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BOUNDED SOLUTIONS OF THE SCHRODINGER EQUATION ON NONCOHPACT 
RIEMANNIAN MANIFOLDS 

A. A. Grigorlyan UOC 517.9 

Necessary and sufficient geometric conditions are proved for the equation 
6u - Q(x)u - 0, Q(x) ~ 0, to have a bounded nontrivial solution on a noncompact 
Riemannian manifold. The results imply as corollaries conditions for parabol­
icity and stochastic completeness of a manifold. previously established by 
other methods. 

INTRODUCTION 

Let H be a smooth connected noncompact Riemannian manifold, d the Laplace-Beltrami op­
erator on H, Q(x) a smooth nonnegative function on H. not identically zero. Considering 
the Schrodinger equation on H. 

we ask the following question: 
have a unique bounded solution 
is true for equation (0.1). 

Au-Q(x)u-O (0.1) 

For what manifolds H and potentials Q does equation (0.1) 
u - 01 If this is the case. we say that Liouville's Theorem 

.;J. 

~. 

, 
'" 

It is well known that when Q - 1 Liouville's Theorem for equation (0 .1) is equivalent 
to stochastic completeness of H (4]. A manifold is said to be stochastically complete if 
the total probability of a minimal Wiener process is preserved and equals 1; this is equiva- i'I' 
lent to uniqueness of the solution to .the Cauchy problem for the heat equation Ut -~u - 0 if 
~~· r l 

It can be proved (see below, Sec. 
is true for equation (0,1) if and only 

no positive fundamental solution. has 

I) , that if Q has compact support Liouville's theorem 
if the manifold is parabolic. i.e., the operator-~ 

_~1 ,,,I 
'.' !O .. . ~. 
.":",r,. -. .-It is well known that H is parabolic if and only if the Wiener ptocess is recurrent. .~._ 

The theories of stochastically complete and parabolic manifolds. developed independently ~ 

in [1-3, 6, 9-12]. have brought to light various beautiful analogies. For exampl', Cheng ~ 
and Yau {I] proved that if H is geodesically complete and the volume VCR) of a geodes ic ball ~ 
of radius R with fixed center 0 is such that as R ~ -

V(R) <:;CR'. 

then H is parabolic. In my paper (2] I proved that if 

V(R)::;;;;exp CR2 

then H is stochastically complete. 
Li in ",h'ich condition (0.3) is i n 

Several authors {12] 
fact established. 

refer to a preprint of Karp and 

The reason underlying the analogy between (0.2) and (0.3) is that these conditions 

(0.2) 

(0.3) 

are special cases of one more general theorem. stating a sufficient condition for Liouville'S 
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Theorem to be true for an arbitrary SchrOdinger equation (see Sec. 3). 

Quite similarly . several necessary condi,tiens for parabolicity and stochastic complete­
nes~. pharased in terms of curvature growth [6. 9, 101. follow in a unified fashion from 
suitable theorems for the Schrodinger equation (see Sec. 2). 

1. SOME PRELIMINARY INFORMATION 

Throughout this paper H will denote a smooth. connected, noncompact Riemannian manifold. 
possibly with boundary . 

If the boundary is not empty, equation (0.1) must be considered together with a Neumann 
condition on the boundary: 

where N is the normal to aM. 

.. __ 0, 

'N (1.1) 

Proposition 1.1. Let G be a precomp~ct open subset of H with smooth boundary transversal 
to aM. The following conditions are equivalent: 

a} Equation (0.1) with condition (1.1) has a nontrivial bounded solution on M. 
b) Equation (0.1) with condition (L1) has a positive bounded solution on H. 

c) There exists a function veC 2 (M\G) such that 0 :s; v :s; I, tJ.v - Qv 2: 0 in H\G; v laG- 0 
(and moreover v satisfies condition (1.1) on aM\G). v=/:. O. 

Proof. a)..:> c). Let {Bk} be an exhaustion of H by precompact open sets. 

We may assume that all the boundaries aSk are smooth and transversal to aM, and also 
that Sk ~ G for all k. 

Let u be a solution as described in part a). We may assume without loss of generality 
that supu - 1. By the strong maximum principle, m - sUPll+ < I, where ll+ - max(u, 0). 

