the Dirichlet problem (4.32). Then, for k large enough (such that & O F),
the function sj is the equilibrium potential of the capacitor (F, &) whence

cap(F,Sk):/ |Vsk|2du:/ ?du'. (4.37)
or oV

Ee\F

The sequence {sy} is increasing in k and converges to sq (see Fig. 15) whence, by the local

properties of harmonic functions, all their derivatives converge to those of sq locally uniformly

Osp.

as well. The sequence { D 8F} is decreasing in k because si|gp = 1 and, thus, converges to

Jsq
ov OF

One direction in (4.35) follows by Fatou’s lemma:

uniformly on OF |, whence we get (4.34).

/ [Vsql? < lim/ |Vsi|? = lim cap(F, &) = cap(F).
M k—oo Er k—oo

To prove the other direction (which will be not used in the sequel, though) let us write
/ IV (sq — si)|? :/ |Vsql® —2 stvsH/ IVsi|?. (4.38)
E\F E\F E\F E\F

The last term on the right hand side of (4.38) is equal to cap(F, &), by (4.37) . By the Green
formula and (4.34), the middle term transforms into

— VsaVsg = / spAsq — / skaﬂ = — 8& = —cap(F).
E\F E\F aE\F) OV or Ov

5Tn fact, we have shown that sq admits no positive harmonic minorant.
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Figure 15: Sequence of s

Therefore, (4.38) implies
0< / IV (sq — sp)|* = / |Vsq|? — 2cap(F) + cap(F, &),
whence by letting £ — oo
[ V30l = 2cap(F) — fim cap(F: &) = cap(F).
M k—oo

which was to be proved. W

5 Equivalent definitions of recurrence

Manifold M is said to be non-parabolic if it admits a non-constant positive superharmonic
function, and parabolic otherwise. The following theorem provides a number of conditions
equivalent to parabolicity. In particular, the parabolicity of M turns out to be equivalent to
the recurrence of the Brownian motion X; on M.

Theorem 5.1 Let M be a Riemannian manifold. The following properties are equivalent.

(1) Brownian motion on M is transient i.e. for some open set U and for some point x € M,
the process X eventually leaves U with a positive probability:

P, {IT:Vt>T X,¢U}>0.

(1a) For any precompact set U C M and any point x € M, the process X; eventually leaves
U with the probability 1 i.e.

P, {37 :Vt>T X, ¢U}=1.

(2) There exists a proper massive set  on M.
(2a) The exterior of any compact set on M is D-massive.

(8) There exists a non-constant positive superharmonic function on M (=there exists a
non-constant bounded subharmonic function on M ).

(4) The Green function G(x,y) on M is finite for some/all x # y.
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(5) For some/all x € M,
/ p(t,z,z)dt < oo . (5.1)
1

(6) The capacity of some compact/any precompact open set is positive.

(7) There exists a non-zero bounded solution on M to the equation
Au —q(x)u =0, (5.2)
for some/any function q(xz) € C3°(M), which is non-negative and not identically 0.

(8) If M is a simply connected Riemann surface then all the above are equivalent to M
being of hyperbolic type i.e. M is conformally equivalent to H2.

Before the proof, let us make some remarks.

e The statement of Theorem 5.1 remains true if M is a manifold with boundary. As we
have mentioned before, in this case the heat kernel and the Green function satisfy the
Neumann boundary conditions on @M and the Brownian motion X; reflects at M. A
superharmonic function u should satisfy on M the condition % > 0,where v is the
outward normal unit vector field on OM, and a subharmonic function should satisfy the
opposite inequality. Finally, a solution to (5.2) should satisfy the Neumann boundary

condition on OM.

e The essential part of Theorem 5.1 is due to Ahlfors [2] who clarified, for the case of
Riemann surfaces, the equivalences (2)< (3)< (4) . His treatment was based in turn
on the works of Myrberg [144], Nevanlinna [148] and Ohtsuka [152]. See [167, p.29-30]
for the case of Riemannian manifolds. Equivalence (2)/(2a)<(4) was rediscovered by
many authors in various settings: see for example [163, Proposition 23], [111, Lemma
5.2], [88, Theorem 1.1], [122, p.1137].

e The implication (1)=-(4) is due to Hunt [98]. Equivalence of (4) and (5) is obvious from
the relation (4.5) between the Green function and the heat kernel . A direct proof that
(5) is equivalent to (1) can be found in [111, Lemma 3.1].

e In the view of Proposition 4.5, the hypothesis (6) is equivalent to sq # 1 where 2 is
an exterior of a compact. Equivalence of (4) and s # 1 was proved by Ahlfors [2] and
Royden [163, Theorem 3|. The idea of using sq for classification of Riemann surfaces is
due to Nevanlinna [150]. We adopt here a different approach to the capacity criterion
(6) based on the direct relation (4.24) between the Green function and the capacity
[127], [71, Proposition 3.

e Equivalence of (7) and (3) was proved in [76, p.2341].
e Equivalence of transience (1) and hyperbolicity (8) is due to Kakutani [105].

e There is some mismatch in the usage of the term “parabolic” here and in the theory of
Riemann surfaces. First, any simply connected Riemann surface of elliptic or parabolic
type is parabolic in the sense of our definition. However, a simply connected Riemann
surface of hyperbolic type is non-parabolic in our sense, which is stated in (8). Second,
for a Riemann surface, which is not simply connected, its type has nothing to do with
parabolicity in our sense, because its type is determined by that of its universal cover.
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e We do not apply the adjective “hyperbolic” as an antonym to “parabolic” because
there are other generalizations of the notion of hyperbolicity, for example, Gromov’s
hyperbolicity.

Proof. We will prove the following sequence of implications:

L — 2 — B —

T [N N
(la) «— (2¢) — (6)

—~
N |
~—

()

If there is the “some/all” alternative then we assume the weakest one and prove the strongest
one. Not all of the implications above are logically necessary. However, it is useful to be able
to independently close different smaller circles of implications.

Another proof of equivalence of (1), (3) and (4) can be found in [130].

(1a)=(1) Obvious.

(1)==(2) Let us denote Q = M \ U and consider the function v := 1 — Ps,sq, which is
equal, by Proposition 4.4, to 1 — hg that is to the P,-probability of X; leaving U after some
time. By hypothesis, we have v(z) > 0, for some x, whence Pyxsq # 1, sq # 1 and Q is
massive.

(2a)=(2) Obvious.

(2)=(2a) Let Q be a proper massive set, which exists by hypothesis, and let 2’ be an
exterior of some compact. We need to show that Q' is D-massive. Let U be a precompact open
set in M which does not intersect Q. Denote Q" = M\ U. Since Q" D €, the set " is massive.
By Proposition 4.2, Q' is massive, too because " and ' differ by a compact. Finally, since
' is exterior of a compact, its massiveness implies its D-massiveness, by Corollary 4.6.

(2a) =(1a) We have to prove that, with the P,-probability 1, the Brownian trajectory
X leaves any precompact set U after some time forever, that is hz(z) = 0. The latter
is equivalent, by Proposition 4.4, to Pysq = 0 where Q := M \ U. By Proposition 4.5,
Py sq = 0 is equivalent to massiveness of 2, which we have by hypothesis.

(2a) =(6) This is the part (b) of Corollary 4.6.

(6)=-(2) Let cap(U) > 0 for some precompact open set U. We may assume that U has
smooth boundary. By Corollary 4.6, the set  := M \ U is massive.

(2)==-(3) By slightly enlarging 2, we may assume that {2 has smooth boundary. Since
Q is massive and M \ Q is non-empty, sq is a non-trivial bounded superharmonic function
on M (see Proposition 4.3(i)).

(3)=-(2) Let v > 0 be a non-constant superharmonic function on M. For any number
c € (inf v, supv), the set 2 = {v < c} is proper and massive because (¢ — v) is an admissible
subharmonic function for €.

(6)<=(4) Let U be a precompact open set in M. For a point y € U, we have, by (4.24),

inf G(z,y) < cap(U)~' < sup G(z,v).
xeolU xeolU

Therefore, the finiteness of G is equivalent to cap (U) > 0.

(4)=(3) If the Green function G(z,y) is finite then it is already a positive superharmonic
function in x although taking the value 400 at = y. The truncated function min(G(-,y),C)
(for a positive constant C') is finite, positive and superharmonic.

(7)=(3) If u is a bounded non-zero solution to Au — qu = 0 with some function

q € C§°,q # 0 then either uy or u_ is not identically zero. Assume that u;, # 0. We claim
that w4 is a non-constant bounded subharmonic function. The function uy is subharmonic
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in  := {u > 0} just because Auy = qu4 > 0. Since u, is extended by 0 outside 2, function
u4 is subharmonic in M. Finally, uy is bounded and non-constant because if u4 = ¢ then
u = ¢, which is only possible if ¢ =0 or ¢ = 0.
(3)«<=(8) Conformal mapping in dimension 2 preserves superharmonic functions. Since
H? possesses a non-constant positive superharmonic function whereas R? does not, hyperbol-
icity of M is equivalent to the presence of a non-constant positive superharmonic function.
(4)<=(5) Since

G(z,y) = %/Ooop(t,m,y)dt, (5.3)

the condition G(x,y) < oo implies, for those x,y,

/OO p(t,x,y)dt < oco. (5.4)

By the local parabolic Harnack inequality, for any pair z’,7y’ € M, we have, for all ¢ large
enough,
p(t, 2’ y')
p(t,,y)
(see for details [45, Theorem 10]). In particular, (5.4) holds for all pairs z,y whence (5.1)
follows. Conversely, if (5.1) holds for some x € M then (5.4) is true by (5.5) for all x,y € M.
Since, for z # y, we have p(t,z,y) — 0 as t — 0, the integral in (5.3) converges also at 0,
and G(z,y) < oc.
(4)==-(7) Let {&;} be an exhaustion sequence and G}, be the Green kernel in &,. Denote
by uj and v the solutions of the following Dirichlet problems in &

{Auk—quk:() in & and {Avk:—q mc‘,’k.
Uk‘agk =1 Uk|8€k =0

< const (5.5)

The sequence {uy} is decreasing and converges to a function u, which is a bounded solution
to Au —qgqu = 0. Since 0 < ug < 1, we have also 0 < u < 1, and it will suffice to show that
supu > 0.

The function vy is given by

= Gr (-, y)q(y)du(y),

whence we see that {vy} is increasing and converges to

vi= / G(y)a(y)du(y).
M

The function uy + vy is superharmonic because A (uy + vg) = qui—q < 0. Since uy, + vk|85k =
1, the minimum principle says that uy + v > 1 and, thus, ugp > 1 — vg in & (see Fig. 16).
Therefore, u > 1 —v. We claim that, in fact, inf v = 0, which would imply sup u > 0. By
the construction, v is the smallest non-negative solution to Av = —¢ in M . If we assume
infv > 0 then the function v — inf v is also a non-negative solution to this equation, which
contradicts to the minimality of v. Thus, we obtain inf v = 0 and supu > 0. W
Let us show some applications of Theorem 5.1.

Corollary 5.2 Let U be a non-empty precompact open subset of M. The following statements
are equivalent.

(i) M is non-parabolic.
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Figure 16: Functions u; and 1 — v

(ii) The set Q := M \ U is massive.
(i1i) cap(U) > 0.

This is just another way to state the parts (2)/(2a) and (6) of Theorem 5.1. Let us
emphasize that it suffices to test only one set U to decide whether M is parabolic or not.

One says that manifolds M; and M, are quasi-isometric if there exists a quasi-isometry”
F : My — Mo>, that is, a diffeomorphic map from M; onto Ms such that, for all z,y € M;
and some constant C' > 0,

Cdistyy, (F(x), Fy)) < distyy, (z,y) < Cdistag, (F(x), F(y)).

Corollary 5.3 Let M and N be two Riemannian manifolds. If the exteriors of some com-
pacts in M and N are quasi isometric then M and N are parabolic or not simultaneously. In
particular, if M and N are quasi isometric then M and N are parabolic or not simultaneously.

Proof. Let K and K’ be the compacts in M and N whose exteriors are quasi-isometric,
and let U be a precompact neighborhood of K in M. Obviously, there is a precompact open
set U’ C N such that M \ U and N \ U’ are quasi isometric. As follows from the definition
(4.12) of capacity, the value of the capacity cap,;(U) depends only on the intrinsic geometry
of M\ U. The same applies to cap(U’). The capacity changes under a quasi-isometry at
most by a constant factor. Therefore, cap,;(U) = 0 if and only if cap,(U’) = 0. Hence, by
Corollary 5.2, M and N are parabolic or not simultaneously. W

It is possible to prove that the D-massiveness is stable under a quasi isometry (see The-
orem 14.2 below). This means also that the massiveness of an exterior of a compact is a
quasi isometry invariant, too. However, in general, massiveness is not invariant under a quasi
isometry as follows from [129, Section 8] and [77, Corollary 1]. See also [107] for stability of
parabolicity under rough isometries and [94] for generalizations to p-harmonic theory.

Corollary 5.4 (Khas'minskii [111]) If there is a superharmonic function v outside a compact
K such that v(z) — 400 as x — oo, then M is parabolic.

Proof. Let us enlarge K so that 0K is smooth and v is non-negative on Q := M \ K.
Consider a sequence {by} of solutions to the Dirichlet problem (4.27) in & \ K. By Theorem
5.1(2a), the parabolicity of M will follow from the non-massiveness of 2, which in turn is
equivalent to
bo = lim by = 0.
k—o0

To show that, fix any C' >> 1 and observe that v — oo implies, for all k£ big enough,

infv>C.
Oy

" Another related notion is a rough isometry - see [107]
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Therefore, by the maximum principle in & \ K, we have v > Cb;, whence C~'v > bg. By
letting C' — oo, we obtain b =0. W

Similarly if, in an open set €2, there exists a superharmonic function v such that v(z) —
400 as x — oo then §2 is non-massive

The converse to Corollary 5.4 is also true, and we present it without proof.

Theorem 5.5 (Nakai [146]) If M is parabolic then there exists a harmonic function v(x)
outside a compact such that v(z) — +00 as x — oo.

The following statement is a consequence of Theorem 5.1 and the explicit formula (4.23)
for the capacity of a ball on a model manifold.

Corollary 5.6 (=Proposition 3.1) A model manifold M, is parabolic if and only if
© dp
S(p)

In the following theorem, we have collected some other criteria of parabolicity, which we
present without proof. Given a precompact open set U C M, we denote by Dy (M) a Banach
space which is the completion of C§°(M) with respect to the following norm

11, = /U Fldu+ ( /M !Vf\zdu)z.

Theorem 5.7 Fach of the following properties is equivalent to parabolicity of M.

(a) (Beurling—Deny) For some precompact open set U C M,

(b) (Royden [163, Theorem 4, p.66], Lyons—Sullivan [132, p.312]) For any smooth vector
field v on M such that |v| € L*(M, 1) and divv € LY(M, p) we have

/ divodu =0. (5.7)
M

(c) ([73, Proposition 2]) For any bounded function u € C*(M) such that Au € L*(M, u),
we have

/ Au dp = 0. (5.8)
M

The condition (5.6) is close to the fact that cap(U) = 0. Roughly speaking, in the definition
of the capacity, the class of test functions can be extended to Dy (M ). Therefore, if 1 € Dy M
then cap(U) = 0. The converse can be proved, too (see [47, p.181-182], [163, p.67], [5, p.46]).

The identities (5.7) and (5.8) mean that there is no boundary term in the Green formula
when integrating over the entire M. This reflects the fact that a parabolic manifold has
in some sense no boundary at infinity, which causes the Brownian trajectory to enter any
bounded region again and again.
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6 Equivalent definitions of stochastic completeness

As we have seen, the notion of massiveness plays important role when dealing with the
recurrence of the Brownian motion. Some extension of this notion - A-massiveness - will be
useful for treatment of stochastic completeness. For any A > 0, we say that u is A-harmonic
function if it satisfies the equation

Au—du=0.

Similarly to sub- and superharmonic functions (see Section 4.1), one defines continuous A-sub-
and A-superharmonic functions.

Definition 6.1 Given an open set 0 C M, we say that a function v is an admissible \-
subharmonic function for  if it is a non-negative bounded A-subharmonic function on M
such that v = 0 in M \ Q and supgv > 0. An open set Q is called A-massive if there is at
least one admissible A-subharmonic function for 2.

The empty set is never A\-massive. However, the whole manifold is not necessarily A-
massive because the function v = 1 is not A-subharmonic unlike the case A = 0.
Similarly to Proposition 4.2, we have

Proposition 6.1 The A-massiveness is preserved by enlarging @ and by reducing it by a
compact.

Remark: Unlike Proposition 4.2, we do not have to assume in the second statement that 2
is proper.

The following theorem provides various conditions equivalent to the explosion property.
Theorem 6.2 The following properties are equivalent.

(1) The manifold M is stochastically incomplete, that is, for some (x,t) € M x (0, 00),
/Mp<t,x7y>du<y> <1. (6.1)

(1a) For all (z,t) € M x (0,00), we have (6.1).
(2) M is A-massive.
(8) For some/all A > 0, there is a non-zero bounded \-harmonic function on M.

(4) For some/any T € (0,00), the Cauchy problem

Oou __ 1
{ a = 280, (6.2)
uly—g+ =0

has a non-zero bounded solution in M x (0, T) (the initial data is understood in L} (M, 1)).

loc

Remark: The part (2) looks simpler than its analogue in Section 5 — Theorem 5.1(2)-(2a).
Nonetheless, it is equivalent to either of the following assertions:

(2a) For some X\ > 0, there is a A-massive set.

(2b) For any A > 0, the exterior of any compact set is A-massive.
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Indeed, the existence of a A-massive set implies that M is A-massive, by the first part
of Proposition 6.1. If M is A-massive then the exterior of any compact is A-massive, by the
second part of Proposition 6.1.

Theorem 6.2 is largely due to Khas’minskii [111, Lemmas 4.1, 5.1 ]. The criterion (3) goes
back to Feller [59] in the case of one-dimensional diffusions. The proofs of different parts of
this theorem in various settings can be also found in [41], [75], [76].

Proof. We will prove the following chain of implications:

1) — (o) — @) — @ — @)

(1)<(1a) The fact that (1a) implies (1) is obvious. Let us assume (1) and prove (la).
By the semi-group property, we have, for all s € (0,¢),

Pl1=P_,P1<P_,1<1. (6.3)

Since we know that P;1(x) = 1 holds for some = € M, we conclude that, for this x, all
inequalities in (6.3) become equalities. In particular, we have

P_s(Psl)(z) =1
which is only possible if
P1=1. (6.4)

We are left to extend (6.4) to s > t. Let first s < 2¢. Then s/2 < t and we obtain, by the
semi-group property,
Pl = Ps/2 (Ps/21) = Ps/21 =1,

that is, (6.4) holds also for s € (0,2t). By induction, we prove (6.4) for s € (0,2"t), whence
it follows for all s > 0.
(1a)=(3) Given A > 0, let us set u(z,t) := P;1 <1 and

(e e}
w(z) = / e Mu(z,t)dt.
0
It is easy to verify that

1 e 1 & 0 0o &
—Aw = / e M Audt = / e_’\t—udt = ue_’\t‘ + )\/ e Mudt = -1+ \w
2 0 2 0 ot 0 0

and
o0
0<w< / e Mdt = "L
0

Therefore, the function v := 1 — Aw satisfies the equation %Av —w=0and 0 <v <1 We
are left to rename 2\ to A.
(3)=(4) Let v(x) be a non-zero bounded A-harmonic function. Clearly, the function

u(x,t) = U(:U)e%/\t

solves the Cauchy problem
Qu — LAy
{ ot 2 (6. 5)

uli—gr = v(2).
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On the other hand, there is another solution to (6.5), namely, w = Pyw. For any t > 0, we
have
sup |wl (-, t) < sup|v| - Pl < sup [v|

whereas v # 0 implies
1
sup |u| (-, ) = e2* sup [v| > sup|v| .

