
Frontiers of Science Awards
for Math/TCIS/Phys
pp. 1–19

c© International Press

Path chain complex and path homology

on a digraph

Alexander Grigor’yan, Yong Lin, Yuri Muranov, Shing-Tung Yau

Abstract

In this paper, we give a brief overview of the theory of the path chain complexes
and path homology on digraphs based on the previous work of the authors.
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1 Introduction

There exists a number of ways to define the notion of homology for graphs and
digraphs, for example, clique homology ([3], [11]) or singular homology ([1], [11],
[12]). However, the notion of path homology has certain advantages as it enjoys
the adequate functorial properties with respect to graph-theoretical operations,
such as morphisms of digraphs, Cartesian products, joins, homotopy etc.

The concept of path homology is derived from the concept of a path chain
complex that is non-trivial and highly interesting by itself as it encodes a lot of
information about the underlying digraph. Based on the path chain complex, we
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define also the notion of Hodge Laplacians acting on the chain spaces. The study
of spectra of Hodge Laplacians on digraphs is a new interesting area of research.

The notions of path homology and path chain complex have rich mathemat-
ical content, and we hope that they will become useful tools in various areas of
pure and applied mathematics. This survey is based on the following papers: [5],
[6], [7], [8], [9], [10].

2 Path chain complex

2.1 Boundary operator ∂

Let V be a finite set whose elements are called vertices. For any p ≥ 0, an elemen-
tary p-path is any sequence i0, ..., ip of p + 1 vertices of V (allowing repetitions).
Fix a field K and denote by Λp = Λp (V,K) the K-linear space consisting of all
formal K-linear combinations of elementary p-paths. Any element of Λp is called
a p-path.

An elementary p-path i0, ..., ip as an element of Λp will be denoted by ei0...ip
.

For example, we have

Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉.

Any p-path u has a form

u =
∑

i0,...,ip∈V

ui0...ip ei0...ip ,

where ui0...ip ∈ K.

Definition 2.1 For any p ≥ 1 define a linear boundary operator ∂ : Λp → Λp−1

by

∂ei0...ip =
p∑

q=0

(−1)q
ei0...îq...ip

, (2.1)

where ̂ means omission of the index, and then extend ∂ to all Λp by linearity.
Set also Λ−1 = {0} and define the operator ∂ : Λ0 → Λ−1 by ∂ = 0.

For example, ∂ei = 0, ∂eij = ej − ei and ∂eijk = ejk − eik + eij .

Lemma 2.2 We have ∂2 = 0.

Definition 2.3 An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all
k = 0, ..., p − 1, and irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular p-paths ei0...ip
. It is easy to

see that ∂Ip ⊂ Ip−1, which allows to define ∂ on the quotient spaces Rp := Λp/Ip.
Hence, we obtain a chain complex R∗ (V ):

0← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . . (2.2)
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By setting all irregular p-paths to be equal to 0, we identify Rp with the subspace
of Λp spanned by all regular paths. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij ∈ R1

because eii = 0 in R1.

2.2 Spaces of ∂-invariant paths

Definition 2.4 A digraph (directed graph) is a pair G = (V,E) of a set V of
vertices and a set E ⊂ V × V \ diag of arrows (directed edges).

If (i, j) ∈ E then we write i→ j. Here and in what follows, all digraphs are
always finite.

Definition 2.5 An elementary p-path i0 . . . ip on V is called allowed if if ik →
ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise. A p-path u is called
allowed if it is a K-linear combination of allowed elementary p-paths.

The set of all allowed p-paths is denoted by Ap = Ap (G) . Clearly, Ap is a
subspace of Rp.

We would like to build a chain complex based on subspaces Ap of Rp. How-
ever, the spaces Ap are in general not invariant for ∂. For example, in the digraph

a
• −→

b
• −→

c
•

we have eabc ∈ A2 but ∂eabc = ebc − eac + eab /∈ A1 because eac is non-allowed.

Definition 2.6 A regular path u is called ∂-invariant if u and ∂u are allowed.