M G 
Let us solve the following sequence of boundary-value problems in Bk\G : 

dv.-C2v.=O. v.I<1G=O, v.l<ls.-(u-m)+ 

(we are assuming that the vk also satisfy_condition (1. I)). Since tJ.(u - m) - Q(u - m) -
Qm 2 O. VJt 2: U - m on the boundary of Bk\G, it follows from the maxilllWll principle that vk :l 

u - m throughout the domain. It is also obvious that vk :l 0, whence vk 2: (u - m)+. By the 
maximum principle o~~ easily infers that vk :s; Vk+l S 1. so that the sequence {Yk} is mono­
tone increasing and converges to the required function v. That "v is nontrivial follows from 
v 2 (u - m)+ and ~e strong maximum principle. 

c) :.:> b} The required function u will be the limit of solutions Uk of the following 
boundary-value problems in Bk: 

b) ... a} Obvious. 

COROLLARY 1.1. If H is parabolic, then for any Q Liouville's Theorem is true for equa­
tion (0 . 1). 

Indeed, if u is a solution as in part b) of Propositiqn 1.1, then dU 2: O. But any bound­
ed subharmonic function on a parabolic manifold is a constant [51, and this. together with 
(O.l), implies u -0. 

For compact-supported Q the converse is also valid (see Sec. Z). 
For the sequel we need the Green's function of the Laplacian. 

Definition 1.1. The Green's function g(x, y) of the Laplace operator on H is the small­
est positive fundamental solution of the operator -tJ. (with condition (I. I)). 

The Green's function g(x, y) is constructed as the limit of Green's functions of the 
boundary-value problem for the Laplace operator in the exhausting domains Bk (with a Dirich­
let condition on aBk and a Neumann condition on aHnBk)' 
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In the case of a parabolic manifold this limit is ~, so that we put g - ~. 
bolic manifolds the limit satisfies Definition 1.1 (for more details see [5] or 

For nonpara~ 
[3)) . 

The procedure just described to construct the Green's function readily implies 

Proposition 1.2. Let f be a nonnegative function on M and let 

u(x)=lK(x, y)f(y)dy. ., (1. 2) , 
If u(xo) < • at some point xo. then u(x) is defined for all x and is the small!st non~ 

negative solution of the equation ~u - -t on M (with condition (1.1». 

< , 

COROLLARY 1.2. The function (1.2) satisfies inf u - 0 (provided that u < -) • 
• 

Indeed, if m - infu > 0, then u - m is also a nonnegative solution of the equation 
• 

du - -t, contrary to Proposition 1.2. 

~other result of the construction is 

Proposition 1 .3 . If B is some precompact open set containing a po i nt y. then 

sup g(x. y)z=. sup g(x, y), 
_E M\,B _E ,UJ 

in particular, g(x, y) is bounded for x~\B. 

2. EXISTENCE OF NONTRIVIAL BOUNDED SOLUTIONS OF THE 
SCHRODINGER EQUATION 

THEOREM 2.1. Let Q be a potent i al such that 

le(x. y)Q(y)dy<~. 
•• 

where g(x. y) is the Green's function of the Laplace operator (see Sec. 1). Then equation 
(0.1) with condition (1.1) has a nontrivial bounded solution on M. 

Remark. ,The converse is unfortunately false. 

Proof. As in Sec. 1. let {Bk} be an exhausting sequence . In Bk. solve the boundary~ 
value problem dUk - Quk - D, uklaBk - 1 (condition (1.1) is assumed to hold on aHnBk)' Obvi­
ously, 0 < uk S 1. It follows easily from the maximum principle that the sequence {Uk} is 
monotone decreasing and its limit is the desired function u. We have to prove that u~o. 
Denote the integral on the left of (2.1) by vex). Let us compare v(x) 'with the function 
Uk - 1 - Uk' Since Uk - Qijk - Q ~ -0. uklaSk - D, while v is nonnegative and satisfies 
the equation dv - -0. it follows from the maximum prinCiple that v ~ Uk. Letting k • ~ we 
get v~ ~ 1-u. But by Corollary 1.2infv - a, and so supu ~ 1. u"/=a. 

COROLLARY 2. L If Q is swrmabIe on Ii and M is not parabolic. then equation (a.1) {with 
condition (1.1» has a nontrivial bounded solution. 

