
Stochastic completeness of Markov processes

Alexander Grigor’yan

Lecture course at CUHK, February-March 2011

Contents

0 Introduction 1

1 Brownian motion on Riemannian manifolds 3
1.1 Laplace-Beltrami operator . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Heat semigroup and heat kernel . . . . . . . . . . . . . . . . . . . . . 3
1.3 General conditions for stochastic completeness . . . . . . . . . . . . . 5
1.4 Model manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 The log-volume test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Escape rate of Brownian motion 20
2.1 Upper radius in terms of volume function . . . . . . . . . . . . . . . . 20
2.2 Upper radius on model manifolds . . . . . . . . . . . . . . . . . . . . 26

3 Jump processes 28

4 Random walks on graphs 33

References 37

0 Introduction

Let {Xt}t≥0 be a reversible Markov process on state space M with a stationary
measure µ. This process is called stochastically complete if its lifetime is almost
surely ∞. In terms of the associated transition semigroup {Pt}t≥0 the stochastic
completeness means that Pt1 ≡ 1 for all t ≥ 0. If the process has no interior killing
component (which is assumed to be the case) then the only way the stochastic
incompleteness can occur is when the process leaves the state space in finite time
due to a fast escape rate to ∞. Easy examples are diffusions in bounded domains
with the Dirichlet boundary condition.

By far less trivial example was discovered by R.Azencott [1] in 1974: he showed
that Brownian motion on a geodesically complete non-compact manifold can be
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stochastically incomplete. In his example, the manifold has negative sectional cur-
vature that grows to −∞ very fast with the distance to an origin. The stochastic
incompleteness occurs because negative curvature plays the role of a drift towards
infinity, and a very high negative curvature produces an extremely fast drift that
sweeps the Brownian particle to infinity in a finite time.

The first sufficient condition for stochastic completeness of geodesically complete
manifolds in terms of lower bound of Ricci curvature was proved by S.-T. Yau [19].
A general sufficient condition in terms of the volume growth was proved in [4]: if
V (r) denotes the volume of the geodesic ball of radius r centered at the origin and

∫ ∞ rdr

log V (r)
=∞ (0.1)

then the manifold in question is stochastically complete.
In the first part of this course we will give the proof of the stochastic completeness

under the condition (0.1), following [6] and [7]. Then we will show the sharpness of
(0.1).

On any stochastically complete manifold the notion of an upper radius makes
sense. This is a function R (t) such that the distance from the Brownian particle at
time t to the origin is at most R (t). Given the condition (0.1), function R (t) can
be determined via the volume function V (r) ([10], [5], [8]). For example, under a
polynomial volume growth V (r) ≤ CrN one obtains

R (t) = const
√
t log t. (0.2)

Note that the sharp upper radius in Rn is by Khinchine’s theorem R (t) =
√
ct log log t

where c > 4. However, there are examples of manifolds with polynomial volume
growth where the upper radius (0.2) cannot be improved ([11]). If V (r) ≤ exp (Crα)
where 0 < α < 2 then the upper radius is

R (t) = const t
1

2−α

whereas under the assumption V (r) ≤ exp (Cr2) one obtains R (t) = exp (const t) .
We plan to give in lectures a brief account of the above results on upper radius.

Consider now a symmetric jump process {Xt} on a metric measure space (M,d, µ)
that is determined by a jump kernel J (x, y) (a rigorous definition of such a process
is given by means a Dirichlet form in the spirit of [3]). If a certain condition that
relates the metric d with the kernel J (x, y) is satisfied then we call the metric d
adapted. If d is adapted then the stochastic completeness of such a process can also
be stated in terms of the volume growth: if V (r) ≤ exp (Cr) then the process is
stochastically complete ([9]). This theorem has nice applications to jump processes
on fractal spaces, in particular, to those considered in [2]. We plan to give the proof
of this theorem and discuss possibilities for relaxing the hypotheses.

A particular case of a jump process is a continuous time random walk in a graph,
generated by an unnormalized Laplace operator, that is symmetric with respect to
the counting measure. In this case the natural graph distance d is not adapted
to the process. However, an additional argument with introduction of an adapted
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distance allows to prove the following: if V (r) is the counting measure of the ball of
radius r with respect to the graph distance and V (r) ≤ Cr3 then the random walk is
stochastically complete ([9]). Surprisingly enough, the cubic rate is volume growth is
optimal: there are examples of stochastically incomplete graphs with V (r) ≤ Cr3+ε

for any ε > 0 ([14], [18]). Other criteria for stochastic completeness can be obtained
in terms of the degree growth ([14]).

1 Brownian motion on Riemannian manifolds

1.1 Laplace-Beltrami operator

Let (M, g) be a Riemannian manifold and µ be the Riemannian measure on M . The
Laplace operator (or Laplace-Beltrami operator) ∆ is defined to satisfy the Green
formula: for all u, v ∈ C∞0 (M)

∫

M

∆u vdµ = −
∫

M

〈∇u,∇v〉dµ, (1.1)

where ∇u and ∇v is the Riemannian gradients and 〈·, ·〉 denotes the Riemannian
inner product. In the local coordinates x1, ..., xn we have

〈∇u,∇v〉 = gij
∂u

∂xi
∂v

∂xj

and
dµ =

√
det gdx1...dxn,

which implies the following expression for ∆:

∆ =
1

√
det g

∂

∂xi

(√
det ggij

∂

∂xj

)

.

For example, in Rn with the Euclidean metric (gij) = id, we obtain the classical
Laplace operator

∆ =
n∑

i=1

∂2

(∂xi)2

Initially ∆ is defined as an operator on functions from C∞0 (M), but its symmetry
with respect to µ (that follows from (1.1)) allows to extend it to a self-adjoint
operator in L2 (M,µ). In general, this extension may not be unique, but if M is
geodesically complete (which will be assumed in the main results) then this extension
is unique. With some abuse of notation, the self-adjoint extension of ∆ will be
denoted by the same letter.

1.2 Heat semigroup and heat kernel

As one can see from (1.1), the operator ∆ is non-positive definite, which implies that
the following operator Pt := et∆ is a bounded self-adjoint operator for any t ≥ 0.
The family {Pt}t≥0 is called the heat semigroup of ∆ for the reason that it resolves
the heat equation. More precisely, the following is true:
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• for any f ∈ L2, the function u (t, x) = Ptf (x) is a C∞ smooth in (t, x) ∈
(0,+∞)×M and satisfies the heat equation

∂u

∂t
= ∆u. (1.2)

and the initial condition

u (t, ·)→ f as t→ 0+ (1.3)

where the convergence is understood in L2-norm.

• If f ∈ C∞0 (M) then the convergence in (1.3) can be understood in C∞-sense.

• If f ≥ 0 then Ptf ≥ 0; if f ≤ 1 then Ptf ≤ 1.

• The semigroup property: PtPs = Pt+s.

Furthermore, there is a function pt (x, y) of t > 0 and x, y ∈M such that

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) . (1.4)

The function pt (x, y) is called the heat kernel of ∆ or of M . Alternatively, pt (x, y)
is referred to as the transition density of Brownian motion on M .

For example, if M = Rn then

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

.

For general manifolds there is no explicit formula for the heat kernel. As it follows
from the properties of the heat semigroup, the heat kernel satisfies the following
properties:

• pt (x, y) is C∞ smooth in (t, x, y) ∈ (0,+∞)×M ×M

• pt (x, y) ≥ 0 (and pt (x, y) > 0 on connected manifolds) and

∫

M

pt (x, y) dµ (y) ≤ 1, (1.5)

• pt (x, y) = pt (y, x)

• The semigroup identity: for all x, y ∈M and t, s > 0,

pt+s (x, y) =

∫

M

pt (x, z) ps (z, y) dµ (z) . (1.6)
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The existence of the heat kernel allows to extend the domain of the operator Pt
from L2 to other spaces. For that, use the identity (1.4) now as the definition of Pt
where f is any function such that the integral converges. In particular, Pt extends
to a bounded operator on all spaces Lq, q ∈ [0,∞]. We will need the following:

• If f ∈ Cb (M) then u (t, x) = Ptf is a C∞ function of (t, x) that solves the
heat equation (1.2) with the initial condition (1.3) where the convergence in
the latter is understood locally uniformly. Besides, we have

inf f ≤ Ptf ≤ sup f.

• Let u (t, x) be a non-negative solution to the heat equation in (0,∞)×M such
that

u (t, ·)
L2
loc−→ f as t→ 0, (1.7)

for some f ∈ L2
loc (M). Then Ptf (x) is finite, smooth, solves the heat equation

in (0,+∞)×M , satisfies the initial condition (1.7), and

u (t, x) ≥ Ptf (x) , (1.8)

for all t > 0 and x ∈M . (the minimality of Ptf).

