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STOCHASTICALLY COMPLETE MANIFOLDS
AND SUMMABLE HARMONIC FUNCTIONS
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A. A. GRIGOR'YAN

ABSTRACT. Main result: if on a geodesically complete Riemannian manifold M the
volume Vg of a geodesic ball of radius R with fixed center satisfies the condition

fm Rﬂ'R_oo
InVg

then every nonnegative integrable superharmonic function on M is equal to a constant.
Bibliography: 18 titles.

Introduction

This article is devoted to two questions that appear at first glance to have little
connection with each other. Let M be a connected smooth noncompact Riemannian
manifold. We consider a minimal Wiener process on M, i.e., a diffusion process
generated by the Laplace-Beltrami operator A with absorption condition at co. If the
probability of absorption at co in a finite amount of time is equal to zero, then M
is said to be stochastically complete. For example, R" is stochastically complete, but
a bounded domain in R™ is not. It turns out that there are geodesically complete
manifolds that are not stochastically complete. An example was considered in [1]
(see also §3).

Yau [17] proved that a complete Riemannian manifold with Ricci curvature
bounded below is stochastically complete. This theorem has been refined in a number
of papers (see, for example, [8] and [14]): the Ricci curvature was allowed to decrease
to —oo in a sufficient slow manner. In [5] the author proved a more general condition
for stochastic completeness in terms of the growth of the volume of a geodesic ball
(see §1 below). In §3 we present examples confirming the sharpness of this condition.

The second question considered here has to do with the Liouville problem. Yau
[15] proved that on a complete Riemannian manifold every harmonic function (i.e.,
every solution of the Laplace-Beltrami equation Au = 0) in the class L?(M), 1 <
p < oo, is equal to a constant; in other words, the L?-Liouville theorem holds. See
[11] for some refinements, and see [9], [16], and [4] about the L*°-Liouville theorem.
Here we consider the case p = 1. For some time it was not known whether the L'-
Liouville theorem holds on any complete Riemannian manifold. In several papers
reference was made to a preprint of Chung in which a complete two-dimensional
manifold having a nontrivial integrable harmonic function was constructed for ‘the
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first time. This example (or a closely related example) was published by Li and
Schoen in [10]. The manifold in this example has finite volume, and is thereby
stochastically complete, which refutes the conjecture that the L'-Liouville theorem
holds on a stochastically complete manifold. A sufficient condition is given in [10]
for the L'-Liouville theorem to hold in terms of the decrease of the Ricci curvature.
Nevertheless, there is a connection between stochastic completeness and integrable
harmonic functions. Namely, we prove in §2 that the L!-Liouville theorem holds on a
stochastically complete manifold for nonnegative harmonic and even superharmonic
functions. In combination with a geometric condition for stochastic completeness
[5], our main result can be formulated as follows: if on a geodesically complete
Riemannian manifold the volume Vx of a geodesic ball of radius R with fixed center
satisfies the inequality ¥z < eC®’, then every nonnegative superharmonic function
in L'(M) is a constant. Attention is drawn to the beautiful analogy with the Cheng-
Yau theorem [2]: if Vx < CR? on a geodesically complete manifold, then every
nonnegative superharmonic function on M is equal to a constant.

In §3 we present examples of complete manifolds of arbitrary dimension that admit
nontrivial positive harmonic functions in L'(M), and we prove that the restrictions
on the growth of V3 in the main theorem are sharp.

§1. Some facts about stochastically complete manifolds

For each precompact domain Q C M with smooth boundary we define the Green’s
function Gq(x,y,?) of the heat equation, i.e., the function of (x,?) € Q x (0, +o00)
that satisfies for each y € Q the conditions

dGq/ot —AGg =0, Galsa =0, Ggq — dy(x) ast—0.

It is well known that:

1) Gq(x,y,t), extended by zero for t < 0, is infinitely differentiable away from
(»,0); .

2) Ga(x,y,t) = Gq(y, x,1) for any x,y € Q;

3)Ga20;

4) [ Ga(x,y,t)dx < 1;

5) Ga(x,y,t +5) = [ Ga(x, z,1)Ga(z,y,s)dz.