Therefore, the functions u(-,t) and w(-,t) are different, for any ¢ > 0. At the same time, both
are bounded on M x (0,7") whence we conclude that u — w is a non-zero bounded solution
to (6.2) on M x (0,T).

(4)=(1) Let u(x,t) be a non-zero bounded solution to (6.2), for some 7" > 0. We can

assume that supu > 0 and sup [u| < 1 so that the function w := 1 — w is positive and
inf w < 1. Since the function w is a solution to the Cauchy problem
ow __ 1
{ o = 28w (6.6)
wli—g+ =1

and P;1 is the minimal positive solution to (6.6), we conclude that P1 < w. Therefore, for
some z € M and t € (0,7,

Pl = / p(t,x,y)du(y) < 1,
M

and M is stochastically incomplete..

(3)=(2) If v is a non-zero bounded A-harmonic function then one of the functions v, v_
must be non-zero, let it be vy. Clearly, v is A-harmonic in {v > 0} which implies that v is
A-subharmonic in M, and M is A-massive.

(2)=(8) Let M be A\-massive and let w be an admissible A-subharmonic function for M.
We will construct a non-zero bounded A-harmonic function on M as the limit of solutions to
the following Dirichlet problems

{Avk—)\vkzo in &,
vklog, =1,

where {&} is an exhaustion sequence. We have 0 < v, < 1 and the sequence {vy} is
decreasing and converges to a bounded solution v. Let us verify that v £ 0. We may assume
from the beginning that supw = 1. Then we have, by the maximum principle, vy > w and
thus v > w which implies v 2 0. W

Corollary 6.3 (Khas'minskii [111]) The stochastic completeness of M is equivalent to the
uniqueness for the Cauchy problem (6.2) on M x (0,00) in the class of bounded solutions.

Proof. It suffices to show that if M is stochastically incomplete then there is a bounded
non-zero solution to (6.2) on M x (0,00). The function u(x,t) = 1 — P;1(x) is such a solution
(note that in the proof of Theorem 6.2, we have constructed such a solution on a finite time
interval). Indeed, it is obviously bounded and is non-zero because P;1(z) # 1. B

Corollary 6.4 If M is parabolic then M is stochastically complete.
Indeed, A-massiveness implies massiveness.

Corollary 6.5 If the exteriors of some compacts in My and My are isometric then My, Mo
are stochastically complete or not simultaneously.
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This follows from the fact that A-massiveness is preserved by subtracting a compact
(Proposition 6.1).

Corollary 6.6 ([111], [185, Proposition 1])If, for some X\ > 0, there is a A-superharmonic
function v outside a compact set in M such that v(z) — 400 as © — oo, then M is stochas-
tically complete.

The proof is similar to that of Corollary 5.4.

Corollary 6.7 ([75]) If, for some point x € M and a precompact open set U 3 x,
[ Gaduty) < (67)
M\U

then M 1s not stochastically complete.

Proof. Assume on the contrary that M is stochastically complete. Then, for all x € M,
t > 0, we have P,1 = 1 whence

/Gmyd,u // (t,z,y)dtdu(y // (t,z,y)du(y —%/
0

By (4.6), the singularity of the Green function is summable, whence

/ G(z,y)du(y) < oo
U

Corollary 6.8 (=Proposition 3.2) A model manifold M, is stochastically complete if and
only if
*Vi(r)d
/ (rydr _ . (6.9)

Proof. The Green function on M, is

Glo,x) = /,, h SCE:)

where x = (p,0). Therefore, the sufficient condition (6.7) for stochastic incompleteness ac-

Ja d,o/ S <

or, after interchanging the order of the integrals,

(6.8)

contradicting (6.7) and (6.8). W

quires the form

= Vi)
/ S dr < 0. (6.10)

Thus, (6.10) implies stochastic incompleteness.
Let us show that conversely, (6.9) implies the stochastic completeness of M. If
< dr

5(r) ~
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then M, is parabolic and thus stochastically complete. Assume in the sequel that

* dr

S5(r)

If a function v on M, depends only on the polar radius p then the equation Av —v = 0
defining 1-harmonic functions, amounts to

< 00.

!

v + %v’ —v=0. (6.11)

Let v solve (6.11) on [1,00) with the initial values v(1) =1 and v’(1) = 0. The function v(p)
is monotone increasing because equation (6.11) after multiplying by Sv and integrating from
1 to p, amounts to

p
Svv'(p) = /1 S (v +v?) dr > 0.

Equation (6.11) can be transformed also into the integral equation

o(p) =1+ /1 ’ % / " S(©)u(e)de.

which implies, together with v > 1, that

Podr [T [P (V(r)=V(1))dr PV(r)dr cons
0> [ 5 ), stoas = [T > [T ot

Therefore, (6.9) implies that v(p) — oo as p — oo, and M is stochastically complete by
Corollary 6.6. W

7 Parabolicity and volume growth

As follows from Theorem 5.1, in order to prove that a manifold is parabolic, it suffices to show
that capacity of some precompact open set is 0. This motivates us to consider the following
estimates of capacity.

7.1 Upper bounds of capacity

Theorem 7.1 Assume that a ball B(x,R) on a Riemannian manifold M is precompact.
Then, for any 0 < r < R, the following estimates of capacity are satisfied:

R —-T
cap (Bla,), B, R) ' 2 5 [ (7.)

and R g,
Cap(B(x,r),B(x,R))lz/ Tl (7.2)

Corollary 7.2 Assume that M is geodesically complete. Then, for any r >0 and x € M,

—r dp
cap (Bl 2 [y B
and
cap (B(z,r)) ! 2/ V’(dsfp) (7.3)



Remark: The geodesic completeness of M is required here to ensure that all balls are
precompact sets.

The estimate (7.2) is contained in [134, section 2.2.2, Lemma 1], in the context of a general
notion of capacities in R?. For Riemannian manifolds, it was proved in [71, Theorem 1]. The
estimate (7.1) was proved by Sturm [174]. A very similar inequality appears also in [153].

Inequality (7.2) is sharp in the sense that it becomes an equality if M is a model manifold
and z is its pole. Inequality (7.1) is sharp in the sense that the factor % cannot be increased
(see [174, p.77]).

The estimates of capacity can be generalized in the following way. Let v(z) be an exhaus-
tion function on M i.e. a continuous function on M such that all level sets {x € M : v(z) < r}
are precompact. The latter is equivalent to

v(z) —» +o0 as x — 00,

where £ — oo means that z is leaving any compact.
Assume that v(z) is locally Lipschitz and let I'(x) be a continuous function on M satisfying
the inequality
|Vo(z))? < T(z).

Let us set B, = {z € M : v(z) < r} and

W(r) = / D(2)dp,
which is an analogue of the volume function. Then, for all » < R,

)dp

a1 (=
cap (B, BR) 1 > B /,, m (7.4)
and Ry
- p
cap (B, Bg) ' > Wi (7.5)

If M is geodesically complete then the distance function is an exhaustion function so that
we may take v (-) = dist(z,-). By letting I' = 1, we obtain (7.1) and (7.2) from (7.4) and
(7.5), respectively.

To get another example, let us set I' = ]Vv]Q assuming that v is smooth enough. By the
co-area formula, we have

W'(p :/ Vo|dy' = fluxw,
0= [, (9ol =t
for almost all p, and (7.5) yields

R
dp
fluxov’
0B,

cap (BT,BR)_1 >

The estimate (7.6) was obtained in [71, Lemma 1].
Inequalities (7.4) and (7.5) can be proved in the same way as (7.1) and (7.2) below.
Proof. [inequality (7.1)] By the definition (4.12) of capacity, we have

cap (B(z,r), B(z, R)) = inf / \Vul? dp

B(z,R)
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where inf is taken over all test functions u € L(B(x,r), B(z, R)). To prove (7.1), it suffices
to produce, for any € > 0, a test function u such that

/ IVl du < 2 </R 0 f;;) - 6ds) B (7.7)

B(z,R)

where we denote for simplicity V(s) := V(z,s).
Let f be a Lipschitz function on [0, 00) such that

floy =1 and  flge) =0. (7.8)

Let us set u := f(p(-)) where p(-) := dist(x, ). Since |Vp| < 1, we have

Vul = |f'(p)Vp| < |f(p)]
and

R
[ witans [ i@l au= 1@l ave. (7.9)

B(z,R) B(z,R)

Let us choose f to satisfy on [r, R] the equation

flp) = —a- T (7.10)

and the boundary conditions (7.8), whence

s§—7rT

R
fo) = a/p Vis) V) £

o= ([ v rie) B

where

Thus, by (7.9) and (7.10),

R p—1 2
[ vt < @ [ (Gt v
B(z,R)
R 1
- “ZQ/T (”"'”>2d<v<p>—v<r>+a>
o a2(P—T)2 f a2 R p—r
a V(ﬂ)—V(T)+€T+2 / V(ﬂ)—V(T)Jrfdp
< 2a2a_1:2a,

whence (7.7) follows. W
Proof. [inequality (7.2)] It follows the same lines as above but with a different function f.
Let us replace (7.10) by

f(p) =~ (7.11)

whence



and

R ds -
a= —_— .
</r V(s) + €>
Then, by (7.9) and (7.11),

R / R
r (V’(p) +5) r V,(p) te

B(z,R)

whence (7.2) follows as ¢ | 0. W

7.2 Sufficient conditions for parabolicity

The main result of this section is the following theorem.

Theorem 7.3 Let M be geodesically complete. If, for some point x € M,

o0

pdp C
/ S = (7.12)

then M 1is parabolic.
This theorem was proved by Karp [108], Varopoulos [185] and by the author [70], [71].
Example 7.1 The hypothesis (7.12) is satisfied if, for example,
V(z,p) < Cp?

or
V(z,p) < Cp*logp,

for some x and all p large enough.

Proof. By Corollary 7.2 and by (7.12), we have

—r)dp  \7'
B ) <2 =0
can B <2 ([ b e) =0
for any ball B(z,r). Therefore, M is parabolic by Theorem 5.1(6). H

Corollary 7.4 (Cheng - Yau [28]) Let M be geodesically complete. If, for some point x € M
and for a sequence Ry — 0o,

V(z, R;) < const R? (7.13)
then M 1is parabolic.

Proof. Indeed, condition (7.13) implies that

o0

o Ry,
[vies 2 & [ v

> constz / pdp

Rk 1
= R — R,
= const — =0 7.14



2
kal
2
Rk:

(&)
where divergence of the series (7.14) follows from the fact that ] = 0. The rest follows

by Theorem 7.3. W =

Denote S(z, p) = i/ (0B(z, p)) that is S(z, p) is the boundary area of the geodesic sphere
0B(z,p). Observe that S(z,p) = V/(z,p), for almost all p. By using the capacity estimate
(7.3), we obtain the following result.

Theorem 7.5 Let M be geodesically complete and, for some x € M,

/ e~ > (7.15)

Then M s parabolic.

Theorem 7.5 was proved by Ahlfors [1] and Nevanlinna [149] for Riemann surfaces, by
using the conformal mapping argument. For Riemannian manifolds, it was proved by Lyons
and Sullivan [132] and by the author [70], [71].

For a model manifold, (7.15) is also a necessary condition for parabolicity, by Proposition
3.1. We will see in the examples below that, in general, (7.15) is not necessary for parabolicity.
However, it is possible to modify (7.15) to make it a necessary condition, too. Given an
exhaustion function v, let us denote B, = {x € M :v(x) <r}. If v is smooth then the set
0B, = {x : v(z) = r} is a smooth hypersurface for almost all r.

Theorem 7.6 A manifold M is parabolic if and only if there is a smooth exhaustion function
v on M such that
 dr
fluxwv
0

T

= 0. (7.16)

For example, if v(-) = dist(z,-) then %luxv < S(z,r) and Theorem 7.5 follows from

Theorem 7.6. '
Proof. If (7.16) holds then, by (7.6), cap(B,) = 0 and M is parabolic, by Theorem 5.1(6).
Note that in contrast to Theorem 7.5, we do not need here that M is geodesically complete
because the sets B, are automatically precompact, by the definition of an exhaustion function.
Assume now that M is parabolic. Then there is an exhaustion sequence of precompact
open sets {&} such that
cap(&k, Epa1) < 1. (7.17)

Indeed, if {&} is some exhaustion sequence then, for any k,
cap(&, &) — 0 as | — oo.

Choose [ big enough and rename & by £, 1, skipping all & with k < <.
Let uy, be a capacity potential of the capacitor (E, Ex+1), k > 1, and let us set

. k—l—l—uk(m), ifxESkJrl\gk,
“(x)_{l, ifre&.

The function v is continuous on 9&;, and harmonic otherwise (see Fig. 17). If r € [k, k+1)
then, by (4.16) and (7.17),

fluxv = —fluxug, = cap(&, & <1,
ux cuy P(Ek, Ekt1) <

whence (7.16) follows.
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Figure 17: Function v

Strictly speaking, the function v is not smooth. However, it is possible to smooth v out
near 0, without violating (7.16). W

Another proof can be obtained by Theorem 5.5 which claims that, on a parabolic manifold,
there exists an exhaustion function v which is harmonic outside a compact. Therefore, for r
large enough, %%Xv does not depend on r whence we obtain (7.16).

If v is an exhaustion function which is subharmonic outside a compact then %uxv is

T

decreasing in r, which again implies (7.16). Thus, we have the following

Corollary 7.7 If there exists an ezhaustion function v(x) on M, which is subharmonic out-
side a compact then M is parabolic.

Note, that the word “subharmonic” can be replaced here by “superharmonic”, by Corol-
lary 5.4, but the proof of the latter was entirely different!

Let us discuss to what extend the hypotheses (7.12) and (7.15) of Theorems 7.3 and 7.5
are sharp. If the manifold M has a non-negative Ricci curvature then the condition (7.12)
is also necessary for, and thus is equivalent to, parabolicity. This was proved by Varopoulos
[181] and also follows from the Green function estimate of Li and Yau [126]

T dp ! pdp
01/ PP < Gla,y go/—, 7.18
@<V (719

Vi(z,p) ~

where r = dist(z,y) and C > 0. Indeed, the condition (7.12) is equivalent to G = oo
which in turn is equivalent to the parabolicity of M. Estimates (7.18) were also obtained by
Varopoulos [182] for manifolds with non-negative sectional curvature.

In Section 11, we will see other situations when (7.12) is equivalent to parabolicity. How-
ever, in general, neither (7.12) nor (7.15) is necessary for parabolicity as is shown in the
following examples.

Example 7.2 Let M be a geodesically complete and non-compact model manifold M,. By
Proposition 3.1, the parabolicity of M, is equivalent

 dr
/ V’(r):OO (7.19)

where V(r) = V(o,r). Let us compare (7.19) with the hypothesis

* rdr
/ 0] = 0. (7.20)
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If (7.20) holds them M, is parabolic by Theorem 7.3 whence (7.19) follows. However, (7.19)
does not necessarily imply (7.20). The manifold M, with such volume function is parabolic
but (7.20) and (7.12) fail to hold.

Let us construct a volume function V' (r) satisfying (7.19) and

* rdr
/ 7 <o (7.21)

Indeed, start with any V' (r) satisfying (7.21) and diminish it on a rare set of infinite measure
so that V’ becomes nearly 0 on this set (see Fig. 18). The integral (7.21) does not change
much whereas the integral in (7.19) may become divergent.

A

function V(r) before
modification (thin)

function V(r) after
modification (bold)

Figure 18: Function V(r) satisfying (7.19) and (7.21)

This example shows also that a parabolic manifold may have arbitrarily fast volume
growth. Another example for that can also be found in [185, p.826].
If V(r) is conver, then (7.21)does imply, and thus is equivalent to,

/ ° dr <
00
Vir)y ~
because V' (r) > w. In particular, for a model manifold with a convex volume function
V(r), the condition (7.21) is equivalent to non-parabolicity.

Example 7.3 In general, the condition (7.15) is not necessary for parabolicity either. To
see that, let us consider a couple of two-dimensional model manifolds M; and M, which are

parabolic, that is . .
dr oo and / A 00. (7.22)
(r) g(r)

Let M be a connected sum of My and M, (see Fig. 19). By Corollary 5.2, an exterior of a
big enough compact in My (and in My) is not massive. Therefore, an exterior of a big enough
compact in M, being a disjoint union of such sets in My and My, is not massive either, and
M is parabolic.

On the other hand, the boundary area function S(x,r) on M is equivalent to f(r)+ g(r)
as r — 00. It is possible to find f and g satisfying, along with (7.22), also the condition

& dr
/ —f(r) o) < 00. (7.23)

Indeed, one can construct f and g so that f(r) + g(r) = r?, for large r, but functions f(r)
and g(r) may be chosen to stay nearly constants on the intervening intervals (2k, 2k + 1) and
(2k + 1,2k + 2), respectively, which makes the integrals in (7.22) divergent.
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Figure 19: Connected sum of My and M,

Therefore, we have

o dr
/ S <% (7.24)

but M is parabolic.

8 Transience and isoperimetric inequalities

In this section, we obtain lower bounds of capacity and apply them to produce criteria of
non-parabolicity.

Theorem 8.1 Let Q C M be a precompact open set, and K C £ be a compact set. Assume
that for any region E with a smooth boundary, such that K C E C (), the inequality

1 (OF) > f(u(E)) (8.1)
holds with a positive increasing function f(v). Then the following estimate is true:

1 2 g
cap (K,Q) " < /|K| ) (8.2)
The estimate (8.2) was proved by Maz'ya [134, section 2.2.3] for an even more general
notion of capacity in RY. For Riemannian manifolds, it was proved by the author [70], [71].
The inequality (8.2) is sharp in the sense that it becomes an equality if K and 2 are concentric
balls in R?.
Proof. Let ¢ € D(K,Q) where the class D(K,Q) is defined by (4.17), and let us set
1 = 1 — ¢. Since the Dirichlet integrals of ¢ and 1 are equal, it suffices to prove that

vz { [ 1T
/QIWJI duz{ . fQ(U)} : (8.3)

For any ¢ € (0, 1), we denote (see Fig. 20)
Spi={xeQ:¢Y(x)=t} and E,:={zxecQ:¢(x)<t}.

Since 1 € C*°, the Sard theorem implies that the set S; is a smooth hypersurface for almost
all t € (0,1).
The coarea formula says that, for any continuous function w,

/ud,u:/l /u\VMld/f dt. (8.4)
0



Figure 20: Function ¢ and sets Ey, Sy

We have by (8.4) with u = \V@b|2 and by the Cauchy-Schwarz inequality

1

/QIWJIZdu = / /|w| dy' y dt
St

0
_IsF (8.5)
T Js IV A
Again, by (8.4) with v =1 (and with E} instead of )
t
o) = B = ||+ [ du= K|+ [ [ 196l d pao
EA\K 0 |
whence for almost all ¢ € (0,1)
vt = [ 1Vel " du. (5:6)
St

By the isoperimetric inequality (8.1), we have for almost all ¢ € (0, 1)

1Si] = F(IE:]) = f(u(2)).
Therefore, we obtain from (8.5) and (8.6)

~1
12|

1 1 -1 v(1) -1
) F2(v(t) v'(t)dt _dv_ v

|K]

whence (8.3). W

Theorem 8.2 Assume that, for any precompact region 2 C M with a smooth boundary, the
following inequality holds

09 > f (1) , (8.7)
where [ is a positive increasing function on (0,00) such that
© dv
—— < 00. 8.8
) (&)

Then M is non-parabolic.
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This criterion was proved by Fernandez [61] and by the author [70], [71]. In RY, inequality
(8.7) holds with f(v) = cdvd%l. For such a function, (8.8) is satisfied if and only if d > 2.
Proof. The capacity estimate (8.2) and condition (8.8) imply that for any compact K with
positive measure,

|M| —1 o —1
dv dv
@)=y [ peye 2V Py 7

K| K|

whence by Theorem 5.1, M is non-parabolic. W

Another proof using the heat kernel argument, will follow from Theorem 10.2 below. How-
ever, the capacity argument has its own value since it may be applied to other settings where
the heat kernel is not available. For example, there is a generalization of the parabolicity test

(7.12) for the non-linear elliptic equation div (|Vu|p -2 Vu) = 0 which is the Euler-Lagrange

equation for the functional [|Vu[P, see [110], [95], [96], [39].