The proof follows in an obvious way from the loca l summability of the Green's function 
and Proposition 1.3. The conditions of Corollary 2.1 hold. in particular. for potentials 
Q with compact support. 

COROLALRY 2.2. Assume that Liouville's Theorem is true for equat ion (0.1) (with condi­
tion (1.1» on H. Then if u is a nonnegative harmonic (or superharmonic) function which 
is summable on H with weight Q. i.e., 

~U(x)Q(.r)dX<OO. (2.2) 

then u - const (it is assumed that u satisfies condition (1 ,.1». 

Proof. If H is parabolic then u - const without the need to assume condition (2.2) 
[5]. Assume. therefore. that the Green's function g(x. y) exists. We claim that (2.2) im~ 
plies (2 . 1), so that the conclusion will follow from Theorem 2.1. 
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Let {Bk} be an exhaustion of H, gk(X, 

then u==O by the strong maximum principle. 

y) the Green's function in Sk' If minu - 0, 
,", 

Let minu >' O. 
,", 

Cu(x) ~ g(x, y) for all xeas1. Then for any k 

Cu(.r»g.(x, Y) 

Find a constant C such that 

(2.) 

for all xeas1. Since gk(x, y) - 0 for xeaBk, condition (2.3) holds on aB~. By the 
principle it is true for all xeBk \ B1o Letting k • -, we obtain Cu(x) ~ g(x, y) for 
Hence, using (2.2), we readily obtain (2.1). 

maximum 
X~\Bl ' 

We now apply Theorem 2.1 to manifolds with a pole. a point OEM is called a pole if 
the exponential map expo is • diffeomorphism of ToM and H. In particular. a manifold wi th a 
pole is geodesically complete and has no boundary. Hence we have a globally defined polar 
coordinate system (r, ~). where r is the geodesic distance to 0 and ~ a point on the unit 
sphere in ToM. The Laplace operator in this coordinate system is 

(2.4) 

where Sr is 
H(r . ~) the 

the geodesic sphere of radius r centered at O, "6Sr the inner Laplacian on Sr. 
mean curvature of Sr at the point (r. ~) in the direction of the outer normal 

(see [8]). 

k ct:h kr. 

For example. in R~ H - "~ • while in Lobachevskii space Bkn H - (n - 1) x , 

It is also known that H(r , ~) characterizes the relative expansion of Sr with increas­
ing r. This means, in particular, that 

~ $ (r) = r H. 
dr .I 

s, 

where s( r) - mes Sr' 

A manifold with pole 0 is called a model if the geodesic rotations about 0 are isome­
tries. In that case H(r, ~) - H(r) . 

It is immediately verifiable that the Green's function g(r) - g(x. 0) on a model is 
given by 

• 
g(r) =- ) S~) ' 

Theorem 2.1 yields 

COROLLARY 2.3. If H is a model manifold. Q(x)[S - const - Q(r) and 
r 

• • 
5

_ 1
_ - 5s(r)Q(r)drdR< 00 • 

s (R) 

• 
then equation (0.1) has a nontrivial bounded solution. 

Remark. It can be shown that if the integral in (2.5) is divergent. then. on the 
contrary. Liouville's Theorem is true. 

(2.5) 

Proposition 2.1. Let H be a manifold with pole, M a model. Suppose that for r ~ Ro 
one has HCr, ~) ~ A(r) . Q(r, ~) S OCr). Then if the equation dU - Ou - 0 has a nontrivial 
bounded solution on A. the same is true of equation (0.2) on H. 

Proof . Let v be a positive bounded solution of the equation dV - Ov - 0 on A. Averag­
ing v over spheres. we may assume that v is independent of~. It follows from the maximum 
principle that vCr) as a function "on H. By (2 : 4). 

6t1-QtI-v,,+H (r. ~)tI,-Qv>v .... + fltl.--QtI _ O. 

Define u(r) - vCr) - veRa)' Then u >' O. dU - Qu ~ 0 in H\ BR o' UlaBR - 0 (where BRo 
is the ball of radius Ro centered at 0). and it remains to apply PropOSi tion 1.1. 
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COROLLARY 2.4. Let K be a manifold vith a pole and let q(r), her) be nonnegative smooth 
functions such that q(r) ~ Q(r. ~) for r ~ Ro and 

• 

J ~<oo. h (r) 
(2.6) 

h' 
Suppose moreover that for r ~ Ro we have H(r. ~) 

a nontrivial bounded solution. 