Clearly, all 0-paths and 1-paths are ∂-invariant.
Let us give some examples of ∂-invariant 2-paths. By a triangle in a digraph

G we mean a configuration of three distinct vertices a, b, c such that a → b → c
and a→ c. Then the 2-path eabc is allowed, and its boundary ∂eabc = ebc−eac+eab

is also allowed, so that eabc is ∂-invariant.
The ∂-invariant 2-path eabc will also be referred to as a triangle. A square is

a configuration of four distinct vertices a, b, b′, c such that a → b → c, a → b′ →
c but a 6→ c. It determines a ∂-invariant 2-path eabc − eab′c that is also called a
square.

A double arrow is a configuration of two distinct vertices a, b such that
a → b → a. It determines a ∂-invariant 2-path eaba that is also called a double
arrow.

Figure 1: A triangle, a square and a double arrow
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Denote by Ωp the subspace of Ap that consists of ∂-invariant p-paths, that is,

Ωp ≡ Ωp (G) := {u ∈ Ap : ∂u ∈ Ap−1} .

It is easy to prove that ∂Ωp ⊂ Ωp−1 so that we obtain a chain complex Ω∗ =
Ω∗ (G):

0← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (2.3)

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap. One
can prove that Ω2 is spanned by all triangles, squares and double arrows. Note
that squares can be linearly dependent.

Definition 2.7 The chain complex Ω∗(G) is called the path chain complex of the
digraph G. The path homologies of G are defined as the homologies of the path
chain complex Ω∗ (G):

Hp = Hp (G) = ker ∂|Ωp

/
Im ∂|Ωp+1 . (2.4)

The dimension βp := dim Hp(G) is called the p-th Betti number of G.

One can show that β0 is equal to the number of (undirected) connected
components of G.

If the sequence {Ωp} is finite in the sense that Ωp = {0} for large enough p,
then we can define the Euler characteristic of G by

χ :=
∞∑

p=0

(−1)p |Ωp| =
∞∑

p=0

(−1)p
βp.

Note that the chain complex (2.3) depends on the field K of coefficients although
we have suppressed K from notation for simplicity. However, there are interesting
non-trivial examples of digraphs where the Euler characteristic actually depends
on K. These examples, obtained in [4, Thm 5.4] and [2, Sect.6.2], show that
the path homology theory cannot be reduced to the classical homology theory of
topological spaces.

3 Cartesian product and Künneth formula

3.1 Cross product of regular paths

Given two finite sets X,Y , consider their product

Z = X × Y = {(a, b) : a ∈ X and b ∈ Y } .

Let z = z0z1...zr be a regular elementary r-path on Z, where zk = (ak, bk)
with ak ∈ X and bk ∈ Y . We say that z is stair-like if, for any k = 1, ..., r, either
ak−1 = ak or bk−1 = bk is satisfied. That is, any couple zk−1zk of consecutive
vertices is either vertical (when ak−1 = ak) or horizontal (when bk−1 = bk).
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For any stair-like path z on Z, define its projection onto X as an elementary
path x on X obtained from z by removing the Y -components in all the vertices of
z and by collapsing in the resulting sequence of points of X consecutive repeated
vertices to one vertex. In the same way we define projection of z onto Y and denote
it by y. Then the projections x = x0...xp and y = y0...yq are regular elementary
paths on X, resp. Y , and p + q = r.

Every vertex (xi, yj) of the path z can be represented as a point (i, j) of Z2

so that the path z is represented by the staircase S (z) in Z2 connecting (0, 0) and
(p, q). The elevation L (z) of z is defined as the number of cells in Z2

+ below S (z).

Figure 2: A stair-like path z, its staircase S (z) and the elevation L(z)

For given elementary regular paths x on X and y on Y , denote by Πx,y the
set of all stair-like paths z on Z whose projections on X and Y are respectively x
and y.

Definition 3.1 Define the cross product of the elementary regular paths ex and
ey as a path ex × ey on Z as follows:

ex × ey =
∑

z∈Πx,y

(−1)L(z)
ez , (3.1)

and extend it by linearity to all u ∈ Rp (X) and v ∈ Rq (Y ) so that u × v ∈
Rp+q (Z).