The estimates of capacities given by Theorems 7.1 and 8.1, can also be used to produce
pointwise estimates of the Green function G(z,y). Indeed, for any precompact open set €2
containing y we have the inequalities

sup G(z,y) > cap (Q)~' > inf G(z,y). (8.9)
=i 10 €002

If one knows a Harnack inequality to relate sup,cso G(x,y) and inf ecpq G(z,y) then one can
get pointwise estimates of G(x,y). See for details [127], [71]. See [23] and [20] for estimates
of the volume of level sets of G in connection with isoperimetric inequalities.

9 Non-explosion and volume growth

We prove here the following test for non-explosion.

Theorem 9.1 Let M be a geodesically complete manifold. If, for some point xg € M,

&0 rdr
- 1
/ log V(zg,7) > (9-1)

then M 1is stochastically complete.
Condition (9.1) holds, in particular, if
V(zo,r) < exp (CTQ) (9.2)

for all r large enough or even if V(zg,r;) < exp (Crz), for a sequence 1y — 00 as k — o0.
Theorem 9.1 was proved by the author [72]. Other related results (all for geodesically
complete manifolds) and references are as follows.

e M.Gaffney [66] proved that log V (xg,r) = o(r), r — oo, implies stochastic completeness.

e S.-T.Yau [193] proved that any manifold with Ricci curvature bounded below is stochas-
tically complete.

e K.Ichihara [100] and P.Hsu [97] extended the above result of Yau to allow the Ricci
curvature to grow in the negative direction in a certain way (see Corollary 15.4(a)
below).
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e Karp and Li [109] proved that (9.2) is sufficient for stochastic completeness. This fact
was proved also by different methods by E.B.Davies [44] and M.Takeda [177].

e Theorem 9.1 was extended by T.Sturm [173] to a general setting of Dirichlet spaces.

e See Section 15 for conditions for stochastic completeness in terms of the curvature.

Proof. [Theorem 9.1] By Theorem 6.2, it suffices to verify that the only bounded solution

to the Cauchy problem

{ %u—%Au:O (9.3)
uli=oy =0

in M x (0,T) (for some T" > 0) is u = 0. The function wu(z,t) is assumed to be in

C?(M x (0,T)) and the initial data is understood in the sense of L}, (M, p).

The assertion will follow from the following even more general fact.

Theorem 9.2 Let M be a geodesically complete manifold, and let u(z,t) be a bounded so-
lution to the Cauchy problem (9.3) in M x (0,T), with the initial condition in the sense of
L? (M, p). Assume that, for some o € M and for all R large enough,

loc

T
[ ] o< e @), (9.4)
0 B(zo,R)

where f(r) is a positive monotone increasing function on (0,+00) such that

 rdr
Then u=0 in M x (0,T).

Before the proof of Theorem 9.2, let us show why it implies Theorem 9.1. Let u be a
solution in M x (0,00) of the Cauchy problem (9.3), such that sup |u] < C. In particular,
u satisfies the initial condition not only in the sense of L}, (M, ) but also in the sense of
L? (M, ). Assume that the hypothesis (9.1) holds. Then we have

loc

T
/ / u?(z,t)du(z) < C*TV (20, R).
0 B(zo,R)

Denote
f(r) :=log (C*TV (g, 7))

so that the hypothesis (9.4) is satisfied. Obviously, (9.5) is implied by (9.1). Hence, we can
apply Theorem 9.2 which yields u =0. W

Theorem 9.2 provides a uniqueness class (9.4) for the Cauchy problem. It can be regarded
as a generalization of the classical uniqueness classes of Tichonov [178] and Técklind [176]
for the heat equation in RY. Indeed if, for example, the function u(z,t) is a solution to the
Cauchy problem (9.3) in R% and belongs to the Tichonov class:

fule, )] < Cexp {C o}

then the conditions (9.4) and (9.5) are satisfied with f(r) = (C + €)r?, and we conclude, by
Theorem 9.2, that u = 0.

Similar integral uniqueness classes for parabolic equations in unbounded domains in R?
were introduced by Oleinik and Radkevich [154] and by Gushchin [91]. See also [114], [143],
[101] for the results on uniqueness for positive solutions .
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Proof. [Theorem 9.2] Given a large enough R > 0 and 7 € (0,7T), we will prove that for any
d € (0, 7] such that

R2
§ < .
the following inequality holds:
c
[ e ndnta) < [ o= dduto) + 55 (9.7)
Br Bar

where ¢ > 0 is a (large) absolute constant. Suppose that we have proved (9.7) already, let us
show how to derive v = 0. Fix some (large) R > 0 and 7 € (0,7"). We define the sequence of
radii R, = 2" R and the sequence {0}, k = 0,1,2,..., to satisfy (9.6) with R = Ry, that is,

Ry
0< o < —1= 9.8
© S ToF Rern) (©:8)

Let us define also the decreasing sequence {71} inductively: 7o = 7 and 741 = 7 — 0%
(see Fig. 21). The inequality (9.7) yields

C

/ w2z, i) dp(x) < / w2 ) + (9.9)

Bry, BRk+1

Figure 21: Sequences 7,0 and Bpg,

We would like the sequence {74} to reach 0 for some finite k. Suppose that 7541 = 0,
then

/ (e, 741 )dpu(z) = 0,
BRK

and by iterating (9.9) up to k = K, we get

By letting R — oo, we conclude u(+,7) = 0. If we manage to prove that for any 7 € (0,7
then we will conclude u = 0. Thus, we have to verify that, for any 7 € (0,T), the sequence
{71} can reach 0 in finite number of steps. In other words, this means that, for some K,

T=00+01+02+ ..+ k. (9.10)
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The only restriction on dj is the inequality (9.8), which imposes the upper bound on dj.
However, the hypothesis (9.5) implies that

2
> i = .
— f(Ry)
Therefore, the sequence {J;} can be chosen to satisfy simultaneously (9.8) and
Z (5k = OQ.
k

By diminishing some of dj, we can achieve (9.10) for any positive 7.
Now we turn to the proof of (9.7)%. Let p(x) be a Lipschitz function on M such that
|Vp| < 1. For example, p can be a distance function from a subset of M. Consider the function

&(x,t) =

defined for all x € M and t # s (where s is a fixed number). It follows from |Vp| <1 that £
satisfies the inequality

o 1, .,
— — < 0. .
565 Vel <0 (9.11)

Let us denote for simplicity Br := B(xg, R). Let n be a Lipschitz function such that
n(x) = 0 outside Byg and 1 = 1 in B3, (see Fig. 22).
2

Figure 22: Function 7(x)

We multiply the equation (9.3) by un?e® and integrate over the cylinder C := Bygx[T—6, 7]
for some § € (0,7) :

2/%un2e§dudt: /Au-un265dudt. (9.12)
c C

Next we integrate by parts in both sides of (9.12). The left hand side is equal to

T

T a 2 a
/ /Mngegdudt: /u2772€§d,u —/u2n2—€e§d,udt.
or ot
C

T*(;BQR BQR 7__5

®Different proof can be found in [91].
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The spatial integral on the right hand side of (9.12) is estimated as (we suppress du for
simplicity)

/Au-unQeg = /|Vu\2 et — /Vumee /Vquun e

Baor Baog

< - / Val e +2 [ (waﬁn%\vm?u“’) o

Bor Bor
1 2 1 2 2\ .2 ¢

+ §|Vu| +§|V£| u® | ne
Bagr

= 2 [Vt [ veR e,
Bar B2R

Therefore, we obtain from (9.12):

T

50
/u n*eSdu §/{ 6§—|-2|V77| + = |V£\ }uQesdudt. (9.13)
Bar C

T—0

Due to inequality (9.11), the first and the third terms of the right hand side of (9.13) cancel,

and we obtain i

/uaneédu < 2/\V77]2u265d,udt. (9.14)
Bar s c

The function 7 can be chosen so that n < 1 and |Vn| < % for some constant C' independent
on R (geodesic completeness is required for existence of such n). Taking into account that
n=1on Bsp, we can rewrite (9.14) as

2

2
/uQ(x,T)eg(w’T)du(m) < /u2(x 7 —8)eS@T0 gy 20 / / u’eSdudt. (9.15)

BR BQR T— 6B2R\BSR/2
Now we specify p(z) and &(z,t). Let us choose p(x) to be the distance function from the
ball Bp i.e.
(l’) L 0, if x € Bp
PRE) = dist(x,zg) — R, otherwise
Also, let s = 74 ¢ so that for t € (1 — 4, 7)

2(x
{(z,t) = —% <0.

In particular, we can omit the factor e¢ on the left hand side of (9.15) because £ = 0 when
x € Bpg, and omit the factor €f in the first integral on the right hand side of (9.15) for £ < 0.
Since, for x € Bar\B3g/2;

p(z) 2 SR

N =

and, for t € (1 — 0, 7),
s—t=74+6—1t <29,
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we obtain for those x and ¢

We derive from (9.15)
20?2 1R
/ u?(z, 7)dp(x) < / u?(z, 7 — 0)du(z) + T /u2 exp {_1_67} dpudt.
Br Bar c
Finally, we apply the hypothesis (9.4) which implies

/uQ(a:, t)du(z)dt < exp (f(2R))

c

and, hence,

/uQ(x,T)d,u(x) < / (@, 7 — 8)dp(x) + QR—(’;Q exp{ 1R, f(QR).}

16 6
Br Baor

Now we choose § so small that

1 R?
— = >
or )
R
< ———. 1
= 16/(2R) (9.16)
For such §, we have
2 2 2C?
u?(x, 7)du(x) < u“(x, 7 — 0)du(x) + 3 (9.17)

Br Bar

which coincides with (9.7). W

In the rest of this section, we briefly discuss another approach for proving stochastic
completeness. Let us assume that M is geodesically complete, and that for some zy and for
all large enough r:

V(zo,7) < exp (Cr?) . (9.18)

Takeda’s approach [177] is based on the following remarkable inequality which was estab-
lished in [177] and improved by Lyons [130]. For any compact set K C M , we take K, to
be the open r-neighborhood of K. We denote by v,.(x,t) the P,-probability that the process
X; hits M\ K, by time ¢ (see Fig. 23); i.e.

U, (x,t) =P, {Is € [0,t] : X5 & K, }.

Theorem 9.3 (Takeda [177], Lyons [130]) Let M be geodesically complete. Then, for any
compact K and all t >0, r > 0,

[t tauto < 1011 [ ﬁ esxp {_g_t} de. (9.19)
K
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Figure 23: The event that the Brownian motion hits 0K, before the time t.

Remark: A similar estimate of the L2-norm of 9, can be found in [80].

Inequality (9.19) implies easily
2
[ 6ot 0dun(e) < 1615, ex {—g}
K

and

K, 2
inf ,(2,1) < 16||K|| exp{—r—}. (9.20)

Given (9.18), we see that, for r large enough, |K,| < exp {C/TZ}, which together with
(9.20) implies that, for t < to := (2C") ",

inf . 21
Inf ¢ (z,1) — 0 (9.21)

Intuitively, this is enough to conclude stochastic completeness. Indeed, (9.21) means that,
for some point x € K, the P,-probability that X; reaches the boundary JK, by time t, is
very small for large r. This leads us to believe that the P,-probability that X; escapes to oo
in finite time should be 0.

To make this argument rigorous, consider the heat kernel pg, (t,z,y) of K, with the
Dirichlet condition on the boundary 0K,. The integral

/pm (t,z,y)du(y)

Ky

is equal to the P,-probability that X; stays in K, up to time ¢, without touching the boundary
OK,.. Therefore,

%«(3«"775) + /pKr(t,:L‘,y)du(y) =1,
K
which yields together with (9.21) and p(¢,z,y) > pk, (¢, 2,y)

su[g/p(t,x,y)dﬂ(y) =1, Vte(0,to).
xEe
M

By Theorem 6.2(1a), M is stochastically complete.

10 Transience and \;

The main result of this section is Theorem 10.2 which provides a non-parabolicity test in
terms of certain property of the eigenvalues of the Laplace operator.
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10.1 The first eigenvalue

For any precompact open set 2 C M, let us denote by A;(€2) the first Dirichlet eigenvalue of
the Laplace operator in Q i.e. A\1(€) is the smallest number A for which the problem

{ Au+du=0 in Q
ulpn =0

has a non-zero (weak) solution. Another (equivalent) definition is the following: A;(2) is the
bottom of the spectrum of the operator —A in L%(2, ) with the domain C§°(Q2). The latter
definition is independent of compactness of €2, so it applies for any region (2. In particular,
 may be the whole space M. Yet another definition of A;(2) is given by the variational
principle:

Jo IVo[* du

A1(2) = in 5
#eC(Q d
¢%0< ) Joddu

(10.1)

It is easy to show that A1 (2) is non-negative, that it decreases when (2 increases and that
A1 (Ek) — A1 (M) for any exhaustion sequence {&}.

k—o0

Example 10.1 We have in R? for any ball A\j(B(x,R)) = <4 and A\ (R?) = 0. For the

R?
hyperbolic space A;(H?) = —(d741)2-

A theorem of McKean [137] says that if M is a Cartan-Hadamard manifold? of dimension
d and if its sectional curvature is bounded above by —k? then

M (M) > =(d—1)%k? (10.2)

=

(see also [192]).
A theorem of Brooks [18] gives the following relation between A; (M) and volume growth
of a geodesically complete manifold. If we denote, for a fixed =,

v := limsup
r—00

log V(x,r)
r

then!?
2

A (M) < VZ‘ (10.3)

In particular, A\; (M) = 0 for manifolds with subexponential volume growth. For the manifolds
R¢ and H?, both inequalities (10.2), (10.3) become equalities.

There is a well-known universal connection between A;(M) and the heat kernel long time
behaviour: for all x,y € M,

]
lim ogp(t,z,y)

t—o00 t

1
= —gM(M); (104)
see [118] and [25]. It implies immediately

Proposition 10.1 If A\;(M) > 0 then M is non-parabolic.

9 A manifold is called a Cartan-Hadamard manifold if it is geodesically complete, simply connected and has
non-positive sectional curvature. Both R? and H? are Cartan-Hadamard manifolds.

10T fact, Brooks’ theorem states that even Acss (M) < % where Aess (M) is the bottom of the essential
spectrum of —A.
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Indeed, by (10.4), the heat kernel p(t,x,y) decays in ¢ exponentially whence the integral
(5.1) is convergent and M non-parabolic, by Theorem 5.1(5).

There are interesting applications of the discrete analogue of this fact in the paper of
Dodziuk [49].
Remark: In the view of Proposition 10.1, one may wonder if A;(M) > 0 implies a stronger
property than non-parabolicity, for example, existence of a non-trivial bounded harmonic
function on M (cf. Theorem 5.1(3)). The answer is negative. There is a beautiful example of
Benjamini and Cao [11] of a geodesically complete manifold which is simply connected, has
A1 (M) > 0 and bounded geometry but admits no non-constant bounded harmonic function.

See [119, Section 13] for a survey on the existence of a non-trivial bounded harmonic
function on Cartan-Hadamard manifolds.

10.2 Faber-Krahn inequality and transience

In this section, we prove a far reaching extension of Proposition 10.1. Given a positive de-
creasing function A(-) on (0, 00), we say that a manifold M satisfies a Faber-Krahn inequality
with function A if, for any precompact region ) C M,

() > A(Q)). (10.5)

This is motivated by the Faber-Krahn theorem, which says that, for any bounded region
Q C Re,
2
(@) > e F (10.6)

(see, for example, [21, Chapter IV]) with the constant ¢z such that equality in (10.6) is
attained for balls. In other words, R? satisfies a Faber-Krahn inequality with function A(v) =
cdv_%.

Other examples of Faber-Krahn inequalities will be given below. In general, a Faber-
Krahn inequality need not be that sharp as (10.6) - in particular, we will not use the exact
value of ¢4.

Theorem 10.2 ([79, Theorem 2.3]) Let A(v) be a positive monotone decreasing function on

(0,00) such that
*  dv

Assume that the Faber-Krahn inequality (10.5) holds for all precompact open sets Q C M
with large enough volume, say |Q| > vy. Then M is non-parabolic.

Remark: Formally, the hypotheses of Theorem (10.2) allow the manifold M to have finite
volume. In this case A(v) is extended for v > |M| by the constant A(|M|). The condition
(10.7) amounts in this case to A\ (M) > 0. However, the most interesting case of Theorem
10.2 is when |M| = oo so that (10.7) is a lower bound on the rate of the decay of A at co.
For example, if A(v) ~ v™? for large v then (10.7) is satisfied if and only if 5 < 1.

Theorem 10.2 contains Proposition 10.1. Indeed, if A{(M) > 0 then we take A(v) =
A1(M), which satisfies (10.7).

Theorem 10.2 contains also Theorem 8.2, at least if @ is decreasing. Indeed, under the
hypothesis of Theorem 8.2, we have, by Cheeger’s inequality [26],
L/ JoDIN? 1/ DD L1 (92D
A () > - f — ] >= f =2 ) > =] . 10.8
1) 2 7 <D1CHCQ D] ) =1 \pcca D] ) =1\ (108)
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Therefore, M admits a Faber-Krahn inequality with the function

A(w) = % (M)Q (10.9)

v

Obviously, hypothesis (8.8) coincides with (10.7), whence M is non-parabolic by Theorem
10.2.

Proof. [Theorem 10.2] Let us first observe that, by modifying A(v) for v < vg, we can show
that the Faber-Krahn inequality (10.5) holds for all €, not only for those with large volume.
Indeed, let us redefine A(v) := A(vp) for all v < vg. Clearly, the hypothesis (10.7) does not
change when we modify A on (0,v9). If || < vg then find a set Q' D Q of the volume vy and
notice that, by the monotonicity of A1(£2),

A(Q) 2 A(€) > ASY) = A(vo) = A(I9).

Henceforth, we can assume that the Faber-Krahn inequality (10.5) holds for all €.

The following line of reasoning was designed to obtain pointwise upper bounds of the
heat kernel via the Faber-Krahn function A (see [91] and [79]). Since the non-parabolicity is
equivalent to

/ p(t,z, x)dt < oo,

one gets a sufficient condition for non-parabolicity by integrating the upper bound of p(¢, z, x).
We start with the following consequence of the Faber-Krahn inequality (10.5).