~ h + gh. then equation (0.1) has 

Proof. 
h' 

We construct a model A such that H • -- + gh for r ~ Ro. 
h 

For example, vorking 

in an. one can conformally modify the metric on every sphere centered at the origin in such ~ 

a vay that -its volume becomes s(r), where s(r) is a function such that for r ~ Ro one has ~ 

h' 
s'/s --+ gh, Le .• s(r) 

h 

, 
- Ch( r) exp S qh. 

R. _ 

Then condition (2.5) 
follovs immediately. 

for the model M with potential q is precisely (2.6), and the rest 

Examples. 1. If Q has compact support and h = rl+C. c > 0, ve obtain a sufficient 

condi~ion for nonparabolicity: H 
quickly than aa: for them s(r) ~ 

,+-. -- . , The corresponding manifolds expand rather more 

const rl+C. 

2. If Q=sl ve obtain a sufficient condition 
The corresponding manifolds expand very rapidly: 

for stochastic incompleteness: 
s(r) ~ expC l r2+c . -. 

3. Let M be the domain of revolution in R," obtained by rotating the subgraph y .. x1
Q "" 

about the Xl axis. where 
, 

--;=-1< a :s: L 

Let 
" 

Lu= r (a,(x)ux/)%( 
I.j_! 

be a uniformly elliptic· operator in M vith smooth coefficients. Defining a metric in M whose 
Laplace-Beltrami operator is proportional to L and using an estimate for the Green's function 
established in {3l. we see that if 

S xl-L"-I)aQ{x)dx<oo 
M 

there exists in M a nontrivial bounded solution of the equation Lu - Qu - 0 with a Neumann 
condition along the conormal on the boun~ary of M. 

3. LIOUVILLE'S THEOREM FOR THE SCHROOINGER EQUATION 
Let rex) be a fixed locally Lipschitzian exhaustion function on H, i.e •• a function 

whose sublevel sets BR = (x:r(x) < R} are precompact for all R. 

flow 

2344 

Denote SR - {x:r(x) - R}. If rex) is smooth, then for almost all r one can define the 

p(R)- 11"'1 · 
s, 

Let q(R) be a nonnegative continuous function such that Q(x) ~ j9rj2q(r) for all xeM. 

Define , 
F(R)-\Vq(t)dt. 

d 

THEOREM 3.1 . If rex) is a smooth exhaustion function and for some C > 0 

• 
- dR ;: oo, 5 c'~'~p ~( C~F~(~R~)'~)_ p(R) 

(3.1 ) 

(3.2) 



• 
n 

1) 

2) 

then equation (0.1) (with condition (1.1» has a unique bounded solution u - O. 

COROLLARY 3.1. Let rex) be a Lipschitzian exhaustion function (e.g., in particular, 
s distance function). Let VCR) denote the volume of the set BR' Let q(R) s min Q. If '. there exists a sequence Rk ~ - such that 

(3.3) 

then Liouville's Theorem is true for equation (0.1) (with condition (1.1» on H. where F 
is defined in terms of q as in (3.1). 

In particular, if V(Rk) S CRk2 the manifold is parabolic (this was first proved in [I}), 
while if V(Rk} S expeRt2 it is stochastically complete. 

Remark. ObViously, a Lipschitzian exhaustion function exists if and only if the manifold 
is metrically complete. 

Proof of Theorem 3.1. Suppose that Liouville's Theorem is false 'on H. i.e., by Propo­
s ition 1.1, there exists a solution u of equation (0.1) (with condition (l.r» such that 
O<u<l. 

We claim that condition (3.2) necessarily implies that u sOon suPpQi . this contradic­
tion will complete the proof. 

Considering the direct product M x [0, +-), we define vex, t) - etu(x) - 1. Obviously, 
vex, t) satisfies the parabolic equation 

Qu,-du - O (3.4) 

with initial condition 

u(.%', O)~O (3.5) 

(as well as a Nuemann boundary condition on 3M). 

From this fact, using (3.2) . we shall infer that vex. t) s 0 for all xesuppQ, t > 0, 
whence it will follow that u(x ) S e-t , and so as t ~ - u(x) s 0 for all xesuppQ. 