1.3 General conditions for stochastic completeness

Definition. A weighted manifold (M,g, µ) is called stochastically complete if Pt1 ≡
1, that is, if the heat kernel pt (x, y) satisfies the identity

∫

M

pt (x, y) dµ (y) = 1, (1.9)

for all t > 0 and x ∈M .

Note that in general we have 0 ≤ Pt1 ≤ 1. If the condition (1.9) fails, that is,
Pt1 6≡ 1 then the manifold M is called stochastically incomplete.

Our purpose here is to provide conditions for the stochastic completeness (or
incompleteness) in various terms.

Fix 0 < T ≤ ∞, set I = (0, T ) and consider the Cauchy problem in I ×M
{

∂u
∂t

= ∆u, in I ×M,
u|t=0 = f,

(1.10)

where f is a given function from Cb (M). The problem (1.10) is understood in the
classical sense, that is, u ∈ C∞(I ×M) and u (t, x) → f (x) locally uniformly in
x ∈ M as t → 0. Here we consider the question of the uniqueness of a bounded
solution of (1.10).

Theorem 1.1 Fix α > 0 and T ∈ (0,∞]. The following conditions are equivalent.
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(a) M is stochastically complete.

(b) The equation ∆v = αv in M has the only bounded non-negative solution v = 0.

(c) The Cauchy problem in (0, T )×M has at most one bounded solution.

Remark. As we will see from the proof, in condition (b) the assumption that v is
non-negative can be dropped without violating the statement.

Lemma 1.2 Let f be a non-negative bounded smooth function on M . Set

Rαf (x) =

∫ ∞

0

e−αtPtf (x) dt,

where α > 0 is a constant. Then u = Rαf is finite, smooth, and solves the equation

−∆u+ αu = f.

Proof. The integral is finite because Ptf is bounded. Assume in addition that
f ∈ L2. Then we have by the spectral theory

Rαf =

∫ ∞

0

e−αte∆tfdt =

∫ ∞

0

e−(−∆+α)tfdt = (−∆ + α)−1
f,

so that (−∆ + α) u = f. Initially this identity is true in the sense of operators in L2

but then, using the local elliptic regularity and the hypothesis f ∈ C∞ we conclude
that u ∈ C∞ and that the equation is understood in the classical sense.

A general f can be approximated by an increasing sequence {fk} of functions
from L2 so that Rαfk ↑ Rαf whence the equation for Rαf follows by the local
convergence properties of sequences of solutions to elliptic equations.

Proof of Theorem 1.1. We first assume T < ∞ and prove the following
sequence of implications

¬ (a) =⇒ ¬ (b) =⇒ ¬ (c) =⇒ ¬ (a) ,

where ¬ means the negation of the statement.
Proof of ¬ (a) ⇒ ¬ (b). So, we assume that M is stochastically incomplete and

prove that there exists a non-zero non-negative bounded solution to the equation
−∆v + αv = 0. Consider the function

w (x) = Rα1 (x) =

∫ ∞

0

e−αtPt1 (x) dt, (1.11)

which is by Lemma 1.2 C∞-smooth and satisfies the equation

−∆w + αw = 1 (1.12)

Since 0 ≤ Pt1 ≤ 1, we obtain from (1.11) that

0 ≤ w ≤ α−1. (1.13)
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By the stochastic incompleteness, there exist x ∈M and t > 0 such that Pt1 (x) < 1.
Then (1.11) implies that, for this value of x, we have a strict inequality w (x) < α−1.
Hence, w 6≡ α−1.

Finally, consider the function v = 1− αw, which by (1.12) satisfies the equation
∆v = αv. It follows from (1.13) that 0 ≤ v ≤ 1, and w 6≡ α−1 implies v 6≡ 0. Hence,
we have constructed a non-zero non-negative bounded solution to ∆v = αv, which
finishes the proof.

Proof of ¬ (b)⇒ ¬ (c). Let v be a bounded non-zero solution to equation ∆v =
αv. Then the function

u (t, x) = eαtv (x) (1.14)

satisfies the heat equation because

∆u = eαt∆v = αeαtv =
∂u

∂t
.

Hence, u solves the Cauchy problem in R+×M with the initial condition u (0, x) =
v (x), and this solution u is bounded on (0, T ) × M (note that T is finite). Let
us compare u (t, x) with another bounded solution to the same Cauchy problem,
namely with Ptv (x). We have

sup |Ptv| ≤ sup |v| ,

whereas by (1.14)
sup |u (t, ·)| = eαt sup |v| > sup |v| .

Therefore, u 6≡ Ptv, and the bounded Cauchy problem in (0, T )×M has two different
solutions with the same initial function v.

Proof of ¬ (c) ⇒ ¬ (a). Assume that the problem (1.10) has two different
bounded solutions with the same initial function. Subtracting these solutions, we
obtain a non-zero bounded solution u (t, x) to (1.10) with the initial function f = 0.
Without loss of generality, we can assume that 0 < sup u ≤ 1. Consider the function
w = 1− u, for which we have 0 ≤ inf w < 1. The function w is a non-negative solu-
tion to the Cauchy problem (1.10) with the initial function f = 1. By the minimality
property of the heat semigroup, we conclude that w (t, ·) ≥ Pt1. Hence, inf Pt1 < 1
and M is stochastically incomplete.

Finally, let us prove the equivalence of (a), (b), (c) in the case T =∞. Since the
condition (c) with T = ∞ is weaker than that for T < ∞, it suffices to show that
(c) with T = ∞ implies (a). Assume from the contrary that M is stochastically
incomplete, that is, Pt1 6≡ 1. Then the functions u1 ≡ 1 and u2 = Pt1 are two
different bounded solutions to the Cauchy problem (1.10) in R+×M with the same
initial function f ≡ 1, so that (a) fails, which was to be proved.

Two more useful results.

Theorem 1.3 Let M be a connected manifold and K ⊂ M be a compact set. As-
sume that, for some α ≥ 0, there exists an α-superharmonic function v in M \ K
(that is −∆u+αu ≥ 0) such that v (x)→ +∞ as x→∞. Then M is stochastically
complete.
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Idea of proof. Note that a positive constant c is α-superharmonic and the min-
imum of two α-superharmonic functions is again α-superharmonic although in a gen-
eralized sense, as a continuous function. It follows that the function w = min (v, c) is
α-superharmonic in M \K. Taking c large enough and using the condition v → +∞
we obtain that w ≡ c in a neighborhood of K. Hence, w is α-superharmonic on
entire M .

Now assume that M is stochastically incomplete. By Theorem 1.1 M admits a
non-trivial α-harmonic function u, such that 0 ≤ u ≤ 1. Fix ε > 0. Taking large
enough precompact open subset Ω ⊂ M , we obtain that εw ≥ u on ∂Ω. By the
comparison principle it follows that εw ≥ u in Ω. By exhausting M by such sets
Ω we obtain εw ≥ u on M . Letting ε → 0 we obtain u ≡ 0, which contradicts the
hypothesis.

Theorem 1.4 Let M be a connected manifold. Assume that there exists a non-
negative superharmonic function u on M (that is, −∆u ≥ 0) such that u 6≡ const
and u ∈ L1 (M). Then M is stochastically incomplete.

Idea of proof. Consider the Green function

g (x, y) =

∫ ∞

0

pt (x, y) dt.

The existence of a non-constant non-negative superharmonic function u implies (and
is even equivalent to) the finiteness of g (x, y) off-diagonal. Then the Green function
is a fundamental solution of the Laplace equation ∆v = 0. In particular, as x→ y it
has the same singularity as in Rn, which implies its local integrability as a function
of x (with fixed y). If in addition u ∈ L1 (M) then the comparison with g (x, y)
shows that also g (x, y) ∈ L1 (M) with respect to the variable x. However, we have

∫

M

g (x, y) dµ (x) =

∫ ∞

0

∫

M

pt (x, y) dµ (y) dt =

∫ ∞

0

Pt1 (x) dt.

If M is stochastically complete then Pt1 ≡ 1 and the above integral diverges. This
contradiction shows that M is stochastically incomplete.

1.4 Model manifolds

By a model manifold we mean Rn with the metric

ds2 = dr2 + ψ2 (r) dθ2 (1.15)

where (r, θ) are the polar coordinates in Rn, where r > 0 and θ ∈ Sn−1, dθ2 is
the standard spherical metric in Sn−1, and ψ (r) some positive smooth function on
(0,+∞). In fact, in order to be able to extend this metric to the origin, ψ must
satisfy probability space ψ (0) = 0 and ψ′ (0) = 1. For example, ψ (r) = r gives the
Euclidean metric in Rn, ψ (r) = sinh r gives the hyperbolic metric, which makes Rn

into Hn. The function ψ (r) = sin r, 0 < r < π, gives the spherical metric in Sn.
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Denote Rn with the metric (1.15) by Mψ. Consider the ball

Br = {|x| < r}

and its boundary sphere
Sr = {|x| = r} .

The area of Sr is equal to
S (r) = ωnψ (r)n−1

and the volume of Br is

V (r) =

∫ r

0

S (t) dt.

