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1 Stochastic completeness of a diffusion

Let {Xt}t≥0 be a reversible Markov process on a state space M . This process is called
stochastically complete if its lifetime is almost surely ∞, that is

Px (Xt ∈ M) = 1.

If the process has no interior killing (which will be assumed) then the only way the stochas-
tic incompleteness can occur is if the process leaves the state space in finite time. For
example, diffusion in a bounded domain with the Dirichlet boundary condition is stochas-
tically incomplete.

 

x 

X ζ 

Figure 1:

A by far less trivial example was discovered by R. Azencott [1] in 1974: he showed that
Brownian motion on a geodesically complete non-compact manifold can be stochastically
incomplete. In his example the manifold has negative sectional curvature that grows
to −∞ very fast with the distance to an origin. The stochastic incompleteness occurs
because negative curvature plays the role of a drift towards infinity, and a very high
negative curvature produces an extremely fast drift that sweeps the Brownian particle
away to infinity in a finite time.

Various sufficient conditions in terms of curvature bounds were obtained by S.-T. Yau
1978 [17], E.P. Hsu 1989 [7], etc. It is somewhat surprising that one can obtain a sufficient
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condition for stochastic completeness in terms of the volume growth. Let V (x, r) be the
volume of the geodesic ball of radius r centered at some fixed x. Then

V (x, r) ≤ exp
(
Cr2

)
⇒ stochastic completeness.

Moreover, ∫ ∞ rdr

ln V (x, r)
= ∞ ⇒ stochastic completeness. (1)

Let us sketch the construction of Brownian motion on a Riemannian manifold M and
approach to the proof of the volume test for stochastic completeness (cf. [5] for more
details). Let M be a Riemannian manifold, μ be the Riemannian measure on M and Δ be
the Laplace-Beltrami operator on M . By the Green formula, Δ is a symmetric operator
on C∞

0 (M) with respect to μ, which allows to extend Δ to a a self-adjoint operator in
L2 (M,μ). Assuming that M is geodesically complete, it is possible to prove that this
extension is unique. Hence, Δ can be regarded as a (non-positive definite) self-adjoint
operator in L2.

By functional calculus, the operator Pt := etΔ is a bounded self-adjoint operator for
any t ≥ 0. The family {Pt}t≥0 is called the heat semigroup of Δ. It can be used to solve
the Cauchy problem in R+ × M :

{
∂u
∂t = Δu,
u|t=0 = f,

since u (t, ∙) = Ptf is solution for any f ∈ L2.
Local regularity theory implies that Pt is an integral operator, whose kernel is pt (x, y) is

a positive smooth function of (t, x, y). In fact, pt (x, y) is the minimal positive fundamental
solution to the heat equation.

The heat kernel can be used to construct a diffusion process {Xt} on M with transition
density pt (x, y). For example, in Rn one has

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

and the process {Xt} with this transition density is Brownian motion.
In terms of the heat kernel the stochastic completeness of diffusion {Xt} is equivalent

to the following identity: ∫

M
pt (x, y) dμ (y) = 1,

for all t > 0 and x ∈ M .
Another useful criterion for stochastic completeness is as follows: M is stochastically

complete if the homogeneous Cauchy problem
{

∂u
∂t = Δu
u|t=0 = 0

(2)

has a unique solution u ≡ 0 in the class of bounded functions (Khas’minskii [10]).
By classical results, in Rn the uniqueness for (2) holds even in the class

|u (t, x)| ≤ exp
(
C |x|2

)
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(Tikhonov class [15]), but not in

|u (t, x)| ≤ exp
(
C |x|2+ε

)
.

More generally, uniqueness holds in the class

|u (t, x)| ≤ exp (f (r))

provided the positive increasing function f satisfies
∫ ∞ rdr

f (r)
= ∞

(Täcklind class [14]).
The following result can be regarded as an analogue of the latter uniqueness class.

Theorem 1 (AG, 1986 [4]) Let M be a complete connected Riemannian manifold, and
let u(x, t) be a solution to the Cauchy problem (2). Assume that, for some x ∈ M and for
some T > 0 and all r > 0,

∫ T

0

∫

B(x,r)
u2(y, t) dμ(y)dt ≤ exp (f(r)) , (3)

where f(r) is a positive increasing function on (0, +∞) such that
∫ ∞ rdr

f(r)
= ∞.