Let ql (r), g( r, t) be locally Lipschitzian functions of one and two variables. respec­
tively, and assume in addition that ~ has compact support. Considering r as a function on 
M, multiply (3.4) by v~2eg and integrate over M ~ [T 1 , TJ (where 0 s Tl < T): , , 

~ >, Qup+~It" did.%' = J. i 6t1U+IiI't" d.%'dt. 

Integrating by parts, we obtain (the integral vanishes along aM by the Neumann condition) 
, , 

...!...rQu~~It" IT _...!...J rQu~qJlg!'=-rsl'VV+I¥eJ'-
2 • T, 2 • . 

/If M~ T,M 

, , 
-2 r Jv+('V u, 'VqJ)~-S Su+('Vu. 'Vg)~It". 

1, /If T, M 

Applying suitable inequalities of the type 2a b s ca2 + c 1 b2, on the right, we can easily 
ensure that the integrals containing IVv+12~2eg. cancel out. We finally obtain , , 

~ Qu~lple" I;, ::;;;; r S (Qg, + I 'V gll)'U~lple" + 4 .f S tI~ I 'Viii II e£'. 
.; T,M T,M, 

(3.6) 

Now put g(r, t) - ..1.l!L, where fer) - 0 for r s R, and f(i} - _,I [yq('S) ds for r ;0: R 
I-T . • (the number R > 0 i s fixed for the present). With g thus defined it is readily seen that 

Qgt + IVgl 2 S O. We now demand that the function ql(r) satisfy the condition ~(r) - 1 for 
r s R and~(r) - 0 for r ;0: R1 • where Rl > R. Noting that g(r. t) s 0 and that for r s R 
g(r, t) - 0, and also that vex, t) s .e t , we infer from (3.6) that 
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S Qtt~ (x, T) - S Qv~ (x, T,) ~ 2e~T 5 l'i7 cp l' exp ( 
BR, BR" BR" \ DR 

f(tll ) . . 
T - T, (3.7) 

Denoting E(R. T) - J QV+l(X. T)dx and using Federer's formula [7] for integration over 
8. 

level sets for the integral on the right of (3.7), we obtain 

'. 
E(R. T)-E(R,. Tl)~2t'2TS p(r)cp'(r)lexp ( 

• 
(3.8) 

(we have used the fact that 1''''"I-q:,'IVrl. and the definition of p(r». Minimizing the inte­
gral on the right of (3.8) with respect to all functions f/J such that cP (R) - 1. cP (R 1 ) • O. 
we obtain 

( 
f(')' ) 

(

,It. up 

E(R. T)-E(RJ' Tl)~2t2T J p~r) T
t 

, 
It is easy to see that for sufficiently small c > 0 , 

-;- I(r)I=+ (~W)2 ;>CF{r)l-CR,. 

where C > 0 is the constant in the assumptions of the theorem and CR depends on C and R. 
Therefore. if T - Tl ~ c. then 

,. 
E(R T) -E(R T) ~ 2t'JT+CR, ( r up (CF (r)t) dr)-' 

• l' 1"'" ~ per) • 

Letting R1 ~ ~. we see that the right-hand side of this inequality tends to zero because 
of (3.2), so that E(R, T) ~ E(~. T1 ). For T1 - O. the initial condition (3.5) yields E(~, 
T1 - 0, so that also E(R, T) • 0 for all T ~ c, R > O. Now, putting T1 - c, we obtain 
E.(R. T) - 0 for T ~ 2c. and so on. Thus, Qv+ 2 =O, vex, t) :s:0 for xe:suppQ and all t > O. 

Proof of Corollary 3.1. Obviously, it will be enough to consider the case in which 
r(x) is a bounded Lipschitzian function (this follows from approximation arguments). For 
simplicity's sake, let us assume that the Lipschitz constant is I, i.e .• IVr/ :s: 1. Then q 
satisfies the assumptions of Theorem 3.1 and 

" [p(,)"'- \ 1'7 'I 'dx';;V (2R). 
k ~'\aR 

Therefore 
", 
\ p(,)dr,;;cRiexp(CF(R.)'). (3.9) 

" 
By· the Cauchy-Bunyakovskii inequality, 

: 

tR. tR. .~ .. '1"-

f. up(CF(r)l) dr~R1 (S p(r)'" )-1 ;;;a.C-1 
p Ir) up(CF(r)l) 

, " 
by virtue of (3.9). Hence it follows that (3.2) holds. and the rest follows from Theorem 
3.1. 