The Laplace operator on Mψ is given by

∆ =
∂2

∂r2
+
S ′ (r)

S (r)

∂

∂r
+

1

ψ2 (r)
∆Sn−1 . (1.16)

For example, the Euclidean Laplacian is

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 . (1.17)

the hyperbolic Laplacian is

∆Hn =
∂2

∂r2
+ (n− 1) coth r

∂

∂r
+

1

sinh2 r
∆Sn−1 , (1.18)

the spherical Laplacian is

∆Sn =
∂2

∂r2
+ (n− 1) cot r

∂

∂r
+

1

sin2 r
∆Sn−1 . (1.19)

Remark. The following radial function

u (r) =

∫ r

r0

dr

S (r)

is harmonic, that is, satisfies the Laplace equation ∆u = 0.

Theorem 1.5 The model Mψ is stochastically complete if and only if

∫ ∞ V (r)

S (r)
dr =∞. (1.20)

Proof. Let us show that (1.20) implies the stochastic completeness of M . By
Theorem 1.3, it suffices to construct a 1-superharmonic function v = v (r) in the
domain {r > 1} such that v (r)→ +∞ as r →∞.

In fact, we construct v as a solution to the equation ∆v = v, which in the polar
coordinates has the form

v′′ +
S ′

S
v′ − v = 0. (1.21)
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So, let v be the solution of the ordinary differential equation (1.21) on [1,+∞) with
the initial values v(1) = 1 and v′(1) = 0. The function v(r) is monotone increasing
because the equation (1.21) after multiplying by Sv and integrating from 1 to R,
amounts to

Svv′(R) =

∫ R

1

S
(
v′2 + v2

)
dr ≥ 0.

Hence, we have v ≥ 1.
Multiplying (1.21) by S, we obtain

(Sv′)
′
= Sv,

which implies by two integrations

v(R) = 1 +

∫ R

1

dr

S(r)

∫ r

1

S(t)v(t)dt.

Using v ≥ 1 in the right hand side, we obtain, for R > 2,

v(R) ≥
∫ R

1

dr

S(r)

∫ R

1

S(t)dt =

∫ R

1

(V (r)− V (1))dr

S(r)
≥ c

∫ R

2

V (r)dr

S(r)
,

where c = 1− V (1)
V (2)

> 0. Finally, (1.20) implies v (R)→∞ as R→∞.
Now we assume that ∫ ∞ V (r)

S (r)
dr <∞, (1.22)

and prove that M is stochastically incomplete. By Theorem 1.4, it suffices to con-
struct on M a non-negative function u ∈ L1 (M) such that

−∆u = f, (1.23)

where where f ∈ C∞0 (M), f ≥ 0 and f 6≡ 0. Both functions u and f will depend
only on r so that (1.23) in the domain of the polar coordinates becomes

u′′ +
S ′

S
u′ = −f. (1.24)

Choose f (r) to be any non-negative non-zero function from C∞0 (1, 2), and set, for
any R > 0,

u (R) =

∫ ∞

R

dr

S (r)

∫ r

0

S (t) f (t) dt. (1.25)

Since f is bounded, the condition (1.20) implies that u is finite. It is easy to see
that u satisfies the equation

(Su′)
′
= −Sf,

which is equivalent to (1.24). The function u (R) is constant on the interval 0 <
R < 1 because f (t) ≡ 0 for 0 < t < 1. Hence, u extends by continuity to the origin
and satisfies (1.23) on the whole manifold.
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We are left to verify that u ∈ L1 (M). Since f (t) ≡ 0 for t > 2, we have for
R > 2

u (R) = C

∫ ∞

R

dr

S (r)

where C =
∫ 2

0
S (t) f (t) dt. Therefore,

∫

{R>2}
udµ =

∫ ∞

2

u (R)S (R) dR

= C

∫ ∞

2

(∫ ∞

R

dr

S (r)

)

S (R) dR

= C

∫ ∞

2

(∫ r

2

S (R) dR

)
dr

S (r)

≤ C

∫ ∞

2

V (r)

S (r)
dr <∞,

which gives u ∈ L1 (M).

1.5 The log-volume test

Define the volume function V (x, r) of a weighted manifold (M,g, µ) by

V (x, r) := µ (B (x, r)) ,

where B (x, r) is the geodesic ball. Note that V (x, r) <∞ for all x ∈M and r > 0
provided M is complete.

Recall that a manifold M is stochastically complete, if the heat kernel pt (x, y)
satisfies the identity ∫

M

pt (x, y) dµ (y) = 1,

for all x ∈M and t > 0 (see Section 1.3). The result of this section is the following
volume test for the stochastic completeness.

Theorem 1.6 Let (M,g, µ) be a complete connected weighted manifold. If, for
some point x0 ∈M , ∫ ∞ rdr

log V (x0, r)
=∞, (1.26)

then M is stochastically complete.

Condition (1.26) holds, in particular, if

V (x0, r) ≤ exp
(
Cr2

)
(1.27)

for all r large enough or even if

V (x0, rk) ≤ exp
(
Cr2

k

)
, (1.28)
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for a sequence rk →∞ as k →∞ . This provides yet another proof of the stochastic
completeness of Rn and Hn.

Fix 0 < T ≤ ∞, set I = (0, T ) and consider the following Cauchy problem in
I ×M {

∂u
∂t

= ∆u in I ×M,
u|t=0 = 0.

(1.29)

A solution is sought in the class u ∈ C∞(I ×M), and the initial condition means
that u (t, x)→ 0 locally uniformly in x ∈M as t→ 0 (cf. Section 1.3). By Theorem
1.1, the stochastic completeness of M is equivalent to the uniqueness property of
the Cauchy problem in the class of bounded solutions. In other words, in order to
prove Theorem 1.6, it suffices to verify that the only bounded solution to (1.29) is
u ≡ 0.

The assertion will follow from the following more general fact.

Theorem 1.7 Let (M,g, µ) be a complete connected weighted manifold, and let
u(x, t) be a solution to the Cauchy problem (1.29). Assume that, for some x0 ∈ M
and for all R > 0,

∫ T

0

∫

B(x0,R)

u2(x, t) dµ(x)dt ≤ exp (f(R)) , (1.30)

where f(r) is a positive increasing function on (0,+∞) such that
∫ ∞ rdr

f(r)
=∞. (1.31)

Then u ≡ 0 in I ×M .

Theorem 1.7 provides the uniqueness class (1.30) for the Cauchy problem. The
condition (1.31) holds if, for example, f (r) = Cr2, but fails for f (r) = Cr2+ε when
ε > 0.

Before we embark on the proof, let us mention the following consequence.

Corollary 1.8 If M = Rn and u (t, x) be a solution to (1.29) satisfying the condition

|u(t, x)| ≤ C exp
(
C |x|2

)
for all t ∈ I, x ∈ Rn, (1.32)

then u ≡ 0. Moreover, the same is true if u satisfies instead of (1.32) the condition

|u(t, x)| ≤ C exp (f (|x|)) for all t ∈ I, x ∈ Rn, (1.33)

where f (r) is a convex increasing function on (0,+∞) satisfying (1.31).

Proof. Since (1.32) is a particular case of (1.33) for the function f (r) = Cr2,
it suffices to treat the condition (1.33). In Rn we have V (x, r) = crn. Therefore,
(1.33) implies that

∫ T

0

∫

B(0,R)

u2(x, t) dµ(x)dt ≤ CRn exp (f (R)) = C exp(f̃ (R)),

12



where f̃ (r) := f (r) + n log r. The convexity of f implies that log r ≤ Cf (r) for

large enough r. Hence, f̃ (r) ≤ Cf (r) and function f̃ also satisfies the condition
(1.31). By Theorem 1.7, we conclude u ≡ 0.

The class of functions u satisfying (1.32) is called the Tikhonov class , and the
conditions (1.33) and (1.31) define the Täcklind class . The uniqueness of the Cauchy
problem in Rn in each of these classes is a classical result of Tikhonov and Täcklind,
respectively.

Proof of Theorem 1.6. By Theorem 1.1, it suffices to verify that the only
bounded solution to the Cauchy value problem (1.29) is u ≡ 0. Indeed, if u is a
bounded solution of (1.29), then setting

S := sup |u| <∞

we obtain
∫ T

0

∫

B(x0,R)

u2(t, x)dµ(x) ≤ S2TV (x0, R) = exp (f (R)) ,

where
f(r) := log

(
S2TV (x0, r)

)
.

It follows from the hypothesis (1.26) that the function f satisfies (1.31). Hence, by
Theorem 1.7, we obtain u ≡ 0.

Proof of Theorem 1.7. Denote for simplicity Br = B(x0, r). The main
technical part of the proof is the following claim.