Lemma 3.2 (The product rule) If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0,
then

∂ (u× v) = (∂u)× v + (−1)p
u× (∂v) . (3.2)

3.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation.
Given two digraphs X and Y , define their Cartesian product as a digraph Z =
X�Y as follows:

• the set of vertices of Z is X × Y , that is, the vertices of Z are the couples
(a, b) where a ∈ X and b ∈ Y ;
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• the edges in Z are of two types: (a, b) → (a′, b) where a → a′ (a horizontal
edge) and (a, b)→ (a, b′) where b→ b′ (a vertical edge):

...
...

...

b′• . . .
(a,b′)
• →

(a′,b′)
• ∙ ∙ ∙

↑ ↑ ↑

b• ∙ ∙ ∙
(a,b)
• →

(a′,b)
• ∙ ∙ ∙

...
...

...
Y

X ∙ ∙ ∙ •
a
→ •

a′
∙ ∙ ∙

It follows that any allowed elementary path in Z is stair-like. Moreover,
any regular elementary path on Z is allowed if and only if it is stair-like and its
projections onto X and Y are allowed.

Example 3.3 Let I be a digraph of two vertices 0 and 1 such that 0 → 1. Then
I2 := I�I is a square digraph and In := I�I�...�I︸ ︷︷ ︸

n

is an n-cube.

Figure 3: A square I2 and a 3-cube I3

Example 3.4 Let T be a digraph of 3 vertices 0, 1, 2 such that 0 → 1→ 2→ 0.
The digraph Tn = T�T�...�T︸ ︷︷ ︸

n

is called an n-torus.

Figure 4: 1-torus T

It follows from the definition (3.1) of the cross product that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) . (3.3)
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Furthermore, the product rule of Lemma 3.2 implies that

u ∈ Ωp (X) and v ∈ Ωq (Y )⇒ u× v ∈ Ωp+q (Z) . (3.4)

3.3 ∂-invariant paths on products

In all the statements below, X and Y are two digraphs, and Z = X�Y . The
following theorem is the main result of this section. In some sense, it provides a
converse statement to (3.4).

Theorem 3.5 Let X,Y be two digraphs and Z = X�Y . Any path w ∈ Ωr (Z)
with r ≥ 0 admits a representation in the form

w =
k∑

i=1

ui × vi (3.5)

for some finite k and some ui ∈ Ωpi(X) and vi ∈ Ωqi(Y ), where pi, qi ≥ 0 and
pi + qi = r.

Theorem 3.5 implies the following Künneth type formulas.

Theorem 3.6 (Künneth formula for product) Let X,Y be two finite digraphs and
Z = X�Y . Then we have an isomorphism of the chain complexes:

Ω∗(Z) ∼= Ω∗(X)⊗ Ω∗(Y ).

For any r ≥ 0, we have

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}
Ωp (X)⊗ Ωq (Y ) , (3.6)

where the isomorphism is given by the map u ⊗ v 7→ u × v for u ∈ Ωp (X) and
v ∈ Ωq (Y ). Consequently, we have

Hr (Z) ∼=
⊕

{p,q≥0:p+q=r}
Hp (X)⊗Hq (Y ) . (3.7)

Example 3.7 It is easy to see that for the digraph I = {• → •} all homology
groups are trivial, that is, H0

∼= K and Hp = {0} for all p ≥ 1. It follows from
(3.7) that also the n-cube In is homologically trivial.

For the 1-torus T as above we have H0
∼= H1

∼= K where H1 is generated by
the cycle {e01 + e12 + e20}, and Hp = {0} for all p ≥ 2. It follows from (3.7) that
the Betti numbers of the n-torus Tn are βp(Tn) =

(
n
p

)
.

