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Analysis on metric spaces: integration

Let (M,d) be a metric space and μ be a Radon measure on M . Assume in what follows that
M is α-regular, that is, for any metric ball

B (x, r) := {y ∈ M : d(x, y) < r}

of any radius r < r0, we have
μ (B (x, r)) ' rα, (1)

where α > 0. The sign ' means that the ratio of the two sides is bounded from above and
below by positive constants.

It follows from (1) that

dimH M = α and Hα ' μ.

In some sense, α is a numerical characteristic of the integral calculus on M .
Spaces with fractional α are called fractals. They appeared in mathematics as curious

examples that initially served as counterexamples to illustrate various theorems.
The most famous fractal is the Cantor set. Here are some examples of fractals relevant

for this presentation:
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Sierpinski gasket (SG), α = log 3
log 2

≈ 1.59

Three steps of construction of SG

Sierpinski carpet (SC ), α = log 8
log 3

≈ 1.90
Two steps of construction of SC
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Vicsek snowflake (VS ), α = log 5
log 3

≈ 1.47

Three steps of construction of VS
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Analysis on metric spaces: differentiation

On many families of fractals, it is possible to construct a Laplace-type operator, by means
of the theory of Dirichlet forms of Fukushima.

A Dirichlet form in L2(M,μ) is a pair (E ,F) where F is dense subspace of L2(M,μ) and
E is a bilinear form on F with the following properties:

1. It is positive definite, that is, E(f, f) ≥ 0 for all f ∈ F .

2. It is closed, that is, F is complete with respect to the norm

‖f‖F :=

(∫

M

f 2dμ + E(f, f)

)1/2

.

3. It is Markovian, that is, if f ∈ F then f̃ := min(f+, 1) ∈ F and E(f̃ , f̃) ≤ E(f, f).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L in
L2(M,μ) with a dense domain dom (L) ⊂ F such that

(Lf, g) = E(f, g) for all f ∈ dom (L) and g ∈ F .
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For example, the bilinear form

E(f, g) =

∫

Rn

∇f ∙ ∇g dx (2)

in the domain F = W 1
2 (Rn) is a Dirichlet form (its quadratic part is the Dirichlet integral),

and its generator is L = −Δ with dom (L) = W 2
2 (Rn) .

Another example of a Dirichlet form in Rn is

E(f, f) =

∫

Rn

∫

Rn

(f (x) − f (y))2

|x − y|n+s dxdy, (3)

where s ∈ (0, 2) and F = B
s/2
2,2 (Rn) . Its generator is L = (−Δ)s/2 .

A Dirichlet form (E ,F) is called strongly local if E(f, g) = 0 whenever f = const in a
neighborhood of supp g. For example, the form (2) is strongly local, while (3) is nonlocal.

A Dirichlet form (E ,F) is called regular if C0 (M) ∩ F is dense both in F and C0 (M) .
The both Dirichlet forms (2) and (3) are regular.

The generator of any regular Dirichlet form determines a heat semigroup
{
e−tL

}
t≥0

, as

well as a Markov processes {Xt}t≥0 on M with the transition semigroup e−tL, that is,

Exf (Xt) = e−tLf (x) for all f ∈ C0 (M) .
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If (E ,F) is local then {Xt} is a diffusion while otherwise the process {Xt} contains jumps.
For example, the Dirichlet form (2) determines Brownian motion in Rn, whose transition

density is exactly the Gauss-Weierstrass function

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

The Dirichlet form (3) determines a jump process: a symmetric stable Levy process of the
index s. In the case s = 1 its transition density is the Cauchy distribution

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

=
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

,

where cn = Γ
(

n+1
2

)
/π(n+1)/2. For an arbitrary s ∈ (0, 2) we have

pt(x, y) '
1

tn/s

(

1 +
|x − y|

t1/s

)−(n+s)

.
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If a metric measure space M possesses a strongly local regular Dirichlet form (E ,F) then
its generator L can be regarded as an analogue of the Laplace operator. In some sense L
determines a differential calculus on M .