Then u ≡ 0 in (0, T ) × M.

If u is a bounded solution, then replacing in (3) u by const we obtain that if

V (x, r) ≤ exp (f (r))

then u ≡ 0, that is, M is stochastically complete. Setting

f (r) = ln V (x, r)

we obtain the volume test for stochastic completeness:
∫ ∞ rdr

ln V (x, r)
= ∞.

The latter condition cannot be further improved: if W (r) is an increasing function such
that ∫ ∞ rdr

ln W (r)
< ∞

then there exists a geodesically complete but stochastically incomplete manifold with
V (x, r) ≤ W (r) .

One may wonder why the geodesic balls can be used to determine the stochastic com-
pleteness, because the latter condition does not depend on the distance function at all.
The reason is that the geodesic distance d is by definition related to the gradient ∇ (and,
hence, to the Laplacian) by |∇d| ≤ 1. An analogue of this condition will appear later also
in jump processes.
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2 Jump processes

Let (M,d) be a metric space such that all closed metric balls

B(x, r) = {y ∈ M : d(x, y) ≤ r}

are compact. In particular, (M,d) is locally compact and separable. Let μ be a Radon
measure on M with a full support.

Recall that a Dirichlet form (E ,F) in L2 (M,μ) is a symmetric, non-negative definite,
bilinear form E : F ×F → R defined on a dense subspace F of L2 (M,μ), that satisfies in
addition the following properties:

• Closedness: F is a Hilbert space with respect to the following inner product:

E1(f, g) := E(f, g) + (f, g) .

• The Markov property: if f ∈ F then also f̃ := (f ∧ 1)+ belongs to F and E(f̃) ≤
E (f) , where E (f) := E (f, f) .

For example, the classical Dirichlet form in Rn is

E (f, g) =
∫

Rn

∇f ∙ ∇g dx

in F = W 1,2 (Rn).
A general Dirichlet form (E ,F) has the generator L that is a non-positive definite,

self-adjoint operator on L2 (M,μ) with domain D ⊂ F such that

E (f, g) = (−Lf, g)

for all f ∈ D and g ∈ F . The generator L determines the heat semigroup {Pt}t≥0

by Pt = etL in the sense of functional calculus of self-adjoint operators. It is known
that {Pt}t≥0 is a strongly continuous, contractive, symmetric semigroup in L2, and is
Markovian, that is, 0 ≤ Ptf ≤ 1 for any t > 0 if 0 ≤ f ≤ 1.

The Markovian property of the heat semigroup implies that the operator Pt preserves
the inequalities between functions, which allows to use monotone limits to extend Pt from
L2 to L∞. In particular, Pt1 is defined.

Definition. The form (E ,F) is called conservative or stochastically complete if Pt1 = 1
for every t > 0.

Assume in addition that (E ,F) is regular, that is, the set F ∩C0 (M) is dense both in
F with respect to the norm E1 and in C0 (M) with respect to the sup-norm. By a theory
of Fukushima [3], for any regular Dirichlet form there exists a Hunt process {Xt}t≥0 such
that, for all bounded Borel functions f on M ,

Exf(Xt) = Ptf(x) (4)

for all t > 0 and almost all x ∈ M , where Ex is expectation associated with the law of
{Xt} started at x.

Using the identity (4), one can show that the lifetime of Xt is almost surely ∞ if and
only if Pt1 = 1 for all t > 0, which motivates the term “stochastic completeness” in the
above definition.
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One distinguishes local and non-local Dirichlet forms. The Dirichlet form (E ,F) is
called local if E (f, g) = 0 for all functions f, g ∈ F with disjoint compact support. It is
called strongly local if the same is true under a milder assumption that f = const on a
neighborhood of supp g.

For example, the following Dirichlet form on a Riemannian manifold

E (f, g) =
∫

M
∇f ∙ ∇gdμ

is strongly local. The generator of this form the self-adjoint Laplace-Beltrami operator Δ,
and the Hunt process is Brownian motion on M .