4 Reduced homology and join of digraphs

4.1 Augmented chain complex

In this section we use the augmented chain complex

0← K
∂
← Ω0

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (4.1)



8 Alexander Grigor’yan, Yong Lin, Yuri Muranov, Shing-Tung Yau

with the added space Ω−1 = K. The operator ∂ : Ω0 → Ω−1 is now redefined by

∂ei = e := the unity of K. (4.2)

The homology groups of (4.1) are called the reduced homology groups of G and
are denoted by H̃p(G). The reduced Betti numbers of G are defined by

β̃p(G) = dim H̃p(G).

Clearly, we have

H̃p(G) = Hp(G) for p ≥ 1 and H̃0(G) = H0(G)/K.

4.2 Join of digraphs

Let X,Y be two digraphs.

Definition 4.1 The join X ∗ Y of two digraphs X,Y is a digraph whose set of
vertices is a disjoint union of the sets of vertices of X and Y , and the set of arrows
consists of all arrows of X and Y as well as from all arrows x → y where x ∈ X
and y ∈ Y.

Let p, q ≥ −1. For a p-path u on X and a q-path v on Y , define the join u∗v
as a (p + q + 1)-path on X ∗ Y as follows: first define it for elementary paths by

ei0...ip ∗ ej0...jq = ei0...ipj0...jq ,

and then extend this definition by linearity to all u and v.
It is easy to see that the joint of two allowed elementary paths is allowed,

which implies that

u ∈ Ap(X) and v ∈ Aq(Y )⇒ u ∗ v ∈ Ap+q+1(X ∗ Y ). (4.3)

Lemma 4.2 (Product rule for the join) For all p, q ≥ −1 and u ∈ Λp(X), v ∈
Λq(Y ) we have

∂ (u ∗ v) = (∂u) ∗ v + (−1)p+1
u ∗ ∂v. (4.4)

It follows from (4.3) and (4.4) that

u ∈ Ωp(X) and v ∈ Ωq(Y )⇒ u ∗ v ∈ Ωp+q+1(X ∗ Y ).

Theorem 4.3 Let X,Y be two digraphs and Z = X ∗ Y . Any path w ∈ Ωr (Z)
with r ≥ −1 admits a representation in the form

w =
k∑

j=1

uj ∗ vj (4.5)

for some finite k, with some uj ∈ Ωpj−1 (X) and vj ∈ Ωqj (Y ), where pj ≥ 0,
qj ≥ −1 and pj + qj = r.



Path chain complex and path homology on digraphs 9

On any digraph G, consider a shifted chain complex Ω′
∗(G) =

{
Ω′

p

}∞
p=0

where

Ω′
p = Ωp−1, with the same boundary operator ∂ as in (4.1).

Theorem 4.4 (Künneth formula for the join) Let X,Y be two digraphs and Z =
X ∗ Y. Then we have an isomorphism of the chain complexes:

Ω′
∗(Z) ∼= Ω′

∗(X)⊗ Ω′
∗(Y ).

In particular, for any r ≥ −1, we have

Ωr (Z) ∼=
⊕

{p,q≥−1:p+q=r−1}
Ωp (X)⊗ Ωq (Y ) , (4.6)

where the isomorphism is given by the map u ⊗ v 7→ u ∗ v with u ∈ Ωp (X) and
v ∈ Ωq (Y ). Consequently, for any r ≥ 0,

H̃r (Z) ∼=
⊕

{p,q≥0:p+q=r−1}
H̃p (X)⊗ H̃q (Y ) . (4.7)

Example 4.5 Let Y consist of a single vertex. In this case the join X ∗Y is called
a cone over X. Since β̃q (Y ) = 0 for all q ≥ 0, the cone X ∗ Y is homologically
trivial by (4.7). Let Kn be a complete digraph with vertices {1, ..., n} and arrows

i→ j ⇔ i < j.

In other words, Kn is a directed (n− 1)-simplex.

Figure 5: Simplices K2 (interval), K3 (triangle) and K4 (tetrahedron)

It is easy to see that Kn+1 is a cone over Kn, which implies that all Kn are
homologically trivial.

Example 4.6 Let Y consist of two vertices without arrow, that is, Y = {•, •}.
Then the join X ∗ Y is called a suspension of X. Since β̃0(Y ) = 1 and β̃q(Y ) = 0
for all q ≥ 1, we obtain from (4.7) that

β̃r(X ∗ Y ) = β̃r−1(X).