We fix a point y € M and enlarge the domain Q. It follows from the maximum
principle that if Q; C Q,, then Gg, < Ggq,. By 4), the integrals of Go on each
compact set in M x (0, +o00) are uniformly bounded; therefore, the limit G(x,y, 1) =
limg_, ys Ga(x, y, 1) exists, where Q — M means the exhaustion of M by precompact
open domains. It is easy to verify that 8G/31—AG = 0 in M x (0, +o0), G — J,(x) as
t — 0, and the analogues of properties 1)-5) hold. It follows from the construction
that G(x,y,t) is a minimal positive fundamental solution of the heat equation (see
[7] for more details).

In view of property 5) the function G(x, y, t) is the kernel of a semigroup G, acting
in L?(M), defined by '

Gif = [H G(x,y,0)f(y)dy where f € LP(M), 1< p < co.

It can be proved that the semigroup G, is contractive (i.e., ||G,|[z» < 1), positive (i.e.,
G.f > 0 for f > 0), and L] -continuous with respect to ¢ (i.e., Gf — fast— 0
in the sense of L} (M); and if p < oo, then G, is strongly continuous (see [13] for
details). Moreover, it follows from the maximum principle and the construction of
G(x,y,t) that if £ > 0 and u(x,?) is a positive solution of the heat equation with
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initial condition u(x,t) — f(x) as ¢t — 0 in the sense of L} (M), then u(x,t) > G.f,
i.e., G, f is a minimal positive solution of the Cauchy problem with initial function
¥

From the probabilistic point of view G(x,y, 2¢) is the transition density of a min-
imal Wiener process on M. Stochastic completeness of M is equivalent to the con-
dition that [, G(x,y,t)dt = 1 for any y C M and ¢ > O (i.e., the process continues
arbitrarily long with probability 1).

THEOREM 1. The following conditions are equivalent:

a) M is stochastically complete.

b) The solution of the Cauchy problem u; — Au = 0, u|,—o = 0, is unique in the class
of functions bounded on M x [0, T] (the-initial condition is understood in the sense of
L\ (M)).

c) Every positive solution of the equation Av — Av = 0 on M :s”’E’unded where
4 = const > 0.

These statements are encountered in various forms in various papers (see, for
example, [3]). Nevertheless, for the convenience of the reader we present a proof,
especially because it is very simple.

a) = b). Let u(x,?) be a bounded solution of the heat equation with zero initial
condition. It can be assumed that |u| < I. Let w = 1 —u. Since w > 0 and w|,—¢ = 1,
we have in view of the properties of G, that w > G,1 = [, G(x,y,t)dy = 1, and
hence w > 1 and u < 0. It can be proved in exactly the same way that ¥ > 0, which
implies that u = 0.

b) = c). If the bounded positive function v(x) satisfies the equation Av — Av =0,
then the function u(x,t) = v(x)e* satisfies the heat equation with initial condition
U|;—p = v and is bounded on M x [0, T] for each T > 0. Since G, is also a bounded
solution of the indicated Cauchy problem, we have that G,v = ve* by the condition
in b). However, this is impossible, since ||G,v||z= < ||v]|z= < ||ve| = for ¢ > 0.

c) = a). Suppose that M is not stochastically complete, i.e., G, 1(xp) < 1 at some
point (xg, tp). Since G,1(x) is a solution of the heat equation and sup G,;1 = 1, we have
from the strict maximum principle that G,1 < 1 fort > 1p. Let w(x) = f;" e MG, 1dt.

It can be verified immediately that Aw — Aw = —1 and 0 < w < A~'. Therefore, the
function v = 1 — Aw satisfies the equation Av —Av = 0 and the restrictions 0 < v < 1.

THEOREM 2. Suppose that the manifold M is geodesically complete, and

* RdR
/ . = - (1)

where Vg is the volume of a geodesic ball of radius R with fixed center. Then M is
stochastically complete.

It was proved in [5] that under condition (1) part b) of Theorem 1 holds. Part a)
thereby also holds; that is, M is stochastically complete.

We prove in §3 that condition (1) is sharp We remark that (1) holds, for example,
if Vg, < eCRu for some sequence R, — oo.
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§2. Positive harmonic functions in L' (M)
Our main result is the following theorem.

THEOREM 3. If M is a stochastically complete manifold, then every positive super-
harmonic function u € L'(M) is equal to a constant.