A well-studied non-local Dirichlet form in Rn is given by

E (f, g) =
∫

Rn×Rn

(f (x) − f (y)) (g (x) − g (y))

|x − y|n+α dxdy (5)

where 0 < α < 2. The domain of this form is the Besov space B
α/2
2,2 , the generator is (up

to a constant multiple) the operator − (−Δ)α/2 , where Δ is the Laplace operator in Rn,
and the Hunt process is the symmetric stable process of index α.

By a theorem of Beurling and Deny (cf. [3]), any regular Dirichlet form can be repre-
sented in the form

E = E (c) + E(j) + E (k),

where E (c) is a strongly local part that has the form (assuming absolute continuity of
energy measure for simplicity)

E (c) (f, g) =
∫

M
Γ (f, g) dμ,

where Γ (f, g) is a so called energy density (generalizing ∇f ∙ ∇g on manifolds); E (j) is a
jump part that has the form

E (j) (f, g) =
1
2

∫ ∫

X×X
(f (x) − f (y)) (g (x) − g (y)) dJ (x, y)

with some measure J on X × X that is called a jump measure ; and E (k) is a killing part
that has the form

E(k) (f, g) =
∫

X
fgdk

where k is a measure on X that is called a killing measure.
In terms of the associated process this means that Xt is in some sense a mixture of

diffusion and jump processes with a killing condition.
The ln-volume test of stochastic completeness of manifolds can be extended to strongly

local Dirichlet forms as follows. Set as before V (x, r) = μ (B (x, r)).

Theorem 2 (T. Sturm 1994 [13]) Let (E ,F) be a regular strongly local Dirichlet form.
Assume that the distance function ρ (x) = d (x, x0) on M satisfies the condition

Γ (ρ, ρ) ≤ C,

for some constant C. If, for some x ∈ M ,
∫ ∞ rdr

ln V (x, r)
= ∞

then the Dirichlet form (E ,F) is stochastically complete.
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The method of proof is basically the same as for manifolds because for strongly local
forms the same chain rule and product rules are available. The condition Γ (ρ, ρ) ≤ C
is analogous to |∇ρ| ≤ 1 that is automatically satisfied for the geodesic distance on any
manifold.

Now let us turn to jump processes. For simplicity let us assume that the jump measure
J has a density j (x, y). Namely, let j(x, y) be is a non-negative Borel function on M ×M
that satisfies the following two conditions:

(a) j (x, y) is symmetric: j (x, y) = j (y, x) ;

(b) there is a positive constant C such that
∫

M
(1 ∧ d(x, y)2)j(x, y)dμ (y) ≤ C for all x ∈ M.

Definition. We say that a distance function d is adapted to a kernel j(x, y) (or j is
adapted to d) if (b) is satisfied.

The condition (b) relates the distance function to the Dirichlet form and plays the
same role as Γ (ρ, ρ) ≤ C does for diffusion.

Consider the following bilinear functional

E(f, g) =
1
2

∫ ∫

X×X
(f(x) − f(y))(g(x) − g(y))j(x, y)dμ(x)dμ (y)

that is defined on Borel functions f and g whenever the integral makes sense. Define the
maximal domain of E by

Fmax =
{
f ∈ L2 : E(f, f) < ∞

}
,

where L2 = L2(M,μ). By the polarization identity, E(f, g) is finite for all f, g ∈ Fmax.
Moreover, Fmax is a Hilbert space with the norm E1.

Denote by Lip0(M) the class of Lipschitz functions on M with compact support. It
follows from (b) that

Lip0(M) ⊂ Fmax.

Define the space F as the closure of Lip0(M) in (Fmax, ‖∙‖E1
). Under the above hypothesis,

(E ,F) is a regular Dirichlet form in L2(M,μ). The associated Hunt process {Xt} is a pure
jump process with the jump density j(x, y).

Many examples of jump processes in R are provided by Lévy-Khintchine theorem where
the Lévy measure W (dy) corresponds to j(x, y)dμ(y). The condition (b) appears also in
Lévy-Khintchine theorem in the form

∫

R\{0}

(
1 ∧ |y|2

)
W (dy) < ∞.