Let us define a digraph n-sphere Sn as follows: S0 = {•, •} and Sn+1 is the
suspension of Sn for all n ≥ 0. It follows by induction that the only positive
reduced Betti number of Sn is β̃n(Sn) = 1.
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For example, S1 is a diamond and S2 is an octahedron.

Figure 6: Digraph spheres: S1 is a diamond and S2 is an octahedron.

Using (4.7) one can show that H1(S1) is generated by e02 − e12 + e13 − e03 and
H2(S2) is generated by

e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135.

5 Homotopy of digraphs

In this section we use again the chain complex (2.3).

5.1 Digraphs morphisms

We write a−→=b if either a→ b or a = b.

Definition 5.1 A morphism from a digraph G = (V,E) to a digraph G′ =
(V ′, E′) is a map f : V → V ′ such that

if a−→=b on G then f (a) −→=f (b) on G′. (5.1)

That is, if a → b in G then either f (a) → f (b) or f (a) = f (b) in G′. We
will refer to such morphisms also as digraphs maps and denote them shortly by
f : G→ G′.

Given a map f : V → V ′, define for any p ≥ 0 the induced map

f∗ : Λp(V )→ Λp(V
′)

by the rule
f∗
(
ei0...ip

)
= ef(i0)...f(ip), (5.2)

extended by K-linearity to all elements of Λp (V ). It is obvious that

f∗(Rp(V )) ⊂ Rp(V
′) and f∗(Ap(G)) ⊂ Ap(G

′).

It follows from (2.1) and (5.2) that ∂f∗ = f∗∂, which implies that also

f∗ (Ωp (G)) ⊂ Ωp (G′) . (5.3)
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Hence, the map f∗ : Ωp (G) → Ωp (G′) is a morphism of the chain complexes
Ω∗(G) → Ω∗(G′). In induces a homomorphism of homology groups H∗(G) →
H∗(G′) that will also be denoted by f∗.

The set of all digraphs with digraphs maps form a category of digraphs. Of
course, it is desirable to state the results in the language of the category theory,
but it is not always possible. For example, the Cartesian product from Section 3
is not a product in the category of digraphs as understood in category theory.

5.2 Homotopy

For any n ≥ 1 define a linear digraph In as any digraph with vertices {0, 1, . . . , n}
such that if |i− j| = 1 then either i→ j or j → i, and if |i− j| 6= 1 then there is
no arrow between i and j.

Here is an example of a linear digraph I3:
0
• →

1
• ←

2
• →

3
• .

Definition 5.2 Let X and Y be digraphs. Two digraph maps f, g : X → Y are
called homotopic if there exists a linear digraph In with some n ≥ 1 and a digraph
map

Φ: X�In → Y

such that
Φ|X×0 = f and Φ|X×n = g. (5.4)

In this case we write f ' g.

Figure 7: A homotopy Φ

Definition 5.3 Two digraphs X and Y are called homotopy equivalent if there
exist digraph maps

f : X → Y, g : Y → X (5.5)

such that
f ◦ g ' id Y , g ◦ f ' id X . (5.6)

In this case we write X ' Y .

Clearly, the relation ' is an equivalence relation. If X ' {•} then X is called
contractible.
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5.3 Invariance of homology groups under homotopy

Now we can present the main result about connections between homotopy and
homology on digraphs.

Theorem 5.4 Let X and Y be two digraphs.

(a) Let f, g : X → Y be two digraph maps. If f ' g then the induced maps of
homology groups

f∗ : Hp (X)→ Hp (Y ) and g∗ : Hp (X)→ Hp (Y )

are identical, that is, f∗ = g∗.
(b) If the digraphs X and Y are homotopy equivalent then they are also homo-

logically equivalent, that is, H∗ (X) ∼= H∗ (Y ).

Example 5.5 The n-torus Tn is not contractible because its homology groups
are non-trivial as was shown in Section 3.3.

