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Abstract.The integral maximum principle for the heat equation on a Riemannian manifold

is improved and applied to obtain estimates of double integrals of the heat kernel.

1. Introduction and main results

In the present paper we develop a general approach to some estimates of solutions to
heat equation bases on so-called integral maximum principle . Suppose that M is a smooth
connected complete non-compact Riemannian manifold and consider some precompact
subregion Ω ⊂ M . Suppose also that u(x, t) is a (weak) solution to Dirichlet mixed
boundary value problem in a cylinder Ω × (0, T ):

ut − ∆u = 0, u|∂Ω×(0,T ) = 0 (1.1)

As it follows from the maximum principle, the function

sup
x∈Ω

|u(x, t)|

is decreasing in t. Moreover, it is also well-known, the following integral∫
Ω

u2(x, t)dx

is a decreasing function of t too. This fact can be regarded as an integral version of the
usual maximum principle.

There is a further development of this idea which has been applied in a series of works
to obtain heat kernel estimates (see , for example, [1] , [3] , [7] , [5] ) and consists of the
fact that some weighted integral of u2 decreases in t. Namely, this is applicable to the
integral

I(t) =
∫

Ω

u2(x, t)eξdx (1.2)

provided the function ξ(x, t) is locally Lipschitz and satisfies the relation

ξt +
1
2
|∇ξ|2 ≤ 0. (1.3)

The simplest non-trivial examples of such functions ξ are as follows:

ξ =
d(x)2

2t

d(x) being a locally Lipschitz function such that |∇d(x)| ≤ 1 (for instance, a distance
function from a set) and

ξ = αd(x) − α2

2
t

α being an arbitrary constant.
The following improvement of the maximum principle is proved in Section 2 below.
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Theorem 1 (Integral maximum principle) Suppose that u(x, t) is a (weak) solution to
the mixed problem (1.1) and a locally Lipschitz function ξ satisfies the relation (1.3) in
Ω × (0, T ), then the function

I(t) exp(2λ1(Ω)t)

is decreasing in t ∈ (0, T ) where I(t) is defined by (1.2) and λ1(Ω) is the first Dirichlet
eigenvalue of Ω.

B.Davies [4] proved the following universal integral bound for the heat kernel p(x, y, t)
being the smallest positive fundamental solution to the heat equation (for details of the
definition of the heat kernel see [2] ). Let A and B be two Borel sets in M with finite
volumes and let the distance R = dist(A, B) be positive, then

∫
A

∫
B

p(x, y, t)dxdy ≤
√

µAµB exp
−R2

4t

 . (1.4)

This estimate is of much importance due to its generality: no a priori geometric as-
sumption are needed for (1.4) to be valid. It turns out that Davies’s estimate can be
deduced with ease from the integral maximum principle. Moreover, Theorem 1 implies the
improved version of (1.4) :

Theorem 2 Let A, B be two Borel subsets in M of a finite volume and R = dist(A, B),
then ∫

A

∫
B

p(x, y, t)dxdy ≤
√

µAµB exp
−R2

4t
− λ1(M)t

 . (1.5)

Here λ1(M) is by definition the bottom of the spectrum of the Laplacian in L2(M) that
is called the spectral radius and coincides with inf λ1(Ω) over all precompact subregions
Ω.

If the spectral radius of a manifold is positive then the estimate of theorem 2 gives the
sharp speed of decay of heat kernel as t → ∞ because as it is known

lim
t→∞

log p(x, y, t)
t

= −λ1(M) .

Takeda [8] proved by a probabilistic method another kind of double integral estimate of
heat kernel. Let A be an arbitrary compact of a positive volume on M and let us denote
by AR the open R-neighbourhood of A where R > 0. Let Xt be Brownian motion on
manifold M governed by heat equation (1.1) . We shall consider the un-normalised law
PA of Xt under the condition that the initial point X0 is uniformly distributed in A, where
”un-normalised” means that the maximum value of PA is equal to µA rather than to 1.
Takeda’s inequality for this setting estimates the probability P (R, T ) for Xt to exit AR by
a time T starting at a point of A that is the function

P (R, T ) ≡ PA

(∃t ≤ T : Xt /∈ AR
∣∣ X0 ∈ A) .