Hence, the Euclidean distance in R is adapted to any Lévy process.
An explicit example of a jump density in Rn is

j(x, y) =
const

|x − y|n+α ,

where α ∈ (0, 2), which defines the Dirichlet form (5).
The next theorem is the main result.
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Theorem 3 Assume that j satisfies (a) and (b) and let (E ,F) be the jump form defined
as above. If, for some x ∈ M, c > 0 and for all large enough r,

V (x, r) ≤ exp (cr ln r) , (6)

then the Dirichlet form (E ,F) is stochastically complete.

This theorem was proved by AG, Xueping Huang, and Jun Masamune [6] for c < 1
2 ,

improving the work of Masamune and Uemura [11] for the sub-exponential volume growth
case. Then it was observed ([12]) that a minor modification of the proof of [6] works for
all c.

For the proof of Theorem 3 we split the jump kernel j(x, y) into the sum of two parts:

j′(x, y) = j(x, y)1{d(x,y)≤ε} and j′′(x, y) = j(x, y)1{d(x,y)>ε} (7)

and show first the stochastic completeness of the Dirichlet form (E ′,F) associated with j′.
For that we adapt the methods used for stochastic completeness for the local form.

The bounded range of j′ allows to treat the Dirichlet form (E ′,F) as “almost” local:
if f, g are two functions from F such that d (supp f, supp g) > ε then E (f, g) = 0. The
condition (b) plays in the proof the same role as the condition |∇d| ≤ 1 in the local case.
However, the lack of locality brings up in the estimates various additional terms that have
to be compensated by a stronger hypothesis of the volume growth (6).

The tail j′′ can be regarded as a small perturbation of j′ in the following sense: (E ,F)
is stochastically complete if and only if (E ′,F) is so. The proof is based on the fact that
the integral operator with the kernel j′′ is a bounded operator in L2 (M,μ), because by
(b) ∫

M
j′′ (x, y) dμ (y) ≤ C.

It is not yet clear if the volume growth condition (6) in Theorem 3 is sharp.
In contrast to the manifold case, we can not expect a corresponding uniqueness class

result. Let us briefly mention a result about uniqueness class for the heat equation asso-
ciated with the jump Dirichlet form on graphs satisfying (a) and (b).

Namely, Xueping Huang [8] proved in 2011 that, for any b < 1
2 the following inequality

determines a uniqueness class

∫ T

0

∫

B(x,r)
u2 (t, x) dμ (x) dt ≤ exp (br ln r) . (8)

What is more surprising, that for b > 2
√

2 this statement fails even on the graph Z.
The optimal value of b in (8) is unknown. If b < 1

2 then Huang’s result can be used to
obtain Theorem 3 on graphs provided the constant c in (6) is smaller than 1

2 . However,
in general the stochastic completeness test (6) does not follows from the uniqueness class
(8), as can be seen from the range of constants. Indeed, even better results for stochastic
completeness are known in the graph case, which we will discuss in the next section.

3 Random walks on graphs

Let us now turn to random walks on graphs. Let (X,E) be a locally finite, infinite,
connected graph, where X is the set of vertices and E is the set of edges. We assume
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that the graph is undirected, simple, without loops. Let μ be the counting measure on X.
Define the jump kernel by j(x, y) = 1{x∼y}, where x ∼ y means that x, y are neighbors,
that is, (x, y) ∈ E. The corresponding Dirichlet form is

E (f) =
1
2

∑

{x,y:x∼y}

(f (x) − f (y))2 ,

and its generator is
Δf(x) =

∑

y∼x

(f(y) − f(x)).

The operator Δ is called unnormalized (or physical) Laplace operator on (X,E). This is
to distinguish from the normalized or combinatorial Laplace operator

Δ̂f(x) =
1

deg(x)

∑

y∼x

(f(y) − f(x)),

where deg(x) is the number of neighbors of x. The normalized Laplacian Δ̂ is the generator
of the same Dirichlet form but with respect to the degree measure deg (x).

Both Δ and Δ̂ generate the heat semigroups etΔ and etΔ̂ and, hence, associated con-
tinuous time random walks on X. It is easy to prove that Δ̂ is a bounded operator in
L2(X, deg), which then implies that the associated random walk is always stochastically
complete. On the contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete.

We say that the graph (X,E) is stochastically complete if the heat semigroup etΔ is
stochastically complete.