Large families of fractals admit non-trivial strongly local regular Dirichlet forms respect-
ing the self-similarity and symmetry structures. Such Dirichlet forms have been constructed
on SG by Barlow–Perkins ’88, Goldstein ’87 and Kusuoka ’87, on SC by Barlow–Bass ’89
and Kusuoka–Zhou ’92, on p.c.f. fractals (including VS ) by Kigami ’93.

In fact, each of these fractals can be regarded as a limit of a sequence of graphs Γn.

Approximating graphs Γ1, Γ2, Γ3 for SG
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Define on each Γn a Dirichlet form En by

En(f, f) =
∑

x,y: x∼y

(f (x) − f (y))2

and then consider a scaled limit

E(f, f) = lim
n→∞

RnEn(f, f) (4)

with an appropriately renormalizing sequence {Rn} . The main difficulty is to ensure the
existence of {Rn} such that this limit exists and is in (0,∞) for a dense in L2 family of f .
For p.c.f. fractals one chooses Rn = ρn where, for example, ρ = 5

3
for SG and ρ = 3 for VS,

and the limit in (4) exists due to monotonicity.
For SC the situation is much harder. Initially a strongly local Dirichlet form on SC was

constructed by Barlow and Bass ’89 in a different way by using a probabilistic approach.
After a work of Barlow, Bass, Kumagai and Teplyaev ’10 it became possible to claim that
the limit (4) exists for a certain sequence {Rn} such that Rn ' ρn, where the exact value of
ρ is still unknown. Numerical computation indicates that ρ ≈ 1.25.

Other methods of constructing a strongly local Dirichlet form on SC was proposed by
Kusuoka and Zhou ’92 and AG and M.Yang ’19.
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Walk dimension

In all the above examples the heat semigroup {e−tL} of the Dirichlet form (E ,F) is a family
of integral operators: for any t > 0 and f ∈ L2(M,μ)

e−tLf (x) =

∫

M

pt(x, y)f (y) dμ (y) ,

where the integral kernel pt(x, y) is called the heat kernel of (E ,F) (or of L). Moreover, in
all the above examples the heat kernel satisfies the following sub-Gaussian estimate

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(5)

for all x, y ∈ M and t ∈ (0, t0) (Barlow–Perkins ’88, Barlow–Bass ’92).
Here α is the Hausdorff dimension while β is a new parameter that is called the walk

dimension. It can be regarded as a numerical characteristic of differential calculus on M .
It is known that always β ≥ 2 and that any pair (α, β) of reals such that

α ≥ 1 and 2 ≤ β ≤ α + 1

can be realized on some fractal as parameters in the heat kernel bounds (5) (Barlow ’04).
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Hence, we obtain a large family of metric measure spaces that are characterized by a pair
(α, β) where α is responsible for integration while β is responsible for differentiation.

The Euclidean space Rn belongs to this family with α = n and β = 2 (in the case β = 2
the estimate (5) is called Gaussian).

On fractals the values of β is determined by the scaling parameter ρ. It is known that:

• on SG : β = log 5
log 2

≈ 2.32

• on VS : β = log 15
log 3

≈ 2.46

• on SC : β = log(8ρ)
log 3

(the approximation ρ ≈ 1.25 indicates that β ≈ 2.10).

The walk dimension β has the following probabilistic meaning. For any open set Ω ⊂ M ,

denote by τΩ the first exit time of diffusion Xt from Ω:

τΩ = inf {t > 0 : Xt /∈ Ω} .