The following sharpened version of Takeda’s inequality is due to T.Lyons [6]

P (R, T ) ≤ 16µAR

∫ ∞

R

1
(4πT )

1
2

exp(− η2

4T
)dη (1.6)

In Section 3 we obtain by means of the integral maximum principle an analytic proof of
a similar inequality which however doesn’t cover (1.6) but sometimes is sharper.
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Theorem 3 Let u(x, t) be a smooth subsolution to the heat equation in the cylinder
AR × [0, T ] (where A ⊂ M is a compact and R, T are arbitrary positive numbers) i.e.

ut − ∆u ≤ 0

and suppose that

0 ≤ u(x, t) ≤ 1 and u(x, 0) = 0 ∀x ∈ AR, t ∈ [0, T ], (1.7)

then ∫
A

u2(x, T )dx ≤ µ
(
AR \ A

)
max(

R2

2T
,
2T

R2
) exp(−R2

2T
+ 1) (1.8)

To explain connection of this theorem with inequality (1.6) we first mention that the
following function

u(x, t) ≡ P(∃τ ≤ t : Xτ /∈ AR|X0 = x)

(where P denotes a probability measure) satisfies the heat equation in the cylinder in
question and the conditions (1.7) . Thus, Theorem 3 is applicable to this function. Noting
that the function P (R, T ) is equal to

∫
A

u(x, T )dx and applying Cauchy-Schwarz inequality
we get from (1.8)

P (R, T ) ≤
√

µ(A)µ(AR \ A)max

 R√
2T

,

√
2T

R

 exp(−R2

4T
+

1
2
) . (1.9)

Compare this inequality to that of (1.6) . It is easy to check that for all R, T the following
estimate is valid ∫ ∞

R

exp(− η2

4T
)dη ≤ 2T

R
exp(−R2

4T
)

and, moreover, the ratio of the left and the right sides here tends to 1 as R2

T → ∞.
Therefore, (1.6) implies that

P (R, T ) ≤ 16√
π

µ(AR)

√
T

R
exp(−R2

4T
) (1.10)

and for large R2

T this inequality is only a bit weaker than (1.6) . On the other hand for
R2

2T ≥ 1 (1.9) implies

P (R, T ) ≤
√

e

2

√
µ(A)µ(AR \ A)

R√
T

exp(−R2

4T
) (1.11)

or, applying
√

ab ≤ (a + b)/2 ,

P (R, T ) ≤
√

e

8
µ(AR)

R√
T

exp(−R2

4T
) . (1.12)

Obviously, (1.10) is better for large R2

T , but for intermediate values of R2

T (1.11) and
(1.12) may give a sharper estimate, than (1.10) and (1.6) especially when the volume
µ(AR \ A) is small.
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The inequalities (1.6) and (1.9) imply some estimates of heat kernel. It is obvious from
a probabilistic point of view that P (R, t) is an upper bound of the following integral of
heat kernel ∫

A

∫
M\AR

p(x, y, t)dydx.

This can be explained from analytic point of view too. Indeed, applying theorem 3 to the
function

v(x, t) =
∫

M\AR

p(x, y, t)dy

we obtain as above ∫
A

∫
M\AR

p(x, y, t)dydx =
∫

A

v(x, t)dx

≤
√

µ(A)µ(AR \ A)max

 R√
2T

,

√
2T

R

 exp(−R2

4T
+

1
2
).

2. Proof of theorems 1 and 2

To prove Theorem 1 consider a time derivative I ′(t) of the function

I(t) =
∫

Ω

u2(x, t)eξ(x,t)dx (2.1)

Applying the equation (1.1) and the boundary condition (in a weak sense if the boundary
of Ω is not smooth) we have

I ′(t) =
∫

Ω

ξte
ξu2 +

∫
Ω

2ueξut =
∫

Ω

ξte
ξu2 −

∫
Ω

(∇ (
2ueξ

)
,∇u

)

(here we are applying inequality (1.3) )

≤ −1
2

∫
Ω

|∇ξ|2 eξu2 − 2
∫

Ω

(∇u,∇ξ)ueξ − 2
∫

Ω

|∇u|2 eξ

= −1
2

∫
Ω

eξ
|∇ξ|2 u2 + 4(∇u,∇ξ)u + 4 |∇u|2

 = −1
2

∫
Ω

eξ (u∇ξ + 2∇u)2

On the other hand
∇(e

ξ
2 u) =

1
2
e

ξ
2 (u∇ξ + 2∇u),

∣∣∣∇(e
ξ
2 u)

∣∣∣2 =
1
4
eξ(u∇ξ + 2∇u)2

which implies the inequality

I ′(t) ≤ −2
∫

Ω

∣∣∣∇(e
ξ
2 u)

∣∣∣2 (2.2)
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We are left to notice that the function v = eξ/2u as any other function vanishing on the
boundary ∂Ω satisfies the relation