Denote by ρ(x, y) the graph distance on X, that is the minimal number of edges in an
edge chain connecting x and y. Let Bρ(x, r) be closed metric balls with respect to this
distance ρ and set Vρ(x, r) = |Bρ(x, r)| where |∙| := μ(∙) denotes the number of vertices in
a given set.

Theorem 4 If there is a point x0 ∈ X and a constant c > 0 such that

Vρ(x0, r) ≤ cr3 ln r (9)

for all large enough r, then the graph (X,E) is stochastically complete.

Note that the function r3 ln r is sharp here in the sense that it cannot be replaced by
r3 ln1+ε r. For any non-negative integer r, set

Sr = {x ∈ X : ρ(x0, x) = r} .

R.Wojciechowski [16] considered the graph where every vertex on Sr is connected to all
vertices on Sr−1 and Sr (see Fig. 2).

He proved that for such graphs the stochastic incompleteness is equivalent to the
following condition:

∞∑

r=1

Vρ(x0, r)
|Sr+1| |Sr|

< ∞. (10)

Taking |Sr| ' r2 ln1+ε r we obtain Vρ(x0, r) ' r3 ln1+ε so that the condition (10) is satisfied
and, hence, the graph is stochastically incomplete.
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Figure 2: Anti-tree of Wojciechowski

The proof of Theorem 4 is based on the following ideas. Observe first that the graph
distance ρ is in general not adapted. Indeed, the integral in (b) is equal to

∑

y

(
1 ∧ ρ2 (x, y)

)
j (x, y) =

∑

y

j (x, y) = deg (x)

so that (b) holds if and only if the graph has uniformly bounded degree, which is not
interesting as all graphs with bounded degree are automatically stochastically complete.

Let us construct an adapted distance as follows. For any edge x ∼ y define first its
length σ (x, y) by

σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

.

Then, for all x, y ∈ X define d(x, y) as the smallest total length of all edges in an edge
chain connecting x and y. It is easy to verify that d satisfies (b):

∑

y

(
1 ∧ d2 (x, y)

)
j (x, y) ≤

∑

y

(
1

deg (x)
∧

1
deg (y)

)

j (x, y) ≤
∑

y∼x

1
deg (x)

= 1.

Then we will show that (9) for ρ-balls implies that the d-balls have at most quadratic
exponential volume growth, so that the stochastic completeness will follow by the following
result of Folz (stated in the current specific setting).

Theorem 5 (M. Folz [2]) Let (X,E) be a graph as above, with an adapted distance d. If
the volume growth Vd (x0, r) = μ (Bd(x0, r)) with respect to d satisfies:

∫ ∞ rdr

ln Vd (x0, r)
= ∞, (11)

for some reference point x0 ∈ X, then the graph (X,E) is stochastically complete.

Roughly speaking, for a graph (X,E) with an adapted distance d, Folz constructed
a corresponding metric graph Y , which is enriched from X by attaching intervals to the
edges. The length and measure of intervals, which are used to define a strongly local
Dirichlet form on Y , are determined by the adapted distance. Folz proved two significant
relations between the metric graph Y with the original graph X. First, the volume growth
of Y is controlled by that of X. More importantly, X is stochastically complete if so is
the diffusion on Y . Theorem 5 is then obtained as a consequence of Theorem 2. The
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second relation is the key to overcome the difficulty coming from lack of chain rule. It was
first proven by Folz using probabilistic arguments. Two analytic proofs of this comparison
result are obtained by Huang [9]. We briefly describe one of them as it is rather concise.

By a well-known result in [3], the stochastic completeness of a Dirichlet form (E ,F) on
a measure space (M,μ) is equivalent to the existence of a sequence of functions {vn} ⊂ F
such that

0 ≤ vn ≤ 1, lim
n→∞

vn = 1 μ-a.e.

and such that
lim

n→∞
E(vn, w) = 0

holds for any w ∈ F ∩ L1(M,μ). Thus comparison of stochastic completeness boils down
to comparing the existence of certain functions. There are natural ways to transfer back
and forth between a function space on a graph and that on the corresponding metric
graph. Assume for a graph X that the corresponding metric graph Y is stochastically
complete, with a sequence {vn} as above. The sequence {ṽn} on X, as restrictions of
{vn}, is naturally expected to satisfy the conditions above. The condition

lim
n→∞

E(ṽn, w̃) = 0

for w̃ on X, can be checked by extending w̃ to w on Y through linear interpolation. The
rest are simple calculations to make sure that ṽn and w are in the correct function space.