Claim. Let u (t, x) solve the heat equation in (b, a)×M where b < a are reals, and
assume that u (t, x) extends to a continuous function in [b, a] × M . Assume also
that, for all R > 0,

∫ b

a

∫

BR

u2(x, t) dµ(x)dt ≤ exp (f(R)) ,

where f is a function as in Theorem 1.6. Then, for any R > 0 satisfying the
condition

a− b ≤
R2

8f(4R)
, (1.34)

the following inequality holds:
∫

BR

u2(a, ·)dµ ≤
∫

B4R

u2(b, ·)dµ+
4

R2
. (1.35)

Let us first show how this Claim allows to prove that any solution u to (1.29),
satisfying (1.30), is identical 0. Extend u (t, x) to t = 0 by setting u (0, x) = 0 so
that u is continuous in [0, T )×M . Fix R > 0 and t ∈ (0, T ). For any non-negative
integer k, set

Rk = 4kR

13



and, for any k ≥ 1, choose (so far arbitrarily) a number τ k to satisfy the condition

0 < τ k ≤ c
R2
k

f(Rk)
, (1.36)

where c = 1
128

. Then define a decreasing sequence of times {tk} inductively by t0 = t
and tk = tk−1 − τ k (see Fig. 1).

τ

{ }

( )

τ

Figure 1: The sequence of the balls BRk and the time moments tk.

If tk ≥ 0 then function u satisfies all the conditions of the Claim with a = tk−1

and b = tk, and we obtain from (1.35)

∫

BRk−1

u2(tk−1, ·)dµ ≤
∫

BRk

u2(tk, ·)dµ+
4

R2
k−1

, (1.37)

which implies by induction that

∫

BR

u2(t, ·)dµ ≤
∫

BRk

u2(tk, ·)dµ+
k∑

i=1

4

R2
i−1

. (1.38)

If it happens that tk = 0 for some k then, by the initial condition in (1.29),

∫

BRk

u2(tk, ·)dµ = 0.

In this case, it follows from (1.38) that

∫

BR

u2(t, ·)dµ ≤
∞∑

i=1

4

R2
i−1

=
C

R2
,

which implies by letting R → ∞ that u(·, t) ≡ 0 (here we use the connectedness of
M).

14



Hence, to finish the proof, it suffices to construct, for any R > 0 and t ∈ (0, T ), a
sequence {tk} as above that vanishes at a finite k. The condition tk = 0 is equivalent
to

t = τ 1 + τ 2 + ...+ τ k . (1.39)

The only restriction on τ k is the inequality (1.36). The hypothesis that f (r) is an
increasing function implies that

∫ ∞

R

rdr

f (r)
≤

∞∑

k=0

∫ Rk+1

Rk

rdr

f (r)
≤

∞∑

k=0

R2
k+1,

f (Rk)

which together with (1.31) yields

∞∑

k=1

R2
k

f(Rk)
=∞.

Therefore, the sequence {τ k}
∞
k=1 can be chosen to satisfy simultaneously (1.36) and

∞∑

k=1

τ k =∞.

By diminishing some of τ k, we can achieve (1.39) for any finite t, which finishes the
proof.

Now we prove the above Claim. Since the both integrals in (1.35) are continuous
with respect to a and b, we can slightly reduce a and slightly increase b; hence, we
can assume that u (t, x) is not only continuous in [b, a]×M but also smooth.

Let ρ(x) be a Lipschitz function on M (to be specified below) with the Lipschitz
constant 1. Fix a real s /∈ [b, a] (also to be specified below) and consider the following
the function

ξ(t, x) :=
ρ2(x)

4(t− s)
,

which is defined on R × M except for t = s, in particular, on [b, a] × M . The
distributional gradient ∇ρ is in L∞ (M) and satisfies the inequality |∇ρ| ≤ 1, which
implies, for any t 6= s,

|∇ξ (t, x)| ≤
ρ (x)

2 (t− s)
.

Since
∂ξ

∂t
= −

ρ2 (x)

4 (t− s)2 ,

we obtain
∂ξ

∂t
+ |∇ξ|2 ≤ 0. (1.40)

For a given R > 0, define a function ϕ (x) by

ϕ (x) = min

((
3− d(x,x0)

R

)

+
, 1

)

15



(see Fig. 2). Obviously, we have 0 ≤ ϕ ≤ 1 on M , ϕ ≡ 1 in B2R, and ϕ ≡ 0 outside
B3R. Since the function d (·, x0) is Lipschitz with the Lipschitz constant 1, we obtain
that ϕ is Lipschitz with the Lipschitz constant 1/R. Then we have |∇ϕ| ≤ 1/R. By
the completeness of M , all the balls in M are relatively compact sets, which implies
ϕ ∈ Lip0 (M).

1

x0 B2R

(x)

B3R

Figure 2: Function ϕ (x)

Consider the function uϕ2eξ as a function of x for any fixed t ∈ [b, a]. Since it is
obtained from locally Lipschitz functions by taking product and composition, this
function is locally Lipschitz on M. Since this function has a compact support, it
belongs to Lip0 (M), whence

uϕ2eξ ∈ W 1
c (M) .

Multiplying the heat equation
∂u

∂t
= ∆u

by uϕ2eξ and integrating it over [b, a]×M , we obtain

a∫

b

∫

M

∂u

∂t
uϕ2eξdµdt =

a∫

b

∫

M

(∆u) uϕ2eξdµdt. (1.41)

Since both functions u and ξ are smooth in t ∈ [b, a], the time integral on the left
hand side can be computed as follows:

1

2

∫ a

b

∂(u2)

∂t
ϕ2eξdt =

1

2

[
u2ϕ2eξ

]a
b
−

1

2

∫ a

b

∂ξ

∂t
u2ϕ2eξdt. (1.42)

Using the Green formula to evaluate the spatial integral on the right hand side of
(1.41), we obtain

∫

M

(∆u) uϕ2eξdµ = −
∫

M

〈∇u,∇(uϕ2eξ)〉dµ.

16



Applying the product rule and the chain rule to compute ∇(uϕ2eξ), we obtain

−〈∇u,∇(uϕ2eξ)〉 = − |∇u|2 ϕ2eξ − 〈∇u,∇ξ〉uϕ2eξ − 2〈∇u,∇ϕ〉uϕeξ

≤ − |∇u|2 ϕ2eξ + |∇u| |∇ξ| |u|ϕ2eξ

+

(
1

2
|∇u|2 ϕ2 + 2 |∇ϕ|2 u2

)

eξ

=

(

−
1

2
|∇u|2 + |∇u| |∇ξ| |u|

)

ϕ2eξ + 2 |∇ϕ|2 u2eξ.

Combining with (1.41), (1.42), and using (1.40), we obtain

[∫

M

u2ϕ2eξdµ

]a

b

=

a∫

b

∫

M

∂ξ

∂t
u2ϕ2eξ dµdt+ 2

a∫

b

∫

M

(∆u) uϕ2eξdµdt

≤

a∫

b

∫

M

(
− |∇ξ|2 u2 − |∇u|2 + 2 |∇u| |∇ξ| |u|

)
ϕ2eξdµdt

+4

a∫

b

∫

M

|∇ϕ|2 u2eξdµdt

= −

a∫

b

∫

M

(|∇ξ| |u| − |∇u|)2
ϕ2eξdµdt

+4

a∫

b

∫

M

|∇ϕ|2 u2eξdµdt

whence
[∫

M

u2ϕ2eξdµ

]a

b

≤ 4

a∫

b

∫

M

|∇ϕ|2 u2eξdµdt. (1.43)

Using the properties of function ϕ (x), in particular, |∇ϕ| ≤ 1/R, we obtain from
(1.43)

∫

BR

u2(a, ·)eξ(a,·)dµ ≤
∫

B4R

u2(b, ·)eξ(b,·)dµ+
4

R2

a∫

b

∫

B4R\B2R

u2eξdµdt. (1.44)

Let us now specify ρ(x) and s. Set ρ(x) to be the distance function from the ball
BR, that is,

ρ(x) = (d(x, x0)−R)+

(see Fig. 3).
Set s = 2a− b so that, for all t ∈ [b, a],

a− b ≤ s− t ≤ 2 (a− b) ,
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BR

M

(x)

B2R

Figure 3: Function ρ (x).

whence

ξ(t, x) = −
ρ2(x)

4(s− t)
≤ −

ρ2(x)

8 (a− b)
≤ 0. (1.45)

Consequently, we can drop the factor eξ on the left hand side of (1.44) because ξ = 0
in BR, and drop the factor eξ in the first integral on the right hand side of (1.44)
because ξ ≤ 0. Clearly, if x ∈ B4R\B2R then ρ(x) ≥ R, which together with (1.45)
implies that

ξ (t, x) ≤ −
R2

8 (a− b)
in [b, a]× B4R\B2R.

Hence, we obtain from (1.44)

∫

BR

u2(a, ·)dµ ≤
∫

B4R

u2(b, ·)dµ+
4

R2
exp

(

−
R2

8 (a− b)

) a∫

b

∫

B4R

u2dµdt.