∫
Ω

|∇v|2 ≥ λ1(Ω)
∫

Ω

v2

Substituting into (2.2) we obtain a differential inequality

I ′(t) ≤ −2λ1(Ω)I(t)

whence the decreasing of I(t)e2λ1(Ω)t follows. �

Remark. One may replace u2 in the statement of Theorem 1 by another power or function
of the solution. Let f(z) be a smooth function on (0, +∞) such that

f(z) > 0, f(z)′ > 0, f(z)′′ > 0

and

κ = inf
z>0

f ′′f
f ′2 > 0

Suppose also that the function ξ satisfies the relation

ξt +
|∇ξ|2
4κ

≤ 0

Then the interal
If (t) =

∫
Ω

f(u(x, t))eξdx

is a decreasing function of t.
For example, if f(z) = zp, p > 1 then κ = p−1

p . Of course it would be interesting to
specify a speed of decay of If (t) as was done for I(t) but the spectral radius seems not to
suit this purpose.
Proof of theorem 2. It suffices to prove the theorem for the case when A and B are
bounded sets. Indeed, if we have proved that, a general case will be reduced to that as
follows. Consider a bounded region Ω then, by the hypothesis, we have the inequality

∫
A∩Ω

∫
B∩Ω

p(x, y, t)dxdy ≤
√

µAµB exp
−R2

4t
− λ1(M)t


Letting Ω → M we obtain (1.5) .

To prove theorem 2 for bounded sets A, B let us consider the distance function d(x) from
set A and put ξ(x, t) = αd(x) − α2

2
t where constant α > 0 is to be chosen below. Since

|∇d| ≤ 1 it follows that ξ satisfies the relation (1.3) . Let Ω be a large region containing
both sets A, B and pΩ(x, y, t) be a heat kernel in region Ω (with a vanishing Dirichlet
boundary condition). Let us apply theorem 1 in region Ω to the function

u(x, t) =
∫

A

pΩ(x, y, t)dy
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being a solution to Dirichlet mixed value problem in Ω with an initial value u(x, 0) = 1A.
We have by theorem 1 that for any t > 0 I(t) ≤ exp(−2λ1(Ω)t)I(0). Note that

I(0) =
∫

Ω

12
A exp(αd(x))dx =

∫
A

exp(αd(x))dx = µA

for d(x)|A = 0. Therefore, we obtain

∫
Ω

u2(x, t)exp(αd(x)− α2

2
t)dx ≤ exp(−2λ1(Ω)t)µA

Reducing the domain of integration to B and taking into account that d(x)|B ≥ dist(A, B) =
R we have ∫

B

u2(x, t)dx ≤ exp
−αR +

α2

2
t − 2λ1(Ω)t

µA.

Finally, applying Cauchy-Schwarz inequality

∫
B

∫
A

pΩ(x, y, t)dydx =
∫

B

u(x, t)dx ≤


∫
B

u2(x, t)dx


1
2 √

µB

≤ exp
−α

2
R +

α2

4
t − λ1(Ω)t

√
µAµB .

Taking here the optimal value α = R
t

we obtain

∫
B

∫
A

pΩ(x, y, t)dydx ≤ exp
−R2

4t
− λ1(Ω)t

√
µAµB

We are left to let here Ω → M and to mention that λ1(Ω) ≥ λ1(M) and pΩ → p locally
uniformly. �


3. Proof of theorem 3

The proof of theorem 3 doesn’t use theorem 1 directly. We shall apply the idea behind
the proof of integral maximum principle in another situation. The proof will be split into
three steps.

STEP 1. Let us denote by d(x) the distance from x to the set A and consider a cut-off
function ϕ(x) such that

ϕ|A = 1, suppϕ ⊂ AR,

then the function η ≡ (1 − δ)ξ satisfies the following inequality:

∫
AR

u2eη(x,T )ϕ2(x)dx ≤ 2
δ

∫ T

0

∫
AR\A

|∇ϕ|2 eη(x,t)dx dt (3.1)

where δ ∈ (0, 1) is arbitrary.
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Proof. We have

d

dt

∫
AR

u2eη(x,t)ϕ2 = 2
∫

AR

uute
ηϕ2 +

∫
AR

u2ηte
ηϕ2

≤ 2
∫

AR

u∆ueηϕ2 +
∫

AR

u2ηte
ηϕ2

= −2
∫

AR

|∇u|2 eηϕ2 − 2
∫

AR

u(∇u,∇η)eηϕ2 − 4
∫

AR

ueη(∇u,∇ϕ)ϕ +
∫

AR

u2ηte
ηϕ2.

Applying the inequality

−2u(∇u,∇ϕ)ϕ ≤ δ−1u2 |∇ϕ|2 + δϕ2 |∇u|2

we get
d

dt

∫
AR

u2eηϕ2 ≤ 2
δ

∫
AR

u2 |∇ϕ|2 eη

−2
∫

AR

eηϕ2

(1 − δ) |∇u|2 − u |∇u| |∇η| − 1
2
ηtu

2

 .