Lemma 10.3 (/91], [79]) For any precompact region @ C M, for any non-negative function
u € C%(Q) N C(Q) vanishing on 0, and for any 6 € (0,1), we have

/Q [Vl dp > (1 - 8)JA (25—{]2) (10.10)

where

I::/udu and J::/quu.
Q Q

Proof. For any positive s, we obviously have
u? < (u— 8)2+ + 2su.
By integrating this inequality over €2 and using the definitions of I and J, we obtain
J < / (u — 5)%dp + 2s1. (10.11)
{u>s}

Applying the variational property (10.1) of the first eigenvalue in the region Q, := {u > s}
(observe that u — s vanishes on the boundary 9€2,) and the Faber-Krahn inequality (10.5) ,
we get
2
Jo_ IVu|”dp
(u— s)dp < =,
/Qs A (192])

Clearly,

1 1
QS‘S_/U’d/’L:_
S Jo S
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whence we obtain, by substituting into (10.11),

Jo, IVl du
< ———— +2s5]
J < AGT) + 2s
and
/ \Vul*du > (J —2sI) A (s7).
Choosing s = 2}], we conclude (10.10). W

Next, let us fix a point y € 2, and introduce the notation
u(z,t) :=pa(t,z,y) and  J(t):= / u?(z, t)dp = po(2t,y,y).
Q

Apply inequality (10.10) to the function u(-,¢) and observing that

I—/u(ar,t) —/m(t,w,y)dué 1,
Q Q
we obtain

2 2
/Q |Vul|"dp > (1 —6)J(t)A (W) ) (10.12)

The function u(z,t) satisfies in Q x (0, 00) the heat equation 3—“ = 1 Au. By multiplying

it by u and by integrating over €2, we obtain

7 = fuou=— [ 1w
— [ wdp= | uAu=— Vul|®,
ot Jo, M= Q! |

which yields, together with (10.12), the differential inequality in the spirit of Nash’s argument
[147):
oJ 2
—— 2> 1=0)JOA [ —— | . 10.13
5 = (1-0)50A (5705 (10,13
To verify that M is non-parabolic we have to find an upper bound for
o0 o0

[tz = [ s

a a

which would be independent of 2. By using (10.13) with ¢ = %, we have, for all b > a > 0

b J(a) J(a T® J
v
J(t)dt = JdJ <2 =
[ [ (-55) / A@ 0 )
a J(b) J(b) -
where we have changed in the last integral v = 7. Therefore, we have, for any a > 0,
7 (21, y)dt = ?J(t)dt <3 70 dv
paol4t, Y,y - = ’UQA(’U) :

a a JEla)

Now let Q 1T M. We have pq — p and J(a) = pa(2a,y,y) < p(2a,y,y). Hence,

2t dt <
/p( Y, y)dt <8 / IA@)
“ p<2a%y7y)

whence the non-parabolicity of M follows. W
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10.3 Heat kernel’s upper bound

One can resolve (10.13) to produce pointwise upper bounds of the heat kernel.

Proposition 10.4 Let the Faber-Krahn inequality (10.5) hold on M. Fiz x € M, tyg > 0,
5 € (0,1) and assume that a non-negative function ®(t) on [tg,00) satisfies the following
conditions:

2
P < - 10.14
(fo) =< dp(2to, x,x)’ (10.14)
D(t) dv
= (1—=96)(t—tg). 10.15
L ity = G0t (10.15)
Then, for all t > toy,
2
< —. .
p(2t,z,z) < 0 (10.16)

Remark: If we let tp = 0 and ®(¢9) = 0 then (10.14) is automatically satisfied. In order to
have (10.15) one has to assume

dv
. 10.1
/0 oA() < oo (10.17)
If this is the case, then the function ®(¢) is defined by the following identity
D(t) dv
——=(1-96)t 10.18
| A= - (10.18)

and (10.16) holds for all = € M (see also [79, Theorem 2.1]).

However, if (10.17) is not true then ¢y should be positive, and in order to obtain an upper
bound of the heat kernel p(2t,x,x) for ¢ > ty, one should know a priori an upper bound for
p(2to, x,x) (given by (10.14)).

Proof. Take some () containing x, denote
J(t) = /Qp?z(:x,y,t)du(y) = pa(2t,z, )

and continue the previous argument as follows. Dividing (10.13) by the right-hand side,

integrating in ¢ and changing variable v = %(t), we obtain, for all ¢t >ty > 0,

57@  dv
>(1—=96)(t—to). 10.19
[ LRI (10.19)
3.J(tg)
Hypothesis (10.14) implies
2 2 2
D(tp) < < = . (10.20)

= 0p(2tg, x,x) T dpa(2to,x,x)  §J(to)
Comparing (10.19) and (10.15) we obtain that, for all ¢ > to,
2 2

d(t) < =
O =570 = Spatetra)
whence
(2t,z,x) < 2

By letting Q@ — M, we obtain (10.16). H
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Example 10.2 For the Euclidean Faber-Krahn function
A(w) = o™, (10.21)

one gets from (10.18) ®(t) = const (ct)*? and from (10.16)

const
p(t,z,z) < iz (10.22)

for all z € M and t > 0.

If the Faber-Krahn inequality with the function (10.21) holds only for large v then as was
explained above, we extend A to all smaller v by a constant. We cannot use (10.18) any more
because (10.17) is no longer true but we can still use (10.15) to obtain (10.22), for ¢ large
enough.

Example 10.3 Let
const

A(v) = (10.23)

~ log®v’

for v large enough. Then (10.15) yields, for ¢ large enough and some ¢ > 0,

D(t) ~ exp {ctl%a}

and 1
p(t, x,z) < const exp {—ctm} .

Example 10.4 Let A(v) = A where ) is a positive constant. Inequality (10.10) can then be
replaced in the argument above by the much simpler

/ [Vl > AT,
Q

which leads to —J’ > A\J and eventually to
p(t,x,x) < e_%k(t_to)p(to,x,m).
In particular, for ¢ large enough,
p(t,z,x) < constexp (—At).

There is a vast literature on upper bounds of the heat kernel: see for example [19], [34],
[42], [46], [82], [79], [81], [126], [187].

11 Transience and volume growth

In this section, we describe two situations when the non-parabolicity of M follows from (and
thus is equivalent to) the condition
* rd
/ ik ;< o0, (11.1)
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11.1 Relative Faber-Krahn inequality

Theorem 11.1 Let M be geodesically complete and non-compact. Assume that for any ball
B(z,R) and any region Q CC B(z, R),

M Q) 2 2 (V(f;z’f)) (11.2)

where a > 0 and v > 0 are some constants. Then (11.1) is equivalent to the non-parabolicity

of M.

Inequality (11.2) may look strange at first sight. However, it is useful because, for example,
it holds on any complete manifold of non-negative Ricci curvature as well as on any manifold
which is quasi-isometric to one of non-negative Ricci curvature (see [78, Theorems 2.1 and
1.4] and discussion in [82, p.254]). It is easy to see that (11.2) is valid in R? with v = 2/d
(cf. (10.6)). For manifolds of non-negative Ricci curvature, the fact that (11.1) is equivalent
to non-parabolicity, was proved by Varopoulos [181].

Given a complete manifold of non-negative Ricci curvature, there may exists no positive
function A with which the Faber-Krahn inequality (10.5) would be valid on M. The inequality
(11.2) was designed to overcome this difficulty. It basically says that, in each ball B(zx, R),
there is still a Faber-Krahn inequality (10.5) with the function

Ay r(v) = %v”. (11.3)
Proof. [Theorem 11.1] The proof follows immediately from [79, Proposition 5.2], which says
in particular that (11.2) implies the following upper bound of the heat kernel

const

Vi, vt)

p(t,x,z) < (11.4)

Therefore, if (11.1) is true then

/ p(t,x, z)dt < / SO — const/ %
V(xy \/E) V(x7 /r.)

whence M is non-parabolic.
If (11.1) is not true then M is parabolic by Theorem 7.3. Alternatively, it follows also

from the lower bound
const

V(z, V1)
which is implied by (11.2) - see [36, Corollary 7.3]. W

Remark: The relative Faber-Krahn inequality (11.2) implies also the doubling property of
the volume function V' (z,r), that is, V(x,2r) < CV(x,r). Moreover, the doubling property

and the heat kernel upper bound (11.4) are equivalent to (11.2) - see [79, Proposition 5.2],
[37, Theorem 1.1].

p(t,x,z) > (11.5)

Remark: The relative Faber-Krahn inequality (11.2) together with the following hypothesis
V(x,r) > constr’™, Vaxe M, r>0, (11.6)
imply a uniform Faber-Krahn inequality

AL(Q) > const |Q72/". (11.7)
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Indeed, (11.2) implies the upper bound (11.4) of the heat kernel, which together with (11.6)

yields

const

Finally, (11.8) implies (11.7) by [79, Theorem 2.2] or [20, Theorem 0.7].

Remark: Let us fix a point © € M, a radius R and interpret the ball B(z, R) as a manifold
N which admits a uniform Faber-Krahn inequality (10.5) with the function (11.3); that is
A(v) = cv™, where

aV(z, R)"

R2 '
Similarly to Example 10.2, we can apply Proposition 10.4 to the manifold N = B(z, R) and
obtain, for any y € B(z, R),

C =

pn(t,y,y) < = -

const const R2 v
(ct)/v V(z,R)

By taking R = v/t and y = 2, we conclude

const

PB(z,v7) (t,z,x) < W

This estimate is clearly weaker than (11.5). One needs a more complicated argument as in
[79, Proposition 5.2] to obtain such an estimate for the global heat kernel p(t,z,x).

11.2 Covering manifolds

Let M and K be Riemannian manifolds, K being compact. A covering map F : M — K is
regular if there is a discrete group I' of isometries of M such that F(x) = F(y) if and only
if the points x,y belong to the same orbit of I'. Then we have K =2 M /I'. The group I is
called a deck transformation group of f.

One says that M is a regular cover of K if a regular covering map F : M — K exists. A
particular case of a regular cover is a universal cover for which I" = 71 (K).

Theorem 11.2 (Varopoulos [184], [188, Section X.3]) Let M be a geodesically complete non-
compact manifold which is a reqular cover of a compact manifold K. Then the non-parabolicity
of M is equivalent to (11.1), that is

© rdr
/ m < 00, (119)
for some/all x € M.

The original proof of Varopoulos was rather involved and used algebraic structure the-
orems for groups. The present proof is much easier and is based on the following powerful
isoperimetric inequality of Coulhon and Saloff-Coste.

Theorem 11.3 (Coulhon and Saloff-Coste [38, Theorem 4]) Let a geodesically complete non-
compact manifold M be a reqular cover of a compact manifold K. Set for some fixed xg

V(r) = V(xg,r). (11.10)

Then, for some (large) constant C > 0, the manifold M satisfies the isoperimetric inequality

(8.7) with the function
v

f(v) == CVICr)’

(11.11)

where V=1 is the inverse function.
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Proof. [Theorem 11.2] We need to show that the hypothesis (11.9) implies the non-
parabolicity of M (the other direction is covered by Theorem 7.3). By Theorem 8.2, M
is non-parabolic provided (8.8) holds. The integral in (8.8) is finitely proportional to

/00 [V—(0)] dv /00 2V (r)

v? V2(r)
- /2 Z<V1Q

which is finite by (11.9). H

Corollary 11.4 (Varopoulos [183]) Let a geodesically complete non-compact manifold M be
a reqular cover of a compact manifold K with a deck transformation group I'. Then M is
parabolic if and only if T contains a finite index subgroup isomorphic with Z or 72

Proof. Let v(n) be the volume growth function of I' i.e. 7(n) is a cardinal number of a
combinatorial ball of radius n in I" (associated with some fixed set of generators). Then the
behaviour of y(n) and V' (z,n) as n — oo is the same so that the condition (11.9) is equivalent

to
o0

Y < (11.12)

7(n)
It is a consequence of Theorems of Bass [9] and Gromov [89] that, for all n > 1, either
y(n) > en®(and M is non-parabolic) or vy(n) < Cn?(and M is parabolic). In the latter case,
the group I' contains a finite index subgroup isomorphic with Z or Z? (see [190, Corollary
3.18] for more details). W

12 Transience on manifolds with a pole

In this section, we assume that M is a geodesically complete manifold with a pole o and prove
a non-parabolicity test for such a manifold. As was mentioned in Section 3.1, the domain of
the polar coordinates (p,0) is M \ {o}, and the Riemannian metric of M has the form (3.1)
that is

ds® = dp* + A (p,0) do"de’ . (12.1)

We assume in the sequel that 6,62, ..., 09=1 are the normal coordinates on S?1. Denote
B, = B(o,p). As (3.2) says, the area element on the geodesic sphere 0B, is \/det || A;;]| |df)]
where |-| denotes here the standard volume on S~!. Let us set

D(p,0) := \/det || Ay]. (12.2)

The following result is essentially due to Doyle [52] who derived it in the two-dimensional
case by using a nice heuristic argument. Here we provide a rigorous proof for any dimension,
following [84].

Theorem 12.1 (Doyle [52]) If

|do)|
si-1 [ D71 (p,0)dp

then the manifold M is non-parabolic.

>0 (12.3)
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The condition (12.3) can be rewritten as

meas <9 e sit: / ﬁpﬁ) < oo) > 0. (12.4)

For comparison, the sufficient condition for parabolicity (7.15) can also be expressed via D
as follows

= 0. (12.5)
/ Jsa-1 D(p,0)|do)|
Let w be a small region on S?~!. To satisfy (12.4), it suffices that D(p,#) is growing in p

fast enough in a cone
N¢ :={(p,0): 0 € w},

regardless of the values of D outside the cone. This reflect the nature of the transience for
which it suffices that the Brownian motion has some escape root to infinity, such as the cone
N¥ (cf. Theorem 5.1(2) and Proposition 14.1(i)). On the contrary, in order to satisfy (12.5),
D(p, 6) should be growing relatively slow in p after being averaged in 6.

The function D has especially clear meaning if d = 2, in which case the metric (12.1) is
expresses directly via D as follows

ds? = dp* + D? (p,0) d6* .
Proof. [Theorem 12.1] It suffices to prove the following capacity estimate

|46

Cap(BTaBR) > >
st [FD=1(p,0)dp

(12.6)

and the rest will follow by Theorem 5.1(6).
We start with the following two lemmas. Let w be a region with a smooth boundary on
S%=1. Consider the cone

N“:{(p,ﬁ)ERd:p>O and Hew},

which is diffeomorphic to Ry x @ and can be regarded as a manifold with the boundary
ON® = Ry X Ow. Let us endow N“ with the Riemannian metric (12.1) so that N“ can be
regarded as a geodesic cone in M with the vertex o.

Denote by B¥ the “ball” {(p,0) € N¥: p < r} (see Fig. 24).

Lemma 12.2 If, for p € [r,R|, the function D(p,8) does not depend on 6 then, on the

manifold N*,
R —1
w pw dp
cap(By’, Bg) = |w| (/ m) . (12.7)

Proof. The capacity cap(By, Bf,) can be computed by (4.22), similarly to the case of a
model manifold, if we take
S(p) = || D(p). (12.8)

which is the boundary area of 9B,. Indeed, by (3.4), the radial part of the Laplace operator
has in the region r < p < R the form

A . _8_24_2/2_8_24_5,2
radial — 8,0 D ap - ap S 3p
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Figure 24: Capacitor (By, Bf;) in N¥

Therefore, the function u(p) defined by (4.20), that is,

R
dg
u(p) =a — 12.9
w=a 55 (129)
is harmonic in By \ BY. In addition, u satisfies the Neumann boundary condition % } onw =0

because u is a constant on the sphere 9B} that is orthogonal to ON*. Furthermore, if

=(['5%5)

then we have also u(r) =1, u(R) = 0.
Hence, u is the capacity potential of the capacitor (B}, Bf), whence

a Roge \7!
cap(By. Bp) = —flyxu= | gyl ==l (/ W) ’

which was to be proved. W
Lemma 12.3 Let D(p) be a smooth positive function on [r, R] such that
D(p,0) > D(p), forallpe|rR], 0cw. (12.10)

Then

R -1
cap(B¥, B%) > |w| (/ ;(’;)) , (12.11)

Proof. Denote by £L¥(r, R) the set of test functions for the capacitor (B}, By;) on N“, that
is all locally Lipschitz functions ¢ on N“ such that 0 < ¢ < 1, ¢[p» = 1 and ¢ = 0 outside

B%. We have
2

9¢

2, |09
Vol > |5

and
du = D(p,0) |df| dp,
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whence

cap(B7.55) = _inf [ [Vold
’ R

inf /
peLw(rR) /By

= inf
LY (r,R)

2

9
30

v

0)|db|dp

> inf

sl p) |do| dp. (12.12)

Let us consider another metric on N*, which is given by
ds* = dp* + o*(p)db?, (12.13)

where ¢ is a smooth positive function on (0,00) such that ¢%'(p) = D(p) for p € [r, R].
Denote by N¥ the cone N* with the metric (12.13). Then D(p) is the area density function
in the region r < p < R on NZ.

It easy to see that the Euler—Lagrange equation for the functional (12.12) is
(D22
p p
Its solution ¢ with the boundary conditions ¢(r,6) = 1 and ¢(R,#) = 0 is clearly independent
of § and is equal to the capacity potential of the capacitor (B, Bf) on the manifold N¢ (cf.
(12.9)). Hence, the infimum in (12.12) is equal to the capacity of (B, B}) on the manifold
N¢. This capacity was computed in Lemma 12.2 whence (12.11) follows. W

In order to prove (12.6), let us consider a finite family of small disjoint regions w1, ws, ...
on S, Then we have

B,,Bg) = inf volrd
cap( R) ¢€£(1§T7BR)/BR| o|” dp

> inf / Vol“d

> ot Z BRme' ¢|? dp
f Vol*d

>, / Vo

= anpri TZ,B}"{).

) =0.

v

Assuming that, for any w;, we have chosen a function Dl(p) like in (12.10) and applying
(12.11) to all w;, we obtain

R -1
cap(BT,BR)ZZ]w,»\< Ad"> . (12.14)

r Di(p)

If w; is small enough, then ﬁ,(p) can be arbitrarily close to D(p,6), uniformly in 6 € w; and
p € [r, R]. Also, the sum on the right-hand side of (12.14) can be replaced by integration as
we refine the partition of S¥~! into w;. Therefore, the sum in (12.14) can be made arbitrary

close to .
R _
/ P o
Sd-1 r D(p, 9)
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13 Liouville properties

The classical Liouville theorem says that any bounded harmonic function in R¢ is identically
constant. We will consider here various generalizations of this property. Given a function
class F on M and an elliptic operator L, by the Liouville property of the pair (F, L) we mean
an assertion that any function in F solving the equation Lu = 0 is a constant. Examples of
operators are the Laplace operator or a Schrodinger operator, examples of function classes
are LP(M, p), non-negative functions etc.

There is a vast literature devoted to Liouville type theorems and their generalizations.
We have selected only those Liouville properties which relate to recurrence or non-explosion
properties.

13.1 LP-sub(super)harmonic functions

Let u(x) be a non-negative C? function on M. Fix a point 9 € M and denote for r > 0 and
peR

)= [ w@duta)
B(zo,r)

One may wonder what growth of v,(r) as 7 — oo may occur provided u(z) is a harmonic
function. A partial answer is given by the following theorem:

Theorem 13.1 (Sturm [173, Theorem 1]) Assume that M is geodesically complete and that

(a) either p € (—o0,1) and u > 0 is superharmonic

(b) orp e (1,00) and u > 0 is subharmonic.

/OO rdr_ (13.1)

Then the condition

implies that u(z) = const.

It is not accidental that (13.1) looks similar to the parabolicity condition (7.12). Indeed,
let us assume (7.12) and deduce from Theorem 13.1 that M is parabolic. Let u be any
bounded positive superharmonic function on M. Obviously, for this function and for p = 0
we have v,(r) < const V(zg,r), and the hypothesis (13.1) is implied by (7.12). Theorem 13.1
says that u = const. By Theorem 5.1(3), we conclude that M is parabolic.

Thus, the case p = 0 corresponds to parabolicity. The case p > 1 is related to a
LP-Liouville theorem of Yau [193] which says that any non-negative subharmonic function
u € LP(M, p) is necessarily constant (see [120] for a detailed discussion about LP-harmonic
functions). This is also contained in Theorem 13.1 because u € LP(M, ) implies boundedness
of vp(r) and thus (13.1).

It turns out that stochastic completeness is also somewhat related to the statement of
Theorem 13.1: it corresponds to the case p = 1 which is not covered by this theorem, though.
It is known [31], [120], [75] that there exists a geodesically complete manifold which carries a
non-constant positive harmonic function u € L*(M, u). However, such manifold is necessarily
stochastically incomplete, because of the following theorem.