If (5) holds, then, for any ball B (x, r) with r < r0,

ExτB(x,r) ' rβ.
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Besov spaces and characterization of β

Given an α-regular metric measure space (M,d, μ) , it is possible to define a family Bσ
p,q of

Besov spaces. Here we need only the following special cases: for any σ > 0 the space Bσ
2,2

consists of functions f ∈ L2(M,μ) such that

‖f‖2
Ḃσ

2,2
:=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y) < ∞

and Bσ
2,∞ consists of functions such that

‖f‖2
Ḃσ

2,∞
:= sup

0<r<r0

1

rα+2σ

∫ ∫

{d(x,y)<r}

|f(x) − f(y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that the space Bσ
2,2 shrinks as σ increases. Define

σ∗ = sup
{
σ > 0 : Bσ

2,2 is dense in L2
}

. (6)

If σ < 1 then Bσ
2,2 contains all Lipschitz functions with compact support, which implies

σ∗ ≥ 1. In Rn, if σ > 1 then Bσ
2,2 = {0} so that σ∗ = 1. On most fractal spaces σ∗ > 1.
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Theorem 1 (AG, Jiaxin Hu, K.-S. Lau ’03) If (E ,F) is a strongly local Dirichlet form on
M such that its heat kernel exists and satisfies the sub-Gaussian estimate

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(7)

with some α and β then the following is true:

1. the space M is α-regular, α = dimH M and μ ' Ha;

2. β = 2σ∗ (consequently, β ≥ 2);

3. F = Bσ∗

2,∞ and E(f, f) ' ‖f‖2
Ḃσ∗

2,∞
.

Corollary 2 Both α and β in (7) are invariants of the metric structure (M,d) alone.

Indeed, σ∗ is defined by using metric d and measure μ, while in this case μ is also determined
by d. Therefore, σ∗ and β are also invariants of the metric space (M,d).
Note that σ∗ is defined by (6) for any α-regular metric space. In the view of Theorem 1 it
makes sense to redefine the notion of the walk dimension by β := 2σ∗. Then β becomes a
second invariant of any regular metric space, after the Hausdorff dimension α.
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Here is classification of α-regular spaces according to their walk dimension β = 2σ∗.

A metric space (M,d) is called ultra-metric if it satisfies a stronger triangle inequality

d(x, y) ≤ max (d (x, z) , d (y, z)) for all x, y, z ∈ M.

For example, the field Qp of p-adic numbers with the p-adic distance |x − y|p is an ultra-
metric space. All ultra-metric spaces are totally disconnected and, hence, cannot carry
a non-trivial diffusion. On the other hand, on such spaces, for any σ > 0, the space Bσ

2,2

contains indicator functions 1B of all balls and, hence, is dense in L2. Consequently, σ∗ = ∞.
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An approach to construction of local Dirichlet forms

An open question. Let M be an α-regular metric measure space (or even self-similar).
Assume σ∗ < ∞ and set β = 2σ∗. How to construct a strongly local Dirichlet form with the
heat kernel satisfying the estimate (7)? Does such a Dirichlet form exist?

A natural approach is as follows. For any σ < σ∗ try first to define a quadratic form
Eσ(f, f) in the domain Bσ

2,2 such that

Eσ(f, f) ' ‖f‖2
Ḃσ

2,2
=

∫ ∫

M×M

|f(x) − f(y)|2

d(x, y)α+2σ
dμ(x)dμ(y),

and then try to prove that there exists a limit

lim
σ→σ∗

(σ∗ − σ) Eσ

and that this limit determines a local Dirichlet form on M .
This approach was realized on SG and SC by AG and M.Yang ’18 and ’19, but in the

general case there are two many difficulties.
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Heat kernel estimates of self-similar type

Let (M,d) be metric space and μ be an α-regular measure on M .

Theorem 3 (AG, T.Kumagai ’08) Let (E ,F) be a regular Dirichlet form on M . Assume
that

pt(x, y) �
C

tα/β
Φ

(

c
d(x, y)

t1/β

)

,

where α, β > 0 and Φ is a positive function on [0,∞). Then the following dichotomy holds:
(i) either the Dirichlet form E is strongly local,

F = B
β/2
2,∞, E(f, f) ' ‖f‖2

Ḃ
β/2
2,∞

and
Φ (s) � C exp

(
−cs

β
β−1

)
;

(ii) or the Dirichlet form E is non-local,

F =B
β/2
2,2 , E(f, f) ' ‖f‖2

Ḃ
β/2
2,2

and
Φ (s) ' (1 + s)−(α+β) .
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That is, in the first case pt(x, y) satisfies the sub-Gaussian estimate

pt(x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(sub)

while in the second case we obtain a stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

' min

(
1

tα/β
,

t

d(x, y)α+β

)

. (stable)

Next, we discuss the condition on (M,d, μ) and (E ,F) that ensure the estimates (sub)
or (stable). For that we need the notion of generalized capacity.