By (1.30) we have
a∫

b

∫

B4R

u2dµdt ≤ exp (f(4R))

whence
∫

BR

u2(a, ·)dµ ≤
∫

B4R

u2(b, ·)dµ+
4

R2
exp

(

−
R2

8 (a− b)
+ f(4R)

)

.

Finally, applying the hypothesis (1.34), we obtain (1.35).

Example. The hypothesis

∫ ∞ rdr

log V (x0, r)
=∞ (1.46)
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of Theorem 1.6 is sufficient for the stochastic completeness of M but not necessary.
Nevertheless, let us show that the condition (1.46) is sharp in the following sense: if
f (r) is a smooth positive convex function on (0,+∞) with f ′ (r) > 0 and such that

∫ ∞ rdr

f (r)
<∞, (1.47)

then there exists a complete but stochastically incomplete weighted manifold M
such that

log V (x0, r) = f (r) ,

for some x0 ∈ M and large enough r. Indeed, let M be a model manifold. Note
that M is geodesically complete. Define its volume function V (r) for large r by

V (r) = exp (f (r))

so that
V (r)

V ′ (r)
=

1

f ′ (r)
. (1.48)

Let us show that, for all r ≥ 1,

1

f ′ (r)
≤ c

r

f (r)
, (1.49)

where

c = min

(
f ′ (1)

f (1)
, 1

)

> 0.

Indeed, the function
h (r) = rf ′ (r)− cf (r)

is non-negative for r = 1 and its derivative is

h′ (r) = rf ′′ (r) + (1− c) f ′ (r) ≥ 0.

Hence, h is increasing and h (r) ≥ 0 for r ≥ 1, whence (1.49) follows.
Combining (1.48), (1.49), and (1.47), we obtain

∫ ∞ V (r)

V ′ (r)
dr <∞,

which implies by Theorem 1.5 the stochastic incompleteness of M .

Example. We say that a weighted manifold (M,g, µ) has bounded geometry if there
exists ε > 0 such that all the geodesic balls B (x, ε) are uniformly quasi-isometric
to the Euclidean ball Bε; that is, there is a constant C and, for any x ∈ M , a
diffeomorphism ϕx : B (x, ε) → Bε such that ϕx changes the Riemannian metric
and the measure at most by the factor C (see Fig. 4).

For example, Rn and Hn have bounded geometry. Any manifold of bounded
geometry is stochastically complete, which follows from the fact that it is complete
and its volume function satisfies the estimate

V (x, r) ≤ exp (Cr) ,

for all x ∈M and large r.
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n

M

B(x, )

B

x

Figure 4: A manifold of bounded geometry is “patched” by uniformly distorted
Euclidean balls.

2 Escape rate of Brownian motion

2.1 Upper radius in terms of volume function

Let M be a geodesically complete noncompact Riemannian manifold. As before let(
{Xt}t≥0 , {Px}x∈M

)
be Brownian motion on M generated by the Laplace operator.

Fix a reference point x0 ∈ M and let ρ(x) = d(x, x0). We say that a function R(t)
is an upper rate function for Brownian motion on M if

Px0 {ρ(Xt) ≤ R(t) for all sufficiently large t} = 1.

Let us first point out that the notion of an upper rate function makes sense only if the
lifetime of Brownian motion is infinite, that is, when the manifold M is stochastically
complete.

Recall that M is stochastically complete provided

∫ ∞ r dr

log V (x0, r)
=∞. (2.1)

The integral in (2.1) will be used here to construct an upper rate function.
Before we state the result, let us recall the classical Khinchin’s law of the iterated

logarithm that says that for a Brownian motion in Rn

lim sup
t→∞

ρ (Xt)√
4t log log t

= 1 a.s.

(the factor 4 instead of the classical 2 appears because in our setting a Brownian
motion is generated by ∆ rather than 1

2
∆). It follows that, for any ε > 0,

R (t) =
√

(4 + ε) t log log t (2.2)

20



is an upper rate function.
We will construct an upper rate function under the most general condition (2.1).

However, we assume in addition that M is a Cartan-Hadamard manifold, that is,
a geodesically complete simply connected Riemannian manifold of non-positive sec-
tional curvature. This assumption is not essential for the result as the latter can be
proved for arbitrary geodesically complete manifolds. However, the proof for Cartan-
Hadamard manifolds is somewhat simpler. The property of Cartan-Hadamard man-
ifolds that we use is the Sobolev inequality: if N = dimM then, for any function
f ∈ C∞0 (M),

(∫

M

|f |
N
N−1 dµ

)N−1
N

≤ CN

∫

M

|∇f | dµ, (2.3)

where CN is a constant depending only on N – see [12]. The Sobolev inequality
allows us to carry through the Moser iteration argument in [16] and prove a mean
value estimate for solutions of the heat equation on M , which is one of the ingredients
of our proof.

Now we state our main result.

Theorem 2.1 Let M be a Cartan-Hadamard manifold. Assume that the following
volume estimate holds for a fixed point x0 ∈M and all sufficiently large large R:

V (x0, R) ≤ exp (f (R)) , (2.4)

where f(R) is a positive, strictly increasing, and continuous function on [0,+∞)
such that ∫ ∞ r dr

f (r)
=∞. (2.5)

Let φ(t) be the function on R+ defined by

t =

∫ φ(t)

0

r dr

f (r)
. (2.6)

Then R(t) = φ(C t) is an upper rate function for Brownian motion on M for some
absolute constant C (for example, for any C > 128).

If we set f (R) = log V (x0, R) for large R then the condition (2.5) becomes
identical to (2.1).

Let us show some examples.

1. If
V (x0, R) ≤ CRD (2.7)

for some constant C and D then (2.4) holds with

f (R) = D logR + const,

and (2.6) yields

t '
φ2

2D log φ
.
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It follows that log t ' log φ2 and

φ (t) '
√
Dt log t.

Hence, the following function

R(t) =
√
CDt log t

is a upper rate function.

2. If V (x0, R) ≤ exp (Crα) for some 0 < α < 2 then (2.4) holds with f (R) =
Crα, and (2.6) yields t ' φ (t)2−α whence we obtain the upper rate function

R (t) = Ct
1

2−a .

3. If
V (x0, R) ≤ exp

(
CR2

)
,

then f (R) = CR2. Then (2.6) yields t ' lnφ (t). Hence, we obtain the upper
rate function

R (t) = exp (Ct) .

This result is new. Similarly, if

V (x0, R) ≤ exp
(
CR2 logR

)

then (2.6) yields t ' log log φ whence

R (t) = exp (exp (Ct)) .

Proof of Theorem 2.1. We first explain the main idea of the proof. For any
open set Ω ⊂M , denote by τΩ the first exit time from Ω, that is,

τΩ = inf {t > 0 : Xt 6∈ Ω} .

Fix a reference point x0 ∈ M and set ρ (x) = d (x, x0) .Let {Rn}
∞
n=1 be a sequence

of strictly increasing radii to be fixed later such that limn→∞Rn =∞ and consider
the following sequence of stopping times

τn = τB(x0,Rn).

Then τn − τn−1 is the amount of time the Brownian motion Xt takes to cross from
∂B (x0, Rn−1) to ∂B (x0, Rn) for the first time (if n = 0 then set R0 = 0 and τ 0 = 0).
Let {cn}

∞
n=1 be a sequence of positive numbers to be fixed later. Suppose that we

can show that
∞∑

n=1

Px0 {τn − τn−1 ≤ cn} <∞. (2.8)

Then, by the Borel-Cantelli lemma, with Px0-probability 1 we have

τn − τn−1 > cn, for all large enough n. (2.9)
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For any n ≥ 1, set

Tn =
n∑

k=1

ck.

It follows from (2.9) that, for all sufficiently large n,

τn > Tn − T0,

where T0 is a large enough (random) number. In other words, we have the implication

t ≤ Tn − T0 ⇒ ρ(Xt) ≤ Rn, if n is large enough. (2.10)

Let ψ be an increasing bijection of R+ onto itself such that

Tn−1 − ψ (Rn)→ +∞ as n→∞. (2.11)

We claim that ψ−1 is an upper rate function. Indeed, for large enough t, choose n
such that

Tn−1 − T0 < t ≤ Tn − T0.

If t is large enough then also n is large enough so that by (2.10)

ρ (Xt) ≤ Rn

and by (2.11)
Tn−1 − ψ (Rn) > T0.

It follows that
t > Tn−1 − T0 > ψ (Rn) ,

whence
ρ (Xt) ≤ Rn < ψ−1 (t) ,

which proves that ψ−1 is an upper rate function.
Now let us find cn such that (2.8) is true. By the strong Markov property of

Brownian motion we have

Px0 {τn − τn−1 ≤ cn} = Ex0PXτn−1
{τn ≤ cn} . (2.12)

Note that Xτn−1 ∈ ∂B (x0, Rn−1). If a Brownian motion starts from a point y ∈
∂B(x0, Rn−1), then it has to travel no less than distance

rn = Rn −Rn−1

before it reaches ∂B(x0, Rn) (see Fig. 5), hence

Py {τn ≤ cn} ≤ Py
{
τB(y,rn) ≤ cn

}
, y ∈ ∂B(x0, Rn−1).