The expression in brackets on the right hand side of this inequality is equal to

(1 − δ)X2 − |∇η|XY − 1
2
ηtY

2

where X = |∇u| , Y = u. This quadratic polynomial of X, Y is non-negative if its
discriminant is non-positive, i.e.

|∇η|2 + 2(1 − δ)ηt ≤ 0

which is true due to (1.3) . Recalling that 0 ≤ u ≤ 1 we have

d

dt

∫
AR

u2eηϕ2 ≤ 2
δ

∫
AR

u2 |∇ϕ|2 eη ≤ 2
δ

∫
AR

|∇ϕ|2 eη.

Integrating this inequality with respect to t and taking into account that |∇ϕ| = 0 outside
AR \ A we obtain (3.1) .

STEP 2. Let us prove the following estimate

∫
A

u2(x, T )dx ≤ 2δ−1µ(AR \ A)∫ R

0

∫ T

0
exp

(1 − δ)(ζ(ρ, τ)− ζ(0, T ))
dτ

− 1
2

dρ


2 (3.2)

ζ(ρ, τ) being a Lipschitz function in [0, R]× [0, T ] satisfying in the following relation

ζτ +
1
2
ζ2
ρ ≤ 0. (3.3)

Let us consider the function
ξ(x, t) = ζ(d(x), t),
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and apply (3.1) (note, that this function satisfies the condition (1.3) ). Since for all x ∈ A
ξ(x, T ) = ζ(0, T ) ≡ const we can get from (3.1)

∫
A

u2(x, T )dx ≤ 2
δ

∫ T

0

∫
AR\A

|∇ϕ|2 e(1−δ)(ξ(x,t)−ζ(0,T ))dx dt. (3.4)

Let us introduce a function

ω(r) ≡
∫ T

0

e(1−δ)(ζ(r,t)−ζ(0,T ))dt

and suppose that ϕ depends on d(x) only (i.e. we denote further by ϕ a function on (0, R)),
then we can rewrite (3.4) as follows

∫
A

u2(x, T )dx ≤ 2
δ

∫ R

0

ϕ′(r)2ω(r)dV (r)

where
V (r) ≡ µ(Ar \ A).

Optimizing the last integral over all Lipschitz functions ϕ on (0, R) under conditions ϕ(0) =
1, ϕ(R) = 0 we obtain

∫
A

u2(x, T )dx ≤ 2
δ


∫ R

0

dr

V ′(r)ω(r)


−1

. (3.5)

Since ∫ R

0

V ′(r)dr

∫ R

0

dr

V ′(r)ω(r)
≥


∫ R

0

dr√
ω(r)


2

we get from (3.5) an inequality

∫
A

u2(x, T )dx ≤ 2
δ
V (R)


∫ R

0

dr√
ω(r)


−2

,

which implies (3.2) .
STEP 3. Here we shall complete the proof choosing a suitable function ζ. If we take in

(3.2) ζ ≡ 0 and δ = 1 we obtain a more or less trivial estimate

∫
A

u2(x, T )dx ≤ µ(AR \ A)
2T

R2
. (3.6)

Applying (3.2) to a function ζ(ρ, τ) = −αρ − 1
2
α2τ with α = R

T
we get after integrating

∫
A

u2(x, T )dx ≤ 1 − δ

δ

µ(AR \ A)

e(1−δ) R2
2T − 1

. (3.7)
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If R2

2T
≥ 1 then one can take δ = 2T

R2 and (3.7) gives the following
∫

A

u2(x, T )dx ≤
R2

2T
− 1

 µ(AR \ A)
exp

(
R2

2T − 1
) − 1

or, applying the inequality
X − 1

eX−1 − 1
≤ X

eX−1

which is valid for all X ≥ 1, we finally get that for R2

2T ≥ 1
∫

A

u2(x, T )dx ≤ µ(AR \ A)
R2

2T
exp(−R2

2T
+ 1). (3.8)

The desired estimate (1.8) follows from (3.8) and (3.6) immediately. �

Remark. One could expect that the spectral radius may be put into the estimate of
theorem 3 like in theorems 1, 2 but this is not so. Indeed, the integral∫

A

u2(x, T )dx

may tend to µA as T → ∞ if u has a boundary value equal to 1 (on the contrary to the case
of theorem 1 where a solution under consideration vanishes on a boundary). Hence, any
upper bound of this integral cannot contain a term exp(−λ1(M)T ) vanishing as T → ∞.
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