The next theorem somewhat weakens condition (3.2) • 

THEOREM 3.2. -
that ~ JQ dR - ~, 

such that 

2346 

Let rex) be a Lipschitzian exhaustion function on M. q(R) s minQ. Assume 
'. 

F(R) is defined as in (3.1), and h(R) is a positive continuous function 

=00. (3.10) 



.. 

(0) 

Suppose that for sufficiently large R 

V(2R)';:;C e<p(h(R)F(R)') . (3.11) 

Then Liouville's Theorem is true for equation (0.1) with conditi"on (1.1». 

Proof. We confine attention to the case in which rex) is smooth and IVrl ~ 1. We shall 
use inequality (3.9), established in the proof of Theorem 3.1. 

Fixing Rand T. we inductively define sequences {Rk}. {Ft}. {Tk}. Rlt-l < ftc < Rit. Tit < Tk- 1' 
such that Po - R, To - T. Rk - aPk. 

Pit. R._ 1 . J yq;;'(a-I) .f V9. 
R

i
_

t 
0 

(3.12) 

• O<Ta-I .-T .. :S;;;: h(P.) ' 
(3.13) 

where a-O. 2) is some positive constant, b - + (4~1 r (obviously, conditions (3.12) and 

(3.13) leave us some leeway for choice - we shall use this later). Renaming the limits of 
integration in inequality (3.8) and taking qJ(r) equal to 1 in (rk-l' E1c1. zero for r > Rk 
and linear in (Pk. ~l. we obtain 

z." I .;:; -"----;:- exp -
~Q_ I )tP: 

Here we have used 0.11), 0.12) and (3.13). Swmning all these' inequalities over k 

and noting that Pk+l ~ aPk . we obtain E(aR, T) - E(Rk' Tk) ~ If Tk e 0 for some k, 

then E(Rk. Tk) - 0 and. letting R ~ -, we get E(-, T) - O. 

Such a Tk will surely exist (and the proof will be complete) if -. E h(~i) = 00, 
(3.14) 

0.' 
We shall therefore choose the sequence Pk so that. besides (3.12). it also satisfies 

(3 .14). To that end we first determine a function P(k) of a continuous argument k from the 
differential equation 

..!-P(k)-P(k)+ F(P(')) , P(O) - R. 
~ F' (P(.t) 

The function P(k} has the following properties. 

1. 

Inded, it follows from (3.15) 

follows from (3.15) that 

F(P(k+,) );;'''''F( .. ~P('» . 
. , . 

that7 P(k) 2 P(k) . whence P(k + s) 2 eSP(k), 

..!-F(P(k)) - F'(P (k))(P+ F(P) ) ;;' F'(P(k», 
dlt. F' (P) 

(3.15) 

(3.16) 

It also 

whence F(P(k + s» 2 eSF(P(k». Combining these two inequalities. we obtain (3.16). 
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2. (3.17) 

Indeed, by (3.15) the substitution R = P(k) transforms the integral (3.17) to (3.10). 

3, · There exists C~(O. 1) such that 

E h (P~ck) 00, 
(3.18) 

-It is generally true that if feR) is a positive continuous function and S f(R)dR=oo, -then there exists ce(O, 1) such that r f(ck)= 00. For monotone f this is obvious; for arbi-.-. 
trary f the statement appeared as a problem in a · correspondence contest held by the Moscow 
State University Faculty of Mechanics and Mathematics during the 1974/75 school year. The 
proof was published in the collection Problems of Student Mathematics Olympiads [in Russian], 
Moscow State University Publishing House (1987). 

Thus, we determine a suitable number c in accordance with property 3 and define Pk -
P(ck), a - eC / 2 • It is easy to see that (3.12) follows from (3 . 16) and (3.14) from (3.18). 

This completes the proof of the theorem. 

Remark. Since h is not necessarily monotone, (3.10) and (3.11) can be combined in a 
single formula: 

5
'"' F(R)ldR 

(R+ :.) InV(2R) 

~. 