From the above inequality and (2.12) we obtain

Px0 {τn − τn−1 ≤ cn} ≤ sup
y∈∂B(x0,Rn−1)

Py
{
τB(y,rn) ≤ cn

}
. (2.13)
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B(x0,Rn-1) 

x0 

B(x0,Rn) 

y=X τn-1 

X τn 

B(y,rn) 

Xτ B(y,rn) 

Figure 5: Brownian motion Xt exits the ball B (y, rn) before B (x0, Rn)

For a fixed y ∈ ∂B (x0, Rn−1), consider the function

u(x, t) = Px
{
τB(y,rn) ≤ t

}
.

Clearly, u (x, t) is the solution of the heat equation in the cylinder B(y, rn) × R+.
Furthermore, 0 ≤ u ≤ 1 and

u(x, 0) = 0 for x ∈ B(y, rn).

We use the following estimate of the solution at the center of the ball:

u (y, t) ≤ Cµ (B (y, rn))1/2 rn
√
t
1+N/2

exp

(

−
r2
n

16t

)

(2.14)

provided t < r2
n. The proof of (2.14) uses the Sobolev inequality and will be skipped.

The probability we want to estimate is the value of the solution u at the center
of the ball:

Py
{
τB(y,rn) ≤ cn

}
= u(y, cn). (2.15)

Applying the estimate (2.14) and noting that B (y, rn) ⊂ B (x0, Rn) so that

µ (B (y, rn)) ≤ exp (f (Rn)) ,

we obtain

u (y, cn) ≤ C exp (f (Rn) /2)
rn

√
cn

1+N/2
exp

(

−
r2
n

16cn

)

, (2.16)

provided cn < r2
n. Now we choose cn to satisfy the identity

r2
n

16cn
= f (Rn)
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that is,

cn =
1

16

r2
n

f(Rn)
.

Since f (R)→∞ as R→∞, we have cn < r2
n for large enough n. Hence, we obtain

from (2.16)

u (y, cn) ≤ CN
rn

√
cn

1+N/2
exp (−f (Rn) /2) .

= CNr
−N/2
n f (Rn)

2+N
4 exp (−f (Rn) /2)

≤ CNr
−N/2
n .

Set now Rn = 2n so that rn = 2n−1. The above estimate together with (2.13) and
(2.15) yields

∞∑

n=1

Px0 {τn − τn−1 ≤ cn} ≤ CN

∞∑

n=1

r−N/2n <∞,

that is (2.8).
Knowing the sequences {Rn} and {cn} , we can now determine a function ψ that

satisfies (2.11). Indeed, we have

Tn = c1 + ...+ cn

=
1

16

n∑

k=1

r2
k

f(Rk)

=
1

128

n∑

k=1

Rk+1(Rk+1 −Rk)

f(Rk)

≥
1

128

n∑

k=1

∫ Rk+1

Rk

rdr

f (r)

=
1

128

∫ Rn+1

R1

rdr

f (r)
.

Setting

ψ (r) = c

∫ r

0

rdr

f (r)
,

where c < 1
128
, and using (2.5), we obtain that

Tn − ψ (Rn+1)→∞ as n→∞,

which is equivalent to (2.11). Therefore, ψ−1 is an upper rate function. Clearly,
ψ−1 (t) = φ (Ct) where φ is defined by (2.6) and C = c−1, which finishes the proof
of our main result Theorem 2.1.
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2.2 Upper radius on model manifolds

Let M be a model manifold, that is, Rn with the metric

ds2 = dr2 + ψ (r)2
dθ2. (2.17)

As before, let S (r) = ωnψ (r)n−1 be the boundary area function and V (r) =∫ r
0
S (t) dt be the volume function of M . The Laplace operator of the metric (2.17)

is represented in the polar coordinates as follows:

∆ =
∂2

∂r2
+m (r)

∂

∂r
+

1

ψ2 (r)
∆Sn−1 ,

where

m (r) = (n− 1)
ψ′

ψ
=
S ′

S
=
V ′′

V ′
.

The function m (r) plays an important role in what follows. Clearly, m satisfies the
identity

S (r) = S (r0) exp

(∫ r

r0

m (s) ds

)

(2.18)

for all r > r0 > 0. We assume in the sequel that

m (r) > 0 and m′ (r) ≥ 0 for large enough r (2.19)

and ∫ ∞ dr

m (r)
=∞. (2.20)

For example, we have m (r) = n−1
r

in Rn and m (r) = (n− 1)K cothKr in Hn
K . In

neither case is the hypothesis (2.19) satisfied. On the other hand, if S (r) = exp (rα)
then m (r) = αrα−1, and both (2.19) and (2.20) are satisfied provided 1 ≤ α ≤ 2. If
S (r) = exp

(
r2 logβ r

)
then (2.19) and (2.20) hold for all 0 ≤ β ≤ 1.

Claim. Under the condition (2.19) (Brownian motion on) M is transient, and
under the conditions (2.19)-(2.20) M is stochastically complete.

We use the following well-known results (cf. [6]) that for model manifolds the
recurrence is equivalent to ∫ ∞ dr

S (r)
=∞, (2.21)

and the stochastic completeness is equivalent to

∫ ∞ V (r)

S (r)
dr =∞. (2.22)
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Clearly, (2.19) implies that m (r) ≥ c for some positive constant c and for all large
enough r. It follows from (2.18) that S (r) grows at least exponentially as r → ∞,
which implies (2.21). To prove (2.22), observe that, for large enough r > r0 we have

V (r)− V (r0) =

∫ r

r0

S (t) dt =

∫ r

r0

S ′ (t)

m (t)
dt

≥
1

m (r)

∫ r

r0

S ′ (t) dt =
1

m (r)
(S (r)− S (r0)) ,

whence
1

m (r)
≤
V (r)− V (r0)

S (r)− S (r0)
∼
V (r)

S (r)
as r →∞.

Hence, (2.22) follows from (2.20).
Let us define the function r (t) by the identity

t =

∫ r(t)

0

ds

m (s)
. (2.23)

Our main result in this section is as follows.

Theorem 2.2 Under the above assumptions, the function r ((1 + ε) t) is the upper
rate function for Brownian motion on M for any ε > 0, and is not for any ε < 0.

Let us compare the function r (t) with the upper rate function R (t) given by
Theorem 2.1, which is defined by the identity

∫ R(t)

0

rdr

log V (r)
= Ct.

For “nice” functions V (r), one has

V ′′

V ′
'
V ′

V
= (log V )′ '

log V (r)

r
, (2.24)

which means that the functions r (t) and R (t) are comparable up to a constant
multiple in front of t. For example, (2.24) holds for functions like V (r) = exp (rα)
and V (t) = exp

(
rα logβ r

)
, where α > 0, etc. On the other hand, it is easy to

construct an example of V (r) when r (t) may be significantly less that R (t) , because
one can modify a “nice” function V (r) to make the second derivative V ′′ (r) very
small in some intervals without affecting too much the values of V ′ and V . Then
the function r (t) in (2.23) will drop significantly, while R (t) will not change very
much.

Proof of Theorem 2.2. By the Ito decomposition, the radial process rt =
ρ (Xt) satisfies the identity

rt =
√

2Wt +

∫ t

0

m (rs) ds, (2.25)
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where Wt is a one-dimensional Brownian motion (see [13]). Since the process Xt

is transient, rt → ∞ as t → ∞ with probability 1. Hence, m (rt) ≥ const for large
enough t so that the second term in the right hand side of (2.25) grows at least
linearly in t. Since Wt = o (t) as t→∞, we have with probability 1,

rt ∼
∫ t

0

m (rs) ds as t→∞. (2.26)

Consider the function

u (t) =

∫ t

0

m (rs) ds

It follows from (2.26) that, for any c > 1 and for large enough t,

rt ≤ cu (t) (2.27)

whence by the monotonicity of m,

m (rt) ≤ m (cu (t)) .

Since du
dt

(t) = m (rt), we obtain the differential inequality for u (t):

du

dt
≤ m (cu (t)) .

Solving it by separation of variables, we obtain, for large enough t0 and for all t > t0,
∫ cu(t)

cu(t0)

dξ

m (ξ)
≤ c (t− t0) ,

whence ∫ cu(t)

0

dξ

m (ξ)
≤ ct+ c0, (2.28)

where c0 is a large enough (random) constant. Comparing (2.28) with (2.23) and
using again (2.27), we obtain

rt ≤ cu (t) ≤ r (ct+ c0) ≤ r
(
c2t
)

for large enough r with probability 1. Since c > 1 was arbitrary, this proves that
r ((1 + ε) t) is an upper rate function for any ε > 0. In the same way one proves that
rt ≥ r (c−2t) for large enough t so that r ((1− ε) t) is not an upper rate function.