Now we deduce Theorem 4 from Theorem 5. Without loss of generality, we assume
that

Vρ(x0, r) ≤ c(r + 1)3 ln(r + 3), (12)

for all r ≥ 0. Observe that

Vρ (x0, n) =
n∑

r=0

μ (Sρ (r)) .

Put ε = 1
5 and α = 200c where c is the constant in (12). It follows from (12) that, for any

n ≥ 1,

∣
∣{r ∈ [n − 1, 2n + 1] : μ(Sr) > α(n + 1)2 ln(n + 3)}

∣
∣ ≤

c(2n + 2)3 ln(2n + 4)
α(n + 1)2 ln(n + 3)

≤ εn.

Therefore,
∣
∣
∣
∣{r ∈ [n + 1, 2n] : max

i=−2,−1,0,1
μ(Sr+i) > α(n + 1)2 ln(n + 3)}

∣
∣
∣
∣ ≤ 4εn

and, hence,
∣
∣
∣
∣{r ∈ [n + 1, 2n] : max

i=−2,−1,0,1
μ(Sr+i) ≤ α(n + 1)2 ln(n + 3)}

∣
∣
∣
∣ ≥ (1 − 4ε)n. (13)

For any point x ∈ Sr we have

deg x ≤ μ (Sr−1) + μ (Sr) + μ (Sr+1) (14)

(see Fig. 3).
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it follows from (13) and (14) that
∣
∣
∣
∣{r ∈ [n + 1, 2n] : max

x∈Sr−1∪Sr

deg x ≤ 3α(n + 1)2 ln(n + 3)}

∣
∣
∣
∣ ≥ (1 − 4ε)n. (15)

It follows that, for r as in (15), any pair of x ∼ y with x ∈ Sr−1, y ∈ Sr necessarily satisfies

σ(x, y) ≥
1

√
3α(n + 1)

√
ln(n + 3)

. (16)

Fix a positive integer n and two vertices x ∈ Sn and y ∈ S2n. Consider a chain of vertices
connecting x and y ∈ S2n, and let us estimate from below the length L of this chain. For
any r ∈ [n + 1, 2n] there is an edge xr ∼ yr from this chain such xr ∈ Sr−1 and yr ∈ Sr.
Clearly, we have

L ≥
2n∑

r=n+1

σ (xr, yr) .

Restricting the summation to those r that satisfy (15) and noticing that for any such r,

σ (xr, yr) ≥
1

√
3α(n + 1)

√
ln(n + 3)

,

we obtain

L ≥
1

√
3α(n + 1)

√
ln(n + 3)

(1 − 4ε) n ≥
δ

√
ln(n + 3)

≥
δ

√
2 + ln n

, (17)

where δ = 1−4ε.
2
√

3α
.

Now we can estimate d (x0, x) for any vertex x /∈ Bρ (x0, R), where R > 4. Choose a
positive integer k so that

2k ≤ R < 2k+1.

Any chain connecting x0 and x contains a subsequence {xi}
k
i=1 of vertices such that xi ∈

S2i . By (17) the length of the chain between xi and xi+1 is bounded below by δ√
i+2

, for
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any i = 1, ..., k − 1. It follows that the length of the whole chain is bounded below by

δ
k−1∑

i=1

1
√

i + 2
,

whence
d (x0, x) ≥ δ′

√
k + 1 ≥ δ′

√
ln R,

for some constant δ′ > 0. It follows that

Bd(x0, δ
′
√

ln R) ⊂ Bρ(x0, R).

Given a large enough r, define R from the identity r = δ′
√

ln R, that is, R = exp(r2/δ′2).
Then we obtain

μ (Bd(x0, r)) ≤ μ (Bρ(x0, R)) ≤ c(R + 1)3 ln(R + 3) ≤ C exp
(
br2
)
,

for some constants C and b, which finishes the proof.
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