Theorem 13.2 ([75, Theorem 3]) If M 1is stochastically complete then any non-negative
superharmonic function u € L*(M, 1) is a constant.
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Proof. If M is parabolic then wu is constant by definition. Assume that M is non-parabolic
and prove that v = 0. If u # 0 then u is strictly positive, by the strong minimum principle.
Take any precompact open set U € M , a point y € U and find a large constant C' such that,
for all z € 9U,

Cu(z) > G(z,y). (13.2)

The superharmonicity of v and the minimum principle imply that (13.2) holds for all z €

M \ U (one should verify it first for G¢, and then pass to the limit as k — oo - see Section

4.2). Hence, G(-,y) € L'(M \ U, ) and M is stochastically incomplete by Corollary 6.7. H
The following theorem fills the gap between L' and LP, p > 1.

Theorem 13.3 (Nadirashvili [145]) Assume that M is geodesically complete and u > 0 is a
subharmonic function satisfying the condition

fu@)du(@) _
/M T+ %) < 00, (13.3)

where p(z) := dist(z,x0) with a fixed xg € M and f(-) > 0 is a strictly monotonically
increasing function on [0,00) such that
o dt

Then u = const.

The condition (13.4) is satisfied, for example, by f(t) = t?, p > 1 and f(¢t) = tlogt (loglogt)?
(the latter is contained implicitly also in [120, p.291]). Theorem 13.3 implies that if, for all
large r and some € > 0,

/fwmwmst (13.5)
)

B(zo,r

then uw = const. It would be interesting to relax the hypothesis (13.5) to match (13.1) for
ft) =1

Note that (13.4) is sharp in the following sense: if f(¢) does not satisfy (13.4) then there
is a manifold M (in fact, a model manifold) and a positive subharmonic function v on M
such that

/fMW@@<m.
M

It would also be interesting to see if the case (a) of Theorem 13.1 can be extended in a similar
way to fill the gap between LP, p < 1 and L'.
See [120], [117], [119] for further results on LP-subharmonic functions on manifolds.

13.2 Liouville property for Schrodinger equation

Let us consider on M the stationary Schrodinger equation
Au—g(x)u=0, (13.6)

where g(x) > 0, ¢ # 0 is a continuous function on M, and u € C?(M). We say that the func-
tion u is g-harmonic if it satisfies (13.6). Similar to the definition of super- and subharmonic
functions, one introduces g-superharmonic and g-subharmonic functions (see Section 4.1). If
u € C? then u is g-superharmonic if Au — qu < 0 and g-subharmonic if Au — qu > 0.
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The question to be discussed here is whether there is a non-zero bounded g¢-harmonic
function'® on M. Let us say that M has the g-Liouville property if the only bounded ¢-
harmonic function is 0. The connection of the g-Liouville property to recurrence and non-
explosion follows from Theorems 5.1(7) and 6.2(3) which say that

e if ¢ € Cj°(M) then the g-Liouville property is equivalent to the parabolicity of M;

e if ¢ = const > 0 then the g-Liouville property is equivalent to the stochastic complete-
ness of M.

There are the following relations between the g-Liouville properties with different q.
Theorem 13.4 (/88], [85])

(a) If the q1-Liouville property holds and if g2 > cq1 for some positive constant c then the
q2-Liouville property is true as well.

(b) If the set {qi1 # q2} 1is precompact then the qi-Liouville property is equivalent to the
q2-Liouville property.

In particular, parabolicity implies stochastic completeness, which we know otherwise by
Corollary 6.4.

Some tests for recurrence and stochastic completeness appear to be particular cases of
more general statements about the g-Liouville property.

Definition 13.1 An open set {2 C M is called g-massive if there is at least one admissible
g-subharmonic function for €2, that is, a non-negative bounded g-subharmonic function v on
M such that v =0 in M \ Q and supg v > 0 (cf. Sections 6 and 4.4).

Similarly to Proposition 6.1, the g-massiveness is preserved by increasing a set and by re-
ducing it by a compact. The following is a useful sufficient condition for g-non-massiveness
generalizing Corollaries 5.4 and 6.6.

Proposition 13.5 Let Q be an open set in M. Assume that there exists in ) a non-negative
q-superharmonic function v such that v(x) — oo as x — oo. Then § is not g-massive.

In the following theorem, we have collected various conditions for the absence of the
g-Liouville property.

Theorem 13.6 The following statements are equivalent:

(a) There exists a non-zero bounded q-harmonic function on M.

(b) There exists a positive -harmonic function on M.

(c) Manifold M is g-massive (cf. Theorems 5.1 and 6.2).

(d) ([10], [85]) There exists a massive (not g-massive!) set Q and a point xy € M such that

/QG(xo,x)q(ac)du(:U) < 0. (13.7)

"Tet us emphasize that no constant function is g-harmonic except for zero, due to g Z 0.
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Corollary 13.7 Let Q be an exterior of a compact set in M. Assume that there exists in
Q a non-negative q-superharmonic function v such that v(x) — oo as x — oo. Then the
q-Liowville property holds for M.

Indeed, €2 is not g-massive by Proposition 13.5. Hence, M is not g-massive either, and
the ¢g-Liouville property holds by Theorem 13.6.

Corollary 13.8 ([76]) If, for some point xo € M,

| G oa@)dnta) < . (13.8)
M
then there exists a non-zero bounded q-harmonic function on M i.e. the q-Liouville property

fails.

If ¢ € CF° then (13.8) is equivalent to the finiteness of the Green function (=non-
parabolicity) because the Green function on a manifold is always locally summable. If
g = const > 0 then (13.8) is equivalent to the global summability of the Green function
which implies by Corollary 6.7 the stochastic incompleteness of M.

The following theorem unifies and generalizes the volume growth conditions (7.12) and
(9.1) for parabolicity and stochastic completeness.

Theorem 13.9 ([76]) Let M be geodesically complete and let us denote, for some point

xr9g € M,
(Q )= lnf X dS.
( ) /0 \l x€0B(z0,s) Q( )

Assume that, for all r large enough and some C' > 0,
V(zo,7) < Cr?exp (CQQ(T/Q)) ) (13.9)
Then the q-Liouville property holds on M.
For example, if ¢ € C§°(M) then @ is uniformly bounded, and (13.9) becomes
V(zo,7) < Cr. (13.10)

Therefore, the fact that (13.10) implies parabolicity (see Theorem 7.3) is contained in Theo-
rem 13.9. If ¢ =1 then Q(r) = r and (13.9) is equivalent to

V(zo,7) < exp (Cr?) . (13.11)
Thus, we obtain again that (13.11) implies stochastic completeness (cf. Theorem 9.1).

Example 13.1 Suppose that M = R? d > 2, and ¢ is a decreasing function of r = |z,
at least for large |x|. Let o be the origin in RY. Since G(o,2) = constr>~? and V(0,r) =
const 7?1, Corollary 13.8 implies that the ¢-Liouville property fails to hold provided

/00 q(r)rdr < co. (13.12)

On the other hand, Theorem 13.9 implies that the ¢-Liouville property is true provided

/ V q(r)dr > consty/logr, (13.13)
1

for r large enough. For example, if ¢(r) =
(13.13) holds if o < 1.

It is possible to prove in this case that if (13.12) does not hold then the g¢-Liouville
property is true - see [76, Corollary 3.1]. There is also a generalization of the hypothesis
(13.9) to match (7.12) and (9.1).

then (13.12) is satisfies if & > 1 whereas

1
r2log®r
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13.3 Bounded harmonic functions

We briefly discuss the relation between the L°°-Liouville property and massive sets. By the
L*-Liouville property, we mean an assertion that any bounded harmonic function on M is
identically constant. It holds, for example, in any R?, and fails in H?. Another example of
a geodesically complete manifold, which carries a non-trivial bounded harmonic function, is
obtained by gluing together two copies of R%, d > 2, by a compact pipe as on Fig. 25 (see
[115]).

H
L

Figure 25: Connected sum of two copies of R¢

Let us denote by H(M) the space of all bounded harmonic functions on M. The the
L*>-Liouville property is equivalent to the fact that dim H(M) = 1. For comparison, if we
denote by H,(M) the space of all bounded solutions to the Schrédinger equation (13.6), then
the g-Liouville property means that dim H,(M) = 0.

Despite many works devoted to the L°°-Liouville property, the major question of its
geometric background is still open. Here we cite only one of the results related to our topic
(see [119] for a thorough account of the L°°-Liouville property on manifolds as well as [104]
for the L*°-Liouville property on groups).

The following theorem shows that both parabolicity and the L°°-Liouville property are
controlled by a number of non-intersecting proper massive sets on M.

Theorem 13.10 (a) (Myrberg [144], Royden [163, Proposition 23]) The non-parabolicity
of M is equivalent to existence of a proper massive set on M (cf. Theorem 5.1(2)).

(b) (Nevanlinna [151], Bader—Parreau [7], Mori [141], Royden [163, Proposition 24]) The
negation of the L*-Liouville property (=existence of a non-trivial bounded harmonic
function) is equivalent to the existence of two disjoint massive sets on M .12

(c) ([77]) dim H(M) is equal to the supremum of the number of disjoint massive sets which
can be put on M."3

For example, for the manifold on Fig. 25, one has dimH(M) = 2 (provided d > 2)
because each of two sheets is massive, and none of them contains more than one massive set
(see [115]).

For further application of the notion of massiveness see [73], [94], [125].

12Gimilarly, existence of a non-trivial harmonic function with a finite Dirichlet integral is equivalent to the
existence of two disjoint D-massive sets.

13Gimilarly, the dimension of the space of bounded harmonic functions with a finite Dirichlet integral is
equal to the maximum number of disjoint D-massive sets. The dimension here may be finite or infinite. In
the latter case, we do not distinguish between different sort of infinite cardinalities.
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13.4 Minimal surfaces

The celebrated theorem of Bernstein says that any minimal surface M in R?, which is a graph
of a function in the whole R?, is necessarily a plane. In other words, if

M :={(x,y,2) ER?’:z:f(x,y), —o<r<oo, —co<y< oo}, felC™

and if M is a minimal surface then f is an affine function. L.Bers [13] and R.Finn [62]
observed that this statement is closely related to parabolicity of M as a manifold. We sketch
here the proof of Bernstein’s theorem following this approach.

The proof contains two essential ingredients.

(i) The observation that the function v = arctan f, (as well as arctan f,) satisfies the
equation Av =0 on M.

(ii) The claim that M is parabolic.

As soon as we have (i) and (ii), we argue as follows. The function v is a bounded harmonic
function on M. Since M is parabolic, v should be a constant, by Theorem 5.1(3). Therefore,
fz and f, are constants, and f is affine.

The fact that arctan f, is harmonic on M was observed by S.Bernstein [12]. The proof
can be found in [155, p.237].

Let us proof that M is parabolic. The Riemannian metric on M is inherited from R3.
Therefore, any geodesic ball B(x, R) on M lies in the Euclidean ball B.(z,R) C R3. It
is known that a minimal surface, which is a graph, is also an area minimizer. Thus, the
area of M N Be(z, R) as bounded from above by the area of 0B, (x, R). Therefore, we obtain
V(z, R) < 47 R2. By Corollary 7.4, M is parabolic.

Further relations between Bernstein’s type theorems and Liouville theorems can be found
in [17], [28], [138], [168]. See [157] for a general overview of minimal surfaces.

13.5 Liouville property on Riemannian products

Let N be a Riemannian manifold satisfying the L°°-Liouville property i.e. any bounded
harmonic function on N is a constant. Let us ask the question whether the Riemannian
product N x K possesses the same property, where K is a compact Riemannian manifold.
Surprisingly enough, the answer is in general no. A counterexample which will be described
below, is based on an example of a manifold N constructed by Pinchover [159], such that

(i) N is geodesically complete;
(ii) N satisfies the L°°-Liouville property;
(iii) N is stochastically incomplete.

In fact, the manifold of Pinchover has also A1(/N) = 0 but we will not use this.

Given a manifold N with properties (i)-(iii), let us show that N x K possesses a non-
constant bounded harmonic function. The Laplace operator A in L?(K) has a discrete
spectrum. Let A > 0 be one of the eigenvalues with the eigenfunction w so that

Argw + Aw = 0.

Theorem 6.2 says that there is a bounded non-constant A-harmonic function v on the stochas-
tically incomplete manifolds N, that is,

Anv — v =0.
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Therefore, the function u = v ® w on N x K satisfies the Laplace equation
Anxru = (An+Ag)u=0,

is bounded and non-constant.
This argument can be extended so as to show that N x K possesses the L°°-Liouville
property if and only if N possesses the L°°-Liouville property and NV is stochastically com-

plete.
Now we describe briefly the manifold of Pinchover with properties (i)-(iii). Let M be a

geodesically complete manifold such that

(a) for a fixed point 0 € M and for all large enough R

V(o,R) < CR3; (13.14)
(b) for large enough r := dist(z, 0)
G(z,0) < g; (13.15)

(¢) M possesses the L>°-Liouville property;
(d) dim M = 2.

All (a)-(c) are valid if M = R? but we need M to be two dimensional. One of the ways
of constructing such a manifold is to take M as a blown-up jungle gym in R3 (see Fig. 26)
which is roughly isometric'* to R? and thus possesses (a)-(d).

)
N

o

0

0

A

Figure 26: The jungle gym in R3

Denote by g the Riemannian metric of M. Given a positive smooth function p(x), let
us introduce a conformal metric § = p?g and let N := (M,g). Let us denote by A, G, 1
the Laplace operator, the Green function and the Riemannian measure on N respectively. If

dim N = d then we have
i=plu and A= p~4div (pd_2V>

which implies, for d = 2, R
a=p*n and A=p2A. (13.16)

1See the papers of Kanai [106] and [107] for the notion and the properties of a rough isometry.
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In particular, harmonic functions on M and N coincide whence N satisfies the L*°-Liouville
property. The relations (13.16) imply for the Green kernel

G=0aG. (13.17)

Let us show how to choose p to ensure geodesic completeness and stochastic incomplete-
ness of N. The function p(x) will depend only on r = dist(x, 0) so that we will write also p(r)
(if 7 is not smooth enough then one can use a smooth approximation afterwards). Geodesic
completeness of N will follow from

/OO p(r)dr = oo (13.18)

(which implies that the length of a geodesic ray on N is 0o). Stochastic incompleteness of N
will follow, by Corollary 6.7, from

/ @(o,x)dﬁ(x) < 00, (13.19)
N
which, by (13.17) and (13.16), is equivalent to
/ G(o,z)p*(x)dp(r) < 0. (13.20)
Due to the estimate (13.15), this amounts to
oo
p2(r)
/ ) < o0, (13.21)
We are left to choose p(r) to satisfy (13.18) and (13.21). Let us set, for r large enough,
1
= . 13.22
o) = o (13.22)

Then (13.18) is obvious, and (13.21) follows by integration-by-parts from (13.14) .

A minor modification of the above argument is required as to have also A;(/N) = 0. Now
we assume in addition that (13.14) holds for any point o (which is the case for the jungle
gym). The function p will no longer be radial. We set, instead of (13.22),

p(x) = po(r) +d(x),

where r = dist(z, 0), the function py(r) is defined by (13.22) and the function §(z) is defined
as follows. Choose a sequence of points z; € M, i = 1,2, 3, ... so that dist(x;,0) = 4% and let

=1, x € B(x;,1)
o(x) ¢ €10,1], =€ B(z;,2i)\ B(x;,1)
=0, otherwise,

assuming that § € C°°. Then (13.20) holds again because, by (13.14) and (13.15),
/L' 2. .3
/M G(0,2)0%(z)du(x) < const ZZ: W < const ZL:% < 0.

Finally, we have, for any i,

const
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M (N) < M (B(wi,1),9) < const h (B(zi,i),9) <

(because the metric g is nearly Euclidean in B(x;,4)), whence A;(N) = 0.
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14 Harmonic functions on manifolds with ends

Let M be a geodesically complete non-compact manifold. We say that an open set £ C M
is an end if it is connected, unbounded and if its boundary OF is compact. When necessary,
we will assume that JF is smooth enough. We say that M is a manifold with ends if M is a
union of a compact set and a finite number of disjoint ends (see Fig. 27).

The purpose of this section is to describe the sets of bounded and positive harmonic
functions on a manifold with ends assuming that we have enough information about the
ends. As it turns out, the answer depends on the property of an end being parabolic or not.

Figure 27: Manifold with ends

14.1 Parabolic subsets and ends

Let us define the notion of parabolicity of an open subset £ C M. The motivation behind
this definition is a desire to treat the closure E as a manifold with a boundary and to apply
to E the notion of parabolicity of a manifold, assuming the Neumann boundary condition
on OF (see the remark after Theorem 5.1). For an arbitrary open subset, it is convenient to
use the capacity definition of parabolicity since it requires no smoothness of the boundary.
Hence, we say that an open subset £ C M is parabolic if, for any compact K C M,

capp(K) =0 (14.1)

(see Section 4.3 for the definition of capacity). Clearly, if M is a parabolic manifold then M
is parabolic also as a subset.
In the next statement, we collect simple properties of parabolic subsets and ends.

Proposition 14.1 Let E and E' be open subsets of a manifold M.

(a) If E C E' and if E' is parabolic then E is parabolic, too. In particular, any subset of a
parabolic manifold M is a parabolic set.

(b) If E\ E' is precompact and if E' is parabolic then E is parabolic, too.

(c) If OF is smooth then the parabolicity of E coincides with the parabolicity of E as a
manifold with boundary.

(d) If E is a proper massive set then E is non-parabolic. If E is an end of M and E is
non-parabolic then E is massive.

(e) If an exterior of a compact of M consists of a disjoint union of a finite number of
parabolic sets then M is parabolic. In particular, if M is a manifold with ends, then its
parabolicity is equivalent to parabolicity of all ends.
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Proof. (a) This follows from capy(K) < capp (K ), which is a consequence of the definition
(4.18).

(b) By (a), we may assume that E' C E. Let K be a big enough compact that contains
E\ E’. Then the exterior of K in E and E’ coincide, whence capp(K) = capg (K) = 0 and
FE is parabolic.

(c) This follows from (4.19).

(d) If E is a proper massive set then, as follows from Proposition 4.3(ii), there exists a
massive set £/ C E with smooth boundary. The subharmonic potential by is a non-constant
bounded subharmonic function on the manifold with boundary E’. By Theorem 5.1(3), £
is a non-parabolic manifold; by assertion (c), E’ is a non-parabolic set; finally, by assertion
(a), E is also non-parabolic.

Let now E be a non-parabolic end. Reducing F by a compact, we may assume that OF
is smooth (the non-parabolicity of E does not change). By assertion (c), F is a parabolic
manifold and, by Theorem 5.1(2a), an exterior of any compact in E is massive. Therefore,
E = E\ OF is massive, both in E and M.

In general, a non-parabolic set may be non-massive, as a half-space of R%, d > 2.

(e) Let Ey, Es,...,E, be such sets in M. If K is a big enough compact in M then,
obviously,

capy (K) = anpEi (K),

whence the statement follows. H
We state the following result as an example of application of parabolic subsets.

Theorem 14.2 ([73, Theorem 1]) An open set Q C M is D-massive if and only if there is
a non-parabolic open set E, such that E C Q and cap(E, Q) < oco.

As a consequence we see that the D-massiveness of {2 is invariant under a quasi-isometry
(cf. Corollary 5.3).

14.2 Spaces of harmonic functions on manifolds with ends

We denote by H(M) (resp. H(M)) the set of all bounded (resp. positive) harmonic functions
on M. The former is a linear space whereas the latter is a cone. We are interested in the
dimensions of these spaces.