A digraph Y is called an induced subgraph of a digraph X if the set of vertices
of Y is a subset of that of X and the arrows of Y are all those arrows of X whose
adjacent vertices belong to Y .

Definition 5.6 Let X be a digraph and Y be its induced subgraph. A retraction
of X onto Y is a digraph map r : X → Y such that r|Y = id Y .

Theorem 5.7 Let r : X → Y be a retraction of a digraph X onto an induced
subgraph Y . Assume that

either x−→=r (x) for all x ∈ X or r (x) −→=x for all x ∈ X. (5.7)

Then X ' Y and, consequently, H∗ (X) ∼= H∗ (Y ).

A retraction that satisfies (5.7) is called a deformation retraction.

Example 5.8 An obvious projection of the n-cube In onto In−1 is a deformation
retraction, which implies that all the cubes In are homotopy equivalent and, hence,
are contractible. Consequently, all the cubes In are homologically trivial, which
was also a consequence of Theorem 3.6. Similarly, an obvious projection of the
complete digraph Kn onto Kn−1 is a deformation retraction, which implies that
all the simplices Kn are contractible. Consequently, In and Kn are homotopy
equivalent.

Example 5.9 Consider the following two digraphs:



Path chain complex and path homology on digraphs 13

Figure 8:

The digraph at the left panel is contractible as there is a sequence of two defor-
mation retractions r1 and r2 reducing it to {•}:

r1 (4) = r1 (5) = 3, r2 (1) = r2 (2) = 3.

Consequently, the digraph at the left panel is homologically trivial. The digraph at
the right panel differs only by one arrow 3 → 1, but it is not contractible because
H2 6= {0}. In fact, for this digraph H2 is generated by a cycle

e124 + e234 + e314 − e125 − e235 − e315.

Example 5.10 Let a be a vertex in a digraph G and let b0, b1, ..., bn be all the
neighboring vertices of a in G. Assume that the following condition is satisfied:

∀i = 1, ..., n a→ bi ⇒ b0 → bi and a← bi ⇒ b0 ← bi. (5.8)

Denote by H the digraph that is obtained from G by removing the vertex a with
all the adjacent arrows. Clearly, the map r : G → H given by r (a) = b0 and
r|H = id , is a deformation retraction, whence G ' H.

For example, consider the digraph G on the following diagram:

Figure 9:

Removing successively the vertices A, B, 8, 9, 6, 7 each time satisfying (5.8), we
obtain an induced digraph H with the vertex set {0, 1, 2, 3, 4, 5} that is homotopy
(and homology) equivalent to G. As it is shown on the same diagram, the digraph
H is identical to the octahedron.
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6 Hodge Laplacian

6.1 Definition and basic properties

In this section, we use the chain complex (2.3) over the field K = R. Let fix an
arbitrary inner product 〈∙, ∙〉 in each of the spaces Rp so that we have an inner
product also in all Ωp. However, in all examples we use the natural inner product
given by 〈

ei0...ip
, ej0...jp

〉
= δ

j0...jp

i0...ip
,

that is, all elementary regular p-paths form an orthonormal basis in Rp.
For the operator ∂ : Ωp → Ωp−1 (p ≥ 0), consider the adjoint operator

∂∗ : Ωp−1 → Ωp so that

〈∂u, v〉 = 〈u, ∂∗v〉 for all u ∈ Ωp and v ∈ Ωp−1.

Definition 6.1 For any p ≥ 0, define the Hodge-Laplace operator Δp : Ωp → Ωp

by
Δpu = ∂∗∂u + ∂∂∗u. (6.1)

Then Δp is a self-adjoint and non-negative definite operator in Ωp.
A path u ∈ Ωp is called harmonic if Δpu = 0. It is easy to prove that a path

u ∈ Ωp is harmonic if and only if ∂u = 0 and ∂∗u = 0. Denote by Hp the space of
all harmonic p-path in Ωp.

Theorem 6.2 (Hodge decomposition) The space Ωp is an orthogonal sum:

Ωp = ∂Ωp+1

⊕
∂∗Ωp−1

⊕
Hp. (6.2)

Consequently, we obtain a natural linear isomorphism Hp
∼= Hp between the

homology group Hp and the space Hp. In particular, dimHp = βp; that is, the
multiplicity of 0 as an eigenvalue of Δp is equal to the Betti number βp.