3 Jump processes

Let (M,d) be a metric space such that all closed metric balls

B(x, r) = {y ∈M : d(x, y) ≤ r} (3.1)

are compact. In particular, (M,d) is locally compact and separable. Let µ be a
Radon measure with full support on M .

Recall that a Dirichlet form (E ,F) in L2 (M,µ) is a symmetric, non-negative
definite, bilinear form E : F × F → R defined on a dense subspace F of L2 (M,µ),
which satisfies in addition the following properties:
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• Closedness: F is a Hilbert space with respect to the following inner product:

E1(f, g) := E(f, g) + (f, g) . (3.2)

• The Markov property: if f ∈ F then also f̃ := (f ∧ 1)+ belongs to F and

E(f̃) ≤ E (f) , where E (f) := E (f, f) .

Then (E ,F) has the generator ∆ that is a non-positive definite, self-adjoint
operator on L2 (M,µ) with domain D ⊂ F such that

E (f, g) = (−∆f, g)

for all f ∈ D and g ∈ F . The generator ∆ determines the heat semigroup {Pt}t≥0

by Pt = et∆ in the sense of functional calculus of self-adjoint operators. It is known
that {Pt}t≥0 is strongly continuous, contractive, symmetric semigroup in L2, and is
Markovian, that is, 0 ≤ Ptf ≤ 1 for any t > 0 if 0 ≤ f ≤ 1.

The Markovian property of the heat semigroup implies that the operator Pt
preserves the inequalities between functions, which allows to use monotone limits to
extend Pt from L2 to L∞ (in fact, Pt extends to any Lq, 1 ≤ q ≤ ∞ as a contraction).
In particular, Pt1 is defined.

Definition. The form (E ,F) is called conservative or stochastically complete if
Pt1 = 1 for every t > 0.

Assume in addition that (E ,F) is regular, that is, the set F ∩ C0 (M) is dense
both in F with respect to the norm (3.2) and in C0 (M) with respect to the sup-
norm. By a theory of Fukushima [3], for any regular Dirichlet form there exists a
Hunt process {Xt}t≥0 such that, for all bounded Borel functions f on M ,

Exf(Xt) = Ptf(x) (3.3)

for all t > 0 and almost all x ∈M , where Ex is expectation associated with the law
of {Xt} started at x.

Using the identity (3.3), one can show that the lifetime of Xt is almost surely∞ if
and only if Pt1 = 1 for all t > 0, which motivates the term “stochastic completeness”
in the above definition.

One distinguishes local and non-local Dirichlet forms. The Dirichlet form (E ,F)
is called local if E (f, g) = 0 for all functions f, g ∈ F with disjoint compact support.
It is called strongly local if the same is true under a milder assumption that f =
const on a neighborhood of supp g. For example, the classical Dirichlet form on a
Riemannian manifold

E (f, g) =

∫

M

∇f · ∇gdµ

is strongly local.
It is known that any regular Dirichlet form can be represented in the form

E = E (c) + E (j) + E (k)
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where E (c) is a strongly local part, that has the form

E (c) (f, g) =

∫

M

Γ (f, g) dµ,

where Γ (f, g) is a so called energy density (generalizing ∇f ·∇g on manifolds); E (j)

is a jump part that has the form

E (j) (f, g) =
1

2

∫ ∫

X×X
(f (x)− f (y)) (g (x)− g (y)) dJ (x, y)

with some measure J on X ×X that is called a jump measure; and E (k) is a killing
part that has the form

E (k) (f, g) =

∫

X

fgdk

where k is a measure on X that is called a killing measure.
In terms of the associated process this means that Xt is in some sense a mixture

of a diffusion process, jump process and a killing condition.
The log-volume test of Theorem 1.6 can be extended to strongly local Dirichlet

forms as follows. Set as before V (x, r) = µ (B (x, r))

Theorem 3.1 Let (E ,F) be a regular strongly local Dirichlet form. Assume that
the distance function ρ (x) = d (x, x0) on M satisfies the condition

Γ (ρ, ρ) ≤ C, (3.4)

for some constant C. If ∫ ∞ rdr

log V (x0, r)
=∞

then the Dirichlet form (E ,F) is stochastically complete.

Basically, the method of the proof is the same as for Theorem 1.6 because for
strongly local forms the same chain rule and product rules are available, that were
used in the proof of Theorem 1.6, and the condition (3.4) replaces the condition
|∇d| ≤ 1 that was repeatedly used in the proof. However, still a lot of technical
details has to be filled (see [17]).

Now let us turn to jump processes. For simplicity let us assume that the jump
measure J has a density j (x, y). Namely, let j(x, y) be is a non-negative Borel
function on M ×M that satisfies the following two conditions:

(a) j (x, y) is symmetric:
j (x, y) = j (y, x) . (3.5)

(b) there is a positive constant C such that

sup
x∈M

∫

M

(1 ∧ d(x, y)2)j(x, y)µ (dy) ≤ C. (3.6)
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We say that a distance function d is adapted to a kernel j(x, y) (or j is adapted
to d) if (3.6) is satisfied. For the purpose of investigation of stochastic completeness
the condition (3.6) plays the same role as (3.4) does for diffusion.

Consider the following bilinear functional

E(f, g) =
1

2

∫

M

∫

M

(f(x)− f(y))(g(x)− g(y))j(x, y)µ(dx) (3.7)

that is defined on Borel functions f and g whenever the integral makes sense. Define
the maximal domain of E by

Fmax =
{
f ∈ L2 : E(f, f) <∞

}
,

where L2 = L2(M,µ). By the polarization identity, E(f, g) is finite for all f, g ∈
Fmax. Moreover, Fmax is a Hilbert space with the following norm:

‖f‖2
Fmax

= E1(f, f) := ‖f‖2
L2 + E(f, f).

Denote by Lip0(M) the class of Lipschitz functions on M with compact support.
It follows from (3.6) that Lip0(M) ⊂ Fmax. Indeed, for any f ∈ Lip0(M) we have

|f(x)− f(y)| ≤ L ∧ (Ld(x, y))

where L = max
(
‖f‖Lip , 2 sup |f |

)
and ‖f‖Lip is the Lipschitz constant of f . De-

noting K = supp f , we obtain using (3.6)

E(f, f) =
1

2

∫

M ′

∫

M

(f(x)− f(y))2j (x, y) dµ (x) dµ (y)

≤
∫

K×M
(f(x)− f(y))2j (x, y) dµ (y) dµ (x)

≤ L

∫

K

∫

M

(1 ∧ d(x, y)2)j (x, y) dµ (y) dµ (x)

≤ LCµ(K) <∞,

which proves that f ∈ Fmax.
Define the space F as the closure of Lip0(M) in (Fmax, ‖·‖Fmax

). Under the above
hypothesis, (E ,F) is a regular Dirichlet form in L2(M,µ). The associated Hunt
process {Xt} is a pure jump process with the jump density j(x, y).

Many examples of jump processes are provided by Lévy-Khintchine theorem
where the Lévy measure corresponds to j (x, y) dµ (y). The condition (3.6) appears
also in Lévy-Khintchine theorem, so that the Euclidean distance in Rn is adapted
to any Lévy measure. An explicit example of a jump density in Rn is

j(x, y) =
const

|x− y|n+α ,

where α ∈ (0, 2). The corresponding Levy process (=the Hunt process of (E ,F))

is the symmetric α-stable process with the generator − (−∆)α/2 , where ∆ is the
Laplace operator in Rn.

Sufficient condition for stochastic completeness of the Dirichlet form of jump
type is given in the following theorem that was proved in [9].
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Theorem 3.2 Assume that j satisfies (3.5) and (3.6) and (E ,F) be the jump form
defined as above. There is a constant b such that if

V (x0, r) ≤ exp (br log r) (3.8)

for some x0 ∈ M and all large enough1 r then the Dirichlet form (E ,F) is stochas-
tically complete.

It comes from the proof that any value b < 1
2

will do but it is not known if 1
2

is
sharp. For example, (3.8) is satisfied if, for some constant C and all r,

V (x0, r) ≤ exp (Cr) (3.9)

In the proof of Theorem 3.2 we split the jump kernel j(x, y) into the sum of two
parts:

j′(x, y) = j(x, y)1{d(x,y)≤1} and j′′(x, y) = j(x, y)1{d(x,y)>1} (3.10)

and show first the stochastic completeness of the Dirichlet form (E ′,F) associated
with j′. For that we adapt the methods used for stochastic completeness for the
local form. The bounded range of j′ allows to treat the Dirichlet form (E ′,F) as
“almost” local: if f, g are two functions from F such that d (supp f, supp g) > 1 then
E (f, g) = 0. The condition (3.6) plays in the proof the same role as the condition
(3.4) in the local case. However, the lack of locality brings up in the estimates
various additional terms that have to be compensated by a stronger hypothesis of
the volume growth (3.8), instead of the quadratic exponential growth in Theorem
3.1.