If £ is an open subset of M with smooth boundary then we define H(F) and Hy (F)
similarly, with the additional assumption that the harmonic functions vanish on JF.

Theorem 14.3 (Sung, Tam, Wang [175, Theorem 3.2]) Let M be a complete manifold with
ends. Assume that M has s > 0 parabolic ends Py, Ps, ..., P; and | > 1 non-parabolic ends
Nl,NQ,...,Nl. Then

l
dimH(M) = dim H(N;) (14.2)
j=1
and l
dimHy (M) = dimH(P,) + > dimH (N;). (14.3)
i=1 Jj=1

Remark: The hypothesis [ > 1 is equivalent to non-parabolicity of the manifold M itself,
by Proposition 14.1(e). If [ = 0 and thus M is parabolic then there are no non-negative
harmonic functions on M except constants, and dim H(M) = dim H, (M) = 1, regardless of
the number of ends.
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It is remarkable that the parabolic ends do not contribute to dim H(M). One of the
ways to understand that, is to observe that for any parabolic end P, we have dim H(P) = 0.
Indeed, if uis a bounded harmonic function P vanishing on 0P, then the positive part u,
is an admissible subharmonic function for P. However, the parabolicity of P implies its
non-massiveness, whence uy = 0. Similarly, u— = 0 and v = 0.

Remark: If M is a manifold with boundary then H(M) (resp. H.(M)) denotes the space
of bounded (resp. positive) harmonic functions on M with the Neumann boundary condition
on M. For any end E, let us regard its closure E as a manifold with boundary and consider
the spaces H(E) and H, (E). We claim that, for any non-parabolic end N,

and

dim H(N) = dim H(V)

(this follows from [175, Theorem 2.6(a) and Proposition 2.7(a)]). For a parabolic end P, we
have
dimH(P) = 0 < 1 = dimH(P) = dim H, (P) < dim H (P)

(see [175, Lemma 2.4]).

Corollary 14.4 ([123, Theorem 2.1]) Under the hypotheses of Theorem 14.3, we have
dimH(M) > 1 (14.4)

and
dimHy (M) > s+ 1. (14.5)

The estimate (14.4) follows also from Theorem 13.10(c). Indeed, ! non-parabolic ends
provide [ disjoint massive sets on M whence (14.4).

In the next section, we impose an additional hypothesis of regularity of an end which will
ensure that the end does not split further into two smaller massive subsets.

14.3 Manifolds with regular ends

Given an end F, we denote, for any r > 0,
E,:={x € E: dist(z,0F) =r}.

We say that an end F is regular if, for all r large enough and for any positive harmonic
function u defined in

U, := {:U €E: g < dist(z,0F) < 27“} (14.6)
(see Fig. 28), we have a Harnack type inequality on E,

supu < C' infu, (14.7)
E, Er

where the constant C' does not depend!® on 7.
For example, the end F is regular if it is isometric to an exterior of a ball on a complete
Riemannian manifold with a non-negative Ricci curvature (see [124]). Li and Tam [121,

51f E, is connected then by the local Harnack inequality and by compactness of E(r), (14.7) is always valid
with some C' = C(r). The purpose of the regularity hypothesis is to ensure a uniform Harnack constant C' as
r — 00.
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oE E,

Figure 28: A regular end F

Theorem 3.2] proved that any manifold of non-negative sectional curvature outside a compact
set is a manifold with regular ends.

Let E be an end of M and u be a function on F. For any precompact open set 2 C M,
containing F and having a smooth boundary 952, consider the flux of u through 9QNE (see
Fig. 29), that is

ou

fl = — dy.
BQ%}%U ov H

oQNE

Figure 29: Flux of u on the end E

If u is harmonic in E then the flux does not depend on 2, and we can define the flux of
u through E by

fluxu = flux u. (14.8)
E OONE
Also, let us set
li =1 14.9
imu:= lim u(z), (14.9)
T—0Q

provided the limit on the right-hand side exists. It turns out that if E is regular'® and u is
a non-negative harmonic function on E then the limit (14.9) does exist, finite or infinite (see
[74, Proposition 1] or [95, 3.23]). Furthermore, the following theorem holds.

Theorem 14.5 ([7}]) Let M be a manifold with regular ends. Assume that it has s > 0
parabolic ends P; and | > 1 non-parabolic ends N;j. Then, for any non-negative harmonic
function uw on M, the numbers a;,b; defined by

a; = fluxu and b; =limu (14.10)

3 N]

(i=1,2,...s and j =1,2,....1), exist and are non-negative.

18Let us note that, for Theorem 14.5 below, the definition of regularity can be slightly relaxed. Namely,
instead of being defined by (14.6), the set U, may be any precompact open neighbourhood of E, such that
dist(0F,U,) — oo as 7 — c0. See [95] for further results of this kind.
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Conversely, given a set (aq,az, ...,as,b1,ba, ..., b)) of s+ | non-negative numbers, there is
a unique non-negative harmonic function uw on M satisfying (14.10) (see Fig. 30).

Similarly, any bounded harmonic function u on M is uniquely characterized by a set of
real numbers (b1, bz, ..., by) such that bj = limy, u .

harmonic functionu
;

-

fluxu=2a

non-parabolic end\; parabolic endP;

Figure 30: Limits and fluxes of a harmonic function u

Remark: If u is non-negative harmonic function on M and if a flux a; is strictly positive
then one can prove that limp, u = +o00, that is, u is unbounded. Therefore, for a bounded
u, all fluxes a; must vanish which explains why a bounded harmonic function u is uniquely
determined by its limits b; on the non-parabolic ends.

Theorem 14.5 obviously implies that
dimH(M) =1

and
dimH (M) =s+1.

As a consequence we see that the Martin boundary of M consists of s + [ points.

For a manifold of non-negative sectional curvature outside a compact set, this was proved
by Li and Tam [121, Theorem 7.2]. The main part of their proof can be interpreted as the
proof of regularity of each end on such a manifold.

See [40], [50], [95], [96], [119], [121], [123], [124], [175] for further results on harmonic
functions on manifolds with ends.

14.4 Non-parabolicity of regular ends

We consider here the question how to decide whether a given end E C M (so far not neces-
sarily regular) is parabolic or not. Let us denote

B, ={z € E:dist(z,0F) <r} and Vg(r)=u(B,).

An extension of Theorem 7.3 to manifolds with a boundary (see [71]) says that F is parabolic

provided
* rdr
/ Vo) = 00. (14.11)

It is not known whether (14.11) is necessary for parabolicity of a regular end. As was
shown by Li and Tam [121], if M has a non-negative sectional curvature outside a com-
pact, then parabolicity of its end E is indeed equivalent to (14.11). We discuss below some
situations when (14.11) is equivalent to the parabolicity of E.

The following statement is essentially an extract from the technique of Li and Tam [121].
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Theorem 14.6 Let E be a reqular end. Then E is non-parabolic if and only if

[e.9]

1
CapE(BQk ; BQk+1 )

< o0. (14.12)
k=1

Proof. If the sum in (14.12) is divergent then E is parabolic even without assuming the
regularity of E. Indeed, capacity satisfies the following universal inequality

CapE(A7 C>71 > Ca‘pE(A7 B)il + CapE(Ba 0)717 (1413)

for any three open precompact sets A CC B CC C. Therefore, we have, for any n > 1,

o0
capg(Ban )™t > anpE(BQk,BQk+1)_1 = 00,
k=n
whence capy(Ban) = 0, and E is parabolic.

Assume now that (14.12) holds and prove that the regular end F is non-parabolic. Denote
by G the Green function in Br with the Neumann condition on 0FE N Bgr and the Dirichlet
condition on Fr = dBgr N E. Fix some reference point o € F and show that, for any x € F,
GRr(o, ) is bounded as R — oo which will imply the non-parabolicity of E.

We start with the observation that, for any = € B, and any R > r,

Gr(o,z) — Gy(o,x) < max Gr(o,y). (14.14)
Yy T
This follows from the maximum principle for the function Gg(o,-) — G,(o,-) which is har-

monic in B(r), bounded by the constant max,cg, Gr(o,y) on E, and satisfies the Neumann
boundary condition on OE. If R = 2r then, by the Harnack inequality (14.7),

max Gg(o,y) < C min Gg(o,y). (14.15)
yeE, yeE,
Recall that, by (8.9), we have
Helgl Gr(o,y) < capp (B,,Br)"". (14.16)
Yy r
Combining (14.16), (14.15) and (14.14), we derive

C
GRr(o,z) — Grloy2) L ———————.
R( ) ( ) CapE (BT,BR)

Applying (14.17) for R = 2**1 and r = 2% and iterating for all large k = m, m + 1, m + 2,
.., we conclude

(14.17)

o¢]
C
— Gom <
G(o,x) — Gam(o,x) < ;CaPE (Bok , Bok1) =

and G(o,z) < oco. N
If we know for a regular end F that

V
capg(B;, Ba,) > const Egr) , (14.18)
r
for all large r, then (14.12) easily amounts to
* rdr
— < 0. 14.19
Vo) (14.19)

It would be interesting to understand whether (14.18) follows from the hypothesis of regularity
of the end. If this is the case then the assumption (14.12) of Theorem 14.6 can be replaced
by (14.19).

Let us consider some examples where (14.18) can be proved.

81



Example 14.1 For any open set 2 C E, denote 02 = QN E. Let us assume that, for any
open set {2 C B, with smooth boundary,

1 (95Q) > c“(:z), (14.20)

for all r large enough and for some ¢ > 0. Then (14.18) holds, which follows from Theorem

8.1 for the capacitor (B, Ba,) with the isoperimetric function f(v) = §7.

Example 14.2 Assume that there exists a non-negative Lipschitz function p(z) on E such

that
p|3E = 0, (14.21)
Vol <1 (14.22)

and
A (p?) = 2c, (14.23)

with a positive constant ¢ ((14.23) is understood in the sense of distributions). For example,
such a function was constructed in [121, Propositions 2.1, 2.2] assuming that F is an end of
a manifold M with non-negative curvature outside a compact.

Let us verify the isoperimetric inequality (14.20). Integrating (14.23) over €2, we obtain

0 15)
i< [a@) =2 p [ p2 <asupp) 09
Q oonE OV Jopna OV B,

where we have used the Green formula (2.6), (14.22) and (14.21). Since (14.21) and (14.22)
imply also supg_p < r, we conclude (14.20).

Example 14.3 Assume that the following three hypotheses hold for the end FE.

(P) Poincaré inequality: for any ball B(z,2r) C E and for any function f € C*(B(z,2r)),

ot [ W) -ty < 0 / R (14.24)
(D) Doubling property: for any ball B(x,2r) C E,
V(z,2r) < CV(x,r). (14.25)
(VC) Volume comparison condition: for any point x € E,,
Ve(r) < CV(z,r/2). (14.26)

Let us sketch the proof that (P), (D) and (VC') imply (14.18). The key fact is that (P)
and (D) imply the following inequality: for any harmonic function v in B(x, R) C F,

2 2
CR / 2
osc u| < Vu 14.27
<B(:c7R/2) ) V(z,R) B(ac,R)| | ( )

(see [96, Lemma 2.6] for the proof). Let w be the equilibrium potential of the capacitor
(Br, Ba;) and let x be any point on Ej, /5 (see Fig. 31). Then u is harmonic in B(x,7/2) and

osc u=1.
B(z,r/2)
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Figure 31: Capacitor (B;, Ba,)

By (14.27), we conclude

2
capp(Br, Bar) = / Vul* > / Vul? > Const—v(x’;/ )
Ba\Br B(z,r/2) r

Applying (D) and (VC), we have
V(x,r/2) > constV(x,3r/4) > constVg(3r/2) > constVg(r),

whence (14.18) follows.

Holopainen [96, Theorems 2.25 and 4.4] proved that, under the hypotheses (P), (D) and
(V' C), the parabolicity of E is equivalent to (14.11). His proof does not require regularity of
the end. It is plausible that each end satisfying (P), (D) and (VC) can be split into a finite
number of regular ends with the comparable volume growth functions (cf. [124, Lemma 1.4]).

Li and Tam [124] proved that (D) and (P) hold on E provided the Ricci curvature on E
satisfies

Ric(zx) > )

where p(z) = dist(z, 0F). Thus, assuming (14.28) and (V' ('), one finds that the parabolicity
of F is equivalent to (14.11). This is the result of [124, Theorem 1.9].

C >0, (14.28)

15 Curvature and comparison theorems

We prove here some tests for parabolicity and non-explosion in terms of curvature assump-
tions.

15.1 Mean curvature

Let us fix a point o on a geodesically complete manifold M and consider the polar coordinates
(p,0) centered at o (see Section 3.1). In the domain of the polar coordinates, the Laplace
operator is given by (3.4) which we rewrite as

2

0 0
A=—+m(p,0)— + Ag

57 5 (15.1)

P

Here Ag, is the Laplace operator on the sphere dB(o,p) and m(p, ) is a smooth function
on Ry x S 1, which will be of primary interest for us. In fact, its geometric meaning is the
mean curvature of the sphere dB(o, p) in the radial direction (see [69], [27], [169)]).
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We will compare the manifold M with a model manifold My introduced in Section 3.2.
Let us equip by a hat all notation related to M. In particular, we set M = My. By (3.6),
we have the following expression for a Laplace operator on M

3—3—2+m( )3+£ (15.2)
_82/) pap Sp7 .
where o
m=(d—1)-.
( )1/)

It is important that m(p) does not depend on 6.
Let us consider also the following Schrédinger operators on M and M

L=A—q(x)

and R
L=A-qp),
where the functions ¢ and ¢ are non-negative and continuous.

Theorem 15.1 Let M be a geodesically complete non-compact manifold, and o € M.

(i) Assume that, for all (p,0) in the domain of the polar coordinates centered at o, with p
being large enough,
m(p,0) < m(p) and q(p,0) = q(p). (15.3)

If the equation Lu = 0 has a non-zero bounded solution on all of M then so does Lu = 0.

(ii) Let o be a pole. Assume that, for all large enough p and all 0,
m(p,0) = m(p) and q(p,0) < q(p). (15.4)
If the equation Lu = 0 has a non-zero bounded solution on all of]\/i then so does Lu = 0.

For the case when o is a pole, this theorem was proved in [76]. The technical difficulties
which arise due to the cut locus, can be handled by the method of Cheeger and Yau [27]
developed in the context of comparison of heat kernels (see also [193], [192], [169, Section
L.1]).

Proof. (i) Assume that the only bounded solution for the equation Lu = 0 is u = 0. Take
some R > 0 and define the function v(p) on [R, o0) to be the solution to the Cauchy problem

v +mv —qu=0, v(R)=0,v(R)=1.

Then Lv = 0 in Q := M \ B(o,R) and, by the maximum principle, the function v(p) is
monotone increasing. By Theorem 13.6, v must be unbounded whence v(p) — oo as p — o0
(the converse to Corollary 13.7 for spherically symmetric manifolds).

Let us consider now v(p) as a function on M. Due to (15.3) and v > 0, we have in
0\ Cut(o) (where Q := M \ B(o, R))

Lo=2v"+mv — qu Sv"—&—ffw’—ffvzivzo.
If Cut(o) is empty then, by Corollary 13.7, this finishes the proof because Lv < 0 in 2 and

v(z) — 00 as T — oo.
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Let Cut(o) be non-empty. We will show that Lv < 0 is still true in  in the sense of
distribution (which is enough for Corollary 13.7). More precisely, let us prove that, for any
non-negative test function ¢ € C3°(Q),

(Lv, ¢) == — /M (VoVo + que) du < 0. (15.5)

For any unit vector 8 € T,(M), let us define I(6) to be the length of the geodesics which
starts at o in the direction 6 and ends at Cut(o) (see Fig. 32). Since Cut(0) is a closed set,
the function /() is lower semi-continuous. Let [(6) be an increasing sequence of smooth
positive functions on the unit sphere which converges to [(f) as k — oo. Denote by Uy
the set of points (p,0) € M \ Cut(o) such that p < l;(0). The boundary 90U} is a smooth
hypersurface given by the equation p = [} (). Clearly, the sequence {Uy} is increasing and
U U = M \ Cut(o).

Figure 32: Approximation of the cut locus by a smooth hypersurface

We have, by the Green formula (2.6),

v
U}, 8V

/ (VoVo + que) dp = / (—Avo + quo) du + o, (15.6)
Uy, Uk

where v is the unit outward normal vector field on 9. The first term on the right hand
side of (15.6) is non-negative because

Lv<0 on UgNnsupp¢ C 2\ Cut(o).

We claim that the second term is also non-negative. Indeed, the normal v forms an acute
angle a with the radial direction %, and Vv =/ (p)% whence

9 _ vVu = y(v’(p)g) ='(p) cosa > 0.
ov
Thus, (15.6) yields
/ (VoVe + que) du > 0.
Ug

As k — oo, we can replace here Uy by M \ Cut(o). Finally, Cut(o) has the measure zero
whence we conclude (15.5).

(ii) By Theorem 13.6, there is also a positive bounded solution u to Lu=0on M. By
symmetrizing it, we can assume that u = u(p). By the maximum principle, u(p) is increasing.
Fix some R > 0, put v(p) = u(p) — u(R) and observe that Lv > 0.

85



The function v is positive in the region 2 := {p > R} and, by v" > 0 and (15.4), we have
Lv > Lv > 0 in Q. Therefore, v is a g-subharmonic function, which is bounded, positive
in © and vanishing on 02 whence we see that € is g-massive. By Theorem 13.6, there is a
non-zero bounded solution to Lu =0 on M. W

Combining Theorem 15.1 with the criteria for parabolicity and stochastic completeness in
terms of the Liouville properties for the Schrodinger equations (see the beginning of Section
13.2) and with Propositions 3.1, 3.2, we obtain the following statement.

Corollary 15.2 Let M be a geodesically complete non-compact manifold, o € M and S(p)
be a positive smooth function on (0, 00).

(a) If, for all (p,0) in the domain of the polar coordinates with p being large enough,

S'(p) and < dr

= S(p) Sr)

then M is parabolic (for example, if m(p,0) < % then the above hypotheses are satisfied
with S(p) = p).

m(p,0) <

(b) Let o be a pole. If, for all p large enough and all 0,

S'(p) > dr
d -
= S(0p) an S(r) < o0
then M is non-parabolic (for example, if m(p,0) > 1—:8 with € > 0 then the above
hypotheses are satisfied with S(p) = p'*).

m(p,0) >

(c¢) If, for all (p,0) in the domain of the polar coordinates with p being large enough,

S'(p) V),
m(p,0) < S(0) and / _S(r) dr = oo,
where

= /OT S(&)de, (15.7)

then M is stochastically complete (for example, if m(p,0) < Cp then the above hy-
potheses are satisfied with S(p) = exp (3Cp?)).

(d) Let o be a pole. If, for all p large enough and all 6

V(r)
m(PQ)ZS / Sr)dr<oo

+e

then M is stochastically incomplete (for example, if m(p,8) > cp'™® with positive ¢, e

) > ¢
then the above hypotheses are satisfied with S(p) = exp (¢/p*™9)).

S’

Note that the expression < is equal to m for a model manifold My, such that S = wap® L.