Theorem 6.3 Let a digraph G contains T triangles, D double arrows, and let the
maximal number of linearly independent squares be S. Then

traceΔ1 = 2E + 3T + 2S + 4D. (6.3)

Note for comparison that trace Δ0 = 2E. It may be interesting to find a
similar formula for traceΔp for p > 1.

For any finite-dimensional self-adjoint operator A denote by spec A the spec-
trum of A, that is, an unordered sequence of eigenvalues counted with the multi-
plicities. This sequence can be denoted either by {λi} or by {(αi)mi} where mi is
the multiplicity of αi. Observe that the problem of determination of the spectrum
of A amounts to computation of the dimensions of eigenspaces {Ax = λx} for all
λ ∈ R, that is, to the multiplicities of all real λ.

We will use the operation disjoint union of unordered sequences: {λi} t
{μj} = {λi, μj}. If the same value λ occurs in the both sequences, then its
multiplicities add up in the disjoint union.
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6.2 Hodge spectra of the products

The following theorems contain the results of computation of spectra of the Hodge
Laplacian Δp on n-cube and n-torus.

Theorem 6.4 For all 1 ≤ p ≤ n we have

specΔp(I
n) =

{(
2k

p

)

(n
k)(

k−1
p−1)

}n

k=p

t

{(
2k

p + 1

)

(n
k)(

k−1
p )

}n

k=p+1

. (6.4)

In particular,

λmax (Δp(I
n)) =

(
2n

p

)

(n−1
p−1)

and λmin (Δp(I
n)) = 2(n+1

p+1)
.

Theorem 6.5 For all 1 ≤ p ≤ n we have

specΔp(T
n) =

{(
3k

p

)

2k(n
k)(

n−1
p−1)

}n

k=0

t

{(
3k

p + 1

)

2k(n
k)(

n−1
p )

}n

k=0

. (6.5)

In particular,

λmax (Δp(T
n)) =

(
3n

p

)

2n(n−1
p−1)

and λmin (Δp(T
n)) = 0(n

p)
.

6.3 Hodge spectra on the joins

Let Dm denote the digraph that consists of m ≥ 1 disjoint vertices and no arrows,
that is,

Dm = { •, ..., •
︸ ︷︷ ︸

n vertices

}.

Consider for any n ≥ 1 the digraph

Dn
m = Dm ∗ ... ∗Dm︸ ︷︷ ︸

n times

.

Theorem 6.6 We have, for all n, m ≥ 1 and r ≥ 2,

specΔr−1(D
n
m) =

{
((n− k)m)(m−1)k(r

k)(
n
r)

}r

k=0
. (6.6)

More explicitly, (6.6) means the following: if n < r then specΔr−1(Dn
m) = ∅,

while for n ≥ r the spectrum of Δr−1(Dn
m) consists of the following r+1 eigenvalues

(n− r)m, (n− r + 1)m, (n− r + 2)m, ..., (n− 1)m, nm, (6.7)

with the multiplicities

(m− 1)r
(
n
r

)
, (m− 1)r−1r

(
n
r

)
, (m− 1)r−2

(
r
2

)(
n
r

)
, ..., (m− 1)r

(
n
r

)
,
(
n
r

)
. (6.8)
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Example 6.7 Let m = 1, that is, D1 = {•}. Clearly, Dn
1 coincides with a

complete digraph Kn. In this case all the multiplicities in (6.8) are 0 except for
the last one

(
n
r

)
. Hence, specΔr−1(Kn) consists of a single eigenvalue n with the

multiplicity
(
n
r

)
.

Example 6.8 Let m = 2, that is, D2 = {•, •}. Then Dn
2 coincides with a digraph

sphere Sn−1. In this case (6.6) becomes

specΔr−1(S
n−1) =

{
(2(n− k))(r

k)(
n
r)

}r

k=0
.