Capacity and generalized capacity

Let us fix a Dirichlet form (E ,F) and a parameter β > 0. Let A b B be two open subsets
of M . Define the capacity of A in B as follows:

cap(A,B) := inf {E(ϕ, ϕ) : ϕ ∈ F , ϕ|A = 1, supp ϕ b B } . (8)
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Definition. We say that (E ,F) satisfies the capacity condition if there exists a constant
C > 0 such that, for any two concentric balls B0 := B(x,R) and B := B(x,R + r),

cap(B0, B) ≤ C
μ (B)

rβ
. (cap)

The condition (cap) is equivalent to the existence of a test function ϕ as in (8) such that

E(ϕ, ϕ) ≤ C
μ (B)

rβ
.

For any function u ∈ L∞ ∩ F and a real κ ≥ 1 define the generalized capacity of A in B by

cap(κ)
u (A,B) = inf

{
E
(
u2ϕ, ϕ

)
: ϕ ∈ F , 0 ≤ ϕ ≤ κ, ϕ|A ≥ 1, ϕ = 0 in Bc

}
.

For example, if u ≡ 1 then cap
(κ)
u (A,B) = cap(A,B).

Definition. (E ,F) satisfies the generalized capacity condition (Gcap) if ∃κ ≥ 1, C > 0 such
that, for any u ∈ F ∩L∞ and for any two balls B0 := B(x,R) and B := B(x,R + r),

cap(κ)
u (B0, B) ≤

C

rβ

∫

B

u2dμ. (Gcap)

Clearly, (Gcap)⇒(cap).
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Estimating heat kernels: strongly local case

Assume that all metric balls in (M,d) a precompact. In this section, we assume in addition
that (M,d) satisfies the chain condition : if ∃C such that for all x, y ∈ M and for n ∈ N
there exists a sequence {xk}

n
k=0 of points in M such that x0 = x, xn = y, and

d(xk−1, xk) ≤ C
d(x, y)

n
, for all k = 1, ..., n.

Let μ be an α-regular measure on M and (E ,F) be a strongly local regular Dirichlet form.

Definition. We say that (E ,F) satisfies the Poincaré inequality with exponent β if, for any
ball B = B (x, r) on M and for any function f ∈ F ,

EB(f, f) :=

∫

B

dΓ(f, f)≥
c

rβ

∫

εB

(
f − f

)2
dμ, (PI)

where f = −
∫

εB
fdμ, and c, ε are small positive constants independent of B and f .

For example, in Rn (PI) holds with β = 2 and ε = 1.

Theorem 4 (AG, Jiaxin Hu, K.S.Lau ’15)

(PI) + (Gcap) ⇔ (sub).

Conjecture. (PI) + (cap) ⇔(sub)
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Estimating heat kernels: jump case

Let now (E ,F) be a jump type Dirichlet form given by

E(f, f) =

∫∫

M×M

(f (x) − f (y))2 J(x, y)dμ(x)dμ(y),

where J is a symmetric jump kernel. We use the following condition instead of (PI):

J(x, y) ' d(x, y)−(α+β). (J)

Theorem 5 (AG, Eryan Hu, Jiaxin Hu ’18 and Z.Q.Chen, T.Kumagai, J.Wang ’20)

(J) + (Gcap) ⇔ (stable).

In the case β < 2 it is easy to show that (J) ⇒ (Gcap) so that in this case we obtain

(J) ⇔ (stable).

This equivalence was also proved by Chen and Kumagai ’03, although under some additional
assumptions about the metric structure of (M,d).

Conjecture. (J) + (cap) ⇔ (stable).
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