15.2 Sectional and Ricci curvature

Let us turn now to comparison results for the sectional and Ricci curvature. For any * € M
such that = ¢ Cut(o) and = # o, denote by Ric,(x) the Ricci curvature at x in the direction

ai Let w denote any pair of tangent vectors from T, M having the form (8%, X) where X is

a unit vector orthogonal to 8 . Denote by K, (z) the sectional curvature at the point x € M
of the 2-section determined by w.
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Example 15.1 A direct computation [15] yields that, on the model manifold My, the cur-
vature K, depends only on the polar radius p and is given by

w//
Ku(p) = = (15.8)
(4
Respectively, the Ricci curvature Ric, on My, is given by
w//
Ricy(p) = —(d — 1)—. (15.9)

(8

Theorem 15.3 (Ichihara [99], [100]) Let ¢ (p) be a smooth positive function on (0,00) such
that
$(0)=0 and ¥'(0) = 1. (15.10)

Let M be a d-dimensional geodesically complete non-compact manifold, and o € M. Denote
S(r) = wap™(r).
(a) If, for all x = (p,0) ¢ Cut(o), © # o,

Ricy(z) > —(d — 1)¢,/(p) and /OO dr_ 00

then M 1is parabolic.
(b) If 0 is a pole and, for all x # o and all w,

Y (p) n ©dr
Rolo) < =5 o / 50 <

then M 1is non-parabolic.

(c) If, for all x ¢ Cut(o), x # o,
. 7/}”(P) n V(r) r
Rico(z) > —(d — 1)—¢( ) and / S( )d =00 (15.11)

(where V (r) is defined by (15.7)) then M is stochastically complete.

(d) If 0 is a pole and, for all x # o and all w,

) an OOV(T)T 00
Kofw) < =408 ana / S < (15.12)

then M 1is stochastically incomplete.

Theorem 15.3 can be deduced from Corollary 15.2, applying the Hessian comparison
theorem to M and My, (see [69, p.19] or [169, Theorem 1.1}, or [22, Teorems 3.6, 3.8]). This
theorem allows to compare m(p, #) and m(p) given the comparison of the Ricci curvature or
the sectional curvature as above. See [99] and [100] for details.

Let us observe that all parts of Theorem 15.3 require information about the curvature
for all p > 0. The following theorem shows that, for stochastic completeness, it suffices to
control the curvature only for large p.

Theorem 15.4 Let M be a geodesically complete manifold.
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(a) ( N.Varopoulos [185, Theorem 1], P.Hsu [97]) Assume that k(r) is a positive increasing
continuous function on (0,00) such that

© dr
/ oy = (15.13)

Assume also that, for some point o € M and for all points © = (p,0) ¢ Cut(o) with p
large enough, we have
Rico(z) > —(d — 1) k*(p). (15.14)

Then M s stochastically complete.

(b) (N.Varopoulos [185, Theorem 3], M.Murata [143, Theorem B]) Let M be a manifold
with a pole 0. Assume that k(r) is a non-negative increasing smooth function on (0, 00)

such that o g
r
it 15.15
| i< (15.15)

and

K (r) < CEX(r), (15.16)
for all v large enough. Assume also that, for all x = (p,8) # o and all w,

K, (z) < —k*(p). (15.17)

Then M is not stochastically complete.

Remark: Historically, the first results of this kind were obtained by Azencott [6] and Yau
[194]. Azencott [6] proved that a Cartan-Hadamard manifold M is stochastically incomplete
provided K, (z) < —p>*¢, & > 0, and M is stochastically complete provided its sectional cur-
vature is uniformly bounded below. Yau [194] proved that an arbitrary geodesically complete
manifold is stochastically complete if its Ricci curvature is uniformly bounded below.

Proof. (a) This part of Theorem 15.4 can be deduced from Theorem 15.3(c). We give
another proof, using Theorem 9.1. If k(r) is bounded then (15.14) implies V(0,r) < €7, and
M is stochastically complete by Theorem 9.1. Assume in the sequel that k(r) is unbounded.
By redefining k(r) for small r, we may assume that (15.14) holds at any point z ¢ Cut (o),
x # o. Since k(r) is monotone increasing for large r and lim, ., k(7) = oo, (15.14) implies

Ricy(x) > —(d — 1)k*(R), Vx € B(o,R)\ Cut(o), z # o,

for all R large enough,
By the volume comparison theorem of Bishop (see [22, Theorems 3.8, 3.9]), we obtain,
forall r < R,
V(o,7) < Vir)(r), (15.18)

where Vi (r) is the volume of a r-ball in the hyperbolic space Hé of the constant curvature
—K?2. This space is a model manifold M, with o(r) = K~'sinh(Kr) whence we obtain

Vi (r) = wgK' /T sinh?™1 (K¢) dé < wgK Yexp ((d — 1)KT).
0

Therefore, letting » = R in (15.18), we obtain, for R large enough,
V(o,R) < constexp ((d — 1)k(R)R)

and
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Hence, (15.13) implies
/°° RdR ~
logV(o,R)

and the stochastic completeness follows by Theorem 9.1.

(b) We reduce this part of Theorem 15.4 to Theorem 15.3(d). To that end, we need to
construct a function 1 (r) satisfying (15.10) and (15.12). Let ¢(r) solve the following Cauchy
problem on [0, c0)

$(0) =0,
P'(0) =1, (15.19)
v =Y.

It is obvious that ¢ (r) > 0 if » > 0. The hypotheses (15.17) and (15.19) imply that, for all
T # o,

" (p)
K,(x) < — .
o) < =)
Therefore, in order to apply Theorem 15.3(d), we need to verify the second of the conditions
(15.12).
Suppose for a moment that we have proved that, for some € > 0 and all r large enough,
Y'(r)
> ek(r). 15.20
2 k) (15.20)
This would imply
) s (d — 1)ek(r) (15.21)
S(r) — '
where S(r) = wgy®1(r). By 'Hospital’s rule, we obtain from (15.21), for large 7,
% > const k(r) , (15.22)

where V(r) = [; S(£)d¢. Finally, (15.22) and (15.15) yield

[ ¥gu

which, by Theorem 15.3(d), implies the stochastic incompleteness of M.
We are left to show that the solution ¢ of (15.19) satisfies (15.20). If this is not so then,
for any €9 > 0 (to be chosen later), there exists a large enough 79 and € € (0,e0) such that

Z((:(?)) = ek(ro). (15.23)
Denote v = % Then we have
" AN N 2
-5
v \v) "\¥
that is,
o +o? = k2 (15.24)



Compare the function v with w(r) := ek(r). We have, by (15.23),
v(ro) = w(ro), (15.25)

and
w +w? = ek + 2k2.

Choosing ¢ (and thus €) small enough, we obtain, by (15.16),

ek! + 2k% < Zk2,

N —

whence )
w +w? < §k2. (15.26)

Comparing (15.25), (15.24) and (15.26), we conclude w(r) < v(r) for all r large enough,
which is exactly (15.20). H

15.3 Parabolicity for two dimensional manifolds

Unlike Theorem 15.4, in order to decide whether M is parabolic or not, it is generally not
enough to control the curvature K, only for large p. We discuss here to what extend it is
still possible.

The curvature K, on a model manifold My is computed by (15.8), that is

K. (p) = _v) (15.27)

¥(p)

Suppose that we have another function ¢ such that

) ¢'(r)
o el

Then the manifold My will have the same curvature K, (p) for large p.

for r > ro. (15.28)

Lemma 15.5 There exists a function ¢ satisfying (15.28) and such that one of the integrals

o dr * dr
—, (15.29)
W (r) ¢*(r)
1s divergent and the other is convergent.
Proof. Given a function 1, it is easy to see that the function
dr
p(r) = (r) (15.30)
¥ (r)

satisfies (15.28). Note that we need to define ¢ and ¢ only for large r. The limits in [ wgi—(r)
should be chosen so that it is positive and goes to either 0 or to oo as 7 — oo. Let us show
that one of the integrals in (15.29) is divergent and the other is convergent. Define

_o_ [_dr_ 1
f_¢ /1/12(7’) and ¢ 7

Then, by (15.30), |f'| = & and |¢/| = | &

we obtain

= # Since both f’ and ¢’ do not change sign,

| = [ =1569) = str0)
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and © g -
r /
Fe5 = Wl =19(e0) - g0l

Clearly, exactly one of the quantities f(oco) and g(oo) = 7 L

(o0

y is infinite (and the other is
zero) whence the claim follows. W

Suppose that the dimension d = 3 and ¢ is chosen by Lemma 15.5. Then, by Proposition
3.1, one of the manifolds My, M, is parabolic whereas the other is not. For example, the
functions

U(r) = Vrlogr and ¢(r) =7
satisfy (15.28), My and My have the same curvature profile

K,(p) = —, for all large p, (15.31)
whereas My, is non-parabolic and My is parabolic.

Hence, in the dimension d = 3, the statements (a) and (b) of Theorem 15.3 cannot be
true for any function v (even in the class of model manifolds) if the curvature assumption is
to be assumed only for large p.

If d > 3 then one of the integrals

e dr © dr
/ W) /‘wlm e

has to be convergent (as follows from Lemma 15.5), that is, one of the manifolds My, My
is non-parabolic (note that in the case d > 3, both integrals in (15.32) can converge, for
example, if ¢(r) = r'z with le| < 4=3).

Hence, if d > 3 then one cannot claim the parabolicity of a model manifold given the
curvature K, (p) for large p. Neither can one claim the non-parabolicity of a model manifold
given an upper bound for K, (p) (as in Theorem 15.3(b)) only for large p. Indeed, let us set
Y(r) =r% and x(r) = r?, where 0 < 8 < 725 < a < 3. Then, for the model manifold M,,

Koy X _B0-B) _a(-a) v

X p? p? (0

Despite foo wdﬁi—’{(r) < 00, the manifold M, is parabolic, due to 8 < ﬁ.

This discussion shows that in order to extend the statements (a) and (b) of Theorem 15.3
to situations where the curvature is controlled only for large p, one has to involve some non-
curvature hypotheses. To the best of our knowledge, such results are unknown yet, except
for the case d = 2. The next theorem shows that, in the dimension d = 2, in order to deduce
the parabolicity of M, it suffices to control the curvature only for large p, whereas for the
non-parabolicity, a certain additional assumption is required.

We suppress the subscript w in K, (x) because in the case d = 2, there is only one w, and

K(x) is the Gauss curvature at x.

Theorem 15.6 ([84]) Let M be a two-dimensional geodesically complete manifold and o €
M. Let 1(p) is a smooth positive increasing function on (1,00).

(a) Assume that, for all x € M with p := dist(z, 0) being large enough,

K(z) > ¥ (15.33)

— Y(p)’
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and o 4
W:) = . (15.34)

Then M s parabolic.

(b) Let o be a pole. Assume that, for all p large enough and all 6 € S',

P (p)

K(p,0) < — , 15.35
(p:9) Y(p) ( )

and o g

.
— < 00. 15.36
o) (15-36)

Assume in addition that

limsup L(r) > 0, (15.37)

where L(r) := /' (0B(o,1)). Then M is non-parabolic.

Remark: The hypothesis (15.37) allows to exclude the “dual” manifold M, where ¢ is
defined by (15.30). For example, if 1(r) = r®, where a > 1, then ¢(r) = er!=® and L(r) =
21p(r) — 0 as r — oo, so that (15.37) fails to hold for M = M,. Clearly, My is parabolic,
despite both (15.35) and (15.36) are true for My.

Example 15.2 Let us set ¢(r) = rlogr. Then the parabolicity test (15.33) becomes
K(p,0) > L
p.0) > ————.
p?log p

Let us set ¢(r) = rlog!™ r, ¢ > 0, and assume that M is a manifold with a pole, satisfying
(15.37). Then the non-parabolicity test (15.35) becomes

1+¢

K(p,0) < ————.
(p,0) < log p

(15.38)

These two tests were first proved by Milnor [139] for model manifolds and then by Doyle
[52] for manifolds with a pole. The proof of Theorem 15.6 below is also inspired by these two
works.

Proof. [Theorem 15.6] (a) In the domain of the polar coordinates, the Riemannian metric
of M has the form (3.1), which in the case d = 2 amounts to

ds* = dp* + o%(p, 0)db?,

where o(p,0) is a smooth positive function on Ry x S'. A straightforward computation of
the Gauss curvature yields

K(p,0) = —
where ¢ means 0%0/0p?. The hypothesis (15.33) implies

o"(p,9) _ ¥"(p)
a(p,0) — v(p)’

in the domain of the polar coordinates and for p large enough.

(15.39)
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Let us denote

L(r) := /Sl o(r,0)do,

that is L(r) is the length of the geodesic circle 0B(o, ) outside the cut locus Cut(o). Since
the cut locus has measure zero, we have

L(r) = %V(o,r).

The parabolicity of M will follow by Theorem 7.5 if we prove that

© dr
/ o) = (15.40)

Integrating (15.39) in 0, pre-multiplied by o1, we obtain
L”i/J _ L,llz)// S O

whence

(L'y — Ly') <0,
and the function L'(r)y(r) — L(r)+'(r) is decreasing, for large r. Therefore, it is bounded by
a constant C, which yields

L\' Ly-Ly _C
<_> _v-v © (15.41)

(G Y (G

Integrating (15.41) from ry (being a large enough number) to r > ry, we obtain

L L "odg

()< o)+ C | . (15.42)
(G (G ro ¥2(€)
Assume first that v satisfies
o dr
< 0. (15.43)
¥*(r)

Then the right-hand side of (15.42) is bounded by a constant, and we obtain L(r) <
const ¢ (r). Therefore, (15.40) follows from the hypothesis (15.34).
If ¢ does not satisfy (15.43), that is, if

®dr
then we define the function ¢ by
T dg
= — 15.45
o(r) = (r) e (15.45)
and rewrite (15.42) as
L(ro)
L(r) < ¢(T0)w(r) + Co(r). (15.46)

Since (15.44) and (15.45) imply ¥ (r) = o(¢(r)) as r — oo, (15.46) yields, for r large enough,

L(r) < const ¢(r).
We are left to verify that
/°° dr ~
¢(r)
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Since ) is increasing, we may assume that ¢ :=inf(, )% > 0 whence Y(r) < ¢ ?(r). By

setting f := fT’o ﬁ we obtain
o0 dr / / f/
= clog f(oc0) + const = oo
(b) In the previous notation, we have now
O'//(p, 0) ,l/}//(p)
> , 15.47
70.0) ~ V(o) 1547

for all p large enough. By Theorem 12.1, the non-parabolicity of a manifold with a pole
follows from

do
! fl _1 7" 9

meas {0 est: /1 % < oo} > 0. (15.49)

As in the previous proof, we see that the function o’(r,0)y(r) — ' (r)o(r, 0) is increasing
in r and, therefore, is bounded below by a constant —C, uniformly for all # € S' and r > R,
where R is a large enough number. This implies

/ 1ol /
(z) _W—ve, O (15.50)
(G (8 Y

The hypothesis (15.36) and the monotonicity of ¢ imply (15.43). Therefore, we obtain
from (15.50), for all r > r9 > R,

- >0, (15.48)

which is equivalent to

o(r,0) _ a(ro,0) < dg
> -C ——. 15.51
¥(r) ¥(ro) o P2(E) o5
Defining the function ¢ by
o) =vir) [ = (15.52)
P e '
we rewrite (15.51) as
o(r,0)
> — . 15.
e ¥(ro) = o(ro,0) — Cé(ro) (15.53)
Let us split the set of all 8 into two parts:
Oy = {0 eSt:o(r,0) <2C¢(r), foralr > R} (15.54)
and @1 = Sl \ @0.
If 8 € © then, for some ry > R, we have
o(rg,0) > 2C¢(ro).
By (15.53), we obtain, for any r > o,
o(r,0)
>
e Y(ro) = Co(ro)
whence o(r, ) > const ¢(r) and, by (15.36),
«© dr
/1 o <o (15.55)



We are left to show that meas(©;) > 0 which will imply (15.49).
If 6 € ©g then, by (15.54), o(r,8) < 2C¢(r), for r large enough, whence

/ o(r,8)dd < const ¢(r). (15.56)
©o

Since 1) is increasing, we have, by (15.52) and (15.36),

o(r) < — — 0, r—o00.
=) v
Thus, (15.56) and (15.37) imply
lim sup / o (r,0)d6 > 0. (15.57)
r—00 01

whence ©; has positive measure. W

Remark: As is clear from the proof, the hypothesis (15.37) can be relaxed as follows

lim sup {;((:; = 00,

where ¢ is defined by (15.52). For example, if ¢(r) = rlog®r, a > 1, then ¢(r) < log™“r.
Therefore, (15.37) can be replaced in this case by

lim sup L(r)log® r = co.
T—00

16 Heat kernel’s lower bounds and recurrence of a-process

Given a lower bound of the heat kernel on M, one may be able to prove that M is parabolic,
using Theorem 5.1(5). The latter says that M is parabolic provided

/00 p(t, z, x)dt = 0o (16.1)

In general, obtaining pointwise lower bounds of the heat kernel p(¢,z,y) may be difficult
and requires restrictive geometric assumptions (see [126], [78], [164], [165]). However, the
parabolicity test (16.1) requires only an on-diagonal lower bound which is much easier. The
following theorem provides such an estimate assuming only a knowledge of the volume growth.

Theorem 16.1 (Coulhon and Grigor’yan [36, Theorem 6.1], [35]) Let M be geodesically
complete. Assume that, for some point x € M and all r > rg > 0,

V(z,r) < Cr?,
for some (large) positive C, N. Then, for all t >ty = to(rg) > 0,

0.5

t >
p(t2,) 2 |4 (:):, \/atlogt) ’

with some positive constant a which depends on C; N as well as on certain intrinsic properties

of the ball B(z, o).

(16.2)
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As an immediate consequence, we see that the hypothesis
V(z,r) < Cr? (16.3)
implies the parabolicity of M. Indeed, (16.3) and (16.2) imply, for large ¢,

const
tlogt

p(t,z,x) >

whence (16.1) follows.

However, this method does not give the sharp integral condition (7.12) because of the
excessive logt in the estimate (16.2). As was shown in [36, Section 9], this logt cannot be
eliminated.

Given a pointwise on-diagonal lower bound of the heat kernel, we can get for free the
recurrence of some stochastic processes other than the Brownian motion. It is known [135,
Theorem 3.2] that for any « € (0,2), the operator (—A)a/ % is a generator of a Hunt process
on M. Let us call it the a-process. It is a natural generalization of the a-stable process in
R9. As follows from a general semigroup theory of subordinated processes'” (see [195, IX.11]
and [135, p.234]) the Green function G (z,y) of (—A)*/? is given by

G (z,y) = / 2 p(t, x, y)dt,
0

and the recurrence of the a-process is equivalent to G(® = co. The latter amounts easily to

o0

/ta/2_1p(t,x,x)dt =00 (16.4)

(cf. the proof of Theorem 5.1, part (4)<=(5)).
For example, if

V(x,r) < Cr® (16.5)
then, by Theorem 16.1,
(t ) const
y Uy L) Z —— o,
P t/2 log®/? ¢

and we see that (16.4) is satisfied. Thus,we have

Theorem 16.2 Let M be a geodesically complete manifold, and assume that (16.5) holds for
some x and all large r. Then the a-process is recurrent.

A slightly weaker result was proved by I.McGillivray [135].
In the same way, we derive the following statement from the estimates (11.4) and (11.5)
of the heat kernel.

Theorem 16.3 Let M be geodesically complete and assume that the relative Faber-Krahn
inequality (11.2) holds on M. Then the recurrence of the a-process is equivalent to

/°° dt
Va,tt/e)

Similarly, one can produce a transience test for the a-process by using the upper bound
of the heat kernel (10.16).

17"The author is obliged to Ivor McGillivray for explaining the particulars of subordinated processes.
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Theorem 16.4 Let M satisfy a uniform Faber-Krahn inequality (10.5) and assume

Ia [ | gf—fg)rﬂ_l <o (16.6)

Then the a-process is transient.

In particular, if A(v) ~ v=P, for large v, then (16.6) holds if and only if a8 < 2. A nice
application of this theorem occurs on a manifold of bounded geometry which is, by definition,
a manifold with Ricci curvature bounded below and with a positive injectivity radius. A
complete manifold of bounded geometry always admits a Faber-Krahn inequality with the
function

A(v) = const v™2, (16.7)

for large enough v, see [81, Theorem 2.1].'® Therefore, if & < 1 then the a-process is transient
on any complete manifold of bounded geometry.