Proor. The Green’s function of the Laplace equation can be constructed in a way
analogous to the way the Green’s function of the heat equation was constructed in §1.
For every precompact domain Q C M with smooth boundary there exists a Green’s
function gqo(x, y) satisfying for each fixed y € Q the equation Agg = —J,(x) and the
boundary condition gg|sq = 0. Further: 1) gq is infinitely differentiable away from
Y; 2) ga(x,y) = ga(y, x) for any x, y € Q; and 3) go > 0.

The functions Gg(x,y,t) and gq(x,y) are connected by the well-known relation

gn(x,y)=/0 Gw(x,y,t)dt. (2)

As Q increases in size the sequence gqg increases and has a limit
x,y)= lim x;
g(x,y) = lim go(x,y)

which, true, can turn out to be infinite (for example, for M = R?). If g(x,y) < oo for
Xx # p, then g(x, ) is the smallest positive fundamental solution of the operator —A,
but if g = oo, then there are no positive fundamental solutions (see [6] for details).
Manifolds such that g = oo are called manifolds of parabolic type. 1t is known that M
has parabolic type if and only if every positive superharmonic function on M is equal
to a constant [12]. See [ 6 ] and [14] about geometric conditions for parabolicity.

Now let M be a stochastically complete manifold and u a positive superharmonic
function not equal to a constant. We prove that [, udx = oo. It follows from the
existence of such a function u that M is not parabolic, and hence that the Green’s
function g(x,y) exists. We verify that

[ g(x,)dx = oo. 3)
M

Indeed, it follows from (2) and the stochastic completeness of M that

/g{x,y)dx=[f G(x,y,r)dtdx:f fG(x,y,t)dxdl:f dt = co.
M MJO 0 M 0

From this we conclude also that [, udx = co. Let w be a precompact open subset
of M, and let y € w. We find a constant C > 0 such that Cu(x) > g(x,y) on dw. In
particular, for any domain Q D @ we get that Cu > gq(x,y) on dw. Since gqlsq =0,
it is also true that Cu > gg on Q. The fact that Cu is a superharmonic function
implies that Cu > gg on Q\w. Taking the limit as  — M gives us that Cu > g on
M\w, and so

c fM u(x)dx > [M\w g(x,y)dx = /M g(x,y)dx - ]w gy)dx.  (4)

Note that [ g(x,y)dx < co. Indeed, g(x,y) has the same singularity as in R” as
X — y, 1.e., r*~" or —Inr, where r is the geodesic distance between the points x and
v, r — 0 [18], and this singularity is clearly integrable. It thus follows from (3) and
(4) that [,, u(x)dx = oo, which is what was required to prove.
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REMARK 1. If u is a nonnegative superharmonic function, then in view of the
maximum principle either ¥ = 0 or # > 0, so that Theorem 3 is also valid for such
functions.

REMARK 2. If the volume of M is infinite, then under the conditions of Theorem 3
there are no positive superharmonic functions u € L' (M).

COROLLARY 1. If M is a complete Riemannian manifold and

®RdR _
]l'lVR_ '

then every nonnegative superharmonic function in L'(M) is equal to a constant.

§3. Some examples

Here we present conditions for stochastic completeness and for the validity of the
L'-Liouville theorem for spherically symmetric manifolds.

Denote by M, the manifold R x S™ (where S" is the unit sphere in R"), equipped
with the Riemannian metric ds? = dr? + h(r)2d6*. Here r € R, 6 € S", dr? and
d6? are the standard metrics on R and S” and A(r) is a positive smooth function.
For each r € R let S, denote the set of all points of the form (r,8) with 8 € S".
Obviously, S, is the orbit of the group SO(n) of isometries acting on M,,. Let o(r) =
meas,_; S, = w,h(r)""!, where w, is the (n — 1)-dimensional unit sphere in R". Let
Wi be the volume of the shell {0 <r < R}, i.e,, Wg = fon o(r)dr. Let

I'= [o 75 dR.

PROPOSITION. Suppose that the function h(r) is even. Then the manifold M, is

stochastically complete if and only if I = co.