The tail j′′ can regarded as a small perturbation of j′ in the following sense:
(E ,F) is stochastically complete if and only if (E ′,F) is so. The proof is based
on the fact that the integral operator with the kernel j′′ is a bounded operator in
L2 (M,µ), because by (3.6)

∫

M

j′′ (x, y) dµ (y) ≤ C.

It is not clear if the volume growth condition (3.8) in Theorem 3.2 is sharp. We
conjecture that it is sharp in the following sense: if b is too large then the statement
of Theorem 3.2 is no longer true. If this conjecture is true then a new interesting
question arrises: what is the optimal value of b?

To explain the motivation behind this conjecture, let us briefly mention a recent
result of Xueping Huang [15], that is analogous of Theorem 1.7 about the uniqueness
class for the Cauchy problem on a geodesically complete manifold. Recall that
this theorem states the following: the Cauchy problem for the heat equation on a
manifold has the following uniqueness class:

∫ T

0

∫

B(x,R)

u2 (t, x) dµ (x) dt ≤ exp (f (R))

1In fact it suffices to have (3.8) for r = rk where {rk} is any sequence such that rk → ∞ as
k →∞.
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where
∫∞ rdr

f(r)
=∞. X.Huang proved a similar theorem for the heat equation asso-

ciated with the jump Dirichlet form on graphs satisfying (a) and (b): the associated
heat equation has the following uniqueness class

∫ T

0

∫

B(x,R)

u2 (t, x) dµ (x) dt ≤ exp (br log r)

for some constant b. Moreover, he has shown on an example that for large enough
values of b this statement fails. However, the function u in this example is un-
bounded, so that it cannot serve to show the sharpness of the condition (3.8) in
Theorem 3.2.

4 Random walks on graphs

Let us now turn to random walks on graphs. Let (X,E) be a locally finite, infinite,
connected graph, where X is the set of vertices and E is the set of edges. We assume
that the graph is undirected. Let µ be the counting measure on X. Define the jump
kernel by j(x, y) = 1{x∼y}, where x ∼ y means that x, y are neighbors, that is,
(x, y) ∈ E. The corresponding Dirichlet form is

E (f) =
1

2

∑

{x,y:x∼y}

(f (x)− f (y))2
,

and its generator is

∆f(x) =
∑

y∼x

(f(y)− f(x)).

The operator ∆ is called unnormalized (or physical) Laplace operator on (X,E).
This is to distinguish from the normalized or combinatorial Laplace operator

∆̂f(x) =
1

deg(x)

∑

y∼x

(f(y)− f(x)),

where deg(x) is the number of neighbors of x. The normalized Laplacian ∆̂ is the
generator of the same Dirichlet form but with respect to the degree measure deg (x).

Both ∆ and ∆̂ generate the heat semigroups et∆ and et∆̂ and, hence, associated
continuous time random walks on X. It is easy to prove that ∆̂ is a bounded
operator in L2(X, deg), which then implies that the associated random walk is always
stochastically complete. On the contrary, the random walk associated with the
unnormalized Laplace operator can be stochastically incomplete.

We say that the graph (X,E) is stochastically complete if the heat semigroup
et∆ is stochastically complete.

Denote by ρ(x, y) the graph distance on X, that is the minimal number of edges
in an edge chain connecting x and y. Let Bρ(x, r) be closed metric balls with
respect to this distance ρ and let Vρ(x, r) = |Bρ(x, r)| where and |·| := µ(·) denotes
the number of vertices in the given set.

Stochastic completeness can be stated in terms of the volume growth as follows.
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Theorem 4.1 If there is a point x0 ∈ X and a constant c > 0 such that

Vρ(x0, r) ≤ cr3 (4.1)

for all large enough r, then the graph (X,E) is stochastically complete.

Note that the cubic rate of the volume growth here is sharp. Indeed, Woj-
ciechowski [18] has shown that, for any ε > 0 there is a stochastically incomplete
graph that satisfies Vρ(x0, r) ≤ cr3+ε. For any non-negative integer r, set

Sr = {x ∈ X : ρ(x0, x) = r} . (4.2)

In the example of Wojciechowski every vertex on Sr is connected to all vertices on
Sr−1 and Sr (see Fig. 6).

Figure 6: Anti-tree of Wojciechowski

For this type of graphs, that are called anti-trees, the stochastic incompleteness
is equivalent to the following condition ([18]):

∞∑

r=1

Vρ(x0, r)

|Sr+1| |Sr|
<∞. (4.3)

Indeed, assuming (4.3), one constructs a non-trivial bounded solution to the equation
∆u − u = 0, which is enough to ensure the stochastic incompleteness. For a radial
function u = u (r) this equation acquires the form

u (r + 1) = u (r) +
1

|Sr+1| |Sr|

r∑

i=0

|Si| u (i) . (4.4)

Setting u (0) = 1 and solving this equation inductively in r, we obtain a positive
solution u (r) that increases in r. It follows that

u (r + 1) ≤

(

1 +
1

|Sr+1| |Sr|

r∑

i=0

|Si|

)

u (r)
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whence by induction

u (R) ≤
R−1∏

r=0

(

1 +
Vρ (x0, r)

|Sr+1| |Sr|

)

.

The condition (4.3) implies that the product in the right hand side is bounded so
that u is a bounded function.

If |Sr| ' r2+ε then Vρ(x0, r) ' r3+ε and the condition (4.3) is satisfied so that
the graph is stochastically incomplete (the relation f ' g means that the ratio of
functions f and g is bounded from above and below by positive constants).

The proof of Theorem 4.1 is based on the following ideas. Firstly, the graph
distance ρ is in general not adapted. Indeed, the integral in (3.6) is equal to

∑

y

(
1 ∧ ρ2 (x, y)

)
j (x, y) =

∑

y

j (x, y) = deg (x)

so that (3.6) holds if and only if the graph has uniformly bounded degree, which is
not interesting. In general, we can construct an adapted distance d as follows. For
all x ∼ y set

σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

(4.5)

and regard σ (x, y) as the length for the edge x ∼ y. Then for all x, y ∈ X define
d(x, y) as the smallest total length of all edges in an edge chain connecting x and y.
It is easy to verify that d satisfies (3.6):

∑

y

(
1 ∧ d2 (x, y)

)
j (x, y) ≤

∑

y

(
1

deg (x)
∧

1

deg (y)

)

j (x, y) ≤
∑

y∼x

1

deg (x)
= 1.

Then one proves that (4.1) for ρ-balls implies that the d-balls have at most ex-
ponential volume growth, so that the stochastic completeness follows by Theorem
3.2.

To see why the cubic volume growth for the graph distance is related to the ex-
ponential volume growth for the adapted distance, let us consider a more restrictive
hypothesis

|Sr| ≤ Cr2 for r ≥ 1, (4.6)

where Sr is defined by (4.2) (clearly, (4.6) is a stronger hypothesis than (4.1)). Any
point x ∈ Sr admits the estimate of the degree as follows (see Fig. 7):

deg(x) ≤ |Sr−1|+ |Sr|+ |Sr+1| ≤ C1r
2. (4.7)

Therefore, if x, y are two neighboring vertices in Bρ (x0, r), then by (4.5) and
(4.7)

σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

≥
c1

r
, (4.8)

with some constant c1 > 0.
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x 

x0 

Sr 
Sr+1 

Sr-1 

Figure 7: A vertex x ∈ Sρ(r) can be connected only to the vertices on Sρ(r − 1),
Sρ(r), and Sρ(r + 1)

Fix a vertex x ∈ SR and let {xi}
N
i=0 be a path connecting x0 to x with the

minimal σ-length (see Fig. 8). Clearly, we have ρ(x0, xi) ≤ i whence it follows from
(4.8) that σ(xi−1, xi) ≥ c1

i
and, hence for some c2 > 0,

d(x0, x) =
N∑

i=1

σ(xi−1, xi) ≥ c1

R∑

i=1

1

i
> c2 logR.

 

xi 

x0 

Si 

SR 

x=xN 

xi-1 

x1 

Figure 8: For any path {xi}
N
i=0 connecting x0 and x ∈ Sρ(R), we have N ≥ R and

σ(xi−1, xi) ≥ c1
i

.

Denoting by Bd the d-balls, we obtain

Bd(x0, c2 logR) ⊂ Bρ(x0, R).

Changing variables r = c2 logR and denoting by Vd the volume of Bd, we obtain
using (4.1) that

Vd(x0, r) ≤ Vρ(x0, e
r/c2) ≤ exp (c3r)
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for some c3 > 0 and all large enough r, which was claimed.
In the general case (4.1) does not imply (4.6) for all r ≥ 1, but nevertheless (4.6)

holds for sufficiently many values of r, which can be used to prove the estimates of
d as above.
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