17 Escape rate as a measure of transience

The transience of the process X; means that, with P,-probability 1, it leaves any ball B(z,r)
forever after some (random) ¢. One may wonder if the radius r can be time-dependent. In
other words, is there an increasing function r(¢) such that X; ¢ B(x,r(t)), for all ¢ large
enough P;-a.s.? We will call such a function a lower radius for X;. A sphere 0B(x,r(t)) can
then be regarded as a rear front of the diffusion process.

There is a natural counterpart to a lower radius - an upper radius. An increasing function
R(t) is called an upper radius if, with P,-probability 1, we have X; € B(z, R(t)), for all ¢
large enough. The sphere 0B(x, R(t)) can be regarded as a forefront of the Brownian motion
(see Fig. 33).

R(
BHR()

Figure 33: A lower radius r(¢) andan upper radius R(t)

A sharp estimate of a lower radius in R? was obtained by Dvoretzky and Erdos [54].
Namely, if 7(r)/v/t is a decreasing function then r(t) is a lower radius for the Brownian
motion in R¢, d > 2, if and only if

[0y o

18Tn fact, the hypothesis of a positive injectivity radius can be relaxed as to the assumption that, for some
positive p, vo, all balls of radius p have the volume at least vo > 0. Note that the function (16.7) is the same
as in R! and as in a cylinder R' x K where K is compact. It reflects the fact that a manifold of bounded
geometry has at least dimension 1 at infinity. See [186], [24], [33].
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In particular, the function
CVt
r(t) = —=
logd-2 ¢
is a lower radius if € > 0 and is not if ¢ < 0. Note that the restriction d > 2 is essential;
otherwise the process is recurrent, and there is no increasing lower radius.
The celebrated Khinchin’s theorem - the law of the iterated logarithm - says that the
function

. C>0 (17.2)

R(t) = /(2 + ¢)tloglogt (17.3)

is an upper radius in R? if ¢ > 0 and is not if ¢ < 0 (see [103, Section 4.12] and [14] for
further results in this direction).
We briefly outline similar results for Riemannian manifolds.

Theorem 17.1 (the law of the single logarithm - [86], [83]) Let M be a geodesically complete
manifold of at most polynomial volume growth i.e., for some x € M and all v large enough,

V(z,r) < const !,
with some N > 0. Then the function
R(t) = \/2Ntlogt (17.4)

18 an upper radius for X;.

Note that there are counterexamples which show that the function (17.4) cannot be in
general replaced by +/Ctloglogt - see [8], [87]. However, if the relative Faber-Krahn inequality
(11.2) holds then one does have the upper radius (17.3) - see [86, Theorem 1.3].

For a lower radius, there is the following test.

Theorem 17.2 ([83, Theorem 5.1]) Let M be geodesically complete and let us assume that
the relative Faber-Krahn inequality (11.2) holds on M. Assume also that M is non-parabolic

and denote, for some x € M,
© gds \ !
= . 17.5
i) <»/r V(z, 8)) (175)

Let r(t) be an increasing positive function on (0,00) such that

= A0()
/ V(x’\/g)dt< . (17.6)

Then r(t) is a lower radius for the process X, started at x.

The hypothesis of non-parabolicity ensures that the integral in (17.5) is convergent. More-
over, given the relative Faber-Krahn inequality, the non-parabolicity of M is equivalent to
the convergence of the integral in (17.5) as is stated by Theorem 11.1.

Let us recall that the relative Faber-Krahn inequality holds on manifolds of non-negative
Ricci curvature. Thus, Theorem 17.2 applies on such manifolds.

Example 17.1 Let V(x,r) ~ r¥ for large r and some v > 2. We obtain from (17.5) y(t) ~

t=2 and (17.6) amounts to
> V=2 (t)dt _
tv/2 0,
which coincides with the Dvoretzky—Erdos condition (17.1) for d = v.
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Example 17.2 Let V(x,r) ~ r2log” r for large  with some v > 1. We find ~(t) ~ log” ' ¢
for large ¢, and (17.6) acquires the form

> Jog” L r(t)
— =t .
/ tlog’t =%

For example, we can put r(t) = tloglog )™ o) Jarge ¢, with any a > ﬁ

See [4], [5, p.60], [83], [86], [93] for other situations when the escape rate can be estimated.

18 Problem section

We suggest here some open problems related to the topics of the paper. Their difficulty varies
from very hard to apparently accessible for graduate students specializing in the area.

Manifold M is always assumed geodesically complete and non-compact.

Parabolicity

1. Let M be a manifold with a pole and (p, ) be the polar coordinates on M. Theorem
12.1 says that M is non-parabolic provided

meas 9€Sd_1'/ooL<oo >0
‘ D(p,0)

where D(p,0) is the angular density of the boundary area function (see (12.2)). Prove (or
disprove) the converse: if, for almost all 6§ € Sé-1,

[T
D(p,0)
then M is parabolic.

If this is not true then find another condition which would be both necessary and sufficient
for the parabolicity of M. The question is open even for the two-dimensional M.

2. Let a smooth hypersurface I' divide a manifold M into two open subsets Ny, INo.
Suppose that each subset Ny, Ny is parabolic (see Section 14.1 for the definition of parabolic
subsets). Is it true that M is parabolic?

If T is compact then the affirmative answer is given by Proposition 14.1(e). If T' is not
compact then some additional hypotheses about the structure of I' may be required.

The same question for M being partitioned into a finite number of open subsets Ny,
Ns, ..., N,: when it true that M is parabolic provided all sets N; are parabolic? This is
related to Question 1. Indeed, let the sphere S¢~! be partitioned into cells wy, ..., w,. This
induces partitioning of M into the cones N¥i = {(p,0) : p > 0, 6 € w;}. Assume that, in
any cone N“ the boundary area density D(p,0) is given by D(p,0) = D;(p), neglecting the
smoothness of D on the boundaries dN“i. Then the parabolicity of N“¢ is equivalent to

> dp
D;(p)

=00 (18.1)

(cf. Lemma 12.2). Suppose that (18.1) holds for all ¢ = 1,2,...,n. Is it true that M is
parabolic?
If we knew that

/ S Dilp) Jwi] (18.2)

then M would be parabolic by Theorem 7.5. However, (18.1) does not necessarily imply
(18.2) (cf. Example 7.3).
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3. How to extend Theorem 12.1 to arbitrary geodesically complete manifolds (without a
pole)? This amounts to obtaining a lower bound of capacity generalizing (12.6). Let v(z) be
a smooth exhaustion function on M and let B, := {z € M : v(x) < r}. A heuristic analogue
of (12.6) would be the estimate

R 2\ !
cap(Br,BR)2/</r %) ) (18.3)

which however, does not make sense in this form. It is obtained similarly to the proof of
Theorem 12.1, by spliting Br \ B, into thin tubes connecting 0B, and 0Bpr and estimating
the capacity inside each tube by

-1
R dp

fluxwv
0B

cap (BY, BY) = /
:

(cf. (7.6) and Lemma 12.2). For a small piece of surface 9B}, we have

d
fluxv & |Vo|dy' = [Vol? o ,
OBy dp

—1
o R (dp)?
cap(Br,BR)—</r Vol dn ;

and (18.3) follows by summing up the above estimate over all tubes. The question is whether
it is possible to make all this rigorous.

4. Let M be a geodesically complete manifold with a pole o. Denote S(r) = u/(0B(o,r))
and assume that

whence

< dr
— . 18.4
Sy < (18.4)
Suppose also that
V" (p) .
K,(z) < ) for all large enough p := dist(z, 0), (18.5)
p

where K, (x) is the sectional curvature as in Section 15.2, and % is a function as in Theorem

15.3 and such that oy
/ e < oo (18.6)
P (r)

Is it true that M is non-parabolic?

Example 7.3 shows that (18.4) alone is not sufficient for the non-parabolicity of M. As was
explained in Section 15.3, (18.5) and (18.6) do not imply the non-parabolicity either (unless
(18.5) holds for all p > 0 — see Theorem 15.3(b)). If d = 2 then all three conditions (18.4),
(18.5) and (18.6) do imply that M is non-parabolic, by Theorem 15.6(b). The question is
whether the same is true for d > 2.

Consider the particular case d = 3 and ¢ = r® with a > 1/2, which ensures (18.6). Then
the question becomes as follows: is it true that (18.4) and

K,(x) < 1=

< F;, for all large enough p,

where € > 0, imply that M is non-parabolic?
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5. (Milnor [139]) Let M be a graph of a smooth function z = f(z,y) defined for all
(z,y) € R2. Find a criterion for parabolicity of M in terms of the function f. Examples of
non-parabolic surfaces of this kind can be found in [156].

6. Consider a domain of revolution in R?

Dy := {xeRd:0§w1<oo and || Sf(a:l)} , (18.7)

where 2’ = (22, ..., z4) and f is a smooth function. The set Dy can be considered as a manifold
with boundary (make it smooth near the origin). Find a criterion for parabolicity of Dy in
terms of the function f.

If f is “slowly” changing then one expects that the parabolicity of Dy is equivalent to

/OO fdd—f(x) =00 (18.8)

that is analogous to Proposition 3.1. However, if f oscillates then it is not clear whether
(18.8) is a good guess.

Explosion

7. Does there exist an explosion criterion which would be similar to the capacity criterion
for transience given by Theorem 5.1(6)? T.Lyons [131] constructed an example of a manifold
where the explosion is not stable under a quasi isometry. Therefore, the corresponding
“capacity” should not be a quasi-isometric invariant either.

8. Theorem 5.7(b) says that M is non-parabolic if and only if there exists a smooth vector
field v on M such that |v| € L?(M, ), dive € L'(M, u) and

/ divodu #0 .
M

Find a criterion for explosion similar to the above criterion for transience. A statement should
run like that: “if there is a vector field on M with such that ... then M is stochastically
incomplete”. The idea is to replace the Brownian trajectories by a deterministic vector field
which should resemble in a large scale the velocity of the Brownian motion in the case of
explosion.

9. Prove (or disprove) that the condition

< V(x,r) -
/ T = oo (18.9)

for some x € M, implies stochastic completeness of M. By Proposition 3.2, this is true for
model manifolds.

The condition (18.9) is analogous to the condition (7.15) for parabolicity. The best known
non-explosion test in terms of the volume function is given by Theorem 9.1.

10. Let M be a Cartan-Hadamard manifold and let k(r) be a positive increasing function
on (0,00) such that the sectional curvature at any point x € M at any 2-section is bounded
above by —Cp?T¢ where p = p(x) = dist(x, 0), o being a reference point, and C > 0. Then,
by Theorem 15.4(b), M is not stochastically complete.

On the other hand, denote A\o(r) := A\ (M \ B(o,7)). Since the curvature in M \ B(o,r)
is bounded above by —C7r2*¢, the eigenvalue comparison results [137], [192] imply that

Ae(r) > C'r2e, (18.10)

where C' = @C. The question is whether (18.10) alone implies the explosion, without
having to assume the curvature growth. In short, given a Cartan-Hadamard manifold M

satisfying (18.10), prove that M is stochastically incomplete.
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Presumably, one could show that the Green function on M is summable (see Corollary
6.7). There is a heat kernel upper bound [79, Theorem 5.3] which takes into account the
growth of \¢(r) but it is not good enough to show that G is summable. May be, one should
assume also a matching upper bound of the volume V' (o, 7).

Liouville properties

11. Give an efficient characterization of massive sets (see Section 4.4) in terms of their
intrinsic geometry. For D-massive sets, such a characterization is given by Theorem 14.2.
Since Theorem 13.10 provides a straightforward link of massive sets to bounded harmonic
functions, there is a hope to obtain in this way a criterion for the L°°-Liouville property for
harmonic functions.

12. Similarly, give characterizations of A-massive sets (see Section 6) and g-massive sets
(Section 13.2). The former may be used to produce a geometric criterion for stochastic
completeness.

13. Suppose that M has at most polynomial volume growth and bounded geometry.
What is the necessary and sufficient geometric condition for the L°°-Liouville property for
harmonic functions?

14. Generalize Theorem 13.10(c) to solutions to the Schrédinger equation (13.6). For
example, prove or disprove that if M contains k disjoint g-massive sets (see Section 13.2)
then the space of all bounded solutions to Au — g¢(x)u = 0 has the dimension at least k?

Similarly, can one state an analogue of Theorem 14.5 for the Schrédinger equation?

15. If manifolds M and N are stochastically complete then the Riemannian product
M x N is also stochastically complete (this follows from the fact that the heat kernel on
M x N is the product of the heat kernels on M and N). For parabolicity, this is not true:
R! and R? are parabolic whereas their product R? is not.

Suppose that M admits the g;-Liouville property (see Section 13.2) and N admits the
gs-Liouville property. What ¢-Liouville property can be proved on M x N7

It is natural to defined the function ¢ = ¢(x,y) (where z € M, y € N) as follows
q(z,y) = f(q1(x),q2(y)), where f is a function in two variables. Recall that parabolicity
is equivalent to the g-Liouville property with ¢ € C§° whereas stochastic completeness is
equivalent to that for ¢ = 1.

16. Prove (or disprove) that if manifolds M and N are parabolic then the Riemannian
product M x N possesses no bounded harmonic function except constant. This would explain
(to some extent) why R? admits the L>-Liouville property for harmonic functions.

It is not enough to assume that both M and N admit the L°°-Liouville property - see
Section 13.5 for a counterexample.

17. Is the g¢-Liouville property (see Section 13.2) stable under quasi-isometry? If ¢
is compactly supported then, by Theorem 5.1(7), the g-Liouville property is equivalent to
parabolicity of M and, therefore, is stable by Corollary 5.3. On the other hand, if ¢ = 1 then
the ¢-Liouville property is equivalent to stochastic completeness that may be unstable.

Where is the borderline between these two possibilities? For example, let ¢(z) = ﬁ
where r := dist(z, z¢). Is it true that the ¢g-Liouville property with this particular ¢ is stable
under a quasi-isometry?

Note, that the ¢g-Liouville property is always preserved by a change of the metric and/or
of ¢ within a compact set [88].

18. Theorem 8.2 ensures non-parabolicity provided a certain isoperimetric inequality
holds on M. Is it possible to state a similar result for existence of a non-trivial bounded
solution to the Schrédinger equation Au — g(z)u = 07

19. Find a criterion for the L®-Liouville property in the domain of revolution D; given
by (18.7). In other words, for what functions f , is any bounded harmonic function in Dy
with the Neumann boundary condition on 9Dy identically constant? For a model manifold
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M,, the L*°-Liouville property is equivalent to

o dr ng—:a —
| i ) oo
(see [128] and [142]).

20. (M.Barlow) Let M be non-parabolic. Prove (or disprove) that there exists an open
subset £ C M with smooth boundary, which admits a non-constant bounded harmonic
function in £ with the Neumann boundary condition on OF. In other words, the L*°-Liouville
property must fail in E.

An intuition behind this conjecture is the following. Presumably, the set ¥ can be found
so that it contains a “bottleneck” which separates E into two subsets massive in E. By
Theorem 13.10(b), this will implies existence of a nontrivial bounded harmonic function on
E.

The assumption of non-parabolicity of M is necessary since otherwise any subset F is
parabolic and so is the manifold E, by Proposition 14.1. If M = R%, d > 2, then E can be
constructed by gluing together two disjoint half-spaces via a compact tube. Another example
of a such a set E being in addition diffeomorphic to a half-space, can be found in [73, Section
3].

Faber-Krahn inequality and capacity

21. Prove the following estimate of capacity

cap(B(,r), B(z, R)) > const </TR V?z;))_l

assuming the relative Faber-Krahn inequality (11.2). This will provide an alternative proof
of Theorem 11.1.
22. Prove the following estimate of capacity (cf. (8.2))

o g \ 7'
cap(K,Q) > const </|K| %) (18.11)

assuming the uniform Faber-Krahn inequality (10.5). This will provide an alternative proof
of Theorem 10.2.
What is easy to prove is the following inequality

cap(K,Q) > | K| \1(R2) > | K| A(|9)), (18.12)

which follows from the definitions (4.12) of the capacity and (10.1) of A1, and which is clearly
weaker than (18.11).
23. Given the Faber-Krahn inequality (10.5), prove an upper bound of the Green kernel

yi dv
< .
G(z,y) <C / ZA () (18.13)
V(y,r)

where r = dist(x,y). The motivation behind (18.13) is the following. The Faber-Krahn
inequality (10.5) follows from the isoperimetric inequality (8.1) if we set

=312
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(see (10.9)). Assuming (8.1) and combining (4.24) with (8.2), we obtain

T dv 1 7 dv
inf G < —_ = = .
zealg(y,r) (z,y) < / f2v) 4 / v2A(v)
V(y,r) V(y,r)

The point is, firstly, to obtain a pointwise upper bound for GG rather than an upper bound for
inf G as above; secondly, to assume a Faber-Krahn inequality rather than an isoperimetric
inequality.

The Faber-Krahn inequality (10.5) implies an upper bound of the heat kernel [79, Theorem
5.1], which yields an upper estimate for G upon integrating in time. However, this method
does not give a very sharp result in the case when G(z, y) decays superpolynomially as r — oo.

Regular ends

24. Assuming that E is a regular end of M (see Sections 14.3, 14.4), prove that the

hypothesis
/ *© sds <
00
Ve(s)
implies non-parabolicity of E. Due to Theorem 14.6, it suffices to show that, for a regular

end,
VEe(r)
r2

capg (B, Bay) > const

for all large r. By (18.12), this in turn would follow from A;(B,) > <%,

25. (P.Li [119]) Let E be an end of a geodesically complete manifold M and assume
that the Ricci curvature is non-negative on E. Does this imply that the end E is regular?
(See Section 14.3 for the definitions). The answer is “yes” if E has a non-negative sectional
curvature - see [121, Theorem 3.2]. Should the answer be in general “no”, let us assume in
addition that the volume comparison condition (VC) holds on E (see Example 14.3 at the end
of Section 14.4) and ask again whether E is regular. More generally, do the conditions (P),
(D) and (VC) (see Example 14.3) imply that FE is regular, without any curvature assumption?

Recurrence of the a-process

26. (I.McGillivray) Prove that if

& dt

for some = € M, then the a-process on M is recurrent (see Section 16 for the definition of
the a-process). Theorem 16.2 guarantees the recurrence of the a-process under the stronger
assumption V(z,r) < Cr®. Theorem 16.3 says that (18.14) is equivalent to the recurrence
provided M admits the relative Faber-Krahn inequality.

Escape rate

27. Produce a lower radius function r(¢) for the Brownian motion on manifolds with
superpolynomial volume growth (see Section 17 for the definition of r(t)).

What is a lower radius r(¢) on a model manifold M, (see Section 3.2) with o(r) ~ exp(r®)?
The answer may be substantially different for small a > 0 and for a > 2. In the latter case,
M, is stochastically incomplete, by Proposition 3.2.

What is a lower radius on a covering manifold (see Section 11.2) given the volume growth
function V(r) ~ exp(r®), 0 < a < 1?7 See [93] for the case of a polynomial volume growth.

Does there exist a manifold with a fast growing lower radius, say, r(t) = t2?

28. Suppose that 7(t) is a lower radius for the Brownian motion on an arbitrary complete
Riemannian manifold. Is it true that 2r(t) is also a lower radius? For RY, this follows from
the test (17.1) of Dvoretzky and Erdés (if M is a manifold of non-negative Ricci curvature
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then the sufficient condition (17.6) for a function r(¢) to be a lower radius is also stable under
the change to 2r(t)). However, no direct way is known to see why 2r(t) should be a lower
radius in general.

Is there a manifold for which the following is true: if R(¢) is an upper radius then 1 R(t)
is also an upper radius? In R¢ this clearly fails.
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