Example 6.9 Let m = 3 and n = 2. Then we have D2
3 = K3,3 that is a complete

bipartite digraph.

Figure 10: Digraph K3,3

Then (6.6) yields for r = 2 that

specΔ1(K3,3) =
{

(3(2− k))(2
k)(

2
2)2k

}2

k=0
= {04, 34, 6} .

7 Torsion

Let us fix a positive integer N and denote by Ω the following truncated version of
the chain complex (2.3) over R:

0← Ω0
∂
← Ω1

∂
← ∙ ∙ ∙

∂
← Ωp−1

∂
← Ωp

∂
← ∙ ∙ ∙

∂
← ΩN ← 0 . (7.1)

7.1 Reidemeister torsion

Denote Bp = ∂Ωp+1, Zp = ker ∂|Ωp and Hp = Zp/Bp. In any p = 0, ..., N , choose a
basis ωp in Ωp and a basis hp in Hp. For each element of hp choose its representative
in Zp and denote the resulting independent set by h̃p.

Let bp be any basis in Bp. For each element w ∈ bp−1 choose one element
v ∈ ∂−1w ⊂ Ωp so that ∂v = w. Let b̃p be the collection of chosen elements v so
that

bp−1 = ∂b̃p. (7.2)

Note that always b̃0 = ∅. Since bp−1 is linearly independent, the set b̃p is also
linearly independent. Clearly, the union (bp, h̃p) is a basis in Zp. Since the sub-
spaces Zp and span (b̃p) of Ωp have a trivial intersection {0}, by the rank-nullity
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theorem we conclude that the direct sum of these subspaces is Ωp. Hence, the
union (bp, h̃p, b̃p) of the these sequences is a basis in Ωp.

If U and W are two bases in an n-dimensional linear space, then denote by
(U/W ) the transformation matrix from W to U and set

[U/W ] = |det (U/W )| .

In the case n = 0 set [U/W ] = 1.
Denote ω the collection {ωp} of the bases in Ωp and similarly let h = {hp}

be the collection of the bases in Hp.

Definition 7.1 The R-torsion τ(Ω, ω, h) of the chain complex Ω with the pre-
ferred bases ω and h is a positive real number defined by

log τ(Ω, ω, h) =
N∑

p=0

(−1)p log[bp, h̃p, b̃p /ωp]. (7.3)

One can prove that the value of τ (Ω, ω, h) does not depend on the choice of
the bases bp, the representatives in b̃p and the representatives in h̃p (which justifies
the notation τ(Ω, ω, h)).

Now let us fix an inner product 〈∙, ∙〉 in each Ωp. Then we have the induced
inner product in the subspaces Bp, Zp and Hp. Using the natural isomorphism
Hp
∼= Hp we transfer the inner product to Hp. Hence, in this case we choose

orthonormal bases ωp in Ωp and hp in Hp. In fact, we can identify hp with an
orthonormal basis in Hp and set h̃p = hp. One can show that the torsion τ (Ω, ω, h)
does not depend on the choice of orthonormal bases ω and h.

Hence, with this choice of ω and h, we define the R-torsion of Ω by

τ(Ω) = τ (Ω, ω, h) .

7.2 Analytic torsion

Denote by {λi}
dim Ωp

i=1 the sequence of all the eigenvalues of Δp. The zeta function
ζp (s) of Δp is defined by

ζp(s) =
∑

λi>0

1
λs

i

.

Definition 7.2 The analytic torsion T (Ω) of the chain complex Ω is defined by

log T (Ω) =
1
2

N∑

p=0

(−1)p p ζ ′p(0). (7.4)

The next theorem is the main results of this section.

Theorem 7.3 We have τ(Ω) = T (Ω) .
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Example 7.4 One can show that, for a complete digraph Kn,

T (Kn) =
√

n,

and for the n-cube In

T (In) = 2n/2
n∏

p=2

(p!)
1
2 (−1)p2n−p(n

p) .

In particular, T (K3) =
√

3 and T (I2) = 2
√

2. Note that all Kn and In are homo-
logically and even homotopically equivalent (see Section 5.3) while their torsions
are different.
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