COROLLARY 2. If f: [0,00) — (1,00) is a smooth downward convex function with

f'>0and
* RdR

J(R)
then there exists a geodesically complete but not stochastically complete manifold M
such that Vg < Ce/®, where Vy is the volume of a geodesic ball of radius R with some
~ center Oe M.

Indeed, let a(r) = f"(r)e/") for sufficiently large r, and let h(r) = (a(r)/@,)"/ "= 1.
Then the manifold M, is not stochastically complete. Indeed, for large R
We _e/®+4const 1 _ R
Wi ['(Re/®  f'(R) = f(R)
because [ is convex. Therefore, it follows from (5) that / < oo, and M, is not

stochastically complete, by the proposition.
Moreover, if O € Sy, then Vg < 2Wi = 2¢/® 4 const < Ce/ (R for sufficiently

large C.

COROLLARY 3. There exist stochastically complete manifolds for which the volume

Vg grows arbitrarily fast.
Fu e s
“Jo (nWgy

< o, ()

R
Wy = / a(r)dr = e/® + const,
0

Indeed, the equality
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is possible for any restriction of the form In Wi > f(R), where f(R) is an arbitrary
monotonically increasing function,

PROOF OF THE PROPOSITION. We now construct on the domain {r > 0} of M, a
positive function v(X) satisfying the equation Av — Av = 0 for some 4 > 0 and the
conditions v|s, = 1 and dv/dv|s, = 0 where v is the normal to Sp. Obviously, such
a function v can be extended evenly to the whole manifold A),. If v is bounded,
then, by Theorem 1, M, is not stochastically complete. But if v(x) — oo as x — oo,
then M, is stochastically complete in view of Theorem 2.4 in [3]. The function v
will depend only on r, so it will be written as v(r). It is not hard to verify that upon
multiplication by o(r) the equation Av — Av = 0 is reduced to the form

(ev') — Aov = 0. (6)

Obviously, the solution of this ordinary differential equation with the initial con-
ditions v(0) = 1 and v/(0) = 0 is monotonically increasing, and thus stochastic
completeness of M, is equivalent to the condition v(r) — oco. From (6) and the
initial conditions we get the integral equation

r 4
v(r) =A/0 %fﬂ a(mu(n)dn + 1.

If I = oo, then from v(n) > 1 it follows that
"W
'u(r)zﬁ./{; ngtf+l—’oo

as r — oo, i.e., M is stochastically complete. If J < oo, then it follows from v(n) <
v(r) that

w(r) < Av(r)[ %d& F 1A + 1,
0 &

and for A < I~! this implies that v < (1 — A/)~', i.e., v is bounded, and M is not
stochastically complete.

We now proceed to the construction of a counterexample to the L'-Liouville the-
orem. It is very easy to find all harmonic functions on M, depending only on r.
Indeed, the equation Av(r) = 0 can be rewritten in the form (ov’)’ = 0, from which

we find that r g
v(r) = ¢ /0 % + &3.

It turns out that these solutions include integrable functions: for this it is necessary
o0
that [7 |v(r)|a(r)dr < 00,
We analyze the two possible cases.

l. Let " de
v(r):/ﬂ m.

Then we get the following restriction on o:

& " a4
/0 a(r)/ﬂ @) dr < oo, r>0,

and an analogous condition for a(—r). Changing the order of integration and intro-
ducing the notation

oo -R
W(R) = fR o(€)dE,  W(-R)= f o (&) de,

o0
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where R > 0, we get that

> W(R)
and an analogous condition for W(—R). Condn‘lon (7) is satisfied, for example, by

the function W(R) = e~®"**, ¢ > 0. The corresponding manifold M, constricts very
rapidly both as r — +oc and as r — —oo. The function v(r) tends to £oo as r — +oo.

2. Let _
v(r) = a_(%'

If v(r) is integrable for r — —oo, then the conditions of the preceding case hold as
r — —oo. If v(r) is integrable for r — +o0, then

R
f :::((i) dR < oo, where W(R) =/0 a(r)dr.

This condition holds, for example, for W (R) = eR™**, ¢ > 0. In this case the manifold
M, expands strongly as r — +oo, and v(r) — 0. Since v(r) is positive, we get in a
way analogous to that for Corollary 2 that the condition on the growth of the volume
Vg in Corollary 1 is sharp.
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