In particular, if Q - 1 we obtain a condition for stochastic completeness [2J: 
• 

S RdR = 00. 

l,nV(R) 

COROLLARY 3.2. Let V(R), f(R) be monotone increasing positiv~ functions such that 
~ 

S 
,. 

fIR) = 00, (3.19) 5 

and assume that certain regularity conditions hold. 

Suppose that for sufficiently large R the following conditions hold on a manifold H 
with Lipschitzian exhaustion function rex): 

< 

J 
' I ' . 

. :~! . V(ll)<;C, .(R), 

minQ~C-I'~, 
SR vI 

.', .. ~: ! 
(3.20) '.' 

.";, 

then Liouville's Theorem is true for equation (0.1) (with condition (1.1». 

Remarks. 1. The regularity conditions are as follows (where w z lnv): 

(fw')' ,. o. 

where C :> 0 is arbitrary. The first condition implies an upper bound vCR) s expRc. 

The second condition does not actually impose essential restrictions on f; the standard 
functions f(r) - r; r lnr; r lnr lnlnr and so on usually satisfy it. 

2. If V(R) also satisfies the condition 

-" ~--~. 



7) 

8) 

i-

J. 

9) 

0) 

""'\ 

rd 

(from whi ch it f ollows that vCR) ~ const R2+£. E - \':" c) • then conditions (3.19) and (3.20) 

imply the best possible restrictions on Q for which Liouville's Theorem is still valid. 

Indeed. if H is '. model for which VCR) - v(R), then for any function feR) not satisfying 

(3.19) the Schrodinger equation with potential Q '"' ~ has a nontrivial bounded solution 
-/ 

(since, as is readily proved. inequality (2.5) is then true). 

Example. In Rn condition (3.20) yields Q const. i 1 
2: Rf(R) • 1n part cu ar 

0::011$1 

Q ~ R'lnR in Lobach-

""'" evskii space, similarly Q ~ -----
RlnR' 

The proof of Corollary 3.2 amounts to verifying conditions (3.10) and (3.11) for the 

function h .. .'/ const - . 
• 
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2. 

3. 

4. 

5. 

6. 

7. 
8. 

9 . 

10 . 

11. 

12. 

LITERATURE CITED 

S. Y. Cheng and S. T. Yau, "Differential equations on Riemannian manifo14s and their 
geometric applications." Comm. Pure Appl. Hath., 28. No.3. 333-354 (1975). 
A. A. Grigor ' yan, "On stochastically complete manifolds," Dokl. Akad. Nauk SSSR, 290, 
No.3, 534-537 (1986). -
A. A. Grigor ' yan , "On the existence of positive fundamental solutions of the Laplace 
equation on Riemannian manifolds," Hat. Sb., 128. No.3, 354-363 (1985). 
E. 8. Davies, "Ll properties of second order elliptic operators," Bull. London Hath. 
Soc., lL, No.5, 417-436 (1985). 
L. Sario, H. Nakai, C. Wang and L. O. Chung, .Classification Theory of Riemannian Mani­
folds, Lecture Notes Hath., 605 (1977). 
N. T. Varopoulos, "Potential theory and diffusion on Riemannian manifolds," in: Conf­
erence on Harmonic Analysis in Honor of Antoni Zygmund, I. II, Chicago, Ill ., 1981. 
Wadsworth Hath. Se.r. (1983). pp. 821 - 837. 
H. Federer. Geometric Measure Theory, Springer, Berlin (1967). 
R. Greene and W. Wu, Function Theory of Hanifolds which Possess a Pole, Lecture Notes 
Hath., 699 (1979). 
K. Ichihara, "Curvature. geodesics and the Brownian motion on a Riemannian manifold," 
Nagoya Hath. J., 87, 101-125 (1982). 
R. Azencott, "Behavior of diffusion semi -groups at infinity," Bull. Soc. Hath. (France), 
102. 193-240 (1974). 
s.-T. Yau , "On the heat kernel of complete Riemannian manifold," J. Hath. Pure. Appl. 
Ser. 9, 57. No.2, 191-201 (1978). 
P. Li andR. Schoen, "LI' and mean value properties of subharmonic functions on Rieman­
nian manifolds," Acta Hath., 153, Nos. 3-4, 279-301 (1984). 

2349 


